
STUDY OF NEXT BIT/SYMBOL PREDICTOR
ALGORITHMS FOR CRYPTOLOGICAL

APPLICATIONS

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY
.AL LIak

'

B y 	 Aw. No.......•.
DateJ.~.'.~~

BALBIR SING

S

x

[IT Roorkee-ER&DCI, Noida
046/1, "Anusandhan Bbawan",

Sector 62, Noida-201 307

FEBRUARY, 2003

Enrolment No. 019011

s

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "STUDY OF

NEXT SIT/SYMBOL PREDICTOR ALGORITHMS FOR CRYPTOLOGICAL

APPLICATIONS", in partial fulfillment of the requirements for the award of the degree

of Master of Technology in Information Technology, submitted in IIT, Roorkee —

ER&DCI Campus, Noida, is an authentic record of my own work carried out during the

period from August 2002 to February, 2003 under the guidance of Mr. N.Rajesh Pillai,

Scientist'D', D.R.D.O. New Delhi.

I have not submitted the matter embodied in this dissertation for award of any
other degree of diploma

Date; 21 .-1
Place: Noida (+abr Singh)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.

Date: 2S-o2-c 3

Place: Noida 	' n

Co-Guide: -

(Mr. Mun(s)i umar)
Project Engineer,
ER&DCI,
Noida.

Gui e: -

(Mr. 	ajesh'Pi~llai)
Scientist `D',
Scientific Analysis Group,
Metcalfe house D.R.D.O.,
New Delhi.

ACKNOWLEDGEMENT

I hereby take the privilege to express my deepest sense of gratitude for

Prof. Prem Vrat, 	Director, Indian Institute of Technology, 	Roorkee, 	and

Mr. R.K. Verma, Executive Director, Electronics Research & Development Center of

India, Noida for providing me with this valuable opportunity to carry out this work. I am

also very grateful to Prof. A.K. Awasthi, our Dean , Post Graduate Studies and

Research and Prof. R.P. Agrawal and Mr. V.N. Shukla, our course coordinator for

providing the best of the facilities for the completion of this work and constant

encouragement towards the goal. I owe special thanks to Prof. C.E. Veni Madhavan,

Director, Defence Research & Development Organisation, for allowing me to carry out

my dissertation at their organization.

I am thankful to my guide Mr. N.Rajesh Pillai, Scientist `D', Scientific Analysis

Group, Defense Research & Development Organization, Delhi for his continuous and

valuable guidance and providing me with necessary material during the entire course of

this work.

I am grateful to Dr. P.K. Saxena, Scientist `G', SAG, DRDO, Delhi for his

valuable advice, suggestions and constant encouragement through numerous discussions

and demonstrations. My sincere thanks are due to Dr. S.S. Agrawal, Emeritus Scientist

(CSIR), Central Scientific Instruments Organization, Delhi and Mr. Munish Kumar,

Project Engineer, ER&DCI, Noida for providing me with their valuable reference for

securing the Live project at DRDO, Delhi. I am thankful to Dr. P.R. Gupta, Reader, E

R&DCI, Noida for her continuous inspiration and support throughout the course of this

dissertation.

I extend my gratitude to all of them who have been involved, directly or

indirectly, with this work. Thanks to my parents who provided their support and enduring

confidence in me during my entire life.

(Balbir Singh)
Enrolment No. 019011

C;ONTF, [Ni 'S

CAN$)IUAT1?'S i) CLARA'i'1ONS 	 (i)

ACKNOWL1?1)C:1?MI?N'1'

ABti"1'RAC'C

1. IN'I'RODUCT1ON
	

3

1.1 Objccivc 	 3

1.2 Scope 	 3

1.3 Satcmcnt of work done 	 4

1.4 Organization of dissertation 	 5

2 LI'1'EltA I'J1?i? SURVEY
	

7

2.1 Introc.;uction to„Cryptogra phX 	 7

2.2 Random and Pseudo Random Sequences

2.2.1 What does random means

2.2.2 Definitions and Remarks 	 C)

2.3 Random 1311 generation 	 1 1'

2.3.1 	11 ardware generation 	 11

2.3.2 Software gencratto n 	 12

2.3.3 I)c-skewing 	 13

2.4 Machine learning 	 I4

2.4.1 	Decision 'free learning 	 19

2.4.2 Decision 'free Representation 	 21

2.4.3 11ow C4.5 works 	 23

3. DI SC12I1'"1'ION OF PRNG
	

2.5

3.1 Lincitr con grucntial gcn orator. 	 25

3.2 LFSR
	

25

3.3 RC4
	

27

3.4 SEAL
	

28

3.5 BBS
	

31

4. PREDICTION ALGORITHMS. 	 33
4.1 A Universal Predictor Based on Pattern Matching 	 33

4.1.1 Sampled Pattern Matching Predictor 	 34

4.2 An efficient universal prediction algorithm 	 35

4.3 Introduction t on GNBP Algorithm 	 35

i

5. IMPLEMENTATION DETAIL
	

41

5.1 Next bit/symbol predictor algorithms 	 41

5.2 Pseudo Random Number Generators 	 42

6. RESULTS AND DISCUSSION
	

43

7. CONCLUSION
	

55

REFERENCES 	 57

ABSTRACT

The security of many cryptographic systems depends upon

the generation of unpredictable quantities. Examples include the

secret key in the DES encryption algorithm the primes p, q in the

RSA encryption and digital signature schemes, the private key an

in the DSA, and the challenges used in challenge-response

identification systems[1]. In all these cases, the quantities

generated must be of sufficient size and be "random" in the sense

that the probability of any particular value being selected must be

sufficiently small to preclude an adversary from gaining advantage

through optimizing a search strategy based on such probability. For

example, the key space for DES has size 2'G. If a secret key k were

selected using a true random generator, an adversary would on

average have to try 255 possible keys before guessing the correct

key k. If, on the other hand, a key k were selected by first choosing

a16-bit random secret s, and then expanding it into a 56-bit key k

using a complicated but publicly known function f, the adversary

would on average only need to try 2' possible keys (obtained by

running every possible value for s through the function).

Prediction is important in communication, control,

forecasting, investment, molecular biology, security, and other

areas. We understand how to do optimal prediction when the data

model is known, but there is a need for designing universal

prediction algorithms that will perform well no matter what the

underlying probabilistic model is. Universal prediction was subject

of extensive research over the last 50 years; it dates back to

Shannon.

This project is an attempt to predict next bit/symbol of PRNG

.One of the predictor algorithm is based on pattern matching. This

predictor algorithm is called sampled pattern matching, is a

1

modification of Ehrenfeucht-Mycielski pseudo random number

generator algorithm. It predicts the value of most frequent symbol

appearing at so-called sampled positions. The other predictor

algorithm is based on machine learning technique and in particular

one standard algorithm called C4.5 could be used as an evaluation

criteria for PRNG.The last predictor algorithm is A Universal

Prediction Algorithm, which yields a prediction error, close to

lower bound on the universal prediction error, with limited training

data.

The byproduct of this thesis is a tool that that will be used to

check the testing resistance of PRNG against next bit/symbol

predictor kind of attack The tool could be used as evaluation

criteria of PRNG.

2

Chapter 1

INTRODUCTION

1.1 Objective
A survey of algorithms for next bit/(symbol) predictors from the following

viewpoints will be done

• Applicability of next bit/(symbol) predictors for evaluation of existing pseudo-

random number generator against next bit/(symbol) predictor type of attacks.

• Testing resistance of some existing pseudo-random number generators against

next bit predictor type of attacks.

Pseudo random number generators that will be consider are as following

• Linear Congruential Generators

• Linear Feed Back Shift Register

• RC4

• SEAL

1.2 Scope
This is a research-oriented project. In this project a study and implementation of

different algorithms for next bit/(symbol) predictors and pseudo random number

generators is done and then next bit/(symbol) predictor algorithms are be applied on to

the Pseudo Random Number Generators. One of the next bit/symbol predictor considers

the suffixes that are repeating more than twice in the sequence generated by PRNG and

predict the symbol/bit that occurs frequently after the suffix. This algorithm is known as

SPM. which is published recently in IEEE. The other algorithm is given by Jacob Jiv, and

the author claims that it predicts the next/bit symbol even if the length of the sequence

considered is less in comparison to the SPM algorithm . This algorithm consider the

optimal prediction error for unknown finite-alphabet Markov sources, for prediction

algorithms that make inference about the most probable incoming letter, where the

distribution of the unknown source is apparent only via a short training sequence of N

letters (i.e. N is a polynomial function of K. the order of the Markov source, rather than

K3

the classical case where N is allowed to be exponential in K as in SPM algorithm). A

lower bound on the prediction error is formulated for such universal prediction

algorithms. A particular universal predictor is introduced, and it is demonstrated that its

performance is "optimal" in the sense that it yields a prediction-error, which is close to

the lower bound as seen against SPM.This, algorithm is published recently in IEEE. The

last algorithm is a NESSIE submission In this work the author presents a variation of the

next bit predictor theoretical model that converts it into a classification problem. For

solving this classification problem it propose the use of machine learning techniques, and

in particular one standard de facto algorithm named C4.5.

As a part of the comparative study, the prediction algorithms will be applied on

sequences generated by pseudo-random number generators used in cryptography. The

pseudo-random number generators for cryptographic purposes should generate

sequences, which are difficult to predict, unless either extremely large amount of

sequence is present, or impracticable amount of computational effort is used. We want to

study how the newly proposed next bit prediction algorithms mentioned above perform

when used against cryptographic pseudo-random number generators. Both basic building

blocks of cryptographic Pseudo Random number generators and full industry grade

stream ciphers will be studied for resistance to next bit predictor kind of attacks. The

building blocks Considered will be linear feedback shift register (LFSR) and Linear

Congruential generator.

