
SUJEET LOHAN

0

EMBEDDED SOFTWARE USING C/C++ FOR DIGITAL SET-TOP BOX

WITH CONDITIONAL ACCESS FOR PAY TV CHANNELS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

NOIDA

IIT Roorkee — ER&DCI, Noida
C-56/1, "Anusandhan Bhawan"

Sector 62, Noida - 201 307

FEBRUARY, 2003

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "EMBEDDED

SOFTWARE USING C/C++ for DIGITAL SET -TOP BOX with CONDITIONAL

ACCESS for PAY-TV CHANNELS", in partial fulfillment of the requirements for the

tl_c degree of Mash.: of Technology in Inf 	::ion Tezhnology. 	id d =gr

IIT, Roorkee — ER&DCI Campus, Noida, is an authentic record of my own work

carried out during the period from August 2002 to February, 2003 under the guidance of

Dr. P.C. Jain, GM, R& D Division , Himachal Futuristic Communication Ltd., Gurgaon.

The matter embodied in this dissertation has not been submitted by me for award

of any other degree or diploma

Date: I't-VA~l'

Place: Noida 	 (SUJEET LORAN)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.
7

Co-Guide: 	 Project Guide :

Mr. Muni 	ir, Project Engineer 	 Dr. P.C. Jain , General Manager

ER & DCI, Noida 	 HFCL (R& D) , Gurgaon

ACKNOWLEDGEMENT

The timely completion of the work carried out in this dissertation report would

not have been possible without the cooperation and guidance of team members of Set-

top Box project. In first place, I am indebted to my project guide, Dr. P. C. Jain, for his

consistent support and valuable guidance. I am also grateful to Mr. V. N. Shukla

Course Coordinator, ER&DCI for his useful suggestions and encouraging me to take up

this project. I am also thankful to my co-guide Mr. Munish Kumar,Project Engineer,

ER & DCI for all the cooperation and help extended by him in the successful completion

of this project.

Also , my sincere thanks to Mr. Sushil Dutt, and Mr. Sarfaraz Ahmed , both Sr.

Engineer in R & D Division of HFCL, for fruitful discussions and providing valuable

information which could led to timely completion of the project.

Finally, a vote of thanks to all those who directly or indirectly, in some manner

or the other , contributed towards the project work.

(SUJEET LORAN)

Enroll. No. - 019050

ii

CONTENTS

CANDIDATE'S DECLARATION 	 i

ACKNOWLEDGEMENT 	 ii

ABSTRACT 	 I

1 INTRODUCTION 	 2

2 CONDITIONAL ACCESS SYSTEM
2.1 Introduction 	 3
2.2 What is conditional access 	 3
2.3 Parts of conditional access system 	 3

2.3.1 	Signal Scrambling 	 3
2.3.2 	Subscriber Management System 	 4

2.4 CA Sub System at receiving side 	 4
2.4.1 	Processing Sequence 	 5

3 ON SCREEN DISPLAY
3.1 Purpose of OSD 	 9
3.2 Function of various parts 	 9
3.3 Various Subcontrollers 	 10
3.4 Various Classes of OSD 	 11

3.4.1 Various Class Hierarchies 	 12
3.4.2 Various Classes and their member 	 13

4 OSD DATA STRUCTURES AND FUNCTIONS
4.1 Introduction 	 17
4.2 OSD Data Structures 	 17
4.3 OSD Functions 	 18
4.4 High Level OSD Functions 	 21

5 ON SCREEN DISPLAY MENU'S
5.1 Various On Screen Display Menu's 	 23

6 TRANSPORT STREAM
6.1 Introduction 	 30
6.2 Transport Stream 	 31

6.2.1 Packetized Elementary Stream 	 31
6.2.2 Timing Model 	 31
6.2.3 Individual Stream Operations 	 32
6.2.4 Transport Stream Coding Structures and Parameters 	33

6.3 Semantic definition of fields In TS Packet 	 34

7 PROGRAM SPECIFIC INFORMATION
7.1 Various PSI Tables 36
7,2 Program Association Table 37

7.2.1 Table_id Assignments 38
7.3 Program Map Table 39

7.3.1 Semantic definitions of fields in Program Map Section 41
7.4 Conditional Access Table 41
7.5 Network Information Table 42

7.5.1 Private Section 42
7.6 Program Element Descriptors 44

7.6.1 Semantic definitions of fields in PED 44
7.7 Video Stream Descriptor 44

7.7.1 Semantic definitions of fields in VSD 45
7,8 Audio Stream Descriptor 45

7.8.1 Semantic definitions of fields in ASD 46
7.9 Video Window Descriptor 46

7.9.1 Semantic definitions of fields in VWD 46
7.10 Conditional Access Descriptor 47

7.10.1 Semantic definitions of fields in CAD 47

8 FLOW CHARTS AND FUNCTIONS
8.1 Mnemonics 	 48
8.2 Method of describing bit stream syntax 	 48
8.3 Flowchart for extracting packets from TS 	 49
8.4 Functions to extract information from TS 	 51

9 RESULTS AND DISCUSSION 	 52

10 CONCLUSION 	 53

REFERENCES
APPENDIX A
APPENDIX B

ABSTRACT

Today , a digital TV requires a Set-Top Box (STB) i.e. box which is on
top of analog TV which is used to decode and tune digital signals, and
converts them to a format that is understood by analog TV. The
broadcasters and service providers are interacting with their viewers on
many levels, offering them greater program choice than ever before.
Additionally, the development of a security system provides them with
unprecedented control over what they watch and when.

A CA system is best described as a virtual gateway that allows viewers to
access a new world of digital services. The main goal of any CA system is
to control subscriber's access to digital TV pay services and secure the
service providers revenue streams. Consequently, only customers that
have a valid contract with the network operator can access a particular
service. CA System from Conax which is a CA provider has been
implemented in the Set-top Box (STB) of HFCL. This is first part of the
project carried out at HFCL.

To operate STB in a easy and interactive manner , a sort of Graphic User
Interface (GUI) has been developed using Fujitsu,s API library functions.
The main purpose of OSD is to make handling of Set —top Box (STB)
convenient and interactive for the user. Various menus are popped up on
TV screen and user can choose and view his favorite channel from the
channel list. Also he can customize, set and adjust the various parameters
from personal preferences such as password etc.

Next part is that of extraction of information from Transport Stream
which is based on systems part of the Recommendation/International
Standard ISO/IEC ISO/IEC 13818-1: 1994(E) ITU-T Rec. H.222.0
(1995 E) deals with the combination of one or more elementary streams
of video and audio, as well as other data, into single or multiple streams
which are suitable for storage or transmission. Systems coding is then
carried out as per syntactic and semantic rules imposed by above
specification and provides information to enable synchronized decoding of
decoder buffers over a wide range of retrieval or receipt conditions. Both
the Transport Stream and Program Stream defined in above standards
provide coding syntax which is necessary and sufficient to synchronize the
decoding and presentation of the video and audio information

1

Chapter 1
INTRODUCTION

	

1.1 	Overview

I was involved in the team of set-top Box project as trainee in the R&D Division of
HFCL,Gurgaon where I carried out my project work. One part of the project was to
develop graphical user interface (GUI) also called On Screen Display (OSD) so that use
of Set-topBox (STB) convenient and interactive. Various menus have been developed for
this purpose using C/C++ which pop up on t TV screen when the user uses STB along
with the analog TV. The user can make his/her choices while navigating through the
menus. Also he/she can make his/her personal settings such as setting the passwords.
Second part was to extract the program specific information from Transport Stream(TS)
which is MPEG encoded and to decode them and present them as a program.

	

1.2 	Objective of the Dissertation

The main objective of the dissertation is to develop graphical user interface(GUI) called
On Screen Manual (OSD) using C/C++ (main purpose of the OSD is to make the
handling of Set-top Box (STB) easier so that it becomes simple to use) and to extract
program specific information which is present in the form of tables in the MPEG encoded
transport stream, decode and present them as the program. Also project objective also
includes the study of Conditional Access Systems in the STB.

	

1.3 	Scope of the work

This work is a part of the product making that is STB by HFCL, Gurgaon. This product
as a whole will be used for use along with the Analog TV for Pay TV channels where the
signals are encrypted and scrambled and needs descrambling and decryption. This can be
extended to include such features as Electronic Program Guide(EPG), setting the favorite
list of channels etc in the OSD part of the project and extraction of the date and time
signals, event information table in TS

	

1.4 	Organization of Thesis

The thesis is organized into eight chapters.
The first chapter deals with the basic concepts of conditional access system.
The chapter 2 to 5 cover all the classes developed and various functions used in making
of menu's for OSD.
The chapter 6 tells various details about the packets and their format in Transport

Stream.
The chapter 7 gives in depth coverage of various PSI tables.
The chapter 8 shows algorithm of extracting packets from TS and various mnemonics
used.

Chapter 2
CONDITIONAL ACCESS SYSTEM

2.1 Introduction

Today, a digital TV requires a Set-Top Box (SIB) i.e. box which is on top of analog TV which
is used to decode and .tune digital signals, and converts them to a format that is understood by
analog TV. The broadcasters and service providers are interacting with their viewers on many
levels, offering them greater program choice than ever before. Additionally, the development of
a security system provides them with unprecedented control over what they watch and when. A
CA system is best described as a virtual gateway that allows viewers to access a new world of
digital services. The main goal of any CA system is to control subscriber's access to digital TV
pay services and secure the service providers revenue streams. Consequently, only customers
that have a valid contract with the network operator can access a particular service. The CA
system is therefore, a vital aspect of digital TV business.

2.2 What is Conditional Access

A conditional access system (CAS) is a security module that comprises a combination of
scrambling and encryption to prevent unauthorized reception. Encryption is the process of
protecting the secret keys that are transmitted with a scrambled signal to enable the descrambler
to work.
The scrambler key, called the control word (CW) must, of course, be sent to the receiver in
encrypted form as an entitlement control message (ECM). The CA subsystem in the receiver
will decrypt the control word only when authorized to do so; that authority is sent to the receiver
in the form of an entitlement management message (EMM). Refer figure no. 2.1, pg 6

2.3 Parts of Conditional Access System

The system is primarily made up of three parts:

1. Signal Scrambling
2. Encryption of electronic "keys"
3. Subscriber Management System

2.3.1 Signal Scrambling

The MPEG-2 Audio, Video and data is fed to the scrambler unit along with scrambler key called
the CW generated from control world generator. Scrambling involves modula-2 (Exclusive-OR)
addition of the input data stream to a given Pseudo Random Bit Sequence (PRBS). CW is
transmitted to the receiver in an encrypted form to prevent piracy attach on the CA system. A
CW supplies a 64 bit word to the scrambler. This CW is encrypted to generate ECM. The ECM
contains a program description and the actual CW. Refer figure no. 2.2, pg 7.

