
IMPLEMENTATION OF ECDSA BASED ON JAVA CARDS

A DISSERTATION

Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

S. SURESH KUMAR ROOIL

v

I

VY

LER & DC!
OIDA

IIT Roorkee-ER&DCI, Noida
C-5611, "Anusandhan Bhawan"

Sector 62, Noida-201 307
FEBRUARY, 2003

Enrollment No — 019040

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation . titled

"IMPLEMENTATION OF ECDSA BASED ON JAVA CARDS", in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Information Technology,
submitted in IIT, Roorkee — ER&DCI Campus, Noida, is an authentic .record of my own work

carried out during the period from August, 2002 to February, 2003 under the guidance of Dr.
P.R. Gupta, Reader, Electronics Research and Development Centre of India, Noida.

The matter embodied in this dissertation has not been submitted by me for award of any

other degree or diploma

Date:

Place: Noida 	 (S Suresh Kumar)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

(Dr. P.R. Gupta)
Date: Q7 2 • O3
	

Reader

Place: Noida
	

'' . 	 ER&DCI, Noida

ACKNOWLEDGEMENT

I hereby take the privilege to express my deepest sense of gratitude to Prof. Prem Vrat,

Director, Indian Institute of Technology, Roorkee, and Mr. R.K. Verma, Executive Director,

Electronics Research & Development Center of India, Noida for providing me with this valuable

opportunity to carry out this work. I am also very grateful to Prof. A.K. Awasthi, Programme

Director and Dean, Post Graduate Studies and Research, Prof. R.P. Agarwal, course

coordinator, IIT, Roorkee and Mr. V.N. Shukla, course coordinator, ER&DCI, Noida for

providing the best of the facilities for the completion of this work and constant encouragement

towards the goal.

I am grateful to my guide Dr. Poonam Rani Gupta, Reader, ER&DCI, Noida for her

valuable guidance, advice, suggestions and constant encouragement through numerous

discussions and demonstrations.

My sincere thanks to Mr. Munish Kumar, Project Engineer, ER&DCI, Noida for his

valuable suggestions.

I thank Mr. Joseph Smith, member, JavaCard forum, jguru.com who has helped me

whenever I found any difficulties. I owe special thanks to my best friends, all of my classmates

and other friends who have helped me formulate my ideas and have been a constant support.

Thanks to my parents and my brother who provided their support and enduring confidence in me

during my entire life. Last but not the least, I thank almighty for being on my side from the

conception of this idea to its implementation.

 Ltly

(S. Suresh Kumar)

Enrollment No. 019040

CONTENTS

Candidate's Declaration 	 (i)

Acknowledgement 	 (ii)

Abstract 	 1

1. Introduction 	 3

1.1 Overview 	 3
1.2 Objective 	 5
1.3 Scope 	 5
1.4 Organization of dissertation 	 5

2. Literature Survey 	 7

2.1 Digital Signatures 	 7

2.1.1 Classification of Digital Signatures 	 8
2.1.2 Characteristics of Digital Signatures 	 8
2.1.3 Applications of Digital Signatures 	 8

2.2 Smart Cards 	 W

2.2.1 Types of Smart cards 9
2.2.2 Java Smart Cards 10
2.2.3 Necessity of cryptography on smart cards 14
2.2.4 Limitations of available smart cards 14
2.2.5 Applications of smart cards 15
2.2.6 Java Card Vs Standard Java 16
2.2.7 Benefits of Java card technology 17
2.2.8 Java card security 18
2.2.9 Applications of Java cards 20

2.3 Elliptic Curve Cryptography 	 20

2.3.1 On the mathematics of fields 	 20
2.3.2 On the mathematics of elliptic curves 	 22

3. Analysis & Design 	 25

3.1 ECDSA (Elliptic Curve Digital Signature Algorithm) 	25
3.2 Secure Hash Algorithm 	 27
3.3 Java Card applet 	 30

4. Implementation 	 33

4.1 Implementation of the algorithm 	 33
4.2 Running on Java Card 	 35

5. Results and Discussions 	 39

5.1 Running on Java Development Kit 	 39
5.2 Running on Java Card Kit 	 43

6.Conclusion 	 47

References 	 49

Appendix A — Java Card Kit 	 51

iv

ABSTRACT

The security and portability of Java cards provide a safe,

reliable, convenient, and effective way to ensure secure e-business

and to enable a broad range of new applications. Java . cards

represents one of the smallest computing platforms in use today. A

major factor influencing the design and implementation of Java

Card is the limited availability of computing resources. Thus, the

class ECDSA (Elliptic Curve Digital Signature Algorithm) is

implemented, acted on the Java Card platform. ECDSA, the elliptic

curve analogue of the more widely used DSA (Digital Signature

Algorithm), is a robust digital signature algorithm. Compared to

traditional public-key cryptographic algorithms it offers

advantages such as shorter key lengths, faster execution, which are

particularly important for implementation of smart card
applications.

1

everywhere a Java smart card is found. It defines its own API and virtual machine. Also,

the Java Card API insists that any applet be cryptographically signed by the card issuer.

This ensures rogue applets are not accepted by a card thus reducing the risk of hackers

breaking into the card.

The runtime environment encapsulates the underlying complexity and details of

the smart card system. Applications request system services and resources through a

well-defined high-level programming interface.

Therefore, Java Card technology essentially defines a platform on which

application written in the Java programming language can run in smart cards and memory

constrained devices. In addition to providing Java language support, Java Card

technology defines a runtime environment that supports the smart card memory,

communication, security, and application execution model.

Also to use smart card as secure authentication tokens, the basic cryptographic

services must be available in the card environment. The digital signature capability is

important on a smart card because the users not only access services but also authorize

others by signing authorization certificates. This card-computer can be programmed to

perform tasks and store information, but note• that the brain is little -- meaning that the

smart card's power falls far short of a desktop computer. So, to enable the digital

signature capability, the selection of the algorithm plays an important role. As Java cards

have small amount of memory, selection of an algorithm among all the existing digital

signature algorithms is mainly based on the space complexity. That's why, ECDSA

(elliptic curve digital signature algorithm) is implemented as its shorter key lengths fits to

the limited environment of the cards. As smart cards are not very fast, the shorter key

lengths resulting in faster execution also favours to use this algorithm when compared to

other digital signature algorithms.

0

1.2 Objective

To understand Java card and elliptic curve cryptography technologies and to

implement ECDSA using Java language and to run it in Java card environment.

1.3 Scope

This dissertation presents a study of Java card and elliptic curve cryptography

technologies. Java smarts cards have been discussed in detail and how to program on a

Java card environment is also described. Here first step was to implement the ECDSA on

PC (Personal Computer) environment where one can create a document, generate public

and private keys based on the desired key size, sign the document and send across to

anyone by enclosing in a file, which contains the public key, message and the signature.

