
IMPLEMENTING THE CLIENT/SERVER 
COMMUNICATION SECURITY 

A DISSERTATION 
Submitted in partial fulfilment of the 

requirements for the award of the degree 
of 

MASTER OF TECHNOLOGY 
in 

INFORMATION TECHNOLOGY  
çAL Li 

(Ac. No......... 

NAVEEN KUMAR rf T RooRR~~ 

x 

ER & DCI 
NOIDA 

lit Roorkee.ER&DCI, Noida 
C•5611, "Anusandhan $hawan" 

Sector 62, Noida-ZA1 307 
FEBRUARY, 2003 



CANDIDATE'S DECLARATION 

I hereby declare that the work presented in this dissertation titled 

"IMPLEMENTING CLIENT SERVER COMMUNICATION SECURITY", in 

partial fulfillment of the requirements for the award of the degree of Master of 

Technology in Information Technology, submitted in IIT, Roorkee - ER&DCI 

Campus, Noida, is an authentic record of my own work carried out during the period 

from August 2002 to February, 2003 under the supervision of Mr. M.K. Bhattacharya, 

Senior Project Manager, Electronics Research and Development Centre of India, Noida. 

I have not submitted the matter embodied in this dissertation for the award of any 

other degree. 

Date: 2- s- z- °2 

Place: Noida 
	 (N een Kumar) 

CERTIFICATE 

This is to certify that the above statement made by the candidate is correct to the 

best of my knowledge and belief. 

Date: o2S- Dy? -03 
Place: Noida 

(Mr. M. K. Bhattacharya) 

Senior Project Manager 

ER&DCI, Noida 

(i) 



ACKNOWLEDGEMENT 

I hereby take the privilege to express my deepest sense of gratitude to Dr. Prem 

Vrat, Director, Indian Institute of Technology, Roorkee, and Mr. R.K. Verma, 

Executive Director, ER&DCI, Noida for providing me with this valuable opportunity to 

carry out this work. I am also very grateful to Dr. A.K. Awasthi, our Programme 

Coordinator and Dr. R.P. Agrawal, our course coordinator for providing the best of the 

facilities for the completion of this work and constant encouragement towards the goal. 

I have no words to thank my guide, Mr. M. K. Bhattacharya, ER&DCI, Noida for his 

guidance and invaluable suggestions during the entire course of this work. 

My sincere thanks are due to Dr. P.R. Gupta for the continuous inspiration and 

support she provided me with throughout the course of this dissertation. I am also 

grateful to Mr. Munish Kumar for the cooperation extended by him in the successful 

completion of this work. 

It is impossible to mention the names of all those persons who have been 

involved, directly or indirectly, with this work and I extend my gratitude to all of them. 

However, I feel, I owe special thanks to all my friends who have helped me formulate my 

ideas and have been a constant support. I find myself short of words to thank my father, 

mother and sister who have always been by my side throughout my life. 

(Naveen Kumar) 

Enrolment No. 019026 



CONTENTS 

CANDIDATE'S DECLARATION 	 (i) 

ACKNOWLEDGEMENT 	 (ii) 

ABSTRACT 	 1 

1. INTRODUCTION 3  
1.1 Project Objective 3  

3 
1.2 Background 

4 
1.3 Need of System 

5 
1.4 Scope of Project 

5 
1.5 Organization of Dissertation 

7 
2. LITERATURE SURVEY 

2.1 Client Server communication: Definition 7  

2.2 Client Server Architecture 7  

2.3 Methods of communications 8  

2.4 NSFDC Client/Server Architectures 9  

2.5 Security Attacks 10 

2.6 Classification of Attacks 11 

3. INTRODUCTION TO CRYPTOGRAPHY 13 
3.1 Definition 13 

14 
3.2 Types Of Cryptographic Algorithms 

15 
3.3 Secret Key Cryptography 

16 
3.4 Public-Key Cryptography 

17 
3.5 Hash Functions 

19 
4. ANALYSIS OF THE PROBLEM 

19 
4.1 Authentication 

19 
4.2 Data Protection 

22 
4.3 Data integrity 

24 
4.4 Advantages/Disadvantages of client server architecture 

25 
4.5 Methods for General Data Transfer in Networks 



5. PROBLEM DESIGN 29  
5.1 Encryption 29 
5.2 Algorithms 30  

5.3 Key Databases 32 
5.4 File hashing 34 
5.5 Authentication 38 

5.6 File Transfer 38 
6. IMPLEMENTATION ASPECTS 41 

6.1 Encrypting And Decrypting Data 41 
6.2 Generating Keys 43 

6.3 File Hashing 45 

6.4 File Transfer Using TFTP 45 

6.5 Authentication 47  

7. INTERFACE AND DESCRIPTION 49 

8. CONCLUSION 53  
REFERENCES 55  

APPENDIX A 57  
LI 

(iv) 



ABSTRACT 

The project entitled "Implementing Client/Server 

Communication Security "is concerned with end-to-end 

security mechanisms for file transfer using the client/server 

infrastructure. The application allows client and server to 

communicate in a way that data cannot be eavesdropped 

and Server always authenticates the clients before any data 

transfer. 

The software has been developed as one of the 

modules of "Loan Accounting & Management Information 

System" for NSFDC being developed at ER&DCI, Noida. 

The application provides "security" which has three basic 

properties: Data confidentiality, Authentication and Data 

integrity. The Application is providing the sophisticated 

way to user to browse the file from the available storage 

devices, simple way to encrypting /decrypting and 

authenticating the files. 	It permits the end user to 

authenticate on server and send the files from one location 

to another in the Network. The objective is to develop a 

professional and general Application that is attractive to 

businesses and consumers. 

1 



2 



The project "Implementing Client/Server Communication Security "is 

concerned with end-to-end security mechanisms for file transfer using the client/server 

infrastructure which can be added to the main project for achieving the communication 

security goal. 

1.3 Need Of System 
Network and information security is likely to become a key factor in the 

development of the information society as networking plays a larger role in economic and 

social life. Security of electronic networks and information systems have been growing 

along with the rapid increase in the number of network users and the value of their 

transactions. Security has now reached a critical point where it represents a prerequisite 

for the growth of electronic businesses and the functioning of the whole economy. 

When user transfer a information between client server type environment there exist 

different kinds of attacks on information and network. Four general categories of attacks 

on networks are: 

1. interruption. 

2. Interception. 

3. Modification.. 

4. Fabrication. 

In presence of these attacks the information is not at all is safe thus system is 

needed to provide a secure communication and which will be able to handle the attacks in 

client server communication and provide data confidentiality, integrity and authenticity. 

1.4 Scope of Project 
1.4.1 Methods for Client/Server security 

1. Use logging for each user. 

2. Care with passwords. 

3. Use handshaking. 

4. Encrypt sensitive data 

5. Use file signing. 

4 



1.4.2 Security Mechanisms 

1. To provide data integrity, a message digest algorithm is required. A digest is 

calculated over an appropriate portion of a message and included as part of the 

message sent to the recipient. 

2. To ensure authentication, each user requires logging facility and each user should 

have unique user name and password, which can authenticate the client on server. 

3. For data confidentiality, a symmetric encryption algorithm is required. An 

appropriate portion of the message is encrypted prior to being transmitted to its 

recipient. 

1.5 Organization of Dissertation 

This Dissertation report is organised in a manner so as to follow the waterfall 

model of software development life cycle. One can easily understand the problems in 

exiting system, theoretical and practical concepts, technology and its solutions. Chapter 

one is the introduction, with the background of project, need of the system, scope and the 

main objectives. Chapter two is the literature survey, containing the theoretical concepts 

that is basically needed to start the project. It covers client server communication and 

security threats. Chapter three deals with the cryptography and security solution 

available, which can be used for developing the software proposed. 

Chapter four is the analysis of problem, which covers the available methods and 

algorithms, and also covers the advantages/disadvantages of client server model. Chapter 

five is problem design in which the techniques proposed have been specified . In chapter 

six. the implementation aspects are discussed, in which some important codes that are 

necessary to understand implementation are explained. Chapter seven describes the 

interfaces of the software . Finally, chapter eight concludes the work, discussing some 

enhancements that may be incorporated in the software in future. 

5 



0 



Chapter 2 
LITERATURE SURVEY 

2.1 Client Server communication: Definition 
The client/server model is based on the concept that each application consists of 

two parts: one that initiates communication or requests for information (the client) and 

another that responds or services the client with the requested information (the server). 