These systems will be implemented and the sequences generated by them will be

studied for resistance against next bit prediction. We will apply next bit prediction

algorithms on the sequences generated by the above systems. Sequences generated from

the above systems will be tested for applicability of next - bit prediction kind of attacks.

1.3 Statement of the work done

The following algorithms for next bit prediction will be studied and implemented.

0

1. A universal prediction algorithm[2]. Given by Jacob Ziv, . This algorithm is

published recently in IEEE transactions of information theory.

2. Sampled pattern matching (SPM)[3]. This algorithm is a modification of

Ehrenfeucht-Mycielski pseudo random generator algorithm, and this work is done by

philipe jacquet,wojciech szpankowski and Izydor Apostol. This work is published in

IEEE, transactions of information theory recently.

3. General next bit prediction algorithm[4] this algorithm is a NESSIE (new European

schemes for signature integrity and encryption) submission, published recently.

Pseudo random number generators that will implemented are as following

1. Linear Congruential Generators

2. Linear Feed Back Shift Register

3. RC4

4. SEAL

Then apply next bit/symbol predictor on the pseudo random number generators an t;redict

the next bit/symbol and address the following issues.

• Find the relation formula for the minimum length of sequence required for the

next bit predictor to work (predict next bit correctly with a probability better than

random guessing). These relations would depend on both the predictor algorithm

and the sequence.

• What are the typical values (for minimal length) the generators being considered?

• Applicability of next bit/(symbol) predictors for evaluation of existing pseudo-

random number generator against next .bit/(symbol) predictor type of attacks on

cryptographic pseudo-random number generators.

• Testing resistance of some existing pseudo-random number generators against

next bit predictor type of attacks.

1.4 Organization of Dissertation

• Chapter 2 describes the basic properties of pseudo random number generators,

different kind of PRNG i.e. hardware .s/w. It also gives an introduction to machine

learning and c4.5.

5

• Chapter 3 describes various PRNG that are considered for implementation and testing

resistance against next bit/symbol kind of attack.

• Chapter 4 describes various next bit/symbol predictors that are studied and

implemented .

• Chapter 5 describes the implementation details of PRNGs and prediction algorithms.

• Chapter 6 describes the results and discussions.

• Chapter 6 concludes the thesis and describes the scope for the future work.

Chapter 2
LITERATURE SURVEY

2.1 Cryptography[2]
• The art or science encompassing the principles and methods of transforming an

intelligible message into one that is unintelligible, and then retransforming that

message back to its original form.

• It is a Science which deals with keeping information secure, transmitting it over

channel and receiving at other.

Encryption

The process of transforming intelligible text into unintelligible form is called

encryption. The encrypted text is called cipher text

1)ecryption

The process of transforming cipher text back to plain text 	is called

decryption

Public key cryptosystem:

Public key crypto system relay on one key for- encryption and a different and

related key for decryption. These algorithms have following characteristics.

I) It is computationally infeasible to find the decryption key if given only the Crypto -

graphical algorithm and the encryption key.

2) Either of the two related keys can be used for encryption with the other been used for

decryption.

7

User]
	

U ser2

Plaintext 	
Channel Plaintext

j

a 	+
Encryption Algo 	Decryption Algo.

t
	

1

	

User 2's Public Key 	 User 2's Private Key

Figure 2.1: Encryption

Figure 2.1 depicting encryption provides secrecy only. Figure 2.2 shows a system

which provides authentication as only a specific known public key can be used to

decrypt the cipher text . thus the identity of the sender is confirmed or validated.

Userl
	

User2

Channel

Plaintext 	 Plaintext

	

Encryption Algo. 	 Decryption Algo.

	

User l's Public Key 	 User I's Private Key

Figure 2.2 : Authentication

2.2 Random Sequence and Pseudo Random Sequence

2.2.1 What does random mean:

Hie three UnsI- 1 1.

A true random number generator has three important properties:

Its Unbiased. All values of whatever sample size is collected are equiprobable.

Its Unpredictable. It is impossible to predict what the next output will be, given all the

previous outputs, but not the internal "hidden" state.

Its Unreproducible. Two of the same generators, given the same starting conditions, will

produce different outputs.

Usually when a person says they have a "good" random number generator, they

mean it is unbiased. If they say they have a "true" RNG, they usually mean it's

Unrcproducible. If they say it's. "cryptographically strong" they mean it's unpredictable.

Very rarely do they mean it's all three Uns. This isn't necessarily a bad thing, but it's

worth remembering when evaluating claims that one RNG is "better" than another. A

sequence generator is real random if it has this additional third property. It cannot be

reliably reproduced. if you run the sequence generator twice with the exact same input(at

least as exact as humanly possible),you will get two completely unrelated random

sequences.

Pseudo Random Sequence[5]

A pseudo random sequence is one that looks random The sequence period should

be long enough so that finite sequence of reasonable length — that is, one that is actually

used — is not periodic.

A sequence generator is a pseudo — random if it has the following property.

• It looks random. This means that it passes all the statistical tests of randomness that

we can find.

For a system to be cryptograph ally secure pseudo-random, it must also have this

property

• It is unpredictable. It must be computationally infeasible to predict what the next

random bit will be, given complete knowledge of the algorithm or hardware

generating the sequence and all of the previous bits in stream.

2.2.2 Definitions and Remark[l]

Definition A random bit generator is a device or algorithm which outputs a sequence of

statistically independent and unbiased binary digits.

E

Remark (random bits vs. random numbers) A random bit generator can be used to

generate(uniformly distributed) random numbers. For example, a random integer in the

interval [0, n] can be obtained by generating a random bit sequence of length [lg n] + 1,

and converting it to an integer; if the resulting integer exceeds n, one option is to discard

it and generate a new random bit. Ideally, secrets required in cryptographic algorithms

and protocols should be generated with a (true) random bit generator. However, the

- generation of random bits is an inefficient procedure in most practical envir,,. ments.

Moreover, it may be impractical to securely store and transmit a large number of random

bits.

Definition A pseudo random bit generator .(PRBG) is a deterministic algorithm

which,given a truly random binary sequence of length k, outputs a binary sequence of

length I >> k which "appears" to be random. The input to the PRBG is called the seed,

while the output of the PRBG is called a pseudo random bit sequence.

The output of a PRBG is not random; in fact, the number of possible output

sequences is at most a small fraction, namely (2k / 21) of all possible binary sequences of

length 1. The intent is to take a small truly random sequence and expand it to a sequence

of much larger lengthen such a way that an adversary cannot efficiently distinguish.

between output sequences of the PRBG and truly random sequences of length 1. [1]

discusses ad-hoc techniques for pseudo random bit generation. In order to gain

confidence that such generators are secure, they should be subjected to a variety of

statistical tests designed to detect the specific characteristics expected of random

sequences. As the example of PRNG demonstrates, passing these statistical tests is a,

necessary but not sufficient condition for a generator to be secure. A minimum-security;

requirement for a pseudo random bit generator is that the length k of the random seed

should be sufficiently large so that a search over 2k elements (the total number of possible

seeds) is infeasible for the adversary. Two general requirements are that the output

sequences of a PRBG should be statistically indistinguishable from truly random

sequences, and the output bits should be unpredictable to an adversary with limited

computational resources

10

Definition A pseudo random bit generator is said to pass all polynomial-time2 statistical

tests if no polynomial-time algorithm can correctly distinguish between an output

sequence of the generator and a truly random sequence of the same length with

probability significantly greater that 1/2.

Definition A pseudo random bit generator is said to pass the next-bit test if there is no

polynomial-time algorithm which, on input of the first L bits of an output sequence s, can

predict the (L + l)st bit of s with probability significantly greater than 1/2 .Although

above definition appears to impose a more stringent security requirement on pseudo

random bit generators than the above Definition does, the next result asserts that they

are, in fact, equivalent.

Fact (universality of the next-bit test) A pseudo random bit generator passes the next-bit

test if and only if it passes all polynomial-time statistical tests.

Definition A PRf3G that passes the next-bit test (possibly under some plausible but

unproved mathematical assumption such as the intractability of factoring integers) is

called a cryptographically secure pseudo random bit generator (CSPRBG)[1].

2.3 Random bit generation
A true random bit generator requires a naturally occurring source of randomness.

Designing a hardware device or software program to exploit this randomness and produce

a bit sequence that is free of biases and correlation's is a difficult task. Additionally, for

most cryptographic applications, the generator must not be subject to observation or

manipulation by an adversary. This section surveys some potential sources of random

bits. Random bit generators based on natural sources of randomness are subject to

influence by external factors, and also to malfunction. It is imperative that such devices

be tested periodically[1].

2.3.1 Hardware-based generators

11

Hardware-based random bit generators exploit the randomness which occurs in

some physical phenomena. Such physical processes may produce bits that are biased or

correlated, in which case they should be subjected to de-skewing techniques mentioned in

(iii) below.

Examples of such physical phenomena include:

1. Elapsed time between emission of particles during radioactive decay;

2. Thermal noise from a semiconductor diode or resistor;

3. The frequency instability of a free running oscillator;

4. The amount a metal insulator semiconductor capacitor is charged during a fixed period

of time;

5. Air turbulence within a sealed disk drive which causes random fluctuations in disk

drive sector read latency times; and

6. sound from a microphone or video input from a camera.

Generators based on the first two phenomena would, in general, have to be built

externally to the device using the random bits, and hence may be subject to observation

or manipulation by an adversary. Generators based on oscillators and capacitors can be

built on VLSI devices; they can be enclosed in tamper-resistant hardware, and hence

shielded from active adversaries.

2.3.2 Software-based generators

Designing a random bit generator in software is even more difficult than doing so in

hardwire.