One can read the document sent by the signer and can verify the signature for

authentication of the sender. In second step the algorithm was tested using Java card

runtime environment on PC only in a simulated environment due to non-availability of

Java Smart Card and CAD (Card acceptance device)

1.4 Organization of dissertation

This dissertation report contains six chapters. Chapter 1 presents the overview and

discussed the objective and scope of dissertation. Chapter 2 deals with the fundamentals

of smart cards, Java card environment and elliptic curve cryptography. Chapter 3

discusses about the ECDSA and how a communication takes place through APDUs

(Application Program Data Units). Chapter 4 deals with the actual implementation of the

algorithm and the steps used for developing Java card applet. Chapter 5 shows the user

interfaces and discussions on them. Chapter 6 concludes the thesis, along with future

enhancement aspects.

61

Chapter 2

LITERATURE SURVEY

2.1 Digital Signatures

A digital signature is an authentication mechanism which enables the creator of

the message to attach a code that acts as a signature similar to the way we sign a piece of

information using our handwritten signature [3]. This signing is done by operating on the

data with some key in such a way that the result is a digital signature. The signature needs

to be such that only one person can create it (the signer) using a private key, but everyone

else should be able to verify it using a public key. Figure 2.1 illustrates this property. This

is exactly the opposite situation than in public key encryption, where we want everyone

to be able to encrypt a message, but only the private key holder should be able to read it.

—♦ Sign 	 f t
Operation 	 • ~'} 	;

. 	 i_I1EEEE
Signer 	 Verification

Fig 2.1: The digital signature created by the signer
can be checked by everybody with a public key.

There are many digital signature algorithms with varying levels of security and

Complexity: DSA (Digital Signature Algorithm), RSA (Revert Shamir Adelman) and

ECDSA to name a few.

7

2.1.1 Classification of Digital Signatures

The digital signature schemes in use today, can be classified according to the hard

underlying mathematical problem which provides the basis for their security:

1. Integer Factorization (IF) schemes, which base their security on the intractability of

the integer factorization problem. Examples of these include the RSA and Rabin

signature schemes.

2. Discrete Logarithm (DL) schemes, which base their security on the intractability of

the (ordinary) discrete logarithm problem in a finite field. Examples of these include

the ElGamal, Schnorr, DSA and Nyberg-Rueppel signature schemes.

3. Elliptic Curve (EC) schemes, which base their security on the intractability of the

elliptic curve discrete logarithm problem.

2.1.2 Characteristics of Digital Signature

1. The signature is authentic. The signature convinces the document's recipient that the

signer deliberately signed the document.

2. The signature is unforgeable. The signature is proof that the signer, and no one else,

signed the document.

3. The signature is not reusable. The signature is part of the document; an unscrupulous

person cannot move the signature to a different document.

4. The signed document is unalterable. After the document is signed, it cannot be

altered.

5. The signature cannot be repudiated. The signer cannot claim that he or she didn't

sign it [3].

2.1.3 Applications of Digital Signatures

Digital signatures can be used to provide the following basic cryptographic

services:

1. Data integrity - the assurance that data has not been altered by unauthorized or

unknown means.

2. Data origin authentication - the assurance that the source of data is as claimed.

3. Non-repudiation - the assurance that an entity cannot deny previous actions or

commitments.

4. Digital signature schemes are commonly used as primitives in cryptographic

protocols that provide other services including entity authentication (e.g., FIPS 196

(Federal Information Processing Systems 196), ISO/IEC 9798-3(International

Standards Organization/International Electrotechnical Commission) and Blake-

Wilson and Menezes), authenticated key transport (e.g., Blake-Wilson and Menezes,

ANSI X9.63 (American National Standards Institute) and ISO/IEC 11770-3), and

authenticated key agreement (e.g., ISO/IEC 11770-3 , Diffie, van Oorschot and

Wiener, and Bellare, Canetti and Krawczyk).

5. They are also intended for use in electronic mail, electronic funds transfer, electronic

data interchange, software distribution, data storage, and other applications, which

require data integrity assurance and data origin authentication.

2.2 Smart Cards

The smart card is a credit card sized plastic card with its own processor and

memory embedded with an integrated circuit chip. One can think of the smart card as a

"credit card" with a "brain" on it, the brain being a small-embedded computer chip. Card-

computer can be programmed to perform tasks and store information, but note that the

brain is little -- meaning that the smart card's power falls far short of desktop computer.

2.2.1 Types of smart cards

There are two types of smart card. The first is really a "dumb" card in that it only

contains memory. These cards are used to store information. Examples of this might

include stored value cards where the memory stores a dollar value which the user can

spend in a variety of transactions. Examples might be pay phone, retail, or vending

machines.

E

The second type of card is a true "smart" card where a microprocessor is

embedded in the card along with memory. Now the card actually has the ability to make

decisions about the data stored on the card. The card is not dependent on the unit it is

plugged into, to make the application work. A smart purse or multi-use card is possible

with this technology.

As there is a microprocessor on the card, various methods can be used to prevent

access to the information on the card to provide a secure environment. This security has

been touted as the main reason that smart cards will replace other card technologies.

The microprocessor type smart card comes in two flavors - the contact version

and the contactless version. Both types of card have the microprocessor embedded in the

card however the contactless version does not have the gold plated contacts visible on the

card. The contactless card uses a technology to pass data between the card and the reader

without any physical contact being made. The advantage to this contactless system is

there are no contacts to wear out, no chance of an electric shock coming through the

contacts and destroying the integrated circuit, and the knowledge that the components are

completely embedded in the plastic with no external connections. The disadvantage to

this is that there are some limitations to the use of the smart card.

2.2.2 Java smart cards

Specifically Java smart card, which is alternative to conventional smart card, is

meant for running under Java programs where as conventional smart card runs under

programs written in other languages. Smart card applications written in other languages

cannot work in any environment and cannot interoperate [4]. So there is a need of a

language by which the programs written in that language can easily fit into any type of

scenario i.e., can run in any sought of environment and can easily interoperate. Java

Virtual Machine fulfills such a requirement where a program written in Java can run

anywhere. So this, "write once, run anywhere" capability of Java offers a solution to this

problem. Also Java is a secure language. It ensures applets from different sources work

and play well with each other on a smart card. Data considered private by one applet will

MI1

not be accessed by another. All these features make Java smart card advantageous when

compared to conventional smart card.

Smart cards can be distinguished between high-end and low-end [4].

• Low-end smart cards only have memory inside; like magnetic stripes, they are

simply storage devices. Phone card is one of the low-end smart cards.

• High-end smart cards contain microprocessor and memory. Not only it can

store data, but also perform calculations. Electronic commerce and GSM

(Global System for Mobile communication) phone use high-end smart cards.

By definition, Java smart card is grouped into high-end smart cards.

The major components inside Java smart card are microprocessor and

memories. The basic architecture of Java smart card consists of Applets, Java Card API,

Java Card Virtual Machine, and Operating System & Native Function, all included inside

memories as shown in fig 2.2

Applets/applications II] 	 EEPROM

Java Card API 	 EEPROM

Interpreter/ 	I
Java Card Virtual Machine application loader 	 EEPROM

Low-level drivers 	 Card Operating Systems 	ROM

CPU

Fig 2.2: The basic architecture of a Java Smart Card

• Applets/ applications — It is defined as smart card application written in Java

Programming language and confirming to a set of conventions so that it can run

within Java Card runtime environment (JCRE). Many applets can fit inside one single

Java smart card with each applet being identified by AID (Applet IDentifier). The

11

communication between an applet and a host application is achieved through

exchanging Application Program Data Units (APDUs).