2.1.1 Server 

1. Servers are powerful computers dedicated to managing specific tasks such as: 

disk drives (file servers), printers (print server), or network traffic (network server 

i.e. traffic cop) 

2. Typically network servers are tied to a specific purpose (i.e., web server, print 

server, file server, application server) 

3. Generally large capacity for memory and speed (workhorse) 

2.1.2 Client 

1. A PC or workstation that is able to run applications. Clients rely on servers to 

perform specific tasks, such as retrieving files, using a particular device such as a 

fax machine, receive and deliver email, processing power, and printing. 

2. Primarily displays information (high quality monitor is a consideration) 

3. Point of user interface with the network 

2.2 Client Server Architecture 

2.2.1 Two Major Architecture types 

1. Two-tier - each client connects directly to the data server, data is gathered from 

the server and processed by the client. 

2. Three-tier - each client communicates with the application server, and the 

application server communicates with the data server. 

7 



2.2.2 Management Considerations 

1. Budget 

2. Existing architecture 

3. Training 

4. Communication channels 

5. Future expansion 

6. Functionality- currently being used in conjunction with E-Business and web based 

sites. 

2.3 Methods of communications 
Client server communication can be basically defined in terms of request and 

reply, which is shown in figure 2.1. Client will send a message request type to server will 

accept the request and reply to client accordingly. Some of methods of communication 

are following. 

1. Message passing - send and receive primitives 

2. Synchronous or asynchronous 

3. Blocking or non-blocking 

4. Mechanisms of message passing - channels, sockets, ports 

5. Client-server communication model 

6. Group multicast communication model 

Client 
	

Server 

1 Request 

Blocked 	 2 Processing 

3 Reply 

Figure 2.1: Client-server communication model 



2.4 NSFDC Client/Server Architectures [1] 
At NSFDC, for the physical transfer of information (like movement of papers) 

considerable amount of manpower time is wasted. Also there may not be direct 

interaction between any two officers. 

Hence it is proposed that the network like local area network spread all over the 

Apex Corporation need to be designed and deployed, which will connect all the 

computers and gets connected to a driver server for information transfer between 

concerned officers and departments. 

It is proposed that for this kind of network, Client/Server Technology be adopted. 

Such a topology is usually a Star topology. Star topology is preferred for its less number 

of hops, driver and standard minimum time consideration. Such a star topology is 

modifiable, extendable and is flexible so that modifications if any in future can directly 

be incorporated. It does not follow directly token ring but a logical ring which behaves 

like a ring so that network management could be done from a single location and that 

location need not to be physically fixed. That is, physical address of each client is 

transparent to the users. They are taken care by NMSP (Network Management Software 

Package). Such topology is also suitable for making the network as Intranet so that such 

Intranet can become a part and parcel of a bigger network. The topology is also suitable 

for physical formulations of object-oriented technology. 

2.4.1 Communication links between various Departments 

The various departments of NSFDC will be inter-linked through LAN 

connections. Common data will be entered only once and will be available through all 

required departments. Each department will have certain users defined who can access 

the data relevant to them. Each user will have a password so that he or she can be 

uniquely identified by the system and the system will make visible only those data for 

which the user is authorised. This will maintain the integrity of data as well as remove 

duplication of data due to separate entries at individual departments. 

7 



2.5 Security Attacks 
2.5.1 Definition [2] 

Any action that compromises the security of information owned by an 

organization Broadly these actions can be of following forms. 

1. Interception of communications: Electronic communication can be intercepted 

and data copied or modified. Interception can be undertaken in a number of ways. 

These include the physical accessing of network lines, e.g. wire tapping, and 

monitoring radio transmissions. The most critical points for the interception of 

communication traffic are the network management and concentration points, 

such as routers, gateways, switches and network operation servers. 

2. Unauthorized access into computers and computer networks: Unauthorised 

access to a computer or network of computers is usually done with malicious 

intent to copy, modify or destroy data. Technically this is called intrusion and can 

be done in many ways including exploiting inside information, dictionary attacks, 

brute force attacks (exploiting people's tendency to use predictable passwords), 

social engineering (exploiting people's tendency to disclose information to 

seemingly trustworthy people) and password interception. It is often performed 

from within the organisations (inside attacks). 

3. Potential solutions: The most common methods of protecting against 

unauthorised access are password controls and installation of firewalls. Network 

disruption: Networks are now largely digitized and controlled by computers. In 

the past a common reason for network disruption was a failure in the computer 

system that controls the network and attacks on networks were mainly directed 

towards these computers. Nowadays, the most disrupting attacks tend to exploit 

the weaknesses and vulnerabilities of network components (operating systems, 

routers, switches, name servers, etc.). 

10 



4, Execution of malicious software that modifies or destroys data: Computers 

run with software. Software can unfortunately also be used to disable a computer, 

to delete or modify data. As the above descriptions show, if such a computer is 

part of the network management its malfunctioning can have far-reaching effects. 

A virus is one form of malicious software. It is a program that reproduces its own 

code by attaching itself to other programs in such a way that the virus code is 

executed when the infected computer program is executed. 

2.6 Classification of Attacks 
There exist four general categories attacks on networks [3]: 

1. Interruption: An asset of the system is destroyed or becomes unavailable or 

unusable. This is an attack on availability of services. This is a Physical attacks 

such as destruction of hardware; cutting of communication line. Denial of service 

comes under it. 

2. Interception: An unauthorized party gains access to an asset. This is an attack on 

confidentiality. Confidentiality means Message content is being kept secret from 

illegitimate listeners. 

3. Modification: An unauthorized party not only gains access to but tampers with an 

asset. This is an attack on integrity. Proof that messages are sent and 

received untampered with without duplication, insertion, modification, reordering, 

or replays. 

4. Fabrication: An unauthorized party inserts counterfeit objects into the system. 

This is an attack on authenticity. 

Figure 2.2 represent above categories diagrammatically. 

These general forms of attacks may be categorized in passive and active attacks. 

Passive attacks deals with confidentiality and only consists interception. Active attacks 

can (usually) be detected but hard to prevent. Active attacks are broader and may deal 

with interruption (availability), modification (integrity) and fabrication (also integrity). 

11 



These active attacks may be divided into the following categories: 

Source 	Destination 

Interruption (Denial of Service) 

Source 	Destination 

Interception (Eavesdropping) 

Source 	Destination 
	

Source 	/l 	Destination 

46 

Modification (Man in the Middle) 
	

Fabrication (Spoofing) 

Figure 2.2: Information in enterprise networks can be compromised through 

interruption, interception, modification, and fabrication. 

1. Masquerade: This means that one pretends to be someone else. To do that, in the 

protocol, one tries to fake the sender's signature. If the system is secure, one needs 

the sender's secret PGP key to do this successfully. 

2. Replay: With replay, one captures data and makes a retransmission to produce an 

unauthorized effect. 

3. Modification of messages: Modification of messages, mean alter of a message, or 

that messages are delayed or reordered. First some one tried to alter a delegation 

certificate so that it became the recipient. Unlike masquerade intruder did not try 

to be someone else, but he tried to get an access that was not intended for him. 

4. Denial of service: Denial of service, mean prevent the normal use or 

management of communications facilities. This could be preventing any 

communication at all, or just making sure that a message (in the protocol) is not 

delivered to the recipient. 

12 



Chapter 3 
INTRODUCTION TO CRYPTOGRAPHY 

3.1 Definition 
Cryptography is a collection of techniques for keeping information secure. Using 

cryptography, you can transform written words and other kinds of messages so that they 

are unintelligible to unauthorized recipients. An authorized recipient can then transform 

the words or messages back into a message that is perfectly understandable. 

For example, here is a message that you might want to encrypt: 

"It is nice to develop cryptographic protocol" 

And here is the message after it has been encrypted: 

~'^@%[EFL<<$ThPAjxAEUooNO/00B+o~0aUyB-->uaw 

Even better, with cryptography you can transform this gibberish back into the original 

easily understood message. 

Modem cryptographic systems consist of two complementary processes: 

3.1.1 Encryption 

A process by which a message (the plain text ) is transformed into a second 

message (the cipher text ) using a complex function (the encryption algorithm ) and a 

special encryption key. 

3.1.2 Decryption 

The reverse process, in which the cipher text is transformed back into the original 

plaintext using a second complex function and a decryption key . With some encryption 

systems, the encryption key and the decryption key are the same. With others, they are 

different. 

13 



Cryptography is the science of writing in secret code. Within the context of any 

application-to-application communication, there are some specific security requirements, 

including: 

1. Authentication: The process of proving one's identity. (The primary forms of 

host-to-host authentication on the Internet today are name-based or address-based, 

both of which are notoriously weak.) 

2. Privacy/confidentiality: Ensuring that no one can read the message except the 

intended receiver. 

3. Integrity: Assuring the receiver that the received message has not been altered in 

any way from the original. 