3

The CA Sub System (CASS) in the STB will decrypt the control word only when authorized to
do so. The entitlement to subscriber can be provided in the form of electronic Smart Card (SC)
that is plugged into the STB. The authority to decrypt control world is sent to the STB in the
form of EMM, which is subscriber specific. Consequently, the number of EMM that need to be
sent over the broadband network is proportional to the number of subscribers that have registered
on the network.

2.3.2 Subscriber Management System

The Subscriber Management System is a combination of hardware and software as well
as human activities that help organize and operate the company business. The main goal of any
SMS system is to ensure that subscribers view exactly what they pay for. The SMS is part of the
Customer Management System (CMS) and includes:

Entitlement Control Messages

They carry program and service specific information , including the control words that
are used by the smart card to decrypt the relevant program. How ever if a subscriber is not
entitled to watch the program , then a signal is sent to the set-top box to indicate that this
program has not been authorized for de-encryption.

Entitlement Management Messages

An Entitlement Management Message is used to carry authorization details which may be
delivered electronically within the broadcast system. They are subscriber specific i.e. one EMM
per subscriber.

Subscriber Authorization System
The main task of the SAS is to translate the requests coming from the SMS into

authorization messages (EMMs). The EMM Injector receives EMM from SAS server, manages
the EMM playout queues and feeds the EMMs into MPEG-2 multiplexer. They are sent to
subscriber on a regular interval (e.g. every month) to renew subscription rights on the smart card.

2.4 CA Sub System at the receiving side

The receiving unit consists of STB, smart card and the remote controller. Smart
card is a tamper free device that is issued to subscriber when they are registered. STB is used to
descramble the viewing program, provide the human interface and handle other receiving details.
Whenever a viewer wishes to see a scrambled service he has to ensure that a right smart card is
inserted. Transport Stream (TS) contain Program Specific Information (PSI) and PSI tables (PAT,
PMT, CAT). The Program Association Table (PAT) lists all current programs and indicates the
Packet Identifier (PID) values of the Program MAP Table (PMTs). There is only one PAT but
there are as many PMTs as programs. Each PMT gives information about the component streams
(audio, video, data) and lists all parameters necessary for decoding the components.

There is one Conditional Access Table (CAT) per TS and it consists of a list of all the CA
suppliers that work with programs found in the Transport Stream. The CAT carries the list of CA

2

suppliers that provide services for programs found in the TS. A unique identifier called the CA
system ID recognizes CA suppliers. The CAT also gives information about Entitlement Message
Management (EMM) and PMT gives the information about the Entitlement Control Message
(ECM). The TS carries packets corresponding to the scrambled signals but also simultaneously
there will be packets from programs offered without access restrictions. It is at the STB where
the packets are de-multiplexed and decrypted if required. Refer figure no. 2.3, pg 8.

A set-top box will demodulate the signals and will pass the Transport Stream to the de-
multiplexer to acquire PSI data (PAT, CAT, PMT). EMM corresponding to the address of the
smart card is passed to the security module as soon as it arrives. If the module decides that the
user is in good standing, and he/she is allowed to watch (or download) certain programs in the
TS, then decryption proceeds, and the descrambled TS is passed back to the host (STB) for
decoding and display.

Whenever a new ECM arrives it is passed to the security module. ECM decryptor supplies
the decrypted CW to the descrambler thus enabling it to descramble the service. There is a user
interface module that display the messages like access denied or takes the input from the user
input such as PIN code. Some well known CA systems includes:

I. Conax-CAS3 from conax
2. Cryptoworks from Philips.
3. Viaaccess from France Telecom.
4. Media Guard from Canal +

Following modules have been added to extend Conax CA in our STB:

1.. Configure our de-multiplexer to extract CAT, ECM and EMM from the transport stream.
2. When ECM and EMM are acquired they are sent to the smart card in the form of commands,

which are Conax proprietary, to the security module. In this case the security module is the
smart card.

3. To communicate with the smart card ISO 7816-3 protocol is used.
4. Corresponding to command, a response is generally received from the smart card. This

response is again Conax proprietary. Based on the response the required action is taken e.g.
feeding the descrambler with the CW.

5. There is a user interface module that handles the communication between the security
module and the user. For example user can use the dialogue to check the subscription status
and event status. Similarly, security module can use it to enquire PIN code from the viewer.

2.4.1 Processing Sequence

The sequence of processing can be categorized into:

Initialization
It is performed either when the smart card is inserted in the smart card slot, or

when the power is applied to the STB, or the communication with the smart card has fallen
out of synchronization. Whenever smart card is reset, it sends Answer-To-Reset (ATR). ATR
may contain interface information like clock rate, conversion factor, baud rate adjustment

5

factor and extra guard time. After the link with smart card has been established the most
recent ECM and EMM is sent to the smart card.

Access to program subject to conditional access

As described above the relevant CA desriptors and corresponding ECM PIDs are
extracted from the PMT based on CA. SYS_ID then the filtering of ECMs start. Whenever a
new ECM arrives it is sent to the security module. Here ECM is decrypted and checked for
entitlement. If access is granted then CW is sent by the smart card as a response. This CW is
fed to the descrambler.

EMM Processing

It is performed regardless of whether the current program is free-to-air or
subject to conditional access. As soon as new EMM is acquired, it is sent to the smart card.
Here the EMM is decrypted and then interpreted.

Customers

Key and LEMM and ECM
Message 	 Messages. 	Broadband Network
Generator

Multiplex

TV Signal 	 Encryption 	Encrypted DTV
Hardware 	Signal

Authorizations

Subscriber 	 Subscriber
Management Request Authorization
System 	 System (SAS)
(SMS)

TV

Figure No. 2.1 -Basic principle of an end-to-end Conditional Access System

Audio I MPEG-2I 	I Digital 	N/'
SCRAMBLER f 	 Transport 	 Modulator

Data 	IStream MUX

ECM 	EMM
(Entitlement Control Message) 	(Entitlement Management. Message)

Encryptor L f L~ Encryptor

Subscriber 	 Subscriber
Control Word 	 Authorization 	 Management
Generator 	 System (SAS) 	 System (SMS)

Figure No. 2.2 -General Conditional Access System (Head End)

Audio

Data

7

Fro

rd (CW)

Figure No. 2.3 - Conditional Access System — Set-top Box (STB)

Chapter 3

ON SCREEN DISPLAY

3.1 Purpose of OSD
This is a sort of Graphic User Interface (GUI). The main purpose of OSD is to make handling of
Set —top Box (STB) convenient and interactive for the user. Various menus are popped up on
TV screen and user can choose and view his favorite channel from the channel list. Also he can
customize , set and adjust the various parameters from personal preferences such as password
etc.

Figure No. 3.1 Various OSD/Set-top Box Logical Layout

The above figure shows the logical layout of various parts for the display of various menu's on
the TV screen and of the set-top box.

3.2 Functions of various parts

IR Handier: It handles the events such from an IR source (such as pressing of the key on the
remote of STB). It scans the events and put them in the Event Queue.

Event Queue: Basically, it is a stack area where all the events are stored.

JR Manager : Its checks for the new events in the Event Queue. It also checks for their validity
i.e. whether the events in the queue are okay or not.

Main Controller: It `s function is to call the event key listener corresponding to the event
occurred. It has six sub -controllers shown in the figure no. 3.1

0

3.3 Various Subcontrollers :

Channel UP/DOWN Sub-controller: It is used to control and respond to up/down arrow keys
in the remote control of STB thereby resulting in the change of TV channels. By pressing the
UP arrow key, channel number get incremented by one and vice-versa.

I M A TN CONTR Ol .T .FR

CHANNEL
UP/DOWN

MUTE 	MAIN + VOLUME ~ BAR
	I ~ STRENGTH

Figure No. 3.2 -Various Sub controllers

Mute subcontroller : It's function is to make a channel soundless when the user presses mute
key of remote control of STB.

Main Menu subcontroller: It controls the various options in the menus of OSD of STB. It
starts with the showing of Main Menu of the OSD.Refer figure no.3.2

Volume subcontroller : It's job is to increase/decrease the volume of a running channel with a
progressive bar which get displayed on the TV screen when the user presses the volume
UP/DOWN keys on the remote.

Channel Bar subcontroller : It is used to control and display the digits position for channel
number on TV screen.

Signal Strength subcontroller: It displays the strength of received signal with a progressive
bar on the screen.

10

Main Menu
Channels
Preferences
Installation
Conditional-
Access

Channels Menu
TV Channels
Radio Channels

TV Channels
channel.. I +
channel..2
channel..3

channel 10

Operation
Delete
Parental Lock
Favorite

Information
Name .
Satellite...
Transponder ...