• Java Card API — The API class library supports the Card bytecode in applets that

allows inter-application communication.

• JavaCard Virtual Machine — Knowing that there is a limited supply of memory in

Java smart card (24Kb), the size of the data has to reduce to minimum in order to fit

into the card. As the result, Java smart card is designed to adopt the subset of Java

language specification and JavaCard Virtual Machine is used to convert the data into

this subset format which takes up less space and also optimize the performance when

executing in JavaCard VM. Java provides a separate virtual machine for each of its

technologies. Java Card virtual machine (JCVM) is the tiniest of all the Java virtual
machines.

• Operating System & Native function — It deals with basic cryptography, I/O (Input/

Output), memory access and application load services.

• Microprocessor — Calculations inside Java smart card will be done by

microprocessor. Today, 8-bit microprocessor is still commonly used.

Memory — Three types of memories used in the Java smart card are tabulated below:

TYPE SIZE USAGE

ROM 16Kb Storing OS and native function

EEPROM 8Kb Storing applets, JavaCard VM, JavaCard API

RAM 256 bytes Used as a buffer for storing transmission data

Table 2.1 Types of memories used in Java smart card

There are eight contacts in Java smart cards. They are power supply, reset, clock,

ground, input/output and three optional contacts. The subtle point about the physical

characteristics and the 8 contacts layout of the Java smart card is that it is compatible to

12

ISO 7816 (part 1 & 2) — International Standardisation Organisation. This allows Java

smart card interoperates with the other smart cards and also enable applications from

different industries coexist in the same card. For example, it can combine the personal

identification data for GSM phone with the credit card [4].

ISO 7816 consists of:

• Part 1: Physical characteristics.

• Part 2: Dimensions and location of the contacts.

• Part 3: Electronic signals and Transmission protocols.

• Part 4: Inter-industry commands for interchange.

• Part 5: Application identifiers.

• Part 6: Inter-industry data elements.

• Part 7: Inter-industry commands for SCQL (Structured Card Query Language).

Reader

So one may ask — where does the power come from? There is no power supply

inside Java smart card, all the power has to be rely on its partner — Card Acceptance

Device (CAD), or sometimes known as Interface Device (IFD), terminal or reader.

Reader supplies power to Java smart card via contact (card is inserted to the reader) or

contactless (using antenna) communication. Apart from being a power supply, reader's

main role is actually to establish data carrying connection and link up the relationship

between Java smart card and the computer system [4]. The relationship is depicted in the

figure 2.3 as shown below.

Java Smart Card

Computer system 	 Reader 	 Java smartcard

Fig 2.3 Communication between Computer system and Java smart card via Reader

13

2.2.3 Necessity of cryptography on smart cards

Currently, smart cards are used in telephone, transportation, banking, and

healthcare transactions etc., All of these applications require sensitive data to be stored in

the card, such as cryptographic keys for authentication, etc., To use smart cards as secure

authentication tokens, the basic cryptographic services must be available in the card

environment. Today many of those services are available, but mostly through specialized

hardware integrated on the cards. The digital. signature capability is important, because

the user can not only access services, but also authorize others by signing authorization

certificates of his/her own. The ability to sign certificates also means that it is possible to

further delegate rights in the certificates issued by someone else.

Java Card is the specification of a Java programming environment for smart

cards. Its introduction has made a 32-bit software environment, which is similar to the

desktop programming environment, available for smart card developers.. The most recent

cards in the market even promise a natively 32-bit processor, which is important for the

performance of the Java Card environment. At the time of writing the memory capacities
of the cards are also increasing: best commercially offered cards are beginning to

approach the 32KB boundary. The fitting of Java to a card does have its problems,

however. For example, the memory management has to be done manually, as a garbage

collector is not included in the specification. Generally, the introduction of high-level

languages for smart cards makes the software production for them more appealing. For

that reason, it seems likely that in the future more and more software functionality will be

implemented for the cards.

2.2.4 Limitations of available smart cards

The worst shortcomings are in terms of memory on the card. Currently available

cards have either 16KB or 32KB of EEPROM (Electrically Erasable and Programmable

Read Only Memory),which is quite a small amount, compared to current desktop

development platforms. Usually card applications are developed using a PC with at least

four orders of magnitude higher capacity in terms of memory.

14

Another limitation is that most current cards have 8-bit processors, which adds to

the memory problem since Java has been designed with 32-bit processors in mind. This

means that bit, manipulation has to be done before the application can be run on the card.

This in turn means more memory usage and slower execution time.

Available smart cards also have very limited processing powers. Current smart

cards typically have a clock frequency of about 4 MHz [5]. Because of poor performance,

the amount of data processed cannot be very large, if the running time is to be reasonable.

Additionally smart cards are slow in their I/O [5]. As the user only sees the total

response time, the slow I/O places additional burden to process the data fast. It also

implies that the amount of data transferred between the cards and the terminal should be

kept to a minimum.

2.2.5 Applications of Smart cards

Smart cards currently are used in telephone, transportation, banking, and

healthcare transactions, and soon -- thanks to developers like you -- we'll begin to see

them used in Internet applications. Smart cards are already being used extensively in

Japan and Europe and are gaining popularity in the U.S. In fact, three significant events

have occurred recently in the smart card industry in this country:

PC/SC

Microsoft and several other companies introduced PC/SC (Personal computer/

Smart Card) a smart card application interface for communicating with smart

cards from Win32-based platforms for personal computers. PC/SC does not

currently support non-Win32-based systems and may never do so. We will

discuss this in greater detail later on.

OpenCard Framework

OpenCard is an open standard that provides inter-operability of smart card

applications across desktops, laptops, set tops, and so on. OpenCard promises to

provide 100% pure Java smart card applications. Smart card applications often are

15

not pure because they communicate with an external device and/or use libraries

on the client. (As a side note, 100% pure applications could exist without

OpenCard, but without it, developers would be using home-grown interfaces to

smart cards.) OpenCard also provides developers with an interface to PC/SC for

use of existing devices on Win32 platforms.

JavaCard
JavaCard was introduced by Schlumberger and is submitted as a standard by

JavaSoft recently [6]. Schlumberger has the only Java card on the market

currently, and the company is the first JavaCard licensee. A smart card with the

potential to set the overall smart card. standard, JavaCard is comprised of standard

classes and APIs that let Java applets run directly on a standard ISO 7816

compliant card. JavaCards enable secure and chip-independent execution of

different applications.

2.2.6 Java Card vs. Standard Java

Java, as it exists on the card, has many limitations that make the development

rather different from that practiced in other Java environments. Main differences and

limitations are the following:

Supported Java Features Unsupported Java Features
O Small primitive data types: boolean, byte, short. O Large primitive data types: long, double, float.
O One-dimensional arrays. 0 Characters and strings.
O Java 	packages, 	classes, 	interfaces 	and 0 Multidimensional arrays.

exceptions. a Dynamic class loading.
O Java 	object 	oriented 	features: 	inheritance, 0 Security manager.

overloading 	and 	dynamic 	object 	creation, a - Garbage collection and access scope and binding rules. finalization.
O The int keyword and 32-bit integer data type 0 Threads support are optional.