4. Non-repudiation: A mechanism to prove that the sender really sent this message. 

Cryptography, then, not only protects data from theft or alteration, but can also be 

used for user authentication. There are, in general, three types of cryptographic schemes 

typically used to accomplish these goals: secret key (or symmetric) cryptography, public-

key (or asymmetric) cryptography, and hash functions, each of which is described below. 

In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted 

into ciphertext, which will in turn (usually) be decrypted into usable plaintext. 

In many of the descriptions below, two communicating parties will be referred to as Alice 

and Bob; this is the common nomenclature in the crypto field and literature. If there is a 

third or fourth party to the communication, they will be referred to as Carol and Dave. 

Mallory is a malicious party and Eve is an eavesdropper. 

3.2 Types Of Cryptographic Algorithms 
There are several ways of classifying cryptographic algorithms. For purposes of 

this paper, they will be categorized based on the number of keys that are employed for 

encryption and decryption, and further defined by their application and use. The three 

types of algorithms that will be discussed are 

1. Secret Key Cryptography: Uses a single key for both encryption and decryption 

2. Public Key Cryptography: Uses one key for encryption and another for decryption 

14 



3. Hash Functions: Uses a mathematical transformation to irreversibly "encrypt" 

information. 

3.3 Secret Key Cryptography 
In secret key cryptography, a single key is used for both encryption and 

decryption. The receiver applies the same key (or rule set) to decrypt the message. and 

recover the plaintext. Because a single key is used for both functions, secret key 

cryptography is also called symmetric encryption. With this form of cryptography, it is 

obvious that both the sender and the receiver must know the key; that, in fact, is the 

secret. The biggest difficulty with this approach, of course, is the distribution of the key. 

There are several widely used secret key cryptography schemes and they are 

generally categorized as being either stream ciphers or block ciphers. Stream ciphers 

operate on a single bit, byte, or (computer) word at a time, and implement some form of 

feedback mechanism so that the key is constantly changing. A block cipher is so-called 

because the scheme encrypts one block of data at a time using the same key on each 

block. In general, the same plaintext block will always encrypt to the same ciphertext 

when using the same key in a block cipher whereas the same plaintext will always 

encrypt to different ciphertext in a stream cipher. 

Stream ciphers come in several flavors but two are worth mentioning here. Self-

synchronizing stream ciphers calculate each bit in the key stream as a function of the 

previous n bits in the key stream. It is termed "self-synchronizing" because the decryption 

process can stay synchronized with the encryption process merely by knowing how far 

into the n-bit key stream it is. 

One problem is error propagation; a garbled bit in transmission will result in n 

garbled bits at the receiving side. Synchronous stream ciphers generate the key stream in 

a fashion independent of the message stream but by using the same key stream generation 

function at sender and receiver. While stream ciphers do not propagate transmission 

errors, they are, by their nature, periodic so that the key stream will eventually repeat. 

15 



There are a number of other secret-key cryptography algorithms that are currently in use. 

1. CAST-128: CAST is not an acronym but its name is derived from the initials of 

its inventors, Carlisle Adams and Stafford Tavares of Nortel), a DES-like 

substitution-permutation crypto algorithm, employing a 128-bit key operating on 

a 64-bit block. CAST is internationally available. 

2. International Data Encryption Algorithm (IDEA): another DES-like 64-bit block 

cipher using 128-bit keys. Also internationally available. 

3. Rivest Cipher 2 (RC2): named for its inventor Ron Rivest (thus, "RC" is also 

sometimes expanded as "Ron's Code"), a 64-bit block cipher using variable-sized 

keys designed to replace DES. Its code has not been made public although many 

companies have licensed RC2 for use in their products. 

4. RC4: a stream cipher using variable-sized keys; it is widely used in commercial 

cryptography products, although it can only be exported using keys that are 40 

bits or less in length. 

5. RC5: a block-cipher supporting a variety of block sizes, key sizes, and number of 

encryption passes over the data. 

6. Blowfish: a symmetric 64-bit block cipher invented by Bruce Schneier; optimized 

for 32-bit processors with large data caches, it is significantly faster than DES on 

a Pentium/PowerPC-class machine. Key lengths can vary from 32 to 448 bits in 

length. 

7. Twofish: a 128-bit block cipher using 128-, 192-, or 256-bit keys. Designed to be 

highly secure and highly flexible, well suited for large microprocessors, 8-bit 

smart card microprocessors, and dedicated hardware. 

3.4 Public-Key Cryptography 
Public-key cryptography (PKC) has been said to be the most significant new 

development in cryptography in the last 300-400 years. Modern PKC was first described 

publicly by Stanford University professor Martin Hellman and graduate student Whitfield 

Diffie in 1976. Their paper described a two-key crypto system in which two parties could 

engage in a secure communication over a non-secure communications channel without 

having to share a secret key. 

16 



The first, and still most common, PKC implementation is RSA, named for the 

three MIT mathematicians who developed it — Ronald Rivest, Adi Shamir, and Leonard 

Adleman. RSA today is used in hundreds of software products and can be used for key 

exchange, digital signatures, or encryption of small blocks of data. RSA uses a variable 

size encryption block and a variable size key. 

The key-pair is derived from a very large number, n, that is the product of two prime 

numbers chosen according to special rules; these primes may be 100 or more digits in 

length each, yielding an n with roughly twice as many digits as the prime factors. The 

public key information includes n and a derivative of one of the factors of n; an attacker 

cannot determine the prime factors of n (and, therefore, the private key) from this 

information alone and that is what makes the RSA algorithm so secure. (Some 

descriptions of PKC erroneously state that RSA's safety is due to the difficulty in 

factoring large prime numbers. 

3.5 Hash Functions 
Hash functions, also called message digests and one-way encryption, are 

algorithms that, in some sense, use no key. Instead, a fixed-length hash value is computed 

based upon the plaintext that makes it impossible for either the contents or length of the 

plaintext to be recovered. Furthermore, there is an almost zero probability that two 

different plaintext messages will yield the same hash value. 

Hash algorithms are typically used to provide a digital fingerprint of a file's 

contents, often used to ensure that the file has not been altered by an intruder or virus. 

Hash functions are also commonly employed by many operating systems to encrypt 

passwords. 

Among the most common hash functions in use today in commercial 

cryptographic applications are a family of Message Digest (MD) algorithms, all of which 

are byte-oriented schemes that produce a 128-bit hash value from an arbitrary-length 

message. MD2is well suited for systems with limited memory, such as smart cards. MD4 

developed by Rivest, is similar to MD2 but designed specifically for fast processing in 

software. 

17 



MD5, also developed by Rivest, came about after potential weaknesses were 

reported in MD4; this scheme is similar to MD4 but is slower because more manipulation 

is made to the original data. The Secure Hash-  Algorithm (SHA), proposed by NEST for 

their Secure Hash Standard (SHS), is seeing increased use in commercial products today. 

SHA- 1 produces a 160-bit hash value. 



Chapter 4 
ANALYSIS OF THE PROBLEM 

Security is about controlling access to a variety of resources, such as application 

components, data, and hardware. There are two concepts upon which most security 

measures are based: 

1. Authentication 

2. Data Protection 

4.1 Authentication 
Authentication is the process of identity confirmation, which is the one layer of 

security control. Before an application can authorize access to a resource, it must confine 

the identity of the requestor. The requestor establishes an identity by providing some 

form of credentials, which is known only to the requestor and the authenticating host. In 

some circumstances, the requestor may want to verify the identity of the authenticating 

host, which is called mutual authentication. 

4.1.1 Types of authentication 

1. What you know (usemame and password) 

2. What you have (token, smart card) 

3. What you are (biometrics) 

4. Where you are (location security) 

4.2 Data Protection 
Data protection is the process of providing data confidentiality, integrity, and non-

reputability. Data requires protection not only while in transit but also while it is stored. 

Regardless of what the data's form, once data enters unsecured communication channels 

it becomes vulnerable to attack. 

Encrypting the data provides data confidentiality. Data encryption uses a crypto 

algorithm in conjunction with a crypto key to render data useless to someone lacking both 

the correct algorithm and key to decrypt the data. 

19 



4.2.1 Choosing a Cipher [3] 

Selecting between the competing ciphers is not easy. Apart from slightly different 

currently known security levels, questions of speed, code size, and any patent or licencing 

issues need to be considered. As a general rule, do rely on ciphers that are known, have 

been publicly analyzed, and in some use. Different applications are likely to require 

different tradeoffs and hence choices. Table 4.1 explains the private, public algorithms 

available and small description about algorithms. 

Algorithm Description 

Private Key Algorithms: 

ROT13 Keyless text scrambler; very weak. 