Preferences Menu
Language
Audio/Video
Channels Details

Installation Menu
TV Type
Antenna Settings
Edit Satellite
RF Selection
Scanning
Change Password
Reset Factory Default

Language Settings
Text English

Audio I English

Audio 2 English

Subtitle English

Video/Audio Settings

TV Type

NTSC
PAL

Video

Password Setting
	 Audio 	Mnnn

Enter Old Password 0

Enter New Password 1

Retype New Password II

Figure No. 3.3 — Various Sub Menu's

Channels Details

Satellite 	Y -p.s

Transponderj YES

Audio PID YES

Video PID j YES

11

3.4 Various Classes of OSD

3.4.1 Various Class Hierarchies

Class : ListItem K 	I Class : Label
Class :VolumeBar

Class:MenuItem I
Class:TextBox

I Class:MenuFrame I

Class : Widget
	Class :ScrollList

Class:Frame
Class -:List

Class : MultiWidget j 	 Class: Button

Class :Draw_List
1 	

Class :InfoWidget

Figure No. 3.4 — Class Hierarchies and Inheritences

Class: KeyListener

Class: AntennaSetting

Class : Controller

Class : FrameController

Class :WidgetController
	Class: Installation

Class : ChannelsDetails
Class : Preferences

Class: Menu

Class : MainMenu
Class: Channels

Figure No. 3.5 — Class Hierarchies and Inheritences

12

3.4.2 Various Classes and their members

Following are the classes and their private and public members :

Class : Label
private members:
unsigned int front—colour—,back—colour;
public members:
virtual void paint() =0; virtual void updateO; virtual void setFocusO=0; virtual void
keyEvent(KeyEvent)=0; virtual void setFrontColor(us int); virtual void setBackColor(us
int);

Class: Widget
protected members:
Widgetcontroller *controller_; Char title_[20];enum mode_;
public members:
unsigned int x_,y_,height_;width_; boot in_focus_;
virtual void paint=;.Virtual void updateO=0; virtual boot setFocusO=0; virtual boot
keyEvent (keyEvent evO=0; virtual void setText(const char*); Virtual void
setController(widgetcontroller*controller) { Controller =controller; }
virtual void setSize (unsigned int x,y,width,height) {x x; y_ y; width—=width;
height—=height;) widget(const char*title,int x=y=width=height=0);
widget() (} '-Widget() { }

Class :ListItem
public members:
virtual void paint() =0; virtual void updates; virtual void setFocusO=O;

Class :Menultem
public members:
virtual void paint() =0; virtual void update(); virtual void setFocusO=O; virtual void

keyEvent(KeyEvent)=0;

Class:MenuFrame
public members:
virtual void paint() =0; virtual void updateO; virtual void setFocusO=0; virtual void
keyEvent(KeyEvent)=0;

Class:Frame
public member:
virtual void paint() =0; virtual void update(); virtual void setFocus()=0; virtual void
keyEvent(KeyEvent)=0; Frame() { } Frame (const char*title,intx,y,width,
height):W1dget(--) {) Frame (int x,y,width,height) :Widget(--) {}

13

Class :Multi Widget
public members:
virtual void paint() =0; virtual void update(); virtual void setFocusO=0; virtual void
keyEvent(KeyEvent)=0;

Class :Draw_List
public members:
virtual void paint() =0; virtual void update(); virtual void keyEvent(KeyEvent)=0;
virtual void activate(Tfunctor * pdf,Mp_OsdDataTYPE*podd),
virtual void add(Listltem*); virtual void add(ListItem *,unsigned int);
protected members:
Listltem *widget[20];

Class : InfoWidget
public members:
virtual void paint() =0; virtual void updateO; virtual void setFocusO=0; virtual void
keyEvent(KeyEvent)=0; virtual void clear(); virtual void show (const char *);
private members:
InfoWidget(Mp_OsdDataTYPE *); static info Widget *infowidget_;
Mp_OsdDataTYPE *osdData;

Class :VolumeBar
public members:
virtual void paint() =0; virtual void update(); virtual void setFocusO=0; virtual void
clear(); static VolumeBar *getinstance();
private members:
VolumeBar(Mp_OsdDataTYPE *); static VolumeBar *volumebar;
Mp_OsdDataTYPE*osd Data_; boot painting;

Class:TextBox
public members:
virtual void paint() =0; virtual void updateO; virtual void setFocus()=0; virtual void
keyEvent(KeyEvent)=0; Virtual boot getValue(int *value); virtual void
setLength(unsigned int len) { Max_length=len;) virtual char *getTextO
{ data[count]=0;return data;)
protected members:
unsigned char data[20]; unsigned int count,key__pos,max_length_;

Class :ScrollList
public members:
virtual void paint() =0; virtual void update(); virtual void setFocus()=0; virtual void
keyEvent(KeyEvent)=0; virtual void add(const char *item); virtual bopol getValue(int *)
virtual unsigned int getSeletedltemindex(){ Return selected_item;)
ptotected members:
char *scolllitem_[10]; unsigned int selected_item ; unsigned int no_of item;

14

Class : List
public members:
virtual void paint() =0; virtual void updateO; virtual void keyEvent(KeyEvent)=0;
virtual void setheader(const char*); virtual void add(ListItem *); virtual void
add(ListItem *,unsigned int);

Class :Button
public members:
virtual void paint() =0; virtual void update(); virtual void setFocus()=0; virtual void
keyEvent(KeyEvent)=0;

Class : FrameController
public members:
P:U;K;A;O;
protected members:,
unsigned int x_,y_,width_,height_; Frame frame;

Class : Key Listener
public members:
virtual voidkeyEvent(Key event ev)=0;

Class : Controller
public members:
virtual Mp-OsdataTYPE*getOsdQ{return osdData_:} virtual void keyEvent{keyEvent
ev}-0; virtual void activate{Tfuctor pfn, Mp_OsdDataTYPEpodd);
Controller O{osdData= 0;p_nfy_=0;}
protected members:
MpOsdData TYPE *osdData_; Tfunctor *pnfy:

Class : WidgetController
public members:
K; // Pure virtual function; A;O;
protected members:
unsigned int no_items_, selecteditemindex_; Widget *widgets_[MAX_COMPONENTS];
Word * prev_osd_data;

Class : Menu
public members:
P;U;K;A;O; virtual void add(Menuitem*); virtual void add(Menuitem *, unsigned int);
virtual void setheader(const char*); virtual void setfooteer(const char*);
protected members:
void show(); unsigned int x., y_, width_, height_; MenuFrame menuframe; Label
*topLabel, *bottomLabel;

15

Class : Channels
public members:
K;A;O, Void channels_callbackO,
protected members:
unsigned int x_, y_, width_, height_; MenuFrame menuframe; Label *topLabel,
*bottomLabel;

Class : Installation
public members:
K;A;O, void installation_callbackO;
protected members;
unsigned intx_,y_,width_,height_; MenuFrame menuframe; Label *topLabel,
*bottomLabel, FrameController *controller[3]; Tfunctor *call_back_fn;

Class :Preferences
public members:
K;A;O;
protected members:
unsigned int x_,y_„width_, height_; Menuframe menuframe; Label *topLabel,
*bottomLabel; FrameController *controller[31; Tfunctor *call_back_fn;

Class :MainMenu
public members:
K;A;O;
protected members:
unsigned intx_,y_,width_,height_; MenuFrame menuframe; Label *topLabel,
*bottomLabel; FrameController *controller[3]; Tfunctor *call back_fn;

16

Chapter 4

OSD DATA STRUCTURES AND FUNCTIONS

4.1 Introduction
The OSD-functions provide functions for displaying text and graphics within certain areas of the
display-screen called "OSD-region'. The MPEG-decoder allows to display several "OSD-
regions" at once, with the restriction that they are positioned in a vertical order, which means that
two regions can not share a common horizontal line. 	 -
The 	API-Library 	supports 	.up 	to 	8-regions 	by 	default.
This number can be changed by the constant definition of "MAX_OSDS" in the file
"MP API.h".
4.2 OSD Data Structure
For passing parameters to OSD-Functions, an approach was used to set-up the relevant
parameters in a dedicated data-structure called "OSD data structure" and then only pass a pointer
to this data-structure to the OSD-function.
This data structure has the following definition:

typedef struct (// Actual Information for OSD-Graphics Routines
WORD OsdIndex, // Index of OSD, must be same as nth OSD-region allocated.

(0=1 , 1=2°a, etc.)
BYTE *pSourceData; // Pointer to BitMap of Source-Data
BYTE *pShadowData; // Pointer to BitMap of New/Old Background-Data
WORD nXBits; // specify nHoriz-Bits
WORD nYLine; // specify nVert-Lines
WORD nSrcLeftSh; // specify n-Bits Souce-Data Left-shift (to drop 1. .7 bits)
WORD nOfsToNxBt; // Next xByteOffset for next Vert. Line
WORD ActXPos; If Actual X-Pixel Position in OSD
WORD ActYPos; // Actual Y-Line Position in OSD
WORD FrontColour; // Actual Front Colour index
WORD BackgColour; // Actual Background Colour index
WORD DrawFlags; // Flags used for some drawing procedures
WORD OsdXRes; // number of Horiz. Pixels (X-Resolution)
WORD OsdYRes; // number of Vert. Lines (Y-Resolution)
WORD OsdHSPos; // OSD Horizontal Start Position on Screen
WORD OsdVSPos; // OSD Vertical Start Positin on Screen
WORD nColours; 1116 or 256 Colors supported yet
WORD OsdFlags; // Bit3..0:AlphaValue, Bit4:HorizDoubling,

Bit5 : Vert. Doubling(not supported yet)
WORD *pColourTable; // pointer to ColorTable, NULL means no new color table
) Mp_OsdDataTYPE;

BYTE — it is equivalent to `short int ` i.e. it requires 8 bits.
WORD -it is equivalent to `int ` i.e. it requires 16 bits.

17

4.3 OSD Functions

Following are the various functions used in the development of the OSD graphical user interface.

void Mp_ResetOsdAllocO;

This function can be used to cancel and reset all current OSD-memory allocation and to switch
off any currently active OSD-regions. It is recommended to call this function always before
allocating a new set of OSD-regions, in case there were some regions allocated before.

OPTIRET Mp_GetFreeOsdMemWSizeO;

This function can be used to get the size of available memory in the MPEG-SDRAM
for OSD-allocation in WORDs.
Note that the size depends upon if video is currently decoded, if the so called `B-buffer-
compression" is activated, and the number and buffer sizes allocated for section-filtering.The
function is mainly available for debug purpose, to get a feeling on how big an OSD-region can
be opened under above mentioned conditions,

OPTIRET Mp_A11ocOSD(Mp_OsdDataTYPE *pODD);

This function is used to allocate the memory for a new OSD-region and also specifies the colour-
mode for this region. The following variables in the "OSD data structure" must be specified:

Osdlndex 	Index of OSD, must be same as n`" OSD-region allocated. (0=1`, 1=2"a, etc.)
OsdXRes 	Number of Horizontal Pixels (X-Resolution)
OsdYRes 	Number of Vertical Lines (Y-Resolution)
OsdHSPos 	Horizontal start-position of OSD-region on display-screen
OsdVSPos 	Vertical start-position of OSD-region on display-screen

. nColours 	number of colours (colour mode), 16 or 256 Colours supported yet
OsdFlags 	Bit3..0: Alpha-blending-value for colours with active transparency-bit

Bit4: Horizontal Doubling-flag
Bit5: Vertical Doubling flag

*pColourTable

	

	Pointer to a Colour Table, NULL means no new colour table required
(`Mp_Default256ColourTable" or "Mp_Default16ColourTable" can be
used to specify some default colours.)