0 Object serialization
• 0 Object cloning

Table 2.2: Supported and unsupported Java features

16

2.2.7 Benefits of Java card technology

There are several unique benefits of the Java Card technology, such as [7] :

Platform Independent - Java Card technology applets that comply with the Java

Card API specification will run on cards developed using the JCAE (Java Card

Application Environment) - allowing developers to use the same Java Card

technology-based applet to run on different vendors' cards.

Multi-Application Capable - Multiple applications can run on a single card. In

the Java programming language, the inherent design around small, downloadable

code elements makes it easy to securely run multiple applications on a single card.

Post-Issuance of Applications - The installation of applications, after the card

has been issued, provides card issuers with the ability to dynamically respond to

their customer's changing needs. For example, if a customer decides to change the

frequent flyer program associated with the card, the card issuer can make this

change, without having to issue a new card.

Flexible - The Object-Oriented methodology of the Java Card technology

provides flexibility in programming smart cards.

Compatible with Existing Smart Card Standards - The Java Card API is

compatible with formal international standards, such as, IS07816, and industry-

specific standards, such as, EuropaytMaster Card/Visa (EMV).

17

N

2.2.8 Java Card Security

Java Card security has not yet been analyzed deeply in the literature, but some

information is available. Many of the changes are done in order to fit Java to the limited

environment of the current cards, but these changes also have security implications. Some

differences of the Java Card, in comparison to Standard Java, increase the security risks

and some lessen them. One thing that needs to be addressed is that much of the base

security model in Standard Java is totally absent from Java Card.

Java Card properties increasing security

i. Lack of threads

The security analysis of the code is much easier when there is no threading.

Threading is also difficult to implement correctly in the VM (Virtual Machine) and

it is difficult to use without introducing potential security problems.

ii. Absence of dynamic class loading

It is well known that if you can confuse the VM about the types of objects it is

manipulating, you can break the security model of Java. Removal of dynamic class

loading makes type safety easier to enforce. Many of the Standard Java security

problems have been related to type safety problems resulting from class loading.

Java Card properties decreasing security

i. Lack of garbage collection

Garbage collection is a good example of a qualitative security feature. Without an

automatic system for freeing allocated memory it is difficult to program securely.

Memory leaks are a well-known source of numerous security problems in the

traditional computing domain. This problem is especially bad in the card

environment, where memory capacity is limited.

ii. Exception propagation problems

Uncaught exceptions could lead to a card becoming muted, i.e. non-responding.

This creates another significant denial of service problem and raises the need for

thorough quality testing before software release.

iii. Multiple applications and applet fire walling

There is a risk that competing stakeholders may have their applets on the same

user's smart card. This might lead to attacks between applications. Applet fire

walling and separation needs to be perfectly implemented in order to guarantee

trusted environment for each application.

iv. Object-sharing loopholes

Object sharing is a high-demand feature, because it allows different applications

to use the same code. This is very neat because there is always a shortage of

memory on the card. It also allows the same tested code to be used in all

necessary places. It is a potential source of security problems and some attacks

have been hypothesized.

v. Access to native code

In a JCRE (Java Card Runtime Environment) environment, Java security is based

on the quality of the underlying JCRE implementation. If it does contain security-

related bugs, the whole idea behind Java security breaks. The same principle

applies to the native code operations provided by the particular JCRE

environment. If any of them provide features that do not follow the semantics of

19

Java security, they may offer loopholes that allow attack applets to carry out

operations that would otherwise be stopped by the JCRE. It is also noteworthy,

that native methods are native usually because of performance reasons i.e. the

Java version of the same routine wouldn't be fast enough. The other possible

reason is that nobody bothered to port the native code to Java. At least in the latter

case, it is unlikely that the code would have been reviewed with Java security in

mind.

2.2.9 Applications of Java Cards

In Sun Microsystems' stand #A06 in Albinoni Hall, Sun and its strategic partners

demonstrates examples of products and technologies based on the open Java Card

platform. Examples of products and technologies expected to be showcased at the Sun

stand include multi-application PKI (Public Key Infrastructure) -enabled smart cards,

digital identity cards, toolkits to enhance Java Card technology development, processors,

etc.

Companies at Sun's booth include ActivCard, Banksys, Bull, Citigroup, Entrust

Technologies, Gemplus, Giesecke & Devrient, Motorola, Oberthur, Schlumberger, ST

Microelectronics and Visa. The displayed solutions are all written in Java Card

technology and have the ability to run on any other platform. Advantages of the Java

Card platform include the ability to create secure applications and services, reduce costs

and shorten time to market

2.3 Elliptic Curve Cryptography

Here is a description of elliptic curve cryptography. First, a brief introduction to

mathematical concepts is given.

2.3.1 On the mathematics of fields

This section deals primarily with the mathematics of the fields, and although

elliptic curves are mentioned in several places, one should bear in mind that here not only

20

elliptic curve mathematics itself are discussed but also the underlying mathematics that

the elliptic curve arithmetic needs. Elliptic curves can be defined over a mathematical

structure called a field. Here it suffices to say that normal modulo arithmetic using

integers together with multiplication and addition operations form a field. Generally, a

field can consist of any kinds of objects that behave sufficiently similarly to the

aforementioned example.

Currently, two fields are of special interest in implementing elliptic curve

cryptography: Characteristic two finite fields, which are actually characteristic two

polynomial finite fields and marked F2' and prime fields F. Here we present most of the

necessary algorithms in F. (Sometimes the field Fp is denoted only with Zp even though
it strictly means only the integers from 0 to p. Fp, again strictly speaking, is a structure

consisting of these elements and two operations + and *. This distinction is not

consistently held by the literature and sometimes Zp is used where Fp would in fact be

more correct.)

To understand the definition of field formally, we need to first introduce another

mathematical structure called group; the definition is given shortly. Elliptic curve

operations, take place on additive (abelian) group. Informally, this simply means that the

group consists of group elements and that the only operation is called addition (+), which

follows the well-known rules of addition. Formally, it means that the elements and

operation must respect the abelian group axioms, which are defined as follows.

Definition 1. A group is a set G with binary operation o on G having the following

properties:

• Associativity:

For every a,b,c E G, a o (b o c) = (a o b) o c.

• Existence of identity:

There is anelemente E Gsuchthat aoe=eoa=a,

for all a E G.

21

• Existence of inverses:

For each a E G, there exists an element a 1 c G

such that aoa1 =a1 oa=e.

• Closure under the binary operation:

For all a E G and all b e G the element (a o b) e G.

A group is called abelian group, if it also satisfies the following:

• Commutativity:

Forall(a, b) E G, aob=boa.

The number of the elements in G is called the order of the group G

Next we proceed to a genuine extension of the abelian group, the definition of the field.

Definition 2. A field is a set F with two binary operations called addition (+) and

multiplication (*) that have the following properties:

• F is abelian group with respect to addition (+). (i.e., all

of the axioms from definition 1 are included here.)