Crypt Variable key length stream cipher; very weak.[12] 

DES 56-bit block cipher; patented, but freely usable (but no 

exportable). 

RC2 Variable key length block cipher; proprietary. 

RC4 Variable key length stream cipher; proprietary. 

RC5 Variable key length block cipher; proprietary. 

IDEA 128-bit block cipher; patented. 

Skipjack 80-bit stream cipher; classified. 

Public Key Algorithms: 

Diffie-Hellman Key exchange protocol; patented. 

RSA Public key encryption and digital signatures; patented 

ElGamal Public key encryption and digital signatures; patented. 

DSA Digital signatures only; patented. 

Table 4.1:Commonly Used Private and Public Key Cryptography Algorithms 

20 



4.2.2 Comparative Speeds [41 

These algorithms have been implemented in c++ (using the Cryptix library). In 

one run, interpreted on a Pentium2/266 system, the following comparative times were 

obtained shown in table 4.2. 

Algorithm Time (ms) 

Blowfish 
	

20506 

CAST5 
	

23772 

DES 
	

48629 

TripleDES 160807 

IDEA 
	

43409 

LOK191 
	

31071 

RC2 
	

43329 

RC4 (*) 
	

12945 

SAFER 
	

41442 

Square 	29610 

Rate (Kbps) key 1000 pairs (ms) 

409 
	

79290 

352 
	

976 

172 
	

519 

52 
	

1790 

193 
	

734 

269 
	

76 

193 
	

790 

648 
	

2382 

202 
	

2219 

283 
	

2166 

(*) RC4 is stream cipher. 

Table 4.2: Table of Comparative Block Ciphers Timings. 

The crypto key is an additional variable used in the algorithm. A crypto key 

contains a numeric value that is limited by the number of bits the key contains. Although 

a 40-bit key contains 240, or 1,099,51 1,627,776, possible key values, a typical PC could 

try an exhaustive search of every possible key value in approximately one week. 

However, if the crypto key consists of 128 bits, a brute force attack would need to try up 

to 2128, or 3.4 x 1038, values. Each additional bit doubles the possible number of values. 

Crypto keys enable a public algorithm to be used by multiple parties without 

compromising data encrypted with the algorithm. 

21 



Since the crypto key determines the strength of the encryption, all encryption 

algorithms are vulnerable to brute force attacks. A brute force attack is the systematic 

attempt to decrypt data using every possible key. 

if the crypto key used to encrypt data consisted of only four bits, a brute force attack 

would only need to try up to sixteen crypto key values to compromise data. 

4.3 Data integrity 
Data integrity is achieved through the use of hash algorithms, digital signatures, 

and message authentication codes. To ensure the integrity of data, a hash of that data can 

be sent to accompany it. The receiver can then compare a hash that it computes on the 

received data with the hash that accompanied the received data. If the two match, the 

received data must be the same as the data from which the received hash was created. A 

hash is a fixed-length string of numbers and characters. It is computed using a hashing 

algorithm, such as Message Digest 5 (MD5) or Secure Hash Algorithm (SHA-1). 

Hashing is a one-way operation that cannot be reversed to recreate the original data. 

A digital signature takes hashing a step further by encrypting the computed hash 

using a private key. This extra step can prevent an attacker from intercepting data and its 

accompanying hash, modifying the data, and then simply re-computing the new hash for 

the modified data. Since a digital signature is an encrypted hash, an attacker would need 

access to the original private key that was used to create the original digital signature. On 

the receiving end, digital signatures can be verified using the associated public key. 

Digital signatures can be used to enforce non-repudiation, which can later be used to 

prove the origin, contents, and timestamp of the data. Message authentication codes 

(MACs) are used by technologies such as SSL/TLS to verify that data has not been 

altered while in transit. However, since MACs use a common key for encryption and 

verification, they cannot be used to enforce non-repudiation 

4.3.1 Comparison of some hash Algorithms 

Message digest functions distill the information contained in a file (small or large) 

into a single large number, typically between 128 and 256 bits in length. Every bit of the 

message digest function is influenced by every bit of the function's input. 

22 



If any given bit of the function's input is changed, every output bit has a 50 

percent chance of changing. Given an input file and its corresponding message digest, it 

should be computationally infeasible to find another file with the same message digest 

value. Message digests are also called one-way hash functions because they produce 

values that are difficult to invert, resistant to attack, mostly unique, and widely 

distributed. Many message digest functions have been proposed and are currently in use. 

Some of them are following: 

1. HMAC: The Hashed Message Authentication Code, a technique that uses a secret 

key and a message digest function to create a secret message authentication code. The 

HMAC method strengthens an existing message digest function to make it resistant to 

external attack, even if the message digest function itself is somehow compromised. 

2. MD2: Message Digest #2, developed by Ronald Rivest. This message digest is the 

most secure of Rivest's message digest functions, but takes the longest to compute. It 

produces a 128-bit digest. 

3. MD4: Message Digest #4, also developed by Ronald Rivest. This message digest 

algorithm was developed as a fast alternative to MD2. Subsequently, MD4 has been 

shown to be insecure. That is, it is possible to find two files that produce the same 

MD4 codes without requiring a brute force search. MD4 produces a 128-bit digest. 

4. MDS: Message Digest #5, also developed by Ronald Rivest. MD5 is a modification 

of MD4 that includes techniques designed to make it more secure. Although widely 

used, in the summer of 1996 a few flaws were discovered in MD5 that allowed some 

kinds of collisions to be calculated. As a result, MD5 is slowly falling out of favor. 

MD5 produces a 128-bit digest. 

5. SHA: The Secure Hash Algorithm, developed by the NSA and designed for use with 

the National Institute for Standards and Technology's Digital Signature Standard 

(NIST's DSS). Shortly after the publication of the SHA, NIST announced that it was 

not suitable for use without a small change. SHA produces a 160-bit digest. 

23 



6. SHA-1: The revised Secure Hash Algorithm, also developed by the NSA and 

designed for use with the NSA's DSS. SHA-1 incorporates minor changes from SHA. 

It is not known if these changes make SHA-1 more secure than SHA, although some 

people believe that it does. SHA- 1 produces a 160-bit digest. 

The following Table 4.3 gives an idea of the performance of the different MD4-

like hash functions. The implementations are written in 80x86 assembly language and are 

optimized for the Pentium processor. It is assumed that both code and data resides in the 

on-chip caches. Under these conditions the cycle figures are independent of the clock 

speed, and the throughput figures scale with the clock speed. 

Algorithm Cycles Mbit/sec Mbyte/sec Relative 
performance 

vlID4 241 191.2 23.90 1.00 
5 337 136.7 17.09 0.72 
EMD 180 96.0 12.00 0.50 
EMD-128 592 77.8 9.73 0.41 

SHA-1 837 55.1 6.88 0.29 
U1PEMID-160 1013 15.5 5.68 0.24 

able 4.3: Performance of optimized assembly language implementations of MD4 
ke hash functions on a 90 MHz Pentium using a 32-bit flat memory model. 

4.4 Advantages/Disadvantages of client server architecture 

4.4.1 Advantages 

1. Initial investment: The initial cost of a client / server setup can be significantly 

cheaper than the initial outlay to buy a mainframe computer Software for a client 

server is typically cheaper than for a mainframe.] 

2. System flexibility: Client server allows for easy expansion of a system. This can be 

accomplished by gradually adding on to the network. This may include adding more 

servers, clients, or even network printers. 

24 



3. Remote access: Allows remote access to the system so employees can access the 

system from virtually anywhere in the world. Provides a means for distributed 

computing. 

4. Expandability: If you need to add more users to the network, simply obtain the 

components necessary for a network connection and connect them.If you need more 

processing power, or the system needs changes, solutions can be as simple as adding 

more clients or servers to the network. 

5. Reliability: There are more pieces to the system, so if one piece fails, it is possible for 

one of the remaining components to "cover" until the "down" piece if fixed. 

4.4.2 Disadvantages 

1. High maintenance: Security, System upgrades, User profiles, Hardware upgrades, 

Compatibility issues, Communication channels between each network, Employing 

technical people. 

2. Security: many more security issues exist due to the fact there are more access point 

to secured data and processes. 

3. Reliability: There are more pieces to the system, so there is a lot more energy put into 

backup plans. The complexity of those plan increases considerably as well as taking 

ownership of system 

4.5 Methods for General Data Transfer in Networks [5] 

4.5.1 File Transfer Protocol (FTP) 
A widely used protocol for transferring files on the network , is File Transfer 

Protocol (FTP). An FTP client program, normally operated by a human user, connects to 

a server using TCP. The user may send, receive and delete files, create and remove 

directories, and perform other file operations across the network. Unrestricted use of FTP 

normally requires the user to have an account on the server host. The FTP session is then 

initiated by the user providing a user name and a password. 