* Note that the co-ordinate-system for the OSD-function starts in the upper left corner.

The amount of free memory for the OSD-allocation is dependent on the actual state of video-
decoding. If no video-decoding is active (video switched off), there is a large amount of memory
available for multiple maximum size OSDs, even in 256 color mode.
If video-decoding is active (video channel is running), there is only some limited amount of
memory available for OSDs. Thus, in this case, it is not possible to allocate a maximum size
OSD.If video-decoding is using the `compressed-mode', there is some more memory available.

18

How much memory is available in each of these 3 cases depends also on the number and buffer-
sizes for the `data-stream' allocation.

OPTIRET Mp_SetOsdPosParam
(Mp_OsdDataTYPE *pODD,WORD xSize,WORD ySize, OPTIPAR PosFlag);

The previous function "Mp_AllocOSD()" needs a lot of parameters to be set-up in the
"OSD data structure". This can be done either in the data-structure declaration or during program
execution by assignment statements. To reduce the number of assignment statements and to
avoid having to work out absolute display positions, this function can be used to set-up the
absolute position parameters. These are derived from simple size parameters and some location
flags, which are passed as arguments. The parameters are:

pODD 	Must point to the "OSD data structure" to be set-up.
xSize 	Specifies the OSD-region horizontal size in pixel-units.
ySize 	Specifies the OSD-region vertical size in line-units.
PosFlag 	Specifies some positioning and size-flags.

For PosFlag, the following flags can be specified, also combined by logical OR:

0SD_SET_CENTER Position the OSD-region in the middle of display
OSD_SET_TOP Position the OSD-region in the top of the display
OSD_SET_BOTTOM Position the OSD-region in the bottom of the display
OSD SET _LEFT Position the OSD-region at the left side of the display
OSDSET_RIGHT Position the OSD-region at the right side of the display
OSD_SET_HDOUB OSD-region shall be horizontally doubled (Hardware-Feature)
OSD_SET_VDOUB OSD-region shall be vertically doubled (Hardware-Feature)

After calling this function, the following variables in the "OSD data structure" have been filled-
in:

OsdXRes 	Number of Horizontal Pixels (X-Resolution) (same as `xSize')
OsdYRes 	Number of Vertical Lines (Y-Resolution) 	(same as `ySize')
OsdHSPos 	Horizontal start-position of OSD-region on display-screen (depends on `PosFlag')
OsdVSPos 	Vertical start-position of OSD-region on display-screen (depends on `PosFlag')
OsdFlags 	Bit3..0: Alpha-blending-value (remains unchanged)

Bit4: Horizontal-doubling-flag (OSD SET HDOUB)
Bit5: Vertical-doubling flag (OSD_SET_VDOUB)

Thus it might be handy, to call this function before allocating an OSD-region by the function
"Mp_AllocOSDQ".

19

OPTIRET Mp_ActivateOsd(OPTIPAR OsdOn, OPTIPAR O,cr.dOfl);

This function is used to activate a certain OSD-region. The "OsdOn"-parameter is the OSD-
index and specifies which one of the currently available (allocated) OSD-regions should appear
actively on the display.
If this OSD-shall replace a different one, for example at the same position with different content
(double-buffer concept), use the "OsdOff"-parameter is the index to the OSD which shall be
switched off. If no other OSD-region shall be switched off, use the same index value for
"OsdOff' as for "OsdOn".

OPTIRET Mp_DeActivateOsd(OPTIPAR OsdN);

Use this function to deactivate a currently visible OSD-region. Which one is specified by the
index-parameter "OsdN".

O.PTIRET Mp_FiJIOSD(Mp_OsdDataTYPE *pODD);

This function is used to initialise the display-memory of an OSD-region, thus filling it with a
background colour. The following variables in the "OSD data structure" are used in this case:

OsdIndex 	Index of OSD, must be same as n'}' OSD-region allocated. (0=1, 1=2nd,
etc.)

BackgColour Index of background-colour, same as index in the specified colour-table.

OPTIRET Mp_OsdDrawPixel(Mp_OsdDataTYPE *pODD);

This function can be used to set a pixel into the specified OSD-region. The following variables in
the "OSD data structure" are used in this case:

OsdIndex 	Index of OSD, must be same as nth OSD-region allocated. (0=1`, 1=2nd
etc.)

ActXPos 	defines the X-pixel position in the OSD-region
ActYPos 	defines the Y-line position in the OSD-region
FrontColour Index of pixel-colour, same as index in the specified colour-table.

OPTIRET Mp_OsdDrawRect(Mp_OsdDataTYPE *pODD);

This function can be used to draw rectangular boxes of a certain colour within the OSD-region.
The following variables in the "OSD data structure" are used in this case:

OsdIndex 	Index of OSD, must be same as nth OSD-region allocated. (0=1`, 1=2nd, etc.)
ActXPos 	defines the X-pixel position in the OSD-region
ActYPos 	defines the Y-line position in the OSD-region
nXBits 	Number of Horizontal Pixels (X-Size)
nYLine 	Number of Vertical Lines (Y-Size)
FrontColour Index of colour, same as index in the specified colour-table.

20

OPTIRET Mp_MonoDataIntoOSD(Mp_OsdDataTYPE *pODD);

This function can be used for example to transfer character-bitmaps into an OSD-region.It
converts monochrome (black/white) bit-map-data into front- or background- colour pixels of the
specified colours. If the bit-map data contains a `1'-bit, the associated OSD-pixel is set to the
specified front-colour. If the bit-map data contains a 0'-bit, the associated OSD-pixel is set to
either the specified background-colour or this pixel remains unchanged keeping its original
colour. Which option is taken, depends on the so-called background-bit-map data. The following
variables in the "OSD data structure" are used in this case:

OsdIndex Index of OSD, must be same as nth OSD-region allocated. (0=1s̀ 1=2nd'
etc.)

*pSourceData pointer to front bit-map data
*pShadowData pointer to background bit-map-data
nXBits specifies the number of horizontal pixels to process
nYLine specifies the number of vertical pixel-lines to process
nSrcLeftSh the front/background bit-map data can be left-shifted by 1..7 bits, before it

is used for the transfer operation. This might be useful if the bit-map data
does not start at the MSB position.

NOfsToNxBt defines the byte-offset for pointing to the next line of bit-map-data
ActXPos defines the target X-pixel position in the OSD-region where the transfer

starts
ActYPos defines the target Y-line position in the OSD-region where the transfer

starts.
FrontColour Index of front-colour, same as index in the specified colour-table.
BackgColour Index of background-colour, same as index in the specified colour-table.

4.4 Higher Level OSD Functions

The API-Library also contains some higher-level OSD functions.

OPTIRET Mp_TextOutput(CSTR *pStr, BYTE FontNb, Mp_OsdDataTYPE *pODD);

This function can be used to print string messages into an OSD-region.

`*pStr' points to the string to be printed.
`FontNb' is an integer (currently from 0..3) specifying a specific font.
`*pODD' points to the OSD-data structure.

OPTIRET Mp_CopyDataFromOSD(Mp_OsdDataTYPE *pODD);

This function is the reverse of the previously discussed `Mp_CopyDataIntoOSDO'-function. It
can be used to copy data from the OSD-buffer-memory into the `_ ' ` ? ' ' :. 	'within
the processor memory. The variables in the "OSD data structure" used in this case are the same
as before.

21

OPTIRET Mp_CopyDataIntoOSD (Mp_OsdDataTYPE *pODD);

This function can be used to copy data from the "OSD Shadow-Image" into the OSD-buffer
memory. The following variables in the "OSD data structure" are used in this case:

OsdIndex 	Index of OSD, must be same as nth OSD-region allocated. (0=1, 1=2nd,

etc.)
*pSourceData 	Pointer to the address of the "OSD Shadow-Image"in the rocessor

memory (Note, this might require (BYTE*) casting since `*pSourceData'
is usually a BYTE pointer)

nXBits 	 Specifies the number of WORDs per screen-line
nYLine 	 Specifies the number of vertical lines to copy
NOfsToNxBt 	Defines the word-offset for pointing to the next horizontal image-data-

line.
(This value might be equal to `nXBits' or less, if just a part of the "OSD
Shadow-Image" is copied)

ActXPos 	Defines a destination x-offset in WORD-units, in case the data transfer
does not start fully left side.

ActYPos 	Defines a destination Y-line offset, in case the transfer does not begin in
the l'` OSD-buffer line.

22

Chapter 5
ON SCREEN DISPLAY MENU'S

5.1 Various On Screen Display (OSD) Menu's
There are four keys in general which are used for following purpose

This key is used for OK selection.

x : This key is used for CANCEL selection.

1: This key is used for UP selection.

JJ This key is used for DOWN selection.

MAIN MENU:
Press Menu key on remote control; it will display Main Menu Chart

Main. Menu

Preferences

Installation
~ySC ~u.

Conditional Access

004

Press Exit key to come out from Menu

23

To Select Channel Menu:

Select Channels window from Main Menu ; Channel Menu will be displayed

Channels --Menu

Radio Channels

© O 4JIL

To Select TV/Radio Channels:
Select TV/Radio Channels window from Channel Menu; list of TV/Radio Channels will be displayed.

r~~~. yY 9t tY1''~ JY4~ i~1~~~N~ j~,t' ~ ~`~K fi~,xt t~~ThkM1 	t~ f '~'~ `~ 	~'~ y 4
 ~ , l'~~,,~4'.c ha ri sr ~.~i~?~ ~~~ "~ y ~~Y~,~, t

~ 	4~`c~ $ 	d~ t t 	'h a '~i. ~~i~ Ian 4 	~x~+ ~r%F, _ .. 7~ 	7 	l ~zL 	r

.1 - ~'"hli N~ '~`'"$ ~y f ~ iq., ~.i3J' 4ij 	('z

IRTP
.

IMCM

4. TVE

24

vtra 	n 	7v 	r a~~5r "ra3j 	°~" 	x{ 	r 	! t u9 " 	Mad 	r f~l 	 k

2. DW2

3. DW8

4. YLE .

To Select Preferences:
Select Preferences window from Main Menu; Preferences Menu chart will be displayed

Audio/Video

Channel Details

EMM Pin Setting

i2 Ql~u

)'o Select Language:
' Select Language window from Preference Menu; Following will be displayed

Text Killil
Audio 1 <JEgiish>

Audio 2

Subtitle Enllsh.