• Multiplication associativity: a * (b * c) _ (a * b) * c,

for all a,b,c E F.

• Distributivity between addition (+) and multiplication (*):

a * (b+c)=a * b + a * c and (b+c) * a.=b * a + c * a.

• The set F \ (e} (non-zero elements from F) forms an

abelian group under multiplication.

2.3.2 On the mathematics of elliptic curves

In the previous section, there was a brief description of field elements. Nextly,

calculations with elliptic curves, which are defined over a field are discussed here. It

should be carefully noted that elliptic curve operations (addition and scalar

multiplication) take place on the curve, and because of that operation with points is done

22

instead of simple field elements as described in previous section. It is crucial to be able to

make a distinction between adding field elements and adding points (i.e. pairs of field

elements). Otherwise, it is impossible to understand the fact that the field operations are

needed for doing elliptic curve operations, even though they are not the same thing.

Here is an example. Assume to add two points on some curve: (x l ,yl) and (x2,y2).

That is to know what is (xl,yi) + (x2,y2), (This is elliptic curve addition). Of course,

somehow partition of the points to handle the elements xl, X2, yl, Y2 separately is needed,

and then call the result of this algorithm the sum of the two points. But these elements are

exactly field elements that one knows how to add and multiply [81! (Note that when the

underlying field is Fp, then these elements x1, x2 , yl , y2 are integers.)

The Elliptic curve equation

An elliptic curve E over Fp is of the form

y2 =x3 +ax+b(1).

where a, b E Zp and 4a3 + 27b2 # 0 (mod p). Additionally there is a special

point oo, called the point at infinity. The set E(Fp),has all such points (x,y), where x E Zp

andy E Zp, and which also satisfy the equation (1).

Example: Elliptic curve over F23

Let p = 23 and consider the elliptic curve E, y2=x3+x+4 defined over F23. As

per the notation in equation (1), we have a = 1 and b = 4. Also 4a3 + 27b2 = 4 + 432 =

436 = 22 (mod 23), so E is an elliptic curve.

EC Addition Formula

For elliptic curves, oc serves as an identity element. (for normal integer addition

the identity element would be 0.)

1. P +00= ao+P=P.

23

Informally this means that any point added with the identity element returns the point

itself.

2. If P1 = (xi,yl) E E(Fp),P2 = (x2,y2) E E(Fp),and P1 + P2 = co.

That is, a point P, is a pair of elements and this point belongs to an elliptic curve
defined over Fp, which is an ordinary integer field fixed by a prime p. Then the P2 is

usually denoted by Pl, as the items cancel each other out and return the identity

element(oo). In other words this means that adding a point to its inverse element

returns the identity element.

3. If P1 = (x l ,y i) E E(F) and P2 = (x2,y2) c E(Fp), where Pl ~ -

P2. The P1 + P2 = (x3,Y3) E E(Fp), where

X3 = 22-xi --- x2 	(2)

y3= 2(xl — x3) — Yl (3)

where

_ (Y2 YI)/(x2-xj) lfP1 * P2
_ (3xj2+a)/2yl ifP1 = P2 	 (4)

Informally this just means that any two points, that are both on the curve return a

third point on the curve, whose coordinates can be calculated from the formulas (2), (3)

and (4).

24

Chapter 3

ANALYSIS & DESIGN

3.1 ECDSA (Elliptic Curve Digital Signature Algorithm)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve

analogue of the DSA. Scott Vanstone first proposed ECDSA in 1992 in response to

NIST's (National Institute of Standards and Technology) request for public comments on

their first proposal for DSS (Digital Signature Standard). It was accepted in 1998 as an

ISO (International Standards Organization) standard (ISO 14888-3), accepted in 1999 as

an ANSI (American National Standards Institute) standard (ANSI X9.62), and accepted

in 2000 as an IEEE (Institute of Electrical and Electronics Engineers) standard (IEEE

1363-2000) and a FIPS standard (FIPS 186-2). It is also under consideration for inclusion

in some other ISO standards.

ECDSA is the elliptic curve analogue of the DSA. It operates on elliptic curves

E(F) while DSA operates on the multiplicative prime group of Z. . That is, instead of
working in a subgroup of order q in Z, we work in an elliptic curve group E(Zp). The

ECDSA is currently being standardized within the ANSI X9F1 and IEEE P 1363

standards committees. While DSA is a Discrete Logarithm (DL) scheme which base their

security on the intractability of the ordinary discrete logarithm in a finite field where as

ECDSA is a Elliptic Curve (EC) scheme which base their security on the intractability of

the elliptic curve discrete logarithm problem. Table 3.1 shows the correspondence .

between some math notation used in DSA and ECDSA.

DSA Notation ECDSA Notation
Q N
g P
x d
y Q

Table 3.1: Correspondence between DSA and ECDSA notation

The only significant difference between ECDSA and DSA is in the generation of

r. The DSA does this by taking the random element (gk mod p) and reducing it modulo q,

25

thus obtaining an integer in the interval [1,q-1]. The ECDSA generates the integer r in the

interval [l ,n- 1] by taking the x-coordinate of the random point kP and reducing it modulo

I

To obtain a security level similar to that of the DSA (with 160-bit q and 1024-bit

p), the parameter n should have about 160 bits. If this is the case, then DSA and ECDSA

signatures have the same bit length (320 bits).

Instead of each entity generating its own elliptic curve, the entities may elect to

use the same curve E and point P of order n_ In this case, an entity's public key consists

only of the point Q. This results in public keys of smaller sizes. Additionally, there are

point compression techniques whereby the point Q = (xQ,yQ) can be efficiently

constructed from its x-coordinate xQ and a specific bit of the y-coordinate yQ. Thus, for

example, if p 2160 (so elements in Zr, are 160-bit strings), then public keys can be

represented as 161-bit strings.

Entire flow diagram of ECDSA is the following Figure 3.1.

Internet

Sender
Message M

Hash Function

Message

4,

Digest

Private 	Sign Operation
Key

Signature (r,$)

Receiver
Message M

Hash Function

Message
Digest

Verify Operation 	Public
— — — 	 Key

valid/ invalid

Fig 3.1 ECDSA flow diagram

26

3.2 Secure Hash Algorithm

The algorithm takes as input a message with a maximum length of less than 264

bits and produces as output a 160 — bit message digest. The input is processed in 512-bit

blocks. The overall processing of a message follows the structure shown for MD5 in fig

3.2 . With a block length of 512 and a hash length and chaining variable length of 160

bits. The processing consists o the following steps:

Step 1: Append padding bits. The message is padded so that its length is congruent to

448 modulo 512 (length=448mod 512). Padding is always added even if the message is

already of the desired length. Thus, the number of padding bits is in the range of 1 to 512,

the padding consists of a single 1-bit followed by the necessary number of 0-bits.

Step 2: Append length. A block of 64 bits is appended to the message. This block is

treated as an unsigned 64 —bit integer (most significant byte first) and contains the length

of the original message (before the padding).