Processes upon which software random bit generators may be based include:

I. The system clock;

2. Elapsed time between keystrokes or mouse movement;

3. Content of input/output buffers;

4. User input; and

5. Operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various

factors, such as the computer platform. It may also be difficult to prevent an adversary

from observing or manipulating these processes. For instance, if the adversary has a

12

rough idea of when a randomsequencewas generated, she can guess the content of the

system clock at that time with a high degree of accuracy. A well-designed software

random bit generator should utilize as many good sources of randomness as are available.

Using many sources guards against the possibility of a few of the sources failing or being

observed or manipulated by an adversary. Each source should be sampled. and the

sampled sequences should be combined using a complex mixing function; one

recommended technique for accomplishing this is to apply a cryptographic hash function

such as Si-IA-1 or MD5 to a concatenation of the sampled sequences. The purpose of the

mixing function is to distill the (true) random bits from the sampled sequences.

2.3.3 De-skewing

A natural source of random bits may be defective in that the output bits may be

biased (the probability of the source emitting a I is not equal to 1/2) or correlated (the'

probability of the source emitting a I depends on previous bits emitted). There are

various techniques for generating truly random bit sequences from the output bits of such

a defective generator; such techniques are called de-skewing techniques.

2.3.4 Statistical tests

Some tests designed to measure the quality of a generator purported to be a

random bit generator . While it is impossible to give a mathematical proof that a

generator is indeed a random bit generator, the tests described here help detect certain

kinds of weaknesses the generator may have. This is accomplished by taking a sample

output sequence of the generator and subjecting it to various statistical tests. leach

statistical test determines whether the sequence possesses a certain attribute that a truly

random sequence would be likely to exhibit; the conclusion of each test is not definite,

but rather probabilistic. An example of such an attribute is that the sequence should have

roughly the same number of 0's as l's. If the sequence is deemed to have failed any one

of the statistical tests, the generator may be rejected as being non-random; alternatively,

the generator may be subjected to further testing. On the other hand, if the sequence

passes all of the statistical tests, the generator is accepted as being random. More

precisely, the term "accepted" should be replaced by "not rejected". since passing the

13

tests merely provides probabilistic evidence that the generator produces sequences which

have certain characteristics of random sequences[l] provide some relevant background in

statistics.

❖ The normal and chi-square distributions

•:•

Hypothesis testing

•:• Golomb's randomness postulates

Application of pseudo-random sequence generator[5]

a) To select random samples from a larger set

b) In cryptography

c) running securities protocol

d) As initial values in procedures to generate prime numbers

e) To test computer programs

f) For fun

2.4 Machine Learning
Machine learning[6] is a process, which causes systems to improve with

experience.Machine Learning (ML) is one of the most important areas of Artificial

Intelligence (Al), a subject of great interest in which improvements and new

developments are constantly made. As its name reveals, its objectives are quite

ambitious, that is, to develop algorithms that can learn, adapt its behavior, self-improve, a

core characteristic of human intelligence. ML techniques have been successfully applied

to a wide range of applications like problem solving, theorem proving, natural language

processing, speech recognition, vision pat- tern searching, robotics, industrial process

control, planning, game playing, data mining, and so on.

My approach belongs to an inductive paradigm, so called because we try to

generate a concept ("next bit is 0", for example) by generalizing from a set of examples

and counter-examples of the concept. The task is to build a concept description that can

predict the value of the class for all (or most of them) previously seen instances. Why do

we use this inductive paradigm? We believe it is the most natural solution to a problem of

14

this type, were we try to obtain a discrete pattern recognition, discovering a collection of

features that are related with membership in a predefined equivalence class.

Elements of a Learning Task [7]

Representation

1. Items of Experience

0 	1 El

2. Space of Available Actions

c> a E A

i. E:;valuation

o v(a,i)

4. Base Performance System

o b: 1 -4A
5. Learning System

o L: (i1 , a►, v1)...(1,,, a,,, v„) —fib

o Maps training experience sequence to base performance system.
Types of Learning Problems

Fundamental Distinctions

• Between problems rather than methods.

• Influences choice of method.

1. Batch versus Online Learning:

o Batch Learning

• Training phase (no responsibility for performance during]earning),
then testing.

• Synthesizing a base performance system.

• Pure exploration.

o Online Learning

a No separate phase.

• Learning while doing.

15

• Have to decide between choosing actions to perform well now

versus gaining knowledge to perform well later.

2. Learning from Complete versus Partial Feedback:

o Complete Feedback

• Each item olexperience evaluates every action (or base system).

• Tells what best action would have been.

o Partial Feedback

• Each item of experience evaluates only a subset of possible actions
(or base systems).

- Only tells you how you did.

■ Creates exploration/exploitation tradeoff in online setting.

■ Should the reward be optimized with what is already known or
should learning be attempted?

• In batch learning, exploration would be chosen since there is no
responsibility for performance.

o Pointwise Feedback

• Evaluates single action.

• Optimization problem: (Controller, State) 	Action.

3. Passive versus Active Learning

o Passive: observation.

o Active: experimentation, exploitation.

4. Learning in Acausal versus Causal Situations

o Acausal: actions do-not affect future experience.

■ e.g., rain prediction

o Causal: actions do effect future experience.

5. Learning in Stationary versus Nonstationary Environments

o Stationary: evaluation doesn't change.

o Nonstationary: evaluation changes with time.

16

Concept Learning

The problem of inducing general functions from specific training examples is central to

learning.

Concept learning acquires the definition of a general category given a sample of

positive and negative training examples of the category, the method of which is the

problem of searching through a hypothesis space for a hypothesis that best fits a given set

of training examples.

A hypothesis space, in turn, is a predefined space of potential hypotheses, often

implicitly defined by the hypothesis representation.

Learning a Function from Examples

• An example of concept learning where the concepts are mathematical functions.
Shown in figure 2.3:

• Domain X: descriptions

• 	Domain Y: predictions

• H: hypothesis space: the set of all possible hypotheses

• h: target hypothesis

Idea: to extrapolate observed y's over all X.

Hope: to predict well on future y's given x's.

Require_ there must be regularities to be found!

(Note type: batch, complete, passive (we are not choosing which x), acausal, stationary).

Many Research Communities

• Representation choice differs.

• Prefer maximum level of abstraction.

Traditional Statistics

• h: R" -R

• Squared prediction error.

• h is a linear function.

17

Traditional Pattern Recognition

• h:R-- {0,1}

• Right/wrong prediction error.

• h is a linear discriminant boundary.

"Symbolic" Machine Learning

• h: {attribute-value vectors} —{O, 1 }

• h is a simple Boolean function (e.g. a decision tree).

Figure 2.4: Concept Learning

Neural Networks

• h:R"—R

• h is a feed forward neural net.

Inductive Logic Programming

• h: { term structure } —> { 0, 1 }

• h is a simple logic program.

Learning Theory

• Postulate mathematical model of learning situations.

• Rigorously establish achievable levels of learning performance.

• Characterize/quantify value of prior knowledge and constraints.

• ldentily limits/possibilities of learning algorithms.

Standard Learning Algorithm

Given a batch set of training data S = {(xi, yj)...(x t, yD}, consider a fixed hypothesis class

I I and compute a function N El I that mininiizes empirical error.

err (h(x j, y)) 	 ! = err
,i = 1 	t

Example: Least-Squares Linear Regression

Here, the standard learning algorithm corresponds to least squares linear regression.

X=R°,Y=R

errf'i ,Yj=(5r` — Y)a

H = {linear functions R" —~R}

Choosing a Hypothesis Space

In practice, for a given problem X -->Y, which hypothesis space H do we choose?

H 1 vs. H2
richer easier to

search

Question: since we know the true function f: X —>Y, should we make H as "expressive"

as possible and let the training data do the rest?

• e.g., quadratic

• e.g.. high degree polynomial

• e.g., complex neural network.

Answer: No

Reason: overfitting!

2.4.1 Decision Tree Learning 8

19

Robust to noisy data and capable of learning disjunctive expressions, decision

tree learning, a method for approximating discrete-valued target functions. is one of the

most widely used and practical methods for inductive inference.

Appropriate Problems for Decision Tree Learning

Decision tree learning is generally best suited to problems with the following

characteristics:

• Instances are represented by attribute-value pairs.

o Instances are described by a fixed set of attributes (e.g., temperature) and

their values (e.g., hot).

o The easiest situation for decision tree learning occurs when each attribute

takes on a small number of disjoint possible values (e.g., hot, mild, cold).

o Extensions to the basic algorithm allow handling real-valued attributes as

well (e.g., a floating point temperature).

• The target function has discrete output values.

o A decision tree assigns a classification to each example.

• Simplest case exists when there are only two possible classes

(Boolean classification).

• Decision tree methods can also be easily extended to learning

functions with more than two possible output values.

o A more substantial extension allows learning target functions with real-

valued outputs, although the application of decision trees in this setting is

less common.

• Disjunctive descriptions may be required.

o Decision trees naturally represent disjunctive expressions.

• The training data may contain errors.

20

o Decision tree learning methods are robust to errors - both errors in

classifications of the training examples and errors in the attribute values

that describe these examples.

• The training data may contain missing attribute values.

o Decision tree methods can be used even when some training examples

have unknown values (e.g., humidity is known for only a fraction of the

examples).

Learned functions are either represented by a decision tree or re-represented as

sets of if-then rules to improve readability.