11:11111
Press Left and Right key to select different options of Audio 1, Audio2 and Subtitle.

To Select Audio/Video:
Select Audio/Video window from preferences; following will be displayed

Video Q 	f t

Audio

26

To Select Channel Details:
Select Channel Details from Preference Menu; following will be displayed

Satellite a
Yes Transponder

Audio PID 	
Yes

Yes Video PID p.f

W

No Teletext

rfJJ~ X

Press Left and Right key to select different options of Satellite, Transponder, Audio PID, Video PID and
Teletext.

To Select EMM PID Setting:
Select EMM PID Setting from Preference Menu.

EMM I':I D Setti n 	s'

1

O d 1
irk n~.4.0 ,mid„iw2"`n`i°̀ 	L%',5,wa W' .111 ird3. `...~~1„ 'il. 	.✓,~ R14w u~ 	MM.", 	. ~s av ?iW ~i .ls',GAfr i,•!' i 	~ 	 J

	
27

To Select Installation Menu:

Select Installation from Main Menu; Installation Menu Chart will be displayed

Installation Menu

Antenna Setting

Edit Satellite

RF Selection

Scanning

Change Password

Reset Factory Default

©OIcL

28

TV Type:
Select TV Type from Installation Menu; following will be displayed

=m k t

d 1
"~C 	 r 	 :,' ;4::s._-1 'r.e

Press Right and Left key to select different option of NTSC and PAL

Antenna Settings:
Select Antenna Setting from Installation Menu; following will be displayed

t: Password
nr .*T'."

Enter Password

Enter password by pressing 0 to 9 keys then Press OK key

Chapter 6
TRANSPORT STREAM

6.1 Introduction

The systems part of the Recommendation/International Standard ISO/IEC ISO/IEC 13818-
1: 1994(E) ITU-T Rec. H.222.0 (1995 E) deals with the combination of one or more
elementary streams of video and audio, as well as other data, into single or multiple streams
which are suitable for storage or transmission. Systems coding is then carried out as per syntactic
and semantic rules imposed by above specification and provides information to enable
synchronized decoding of decoder buffers over a wide range of retrieval or receipt conditions.
System coding is specified in two forms:

a. The Transport Stream &
b. The Program Stream.

Each is optimized for a different set of applications. Both the Transport Stream and Program
Stream defined in above standards provide coding syntax which is necessary and sufficient to
synchronize the decoding and presentation of the video and audio information, while ensuring
that data buffers in the decoders do not overflow or underflow. Both stream definitions are
packet-oriented multiplexes.
The video and audio data is encoded and the resulting compressed elementary streams are
packetized to produce PES packets. The basic multiplexing approach for single video and audio
elementary streams is illustrated in figure no. 6.1

Video Data Video Encoder -
Video ES T Packetizer

Video

PES
ES — Elementary Stream
PES — Packetized ES 	 Transport Stream MUX

	
Transport

Stream out
Audio

PES
Audio Data _I Audio Encoder

	Audio ES -1 Packetizer

1*.ate

Figure No.6.1 - Transport Stream Encoding

30

6.2 Transport Stream

The Transport Stream (TS) combines one or more programs with one or more independent time
bases into a single stream. PESpackets made up of elementary streams that form a program
shAte a common time base, The TS is designed for use in environments where errors are likely,
such as storage or transmission in lossy Of noisy Media. 'Transport Stream packets are 188 bytes
in length.The Transport Stream is a stream definition which is tailored for communicating or
storing one or more programs of coded data according to ITU-T Rec. H.262 ISO/IEC 138 18 `2
and ISO/IEC 13818-3 and other data in environments in which significant errors may occur.
Such errors may be manifested as bit value errors or loss of packets. Transport Streams may be
either fixed or variable rate and it is defined by the values and locations of Program Clock
Reference (PCR) fields.
The Transport Stream may be constructed by any method that results in a valid stream. It is
possible to construct Transport Streams containing one or more programs from elementary coded
data streams, from Program Streams, or from other Transport Streams which may themselves
contain one or more programs. But in most of the cases, we take a program stream , convert it
into a transport stream to carry it over a lossy environment and then recovers a valid and
identical program stream_
Transport Streams are constructed in two Iayers`_ -a system layer and a- compression layer. The
input stream to the transport stream decoder has a system layer wrapped about a compression
layer. Input streams to the Video and Audio decoders have only the compression layer.

6.2.1 Packetized Elementary Stream

Transport Streams is logically constructed from Packetized Elementary Stream (PES)
packets. The PES packet format is depicted below :

pa&-1 PE3 opko
slarI sIj. rn

pad..eI PES PESpackel data U.1 es
c:<Je id

Ierv~th HEADER
prefix

24 bits 8 bits 16 bits 3 - 256 bytes upto 65526 bytes

Figure No. 6.2 - PES Packet Format

The semantic definitions of the fields in a PES packet are as follows:

packet_ start_ code_ prefix : It is 24- bit code. Together with the stream_id that follows it
constitutes a packet start code that identifies the beginning of the packet. The
packet_start_code_prefix is the bit string `0000 0000 0000 0000 0000 0001'(ox000001).

stream_id: It is an 8-bit field. In programs , stream_id specifies the type and number of
elementary stream. In TS, stream_id may be set to any valid value which correctly describes the
elementary stream.

31

PES_packet_length : It is 16-bit field specifying the numbers of bytes in the PES packet
following the last byte of the field. A value of 0 indicates that the PES packet length is neither
specified nor bounded and is allowed only in PES packets whose payload is a video elementary
stream contained in TS packets.

Optional PES Header field : It can be 3 to 259 bytes long. It has scrambling control
information, priority bits, copyright information , flags, time stamps information , stuffing bytes
etc.
PES Packet Data Bytes : It contains the payload and can be up to 65526 bytes long.

PES packets may be much larger than the size of a Transport Stream packet.A continuous
sequence of PES packets of one elementary stream with one stream ID may be used to construct
a PES Stream. When PES packets are used to form a PES stream, they shall include Elementary
Stream Clock Reference (ESCR) fields and Elementary Stream Rate (ES Rate) fields. The PES
stream data shall be contiguous bytes from the elementary stream in their original order and does
not contain necessary system information which is there in TS packets.

6.2.2 Timing Model

Systems, Video and Audio all have a timing model in which the end-to-end delay from the signal
input to an encoder to the signal output from a decoder is a constant. This delay is the sum of
encoding, encoder buffering, multiplexing, communication or storage, de-multiplexing, decoder
buffering, decoding, and presentation delays.
As part of this timing model all video pictures and audio samples are presented exactly once and
the inter-picture interval and audio sample rate are the same at the decoder as at the encoder. All
timing is defined in terms of a common system clock, referred to as a System Time Clock. In the
Transport Stream, the system clock frequency is constrained to have the exactly specified ratio to
the audio and video sample clocks at all times.

6.2.3 Individual Stream Operations (PES Packet Layer)

The principal stream-specific operations are:
1. De-multiplexing and
2. Synchronizing playback of multiple elementary streams.

De-multiplexing

On encoding, transport streams are formed by multiplexing elementary streams, program
streams, or the contents of other TS. Elementary streams may include private, reserved, and
padding streams in addition to audio and video streams.
The streams are temporally subdivided into packets, and the packets are serialized. A PES packet
contains coded bytes from one and only one elementary stream.
For transport streams, the packet length is 188 bytes. After decoding, de-multiplexing is required
to reconstitute elementary streams from the multiplexed Transport Stream with the help of
Stream_ id codes and Packet ID codes in the transport stream.

32

Synchronization

Synchronization among multiple elementary streams is accomplished with Presentation Time
Stamps (PTS) in the Program Stream and Transport streams. Time stamps are generally in units
of 90kHz. Each program in a TS, which may contain multiple programs, may have its own time
base. The time bases of different programs within a TS may be different. Because PTSs apply to
the decoding of individual elementary streams, they reside in the PES packet layer of both the
TS. End-to-end synchronization occurs when encoders save time stamps at capture time, when
the time stamps propagate with associated coded data to decoders, and when decoders use those
time stamps to schedule presentations.
Synchronization of a decoding system with a channel is achieved through the use of the SCR in
the PS and by its analog, the PCR, in the TS. The SCR and PCR are time stamps encoding the
timing of the bit stream itself, and are derived from the same time base used for the audio and
video PTS values from the same program. Since each program may have its own time base, there
are separate PCR fields for each program in a TS containing multiple programs. A program shall
have one and only one PCR time base associated with it.

6.2.4 Transport Stream Coding Structure and Parameters

In Transport Stream data from each elementary stream are multiplexed together with
information that allows synchronized presentation of the elementary streams within a program. A
TS consists of one or more programs. Audio and video elementary streams consist of access
units. Elementary Stream data is carried in PES packets. A PES packet consists of a PES packet
header followed by packet data. PES packets are inserted into Transport Stream packets.
The first byte of each PES packet header is located at the first available payload location of a TS
packet. The PES packet header begins with a 32-bit start-code that also identifies the stream or
stream type to which the packet data belongs. The PES packet header may contain decoding and
presentation time stamps (DTS and PTS). The PES packet header also contains other optional
fields. The PES packet data field contains a variable number of contiguous bytes from one
elementary stream. Transport Stream packets begin with a 4 byte prefix, as shown in the table
no. 6.1.

Ira nsp:t I
pacii
	

header 	payload 	header 	 header 	payiwd
Ire n

s;;n 	ItImp Ti 	payicod 	Transport 	 Iransp_.I 	adaptation
b`I; 	avnr 	Unil sti 	çtiaI 	h'IO 	svramblina 	field

indiolor 	it Jaitct 	 wnlrol 	o_ntrd

y 	adaptation

field

Figure No: 6.3 — TS Packet Format

33

Syntax 	 No. of bits Mnemonics
transport_packeto {

sync_byte 8 bslbf
transport_ error_ indicator 1 bslbf
payload_unit_start_indicator 1 bslbf
transport_priority 1 bslbf
PID 13 uimsbf
transport_scrambling_control 2 bslbf
adaptation_ field_ control 2 bslbf
continuity_counter 4 uimsbf

if(adaptation_field_control='10' 	adaptation_field_control =='l 1'){
adaptation_field()
}
if(adaptation_field_control='O1' JJ adaptation_field_control ='11') {
for (i=0;i<N;i++){

data_byte
}
}

8 bslbf

Table No. 6.1-- Transport packet

The PID identifies, via the Program Specific Information (PSI) tables, the contents of the data
contained in the TS packet. TS packets of one PID value carry data of one and only one
elementary stream. The PSI tables are carried in the transport stream. There are four PSI tables
namely - Program Association Table (PAT) , Program Map Table (PMT) , Conditional Access
Table (CAT) , Network Information Table (NIT). These tables contain the necessary and
sufficient information to de multiplex and present programs. TS packets may be null packets.
Null packets are intended for padding of transport streams.