Step 3: Initialize MD buffer. A 160 —bit buffer is used t o hold intermediate and final

results of the hash function. The buffer can be represented as five 32-bit registers (A, B,

C, D, E). These registers are initialized to the following 32-bit integers (hexadecimals

values):

A= 67452301

B=EFCDA89

C=98BADCFE

D=10325476

E=C3D2E1FO

Note that first four values are the same as those used in MD5 (Message Digest).

However in the case of SHA-1, these values are stored in big—endian format, which is the

more significant byte of a word in the low- address byte position. As 32-bit string s, the

initialization values (in hexadecimals) appear as follows:

Word A: 67 45 23 01

Word B: EF CD AB 89

Word C: 98 BA DC FE

Word D: 10 32 54 76

27

Word E: C3 D2 El. FO

Step 4: Process message in 512—bit (16—word) blocks. The heart of the algorithm is a

module that consists of four rounds of processing of 20 steps each. The four rounds have

a similar structure, but each use a different primitive logical function, which we refer to

as fl, f2, f3, and fa.

Each round takes as input the current 512- bit block being processed (Yq) and the

160-bit buffer value ABCDE and updates the contents of buffer. Each round also makes

use of an adaptive constant K1, where 0<_t<_79 indicates one of the 80 steps across our

rounds. In fact only our constants are used. The values, in hexadecimal and decimal, re as

follows:

The output of the fourth round (eightieth step) is added to the input to the first

round (CVq) to produce (CVy+I). The addition is done to the independently or each of five

words in the buffer with each of the corresponding words in (CVq), using addition

modulo 232.

Step 5: Output. After all 512-bit blocks have been processed, the output from the Lth

stage is the 160-bit message digest.

We can summarize the behavior of SHA1 as follows.

CVo =IV

CVq+1 =SUM32 (CVq,ABCDEq)

MD=CVI

Where

IV= initial value of the ABCDE buffer, defined in step3

ABCDEq = the output of the last round of processing of the qth message block.

L= the number of the blocks in the message (including padding and length fields).

SUM32 = addition modulo 232 performed separately on each word of the pair of

inputs.

MD= final message digest value

cvq

160

cv9+I

Fig 3.2: SHA-1 Algorithm

512

29

3.3 Java Card applet

A Java Card applet is a smart card application written in the Java programming

language and conforming to a set of conventions so that it can run within the Java Card

runtime environment (JCRE)[1]. Applets, like any smart card applications, are reactive

applications. Once selected, a typical applet waits for an application running on the host

side to send a command. The applet then executes the command and returns a response to

the host.

This command-and-response dialogue continues until a new applet is selected or

the card is removed from the card acceptance device. The applet remains inactive until

the next time it is selected.

The communication between an applet and a host application is achieved through

exchanging APDUs, as illustrated Figure 3.3. An APDU contains either a command or a

response. A host application sends a command to an applet and the applet returns a

response.

Command APDU
	 Command APDU

Host 	 JCRE 	 Card
Application

Response APDU 	 esponse APDU 	
Applet

Fig 3.3: Java Card Applet Communication

APDU are data packets; they are the application level communication protocol

between the application software on the card and the application software on the host side

of the link. The APDU protocol, as specified in ISO 7814-4, is an application-level

protocol between a smart card and a host application.

APDU message under ISO 7816-4 comprise two structures: one used by the host

application at the CAD side of the channel to send commands to the card, the other used

by the card to send responses back to the host application. The former is referred to as the

tic,

command APDU and the latter as the response APDU. A command APDU is always

paired with a response APDU. Their structures are illustrated in Figure 3.4 and 3.5. The

structure of the APDU is being standardized by ISO 7816-4.

S ✓ vw~

CLA INS Pl P2 Lc Data Le

Fig 3.4: Command APDU Structure

ISUUy ILdLJ 	L
114

Response Data SWl. SW2

Fig 3.5: Response APDU Structure

CLA 	: Class byte. It is to identify the application.

INS 	: Instruction byte. To indicate the instruction code.

P1 -P2 	: Parameter bytes. To provide further qualification of the APDU.

Lc 	: It indicates the number of bytes in the data field.

Data field: The slot where data is actually allocated in the package.

Le 	: It is the maximum number of bytes expected in the data field in the

next response APDU.

SW 	: Status word. It indicates the status of the applet. Reader can notify

the occurrence of exception via the status words.

31

32

Chapter 4

IMPLEMENTATION

4.1 Implementation of the algorithm

The key generation, signature generation, and signature verification procedures

for ECDSA are as follows:

Key generation

1. Select an elliptic curve E defined over F. . The number of points in E(F)

should be divisible by a large prime number n.

2'. Select a point P e E(FP)of order n.

3. Select a statistically unique and unpredictable integer d in the interval [l,n-l].

4. Compute Q = dP. 	 -

5. The public key is (E,P,n,Q) and the private key is d

Here Q is a point that we get by multiplying P with the private key d.

Signature generation

To sign a message m, a sender should perform the following steps:

1. Select a statistically unique and unpredictable integer k in the interval [1 ,n-l].

2. Compute kP = (xi, yl) and r = xl mod n. (Here xl is regarded as an integer for

example by conversion from its binary representation.)

If r = 0 then go to stepl. (This is security condition i.e., if r = 0, then the

signing equation s = k-1 {h(m)+dr} mod n does not involve the private key d).

3. Compute k-1 mod n.

4. Compute s = k-' {h(m)+dr} mod n, where h is the Secure Hash

Algorithm(SHA-1).

5. Ifs = 0 then go to stepl. (Ifs = 0 then s-1 mod n does not exist, s' is required

in the step2 of signature verification process.)

33

6. The signature for the message m is the integer pair (r, s).

Signature verification

To verify the sender's signature (r, s) on the message m, a receiver should

perform the following:

1. Obtain an authentic copy of signer's public key (E, P, n, Q). Verify that r and

s are integers in the interval [1,n-1].

2. Compute w = s-' mod n and h(m).

3. Compute u l = h (m) w mod n and u2 rw mod n.

4. Compute uiP + u2Q = (xo, y0) and v = xo mod n.

5. Accept the signature if and only if v = r which shows that the signature is

verified and is not forged.

This algorithm is implemented in Java language and tested first using applets

where a signer can create a document, generate keys, sign the document and send them

across to other party in the form of a file which contains public key, document and digital

signature. Upon receiving this file, the other party can verify the signature of the sender.

Here, a care taken such that all the characteristics of digital signature are fulfilled

i.e.,

• This signature is unforgeable. Only the sender knows the private key, so it is difficult

to forge his/her signature.

• The signed document is unalterable. If the receiver wants to alter the document, then

the message digests will differ and the signature will never gets verified.

To implement this algorithm in Java, the following packages have been used:

java.math.* -- Provides classes for performing arbitrary-precision integer arithmetic

(BigInteger) and arbitrary-precision decimal arithmetic (BigDecimal).

java.awt.* -- Contains all of the classes for creating user interfaces

34

java.awt.event.* -- Provides interfaces and classes for dealing with different types of
events fired by AWT components. 	-

java.security.* -- Provides the classes and interfaces for the security framework.

java.io.* -- Provides for system input and output through data streams, serialization and
the file system
java.lang.*-- Provides classes that are fundamental to the design of the Java
programming language.