2.4.2 Decision Tree Representation

A decision tree is an arrangement of tests that prescribes an appropriate test at

every step in an analysis.ln general, decision trees represent a disjunction of conjunctions

of constraints on the attribute-values of instances. Each path from the tree root to a leaf

corresponds to a conjunction of attribute tests, and the tree itself to a disjunction of these

conjunctions.More specifically, decision trees classify instances by sorting them down

the tree fIrom the root node to some leaf node, which provides the classification of' the

instance. Each node in the tree specifies a test of some attribute of the instance, and each

branch descending from that node corresponds to one of the possible values for this

attribute. An instance is classified by starting at the root node of the decision tree, testing

the attribute specified by this node, then moving down the tree branch corresponding to

the value of the attribute. This process is then repeated at the node on this branch and so

on until leaf node is reached as shown in figure 2.5.

Diagraln explanation

• Each nonleaf node is connected to a test that splits its set of' possible answers into

subsets corresponding to different test results.

• Each branch carries a particular test result's subset to another node.

Each node is connected to a set of possible answers.

21

Figure 2.4 : Decision Tree Representation

Occam's Razor (Specialized to Decision Trees)

lie smallest decision tree that is consistent with the samples is the one

that is most likely to identify unknown objects correctly as shown in figure 2.5.

22

Attribute Test
#1

subset 1 	Subset 2 	 ";ubsFt 3

Attribute Test 	Attribute Test 	Attribute Test
#2 	 #2 	 #2

Max height =:mz.

Figure 2.5 : Decision Tree

Given m attributes, a decision tree may have a maximum height of m.Rather than

building all the possible trees, measuring the size of each, and choosing the smallest tree

that best fits the data, uses Quinlan's ID3 algorithm for constructing a decision tree.[7]

2.4.3 How C4.5 works

General Next Bit Prediction algorithm uses machine learning technique One of

the machine learning technique is implemented in a 	C algorithm called C4.5

16i.13asicaally, C4.5 is a successor of 1D3 with sonic improvcments and added capabilities.

Suppose we are given a set of instances that are simply a number of

attribute/value pairs each of which is assigned a category (or classification). The problem

is to determine a decision tree that, on the values of some of the attributes of an instance,

could correctly classify it. This is not, generally, an easy task to do as we can and discrete

or continuous attributes, unknown attributes values, noise, etc.

What is exactly a decision tree? It can be defined as a tree in which each node is

an attribute, each arc from this node is a possible value for that attribute, and each leaf is

the expected value for the category of the instance obtained following all the path from

the root of the tree to that leaf.

23

How do we construct decision trees? The basic idea is to decide at each node

which of the non-used attributes is most informative for the classification of all the

instances represented by the path from the root to that node. Then, applying this idea

recursively in every node (see below) the tree is constructed.

And, how can we measure how informative is a node? By means of a gain

function which uses entropy in the Shannon sense. This gain function G(ai) tells us how

informative the attribute ai is for the classification of our actual set of instances, that is,

the difference between the information needed to identify an element of class C after and

before the value of the attribute ai is used as a node. This can also seen as the difference

in the entropy of the set of instances after and before we have divide this set depending

on the value of attribute al . The greater this gain is, the better is our choice of attribute ai

for our classification, and for our decision tree.

24

Chapter 3

DESCRIPTION OF PRNG

3.1 Linear Congruential generator.

LCG is a pseudo sequence generators of the form[5]

Xn = ((aXn-1 + b) mod m), n>=1

In which Xn is the nth number of the sequence and Xn-1 is the previous number

of the sequence. The variable a, b and m are constants: a is multiplier b is the increment

and m is the modulus. The key or seed is the value of Xo, which is secret. This generators

has a period no greater than m. if a , b and m are properly chosen then the generator will

be a maximal period generator and having period of m.

3.2 Linear Feed Back Shift Register-
Shift register sequences are used in both cryptography and coding theory. There is

a wealth of theory about them. stream ciphers based on shift registers have been the

workhorse of military cryptography since the beginning of electronics [5].

A feed back shift register is made up of two parts:

1. A shift registers.

2. A feed back function

A linear feedback shift register is the building block for many simple stream

ciphers. The function of a linear feedback shift register is to produce the key-stream. This

example is a 4-stage Iinear feedback shift register. They are actually much longer.

25

i

- vvii

0001 	At each tick of the internal clock:
•
• 1000

• The four bits shift right

• 0100 j 	• The right-most bit is dropped

• 0010 :` 	The last two bits (before the shift) are XORed
• 1001"

• The XORed result is placed in left-most position of the register
• 1100

• 0110.1

• 1011 	~t This register sequence represents one ~ state .

• 0101
The register then iterates

• 1010

• 1101

• 1110

• 1111

Table 3.1: Operation of Pseudo random number generator(x4 + x + 1)

• The initial value of the linear feedback shift register may be part of the crypto-

variable (encryption key).

• The initial value should never be: 0000 as subsequent states of the register are

then very predictable.

• Other options for the initial value besides 1111 are: 0111, 0011, 1001, 1100,

1110

26

• Once there is repetition or linearity from one state to another - crypto-analysis

becomes easier

Linear Feedback Shift Registers

• Should have long periods without repetition

• Should be statistically unpredictable

• Should have functional complexity

• Should be statistically unbiased (the number of I s and Os should be about equal)

• The key-stream should not be linearly related to the crypto-variable (encryption

key)

3.3 RC4

RC4 is a variable —key-size stream cipher developed in 1987 by Ron Rivest for

rsa data security, inc[1] .

RC4 is simple to describe. The algorithm works in OFB:

'I he key stream is independent of plantext.It has a 8*8 S-box: S l,S2...........S255.

The entries are a permutation of numbers 0 through 255,and permutation is a function of

the variable-length key. It has two counters I and j initialized to zero.

To generate random bytes do the following.

i=(i+l) mod 256

j+(j+Si,) mod 256

Swap Si and Sj

t=(Si+Sj)mod 256

K=St

The byte is XORED with the plaintext to produced cipher text or XORed with the cipher

text to produced plaintext. Encryption is fast about 10 times than DES

Initializing the s-box is also easy .first fill it linearly : S0=0,S1+l5255=255

27.

Then fill another 256-byte array with the key, repeating the key as necessary to fill the

entire array: K0,K1..........K255. Set the index j to zero then:

For i=0 to 255

j=(j+Si+Ki) mod 256

Swap Si and Sj

3.4 SEAL

Seal is software — efficient stream cipher designed at IBM. by phil rogaway and Don

coppersmith. The algorithm was optimized for 32 bit processors: to run well it needs

eight 32- bit registers and a cache of few kilobytes. Using a relatively slow operation.

SEAL preprocesses the key operation into a set of a table. These tables are then used to

speed up encryption and decryption.

SEAL (Software-optimized Encryption Algorithm) is a binary additive stream

cipher [1] that was proposed in 1993. Since it is relatively new, it has not yet received

much scrutiny from the cryptographic community, this stream ciphers was specifically

designed for efficient software implementation and, in particular, for 32-bit processors.

SEAL is a length-increasing pseudo random function which maps a 32-bit sequence

number n to an L-bit keystream under control of a 160-bit secret key a. In the

preprocessing stage , the key is stretched into larger tables using the table generation

function G a , this function is based on the Secure Hash Algorithm SHA-1 . Subsequent to

this preprocessing, keystream generation requires about 5 machine instructions per byte,

and is an order of magnitude faster than DES.The following notation is used in SEAL for

32-bit quantities A, B, C, D, Xi, and Yj

A : bitwise complement of A
A^ B, Av B, AO+ B: bitwise AND, inclusive-OR, exclusive-OR

"A 	s": 32-bit result of rotating A-left through s positions

"A 	s" : 32-bit result of rotating A right through s positions

A + 13: rood 232 sum of the unsigned integers A and B

f(B,C,D) =(defined) (B A C) v (B A D);

g(B.C,D) =(defined) (B A C) v (B A D) v (C n D);

h(B,C,D) =(defincd) B © C © D

A l l B: concatenation of A and B

(X i X,?) (Y F Y,): simultaneous assignments (Xi Yi), where

(Y 1 , Y) is evaluated prior to any assignments:

G. (I)

INPU'F: a I6{)-hil siring a and an integer i, O i <2

OU'FPU'I': a 160-bit string, denoted Ga(i).

1. Definition of constants. Define four 32-bit constants (in hex): yl =Ox5a827999,

y2 = Ox6ed9cb,,i I, y3 = t)x8ll bbcdc, y4 = Oxca62c I d6.

2. 'Palle-gciiei-aIiutn blIineIioItt.

(initialize 80 32-hit words XO,X I,X79)

Set XO i. For j from I to 15 do: Xi Ox0000000O.

For j from (fib 79 do: Xj ((X.1 -3 F Xj-8 C) Xj-14 C) Xj-l6) t-- 1).

(initialize working variables)

Break 111) Ilse I6O-hil slriiu a into live 32-hil words: a -- 110111 112113114.

(A,13,C,D,F) F- (110,11.1,112,1-13,I-14).

(execute four rounds of 20 steps, then update; t is a temporary variable)

(Round 1) For . j From 0 to 19 (lo the following:

I < 	((A <._ 5) I I(13,(',I)) I I: I X.j I yl),

(A,B,C,D,E)F-- (t, A,B 	30,C,D).

(Round 2) For . j from 20 to 39 do the following:

t F-- ((A 	5) + h(13,C,D) + F .I_ Xj .+- y2),

(A,B,C,D,E) - (t, A.,.B 	30, C,D).

(Round 3) 1-For_j from 40 to 59 do the fallowing:

tE- -((A 	5)+9(B,C,D)-t-E+Xj+ y3),

(A,B,C,D,E) +- (t, A,B= 30; C;D).

(Round 4) For j from 60 to 79 do the following:

((A 5) 5)A-h(B,C,D)+E+Xj+y4),

(A,B,C,D,E) E-- (t, A,B = 30, C,D).

(Update chaining values)

29

(I 	I(►,I111I 	.,I 	It,l 	l 	l) 	(ho 	1 	\,III 	I 	P.I 	I.! i 	(',I 	I; 	I 	I),f 	I-I 	I II).