6.3 Semantic definition of fields in TS Packet

sync_byte -- The sync_byte is a fixed 8 bit field whose value is '0100 0111' (0x47).

transport_ error_ indicator -- The transport_error_indicator is a I bit flag. When set to 'I' it
indicates that at least 1 uncorrectable bit error exists in the associated TS packet. This bit may be
set to '1' by entities external to the transport layer. When set to '1' ,this bit shall not be reset to '0'
unless the bit value(s) in error have been corrected.

payload_unit_start_indicator -- The payload_unit_start_indicator is a I bit flag which has
normative meaning for Transport Stream packets that carry PES packets or PSI data.When the
payload of the Transport Stream packet contains PES packet data, the
payload_unit start_ indicator has the following significance:

A '1' indicates that the payload of this Transport Stream packet will commence with the
first byte of a PES packet and a '0' indicates no PES packet shall start in this Transport Stream

34

packet. If the payload_unit_start_indicator is set to '1' then one and only one PES packet starts in
this Transport Stream Packet.
When the payload of the Transport Stream packet contains PSI data, the
payload_ unit_ start_ indicator has the following significance:
If the Transport Stream packet carries the first byte of a PSI section, the
payload_ unit_start_indicator value shall be ' 1', indicating that the first byte of the payload of this
Transport Stream packet carries the pointer_f eld. If the Transport Stream packet does not carry
the first byte of a PSI section, the payload_ unit_ start_ indicator value shall be '0', indicating that
there is no pointer__field in the payload. For null packets, the payload_unit_start_indicator shall
be set to '0'.

transport_priority -- The transport_priority is a I bit indicator. When set to '1' it indicates that
the associated packet is of greater priority than other packets having the same PID which do not
have the bit set to '1'. The transport mechanism can use this to prioritize its data within an
elementary stream. Depending on the application the transport_priority field may be coded
regardless of the PID or within one PID only. This field may be changed by channel specific
encoders or decoders.

PID -- The PID is a 1-3 bit -field, - indicating the-type-of-the data stored-in-the packet payload. PID _
value 0x0000 is reserved for the Program Association Table , PID value 0x0001 is reserved for
the Conditional Access Table, PID values 0x0002-Ox000F are reserved. PID value OxIFFF is
reserved for null packets. Refer table no. 6.1

transport_scrambling_control -- This 2 bit field indicates the scrambling mode of the
Transport Stream packet payload. The TS packet header, and the adaptation field when present,
shall not be scrambled. In the case of a null packet, the value of the transport_scrambling_control
field shall be set to '00'.

adaptation_field_control -- This 2 bit field indicates whether this TS packet header is followed
by an adaptation field and/or payload. Decoders shall discard TS packets with the
adaptation_field_control field set to a value of'00'. In the case of a null packet, the value of the
adaptation_field_control shall be set to '01'.

continuity_counter -- The continuity_counter is a 4 bit field incrementing with each TS packet
with the same PID. The continuity_counter wraps around to 0 after its maximum value. The
continuity_counter shall not be incremented when the adaptation_field_control of the packet
equals'00' or '10.

data_byte -- Data bytes shall be contiguous bytes of data from the PES packets, PSI sections,
packet stuffing bytes after PSI sections, or private data not in these structures as indicated by the
PID. In the case of null packets with PID value OxIFFF, data_bytes may be assigned any value.
The number of data_bytes, N, is specified by 184 minus the number of bytes in the
adaptation_fieldo.

35

Chapter 7
PROGRAM SPECIFIC INFORMATION

7.1 Various PSI Tables
Program Specific Information (PSI) includes both normative data and private data that enable de-
multiplexing of programs by decoders. Programs are composed of one or more elementary
streams, each labeled with a PID. Programs, elementary streams or parts thereof may be
scrambled for conditional access. However, Program Specific Information shall not be
scrambled. In Transport Streams, Program Specific Information is classified into four table
structures as mentioned below. While these structures may be thought of as simple tables, they
shall be segmented into sections and inserted in TS packets. The PSI tables are carried in the
Transport Stream. There are four PSI tables.
1. Program Association Table (PAT)
2. Program Map Table (PMT)
3, Conditional Access Table (CAT)
4. Network Information Table (NIT)
These tables contain the necessary and sufficient information to demultiplex and present
programs. TS packets may be null packets. Null packets are intended for padding of transport
streams. A section is a syntactic structure that shall be used for mapping all PSI tables into
Transport Stream packets. Along with PSI tables, it is possible to carry private data tables. For
this purpose, a pnvate section is aennea.

I 	Value 	 Descrintion

Ox0000 	 Program Association Table
Ox0001 	 Conditional Access Table
0x0002-0x000F 	 Reserved
Ox0010 	 May be assigned as network_PID,
........ 	 Program_ map _PtD,elementary_PID,
Ox1FFE 	 or for other purposes.

Ox1FFF
	

Null packet

Table 7.1 -- PID Table
Within a TS, packet stuffing bytes of value OxFF may be found after the last byte of a section, in
which case all following bytes until the end of the TS packet shall also be stuffing bytes of value
OxFF. These bytes may be discarded by a decoder. In such a case, the payload of the next
Transport Stream packet with the same PD value shall begin with a pointer field of value 0x00
indicating that the next section starts immediately thereafter.
Each Transport Stream shall contain one or more Transport Stream packets with PID value
0x0000. These Transport Stream packets together shall contain a complete list of all programs
within the Transport Stream. All Transport Stream packets which carry a given
TS_ program_map_section shall have the same PID value. During the continuous existence of a
program, including all of its associated events, the program_map_PID shall not change.

36

program definition shall not span more than one TS_program_map_section. The maximum
number of bytes in a section of a PSI table is 1024 bytes. The maximum number of bytes in a
private_ section is 4096 bytes. There are no restrictions on the occurrence of start codes, sync
bytes or other bit patterns in PSI data.

7.2 Program Association Table

The Program Association Table (PAT) provides the correspondence between a program_number
and the PID value of the TS packets which carry the program definition. The program_number is
the numeric label associated with a program. The overall table is to be split into one or more
sections with the following syntax. Program number 0x0000 is reserved to specify the network
PID. This identifies the TS packets which carry the Network Information Table.
Each Transport Stream shall contain one or more Transport Stream packets with PID values
which are labeled under the program association table as Transport Stream packets containing
TS program map sections. Each program listed in the Program Association Table shall be
described in a unique TS_program_map_section.

- 	- 	Syntax- No. of bits Mnemonics
program_ association_sectionO { - 	-

table_id 8 uimsbf
section_syntax_indicator 1 bslbf
'0' 1 bslbf
reserved 2 bslbf
section_length 12 uimsbf
transport_stream_id 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_ next_ indicator 1 bslbf
section_number 8 uimsbf
last_ section_ number 8 uimsbf

for (i=0; i<N;i++)
program_number 16 uimsbf
reserved 3 bslbf

if(program_number =='0') {
network_PID 13 uimsbf

}
else

program_map_PID
}

13 uimsbf

}
CRC_32 32 rpchof

Table No. 7.2- Program Association Section

37

Any changes in the programs carried within the Transport Stream shall be described in an
updated version of the Program Association Table carried in Transport Stream packets with PID
value 0x0000.

7.2.1 Table_id Assignments

The table id field identifies the content of a Transport Stream PSI section as shown in table
below:

Value 	 Description
Ox00 	 Program_ association_ section
Ox01
conditional_access _section(CA_section)
0x02 	 TS_program_map_section
0x03-Ox3F 	 Reserved
0x40-OxFE 	 User private
OxFF 	 Forbidden

Table No. .7.3 - Table-id assignment values

7.2.2 Semantic definition of fields in Program Association Section

table_id -- This is an 8 bit field, which shall be set to 0x00 section_syntax_indicator -- The
section_syntax_indicator is a 1 bit field which shall be set to'1'.

section_length -- This is a twelve bit field, the first two bits of which shall be '00. It specifies
the number of bytes of the section, starting immediately following the section_length field, and
including the CRC. The value in this field shall not exceed 1021

transport_stream_id -- This is a 16 bit field which serves as a label to identify this Transport
Stream from any other multiplex within a network. Its value is defined by the user.

version_number -- This 5 bit field is the version number of the whole Program Association
Table. The version number shall be incremented by 1 whenever the definition of the Program
Association Table changes. Upon reaching the value 31, it wraps around to 0. When the
current_ next_ indicator is set to '1', then the version_number shall be that of the currently
applicable Program Association Table. When the current_ next_ indicator is set to '0', then the
version_number shall be that of the next applicable Program Association Table.

current next_ indicator -- A 1 bit indicator, which when set to 'l' indicates that the Program
Association Table sent is currently applicable. When the bit is set to '0', it indicates that the table
sent is not yet applicable and shall be the next table to become valid.

section_number -- This 8 bit field gives the number of this section. The section number of the
first section in the Program Association Table shall be 0x00. It shall be incremented by 1 with
each additional section in the Program Association Table.

last section_number -- This 8 bit field specifies the number of the last section (that is, the
section with the highest section_number) of the complete Program Association Table.

program_number -- Program_number is a 16 bit field. It specifies the program to which the
program_map_PID is applicable. If this is set to 0x0000 then the following PID reference shall
be the network PID. For all other cases the value of this field is user defined. This field shall not
take any single value more than once within one version of the program association table. The
program_number may be used as a designation for a broadcast channel, for example.

network_PID -- network_PID is a 13 bit field specifying the PID of the Transport Stream
packets which shall contain the Network Information Table. The value of the network_PID field
is defined by the user, but shall only take values as specified in Table 7.2. The presence of - the
network PID is optional.

program_map_PID -- program_ map _PID is a l3 bit- field specifying the PHI) of-the-Transport - - -
Stream packets which shall contain the program_map_section applicable for the program as
specified by the program_number. No program_number shall have more than one
program_map_PID assignment. The value of the program_map_PID is defined by the user, but
shall only take values as specified in Table 7.2

CRC 32 -- This is a 32 bit field that contains the CRC value

7.3 Program Map Table

The Program Map Table (PMT) provides the mappings between program numbers and the
program elements that comprise them. A single instance of such a mapping is referred to as a
"program definition.".The PMT is the complete collection of all program definitions for a TS.
This table shall be transmitted in packets, the PID values of which are selected by the encoder.
More than one PID value may be used, if desired. The table may be segmented into one or more
sections, before insertion into TS packets, with the following syntax. In each section the section
number field shall be set to zero. Sections are identified by the program_number field.