Functions in SHA

Cshift()

This function accepts the number and the number of times that number has to be circular

shifted. And then computes the value after circular shifting it for the number of times and

returns the result.

Computepadbits()

This function accepts the length of the message and returns the number of padding bits.

4.2 Running on Java Card

Originally to run on Java card the following steps are followed as shown in fig. 4.1.

Sava 	Compile 	Java 	convert 	Card 	pack 	Code inside
Program 	 bytecode 	 APDU bvtecode

Computer System and Reader

Transmit and
Unpack

Applets 	 Pass card
JavaCard VM 	 ytecode 	JCRE applet

Executes card bytecodes 	 access control

Java Smart Card

Fig 4.1 Data transfers to a Java smart card

35

Here is the step by step data transfer procedure.

• Like other Java program, data written in Java is compiled into Java bytecode.

• JavaCard Virtual Machine verifies and converts Java bytecode into Card bytecode.

• Card bytecode and the extended information are packed into Command APDU.

• Reader transmits the Command APDU to Java smart card.

• Unpack the Command APDU.

• JCRE identifies which applet the data belongs to.

• JCRE dispatches the data to the particular applet and perform execution in

JavaCard VM.

ECDSA is implemented using Java language and is tested in Java Card platform

on PC environment.

In order to run on Java card, we need to develop a Java Card Applet. Development
of Java Card Applet begins with the following steps:

Step!: Setting up the environment.

A batch file named cardnew.bat for setting up the java card environment and

running this batch file also helps in invoking the java and java card batch files like javac,

apdutool etc.,

cardnew.bat contains

cardnew.bat

@echo off

set JC_HOME=C:\java_card kit-2_2

set JAVA_HOME=c:\jdkl.3

set PATH=%JC HOME%\bin;%PATH%

set PATH=%PATH%;%JAVA HOME%\bin

36

Step2: Write the program which contains APDU processes.(here the program is
eccard.java)

Step3: Compile the eccard Java source code with java compiler. The output is a class
file(ie., eccard.class)

Step4: Create a command configuration file i.e., the commands to be run on a converter.
The configuration file created here is eccard.opt

eccard.opt

-out EXP JCA

-exportpath ..\api2l

-applet OxaO:0x0:0x0:OxO:0x62:0x3:Oxl:Oxc:0x6:Oxl

com.sun.j avacard. samples. eccard.eccard

com.sun. javacard. samples .eccard

OxaO:OxO:OxO:OxO:0x62:0x3 :Ox l :Oxc:0 x6 1.0

Here,

—out tells the converter to output a exp (export) file and a jca (Java card assembly) file.

-exportpath specifies the root directories in which the converter will look for export

files.

-applet sets the default applet AID and the name of the class that defines the applet.

com.sun.javacard.samples.eccard is package name

OxaO:0x0:OxO:OxO:0x62:0x3:Oxl:Oxc:0x6 is package AID

1.0 is major_version.minor version

Step5: Using Converter, which loads and processes class files that make up a Java

package. The Converter outputs an export file and a JCA (Java Card Assembly) file,

which you then input to capgen to produce a CAP file. A JCA file is a human-readable

ASCII file to aid testing and debugging. The two generated files i.e., exp and jca files will

go to a folder called javacard which is automatically created. So, the converter outputs

eccard.exp and eccard jca.

Step6: capgen is backend to the converter and is used to convert a JCA file into a CAP

file. So it outputs eccard.cap.

37

Step7: Generate script file for apdutool using the scriptgen tool. So it outputs a script

file called eccard.scr. There are certain additional things to be added to the script file that

is generated.

Add the following code at the beginning of script file

powerup;

// Select the installer applet
OxOO OxA4 0x04 OxOO 0x09 OxaO OxOO OxOO OxOO 0x62 0x03 0x01 0x08 0x01 Ox7F;

Add the following to the end of the script file.

powerdown;

A powerup command must be executed prior to sending any C-APDUs.

A powerdown command must be executed after sending the C-APDUs.

Chapter 5

RESULTS AND DISCUSSION

5.1 Running on Java Development Kit

Open a command window and set the JDK path by invoking go.bat batch file

which contains

@echo off

set path=c:\jdk1.3\bin

Then run the following command: c:/fresh/appletviewer/menupro.java. It will

open the following window as shown in fig 5.1

Fig 5.1: Main window which contains menu bar

The main window contains three menu headings as File, Operations and Help. To

create a document, click on file->Create Document.... option. This will open a notepad

where one can type a document or a message which he/she wants to sign.

For key generation: click on Operations->Key Generation... option, it will open a new

window as shown in fig 5.2

Fig 5.2: Key generation process

First enter the key size in the text box provided. This key size that is choosen is

meant to generate public and private keys. The allowed key sizes are 160, 192, 224, 256,

384, 521. For example if 176 is entered as key size it will take it as 192. If 193 is entered

as key size it will take 224.After entering key size, click on "Generate public and private

keys" button, will display the public and private keys generated in the text area provided.

Also the time taken to initialize and. generate keys is displayed. Nextly to sign the

document, click on Move to signature generation button. It will open a new window as

shown in fig 5.3

Fig 5.3 Signature generation process

Select the document to sign by just clicking on Select File button. Now, select the

document that is to be signed. Name the output file, which has to be sent across to others.

This output file contains public key, message and the signature. If giving name to an

output file is forgotten, it defaults it to resout.txt. Then click on Sign the document. The

signature generation process is successful if a message in the below text box where its

successful state along with time taken for signature generation is displayed. To verify the

signature, if the signer wants to verify the signature of the document that is to be sent

then click on move to verify button provided on signature generation applet. If the

41

receiver wants to verify the signature then click on Operations->Verify the

signature....This will open a verification window as shown in fig 5.4

Fig 5.4 Verification process

Here first select the file that is received from the signer by clicking on select file.

As soon as the file is selected, the message is displayed in the text area. To verify the

signature of the sender, click on Verify the signature. The verification time taken along

with the status is shown based on whether it is verified or not.

To know to how to run this software, click on Help->How to run....

42

5.2 Running on Java Card Kit

Follow the steps as shown in section 4.2 of chapter 4. Following those steps will

result in the output as shown below.

Stepl: Setting up the environment C:\>cardnew

Step2: Compiling the created java file

Commands to be given

C:\>cd jc2I \samples\com\sun\javacard\samples\eccard

C:\j c2 1 \samples\com\sun\j avacard\samples\eccard>j avac -classpath c:\j ava_card_kit-

2_2\lib\api jar eccard.java

Step3: Use converter, which processes class file

Commands to be given

C :\j c2 1 \samples\com\sun\j avacard\samples\eccard>cd\

C:\>cd j c2 1 \samples

C :\j c2 1 \samples>converter-config com\sun`javacard\samples\eccard\eccard.opt

Output:

Java Card 2.2 Class File Converter (version 1.3)

Copyright 2002 Sun Microsystems, Inc. All rights reserved. Use is subject to license

terms.

conversion completed with 0 errors and 0 warnings.

43

Step4: Create a cap file from jca file that is generated using capgen tool.