(corr)Iple•tiorr) 	I 	lic• 	v;iIuc OI 	(„ (i) 	iS 	IItc 	l() li 	hi iii', 	iwi III I 	112 H3 114

,ilgut'illini Ic 	'slr_',trtr gcrtcl,ltm- I1)1 - 1;\I,

SFnl ,(rm)

INPUT: a !1,(1-hit slr iiu .r (tlie tiL'crct key), a (rrnrt tir.rrcl) iirlc rci rr, (I 	r, ~~ 2 	(the

sequence rtun)I)cr), and the (Icsirc(1 hit.lcr1L th Lot the keystrcat)i.

OUTPUT: heytiltcat►t y of hillc.ttytlt L,0, where I_0 is the least r))ulliple oil

I. 'I able genet ntiorr. (rcr:rlc the t:rl)1cs I , 5, :iji(l R, wlio 	crit+ ies me 32-hit %",Ws.

	

the l-(II1cIiuH 1 ttSLcl I)clOw iS t1Chhrc(l by 1r(i) 	I I i 	\\1icrC 11i

	

IIU',III',112',1I3`,I14' 	„ 1(i/5),I

and wlicie Ilic dirrction (;.r is dclitied in ;n)ei\-c A1i.oiItir)rn.

	

I.1 I'ur i 110111 1) Igo 51 I clnn the tot l(iii':

I, I10 F. (i)

1.2 Fc)r j limit (1 to 255 do llhe 1611owitrg;:

1.3 I~.nt k Kim (I {(l,-I)/5l')2I-

Do:

(000001O(0O I i;).

2.1nitializati(le) 1)GOc(e11we. 'I Ite h)l!c)\Vitr1-' is a (1 S(iit)tiUtl c)(- (Ile SrIl)rcatile llitiali7.c(t),

l,A,I3,(',l), ii!, ri2, rr3, tt4) which takes as irrptil si 32-hitworcl n and an irilcgcr 1, and

puts cii ht 32-hit wordsA, I3, (_', I), n 1, rt2, ii 3, and n4. 'I his sth.)rautinc is used in step 4.

AE-e)O]ZI41i,13E-(n- 8) 1DRi41 I I ,(.'E-(n-? 16) {-±)RI4I-t-2j,DF-(ii--)24) eM•RI4I-1- 3]

l or j linrrr I to 2 (hI Ilre 1611owitrg:

P <--AAOxuO(1(f()7Ic, 13<-13 -I 'I IP/4], A<— (n- 9),

P<— 13 `OxuOcl()c)7(, (' <-- C' I I' 11'/111, 13 < - (13 = 	c)),

I' < 	(' 	(.1{)1(Il)11. , I) < 	I) 	I 	 1 	1 I'/ {', c 	<

I' E- 1)^c►xO(lclOO 71c, /\ <A { '1' 11'14 , I) < 	(1) . 	9).

(iii ; ti?; n3; it'll < 	(I) I 	A,(.').

1) (i\'i),\f)OO10071(-, 11< 	I 	t 'I' I I'/'I I, ;\ < 	(i\ 	:.

1'<- J3^)() ?OU74 ('<-(' 0 '1• I I'/•III, It <-

3 (_)

PF-- C^Ox()(30007fc, DE-- D + T [P/4], C E-- (C = 9).

P E- t^f)xOUQUO7fc, A F--A + 'f [P14], D (D 	9).

3. initialize y to be the empty string,

4. Repeat the I«1lowing:

4.1 hxcculc the 1prcoccdiirc linitiali7,c(n,1,A,C,l), ail, n2, n3, nn4).

4.2 For i from I to G4 do the following:

P+- A^ Ux0000071c, BF-- B + 'T [P/4], A (A 9), B 4-BA,

Q +-B^Ox000007fc, C+- C©T [Q/4], B (B =' 9), CE-- C + B,

PE- (P + C)^OxOOOOO7fc, D<- D + T [P/4], C (C=' 9), D* .DC,

Q <- (Q -i I_))^Uxtf)()f)(l7k, A<-- AD l' [Q/4I, I.) <- (I)= 9), A +-A + D,

P F-- (P + A)^Ox0O0OO7fc, B-BT [P/4), Ate- (A 	9),

Q E- (Q + B)^Ox000007fc, C- C + T [Q/4], B 4-- (B=> 9),

P F-- (P + C)^t)x()t)OO 7fc, D*-- 1) T } P/4}, C F- (C =-= 9),

QE- (Q -+- l))'',t)xOf)O(7l'e, A -A -I- 'I [Q/4], 1) F- (D 	9),

y<- y k (13 + S[4i - 41) k (CC+)S[4i - 3]) k (1) + S[4i - 2]) k (ATS[4i - L]).

If y is - L bits in length then return(y) and stop.

(Ii is odd, set (A,C) E-- (A-{-nl, C+n2). Otherwise, (A,C) E- (A+n3,C+n4).

4.3 set L, L ►-1

3.5 Bluin Blum and Shub

This simplest and most efficient complexity-theoretic generator is called the Blum

13111111, and Shun generator, alter its inventors. The theory behind tlic BBS generator has

to do with quadric residue rnioe1hlo n. First lind the two large pri-me numbers p q, which

are congruent to 3 modulo 4.The product of those numbers, n, is a Blum integer. Choose

another random integer x Which is relatively prime to n computc(5]

X0 = X2 mod n

That's the seed for generator.

31

Now vote c:in st:i+'t ct)+)ll~ulmi_ lulls. 'l lcc ills psc(ulc)-i.uudo1u bit is the least sigili licant bit x;

_vl1CI C

xi-Yi-12 111O({11

the most intriguing property Ot th11S I'C.11Cfall)1' is that you cioll't have to iterate though all I-

I bits to gel the itll bit. Ii'you know p and (I, you can compute the ilil bit directly

hi is the least siNrliiie:111I hit of xi where

xix(
2*2*...1}inn i((Is 1)l<1 O)

=

this property H1cm1s you can use this cry 	strong pseudo-random-bit

generator as a stream eryp(osyste)li ihr a i'andom-access 1ife.BE3S generator is

unpredictable to the left and unpredictable to the right. This meant that given a sequence 	."

generated by the generator a crypto analyst couldn't predict the next bit in the sequence

or the previous bit in the sequcncc, Hie 13111111-13IWll-Siiub 1)SCU(Ioraii(lolll bit generator

(also known as the X11 == X 2 moth n gcncrnlor or the 13135 generator) is a CSPR[3G under

the asst)nlplion that integer fac(orizatiorl is in(ract:lhle I]. It foniis the basis I:or the Blum-

Goldwasser probabilistic public-key encryption scheme .

Algorithm T3lurn-13lun1-Slitrl) Ipseutlor1111doul hit generator

SUMMARY: a pseudorandom bit sequence z , , z2 , , , , z I of length I is generated.

1. Setup. Generate two I:lrge secret raildoug (and distinct) primes 1) and (i (et'. Note 8.8),

each congruent to 3 modulo 4, ,)i)(1 corllIitrtc rl

2. Select a random integer s (tile seed) ill the interval [l, 11-I] such that gcd(s, n) = 1,\

and compute x p <-- s2

3. For i from I to I do the following:

I . 1 = X14—X 2 ; - I.

1.2 1.1 (lie least si4,,nilie:rr)t hit ut x r .

2. The output segNr)1CC is 7 1 , z2 , , , , z1.

32

Chapter 4

PREDICTION ALGORITHMS

The following algorithms for next bit prediction will be studied and implemented.

1. A Universal Prediction Algorithm given by Jacob Ziv[2] .

2. Sampled pattern matching (SPM). This algorithm is a modification of Ehrenfeucht-

Mycielski pseudo random generator algorithm [3]

3. General next bit prediction algorithm. This algorithm is a NESSIE (New European

Schemes for Signature Integrity and Encryption) submission, published recently

4.1 A Universal Predictor Based on Pattern Matching
We consider a universal predictor based on pattern matching, Given a sequence

X IXn drawn from a stationary mixing source, it predicts the next symbol

Xn+l based on selecting a context of Xn+l. The.predictor, called the Sampled Pattern

Matching (SPM), is a modification of the Ehrenfeucht-Mycielski pseudo random

generator algorithm. It predicts the value of the most frequent symbol appearing at the so-

called sampled positions. These positions follow the occurrences of a fraction of the

longest suffix of the original sequence that has another copy inside XIX2Xn. In

other words. in SPM the context selection consists of taking certain fraction of the

longest match. The study of the longest match for loss less data compression was initiated

by Wynerand Ziv in their 1989 seminal paper.

The predictor can either be deterministic or random. For deterministic predictors

there is a function fn such that

A Xn+1= fn+1X1......... Xn)

For random predictors, one defines a conditional probability distribution, say

q(Xn+1........... X n),

and sets

33

Pr{ AXn+1 = AX"+1IX1 = X1 Xn = Xn } = q(Axn+1lxl 	x n)

where X I X denote random variables. Finally, we can analyze prediction

either in the probabilistic setting or the deterministic setting. In the probabilistic setting

the sequence X i .X 2 _ is generated by a random source with the underlying

probability measure P(usually unknown to us) while in the deterministic setting we

consider individual sequences.

4.1.1 Sampled Pattern Matching Predictor

It is assumed that a sequence xn1:= x1 x,, is given. Each symbol x;

belongs to a finite alphabet A of size V :_ A. For a fixed integer K >= 1, the algorithm

will predict the next K symbols that is, (^x„+1 ^xn+k). However, paper we

carry out the analysis of the algorithm only for K = 1.