39

Syntax No. of bits Mnemonics
TS_program_map_section() {

table_id 8 uimsbf
section_syntax_indicator I bslbf

1 bslbf
reserved 2 bslbf
section_length 12 uimsbf
program_number 16 uimsbf
reserved 2 bslbf
version_number - 	- 5 uimsbf
current_ next_ indicator 1 bslbf
section_number 8 uimsbf
last_section number 8 uimsbf

Y reserved 3 bslbf
PCR_PID 13 uimsbf
reserved 4 bslbf
program_ info_ length 12 uimsbf

for (i=O; i<N; i++) (
descriptorO

}
for (i=0;i<N1;i++) {

stream_type 8 uimsbf
reserved 3 bslbf
elementary_PID 13 uimsnf
reserved 4 bslbf
ES_info_length 12 uimsbf

for (i=O; i<N2; i++) {
descriptor()
}

}
CRC_32 32 rpchof

Table No. 7.4 — Transport stream Program Map Section

Every program shall be fully defined within the Transport Stream itself Private data which has
an associated elementary_PID field in the appropriate Program Map Table section is part of the
program. Other private data may exist in the Transport Stream without being listed in the
Program Map Table section. The most recently transmitted version of the
TS_program_map_section with the current_next_indicator set to a value of'l' shall always apply
to the current data within the Transport Stream. Any changes in the definition of any of the
programs carried within the Transport Stream shall be described in an updated version of the
corresponding section of the program map table carried in Transport Stream packets with the
PID value identified as the program_map PID for that specific program. Sections with a table_id

value of 0x02 shall contain Program Map Table information. Such sections may be carried in
Transport Stream packets with different PID values.

7.3.1 Semantic definition of fields in Program Map Section

program_number -- program_number is a 16 bit field. It specifies the program to which the
program_map_PID is applicable. One program definition shall be carried within only one
TS_program_map_section. This implies that a program definition is never longer than 1016
bytes.

PCR_PID -- This is a 13 bit field indicating the PID of the TS packets which shall contain the
PCR fields valid for the program specified by program_ number. If no PCR is associated with a
program definition for private streams then this field shall take the value of Ox1FFF.

program_ info_ length -- This is a 12 bit field, the first two bits of which shall be '00'. It specifies
the number of bytes of the descriptors immediately following the program_info length field.

stream type , This is an 8 bit field specifying the type of program element carried within the
packets with the PID whose value is specified by the elementary PID.

elementary PID -- This is a 13 bit field specifying the PID of the Transport Stream packets
which carry the associated program element.

ES_info_length -- This is a 12 bit field, the first two bits of which shall be '00'. It specifies the
number of bytes of the descriptors of the associated program element immediately following the
ES_ info _length field.

7.4 Conditional Access Table

The Conditional Access Table(CAT)provides the association between one or more CA systems,
their EMM streams and any special parameters associated with them. Whenever one or more
elementary streams within a Transport Stream are scrambled, Transport Stream packets with a
PID value 0x0001 shall be transmitted containing CA_sections containing CA_descriptors
appropriate to the scrambled streams. The transmitted Transport Stream packets shall together
form one complete version of the conditional access table. The most recently transmitted version
of the table with the current_ next_ indicator set to a value of '1' shall always apply to the current
data in the Transport Stream. Any changes in scrambling making the existing table invalid or
incomplete shall be described in an updated version of the conditional access table. These
sections shall all use table_id value 0x01. Only sections with this table_id value are permitted
within Transport Stream packets with a P1D value of 0x0001. The table may be segmented into
one or more sections, before insertion into TS packets, with the following syntax:

41

Syntax No. of bits Mnemonics
CA_sectionO {

tableid 8 uimsbf
section_syntax_indicator 1 bslbf
'0' 1 bslbf
reserved 2 bslbf

section_length 12 uimsbf
reserved 18 bsibf
version_number 5 uimsbf
current_next_indicator 1 bslbf
section_number 8 uimsbf
last_section number 8 uimsbf

for (i=0; i<N;i++) (~
descriptorO

}
CRC_32

}
32 rpchof

Table No. 7.5 —Conditional Access Section

* it's fields has been previously defined. Refer PAT.

7.5 Network Information Table

The Network Information Table (NIT) is optional and its contents are private. If present it is
carried within Transport Stream packets that shall have the same PID value, called the
network_PID. The network_PID value is defined by the user and, when present, shall be found in
the Program Association Table under the reserved program_number 0x0000. If the network
information table exists, it shall take the form of one or more private_sections.

7.5.1 Private Section

The use of the private_section is mandatory when private data is sent in TS packets with a PID
value designated as a PMT PID in the PAT. This private_section allows data to be transmitted
with the absolute minimum of structure while enabling a decoder to parse the stream.
The sections may be used in two ways:

If the section_ syntax_ indicator is set to '1', then the whole structure common to all tables
shall be used; if the indicator is set to '0', then only the fields 'table_id' through
'private_sectionlength' shall follow the common structure syntax and semantics and the rest of
the private_section may take any form the user determines. A private table may be made of
several private_sections, all with the same table_id.

NETWORK INFORMATION
PROGRAM ASSOCIATION TABLE (PID 0) 	 TABLE

CONDITIONAL ACCESS TABLE (PID 1)

Figure No. 7.1 --Program and Network Mapping Relationships

43

7.6 Program Element Descriptors

Program element descriptors are structures which have a format which begins with an 8 bit tag
value which is followed by an 8 bit descriptor length and data fields.

J

7.6.1 Semantic definition of fields in Program Element Descriptors

descriptor_tag -- The descriptor tag is an 8 bit field which identifies each descriptor. Its
meaning is given in table 2-40. An X' in the TS or PS columns indicates the applicability of the
descriptor to either the Transport Stream or Program Stream respectively.

DescriptorDescriptor_tag TS PS Identification
2 X X video_stream_descriptor
3 X X audio__ stream_ descriptor
8 X X video_ window_descriptor
9 X X CA descri for

Table No. 7.6 -- Program Element Descriptors

descriptor_length -- The descriptor_length is an 8 bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field.

7.7 Video Stream Descriptor

The Video Stream Descriptor (VSD) provides basic information which identifies the coding
parameters of a video elementary stream.

I 	Syntax 	 No. of bits 	Mnemonics
video_stream descriptor(){

descriptor tag 8 uimsbf
descriptor_length 8 uimsbf
multiple_ frame_ rate_tlag 1 bslbf
frame rate_code 4 uimsbf
MPEG 1_only_flag 1 bslbf
constrained_parameter_flag 1 bslbf
still_picture_flag I bsfbf

if (MPEG_1_only_flag = 1){
profile_ and_ level_indication 8 uimsbf
chroma_format 2 uimsbf
frame_ rate_extension_fiag 1 bslbf
reserved

}
5 bslbf

Table No. 7.7 -- Video Stream Descriptor

7.7.1 Semantic definitions of fields in Video Stream Descriptor

multiple_ frame_rate_flag -- This is a I bit field which when set to '1' indicates that multiple
frame rates may be present in the video stream. When set to a value of '0' only a single frame rate
is present.
frame_ rate_ code -- This is a 4 bit field except that when the multiple_frame_rate_flag is set to a
value of ' 1' the indication of a particular frame rate also permits certain other frame rates to be
present in the video stream.
MPEG_i_only_flag -- This is a I bit field which when set to '1' indicates that the video stream
contains only data.
constrained_parameter_flag -- This is a I bit field which when set to 'I' indicates that the video
stream shall not contain unconstrained video data.
still_picture_flag -- This is a I bit field, which when set to '1' indicates that the video stream
contains only still pictures. If the bit is set to '0' then the video stream may contain either moving
or still picture data.
profile_ and_ level indication -- This is an 8 bit field which is set to the same value as the
profile_ and_ level_ indication fields in the video stream.
chroma_format -- This is a 2-bit- field. -which is -set-to the-same value-as- the chroma__ format
fields in the ITU-T Rec. H.262 I ISO/IEC 13818-2 video stream.
frame_rate_extension_flag -- This is a 1 bit flag which when set to '1' indicates that either or
both of the frame rate extension _n and frame rate extension d fields in the video stream are
non-zero.

7.8 Audio Stream Descriptor

The Audio Stream Descriptor (ASD) provides basic information which identifies the coding
version of an audio elementary stream.

Syntax No. of bits Mnemonics
audio_stream_descriptor() {

descriptor tag 8 uimsbf
descriptor_ length 8 uimsbf
free_format_flag 1 bslbf
ID 1 bslbf
layer 2 bslbf
variable_ rate_audio_indicator 1 bslbf
reserved 3 bslbf

Table No. 7.8 -- Audio Stream Descriptor

45

7.8.1 Semantic definition of fields in Audio Stream Descriptor

free_ format_ flag -- This is a 1 bit field which when set to '1' indicates that the audio stream data
has the bitrate_index set to '0000'. If set to '0' then the bitrate_index is not '0000'.
ID -- This is a 1 bit field which is set to the same value as the ID fields in the audio stream.
layer -- This is a 2 bit field which is set to the same value as the layer fields in the audio stream.
variable_rate audio_indicator -- This is a 1 bit flag, which when set to '1' indicates that the
associated audio stream may contain audio frames in which the bit rate changes. In all cases the
audio stream is intended to be presented without any decoding discontinuity

7.9 Video Window Descriptor

The Video Window Descriptor (VWD) is used to describe the window characteristics of the
associated video elementary stream.