(Dat~e

tAL Lh1jR 

 No.........
25 	.............

IODP '~' 



A popular way of distributing publicly available files on the Internet, is using 

anonymous FTP services, where the user may log in to a public area without having an 

account on the server host. Users logging in anonymously, are normally restricted to 

doing downloads only. 

To operate any file transfer by these methods, user need to run a client program 

on the system which initiates the connection, and the system at the other end (the host) 

needs to be running a server program which can accept incoming connections and 

process requests from client. Once connected, you can cause files to be transferred in 

either direction (host to client or client to host). It is possible to run the same servers on 

same machine but this is not necessary for most users, who only need to run client 

programs, and there are major security issues to be taken into account if user do want to 

run the own server. 

4.5.2 Hypertext Transfer Protocol (HTTP) 

Even though the WWW is designed to envelope existing protocols, a new 

protocol was defined for it. The Hypertext Transfer Protocol (HTTP) allows the Web to 

surmount the problems of different data types using negotiation of data representation. In 

contrast to FTP, which operates directly on the server file system using file- and directory 

names, HTTP identifies documents using Uniform Resource Locators (URL). 

HTTP is a "one-shot" protocol: The client opens a TCP-connection to the server, 

normally on port 80, and sends it's request. The server in turn sends it's response, and 

closes the connection. Several requests to the same server, requires establishing new 

connections. The repeated reconnectioning that frequently occurs when fetching Web 

pages, puts an unnecessary load on both the client and the server host, along with the 

network itself New versions of HTTP will probably allow a connection to be kept open 

as long as needed.The data type negotiation is done using MIME-like headers in both the 

request and the response. 

Although mainly being used for transferring data from the server to the client by 

request, the HTTP standard also defines methods for sending data to the server, used for 

instance in fill-out forms embedded in HTML-documents 

26 



4.5.3 Trivial File Transfer Protocol 

TFTP is a simple protocol to transfer files, and therefore was named the Trivial 

File Transfer Protocol or TFTP. 

It has been implemented on top of the Internet User Datagram protocol (UDP or 

Datagram) so it may be used to move files between machines on different networks 

implementing UDP. (This should not exclude the possibility of implementing TFTP on 

top of other datagram protocols.) It is designed to be small and easy to implement. 

Therefore, it lacks most of the features of a regular FTP. The only thing it can do is read 

and write files (or mail) from/to a remote server. It cannot list directories, and currently 

has no provisions for user authentication. In common with other Internet protocols, it 

passes 8 bit bytes of data. 

27 



arel 
FWk 



Chapter 5 
PROBLEM DESIGN 

In order to design system, various available methods are studied which can handle the 

security threat on client server network, the system has been design and implemented for 

following features. 

1. Data integrity: A digest is calculated over an appropriate portion of a message and 

included as part of the message or excluded sent to the recipient. 

2. Authentication: Each user require logging facility and each user should have 

separate user name and password, which can authenticate the client on server. 

3. Data confidentiality: An appropriate portion of the message is encrypted prior to 

being transmitted to its recipient. 

5.1 Encryption 
In using data encryption, a plain-text message can be encoded so it appears as 

completely random binary data that is very difficult (if not impossible) to transform back 

to the original message without a secret key. In this article, the following definitions 

apply: 

1. Message is used to refer to any piece of data. A message can consist of ASCII 

text, a database file, or any data you want to store or transmit securely. 

2. Plain text is used to refer to data that has not been encrypted. 

3. Cipher text refers to data that has been encrypted. 

Once a message has been encrypted, it can be stored on nonsecure media or 

transmitted on a nonsecure network and still remain secret. Later, the message can be 

decrypted into its original form. This process is shown in Figure 5.1. 

29 



j Encrypted ~ 	 Original 
Message 	Encryption 	 Decryption 
(plain-text) 	Algorithm 

 
Message 

I 	 Algorithm 	Message 

	

(cipher-text) 	 (plain-text) 

	

Encryption 	I 	 i 	Decryption 
Key  I  I  Key 

Figure 5.1: Encrypting and decrypting a message 

When a message is encrypted, an encryption key is used. This is analogous to the 

physical key that is used to lock a padlock. To decrypt the message, the corresponding 

decryption key must be used. It is very important to properly restrict access to the 

decryption key, because anyone who possesses it will be able to decrypt all messages that 

were encrypted with the matching encryption key. 

5.2 Algorithms 
Symmetric algorithms are the most common type of encryption algorithm. They 

are known as "symmetric" because the same key is used for both encryption and 

decryption. Unlike the keys used with public-key algorithms, symmetric keys are 

frequently changed. For this reason, they are referred to here as session keys. Compared 

to public-key algorithms, symmetric algorithms are very fast and thus are preferred when 

encrypting large amounts of data. Some of the more common symmetric algorithms are 

RC2, RC4 that are best suited to provide data confidentiality and both algorithms are 

widely accepted. Details of algorithms are available in Appendix A 

5.2.1 Rivest Cipher 2 (RC2) 

Rivest Cipher 2 (RC2), named for its inventor Ron Rivest (thus, "RC" is also 

sometimes expanded as "Ron's Code"), a 64-bit block cipher using variable-sized keys 

designed to replace DES. Its code has not been made public although many companies 

have licensed RC2 for use in their products. 

30 



There are three separate algorithms involved: 

1. Key expansion. This takes a (variable-length) input key and produces an 

expanded key consisting of 64 words K[O],...,K[63].The purpose of the key-

expansion algorithm is to modify the key buffer so that each bit of the expanded 

key depends in a complicated way on every bit of the supplied input key. 

2. Encryption. This takes a 64-bit input quantity stored in words R[0], ..., R[3] and 

encrypts it "in place" (the result is left in R[0], ..., R[3]).The encryption operation 

is defined in terms of primitive "mix" and "mash" operations.The entire 

encryption operation can now be described as follows. Here j is a global integer 

variable, which is affected by the mixing operations. 

1. Initialize words R[0], ..., R[3] to contain the 64-bit input value. 

2. Expand the key, so that words K[O], ..., K[63] become defined. 

3. Initializej to zero. 

4. Perform five mixing rounds. 

5. Perform one mashing round. 

6. Perform six mixing rounds. 

7. Perform one mashing round. 

8. Perform five mixing rounds. 

3. Decryption. The inverse operation to encryption. The decryption operation is 

defined in terms of primitive operations that undo the "mix" and "mash" 

operations of the encryption algorithm. They are named "r-mix" and "r-mash" (r-

denotes the reverse operation). 

5.2.2 Rivest Cipher 4 (RC4) 

RC4 uses a variable length key from 1 to 256 bytes to initialize a 256-byte state 

table. The state table is used for subsequent generation of pseudo-random bytes and then 

to generate a pseudo-random stream, which is XORed with the plaintext to give the 

ciphertext. Each element in the state table is swapped at least once. The RC4 algorithm 

works in two phases, key setup and ciphering. Key setup is the first and most difficult 

phase of this algorithm. 

31 



During a N-bit key setup (N being key length), the encryption key is used to 

generate an encrypting variable using two arrays, state and key, and N-number of mixing 

operations. 

These mixing operations consist of swapping bytes, modulo operations, and other 

formulas. A modulo operation is the process of yielding a remainder from division. For 

example, 11/4 is 2 remainder 3; therefore eleven mod four would be equal to three. 

Once the encrypting variable is produced from the key setup, it enters the 

ciphering phase, where it is XORed with the plain text message to create and encrypted 

message. XOR is the logical operation of comparing two binary bits. If the bits are 

different, the result is 1. If the bits are the same, the result is 0. Once the receiver gets the 

encrypted message, he decrypts it by XORing the encrypted message with the same 

encrypting variable. 

5.3 Key Databases 
The Cryptography API contains functions that allow applications to encrypt or 

digitally sign data in a flexible manner, while providing protection for the user's sensitive 

private key data. All cryptographic operations performed by independent modules known 

as cryptographic service providers (CSPs). 

Each CSP has a key database in which it stores its persistent cryptographic keys. 

Each key database contains one or more key containers, each of which contains all the 

key pairs belonging to a specific user (or Cryptography API client). Each key container is 

given a unique name, which applications provide to the CryptAcquireContext function 

when acquiring a handle to the key container. Figure 5.2 is an illustration of the contents 

of a key database: 

32 



Key 
Database 

Signature Key Pair 
Exchange Key Pair 

Key Container for 
User #1 

Signature Key Pair 
Exchange Key Pair 

Key Container for 
User #2 

Figure 5.2: Contents of a key database 
The CSP stores each key container from session to session, including all the 

public/private key pairs it contains. However, session keys are not preserved from session 

to session. Generally, a default key container is created for each user. This key container 

takes the user's logon name as its own name, which is then used by any number of 

applications. It is also possible for an application to create its own key container (and key 

pairs), which it usually names after itself. 