Command to be given

C:\jc21\samples>capgen -o eccard.cap

com\sun\j avacard\samples\eccard\j avacard\eccard.jca

Output:

Java Card 2.2 CAP File Builder (version 0.55)

Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

Steps; Generate the script file with the help of cap file created.

Command to be given

C:\jc21\samples>scriptgen -o eccard.scr eccard.cap

Output:

Java Card 2.2 APDU Script File Builder (version 0.11)

Copyright 2002 Sun Microsystems, Inc. All rights reserved.

APDU script file for CAP file download generated.

There are certain additional things to be added to the script file that is generated.

Add the following code at the beginning of script file

powerup;

// Select the installer applet
OxOO OxA4 0x04 OxOO 0x09 OxaO OxOO OxOO OxOO 0x62 0x03 OxO I 0x08 0x01
Ox7F;

Add the following to the end of the script file.

powerdown;

Step6: Open two command windows. In one window enter the following command to

start C-JCRE, C language Java Card Runtime Environment which has the ability to

simulate persistent memory (EEPROM), and to save and restore the contents of

EEPROM to and from disk files. In another window start the APDU tool which reads a

script file containing APDUs and sends them to the C-JCRE. Each APDU is processed by

the JCRE and returned to the APDUToo1, which displays both the command and

response APDUs on the console or redirects the output to a file that is specified. Both

these command window looks like this:

Command to be given

C:\jc2l\samples>cref

Output:

Java Card 2.2 C Reference Implementation Simulator (version 0.41)

Copyright 2002 Sun Microsystems, Inc. All rights reserved.

Memory configuration

Type Base Size Max Addr

RAM 0x0 0x500 Ox4ff

ROM 0x1000 0x8000 Ox8fff

E2P 0x9020 Ox3feO Oxcfff

ROM Mask size 	0x4a31 =

Highest ROM address in mask = 0x5a30

Space available in ROM = 	0x35cf

Mask has now been initialized for use

C-JCRE was powered down.

18993 bytes

= 	23088 bytes

13775 bytes

45

Command to be given

C:\jc2l\samples>apdutool -o eccard.scr.out eccard.scr

Output:

Java Card 2.2 ApduTool (version 0.20)

Copyright 2002 Sun Microsystems, Inc. All rights reserved. Use is subject to license

terms.

Opening connection to localhost on port 9025.

Connected.

Received ATR = Ox3b OxfO 0x11 OxOO Oxff OxOO

46

Chapter 6

CONCLUSION

To use smart card as secure authentication tokens, the basic cryptographic

services must be available in the card environment. The digital signature capability is

important on a smart card because the users want not only to access services but also

authorize others by signing authorization certificates. In this dissertation there is design

and implementation of ECDSA using Java programming language acted in the Java Card

platform because of its shorter key lengths which correctly fit to the limited environment

of the cards. As smart cards are not very fast, the shorter key lengths resulting in faster

execution also favours to use this algorithm when compared to other digital signature

algorithms.

Here, ECDSA is implemented by using Java programming language and tested

firstly on JDK and then on Java Card Kit. It has been simulated on the PC itself. As a part

of future work, one needs to test it by importing the applet that is created on the Java card

and insert it into the actual card acceptance device.

47

m

REFERENCES

1. Chen, Zhiqun, "Java CardTM Technology for Smart Cards", ADDISON-

WELSEY Company,2000 42-72p.

2. Rinaldo Di Giorgio, "Smart cards: A primer", An Article, Java developer series,

1997.

3. Bruce Schneier, Applied Cryptography: Digital Signatures, Second Edition,

John Wiley & Sons, Inc., 1996, p. 34.

4. Y.L.Chan, H.Y. Chan, "Java Smart Cards", 1998.

5. Don B. Johnson, Alfred J. Menezes, "Elliptic Curve DSA (ECDSA): An

Enhanced DSA ", Certicom ECC Whitepapers, available through

http://www.certicom.com!.

6. Dr. Dobb, "Java Card History", Dr.Dobb's journal, February 1999.

7. http://java.sun.com/products/javacard/datasheet.html

8. Lasse Leskela, "Implementing Arithmetic for Elliptic Curve Cryptosystems",

Master's Thesis, Helsinki University of Technology, January 1999.

9. Java Card 2.2TM Application Programming Interface, Sun Microsystems, Inc.,

September, 2002.

50

Appendix A

Java Card Kit

The Java CardTM 2.2 Development Kit tools run on a workstation using a Java

Virtual Machine (VM). The Java Card 2.2 Virtual Machine is written in the "C"

programming language. Separate bundles for the Solaris® and Windows NT® versions

are available [9]. Figure A.1 describes the family of different Java architectures for

different purposes.

4L1

Fig A. 1: The picture illustrates the different VMs and APIs of Java 2

Java Card API 2.1 consists of the following four fundamental packages [9]:

java.io A subset of the java.io package in the standard Java programming

language.

java.lang Provides classes that are fundamental to the design of the Java Card

technology subset of the Java programming language.

51

java.rmi The java.rmi package defines the Remote interface which identifies

interfaces whose methods can be invoked from card acceptance device (CAD)

client applications.

javacard.framework Provides a framework of classes and interfaces for

building, communicating with and working with Java Card applets.

javacard.framework.service Provides a service framework of classes and

interfaces that allow a Java Card applet to be designed as an aggregation of

service components.

javacard.security Provides classes and interfaces that contain publicly-available

functionality for implementing a security and cryptography framework on Java

Card.

javacardx.crypto Extension package that contains functionality, which may be

subject to export controls, for implementing a security and cryptography

framework on Java Card.

Files Installed for the Binary Release

The files and directories that the binary installation procedure installs under

java_card_kit-2_2 are [9]:

api_export_files Directory contains the export files for the Java Card 2.2 API

packages.

bin 	Directory contains all shell scripts and batch files for running

the tools (such as the apdutool, capdump, converter and so forth),

and the cref binary executable.

doc

	

	The doc/en/guides directory contains the English-language guides

for this release. It includes the present document: the Java Card.

2.2 Development Kit User's Guide and the Java Card. 2.2

Application Programming Notes. The doc/en/whitepapers

directory contains the English language white papers for this

release. It contains the Java CardTM 2.2 Off-Card Verifier and the

Java CardTM 2.2 RMI Client Application Programming Interface

white papers.

lib 	 Directory contains all Java jar files required for the tools. It also

contains api.jar that is needed to write Java Card applets and

libraries, javacardframework.jar, apduio.jar that is used by the

apdutool, jcwde.jar that is used by JCWDE(Java Card

workstation Development Environment), jcclientsamples.jar that

contains the client part of the Java Card RMI samples, and

jcrmiclientframeworkjar that contains the classes of the Java

Card RMI(Remote Method Invocation) Client API.

Samples 	Directory contains sample applets and demonstration programs.

For more information on the contents of this directory, see

"Sample Programs and Demonstrations".

COPYRIGHT_gl 	(COPYRIGHT_gl.txt on Windows) Contains the

copyright notice for the product.

README.html 	Contains general information about this release.

RELEASENOTES.html Contains important information about this release.

LICENSE.html 	Contains the text of the license agreement.

Lj-

L R04R V

53

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