Syntax No. of bits Mnemonics
video_ window_descriptor() {

descriptor tag 8 uimsbf
descriptor length 8 uimsbf
horizontal_ offset 14 uimsbf
vertical_offset 14 uimsbf
window_priority 4 uimsbf

Table No. 7.9 -- Video Window Descriptor

7.9.1 Semantic definition of fields in Video Window Descriptor

horizontal_ offset -- The value indicates the horizontal position of the top left pixel of the current
video display window or display rectangle if indicated in the picture display extension on the
target background grid for display as defined in the target_background_grid_descriptor. The top
left pixel of the video window shall be one of the pixels of the target background grid.

vertical_offset -- The value indicates the vertical position of the top left pixel of the current
video display window or display rectangle if indicated in the picture display extension on the
target background grid for display as defined in the target_background_grid_descriptor. The top
left pixel of the video window shall be one of the pixels of the target background grid.

window_priority -- The value indicates how windows overlap. A value of 0 being lowest
priority and a value of 15 is the highest priority, i.e. windows with priority 15 are always visible.

7.10 Conditional Access Descriptor

The Conditional Access Descriptor (CAD) is used to specify both system-wide conditional
access management information such as EMMs and elementary stream-specific infor mation
such as ECMs. It may be used in both the TS_program_map_section and the
program_stream_map. If any elementary stream is scrambled, a CA descriptor shall be present
for the program containing that elementary stream. If any system-wide conditional access
management information exists within a Transport Stream, a CA descriptor shall be present in
the conditional access table.
When the CA descriptor is found in the TS_program_map_section (table_id = 0x02), the
CA_PID points to packets containing program related access control information, such as ECMs.
Its presence as program information indicates applicability to the entire program. In the same
case, its presence as extended ES information indicates applicability to the associated program
element. Provision is also made for private data.
When the CA descriptor is found in the CA_section (table_id = 0x01), the CA _PD points to
packets containing system-wide and/or access control management information, such as EMMs.
The contents of the Transport Stream packets containing conditional 'access information are
privately defined.

7.10.1 Semantic definition of fields in Conditional Access Descriptor

CA_system_ID -- This is an 16 bit field indicating the type of CA system applicable for either
the associated ECM and/or EMM streams. The coding of this is privately defined.
CA_PID -- This is an 13 bit field indicating the PD of the Transport Stream packets which
shall contain either ECM or EMM information for the CA systems as specified with the
associated CA_system_ID. The contents (ECM or EMM) of the packets indicated by the
CA_PID is determined from the context in which the CA_PID is found, i.e. a
TS_program_map_section or the CA table in the Transport Stream, or the stream_id
field in the Program Stream.

Syntax No. of bits Mnemonics
CA_descriptorO {

descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
CA_system_ID 16 uimsbf
reserved 3 bslbf
CA _Ill) 13 uimsbf

for (i=0; i<N; i++) {
private_data_byte

}
8 uimsbf

Table No. 7.10 Conditional Access Descriptor

47

Chapter 8
FLOW CHARTS AND FUNCTIONS

8.1 Mnemonics
The following mnemonics are defined to describe the different data types used in the coded bit-
stream.
bslbf 	Bit string, left bit first
ch 	Channel.
rpchof 	Remainder polynomial coefficients, highest order first.
tcimsbf 	Two's complement integer, msb (sign) bit first.
uimsbf 	Unsigned integer, most significant bit first.
vlclbf 	Variable length code, left bit first
8.2 Method of describing bit stream syntax
Each data item in the bit stream is described by its name, its length in bits, and a mnemonic for
its type and order of transmission. The action caused by -a decoded data element in a bit stream
depends on the value of that data element and on data elements previously decoded. The
following constructs are used to express the conditions when data elements are present.

while (condition) {
data_element

} // if the condition is true, then the group of data elements occurs next in the data stream. This
repeats until the condition is not true.

do {
data_element

while (condition) // The data element always occurs at least once. The data element is repeated
until the condition is not true.

if (condition) {
data element

} //If the condition is true, then the first group of data elements occurs next in the data stream.
else {
data_element

)// If the condition is not true, then the second group of data elements occurs next in the data
stream.
for (i = 0;i<n;i++) {
data_element

}
The group of data elements occurs n times depending upon the value of the loop variable i.

8.3 Flowchart for extracting packets from TS

START

Get Transport Stream
(PSI +SI+A/V)

Set Filter for PAT:
Set Table id 0x00
Set time out=OxOO

Decode PAT:
Extract Program_No
with Prog_id.

IF 	Yes 	Decode NIT

Prog.Num
	 (Optional)

=0 ?

IM
For (i=1; i <= valid_PMT. max; ++i)
{
Decode PMT for each value of
Prog_map_Pid }

A) 49

A

Video_PID (optional)
Audio_PID (optional)
TeleText_PID (optional)
PCR_PID (must)

Set Filter for Audio/Video/Text

Yes

Check for 	 Decode CA_Descriptor in PMT
scrambling
bits in
header

Get ECM PID

Set Filter for ECM PID

Pass ECM Packets to Smart Card

Get Control Word (CW) from Smart Card
Start Decoding
Audio/Video/Text
with respect to
PCR

Set CW's in the Descrambler

TV
~~T~AL LYE

50 .~~o

K
~ c. No.......,

8.4 Functions to extract information from TS

Following functions have been developed to extract and decode packets from TS:

OPTIRET TD_ProcessDescriptor O:

This function is used for processing of CA_Descriptor in PMT. It takes program index.
PMT_PID and total descriptor length as arguments. Read each CA_Descriptor, compare the
CA_SYS_ID with the CONAX one and if found matching thenonly process that descriptor
further. If match found then copy that descriptor to SI_CAT_INFO structure.

OPTIRET TD_ProcessDescriptor():
This function processes all the descriptor except CA_Descriptor. Take same arguments

as above along with stream type to differteniate whether it is audio or video. Each descriptor is
differentiated by its descriptor tag with as in IS013818-1 and store them in their structures.

OPTIRET Decode_EMMO:

This function decodes the EMM packets- with the PD returned by- Smart- Card (in
CA_Descriptor). EMM packets contains the management information for the subscriber.

OPTIRET Decode CAT ():

This function copies complete CAT packet with all CA_Descriptor to EMM_INFO. Now
this complete CAT packet will be parsed to Smart Card and Smart Card will select its
CA_Descriptor and return to host.

OPTIRET Decode ECM O:

This function decodes the ECM packet with the PID returned by SC (in CA_Descriptor).
This packet contains the encrypted control words (CW's).Copy this packet in the structure
which is supposed to parse to smart card.

OPTIRET Decode_PAT Q:

This function decodes PAT. Each PAT contains the packet ID of each PMT packet along
with their program numbers. If prog_num =0 , then this is for NIT and all other are for PMT
packets. Store all this information in respective structures.

OPTIRET Decode_PMT ():

This function decodes PMT for each program. Take PMT_PID as argument. This PMT
packet contains the PCR , Audio , Video PID along with their descriptors. This also contains
CA_Descriptor which contains ECM PID. Now this audio , video, PCR PID is set for
synchronization between audio and video.

51

Chapter 9
RESULTS AND DISCUSSIONS

Results of the project work carried out at HFCL, R&D Division where I was
involved in the team of set-top Box project, as trainee are as follows:

One part of the project was to develop graphical user interface (GUI) also called
Screen Display (OSD) for making the use of STB convenient and interactive various
menus have been developed for this purpose using C/C++ which pop-up on the TV
screen when the user wants to use STB along with the analog TV. The user can make
his/her choices while navigating through the menus. Also he/she can make his/her
personal settings such as setting the passwords. Some of these menus that have been
developed together with the project team are shown in the chapter 5.

Second part was to extract the packets from the packetized transport stream which is
MPEG encoded and to decode them and present them on the TV screen. Transport
stream is fed to the STB through the cable which is containing TS packets containing
program specific information in the form of PSI tables and then setting filters and
extracting them.

52

Chapter 10

CONCLUSION

Major obstacle in Set-top Box is to develop a common conditional access (CA) system.
Each broadcaster generally defines its own CA due to security reasons. However, there is
increasing realization around the world that viewers should be able to receive all digital
programs from one STB only. This manifestation is concrete decision policy in a number
of countries. DVB consortium in Europe, USA and Japan has likewise declared the goal
to provide an open solution, enabling multiple service providers to operate through a
compatible cost effective receiver at home. For the same, it is important to keep the CA
function as a module and provide a standard interface for building into a common system
as needed.

CA system is user-friendly at any stage in the transaction e.g. it does not require
any special action when changing channel and no significant delay in displaying TV
signal. CA system must be effective in preventing piracy i.e. unauthorized viewing by
users who are not entitled access to particular program or service. Smart cards must be
resistant to tampering.

53

REFERENCES

[1] Jain P.C. , et al , "Digital satellite , cable and terrestrial Set-top Box with
conditional access system", Proc. of National conference. on Communication
(NCC-2003), IIT Madras , Feb. 2003.

[2] Jain P.C. , Mitra V. , "Digital Set-top Box — The State of the Art ", Proc.
International conference and exhibition on terrestrial and satellite broadcasting,
BES Review, vol. VIII , no.2 , April- June 2002 , pp 70-75.

[3] Jain P.C. et al " Low cost Interactive cable television Set-top Box" , Proc. of
conference on affordable telecom and IT solutions for developing countries, IIT
Chennai , Feb-March 2000.

[4] Driscoll G.O., " Essential Guide to Digital Set-top Box & Interactive TV ", pub.
PHI PTR, ed. 1999.

[5] Mead D.C., " Direct Broadcast Satellite Communications", pub. Addison Wesley
Wireless Communication Series, ed. 2000.

[6] Fujitsu OSD Functions Manual
[7] MPEG-2 Transport Stream Manual, ITU/IEC 13818-1
[8] www.conax.com
[9] www.tektronix.com
[10] http://canalplus-technologies.com

Appendix A

Receiving of digital
signals either by
Satellite, Off Air or
through local digital
channels

Compression and
Encoding

CODFM
for Terrestrial

Modulation
QAM
for Cable

Conditional Access System
	 QPSK for Satellite

Network Management
SMS 	SAS 	Data

Simplified block diagram of a digital broadcasting system

Appendix B

Cable signal (50-860 Mhz)

Cable Tuner

QAM
Demodulator

FEC

Transport Stream

Video Decoder I Video
D
E 	 TV
M 	 Audio

Audio Decoder
U
X

Data
CPU

MPEG-2 Decoder

Digital Set-top Box for Cable

	Titel
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Conclusion
	References
	Appendix