5.3.1 Keys 

Session Keys: Session keys are used when encrypting and decrypting data. They 

are created by applications using either the CryptGenKey or the CryptDeriveKey 

function. These keys are kept inside the CSP for safekeeping. 

Unlike the key pairs, session keys are volatile. Applications can save these keys 

for later use or transmission to other users by exporting them from the CSP into 

application space in the form of an encrypted key binary large object or key blob using 

the CryptExportKey function. 

Public or Private Key Pairs: Each user generally has two public or private key 

pairs. One key pair is used to encrypt session keys and the other to create digital 

signatures. These are known as the key exchange key pair and the signature key pair, 

respectively 

33 



5.3.2 Key distribution 

Diffie-Hellman allows two parties — the ubiquitous Alice and Bob — to generate 

a secret key; they need to exchange some information over an insecure communications 

channel to perform the calculation but an eavesdropper cannot determine the shared key 

based upon this information. 

Diffie-Hellman works like this. Alice and Bob start by agreeing on a large prime 

number, n. They also have to choose some number g so that g<n. There is actually 

another constraint on g, specifically that it must be primitive with respect to n. Primitive 

is a definition that is a little beyond the scope of discussion but basically g is primitive to 

n if user can find integers i so that gi = j mod n for all values of j from 1 to n-1. As an 

example, 2 is not primitive to 7 because the set of powers of 2 from 1 to 6, mod 7 = 

{2,4, 1,2,4,1 } . On the other hand, 3 is primitive to 7 because the set of powers of 3 from 1 

to 6, mod 7 = 13,2,6,4,5,1 } . 

Alice or Bob selects n and g; they then tell the other party what the values are. Alice and 

Bob then work independently: 

Alice... Choose a large random number, x 

Send to Bob: X = gx mod n 

Compute: KA = Yx mod n 

Bob... Choose a large random number, y 

Send to Alice: Y = gy mod n 

Compute: KB = Xy mod n 

x and y are kept secret while X and Y are openly shared; these are the private and 

public keys, respectively. Based on their own private key and the public key learned from 

the other party, Alice and Bob have computed their secret keys, KA and KB, 

respectively, which are equal to gxy mod n.Diffie-Hellman can also be used to allow key 

sharing amongst multiple users. Note again that the Diffie-Hellman algorithm is used to 

generate secret keys, not to encrypt and decrypt messages. 

5.4 File hashing 
To ensure the integrity of data, as shown in Figure 5.3 a hash of that data can be 

sent to accompany it. The receiver can then compare a hash that it computes on the 

received data with the hash that accompanied the received data. 

34 



Re( rI- 

If the two match, the received data must be the same as the data from which the 

received hash was created. A hash is a fixed-length string of numbers and characters. It is 

computed using a hashing algorithm, such as Message Digest 5 (MD5) or Secure Hash 

Algorithm (SHA-1). Hashing is a one-way operation that cannot be reversed to recreate 

the original data. 

Sender 

Figure 5.3: Figure is showing the process to check data integrity of data. 

35 



5.4.1 Message Digest#5 (MD5) 
User have a b-bit message as input, and user wish to find its message digest. The 

following five steps are performed to compute the message digest of the message. 

Step 1. Append Padding Bits 

The message is "padded" (extended) so that its length (in bits) is congruent to 

448, modulo 512. That is, the message is extended so that it is just 64 bits shy of being a 

multiple of 512 bits long. Padding is always performed, even if the length of the message 

is already congruent to 448, modulo 512. 

Step 2. Append Length 

A 64-bit representation of b (the length of the message before the padding bits 

were added) is appended to the result of the previous step. In the unlikely event that b is 

greater than 2^64, then only the low-order 64 bits of b are used. 

At this point the resulting message (after padding with bits and with b) has a length that is 

an exact multiple of 512 bits. 

Step 3. Initialize MD Buffer 

A four-word buffer (A, B, C, D) is used to compute the message digest. Here each 

of A, B, C, D is a 32-bit register. These registers are initialized to the following values in 

hexadecimal, low-order bytes first): 

Word A: 01 23 45 67 

Word B:89abcdof 

Word C: fedcba98 

Word D: 76 54 32 10 

Step 4. Process Message in 16-Word Blocks 

Algorithm first define four auxiliary functions that each take as input three 32-bit 

words and produce as output one 32-bit word. 

F(X,Y,Z) = XY v not(X) Z 

G(X,Y,Z) = XZ v Y not(Z) 

W 



H(X,Y,Z) = X xor Y xor Z 

I(X,Y,Z) = Y xor (X v not(Z)) 

In each bit position F acts as a conditional: if X then Y else Z. The function F 

could have been defined using + instead of v since XY and not (X)Z will never have l's 

in the same bit position. The functions G, H, and I are similar to the function F. 

Step 5. Output 

The message digest produced as output is A, B, C, D. That begins with the low-

order byte of A, and end with the high-order byte of D. 

5.4.2 Secure Hash Algorithm (SHA) 
SHA-1 and SHA-256, one begins by converting the message to a unique 

representation of the message that is a multiple of 512 bits in length, without loss of 

information about its exact original length in bits, as follows: append a 1 to the message. 

Then add as many zeroes as necessary to reach the target length, which is the next 

possible length that is 64 bits less than a whole multiple of 512 bits. Finally, as a 64-bit 

binary number, append the original length of the message in bits. 

SHA-1 Expands each block of 512, when it becomes time to use it, into a source 

of 80 32-bit subkeys as follows: the first 16 subkeys are the block itself. All remaining 

subkeys are generated as follows: subkey N is the exclusive OR of subkeys N-3, N-8, N-

14, and N-16, subjected to a circular left shift of one place. (This is the mysterious 

circular left shift added after the original version of SHA was released.). Starting from the 

160-bit block value (in hexadecimal) 67452301 EFCDAB89 98BADCFE 10325476 

C3D2E1 FO as input for the processing of the first 512-bit block of the modified message, 

for each message block, do the following: 

Encipher the starting value using the 80 subkeys for the current message block. 

Add each of the 32-bit pieces of the ciphertext result to the starting value, modulo 2^32, 

of course, and use that result as the starting value for handling the next message 

block.The starting value created at the end of handling the last block is the hash value, 

which is 160 bits long. 

37 



5.5 Authentication 

For authenticating the client on server client need a to transfer the user name and 

password to the server this can be confirm by server on give authentication to client this 

is a first layer of security in the application then user can select the file from explorer and 

sign/encrypt that and send this at the client side this can be verify/decrypt using the key, 

which can be evaluated using some information from client. 

5.6 File Transfer 
After analyzing different data transfer methods like FTP, HTTP, and TFTP. 

TFTP is a simple protocol to transfer files, and therefore was named the Trivial File 

Transfer Protocol or TFTP. It has been implemented on top of the Internet User 

Datagram protocol (UDP or Datagram) so it may be used to move files between machines 

on different networks implementing UDP. It is designed to be small and easy to 

implement. TFTP will be used for file transfer. 

Any transfer begins with a request to read or write a file, which also serves to 

request a connection. If the server grants the request, the connection is opened and the 

file is sent in fixed length blocks of 512 bytes. Each data packet contains one block of 

data, and must be acknowledged by an acknowledgment packet before the next packet 

can be sent. A data packet of less than 512 bytes signals termination of a transfer. If a 

packet gets lost in the network, the intended recipient will timeout and may retransmit his 

last packet (which may be data or an acknowledgment), thus causing the sender of the 

lost packet to retransmit that lost packet. The sender has to keep just one packet on hand 

for retransmission, since the lock step acknowledgment guarantees that all older packets 

have been received. Both machines involved in a transfer are considered senders and. 

receivers. 

One sends data and receives acknowledgments, the other sends acknowledgments 

and receives data. Most errors cause termination of the connection. An error is signaled 

by sending an error packet. This packet is not acknowledged, and not retransmitted (i.e., 

a TFTP server or user may terminate after sending an error message), so the other end of 

the connection may not get it. Therefore timeouts are used to detect such a termination 

when the error packet has been lost. 



Errors are caused by three types of events: not being able to satisfy the request 

(e.g., file not found, access violation, or no such user), receiving a packet which cannot 

be explained by a delay or duplication in the network (e.g., an incorrectly formed packet), 

and losing access to a necessary resource (e.g., disk full or access denied during a 

transfer). TFTP recognizes only one error condition that does not cause termination, the 

source port of a received packet being incorrect. 