Let us fix 0 <c < 1. The SPM prediction algorithm works as follows:

1. Find the largest suffix of x"1 whose copy appears somewhere in the string x"E_We

call this suffix the maximal suffix and denote its length by D. More precisely,

D„ :— 1 where I is the largest integer such that (x„_1+I x,,) = (xn-i-1+1.

..... x„_;) for some I <=i<=n.

2. Take the largest fraction of the maximal suffix of length k„ := raD,, 1, that is, the

suffix x„,,+i „ x„ Such a fractional suffix occurs more than twice in the

original string.Let L„ >= 2 be the actual number of times x,k„+_

appears in the string x"1 Each such a occurrence defines a marker (sub string), and

the K positions after a markers are called the marked positions. Finally, by a

sampled sequence we mean the sequence composed of all symbols from the K;

tuple marked positions. We shall use these notations throughout the paper.

3. Let now N(x i , 	 .X K) be the number of non-overlapping K-tuple (xi , ..'

XK) occurrences in the sampled sequence. The SIM predictor assigns

34

(^x11 i ^x„+K) = arg max N(x l xK)

with a tie broken in an arbitrary manner (e.g., by a random selection). In words,

(^x„+I............ ^x„+k) is assigned to the most frequent K-tuple occurring in the

sampled sequence.

4.2 An efficient universal prediction algorithm

Let kO (X°_ N) be the largest integer i <= N- I such that X °- N = X - 	' for some

l<-j<=N- i

K=- I if XO does not appear in the sequence

[.:I .'\ 	 :141c.~ 	 —; 	' ~;'I1I~ l~titilll'.. tllllll~~:4'

.- ' 	'I IL 	I 	Ii',.'

	

iI 	 t Il l``1. 111`•l.11ll. 111 .\ 	 . 	—~ 	lS 1.

	

11•: Ii .~ 	.` E' 1} such lil~l it1t c 	k. ~L1
'-d'1IE .1 ~'

	

Iic.iic .1 	l c tli 	.i.'I .' 	=: A illl

4.3 Introduction to GNBP

The next bit predictor theoretical model as presented in[4] can be seen, in short, as

an algorithm that, given all the previous bits generated by a particular pseudorandom

number generator, can efficiently predict the next bit with higer than chance probability.

That is, i 1' we have one particular pseudorandom sequence of bits

I'S:hO h l .b2,b3,....,hi

generated by an algorithm that depends on a number of parameters (i.e. IV's,

polynomials, seeds, etc...), a next bit predictor for that particular generator will be one

35

algorithm that can compute the next bit b i+1 given the previous ones with probability

greater than 1/2 without knowing the particular set of parameters used by the generator.

Obviously, some assumptions on the behavior of the pseudorandom number

generator are made, and these assumptions make the next bit predictor generated

worthless at predicting any different model. These particular assumptions can be called,

in Artificial Intelligence (Al) terms, domain knowledge. They make the task of nr.dicting

a particular pseudorandom number generator much simpler, but at the cost of making it

worthless for predicting other generators. They lack generality.

Our goal is to look for a general method able of finding regularities and patterns

in the output of generators and which is general enough to be used in all of them. This is

why we called our proposal a general next bit predictor (GNBP), because it could be used

for discovering any predictable pseudorandom number generator. Thus it does not

assume the generator behavior, so no previous domain knowledge is required.

We pose the next bit predictor in terms of a classification problem as follows.

The input is a sequence of n previously perceivd hits, and the desired output (the class to

be predicted) is the next bit. Therefore, we define it formally as:

Given:

- set of attributes: n attributes corresponding to the values of the each n

previous bit.

- set of classes: two classes (0 or I) that denote the next predicted bit

- set of training instances: set of sequences of n+l bits, in which the first n

bits correspond to the values of the previous bits (attribute values), and the last bit is the

class. In case one receives as input only a sequence of m bits where m>>n, then one can

split the input in m /(n+I) sequences of bits (instances).

Obtain:

a description that can predict the next bit in the sequence for any given sequence

of n bits. This is the same as classifying into the 0 class or the I class. Let us see with an

example how our approach transforms the classical problem description into a

classification one:

Theoretical Model

b0.b I ,b2,.....,.bi-> Tryt.opredictbi+1 (l)

Classification Model

_Transform the same data contained in (1) into i-framelenght attribute/value

instances c i ol'the form

c 0: b 0,b framelenght -I -~ b framelenght

c I: b I ,....,b framelenght -a b framelenght+l

c i lramclenght : b i framelenght,b i -1 -~ b i

and try to learn form it. and a pattern, search for regularities, etc... using any of the

known classification techniques developed by Al researchers. Then, apply this learned

description in the prediction of th.e next bit b i+l , or. analogously, solve the classification

problem corresponding to the following instance:

b i framelenght+1,b i -a 0 or 1?

Obviously, we will make a classification for this data based in the previously seen

classifications and the knowledge extracted from them by our algorithm. That is, we will

classify the data bi-framelenght+l ,.....,b i as belonging to class 0 or class I, depending on

which hit we think has more probabilities to follow.

In fact, the theoretical model can be approximated by a classification problem.

The main change required is that we are limited by not considering all the past bits at

once, but only a given prefixed number of them. `]'his number of past bits we will

consider, that can also be seen as the short-term memory of our system. can be called

framelenght and will be very significant for the problem.

The other requisite of the next bit predictor model is that the algorithm must be e-

efficient. The construction of our predictor is quite fast because, once decided the more

adequate framelenght value, it is linear in the size of the processed data. And, once it has

37

processed all the data set and constructed the decision tree, the classification (prediction)

cost is constant.

Some problems that arise when co.nsidering this framelenght are worthy to

mention. One of these is noise. We will say we have noise when our model, being exactly

in the same state, is supposed to predict different values. This, of course, does not happen

in the theoretical model because it will never be in the same state, thus the sequence of

bits under consideration is always increasing. However., this is not the case in our model

because it is perfectly possible that two identical bit sequences of length framelenght will

be followed by different bits. In this case it is- clear that the prediction needs to remember

more bits than the number specified by the framelenght value. That is when we say we

have noise. Fortunately, noise is not a difficult problem to minimize because simply by

increasing the size of our framelenght variable, we can approximately reduce the amount

of this noise exponentially and, for all practical purposes, we can even eliminate it

completely.

The other problem of using this framelenght approximation is that we are losing

some information. In the theoretical model we always have more or equal information'

• that in our proposed model. We will be always capable of checking the relationship

between all the past bits and the next one, while in our model this will be more difficult;

but not impossible, because of the framelenght limitation. Only the last framelenght bits

• will be scanned for a direct correlation with the next one. Anyway, this is a price we have

to pay for applying some very powerful techniques used in machine learning. Again, this

information loss could be minimized by increasing the framelenght value. The authors

strongly believe that this will simply make the performance of our model worse, but not

very significantly when using very large framelenght values.

General next Bit Prediction algorithm

This approach is based on Machine Learning technique. The proposed working scheme

of this model is.:

1) 2 numberofinstancestolearnfrom + framelength-1 consecutive bits the generator to

analyze.

2) Convert this binary data into 2 numberofinstancestolearnfrom classification

examples

3) Divide this 2 numberofinstancestolearnfrom examples into halves and name this

files numberofinstancestoleamfrom .data and numberofinstancestolearnfrom .test

4) Create a file with the format data and call it numberofinstancestolearnfrom.names

5) Put C4.5 to work over this three files and tabulate the results.

6) It is proposed to use an inductive technique set the value of

numberofinstancestolearnfrom

7) set the value of framelength.

39

IN

Chapter 5

IMPLEMENTATION DETAILS

5.1. Next bit /symbol prediction algorithm
5.1.1 Sampled Pattern Matching Predictor

This algorithm is good for predicting the next symbol/bit of PRNG if the length of

sequence is more than the period of PRNG.It can predict a PRNG which produces a

sequence of integers as well as binary.

This algorithm is implemented in such a way that it considers the input sequence

of integers only that's why the maximum number it can consider is 32767 . If we have a

sequence of pseudo random numbers which are greater than 32767 I took a mode of

that number with 32767 and apply SPM to predict the next random number. In case of

SEAL I have taken a mod of the sequence of unsigned integer(output sequence is in

unsigned integer) with some particular number and then I have applied SPM to work with

it. If we want to predict the sequence of random bits(0,1) of PRNG which output decimal

number then we can convert the decimal output to the sequence of bits as done in the

cases of LCG,RC4,SEAL

5.1.2 An efficient universal prediction algorithm

This algorithm is good for predicting the next number of PRNG if the length of sequence

is less than the period of PRNG.

This algorithm is implemented in such a way that it considers the input sequence

of integers only that's why the maximum number it can consider is 32767 . If we have a

sequence of pseudo random numbers which are greater than 32767 1 took a mode of

that number with 32767 and apply Jiv's algorithm to predict the next random number. In

case of SEAL I have taken a mod of the sctIucnce of unsigned integcr(output sequence is

in unsigned integer) with some particular number and then I have applied Jiv's algorithm

to work with it. If we want to predict the sequence of random bits(O,1.) of PRNG which

output decimal number then we can convert the decimal output to the sequence of bits as

done in the cases of LCG,RC4,SEAL

5.1.3 General next hit prediction algorithru

41

This algorithm considers the Input as a binary sequence only and evaluates the PRNG

being considered.

This algorithm is implemented by using machine learning technique called

decision tree with one standard algoritli m called C4.5[9]. ii the output sequence of PRNG

is of integer number then we will covert that to sequence of bits , 16 bits in case of LCG

and SEAL , 8 bits in case of RC4.

5.2 Pseudo Random Number Cenci ator-s

5.2.1 LFSR

Various variations of LFSR are there varying in length of shift register and the

number by which we shift the Register to produce the pseudo random sequence like[1]

• 4-bit Shill Register

• 16-bit Shill Register

• 32-bit Shift Register etc.

