
SOFTWARE DISTRIBUTION USING MOBILE AGENTS

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

RAJEEV T. SINGH --- L jl~k

r :.Lc. No.........
Datca:: c3..

~~ of TICNM 	I. L ROORlL
toy l

'In

X

zy

IIT Roorkee-ER&DCI, Noida
C$6/1, "Anusandhan Bhawan"

Sector 62, Noida-201 307
FEBRUARY, 2003

S

a

it'

CANDIDATE'S DECLARATION

This is to certify that the work, which is being presented in this dissertation,

entitled "SOFTWARE DISTRIBUTION USING MOBILE AGENTS", in partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Information Technology submitted in IIT, Roorkee — ER&DCI Campus, Noida, is an

authentic record of my own work carried out from August 2002 to February 2003, under

the supervision of Mr. P.N. GOSWAMI, Director, R&D, Electronics Research and

Development Centre of India, Noida.

I have not submitted the matter embodied in this dissertation for the award of any

other degree.

Date: 21. a Z. 9 o 03

Place: Noida (Rajeev T. Singh)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief

Date: a I f 0 `I-f2av 3,

Place: Noida (Mr. P.N. Goswami)

Director(R&D),

ER&DCI, Noida

\J • 0 .51-k +~ I~ ~,►~

(i)

ACKNOWLEDGEMENT

I would like to thank Prof. Preen Vrath, Director, ill-Roorkee, Mr. R.K. Verma,

Executive Director, ER&DCI, Noida, Dr. A.K. Awasthi, Dean, Post Graduate Studies

and Research and Dr. R.P. Agarwal, Course Coordinator for giving me this valuable

opportunity to pursue this work.

I would like to thank my guide, Mr. P. N. Goswami, Director, R&D, ER&DCI,

Noida for his patience and encouragement. He has been an invaluable source of support

and guidance all through this dissertation.

I am grateful to Mr. V. N. Shukla, Course Coordinator for providing the best of

facilities to carry out the dissertation. My sincere thanks are due to Dr. P.R. Gupta for the

encouragement and valuable suggestions she provided me with during the course of my

work. I am also grateful to Mr. Munish Kumar for the cooperation extended by him in the

successful completion of this report. I would also like to thank Mr. R. B. Patel, Research

Scholar, IIT, Roorkee for his timely help and constant guidance.

Most of all I would like to thank my family. My parents provided me a perfect

environment for my studies and supported me throughout. Finally, I would like to extend

my gratitude to all those persons who directly or indirectly helped me in the process and

contributed towards this work.

'SI
(Rajeev T. Singh)

019033

CONTENTS

CANDIDATE'S DECLARATION (i)

ACKNOWLEDGEMENT (ii)
ABSTRACT 1
1. INTRODUCTION 3

1.1 Overview 3
1.2 Objective of Dissertation 3

1.3 Scope of the Work 4
1.4 Organization of Report 4

2. LITERATURE SURVEY 5
2.1 Software Distribution 5

- 2.2 Introduction to Mobile Agents 7
2.2.1 Mobile Agents 7
2.2.2 Agent Server 8

• • 	 2.2.3 Mobility 8

2.2.4 Agent Architecture vs. Client/Server Architecture 8
2.2.5 Advantages of Mobile Agents 9

2.3 Mobile Agent Framework, 11

2.4 Java and Mobile Agents '12
• 2.5 Existing Mobile Agent Systems 13

2.5.1 Telescript 13

2.5.2 Agent Tcl 	 • 	_ • 14
2.5.3 Voyager 14

2.5.4 Concordia 14

2.6 Aglets 	 • 15
2.6.1 Where to use Aglets? 15

3. AGLET SPECIFICATION 19
• 3.1 Architecture Overview 19

3.1.1 Aglets Runtime Layer 20

3.1.2 Communication Layer 21

3.2 Aglet API Overview 	 23
3.2.1 com.ibm.aglet.Aglet 	 23
3.2.1 com.ibm.aglet.AgletProxy 	 24
3.2.1 com.ibm.aglet.AgletContext 	 24
3.2.1 com.ibm.aglet.Message 	 25

3.3 Aglet Object and its Life Cycle 	 25
3.4 Security in Aglets 	 27

4. SYSTEM DESIGN AND IMPLEMENTATION 	 29
4.1 IBM's Aglet Software Development Kit 	 29

4.1.1 Tahiti server 	 29
4.2 Design of Mobile Agent on Aglet Platform 	 30

4.3 Agents 	 31
4.3.1 System Property Agent 	 31
4.3.2 Listing Agent 	 32
4.3.3 Distribution Agent 	 32
4.3.4 Delete Agent 	 33

5. RESULTS AND DISCUSSION 	 35

5.1 Tahiti Interface and Creation of Aglet 	 35
5.1.1 Creation of Aglet 	 35

5.2 Software Distribution Agents 	 37

5.2.1 System Property. Agent 	 37

5.2.2 Listing Agent 	 39
5.2.3 Distribution Agent 	 41
5.2.4 Delete Agent 	 43

6.. CONCLUSION 	 45
REFERENCES 	 47
APPENDIX — A Tahiti Menu Interface

(iv)

ABSTRACT

This - project is an attempt to simplify the task of

software distribution by using mobile agents. The aim of

this work is to provide the network administrator with a

tool, which saves him from the tedious routine of

physically going to each and every node of the network in a

typical organization scenario, in the process of distributing

the required software on the nodes. Mobile agents are

simply software agents that are not bound to the system

where they begin execution. They have the ability to

transport themselves from one system to another remote

location to complete their task there. Software Distribution

is one of the area in which mobile agents can be used

effectively. A Distribution agent can carry software across

the network reducing the workload on the network

administrator. The project uses Aglets SDK as the mobile

agent platform developed by IBM's Tokyo Research Lab

for the development of software distribution aglet. Here the

main focus has been on carrying software to remote

location and initiating the installation procedure. Several

clones of this agent can be created and software can be

attached to these clones and sent to different system across

the network.

1

Chapter 1

-INTRODUCTION

1.1 Overview

Network management is gaining importance due to the explosive growth of the
size of computer networks. The network manager is faced with an increasingly complex
job of managing a typical network. As information and its access becomes more
dispersed and diverse the challenge is to discover new technologies to assist in this
information management. The use of agents, in particular mobile agents is one such

emerging technology that may assist in this information management process.

Mobile agent technology is nowadays one of the most active research topics in
computer science. It is now proven that many areas could benefit from mobile agents.

Many papers like Mobile Objects and Mobile Agents: The Future of Distributed

Computing? [1] investigated on mobile agents' concept and theories. Most of the current

research on mobile agents has two general goals: reduction of network traffic and

asynchronous interaction. The research is driven by the fact that mobile agents will be

soon developed at larger scale, for commercial application. Kotz and Gray [2] predict
that, within a few years, nearly all major Internet sites will be capable of hosting and

willing to host some form of mobile code or mobile agents. But before such a
deployment, some issues need to be investigated and some problems need to be fixed.

Security of mobile agent systems and interoperability are surely the main concerns for

commercial development of this technology.

1.2 Objective of the Dissertation
Mobile agents provide an easy way to transport code and install packages

automatically. They enable applications to distribute themselves among various

computers on which they must execute. If package is available on a server, the

application can expand to encompass any number of client computers.
The network administrator always faces a complex task of maintaining and

upgrading systems in any organization. Whenever a new upgrade or a patch arrives the

administrator has to physically move to each and every node in the network and run the

3

package. The purpose of this dissertation is to explore possibility of a system using which
the administrator can transport the package to remote nodes and run them. Mobile agents
provide the best answer for the solution of this problem.

1.3 Scope of the Work
This dissertation uses IBM's Aglet platform for developing mobile agents for

software distribution. Software Distribution using Mobile Agents will provide analysis,
notification, distribution, and installation of software and its updates to network-based

computer systems. Here the main focus has been on installation (carrying software to

remote computers and initiating installation procedure). It also contains Listing agent,

System property agent and the Delete agent in support of the main Distribution agent.

Following are the scenarios in which a agent can be used

• A new program can be installed on a company's computers.

• A software company installs a software package using this agent.

• A software company distributes the latest patch using the Internet.

• An error occurs in a machine. The manufacturer sends a mobile agent to

examine the problem.

Advantages of using this approach are

• No special client needed, just the agent server.

• The agent server could be used to perform other tasks as well.

• It is easy to use always the newest version of a maintenance program.

1.4 Organization of Report
This report contains six chapters. Chapter 1 gives the overview and discusses the

objective and scope of dissertation. Chapter 2 gives an introduction to software

distribution and mobile agents. It discusses all the relevant issues regarding mobile

agents. Chapter 3 gives a description of the aglet platform. Chapter 4 deals with design of

agents for software distribution. Chapter 5 describes the user interfaces of the agents.
This chapter also discusses the working of the agents. Chapter 6 concludes the thesis.

E

Chapter 2
LITERATURE SURVEY

2.1 Software Distribution
The concept software distribution is a part of software deployment, which refers

to all the activities that make software systems available for use. It comprehends the

process and activities related to the release, installation, activation, deactivation, update,

removal and retirement of software components in a set of hosts [3].

Once deployed, a software system is available for use on a customer site. A site

may be a host or set of hosts that uses a set of resources. A software system is a coherent

collection of artifacts, such as executable files, source code, data files and documentation.

A resource is anything needed to enable the use of software system at a site, for example,

and IP port, memory, disk space and other system. A software producer is a company or

site that creates and deploy new releases of the software to be installed. The software

consumer is the host in which the software needs to be deployed to.

The deployment process consists of several inter-related activities that can be

executed on various hosts such as the producer, consumer or both. The software

deployment process is a composition of following phases.

• Release.

Release is the activity that interfaces between the software development and its

deployment. It is performed in the producer side and encompasses all the

operations needed to prepare a system for assembly and transfer to the consumer
site. It collects and specifies all information necessary to carry the other activities

of the deployment process. In this phase, all components necessary to the

application are collected and organized, in order to be transferred to the consumer

sites. Such information comprises the components, documentation, its installation

procedures, dependencies and management properties.

5

• Installation.

Installation covers the transfer of the application component form the producer
site to the consumer; site, followed by their configuration. It prepares the system to
be activated.

• Activation.

Activation is the activity of running the installed application in the customer site.
For complex systems it might require the initialization of other services and
process.

• Deactivation.

Deactivation the inverse of activation activity. It performs the shut down of the
running application. It is also required before other deployment activities can take

place, for example, during update operations.

• Update.

Update is a special "case of installation. It represents the partial or total transfer of

new component versions, in order to replace components of an existing

installation.

• Adaptation.

Like the update activity, the adaptation involves the modification of a software
system that has been previously installed. Adaptation differs from update in that
the update activity is initiated by remote events, such as software producer

releasing a new component version, whereas adaptations are initiated by local
events, such as a change in the environment of _ the consumer site. For example,

the installation of a new graphic card may require the system to adapt to its new

characteristics.

• De-installation.
This activity consists in the removal (undo) of the application components from

the system. As a result, the remove process must inspect the current state of the

consumer site. This procedure must not affect other installed systems, and
dependencies check must be performed in order to keep components that are

shared with other applications.

• Retirement or Derelease.

This phase consists in discontinuing the support for an application by the software

producer. It usually requires that the withdrawal of the software by the producer

be advertised to all known consumers of the system. It does not directly affect the
consumers, who can continue to use the software. In summary, the producer site is

responsible for the release and retirement of the software, while the consumer site

performs the activation, deactivation and adaptation of the software.

2.2 Introduction to Mobile Agents
2.2.1 Mobile Agents

A mobile agent is an agent that has one more characteristic: its code is mobile.

While a stationary agent executes its code on the same host all its lifetime, a mobile agent

has the ability to transport and execute itself over a network, in a heterogeneous

environment.

By code mobility, it is meant that the mobile agent not only transfers its code, but

also it's being: code, data and state. It is possible for it to begin an operation on one host

and continue it on another, while updating its data after the visit of each host.

The agent performs its job wherever and whenever appropriate and is not

restricted to be co-located with its client. Although a mobile agent is essentially an

executing process, the governing factor that distinguishes it from a normal process is that

not all of its instructions have to be executed on the same node or even within the same

network locale. With these abilities come certain benefits such as reduction in network

traffic, protection against network latency, protocol independence, parallel computations,

and adaptation to the working environment, and robustness. Mobile agents comprises of

four main elements

• The agent itself with its properties and attributes.

• The place where the agent executes, or an environment where they can

perform execution.

• The behavior of the agent, which comprises of creation, disposal, and transfer.

• Agent communication

h

2.2.2 Agent Server
An agent server is also known as the agent execution environment. An agent

server controls agents: it creates, executes, transfers and terminates. It provides some
services such as inter-agent communication.
2.2.3 Mobility

A feature of mobile agent systems is their ability to move mobile agent from one

place to another. There are two ways to support mobility of a mobile agent: weak and
strong migration.

In strong migration, the agent is transferred with its code, data and its complete

state: it allows the mobile agent to be executed exactly from where it was left before

migrating: it resumes itself.

Weak migration consists of transferring the code and data.

2.2.4 Agent architecture vs. client/server architecture

In the traditional client server architecture, all connections to server are initiated

from the client. The advantage is that these connections can be managed in parallel
(Fig.2.2.4.1). With an agent architecture (Fig.2.2.4.2) the network is dynamic, and the

client need not know the structure. of the network. The fact that agents communicate with

a high-level communication language and work over a logical network makes them more

reliable as the logical network which is dynamic will adapt itself to the current conditions

and be less affected by network failure.

Fig.2.2.4.1: Traditional Client/Server Communication.

Fig.2.2.4.2: Communication using mobile agents

Mobile agents differ from traditional client/server application by moving

themselves where the data are, instead of moving the data to where the application

resides. This improves performance of the data collection by requiring less bandwidth.

Another advantage is the fact that mobile agents can perform their task

asynchronously, or offline: the host of origin can initiate agents, tell them to migrate, go
offline, and when back online, waiting for agents to come back.

2.2.5 Advantages of Mobile Agents

The main advantages of using mobile agents are

a) They reduce the network load.

Distributed systems often rely on communication protocols that involve multiple

interactions to accomplish a given task. This is especially true when security measures

are enabled. The result is a lot of network traffic. Mobile agents allow us to package a

conversation and dispatch it to a destination host where the interactions can take place

locally. Mobile agents are also useful when it comes to reducing the flow of raw data in

the network. When very large volumes of data are stored at remote hosts, these data
should be processed in the locality of the data, rather that transferred over the network.

The motto is simple: move the computations to the data rather than the data to the

computations.

b) They overcome network latency.

Critical real-time systems such as robots in manufacturing processes need to
respond to changes in their environments in real time. Controlling such systems through a
factory network of a substantial size involves significant latencies. For critical real-time
systems, such latencies are not acceptable. Mobile agents offer a solution, since they can
be dispatched from a central controller to act locally and directly execute the controller's
directions.
c) They encapsulate protocols.

When data are exchanged in a distributed system, each host owns the code that
implements the protocols needed to properly code outgoing data and interpret incoming

data, respectively. However, as protocols evolve to accommodate new efficiency or
security requirements, it is a cumbersome if not impossible task to upgrade protocol code
properly. The result is often that protocols become a legacy problem. Mobile agents, on

the other hand, are able to move to remote hosts in order to establish "channels" based on
proprietary protocols.
d) They execute asynchronously and autonomously.

Often mobile devices have to rely on expensive or fragile network connections.
That is, tasks that require a continuously open connection between a mobile device and a
fixed network will most likely not be economically or technically feasible. Tasks can be
embedded into mobile agents, which can then be dispatched into the network. After being
dispatched, the mobile agents become independent of the creating process and can
operate asynchronously and autonomously. The mobile device can reconnect at some
later time to collect the agent.

e) They adapt dynamically.

Mobile agents have the ability to sense their execution environment and react
autonomously to changes. Multiple mobile agents possess the unique ability to distribute
themselves among the hosts in the network in such a way as to maintain the optimal
configuration for solving a particular problem.
f) They are naturally heterogeneous.

Network computing is fundamentally heterogeneous, often from both hardware

and software perspectives. As mobile agents are generally computer- and transport-layer-

10

independent, and dependent only on their execution environment, they provide optimal
conditions for seamless system integration.

g) They are robust and fault-tolerant.
The ability of mobile agents to react dynamically to unfavorable situations and

events makes it. easier to build robust and fault-tolerant distributed systems. If a host is
being shut down, all agents executing on that machine will be warned and given time to
dispatch and continue their operation on another host in the network.

2.3 Mobile Agent Framework
As with any other communications-related activity, the general acceptance of

mobile agents for network management activity will depend heavily upon standards. The

Open Management Group (OMG) has already begun work in the area of mobile agents.
The proposed standard attempts to be platform neutral and has each chunk of mobile code

identify itself with a language, or execution environment requirement. The proposal
identifies the need for mobile code regions, with gateways between them that provide an

agent application virtual layer on top of the actual network. Fig.2.3 shows the mobile

agent facility architecture.

Operating System 	 Op crating System

Agent System 	 Agent System

Agent 	 Agent

Non-agent
System

' Co,,,,*„+,ication 	 Conmmnication
Infrastmcture 	 Network 	 Infrastructure

Fig.2.3: Mobile Agent Facility Architecture [4]

11

An agent region is defined as a set of agent systems that can access each other,
possessing similar authority and identifying a default migration pattern. Mobile agent

facilities include the storage and retrieval of agents, remote agent creation transfer and

agent method invocation. The agent system is loaded on the operating system. There can

be different agent system on one machine. Each agent system consists of the place and

communication infrastructure, which is required for communication between two agent

environments. Agent to agent communication is possible between two agents of same or
different machine. The agent communication is based on the protocol used by the system
or it is through its own protocol called as agent transfer protocol.

2.4 Java and Mobile Agents
When looking at mobile agents as a solution to some enterprise problem, a vital

issue that must be satisfied is that of security and acceptability in a heterogeneous

environment. If agents are to be allowed to move anywhere within some network

architecture, whether the route followed is pre-known by each agent ordynamically

determined, the system that propagates the agents must support both methods. Java is by

far the most readily tailored system currently in widespread use that already supports the

needs of mobile agent systems, with few drawbacks.

Java's network-centricity, sandbox security model, and platform independence

make the language a perfect environment in which to development agent-based tools.

One such tool, IBM's Aglet Workbench, provides a laboratory for creating Java-based

mobile agent applications. The Aglet Workbench defines its own Java agent API (which

has been submitted to standards committees) and provides a set of tools and samples for

getting started. Java is inherently a network based API that has its roots in the one of the

largest networks in the world. Since the agent technology is created from the Java API, it

is readily available for immediate implementation in such environments. As Java has

been essentially created for use on large heterogeneous networks, it also allows for

platform independence, something that may be another issue for people looking to use the

technology. Also, since Java was intended for use, on the Internet, security has always

been a major issue during its development. Also, Java already provides support for

serialization, object transfer, and agent communication models.

12

However, there does exist some drawbacks to using the Java API as the root for a

mobile agent system. Since Java is a programming API as any other, it cannot protect

against such things as resource consumption by individual agents. For example, any agent

running in a place can start looping and consuming part of that places resources without

ceasing, thereby creating a sort of `denial of service' class of problem.

2.5 Existing Mobile Agent Systems
Several academic and industrial research groups are currently investigating and

building mobile agent systems. Much of the work in this area remains academic but this

is likely to change. As users discover the power of delegating laborious tasks to agent

technologies, their popularity will skyrocket. Companies such as General Magic, IBM,

Crystalz, and others are already investing millions of dollars into developing commercial

applications of mobile agents.

2.5.1 Telescript

Telescript, developed by General Magic, includes an object-oriented, type-safe

language for agent programming. Telescript servers (which are called places) offer

services, usually by installing stationary agents to interact with visiting agents. Agents

use the go primitive for absolute migration to places, specified using DNS-based

hostnames. The runtime system captures execution state at the thread level, so the agent

resumes operation immediately after the go statement. Relative migration is also possible

using the meet primitive. Co-located agents can invoke each other's methods for

communication. A place can query an incoming agent's authority, and potentially deny

entry to the agent or restrict its access rights. The agent is issued a permit, which encodes

its access rights, resource consumption quotas, etc. The system terminates agents that

exceed their quotas, and raises exceptions when they attempt unauthorized operations.

Telescript was not commercially successful, primarily because it required programmers

to learn a completely new language. General Magic has now shelved the Telescript

project and embarked on a similar, Java-based system called Odyssey [5] that uses the

same design framework. In common with most other Java-based systems however, it

lacks thread-level execution state capture.

13

2.5.2 Agent Tcl

Agent Tel, developed at Dartmouth College, allows Tel scripts to migrate

between servers that support agent execution, communication, status queries and non-

volatile storage. A modified Tel interpreter is used to execute the scripts, and it allows the

capture of execution state at the thread level. When an agent migrates, its entire source

code, data and execution state is transferred. Migration is absolute, and the destination is

specified using a location-dependent name. It is also possible to clone an agent and

dispatch it to the desired server. Agents have location-dependent identifiers based on

DNS hostnames, which therefore change upon migration. Inter-agent communication is

accomplished either by exchanging messages or setting up a stream connection. Agent

Tel uses the Safe Tel execution environment to provide restricted resource access. It

ensures that agents cannot execute dangerous operations without the appropriate security

mediation.

2.5.3 Voyager

This is a Java-based agent system developed by ObjectSpace [6]. A novel feature

of Voyager is a utility called vcc, which takes any Java class and creates a remotely

accessible equivalent, called a virtual class. An instance of a virtual class can be created

on a remote host, resulting in a virtual reference that provides location-independent

access to the instance. This mechanism is used for implementing agents. An agent is

assigned a globally unique identifier, and an optional symbolic name during object

construction. A name service is available, which can locate the agent, given its identifier

or name. The virtual class; provides a moveTo primitive, which allows the agent to

migrate to the desired location. The destination is specified either using the server's DNS

hostname and port number. Agent communication is possible via method invocation on

virtual references. Agents can make synchronous, one-way, or future-reply type

invocations.

2.5.4 Concordia

Concordia developed; by Mitsubishi Electric [7], supports mobile agents written in

Java. Like most Java-based systems, it provides agent mobility using Java's serialization

and class loading mechanisms, and does not capture execution state at the thread level.

Each agent object is associated with a separate Itinerary object, which specifies the

14

agent's migration path (using DNS hostnames) and the methods to be executed at each
host. Concordia has extensive support for agent communication. Agent state is protected
during transit, as well as in persistent stores, using encryption protocols. Each agent is
associated with a particular user, and carries a one-way hash of that user's password.

2.6 Aglets
Aglets are a mobile agent technology developed at IBM's research laboratories in

Japan. Aglets where developed as one implementation of a mobile agent system based on
the Java API. All versions of JDK release of the Java API is supported for aglets and the
ASDK (Aglet Software Development Kit), but with growth of the Internet marketplace

advancements and updates are sure to be forthcoming. According to the IBM [8]white

paper on Aglets, aglets are described as such:

Aglets are Java objects that can move from one host on the Internet to another.

That is, an aglet that executes on one host can suddenly halt execution, dispatch to a

remote host, and resume execution there. When the aglet moves, it brings along its

program code as well as its state (data). A build-in security mechanism makes it safe to

host untrusted aglets.
Aglets are a natural progression or evolution of Java technology on the Internet.

First came the applet, allowing a graphical `agent' to be downloaded into a client

environment (browser) and execute there. Next came the servlet, another Java technology
that allows a client program to upload program code to a server, which then instantiates

and executes or the server for the benefit of any client wishing to see any results. Now

Aglets have been created as the agents that can run on client or server, anywhere on the

Internet or Intranets connected.

2.6.1 Where to use Aglets?

Some possible uses for mobile agents would be:

• Electronic commerce: Shoppers could make requests in a large marketplace via a
mobile Aglet. The shopper's Aglet would travel to the marketplace and try to fmd

the best match to their `masters' request. In turn, sellers could invoke their own

Aglets to pawn their wares to the shopper Aglets within that marketplace.

15

• Secure brokering: Since an Aglet is entirely self-contained, sensitive data such as

credit-card numbers and online-brokerage identifications could be encrypted

within an agent. These agents could travel to the consumer to get their latest

buy/sell needs, and then return to the brokerage dealer to perform the transactions

required.

• Workflow applications: An Aglet can follow an itinerary, or a planned route

through the network in which it lives. This would allow a system where the Aglet

could start with the engineer who plans a project and gives a product-list to it.

Then the Aglet could travel to a Administrative assistant who could put in prices.

Once this task is complete, the Aglet could then travel to the Manager who would

approve the project as is or return the Aglet to the Engineer for revisal. Each

participant in this scenario could see the Aglet with a different GUI, suited to

match each viewing need.

• Personal assistance. The mobile agent's ability to execute on remote hosts makes

it suitable as a "assistant" capable of performing tasks in the network on behalf of

its creator. The remote assistant will operate independently of its limited network

connectivity, and the creator can feel free to turn his or her computer off. To

schedule a meeting with several other people, a user could send a mobile agent to

interact with the representative agents of each of the people invited to the

meeting. The agents could negotiate and establish a meeting time.

+ Distributed information retrieval. Information retrieval is an often-used example

of a mobile agent application. Instead of moving large amounts of data to the

search engine so that it can create search indexes, you dispatch agents to remote

information sources, where they locally create search indexes that can later be

shipped back to the origin. Mobile agents are also able to perform extended

searches that are not constrained by the hours during which the creator's computer

is operational.

• Parallel processing. Given that mobile agents can create a cascade of clones in the

network, one potential use of mobile agent technology is to administer parallel

processing tasks. If -a computation requires so much processor power as to that it

16

must be distributed among multiple processors, an infrastructure of mobile agent
hosts could be a plausible way to get the processes out there.

• Information dissemination. Agents are able to disseminate information such as

news and automatic software updates for vendors. The agents will bring the new

software components as well as the installation procedures directly to the

customer's personal computer and will autonomously update and manage the
software on the computer.

17

Chapter 3

AGLETS SPECIFICATION

Aglets are Java objects that can move from one host on the network to another.

That is, an aglet that executes on one host can suddenly halt execution, dispatch to a

remote host, and start executing again. When the aglet moves, it takes along its program

code as well as the states of all the objects it is carrying. A built-in security mechanism

makes it safe to host untrusted aglets.

3.1 ARCHITECTURE OVERVIEW
The Aglets architecture consists of two layers, and two APIs that define interfaces

for accessing their functions[9].

Aglet API

Aglet Runtime Layer
Core Framework

SecurityManager
CacheManager
PersistenceManager

Communication API

Communication Layer
ATP, CORBA, RMI, etc.

Fig. 3.1: Aglet Architecture

19

The Aglets runtime layer is the implementation of the Aglet 'API, and defines the
behavior of the API components, such as AgletProxy and AgletContext. It provides the
fundamental functions for aglets to be created, managed, and dispatched to remote hosts.
The communication layer is primarily responsible for transferring a serialized agent to a
destination and receiving it. It also supports agent-to-agent communication and facilities
for agent management.
3.1.1 Aglets Runtime Layer

The Aglets runtime layer implements Aglets interfaces such as AgletContext. It
also consists of a core framework and subcomponents. The core framework provides the
following mechanisms fundamental to aglet execution:

• Serialization and deserialization of aglets
• Class loading and transfer
• Reference management and garbage collection

The subcomponents are designed to be extensible and customizable because these
services may vary depending on requirements or environments. For example, the
PersistenceManager for applets may store deactivated aglets only in the memory, or else
on the Web server if it can do so. In other cases, it may have to use the default security
manager set by the Web browser.

• PersistenceManager
The PersistenceManager is responsible for storing the serialized agent, consisting
of the aglet's code and state into a persistent medium such as a hard disk.

• CacheManager
The CacheManager is responsible for maintaining the bytecode used by the aglet.
Because the bytecode of an incoming aglet needs to be transferred when the aglet

moves to the next destination, the CacheManager caches all bytecode even after
the corresponding class has been defined.

• SecurityManager
The SecurityManager is responsible for protecting hosts and aglets from

malicious entities. It hooks every security-sensitive operation and checks whether

the caller is permitted to perform it. There is only one instance of

SecurityManager in the system, and it cannot be altered once it has been installed.

20

These components are defined as an interface or an abstract class, so server developers

can implement these components for their own use andplug them into the runtime.

3.1.2 Communication Layer

The Aglets runtime layer itself has no communication mechanism for transferring

the serialized data of an aglet to destinations. Instead, the Aglets runtime layer uses the

communication API that abstracts the communication between agent systems. This API

defines methods for creating and transferring agents, tracking agents, and managing

agents in an agent-system- and protocol-independent way.

The current Aglets uses the Agent Transfer Protocol (ATP) as the default

implementation of the communication layer. ATP is modeled on the HTTP protocol, and

is an application-level protocol for transmission of mobile agents.

Agent Transfer Protocol

ATP is a simple application-level protocol designed to transmit an agent in an

agent-system-independent manner. ATP offers a simple and platform independent

protocol for transferring agents between networked computers. While mobile agents may

be programmed in many different languages and for a variety of vendor specific agent

platforms (consisting of virtual machines and libraries), ATP offers the opportunity to

handle agent mobility in a general and uniform way:

• A machine hosting agents has an ATP-based agent service which is a component

capable of receiving and sending agents from remote hosts via the ATP protocol.

The agent service is identified by a unique address, independent of the specific

agent platforms supported by the machine. A machine can run multiple agent

services.

• A machine can host different types of agents, provided it supports the

corresponding agent platforms.

• Any agent platform should include a handler of ATP messages.

• An ATP message carries sufficient information to identify the specific agent

platform (at the receiver host) and calling its ATP handler to handle the message.

21.

An ATP request consists of a request line, header fields, and a content. The

request line specifies the - method of the request, while the header fields contain the

parameters of the request. ATP defines the following four standard request methods:

DISPATCH 	

1 RETRACT
ATP 	FETCH 	 ATP
Layer

MESSAGE 	Layer

RESPONSE

Fig: 3.1.2: Communication between agents

• Dispatch

The dispatch method requests a destination agent system to reconstruct an agent

from the content of a request and to start executing the agent. If the request is

successful, the sender must terminate the agent and release any resources

consumed by it.

• Retract

The retract method requests a destination agent system to send a specified agent

back to the sender. The receiver is responsible for reconstructing and resuming

the agent. If the agent is successfully transferred, the receiver must terminate the

agent and release any resources consumed by it.

• Fetch

The fetch method is similar to the GET method in HTTP; it requests a receiver to

retrieve and send any identified information (normally class files).

• Message
The message method is used to pass a message to an agent identified by a agent-id

and to return a reply value in the response. Although the protocol adopts a

request/reply form, it does not lay down any rules for a scheme of communication

between agents.

22

3.2 Aglet API Overview
The Aglet API defines the fundamental functionality of mobile agents. Fig3.2

shows the major interfaces and classes defined in the Aglet API and the relationship

between these interfaces.

Agl 	A et 	let g 	 Message
Proxy

Aglet Aglet
Proxy

AgletContext

Fig.3.2: Aglet API

3.2.1 com.ibm.aglet.Aglet

The Aglet abstract class defines the fundamental methods (for example,

dispatch(URL)) used to control the mobility and life cycles of mobile agents. All mobile

agents defined in Aglet have to extend this abstract class. The Aglet.dispatch(URL)

primitive causes an aglet to move from the local machine to the destination specified as

its argument. The Aglet.deactivate(long time) primitive allows an aglet to be stored in

secondary storage, and the Aglet.clone() primitive spawns a new instance of the aglet that

has the same state as the original aglet. Fig.3.2.1 shows some primary methods and their

semantics.

Method Behavior

Dispose() Dispose off the aglet

Dispatch(url) Dispatch the aglet to the destination specified by the url

Deactivate(long period) Instruct the aglet to store itself int a persistent medium

GetAgletlnfo() Get information on the aglet

Fig 3.2.1: Primary Methods of Aglet

23

3.2.2 com.ibm.aglet.AgletProxy

The AgletProxy interface object acts as a handle of an aglet and provides a

common way of accessing the aglet behind it. Since an aglet class has several public

methods that should not be accessed directly from other aglets for security reasons, any

aglet that wants to communicate with other aglets has to first obtain the proxy object, and
then interact through this interface. In other words, the aglet proxy acts as a shield object

that protects an agent from malicious agents. When invoked, the proxy object consults
the SecurityManager to determine whether the caller is permitted to perform the method.

Another important role of the AgletProxy interface is to provide the aglet with location

transparency. If the actual aglet resides at a remote host, it forwards the requests to the

remote host and and returns the result to the local host.

The AgletProxy can be obtained in the following ways:

• Get an enumeration of proxies in a context by calling the primitive
AgletContext.getAgletProxiesO.

• Get an AgletProxy for a given AgletID via. either
AgletContext. getAgletProxy(AgletID) 	or 	Aglets.getAgletProxy(String
contextName, AgletID).

• Get an AgletProxy object by message passing. An AgletProxy object can be put

into the Message object as an argument, and sent to the aglet locally or remotely.
• Put an AgletProxy object into the context-property by

AgletContext.setProperty(String,Object), and share the proxy object.

The runtime library ' is responsible for providing the implementation of the

AgletProxy interface; thus, aglet programmers do not have to implement this interface.

3.2.3 com.ibm.aglet.AgletContext

The AgletContext class provides an interface to the runtime environment that

occupies the aglet. Any aglet can obtain a reference to its current AgletContext object via

the Aglet.getAgletContexto primitive, and use it to obtain local information such as the

address of the hosting context and the enumeration of AgletProxies, or to create a new

aglet in the context. Once the aglet has been dispatched, the context object currently

occupied is no longer available, and the destination context object is attached instead

oz

when arrived. The runtime library is responsible for providing the implementation of this

interface; thus, aglet programmers do hot have to implement this interface.

3.2.4 com.ibm.aglet.Message

Aglet objects communicate by exchanging objects of the Message class. A message

object has a String object to specify the kind of the message and arbitrary objects as

arguments. A message can be sent to the aglet by calling Object

AgletProxy.sendMessage(Message msg) and it is passed as an argument to

Aglet.handleMessage(Message msg).

3.3 Aglet Object and its Life Cycle
The com.ibm.aglet.Aglet class provides the basic functionality for a mobile

object, and every aglet (aglet objects) has to be an instance of a subclass of it.

To use an aglet, program first has to instantiate it. There are two ways to create a

new instance of an aglet. The first is to instantiate a completely new aglet from class

definitions by calling AgletContext.createAglet(URL codebase, String name, Object init).

This primitive creates a new instance within the specified context and initializes it if

necessary, then invokes Aglet.onCreation(Object init) on the created object along with

the initializer object passed to the createAglet primitive. The other way is to create a copy

of an existing aglet by using the Aglet.clone{) primitive. The cloned aglet has the same

state as the original one but has a different AgletID object, an thus a distinct identity.

Context A 	 Context B
Clone 	 Dispatch

-r Aglet 	 Aglet
Retract

Dispose of

reate 	 Deactivate 	vate

Class 	 Disk
File 	 Storage

Fig.3.3 :Aglet Lifecycle[9]

7Y
25 	I 	No......... 	*

It ROO L

Once created, an aglet object can be dispatched to and/or retracted from a remote server,
deactivated and placed in secondary storage, then activated later.

An aglet can dispatch itself to a remote server by calling the Aglet.dispatch(URL
dest) primitive. To be more precise, an aglet occupies the aglet context and can move

from this context to others during its execution. Because the server may serve multiple

contexts within one Java VM, and one host may serve multiple servers in one host the
context are named as the following set

• the address of the host, typically IP-address.

• the port number to which the server is listening.
• the name of context within the server.

Example:

atp://aglets.ibm.com:4434/context name

Dispatching causes an aglet to suspend its execution, serialize its internal state and
bytecode into the standard form and then to be transported to the destination. On the

receiver side, the Java object is reconstructed according to the data received from the

origin, and a new thread is assigned and executed.

Aglets can be persistent. Since a mobile aglet needs to be serializable into a bit-

stream, all mobile aglet can be persistent in nature. The Aglet.deactivate(long timeout)

primitive causes an aglet to be stored in secondary storage and to sleep for a specified

number of milliseconds. After the given time has passed or another program has

requested its activation, the aglet is activated within the same context where as that in

which it was deactivated.

Unlike normal Java objects, which are automatically released by garbage

collector, an aglet object, since it is active, can decide whether or not to die. If you call

the dispose() method to kill the aglet, onDisposing() is called to perform the finalization

suitable for the current state of the aglet .

26

3.4 Security in Aglets
Security is essential to any mobile agent system, because accepting a hostile agent

may lead to your computer being damaged or your privacy intruded upon. For secure

agent execution, the agent system must provide the following security services:

• Authentication of the Sender, the Manufacturer and the Owner of the Agent.

• Who is responsible for this agent?

• Who is responsible for the agent code?

• Has the agent (code and state) been tampered with?

• Authorization of the Agent (or Its Owner)

■ What can this agent do? (e.g, can this agent access files?)

• Secure Communication between Agent Systems.

■ Can the agent protect its privacy?

• Non-repudiation and Auditing.

• How can we ensure that a deal has been actually carried out?

• Security-sensitive activities of agents must be recorded, and an

administrator must be able to audit them.

In mobile agent systems, agents must present proper user identities so that agent systems

can control them according to the access rights of the users and the agent's manufacturers.

It is therefore important for agent systems to be able to authenticate an agent's user and

manufacturer. The former is much more difficult than the latter. It is reasonably easy to

identify the manufacturer by code-signing. However, it is difficult to verify the ownership

of the agent since the state of the agent varies during its travels, and it is practically

impossible to sign the state part of the agent.

Aglets uses an organizational approach whereby all agent systems in a certain

domain are deemed trustworthy, and evaluates the authenticity of the agent depending on

the domain in which it has been roaming around. A user first authenticates himself to the

system, and the system then issues the credentials of the user's agent. The agent system

then evaluates the authenticity of the credentials, to determine whether or not they were

issued within the same domain. It may downgrade the authenticity or simply deny access,

depending on conditions such as where the agent has traveled and so forth. Host

authentication is used to identify the domain to which the communicating host belongs.

27

Although the current Aglets does not fully support these services because of the

limited support for encryption in JDK, it does provide a reasonable level of security to

make it safe to use mobile agent applications. The following security features are
supported in the latest Aglets runtime:

• Authentication of users and domains.
• Integrity checked communication between servers within a domain.

Chapter 4

SYSTEM DESIGN AND HVIPLEMENTATION

4.1 IBM's Aglets Software Development Kit
The Aglets Software Development Kit (ASDK) is an implementation of the Aglet

API. It includes Aglet API packages, documentation, sample agents, and the Tahiti aglet

server. This Aglet Workbench works on JDK1.1 or higher versions. It is qualified to run

on Win95/NT and SPARC/Solaris 2.5.
The Aglet API is an agent development kit. It is a set of java classes and

interfaces that allows the user to create mobile Java agents. Once the user has written an

aglet, it will run on every machine that supports the Aglet API. The user need not concern

about the underlying hardware or operating system.

4.1.1 Tahiti Server

For launching the agents first of all the user need to start the aglet server. Aglet

server is started using the script file `c:\aglets-2.0.1\bin\agletsd'. This aglet server will

invoke an aglet viewer, named Tahiti, for managing aglets. The Tahiti window is as

shown in Fig.4. 1.1. The working of the Tahiti server is given in detail in Appendix A.

 fl ixi
Aglet Mobility View Options Tools Help ~ ` 	°~ 	 Y ~ 	'

{ a create q 	g l' 	 I rY I i D1bp t :,Retract g 	°

Tahiti - TheRlet Viewer is RunnIng~ 4 ` 4

Fig.4.1.1: Tahiti Server

29

4.2 Design of Mobile Agents on Aglet platform

A simple agent consists of basically the main class and two methods onCreation()

and run(). First start by importing the aglet package, which contains all the definitions of

the Aglet API. Next define the MyFirstAglet class, which inherits from the Aglet class:

import com.ibm.aglet;

public class MyFirstAglet extends Aglet {

//Put aglet's methods here....
}

For example, if you want your aglet to perform some specific initialization when it is

created, you override its onCreation method:

public void onCreation(Object init) {

//Do some initialization here....

}

When an aglet has been created or when it arrives in a new context, it is given its

own thread of execution through a system invocation of its run method. The run method

is called every time the aglet arrives at or is activated in a new context. So the run method

becomes the main entry point for the aglet's thread of execution.

public void run() {

//Do something else here...

run() method can be used to let the aglet dispatch itself to some remote context by calling

its dispatch method with the Uniform Resource Locator (URL) of the remote host as the

argument. This URL should specify the host and domain names of the destination

context, and the protocol (atp) to be used for transferring the aglet over the network.

dispatch(new URL("atp://90.0.0.101:5000"));

30

In the dispatch method basically the aglet will disappear from the current host machine

and reappear in the same state at the specified destination. First, a special technique

called object serialization is used to preserve the state information of the aglet by making

a sequential byte representation of the aglet. Next, this representation is passed to the

underlying transfer layer that brings the aglet (byte code and state information) safely

over the network. Finally, the transferred bytes are de-serialized to recreate the aglet's

state.

4.3- Agents
The agent system for software distribution will consist of agents for directory and

file listing, distribution, retrieving information of a system, and deletion.

4.3.1 System Property Agent

System property agent will bring the system information of the computer on

which it is sent. Information will include operating system name, its version, user name,

Java version, current working directory, etc. This information helps in deciding whether

the software is compatible with the user's system or not. Fig.4.2.1 shows how a sender

(owner of the software) sends a SysProAgent to the client side. The agent returns back

carrying information regarding client's computer.

Sends an agent

Sender 	 Receiver

Agent returns back with
System Information

Fig.4.2.1: SysProAgent

31

4.3.2 Listing Agent

Listing agent will be able to recover the directories and files of the system on

which our agent is sent. This information is helpful in installing the software in the

desired directory. Fig.4.2.2 shows how this agent works.

Sends an agent

Sender 	 Receiver

Agent gets a list of files and
directories

Fig.4.2.2: Listing Agent

During the onDispatching() or onCreation() method user can set the path of the

directory he is looking for. At the onArrival() method the agent stores the directories and

files of the directory specified. So when user retracts the agent, it will bring the list to the

server.

4.3.3 Distribution Agent

Distribution agent will be the main agent, which will do the most important task

of carrying the software to other hosts.

Fig.4.2.3: Distribution Agent

Sender 	 Receiver

Software Transfer and Installation

Before dispatching, store the file to be transferred to a buffer. This can be also

implemented in the onDispatching() method. In the onArrival() method the agent then

copies the data from that buffer and stores that in a folder on which the agent has been

sent. Provision has also been made to execute the software once it is fully copied on the

other host.

32

sent. Provision has also been made to execute the software once it is fully copied on the

other host.

4.3.4 Delete Agent
Fig.4.2.4 shows the working of delete agent. This agent will go to the destination

and delete the file specified. This is also a part of software distribution. Sometimes need

may arrive to delete the original file after it has been installed, so this agent will come

handy.

Sender 	 Receiver

Deletion of specified file

Fig.4.2.4: Delete Agent

33

Chapter 5

RESULTS AND DISCUSSION

5.1 Tahiti Interface and Creation of Aglet
5.1.1 Creation of Aglet

Push the "Create" button or select the "Create" item in the "Aglet" menu on Tahiti. The

panel as shown in fig.5.1.1 will appear.

Fill in the class name

Fill in the "Aglet name" field with the class name of the aglet, such as "sd.Diglet".

Fill in the URL

Case 1: Creating a local aglet

If you want to create an aglet from your local class, you do not have to specify a

source URL. Please leave the "Source URL" field blank.

Case 2: Creating a remote aglet

Otherwise, you should specify the codebase as a URL for the remote class in the

"Source URL" field.

After setting the aglet name, push the "Create" button on the panel, and you will

find that a new list item appears in Tahiti.

Registering an aglet in the Aglet List

The "Add to List" button is used to register the class name in the "Aglet List" in this

panel.

The "Delete" button is used to remove an aglet item from the list.

You can recall the aglet's name and its codebase by simply clicking the list item.

Creating an aglet

The "Create" button is used to create an aglet.

The "Reload Class and Create" button is used to create an aglet after reloading its aglet

class. (Even though the class definition is not modified, another classloader will be

created.)

Kul

Fig.5.1.1: Creating aglets in Tahiti

Fig.5.1.1 shows how an aglet is created. After compiling the aglet program, the

name of the aglet and its source URL is given in the Create Aglet frame. This way an
agent is created.

Tahiti: The Aglet Viewer jatp://rajeeY:4434 jaglet key) I -- 	N
Mlet Mobitity. View Options :rools Help 	. 	•. 	. - .

Ii[oiao 	kgletIri1oi'Dspose I tC jne 1JDjspac 1 	eict1 .

[Create syspro SysProAgent from atp #rajev 4434/
'----, 	- 	 - 	.-.--,- 	-

Fig.5.1.2: Created Aglet
Fig.5.1.2 shows an active agent. All the agents are displayed in the list box in

Tahiti. By selecting one of the list items, you can control the corresponding agent (by

dispatching it, deleting it, requesting a dialog with it, etc.).

36

5.2 Software Distribution Agents
The software distribution process consists of four agents as described in chapter 4.

The interfaces and working of these agents is described below.
5.2.1 System Property Agent

System property agent is created after adding it to Tahiti's agent list. When this is
agent is created a GUI as shown above appears with all the fields blank (fig.5.2.1.1). The
address IP address of the system on which the software has to be installed is entered in

the "Address" field and the send button is pushed. The agent is dispatched to the desired
destination. The agent after reaching the destination collects the required system

information. The agent at destination system is as shown in fig.5.2.1.2. This agent is then
retracted back to the sender as shown in fig.5.2.1.3.After reaching back to the sender the
GUI as shown in fig.5.2.1.4 appears showing the information collected from the
destination node.

Address atp:1190.0.0.135 =gy p ,erpl

(' ©
- 's 	

Retract

user.home 1 	 I 1ST 2003

os.name

os.arch

os.version

cser.name

user.dir

java.home r 	a

java.version

Exit }} Close

Fig.5.2.1.1: System Property Agent after initialization

37

Aglet Mobility View. Options Tools 'Help _ 	x ~

gspro.SysProAgent : Thu Feb 20 14:04:34 IST 2003

tilReceivez syspro'S sProAge'ntfrom.mtec 6X434;" 5 ~. - 	~`e E 	e 	.. 	,:. ~

Fig.5.2.1.2: System Property Agent at destination node

IbL 	 `b
Aglet 	Mobility, fView Options 	Toots, 	Help

Greater:' I Dr ' 	 spjij 	Retract_: 	-
f

Remote Aglets AList

Select Sewer 	atp:l190 0.013 	, r

1

.Retract 	Cancel_

Dispatch ° syspro SysProAgentta atp 119000 135,. 	'a S Fpsr 	"

Fig.5.2.1.3: Retracting System Property Agent

Address atp:Il90.0.0.135

user.home C tVl~I_NNT1Profilesl_,dm~ni

os.name tilVindot+rrsNT`

os.arch

40 os.version ,

user.name admiriisfrator~
Y . $'+.nil t ;"

user.dir C la-gletsti2'01\bi

java,home Cy2sdky1~4Ok 021~re 	.,1

java.version 1 4 Q=U2`

.Exit. Cloe:" Send

Fig.5.2.1.4: System Property Agent with results

5.2.2 Listing Agent

Listing agent is used to know the contents (files and directories) of the destination

node. After initialization of the agent, the address of the destination node is entered in the

"Address" field and the name of the required drive or directory is entered in the "Path"

field as shown in fig.5.2.2.1. Once this is done, then the agent is dispatched to the

destination node (f g.5.2.2.2). When the agent is retracted, it brings the contents of the

directory mentioned in the "Path" field. This is shown in fig.5.2.2.3.

39

Address. 	atp:1190.0.0.135

Path

Fig. 5.2.2.1: Listing Agent

Fig.5..2.2.2: Listing Agent at destination node

Eul

Address 	atp:ll90.0.0.135

Path 	 c

directory: c:t%SystemRoot%
rile: c:I.keystore
file : c:lagletrunner.bat
directory: c:Iaglets-2.0.1
file : c:/AUTOEXEC.BAT
file : c:lboot.ini
directory: c:Ibrochure
rile: c:IGONFIG.SYS
directory: c:/des
file : c:ldesciphertext
file : c:ldeskeyfile

O 	lj.Sends

Fig.5.2.2.3: Listing Agent with results

5.2.3 Distribution Agent

Fig.5.2.3.1 shows the distribution agent. The path of executable file, which is to

be transferred, is written in the "File Name" field. The file, which is to be transferred, can

be selected using the browse option (fig.5.2.3.2) or directly the path of the file can be

written in the respective textfield. Several clones of the agent can be created, but once

user attaches a file to the agent, another file to the clone cannot be attached at the same

time. First user will have to dispatch the agent with the attached file and then attach the

file to the clone.

41

- i
lIsd4.DiaIet: Fri Feb 21 11:52:14 1ST 2003

Address atp 1190.0.0.135_ I
File Name

Browse 	OK lone [close I Send

Fig.5.2.3.1 Distribution Agent

Fig.5.2.3.2: Selecting a file using Distribution Agent

42

5.2.4 Delete Agent

Delete agent performs a simple task of deleting a specified file on the system to

which this agent is sent. The path of the file is mentioned in the "File Name" field as

shown in Fig.5.2.4. -

Address 	atp:11locaIhost:4434

File Name 	c:ftransferfWrar300.exe

OK = 	 CIose: °xSend'`

Fig.5.2.4: Delete Agent

43

Chapter 6

CONCLUSION

A software distribution system has been created using the mobile agent

technology. It has been created using Aglets, a programming language for mobile agents.

The system provides many useful features such as retrieving system information, files

and directory listing, and deletion. But the main task is of course software distribution.

The system consists of four agents

• Software Distribution Agent
As the name suggeststhis agent can carry files to a specified location. Feature like

cloning is also provided in the interface.

• System Property Agent

This agent brings the some of the system properties of the specified system.

• Listing Agent

This agent is useful in getting the files and directory listing of the specified node.

This is especially helpful if user wants to transfer the package in some specified

directory.

• Delete Agent

This agent is able to delete any specified file.

One of the major drawback for using the mobile agents is that the Aglet SDK platform

has to be present on the system on which the agent has to run.

Presently the distribution agent can carry software and initiate its installation, so it

is useful if the software package is executable from start to end. In further work,

distribution agent can be created which can install any software completely and without

the interaction of the user.

REFERENCES:
I Danny B. Lange, Mobile Objects and Mobile Agents: The Future of Distributed

Computing?, General Magic Inc., http://www.acm.org/-danny

2 David Kotz and Robert S. Gray, Mobile Agents and the Future of the Internet,

Dartmouth College, May 15, 1999.

3 Roberto Silveira Silva Filho, Mobile Agents and Software Deployment,

University of California.

4 A. Bieszczad, B.Pagurek, and T.White, Mobile Agents for Network Management,

IEEE Communications Surveys, September 1998.

5 General Magic, Inc. Odyssey web page

http://www.genmagic.com/technology/odyssey.html, 1997.

6 ObjectSpace Voyager Core Package Technical Overview. Technical report,

ObjectSpace, Inc., July 1997.

7 Concordia: An Infrastructure for Collaborating Mobile Agents. In Proceedings of

the 1st International Workshop on Mobile Agents, April 1997.

8 D.B. Lange and M.Oshima, Aglets, paper available at

http://www.trl.ibm.co.jp/aglets/whitepaper.htm, 1997.

9 M. Oshima, G. Karjoth, K. Ono, Aglet Specification 1.1 Draft, available at

http://www.tri.ibm.com/aglets/spec 11.htm, 8 September 1998.

10 D.B. Lange and M.Oshima, Programming and Deploying Java Mobile Agents

with AgletsTM, Addison-Wesley, a working draft Programming Mobile Agents in

Java, is available at http://www.trl.ibm_co.jp/aglets, 1997.

. ~,.-•,t.LtD~

f 	 ! A&-r " . y

47

Appendix-A
Tahiti Menu Structure

Tahiti provides the functions for handling agents and for controlling the server,
which can access from the following menu items.

A. 1 Aglet: for handling aglets

Create... Create an Aglet.

Dialog... Sends a request to an aglet to open its dialog panel.

Dispose... Destroys the agent.

Clone... Make a copy of the agent.

AgletInfo Shows the properties of the agent.

Kill Destroys the agent. Aglet does not call onDisposingo.

Exit Shutdown the server.

A.2 Mobility

Dispatch Send the aglet to another server.

Retract Retract a dispatched aglet from another server.

Deactivate Deactivate the aglet with time.

Activate Activate a deactivated aglet.

A.3 View

Memory Usage Show the memory usage amount

Log 	 Show the logged records of agents behavior on this server.

A.4 Options
General Preference Font, Startup Aglet, Cache.

Network Preference Set parameters for Http Tunneling, Authentication, etc.

Security Preference Set access privileges for aglets. Specify File System, Network

Access, and others.

Server Preference Server Setting.

A.5 Tools
Invoke GC Start garbage collection.

Threads Display the current thread information on the console.

A.6 Help
About Tahiti... Information about this aglet viewer.

About Aglets... Information about the aglet library.

Release Notes Open release notes.

• Aglets Home Page Open Aglets page on the WWW

Feedback Open Aglets feedback page on the WWW

Bug Report Open Aglets bug report page on the WWW

Frequently Asked
Questions

Open Aglets FAQ page on the WWW

A.7 Customization with dialog interface
You need to specify some parameters for your aglet server. Setting with the

default values does not provide the full functionality of this server. By tuning up Tahiti
with those parameters, your aglet server works effectively.
A.7.1 General Preferences
Font: Defines the size of the font in Tahiti window. The change of the setting becomes

effective immediately.

List View: Defines the order of the Aglet items in the list box of the Tahiti window. The

change of the setting will be reflected after clicking one of the items on the list box.

Startup: You can specify an aglet that automatically starts up when Tahiti is started. (The

Launch Startup Aglet checkbox enables this function.)

Cache Control: Clearing up the class cache.

x
}~~~nt

	

_ 	t 	~ 	~.`~ 	1W Lŝ .e'l.W... ~.H .~x 	e 	a~,•~'+`V'S':f°~ai'.~P~Ya. 	tL. 	~, 	'X _ 	'-4 	*e

i Proportional Font 	Arial 	 uplain 	ll±JT F2

Fixed Font 	Arial 	 G7: 	plainIIEIJ

List 	ie 	
, 	 ,,, 	Y

- P Order Ke 	 event order

-

Sort Order 	 '> _ 	 scent] 	 II 	1L K1j 	 Fl 	1

i,
DisplayPrecision 	Icomplete 	 tij

On9Startup 	Launch,Startup Aglet

sd D~glet '. 	Vr 	te. $ • 4 	 S 	~P 	'f 	 d 	~ 	~S 	 a S^
_:3X3 .c3-3' 	jk

Gaeha.cont of 	 N a

Clear Class Gache I ow 	r 	~, r 	~ ' 	? °. " 	 , ffi µ;

r 	d 	' ~ # 	 WOK 	Glase= 	Restore Defaults

Fig.A.7.1: General Preferences

A.7.2 Network Preferences

Http Tunneling: In case you are protected by a firewall, you can specify a http proxy

server to access the information at the outside of the firewall. We call this method as Http

Tunneling. Check "Use HTTP Proxy" and Specify your http proxy information like a

setting in a world wide web browser.
Authentication: This is a switch for security options. When you enable Authentication,

Tahiti have to keep at least one secret file. Tahiti can communicate with each other only

if the other aglet server has (can access) the same secret file.

Accept HTTP Request as a Message: We can create an aglet, which has a URL and

returns html. When we enable this option, aglet receives HTTP request as a message.

Http Tunneling 	V 	 y ; 	r 	~ }

Accept HTTP Tunneling Requesti

Use HTTP Pro +

ProxyHost 	 o f
}proyserverfordamainsfn Donatusethe

• t

-$ 	~! 	.Y,= 	L 1. 	~...,tR 	J r].' 	JP 	4 •*'S 	r., 	T~~j4~~~j, 	} X 	Y ~

AutljentiaAoh4--- ? 	s r 	 ,.
Do Authenticatiop,on ATP Connection 	TM 	Y 	fi

J tJse Secure Random Seed 	 y

 Create 	 newshared°secret 	w * 	Removea shared secret t 	t 1
-r)r

Irnport'a;sharedfsecret ° 	 Export 	snared secret 	. . ,. 	, 	.:

r 	x Others
~1AcceptHTTP Reauestas aihlessae~ 	..

C[ose 	Festers Defaults

Fig.A.7.2: Network Preferences

A.7.3 Security Preferences
We have a dialog box for specifying security. User can specify the access

privilege for the following items.

• FileSystem: Restricts the access to the files. "File/Directory" field is defined by

absolute path name. Possible "Actions" are read, write, and execute.

• Socket

• Window

• Property

• Runtime

• Security

• All

• Aglet

• Message

• Context

• Protection (Aglet)

• Protection (Message)

- ., ~ 	 ~: 	 ~f" _ PY'+•~...7~ 	~,t~+ay'K~ 	~.' 	{ 	 - ~ "~r*'~. a ^ '4'~~ .~,:~'~~'-'.bar ~a. 	Y 4~ # '
Code Bse.----.. ^*..y--"'•rte 	1e~+i

add remove

	

~~' 	FIIeS stem 	 ° k 	'`
~_~.. c :. a ~~ ~ t' o-n x# ~-'v ~„r~tr"k:~k,. 6s-~ ~~ s~

ni 	 nil s stem 	 f zr7y tl.t ,SK's httpal x,*: P 	 ~ 	-
 _.. 	 ~ "file fulfill-!' 	 , as~

cotleease 	 ;: R
– 	3 	:=' 	 1 eeALL FILES } 	 ^

Signed by 	 FilelDirectary

Owned by 	 read,wnte

a , ,k , rK
"

~.::
"5, 	Fo 	,` ~ s~.

S 	r-' ,..k°~ ~;.'',.. `'..t.. _:E` ? `✓=. 1'.s 3~̀'..°fwp 	3:a *r~£.,. ii~"— ' -z ` 	i F q 	,. 	-. 	p-s 	.~ 	i''-,-~*.

Fig.A.7.3: Security Preferences

A.7.4 Server Preferences
User can assign a public path name to a directory as an alias.

c+.v4 	-- 	z 	+['. 	-c .' 	tix r ... 	i-.a v 	`s.,~sr•..5 f'` y +r—F~ .. 	-
RaotzPath 	r_y~°

ublic Roat 	C:1agIets-2.0.11pubiic ^

T 	i. 	 1 	 rY 	 ,R 	=vAXs

Fig.A.7.4: Server Preferences

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusion
	References
	Appendix