39 



w 



Chapter 6 
IMPLEMENTATION ASPECTS 

6.1 Encrypting and Decrypting Data 

To provide the data confidentiality user need to encrypt the data before sending it 

to the communication channel. Encryption algorithms can be use to provide the system 

security means to protect the data on own system to avoid the illegal access if computer is 

connected to the network. Once the data is encrypted no one to get it without knowing the 

key, to retrieve the data again user need to decrypt it using same key. Following steps are 

explaining encryption /decryption for system and for networks. 

Encryption /decryption for system: User have to select the algorithm RC2 or RC4 

from the cipher choice and then put the password which can be use as key to encrypt the 

file the same password will be needed to decrypt the file, user have to remember the 

password from its own. If user will not put any password then system will generate the 

password from its own and use for encryption and decryption. 

Encryption /decryption for Network: when users are sending the encrypted data 

from one computer to another in network it is necessary to have the same key on both 

side else data will never be retrieve back. When user will send file first user set the 

password which will use negotition protocol to decide the pair of key for sender and 

receiver. These key will use by them for encryption and decryption. For encryption and 

decryption crypto A PI are used that are explain below. 

Cryptography API revolves around these two functions—the encrypting 

(CryptEncrypt) and decrypting (CryptDecrypt) of data. 

These two functions are extremely useful but require some explanation about their 

parameters. 

1. The first six parameters of each function are the same. 

2. The first two parameters are simply handles to the key and an optional hash 

object. 

41 



3. The third parameter is a Boolean that remains FALSE until the last block of data, 

at which point it must be set to TRUE so that the function can do some special 

processing for the last block of data. 

4. The fourth and fifth parameters are simply a flag value and a pointer to the data to 

be encrypted or decrypted. 

5. The sixth parameter is the number of characters in the buffer to be encrypted. 

6. The seventh parameter is usually the same as the sixth parameter in that it 

specifies how long the block is. This is because for many algorithms the resulting 

encrypted data is the same length as the decrypted data. However, certain 

algorithms may increase the length of the encrypted data. In those cases the buffer 

pointed to by the fifth parameter must be long enough to handle the extra data. 

The problem of the longer buffer can be alleviated by using the CryptEncrypt 

function itself to return the size of the required buffer prior to encryption. 

In this sample code , certain values are assumed to have been obtained earlier, and 

only want to encrypt one buffer of data pointed to by pData, which is dwDataLen bytes in 

length. 

//start of code If 

BOOL bResult; 

PBYTE pBuffer; 

DWORD dwSize; 

// Set variable to length of data in buffer. 

dwSize = dwDataLen; 

// Have API return us the required buffer size. 

bResult = CryptEncrypt( 

hKey, . 	// Key obtained earlier 

0, 	// No hashing of data 

TRUE, 	// Final or only buffer of data 

0, 	// Must be zero 

NULL, 	// No data yet, simply return size 

42 



&dwSize, 	// Size of data 

dwSize); 	// Size of block 

// now have a size for the output buffer, so create buffer. 

pBuffer = new char[dwSize]; 

// Now encrypt data. 

bResult = CryptEncrypt( 

hKey, 	// Key obtained. 	earlier 

0, 

TRUE, 

0, 

pBuffer, 

&dwSize, 

dwS ize); 

//end of code// 

// No hashing of data 

// Final or only buffer of data 

// Must be zero 

// Data buffer 

// Size of data 

// Size of block 

6.2 Generating Keys 
These three functions are the ones used to generate handles to keys: 

1. The CryptDeriveKey function is used to generate a key from a specified 

password. 

2. The CryptGenKey function is used to generate a key from random generated data. 

3. The CryptDestroyKey function is used to release the handle to the key object. 

If the CryptGenKey function is used, it is recommended that the 

CRYPT EXPORTABLE parameter be used to create an exportable session key. This 

creates a value that can be moved from one computer to another. Without this parameter 

the value returned is only valid on that particular computer/session. 

Following is an example of how to use the CryptDeriveKey function, assuming that 

pPassword points to a user-defined password and dwPasswordLength contains the length 

of the password. 

43 



// start of sample code 

#include <wincrypt.h> // CryptoAPl definitions 

BOOL bResult; 

HCRYPTHASH hHash; 

HCRYPTKEY hKey; 
// Obtain handle to hash object. 
bResult = CryptCreateHash( 

hProv, 	// Handle to CSP obtained earlier 

CALL MD5, 	// Hashing algorithm 

0, 	// Non-keyed hash 

0, 	// Should be zero 

&hHash); 	// Variable to hold hash object handle 

// Hash data. 

bResult = CryptHashData( 

hHash, 	// Handle to hash object 

pPassword, 	// Pointer to password 
dwPasswordLength, // Length of data 

0); 	// No special flags 

// Create key from specified password. 

bResult = CryptDeriveKey( 

hProv, 	// Handle to CSP obtained earlier. 

CALL RC4, 	// Use a stream cipher. 

hHash, 	// Handle to hashed password. 

CRYPT EXPORTABLE, // Make key exportable. 

&hKey); 	// Variable to hold handle of key. 

Use key to do something. 

// Release hash object. 

CryptDestroyHash(hHash); 

// Release key object. 
CryptDestroyKey(hKey); 	//end of sample code// 



6.3 File Hashing 
To ensure the integrity of data, a hash of that data can be sent to accompany it. 

The receiver can then compare a hash that it computes on the received data with the hash 

that accompanied the received data. If the two match, the received data must be the same 

as the data from which the received hash was created. A hash is a fixed-length string of 

numbers and characters. It is computed using a hashing algorithm, such as Message 

Digest 5 (MD5), SHA and RIPEMD. Following steps are explaining the steps of file 

hashing and its comparison. Sender will calculate the hash code! 

1. Choose the hash algorithm from the available algorithms MD5, SHA, RIPEMD. 

2. Locate or Open the file to calculate the hash code. 

3. Calculate the hash code say hash codel . 

4. Save the hash code 1 into the file with desired name and location. 

Sender will send the hash code 1 file and original file to the destination.Verify the 

file or data integrity as follow 

1. Locate and load the hash code 1 file. 

2. Locate the file for which user want to check the data integrity. 

3. Calculate the hash code 2 using the same algorithm. 

4. Compare the hash code 1 and hash code 2. 

If in the way any bit if the data is change both code hashl and hash code 2 will 

show miss match and give result unsuccessful else successful. 

6.4 File Transfer using TFTP 
TFTP is designed to be implemented on top of the Datagram protocol (UDP). 

Since Datagram is implemented on the Internet protocol, packets will have an Internet 

header, a Datagram header, and a TFTP header. 

A transfer is established by sending a request (WRQ to write onto a foreign file 

system, or RRQ to read from it), and receiving a positive reply, an acknowledgment 

packet for write, or the first data packet for read. In general an acknowledgment packet 

will contain the block number of the data packet being acknowledged. 

45 



The following shows the steps used to establish a connection to write a file. 

WRQ, ACK, and DATA are the names of the write request, acknowledgment, and data 

types of packets respectively. 

1. Host A sends a "WRQ" to host B with source= A's TID, 

destination= 69. 

2. Host B sends a "ACK" (with block number= 0) to host A with 

Source= B's TID, destination= A's TID. 

At this point the connection has been established and the first data packet can be 

sent by Host A with a sequence number of 1. In the next step, and in all succeeding 

steps, the hosts should make sure that the source TID matches the value that was agreed 

on in steps 1 and 2. If a source TID does not match, the packet should be discarded as 

erroneously sent from somewhere else. An error packet should be sent to the source of 

the incorrect packet, while not disturbing the transfer. 

Initial Connection Protocol for reading a file 

1. Host A sends a "RRQ" to host B with source= A's TID, 

destination= 69. 

2. Host B sends a "DATA" (with block number= 1) to host A with 

source= B's TID, destination= A's TID. 

6.4.1 TFTP Packets 

TFTP supports five types of packets, all of which have been mentioned above: 

Opcode 	 Operation 

1 	 Read request (RRQ) 

2 	 Write request (WRQ) 

3 	 Data (DATA) 

4 	 Acknowledgment (ACK) 

5 	 Error (ERROR) 

46 



6.5 Authentication 
To authenticate the client, server will keep the records of user names and 

password of the users. Client will need to transfer the user name (ID) and password to the 

server which can be confirmed by server. Authentication is a first layer of security in the 

application. Server will contain the username and password of all the authorized users, 

according to need. Server will add the user or remove the users from its list. This function 

will only provide protection from external threats from accessing the server. User name 

and password are alphanumerical characters and using sockets user can exchange the 

information between client and server. Server is always listening the request from client 

and will connect and bind the client to a specific port. Then client will type its username 

and password which will give the authentication to client else break the connection with 

error message. 