I implemented 16 bit and 32 bit shift register with the following shift of bits

x32 + x7 +x5 +x3 +x2 +x+ l

5.2.2 RC4

Rc4 generates byte sequence so the generated byte in decimal system is converted into

binary system with 8 bits per pseudo random nurnber[5].

5.2.3 SEAL

Seal and LCG is implemented in such a way so that it generated the integer sequence For

generation of binary sequence I converted it into sequence of binary with 16 bits per

integer.

Chapter 6

RESULTS AND DISCUSSION

Here we consider the optimal prediction error for unknown finite-alphabet

Markov sources, for prediction algorithms that make inference about the most probable

incoming letter, where the distribution of the unknown source is apparent only via a short

training sequence of N letters (i.e. N is a polynomial function of K, the order of the

Markov source, rather than the classical case where N is allowed to be exponential in K).

A lower bound on the prediction error is formulated for such universal prediction

algorithms as shown below. It is demonstrated that its performance is "optimal" in the

sense that it yields a prediction-error which is close to the lower-bound on the universal

prediction-error as claimed by Jacob Jiv in General next bit prediction algorithm[] in

comparison to SPM.

6.1 Sampled Pattern Matching Predictor :

6.1.1 LCG
For LCG if the output sequence is in integers this algorithm predicts with a

probability of I if the Iength of the sequence is more than the period(m) of the LCG. This

algorithm predicts only if there are cycles in the sequence being considered. But for bad

value of seed it predicts the next symbol with a probability higher than 0.5 even if the

length of the sequence being considered is less than the period of LCG. If the sequence

being considered is binary this algorithm predicts the next bit with a probability higher

than 0.5 even if the length of the sequence is less than the period as shown in tables 6.1

and table 6..3 shown below.

6.1.2 LFSR

for LFSR ,SPM predicts the sequence with a probability of I if the length of the

sequence heing considered is higher than the period of LFSR But if we consider the

sequence length less than the period of LFSR SPM somehow predicts but with a

43

probability less than I and more than 0.5 . SPM predicts better if we increases the .

length of the sequences being considered as shown in the table 6.1 and table 6.3.

6.1.3 SEAL and RC4

For SEAL and RC4 it predicts if the length of the sequence is very high as shown

in the tables below, as these algorithms are very strong and it seems that there are

negligible cycles in the sequence produced by RC4 and SEAL.

But if we consider the sequence in binary system SPM predicts better and as

better as we increase the Iength of the sequence.

6.2 General next bit prediction algorithm

For LCG if the output is integers this algorithm predicts if the length of the

sequence is more than the period or nearly equal to the period of the LCG . This

algorithm predicts if there are cycles in the sequence being considered. This algorithm

predictor predicts better than SPM even if the length of the sequence is less as compared ,

given to SPM for prediction.

6.2.1 LCG

For LCG if the output sequence is in integers this algorithm predicts with a

probability of I if the length of the sequence is more than the period(m) of the LCG. This

algorithm predicts only if there are cycles in the sequence being considered. But for bad

value of seed it predicts the next symbol with a probability higher than 0.5 or close to 1

even if the length of the sequence is less than the period of LCG. If the sequence being

considered is binary this algorithm predicts the next bit with a probability higher than 0.5

even if the length of the sequence if less than the period as shown in table 6.1.

6.2.2 LFSR
For LFSR ,SPM predicts the sequence with a probability of I if the length of the

sequence being considered is higher than the period of LFSR But if we consider the

sequence length 	less than the period of LFSR SPM somehow predicts but with a,

44

probability less than l.this algorithm predicts better than SPM on the same length

sequence being considered as shown in the table 6.1 and table 6.3.

6.2.3 SEAL and RC4

For SEAL and RC4 it predicts if the length of the sequence is very high as shown'

in the tables below, as these algorithms are very strong and it seems that there are

negligible cycles in the sequence produced by RC4 and SEAL.

But if we consider the sequence in binary system it predicts better and as better as

we increase the length of the sequence.

45

(Output) Total No. of

PRNG Parameters Sequence
Binary / No. of cases of Prediction

Length
Integers cases correct Probability

Prediction
50
Different

LCG Seeds 10000 Integers 50 50 1
M=9000

50
Different
Seeds

LFSR 10000 Binary 50 26 0.52
X15 + X+
1

50 different

Seed

X32 + 	X7 --

LFSR + X5 + X3 10000 Binary 50 23 0.46

+X2 +X+

1

SEAL 50 different 10000 Binary 50 22 0.44 Seed

SEAL 50 different 10000 Integers 50 5 0.1 Seed
50

RC4 different 10000 Binary '50 24 0.48
Seed

RC4 50different 10000 Integers 50 6 0.12 SeedSe

Table 6.1: results obtained by predicting PRNG with SPM algorithm

Sequence (Output) No. No of cases of Prediction
IIRNG I'araiincicrs I`i ~ 	~ tl ~ Biliai y/ of correct probability

Integer cases Prediction

50

Iii ilerciit
Seeds

LCG M=9000 10000 Integers 50 50 1
50

Different

LFSR

Seeds

X - +~C+
1

Binary 50 28
0.56

50

Different

Seeds

X32 + 	X7
LFSR + X5 + X; 10000 Binary 50 26 0.52

+XZ +X+

1

50

SEAL Different 10000 Binary 50 4 0.08
Seeds

50

SEAL Different 10000 Integers 50 25 0.5
Seeds
50

RC4 Different 10000 Binary 50 27 0.54
Seeds
50

RC4 Different 10000 Integers 50 6 0.12
Seeds

Table 6.2: Results obtained by predicting PRNG with Universal Prediction algorithm.

47

- 	.-1---.-
-- (1

(Output) T otal
csc 	ni i 	uIr 	ion

1'IN(; Iii;iiitr
10

Binary No. 	l
COICCI IrlihjIi'

Integers cases
Prediction

So

•.
1)i tIc!cI1t

510) Integers 50 50
Seeds
M5()()

So
I)i lIciciit

CC(lS

LFSR 30000 Binary 50 35 0.7

X IS + 	X +

50

nirrcrciit

Seeds

300()0 l3inary 50) 31 0X2
+

+ x2 + x +

50)

S 1."A I I) 	cut 30000) Binary 50 32 0.04

Seeds

50

SEAL 1)1 ftcrctit 30000 Integers 50 15 0.3
Seeds

50

RC4 1.)i ITC rcnt 30000 Binary 50 31 0.62

Seeds

50
R(I4 F) I fTcrent 30000 Integers 50 20 0.4

S C C (I S

'Iahlc(.3: 	 aIoritIui.

Integer 	I 510)

3000()

I 30000

Binary

Binary

S 	I ('i ICC

Iciigth

30000 	I I:inai.y

30000 	Integer

30(300 	JThiiy

3(HX)() 	hit

PR I\1 (j 	P iiiincI cis

So
l)i I 1i,cii(

Seeds

LUG 	M--50()

So
1)1 11cr ciii
Seeds

LFSR X I x

50.
1)1 (ièi cii

Seeds

x.i2 + x7
LFSR

+x 5 +x•

+ X2 - X -4-

50
SI,\ L I)j Octent

Seals
50)

S FA L I.)i 1fticni

Seeds

R(4 clit
Seeds Is
50)
)i ituiit

Secds

lalIc 	.'I:ITURIN nit:iiiicl by 1)l('tII(Iili', IIt'(with I JIIi\lCiSal l'l (li(.ti(II1 Il)IitIit1).

19

General next Bit Prediction algori(1in►

(low does C4.5 actually operates?

It needs three tiles. one called the t nil iii r+g set, and another called the test set and a

third one in which the common li►r+►►at ot the oilier two is given. 'I his three tiles have,

respectively, the extension'. data, *.test and *.r►a+►►es.

So our next bit predictor will he given two sets of instances: the data and the test

sets shown in Figure 6.1 and Figure 6.2 respectively, one names the shown in Figure 6.3.

'I'11e lust One is used to Icani (lie cliai +ctcrislics c►I, a 1►articular generator. 'I I►c algorithm

tries to find a good decision lice li►r (his data. I lieu it will check the validity of this tree

against file (idler tie((11' instances. 11►e lest set. '.' I+icl+ II1C <Ilt!.e►I ill+r+r Ir:+ti s►ever 1►revie,utily

seen.

Obviot151y. we have to provide our next hit predictor with a sufficiently large (and

representative) set of dial instances to allow it in extract gcr►crahir.ahlc coo clusions that

(lien will he applied and tested against the test set. 11' we create a data set with lion

representative instances or wit until enough cl.rl.i, it won't learn (anyway, no aalgot i(Inn will

do in these conditions) file iesiills are s;Ituwrl in figure 6.5 ,Inc(6.6.

{raining file will be in the i~►rniart shown below.

lR... 	't 	ii 	{ t ali p'1lK 	 IC7 X1
t. T

File Edit Form* Viet,) I l"lf)

L?,:1., r?, 0,.1 , 1., i?, U, U, Q, Q.
1, 0, ,1,:L, 0,0.0,0,0,0.
o, 0. 1, 1. 0,n r,, o, r,,0,0.
0,1,1,0.0,0,0,4).0,0.0.
1, 1,0.0.0,0.0,0.0,0.0.
100,0,0,0,0,0,0,0.0,0.
0.0,0,0,0,0,0,0! 0,0,0.
0, 0, U, 0, 0.0 0 0. 0, t) 1.. ,
0, 0, 0, 0,0,0,0,0,0,1,1.
0,0,0,0,0,0,0, 0,1,1,1.
0,0,0,0,0,0,0,1,1,1.0.
0,0,0,0,0, -1 ,1.,1,0.1 .1.
0,0,0,0, (.,1...1.,0,1,:1, l..
0, 0, 0, 1, 1,:1,0,1,1.,1,1.
0.0,1_,1_,1.0,1, 1,1,x.1..
0,1.1.1, x',1,1,1,1,1,1..
1,1,1, 0, 1,1, 1,1, 1,1, i . 	 T I

Fi !ure 6.1 : formal ol' train il►g the

.CIB~p~

~711rlo ~~
50 	k (c NO.........

Date..

D{ X

File Edit Format View Help

Ip,1, 0,L,1,1,1,1,1,1,1.
1,0,1,1,1,1,1,1,1,1,1.
0,1,1,1,1,1,1,1,1,1,1.
1,1,1,1,1,1,1,1,1,1,1.
1,1,1,1,1,1,1,1,1,1,1.
1,1,1,1,1,1,1,1,1,1,0.
1,1,1,1,1,1,1,1,1,0,1.
1, 1, 1, 1, 1, 1,1,1, 0, 1, 0.
1,1,1,1,1,1,1, 0,1, 0, 0.
1, 1,1, 1, 1, 1, 0,1, 0, 0, 1.
1,1,1,1,1, 0,1, 0, 0,1, 0.
1,1,1,1,0,1,0,0,1,0,1.
1, 1, 1, 0, 1, 0, 0,1, 0, 1, 0.
1,1,0,1,0,0,1,0,1,0,1.
1,0,1,0,0,1,0,1,0,1,0.
0, 1., 0, 0,1, 0,1, 0,1, 0,1.
1,0,0,1,0,1,0,1,0,1,0.
0, 0,1, 0,1, 0,1, 0,1, 0,1.

Li

Figure 6.2 : format of test file

),1 (CLASSES

L:0,1
2.0,1
3:0,1
4:0,1
5.0,1

7:0,1
8:0,1
9:0,1
10:0,1

Figure 6.3 : format of names file

51

Framelength 10 20 30 40 50 70 100
Before pruning

Size 1201 8069 4092 7000 8559 7225 6832
%accuracy
training

65.5% 68.3% 75.7% 83.6% 89.9% 91.4% 97.71

%accuracy test 70.1% 85.5% 99.9% 100% 100% 100% 100%
:After pruning
;Size 1032 7003 3569 6701 7548 7190 6583
'%accuracy
training

64.3% 68.4% 75.6% 83.6% 89.9% 91.3% 97.7%

%accuracy test 70.1% 85.5% 99.9% 83.6% 89.9% 91.4% 97.7%

Table 6.5 : results obtained by predicting LCG with GNBP algorithm

A predictor for a Linear Feedback Shift Register

In the case of Linear Feedback Shift Register (LFSR) given by X15 + X + 1 the

primitive polynomial x 15 +x+l. The period of our LFSR generator is 21 ' -1 so we will

give it much less than its period as data because we will create a data file (for learning) of

only 5 examples and a test file (for testing what has learned) of another different 5

examples.

Results are written in the table below

Framelength 10 20 30
Before pruning

Size 4 117 1332
%accuracy training 95.5% 97.5% 95.9%
%accuracy test 95.3% 97.0% 95.2%
After pruning -

Size 3 4 7
%accuracy training 95.5% 97.0% 100%
%accuracy test 95.5% 96.9% 100%

Table 6.6 : results obtained by predicting an LFSR with the GNBP

The first thing worth to mention is that I have achieved our desired 100%

accuracy much more quickly (with a lower framelenght value) than in the LCG case.

52

Also, we have got this perfect accuracy in a quite surprising manner. In the LCG case

there was a much slower convergence to 100% accuracy and here we jump from a

relatively far value (95.5%) directly to it. This is because this particular type of

generators are much more easily predictable than I,CGs and are characterized by simpler

rules that are easier to discover. That is exactly what has happened with the predictor.

The rule it has discovered after pruning with a framelenght value of 20 can be expressed

as:

If the bit in the position 6 is 0

then If the bit in the position 7 is 0

then classify as 0

else classify as I

else If the bit in the position 7 is 0

then classify as I

else classify as 0

That is the same as

class=bit6 XOR bit7

or, analogously,

bit 21=bit 6 XOR bit 7

Adding bit 21 to both sides of the relation we get

bit 21 XOR bit 21 =0= bit 6 XOR bit 7 XOR bit 21

So

bit 6 XOR bit 7 XOR bit 21 =0

or

x b +x7 +x21 =0

and dividing over x6 we obtain

1+x+x'5 =0

So general next bit predictor has completely determined the generator and,

furthermore, its primitive polynomial by discovering a multiple of the basic relationship

53

that holds between all the bits produced by this LFSR generator. This is an i;... sting

and rare achievement as it not only predicts the generator, but also gives us definitive

clues over its type despite of starting with zero knowledge about it.

The minimum length of sequence required for the next bit predictor to work

(predict next bit correctly with a probability better than random guessing) in case of LCG

is m.In case of LFSR it depends upon the length of shift register used that is in case of 16

bit shift register it is comes out to be 40 bits if we predict using general next bit

prediction . But if want to fully predict the LFSR we must have to take the length of the

sequence greater that 21 — 1 . for partial prediction with a probability of 0.6 or more we

have to take the length greater than 10000 bits.

The typical values (for minimal length) the generators being considered?

The typical value LCG take is greater than m and for 16 hit register in LFSR it takes,

10000 bits.

RC4 and seal are very strong algorithm and it seams that to predict these

algorithm better then tossing a coin we must have to take the length of the sequence to be

very high But LCG and LFSR seems to be week algorithm and can easily be crypto

analyzed.

F

54

Chapter 7

CONCLUSION

The optimal prediction error for unknown finite-alphabet Markov sources, for

prediction algorithms that make inference about the most probable incoming letter, where

the distribution of the unknown source is apparent only via a short training sequence of N

letters (i.e. N is a polynomial function of K, the order of the Markov source, rather than

the classical case where N is allowed to be exponential in K). A lower bound on the

prediction error is formulated for such universal prediction algorithms.

It is demonstrated that the performance of "A Universal Prediction Algorithm" is

optimal in the sense that it yields a prediction-error which is close to the lower-bound on

the universal prediction-error when compared with SPM. SPM and Universal Prediction

Algorithm predicts only in the cases where certain amount of cycles are there in the

output of PRNG that's why they predicted LCG and LFSR as they are considered to be

weak.But for strong algorithm like SEAL,RC4 they need very large amount of sequence

length for prediction. If we have less amount of sequence length we would like to prefer

for Universal Prediction Algorithm rather than SPM. We can apply these algorithm to

PRNGs to see the testing resistance of existing(old) and new PRNGs to have a good

security systern.Through these algorithms we can study the patterns of the cycles in the

PRNGs sequence and crypto analyze the generators .

It has been proposed that implementation of the next bit predictor theoretical

model that uses artificial intelligence techniques to extract knowledge for a given

generator and then uses this knowledge to predict its behavior[41. We have found that the

same GNBP model can be useful in predicting completely different types of

pseudorandom number generators, namely a LCG and a linear feedback shift register.

This lack of domain knowledge information in our GNBP model is obviously

reflected in the form of an increase in the number of' bits needed to predict a generator

with a given accuracy. Alternatively, the main advantage of this model is that it does not

55

need to know what kind of generator has been used, so it is completely independent of

the particular generator used.

There are many other ML techniques other that C4.5 that might probably lead to

interesting results, like the C5.0 algorithm or even some other machine learning

paradigms like genetic algorithms. That could be explore them in future works for better

results.

C;NBP approach is very good for testing purposes. It is also an interesting tool to

test any behavior that is supposed to be unpredictable, like for example the output of new

hash functions, stream ciphers, block ciphers or any other cryptographic primitives.

Although the general predictor has been showed predicting with 100% accuracy some

'

	

	different models of generators, we believe that this kind of general predictors will show

their best trying to distinguish generators from unpredictable sources. It has no point'

trying to predict with 100% accuracy generators which are well known and for which we

have optimal (or at least, better) predictors. The main advantage of this general predictor

could be shown at working with new generators for which we cannot add any domain

knowledge, implementing a filter that can distinguish between unpredictable generators

and predictable ones for quickly rejecting the latter.

This is by no means, even with the aid of this new tool, a simple task. In fact it

has been mathematically proved to be impossible for certain generators. Anyway, I

believe that for the vast majority of them, this technique will be very useful.

Another practical use for this model could be to measure predictability, to classify

in a systematic way pseudorandom number generators by means of their anti-prediction

strength.

56

REFERENCES

1. Menezes, P. van Oorschot, and S. Vanstone, " Handbook of Applied

Cryptography" , CRC Press, 1996.

2. Jacob Ziv "AN efficient Universal Prediction Algorithm For Unknown Sources

With Limited Training Data", IEEE transactions of information theory, vol. 48,

pp 1690-1693,June 2002.

3. Philippe Jacquet,Szpankowski "A Universal Predictor Based on Pattern

Matching". IEEE transactions of information theory , vol..48,6 pp.1462-1472,

j une 2002.

4. l-Iernandez, ,1.C, Sierra, J.M.,Mex-Perera, Isasi.l'. " Using the General next bit

predictor like an evaluation criteria", NESS11 (New European schemes for

signature integrity and encryption) submission, June 2001.

5. B. Schneier,"Applied Cryptography" ,John Wiley and Sons, Inc, second edition

2001.

6. D.Michie,J.R.Quinlan,"Programs for machine learning"Edinburg University

Press.1979.

7. T. Mitchell, "Decision Tree Learning", The McGraw-Hill Companies, Inc., 1997,

pp. 52-78

8. P. Winston, "Learning by Building Identification Trees", Addison-Wesley

Publishing Company, 1992, pp. 423-442.

9. http://www.cse.unsw.edu.au/quinlan.

57

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