47 





Chapter 7 
INTERFACE AND DESCRIPTION 

:T Untitled - Clint-Seve  

p.C- D ._ WINSOCK.DLL GRPCONV.XE 
r, WIN.NI ODBC.INI 

H WIN POMIZ aview. r,;e 
• C SYSTEM NETDET.INI MSNMGSRI.EXE 

• • K.. COMMAND 
PIDG=N.DLL NETDDE.EXE 
SUBACK.BIN PIDSET E5t3 

r_' IMF W98SETUP.BIN SETDEBUG.EXE 
C HELF UCENSE.TXT SIGVERIF.EXE 

• SUPPORT.TXT TUNEUP.EXE 
r: SYS TE M32 MPI AYFR FXF I IPWI71 N FXF 
C CURSORS RUNHELP.C4B WINREP.EXE 

• ~TOEXP.DA-  WJVIEW.EXE C Jnvn NDDEAPI.DLL BACKGFNL GIF 
• C.: FONTS 	• NDDENB.DLL CLOUD.BIF 
• C-' WEB 

SCRIPT.DOC CONTENT.GIF 
CLSPACK.EXE HLPDEL.GIF 

{: DRW4ISON DOSREP.EXE HLPCD.61F 
- C CONFIG UHW4ISUN.hX. HLtULUtlt.talt 

EXPWRER.EXE HLPLO GO.GIF 
f: TASKS EXTFAC32EXE HLPSTEPI.GIF 
C MEDIA 	• FONIMEW.EXE HLPSTEP2.GIF 

Rudy i 	NUM '. 

Figure 7.1: Main interface of application. 

rr ~NnUUed Clien-Sr ei Security 	, q  P 	 ■ 

NUM . 	f; 

Figure 7.2: Option Bar 



r: c: 

rieaGy 	 NUM 

Figure 7.3: Communication Button 

r° C. 

Current Status: listening o n port 69 

$tart $eaver~..~ 

Ready _. _ 	.. 	.- ... 	_. 	 PLUM 
 

Figure 7.4: TFTP Server. 

,AL ,CTB~~~ 

50 



i.~C7a-.~. r1~7IiL 	1!fdi: 

r_ C: 	 i 

Ready 	 NUM t 

Figure 7.5: Hashing Function, 

Figure 7.6: Data Integrity Checks. 

Figure 7.8: Password Option. 

51 



r-  r- 

K_ 	
Cancel 

Ready 
	

NUM 

Figure 7.7: Encryption Algorithms Available. 

Figure 7.1 shows the main interface of the application, which provides access to 

all files and drives available in the system and the options in menu provide hashing, 

encryption /decryption and sending and receiving the files. Figure 7.2 shows the Option 

Bar with `choose encryption'; `add Hash Signature'. `Server' is `TFTP' server, which 

receives the files. The `communication button' is used to send the file to the user. Figure 

7.3 shows the communication interface, which is used to send the file to desired IP 

address. If there is any error in communication, it will be shown in the dialog box. Figure 

7.4 shows the TFTP server which listens on the port number 69. Figure 7.5 shows the 

hashing function `File digest', which calculates the hash of the file. User can see the 

result in string form or Hexadecimal form. The `save as' button will save the hash code in 

the file with FDG extension. The `Load' button will load the hash code in the program 

for verification. Figure 7.6 shows Data integrity. It verifies the results by comparing the 

old hash code from the file with the newly calculated hash code. If both are same, then 

check operation is successful. Else it is failed. Figure 7.7 shows password options for 

selecting the encryption and decryption keys. Figure 7.8 shows encryption algorithms 

RC2 block cipher and RC4 stream cipher. 

52 



Chapter 8 
CONCLUSION 

"Implementing Client/Server Communication Security "the application will 

provide end-to-end security mechanisms for file transfer using the client/server 

infrastructure. The application allows client and server to communicate in a way that data 

cannot be eavesdropped and Server always authenticated the clients. The application 

provides "security" which has three basic properties: 

1) Data confidentiality 

2) Authentication 

3) Data integrity. 

The Application is providing the sophisticated way to user to browse the file from 

the available drives and simple way to encrypting /decrypting , and hashing the files. It 

provides the end user to authenticate on server and send the files from one location to 

another in the Network. The intention is to make a professional and general Application 

that is attractive to businesses and consumers. It has scope for further improvement in the 

following areas: 

File transfer: To transfer the file from one place to another developer can use the 

File Transfer Protocol, which will provide more functionality and security to the user. 

Server will have more control and server will monitor the activity in the network. 

Signature: Developer can use Public key algorithm and hash algorithm 

combination to generate the signature of file and after signing, hash file can be packed 

with original file and then encrypt that file to provide more security to data. 

53 





REFERENCES: 

1. Electronics Research And Development Center Of India, Customer Requirement 

Document of NSFDC project, 2002. 

2. Bruce Schneier , "Security Pitfalls in Cryptography Paper" , www. Counterpane.com, 

by Counterpane Internet Security, Inc.2002. 

3. William Stalling, Cryptography and Network Security Second Edition, Prentice Hall 

Inc., 1999, pp 4-9,93-127,272-298. 

4. Bruce Schneier,  , Applied cryptography Second Edition, John Wiley & Sons, 

Inc., 2001. pp, 151-185,213-232 

5. Andrew S. Tanenbaum ,Computer Networks Third Edition, Prentice Hall of India 

Private Limited, 1996.pp, 681-695. 

6. K. Sollins, "RFC 1350 The TFTP Protocol (Revision 2)", Network Working Group 

July, 1992. 

7. Eugene Olafsen, Kenn Scribner & K. David White, MFC Pragramming With Visual 

C++, Techmedia, 1999. 

8. Richard.M.Jones, Introduction to MFC Programming With Visual C++, Pearson 

Education Asia, 2000. 

9. Microsoft Corporation " Microsoft Developer Network (MSDN) Library" April 2002. 

55 



APPENDIX-A 

INTRODUCTION TO VISUAL C++ 

A.1 Visual C++ 6.0 
Microsoft Visual C++ is a developer studio member, which provides integrated 

Development for the development of project. 

A.2 The Visual C++ Development Environment 
The Visual C++ Development Environment mainly contains three areas-

Workspace, Output Pane and Editor Area. Each of these areas has a specific purpose in 

the developer studio environment. 

A.2.1 The Workspace 

This is the key area to navigating the various pieces and parts of users 

development project. The workspace allows user to view the parts of user application in 

three different ways: 

• Class View allow user to navigate and manipulate users source code on a C++ class 

level 

• Resource View allow user to find and edit each of the various resources in the 

application, including dialog window designs, icons, and menus. 

• File View allows user to view and navigate all the files that male up in the user's 

application. 

A.2.2 The Output Pane 

The Output Pane is where Developer Studio provides any information that it 

needs to give the user ; where user can see all the compiler progress statements, 

warnings, and error messages; and where the Visual C++ debugger displays all the 

variables with their current values as you step through the user's code. 

57 



The above screen shows the different areas in a Visual C++ development 

environment. The following screen shows the 1VWFC ClassWizard using which the 

functions, classes, member variables, etc can be added easily. 

A.2.3 The Editor Area 

This is the area where user can perform all user's editing when user use Visual 

C++, where the code editor windows display when user edit C++ source code, and where 

the window painter displays when user design a dialog box. The Editor Area is even 

where the icon painter displays when user designs the icons for use in the user's 

application. The editor area is basically the entire Developer Studio area that is not 

otherwise occupied by panes, menus, or toolbars. 

A.3 Visual C++ program 
A Visual C++ program consists of C++ code and selected basic framework 

provided by Visual C++ compiler. These frameworks are to be selected by users 

according to the type of program he wants to develop. 

A.3.1 Kinds of Visual C++ programs 

• An MFC program 

• An MFC DLL 

• An NEC ActiveX control program 

• An ActiveX Container program 

• An Internet Server(ISAPI) Extension or Filter 

• A Win32(non-MFC) program for Windows 

• A Win32 DLL 

• A Static Library 

• A Console program 

• A Utility project 

• A program that supports a DAO or ODBC database 

• An Extended Stored Procedure 



A.4 Microsoft Foundation Classes 
The Microsoft Foundation Class Library (MFC) is an "application framework" for 

programming in Microsoft Windows. Written in C++, MFC provides much of the code 

necessary for managing windows, menus, and dialog boxes; performing basic 

input/output; storing collections of data objects; and so on. All user needs to do is add 

user's application-specific code into this framework. And, given the nature of C++ class 

programming, it's easy to extend or override the functionality the MFC framework 

.. supplies. 

59 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendix

