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ABSTRACT 

In this dissertation, application of soft computing techniques in speech 

recognition has been explored. At present the prevailing technology for speech 

recognition is predominantly Hidden Markov Model based. a statistical framework that 

supports both acoustic and temporal modeling. Despite their state-of-the-art performance, 

HMMs make a number of sub optimal modeling assumptions \ that limit their potential 

effectiveness. Neural networks avoid many of these assumptions, while they can also 

learn complex functions, generalize effectively, tolerate noise, and support parallelism. 

Neural networks can be used for situations where speech feature vectors are non-

linearly distorted, such as in noisy reverberant speech or telephone speech. By using a 

neural network, the adaptation process requires a small amount of training data. First, a 

neural network is applied to the computation of an inverse distortion function. This type 

of network requires simultaneously recorded input and target pairs for training. 

Traditionally, neural networks are trained to minimize the mean squared error between 

the network output and the corresponding target value. However, minimizing the mean 

squared error does not guarantee maximum recognition accuracy. Therefore, a new 

objective function for the neural network is proposed, which makes use of fuzzy rules. 

Speech recognition throws up a myriad of problems, these problems are generally 

of pattern recognition, approximation and optimization. These problems have imprecise 

and distorted data. As a result conventional techniques are grossly inadequate in this 

domain. Fuzzy logic is the most appropriate in these circumstances. Optimization is 

necessary while designing Neural Network and handling the input features. This 

dissertation has explored the application of this paradigms under various conditions. 
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Chapter I 
INTRODUCTION 

1.1 MOTIVATION 

Speech is a natural mode of communication for people. We learn all the 

relevant skills during early childhood, without instruction, and we continue to rely on 

speech communication throughout our lives. It comes so naturally to us that we don't 

realize how complex a phenomenon speech is. The human vocal tract and articulators 

are biological organs with nonlinear properties, whose operation are not just under 

conscious control but also affected by factors ranging from gender to upbringing to 

emotional state. As a result, vocalizations can vary widely in terms of their accent, 

pronunciation, articulation, roughness, 'nasality, pitch, volume, and speed. Moreover, 

during transmission, our irregular speech patterns  can be further distorted by 

background noise and echoes, as well as electrical characteristics (if telephones or 

other electronic equipment are used). All these sources of variability make speech 

recognition [111,  even more than speech generation, a very complex problem. 

Yet people are so comfortable with speech that we would also like to interact 

with our computers via speech, rather than having to resort to primitive interfaces 

such as keyboards and pointing devices. A speech interface would support many 

valuable applications for example, telephone directory assistance, spoken database 

querying for novice users, "hands busy" applications in medicine or fieldwork, office 

dictation devices, or even automatic voice translation into foreign languages. Such 

tantalizing applications have motivated research in automatic speech recognition since 

the 1950's. Great progress has been made so far, especially since the 1970's, using a 

series of engineered approaches that include template matching, knowledge 

engineering, and statistical modeling. Yet computers are still nowhere near the level 

of human performance at speech recognition, and it appears that further significant 

advances will require some new insights. What makes people so good at recognizing 

speech? . 

Intriguingly, the human brain is known to be wired differently than a 

conventional computer; in fact it operates under a radically different computational 

paradigm. While conventional computers use a very fast & complex central processor 



with explicit program instructions and locally addressable memory, by contrast the 

human brain uses a massively parallel collection of slow & simple processing 

elements (neurons)[3], densely connected by weights (synapses) whose strengths are 

modified with experience, directly supporting, the integration of multiple constraints, 

and providing a.  distributed form of associative memory. The brain's impressive 

superiority at a wide range of cognitive skills, including speech recognition, has 

motivated research into its novel computational paradigm since the 1940's, on the 

assumption that brainlike models [ 12] may ultimately lead to brainlike performance 

on many complex tasks. This fascinating research area is now known as 

connectionisnc, or the study of artificial neural networks. The history of this field has 

been erratic, but by the mid-1980's, the field had matured to a point where it became 

realistic to begin applying connectionist models to difficult tasks like speech 

recognition. By 2000, many researchers had demonstrated the value of neural 

networks for important subtasks like phoneme recognition and spoken digit 

recognition, but it was still unclear whether connectionist techniques would scale up 

to large speech recognition tasks. 

This dissertation demonstrates that softcomputing techniques can indeed form 

the basis for a general purpose speech recognition system, and that softcomputing 

techniques offer some clear advantages over conventional techniques. 

1.2 SPEECH RECOGNITION 

What is the current state of the art in speech recognition? This is a complex 

question, because a system's accuracy depends on the conditions under which it is 

evaluated under sufficiently narrow conditions almost any system can attain human-

like accuracy, but it's much harder to achieve good accuracy under general conditions 

[26]. The conditions of evaluation and hence the accuracy of any system can vary 

along the following dimensions; 

Vocabulary size and confusability. As a general rule, it is easy to discriminate 

among a small set of words, but error rates naturally increase as the vocabulary I3] 

size grows. For example, the 10 digits "zero" to "nine" can be recognized essentially 

perfectly, but vocabulary large size have higher error rate. On the other hand, even a 

small vocabulary can be hard to recognize if it contains confusable words. For 

example, the 26 letters of the English alphabet (treated as 26 "words") are very 
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difficult to discriminate because they contain so many confusable words (most 

notoriously, the E-set: `B, C, D, E, G, P, T, V, Z") 

Speaker dependence vs. independence. By definition, a speaker dependent system 
is intended for use by a single speaker, but a speaker independent system is intended 

for use by any speaker. Speaker. independence [4] is difficult to achieve because a 

system's parameters become tuned to the speaker(s) that it was trained on, and these 

parameters tend to be highly speaker-specific. Error rates are typically 3 to 5 times 

higher for speaker independent systems than for speaker dependent ones. Intermediate 

between speaker dependent and independent systems, there are also multi-speaker 
systems intended for use by a small group of people, and speaker-adaptive systems 
which tune themselves to any speaker given a small amount of their speech as 
enrollment data. 

Isolated, discontinuous, or continuous speech. Isolated speech means single words; 

discontinuous speech means full sentences in which words are artificially separated 

by silence; and continuous speech means naturally spoken sentences. Isolated and dis 

continuous speech recognition, is relatively easy because word boundaries are 

detectable and the words tend to be cleanly pronounced. Continuous speech[4] is 

more difficult, however, because word boundaries are unclear and their 

pronunciations are more corrupted by coarticulation, or the slurring of speech sounds, 

which for example causes a phrase like "could you" to sound like "could jou". 

Task and language constraints. Even with a fixed vocabulary, performance will 

vary with the !nature  of constraints on the word sequences[5] that are allowed during 

recognition. Some constraints may be task-dependent (for example, an airline 

querying application may dismiss the hypothesis "The apple is red"); other constraints 

may be semantic (rejecting "The apple is angry"), or syntactic (rejecting "Red is apple 

the"). Constraints are often represented by a grammar, which ideally filters out 

unreasonable sentences so that the speech recognizer evaluates only plausible 

sentences. Grammars[5] are usually rated by their perplexity, a number that indicates 

the grammar's average branching factor (i.e., the number of words that can follow any 

given word). The difficulty of a. task is more reliably measured by its perplexity than 

by its vocabulary size. 
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Read vs. spontaneous speech. Systems can be evaluated on speech that is either read 

from prepared scripts, or speech that is uttered spontaneously. Spontaneous speech is 

vastly more difficult, because it tends to be peppered with disfluencies [26] like "uh" 

and "urn", false starts, incomplete sentences, stuttering, coughing, and laughter; and 

Moreover, the vocabulary is essentially unlimited, so the system must be able to deal 

intelligently with unknown words (e.g., detecting and flagging their presence, and 

adding them to the vocabulary, which may require some interaction with the user). 

Adverse conditions. A~ system's performance can also be degraded by a range of 

adverse conditions. These include environmental noise (e.g., noise in a car or a 

factory); acoustical distortions (e.g, echoes, room acoustics); different microphones 

(e.g., close-speaking, omni-directional, or telephone); limited frequency bandwidth[5] 

(in telephone transmission); and altered speaking manner (shouting, whining, 

speaking quickly, etc.). In order to evaluate and compare different systems under 

well-defined conditions, a number of standardized databases have been created with 

particular characteristics. 

The central issue in speech recognition is dealing with variability. Currently, 

speech recognition systems distinguish between two kinds of variability acoustic[13] 

and temporal. Acoustic variability covers different accents, pronunciations, pitches, 

volumes, and so on, while temporal variability covers different speaking rates. These 

two dimensions are not completely independent when a person speaks quickly, his 

acoustical patterns become distorted as well but it's a useful simplification to treat 

them independently. Speech can come from different sources this causes a lot of 

variability. As speech comes through the medium of transmission a lot of noise is 

added this noise introduces a lot of ambiguity in speech recognition. In addition to 

this the rate at which the speaker speaks also matters a lot. 

Of these two dimensions, temporal variability is easier to handle. An early 

approach to temporal variability was to linearly stretch or shrink ("warp") an 

unknown utterance to the duration of a known template. Linear warping proved 

inadequate, however, because utterances can accelerate or decelerate at any time 

instead, nonlinear warping was obviously required. Soon an efficient algorithm[5] 

known as Dynamic Time Warping was proposed as a solution to this problem. This 

algorithm (in some form) is now used in virtually every speech recognition system, 

and the problem of temporal variability is considered to be largely solved. 
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Figure 1.1 Automated Response System 

Acoustic variability is more difficult to model, partly because it is so 

Heterogeneous in nature. Consequently, research in speech recognition has largely 

focused on efforts to model acoustic variability. Past approaches to speech recognition 

have fallen into three main categories: 

Template-based approaches, in which unknown speech is compared against a set of 

pre-recorded [11] words (templates), in order to find the best match. This has the 

advantage of using perfectly accurate word models; but it also has the disadvantage 

that the prerecorded templates are fixed, so variations in speech can only be modeled 

by using many templates per word, which eventually becomes impractical. 

Knowledge-based approaches, in which "expert" knowledge[12] about variations in 

speech is hand-coded into a system. This has the advantage of explicitly modeling. 

variations in speech; but unfortunately such expert knowledge is difficult to. obtain 

and use successfully, so this approach was judged to be impractical, and automatic 

learning procedures were sought instead. 

Statistical-based approaches, in which variations in speech are modeled statistically 

(e.g., by Hidden Markov Models, or HMMs), using automatic learning procedures. 

This approach represents the current state of the art. The main disadvantage of 

statistical models[9] is that they must make a priori modeling assumptions, which are 
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liable to be inaccurate, handicapping the system's performance. We will see that 

neural networks help to avoid this problem. 

1.3 VARIABILITIES OF SPEECH 

Automatic speech recognition involves a number of disciplines such as 

physiology, acoustics, signal processing, pattern recognition, and linguistics. The 

difficulty of automatic speech recognition is coming from many aspects of these 

areas. 

Variability from speakers: A word may be uttered differently by the same speaker 

because of illness or emotion. It may be articulated differently depending on whether 

it is planned read speech or spontaneous conversation. The speech produced in noise 

is different from the speech produced in a quiet. environment because of the change in 

speech production in an effort to communicate more effectively across a noisy 

environment. Since no two persons share identical vocal cords[1 1] and vocal tract, 

they can not produce the same acoustic signals. Typically, females sound different 

from males. So do children from adults. Also, there is variability due to dialect and 

foreign accent. 

Variability from environments: The acoustical environment[1] where recognizers 

are used introduces another layer of corruption in speech signals. This is because of 

background noise, reverberation, microphones, and transmission channels. 

Figure 1.2 Block Diagram of Speech Recognition 
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One popular method in dealing with variabilities in speech recognition is a 

statistical approach such as HMM's[13]. In order to deal with variability due to 

speakers, for example, large vocabulary speaker-independent speech recognizers are 

usually trained using a large amount of speech data collected from a variety of 

speakers If the same amount of training data is used, however, speaker-dependent 

systems usually perform better than speaker-independent recognizers. In this research, 

the problem -of environmental variability is addressed, and the robust speech 

recognition methods that do not require a large amount of data are explored 

Background noise: When distant-talking speech is to be recognized, not only the 

intended speaker's voice, but also background noise[8] is picked up by the 

microphone. The background noise can be white or colored, and continuous or 

pulsate. Complex noise such as a door slam, cross talk, or music is much more 

difficult to handle than simple Gaussian noise[9]. 

Room reverberation: in an enclosed environment such as a room, objects and 

surfaces -reflect the acoustic speech wave, and signals are degraded by multi-path 

reverberation. 

Different microphones: It is usually the case that a recognizer is trained using a high 

quality close-talking microphone, while it may be used in the real world with 

unknown microphones that have different frequency response characteristics. 

Transmission channels - telephone: A great deal of effort has been put on telephone 

speech recognition because of its vast range of applications. However, due to the 

narrow bandwidth (300-3400 Hz) and non-linear distortion in transmission channels, 

telephone speech recognition is much more difficult than full bandwidth speech 

recognition. When the training and the testing environments are not matched, it 

affects speech feature vectors that are used in the recognition process. This typically 

makes speech recognizers vulnerable to changes in operating environments. 

1.4 NEURAL NETWORKS 

Connectionism, or the study of artificial neural networks, was initially inspired 

by neurobiology, but it has since become a very, interdisciplinary field, spanning 

computer science, electrical engineering, mathematics, physics, psychology, and• 

linguistics as well. Some researchers are still studying the neurophysiology of the 



human , brain, but much attention is now being focused on the general properties of 

neural computation [1], using simplified neural models. These properties include: 

Trainability. Networks can be taught to form associations between any input and 

output patterns. This can be used, for example, to teach the network to classify speech 

patterns into phoneme categories. 

Generalization. Networks don't just memorize the training data; rather, they learn the 

underlying patterns, so they can generalize from the training data to new examples. 

This is essential in speech recognition, because acoustical patterns are never exactly 

the same. 

Nonlinearity. Networks can compute nonlinear, nonparametric functions of their 

input, enabling them to. perform arbitrarily complex transformations of data. This is 

useful since speech is a highly nonlinear process. 

Robustness. Networks are tolerant of both physical damage and noisy data; in fact 

noisy data can help the networks to form better generalizations. This is a valuable 

feature, because speech patterns are. notoriously noisy. 

Uniformity. Networks offer a uniform computational paradigm which can easily 

integrate constraints from different types of inputs. This makes it easy to use both 

basic and differential speech inputs, for example, or to combine acoustic and visual 

cues in a multimodal system. 

Parallelism. Networks are highly parallel in - nature, so they are well-suited to 

implementations on massively parallel computers. This will ultimately permit very 

fast processing of speech or other data. 

There are many types of connectionist models, with different architectures, 

training procedures, and applications, but they are all based on some common 

principles. An artificial neural network consists of a potentially large number of 

simple processing elements (called units, nodes, or neurons), which influence each 

other's behavior via a network of excitatory or inhibitory weights. Each unit simply 

computes a nonlinear weighted sum of its inputs, and broadcasts the result over its 

outgoing connections to other units. A training set consists of patterns of values that 

are assigned to designated input and/or output units. As patterns are presented from 

the 'training set, a learning rule modifies the strengths of the weights so that the 

network gradually learns the training set. This basic paradigm can be -fleshed out in 
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many different ways, so that different types of networks can learn to compute implicit 

functions from input to output vectors, or automatically cluster input data, or generate 

compact representations of data, or provide content-addressable memory and perform 

pattern completion. 

Neural networks are usually used to perform static pattern recognition, that is, 

to statically map complex inputs to simple outputs, such as an N-ary classification[l] 

of the input patterns. Moreover, the most common way to train a neural network for 

this task is via a procedure called backpropagation, whereby the network's weights 

are modified in proportion to their contribution to the observed error in the output unit 

activations (relative to desired outputs). To date, there have been many successful 

applications of neural networks trained by backpropagation. Speech recognition, of 

course, has been another proving ground for neural networks. 

1.5 GENETIC ALGORITHMS 

Algorithms for function optimization are generally limited to convex regular 

functions. However, many -functions are multi-modal, discontinuous, and non- 

differentiable. Stochastic sampling methods have been used to optimize these 

functions. Whereas traditional search techniques use characteristics of the problem to 

determine the next sampling point (e.g., gradients, Hessians, linearity, and continuity), 

stochastic search techniques make no such assumptions. Instead, the next sampled 

point(s) is(are) determined based on stochastic sampling/decision rules rather than a 

set of deterministic decision rules. 

Speech recognition is rich with areas where genetic algorithms is an inevitable 

optimizer Genetic algorithms[7] have been used to solve difficult problems with 

objective functions that do not possess "nice" properties such as continuity and 

differentiability. These algorithms maintain and manipulate a family, or population, of 

solutions and implement a survival of the fittest strategy in their search for better 

solutions. This provides an implicit as well as explicit parallelism that allows for the 

exploitation of several promising areas of the solution space at the same time. The 

implicit parallelism is due to the schema theory, while the explicit parallelism arises 

from the manipulation of a population of points the evaluation of the fitness of these 

points is easy to accomplish in parallel. 
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1.6 FUZZY LOGIC 

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a 

logical system, which is an extension of multivalued logic. But in a wider sense, 

which is in predominant use today, fuzzy logic (FL)[7] is almost synonymous with 

the theory of fuzzy sets, a theory which relates to classes of objects with un sharp 

boundaries in which membership is a matter of degree. In this perspective, fuzzy logic 

in its narrow sense is a branch of FL. What is important to recognize is that, even in 

its narrow sense, the agenda of fuzzy logic is very different both in spirit and 

substance from the agendas of traditional multivalued logical systems. 

Fuzzy logic is a convenient way to map an input space to an output space. This 

is the starting point for pverything else, and the great emphasis here is on the word 

"convenient". 

Fuzzy logic is. conceptually easy to understand. The mathematical concepts 

behind fuzzy reasoning are very simple. What makes fuzzy nice is the "naturalness" 

of its approach and not its far-reaching complexity. 

Fuzzy logic is flexible, with any given system, it's easy to massage it or layer 

more functionality on top of it without starting again from scratch. Fuzzy logic is 

tolerant of imprecise data everything is imprecise if you look closely enough, but 

more than that, most things are imprecise even on careful inspection. Fuzzy reasoning 

builds this understanding into the process rather than tacking it onto the end. Fuzzy 

logic can model nonlinear functions of arbitrary complexity. You can create a fuzzy 

system to match any set of input-output data. This process is made particularly easy 

by adaptive techniques like ANFIS(Adaptive Neuro-Fuzzy Inference Systems)[7]. 

Fuzzy logic can be built on top of the experience of experts. In direct contrast to 

neural networks, which take training data and generate opaque, impenetrable models, 

fuzzy logic lets you rely on the experience of people who already understand your 

system. Fuzzy logic can be blended with conventional control techniques. Fuzzy 

systems don't necessarily replace conventional control methods[12]. In many cases 

fuzzy systems augment them and simplify their implementation. Fuzzy logic is based 

on natural language. The basis for fuzzy logic is the basis for human communication. 

This observation underpins many of the other statements about fuzzy logic. 
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Chapter 2 

LITERATURE SURVEY 

2.1 INTRODUCTION 

In this chapter the fundamental speech sounds are reviewed. All the basic 

phonetic units are explored. Then the signal processing part is explained The features 

that are extracted from the speech signals is defined and elucidated. Finally soft-

computing techniques that are to be applied are elaborated. 

2.2 SPEECH SOUNDS 

There are over 40 speech sounds in English which can be organized by their 

basic manner of production 

Table 2.1 Phoneme Classification 

Manner Class Number 

Vowels 18 

Fricatives 8 

Stops 6 

Nasals 3 

Semivowels 4 

Affricates 2 

Aspirant 1 

Vowels, glides, and consonants differ in degree of constriction. Sonorant 

consonants have no pressure build up at constriction Nasal consonants lower the 
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velum allowing airflow in nasal cavity . Continuant consonants do not block airflow 

in oral cavity. 

Pal at o-A.Iveo la 
Aheola 
Labial 
Dental 

Velar 

Uvular 

Figure 2.1 Anatomy of Speech Production 

2.2.1 VOWEL PRODUCTION 

While vowels are uttered there is no significant constriction in the vocal tract. 

Usually produced with periodic excitation. Acoustic characteristics[11] depend on the 

position of the jaw, tongue, and lips 

Table 2.2 vowels 

/iy/ iy beat /0/ ao bought /a'/ ay bite 

/T/ ih bit /A/ au but /O)'/ oy Boyd 

/ey/ ey bait /OW/ ow boat /aw/ aw bout 

/c/ eh bet /U/ uh book [ax] ax about 

/ae/ ae bat /u/ uw boot [i"] ix roses 

/a/ as Bob / 	/ er Bert [ h ] axr butter 

There are approximately 18 vowels in American English made up of 

monothongs, diphthongs, and reduced vowels (schwa's). 
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2.2.2 FRICATIVE PRODUCTION 

Fricatives are realized by turbulence produced at narrow constriction position 

determines acoustic characteristics can be produced with periodic excitation 

Table 2.3 Fricatives 

Type Unvoiced Voiced 

Labial /f/ f fee /v/ v v 

Dental /T/ th thief /D/ dh thee 

Alveolar Is/ s see /z/ z z 

Palatal /S/ sh she /Z/ zh Gigi 

2.2.3 STOP CONSONANTS 

There are 6 stop consonants. Three places of articulation: Labial, Alveolar, 

and Velar each place of articulation has a voiced and unvoiced stop. Unvoiced stops 

are typically aspirated. Voiced stops usually exhibit a "voice-bar" during[2] closure 

Information about formant transitions and release useful for classification 

Table 2.4 Stop Consonants 

Type Voiced Unvoiced 

Labial /b!;b bought /p/ p pot 

Alveolar /d/ d dot /t/ t tot 

Velar /g/ g got /k/ k cot 

2.2.4 NASAL PRODUCTION 

Velum lowering results in airflow through nasal cavity. Consonants[21] 

produced with closure in oral cavity. Nasal murmurs have similar spectral 

characteristics. Three places of articulation: Labial, Alveolar, and Velar. 
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Table 2.5 Nasal Sounds 

Type Nasal 

Labial /m/ m.me 

Alveolar /n/ n knee 

Velar /rl/ tig sing  

Nasal consonants are always attached to a vowel, though can form an entire 

syllable in unstressed environments. Place identified by neighboring formant 

transitions. 

2.2.5 SEMIVOWEL PRODUCTION 

Constriction in vocal tract, no turbulence. Slower articulatory motion than other 

consonants. Laterals form complete closure with tongue tip airflow via sides of 

constriction . 

Table ISemivowel 

Type Semivowel Nearest Vowel 

Glides /w/ w wet /u/ 

/y/ y yet /i/ 

Liquids In r red /3/ 

/1/ 1 let /o/ 

There are 4 semivowels. Sometimes referred to as Liquids or Glides. Glides 

are a more extreme articulation of a corresponding vowel. Semivowels are always 

attached to a vowel, though /I/ can form an entire syllable in unstressed environments. 
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2.2.6 AFFRICATE PRODUCTION 

There are two affricates in English: 

Table 2.7 Affricate 

Ly9iced 	 Unvoiced 

/J/ jh judge 	/C/ ch church 

Affricates are produced by alveolar-stop palatal-frication. It involves sudden release 

of the constriction, turbulence noise. Can have periodic excitation during closure. 

2.2.7 ASPIRANT PRODUCTION 

There is one aspirant in American English: All (e.g., `hat"),It is produced by 

generating turbulence excitation at glottis. There is no constriction in the vocal tract, 

normal formant excitation. Sub-glottal coupling results in little energy in F 1 region. 

Periodic excitation can be present in medial position. 

2.3 FUNDAMENTALS OF SPEECH RECOGNITION 

Speech recognition is a multileveled pattern recognition task, in which 

acoustical signals are examined and structured into a hierarchy of sub word units[23] 

(e.g., phonemes), words, phrases, and sentences. Each level may provide additional 

temporal constraints, e.g., known word pronunciations or legal word sequences, 

which can compensate for errors or uncertainties at lower levels. Combining decisions 

probabilistically at all lower Ievels, and making discrete decisions only at the highest 

level can best exploit this hierarchy of constraints. The structure of a standard speech 

recognition system is illustrated in Figure 2.2. The elements are as follows: 

Raw speech. Speech is typically sampled at a high frequency, e.g., 16 KHz over a 

microphone or 8 KHz over a telephone. This yields a sequence of amplitude values 

over time. 

Signal analysis. Raw speech should be initially transformed and compressed, in order 

to simplify subsequent processing. Many signal analysis techniques are available 

which can extract useful features and compress the data by a factor of ten without 

losing any important information. Among the most popular techniques Fourier 

analysis (FFT) yields discrete frequencies over time, which can be interpreted 
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visually. Frequencies are often distributed using a Mel scale, which is linear in the low 

range but logarithmic in the high range, corresponding to physiological characteristics 
of the human ear. 

Acoustic 	Pattern 	 Finite-State 	Language 
Phonetic 	Recognitio 	Transducer 	Modeling 
Modeling 

Acoustic Theory of 	Robust 	 Acoustic 	 Lexical 	 Language 

Speech Production 	ASR 	 Models 	 Models 	 Models 

Adaptation 	 Recognized 
Speech  Words 
Signal 

Representation 	 Search 

Properties of 
Sneech Sounds 

Signal 
Representation 

Search 
Algorithms 

Vector Quantization Temporal Modeling 	Graphical Segmental 
& Clusterine Models Models, 

Figure 2.2 Paralinguistic Information Speech Understanding Multi-Modal 

1 	Interfaces 

Perceptual Linear Prediction[5] (PLP) is also physiologically motivated, but yields 

coefficients that cannot be interpreted visually. 

Linear Predictive Coding[2] (LPC) yields coefficients of a linear equation that 

approximate the recent history of the raw speech values. 

Cepstral analysis[2] calculates the inverse Fourier transform of the logarithm of the 

power spectrum of the signal. 

In practice, it makes little difference which technique is used. Afterwards, 

procedures such as Linear Discriminant Analysis (LDA) may optionally be applied to 

further reduce the dimensionality of any representation, and to decorrelate the 
coefficients. 

Speech frames. The result of signal analysis is a sequence of speech frames, typically 

at 10 cosec intervals, with about 16 coefficients per frame. These frames may be 

augmented by their own first - andlor second derivatives, providing explicit 

infonnation[2] about speech dynamics; this typically leads to improved performance. 

The speech frames are used for acoustic analysis. 
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Acoustic models. In order to analyze the speech frames for their acoustic content, we 

need a set of acoustic models. There are many kinds of acoustic models, varying in 

their representation, granularity, context dependence, and other properties. 

Raw 
Speech 

Signal 
Analysis 

Acoustic 
models 

Sequential 
constraints 

Train 

Speech Acoustic Frami e 	~ 	Time 	Test 	Word 
Frames Analysis Scores 	 Alignment 	 Sequence 

Train  	Train 

Segmentation 

Figure 2.3 Preprocessing Speech 

2.4 FEATURE EXTRACTION 

As air is expelled from lungs, tensed vocal cords are caused to vibrate by the 

air flow. These quasi-periodic pulses are then filtered-when passing through the vocal 

tract and the nasal tract, producing voiced sounds [20]. The 'different - positions of 

articulators, such as jaw, tongue, lips, and velum, produce different sounds. When 

vocal cords are relaxed, the air flow either passes through a constriction in the vocal 

tract or builds up pressure behind a closure point and the pressure is suddenly 

released, causing unvoiced sounds [20]. The positions of constriction or closure 

decide different sounds. Speech is simply a sequence of these voiced and unvoiced 

sounds, which vary slowly (5100 ms) because the configuration of the articulators 

changes slowly. 

The purpose of this module is to convert the speech waveform to some type of 

parametric representation (at a considerably lower information rate) for further 

analysis and -processing This is often referred as the signal processing front end. 

The speech signal is a slowly timed varying signal (it is called quasi-stationary). 

When examined over a sufficiently short period of time (between 5 and 100 msec), its 
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characteristics are fairly stationary. However, over long periods of time (on the order 

of 1/5 seconds or more) the signal characteristic change to reflect the different 

speech[2] sounds being spoken. Therefore, short-time spectral analysis is the most 
common way to characterize the speech signal. 

A wide range of possibilities exist for parametrically representing the speech 

signal for the speaker recognition task, such as Linear Prediction Coding (LPC), Mel-

Frequency Cepstral Coefficients (MFCC), and others. MFCC is perhaps the best 

known and most popular, and these will be used in this project. 

MFCC's are based on the known variation of the human ear's critical bandwidths 

with frequency, filters spaced linearly at low frequencies and logarithmically at high 

frequencies have been used to capture the phonetically important characteristics of 

speech. This is expressed in the mel-frequency scale, which is a linear frequency 

spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. The process of 

computing MFCCs is described in more detail next. 

2.4.1 MEL-FREQUENCY CEPSTRAL COEFFICIENTS PROCESSOR 

The speech input is typically recorded at a sampling rate above 10000 Hz. 

This sampling frequency was chosen to minimize the effects of aliasing in the analog-

to-digital conversion. These sampled signals can capture all frequencies up to 5 kHz, 

which cover most energy of sounds that are generated by humans. As been discussed 

previously, the main purpose of the MFCC processor is to mimic the behavior of the 

human ears. In addition, rather than the speech waveforms themselves, MFCC's are 

shown to be less susceptible to mentioned variations. 

2.4.2 FRAME BLOCKING 

In this step the continuous speech signal is blocked into frames of N samples, 

• with. adjacent frames being separated by M (M < Al). The first frame consists of the 

first N samples. The second frame begins M samples after the first frame, and 
overlaps it by N - M samples. Similarly, the third frame begins 2M samples after the 
first frame (or M samples after the second frame) and overlaps it by N', 2M samples. 

This process continues until all the speech is accounted for within one or more 

frames. Typical values for N and M are N = 256 (which is equivalent to - 30 msec 

windowing and facilitate the fast radix-2 FFT) and M= 100. 
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2.4.3 WINDOWING 

The next step in the processing is to window each individual frame so as to 

minimize the signal discontinuities at the beginning and end of each frame. The 

concept here is to minimize the spectral distortion by using the window to taper the 

signal to zero at the beginning.and end of each frame. If we define the window as 

w(n), 0 <_ n <— N —1, where N is the number of samples in each frame, then the result 

of windowing is the signal 

y,(n)=x,(n)w(n), ;05n5N-=1 	 (2.1) 

Typically the Hamming window is used, which has the form: 

iv(n) = 0.54 — 0.46 cos  2 	0 <— n <— N —1 	 (2.2) 
N-1 

2.4.4. FAST FOURIER TRANSFORM (FFT) 

The next processing step is the Fast Fourier .Transform; which converts each 

frame of N samples from the time domain into the frequency domain. The FFT is a 

fast algorithm to implement the Discrete Fourier Transform (DFT) which is defined 

on the set of N samples {x„}, as follow: 

N-1 
Xn  = J.xke-2njkn1 N' 	n = 0,1,2,..., N —1 	 (2.3) 

k=0 

Note that we use] here to denote the imaginary unit, i.e. j = 	. In general X„'s are 

complex numbers. The resulting sequence {X} is interpreted as follow: the zero 

frequency corresponds to n = 0, positive frequencies 0 <f < F,. / 2 correspond to 

values 1 <— n <_ N /2-1,  while negative frequencies — F. /2 <f <0 correspond to 

N /2 + 1 < n <_ N -1. Here, F, denotes the sampling frequency. The result after this 

step is often referred to as spectrum or periodogram. 

2.4.5 MEL-FREQUENCY WRAPPING 

As mentioned above, psychophysical studies have shown that human 

perception of the frequency contents of sounds for speech signals does not follow a 

linear scale. Thus for each tone with an actual frequency, f, measured in Hz, a 

subjective pitch is measured on a scale called the mel' scale. The mel frequency 
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scale is a linear frequency spacing below 1000 Hz and a logarithmic spacing above 

1000 Hz. As a reference point, the pitch of a I kHz tone, 40 dB above the perceptual 

hearing threshold, is defined as 1000 mels. Therefore we can use the following 

approximate formula to compute the mels for a given frequency fin Hz: 

	

mel (f) = 2595 * log io(1 + f t 700) 	 (2.4) 

One approach to simulating the subjective spectrum is to use a filter bank, spaced 

uniformly on the mel scale . That filter bank has a triangular band-pass frequency 

response, and the spacing as well as the bandwidth is determined by a constant mel 

frequency interval. The modified spectrum of S(w) thus consists of the output power 

of these filters when S(co) is the input. The number of Mel spectrum coefficients, K, 

is typically chosen as 20.This information extracted from the bit of speech is ideal for 

recognition purposes we train the neural network using these coefficients. These 

coefficients give accurate results during testing. 

Linear Scale 	 Logarithmic Scale 

0 	1000 	2000 	3000 

Frequency 

Figure 2.4 Mel —Scale Filter Banks 

Note that this filter bank is applied in the frequency domain, therefore it simply 

amounts to taking those triangle-shape windows in the Figure 2.5 on the spectrum. A 

useful way of thinking about this mel-wrapping filter bank is to view each filter as an 

histogram bin (where bins have overlap) in the frequency domain. 
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2.5 DYNAMIC TIME WARPING 

In this section we motivate and explain the Dynamic Time Warping algorithm, 

one of the oldest and most important algorithms in speech recognition. The simplest 

way to recognize an isolated word sample is to compare it against a number of stored 
word templates and determine which is the "best match". This goal is complicated by 

a number of factors. First, different samples of a given word will have somewhat 
different durations. This problem can be eliminated by simply normalizing the 

templates and the unknown speech so that they all have an equal duration. However, 

another problem is that the rate of speech may not be constant throughout the word; in 

other words, the optimal alignment between a template and the speech sample may be 

nonlinear. 

Dynamic Time Warping (DTW)[5] is an efficient method for finding this 
optimal nonlinear alignment. DTW is an instance of the general class of algorithms 

known as dynamic programming. Its time and space complexity is merely linear in the 
duration of the speech sample and the vocabulary size. The algorithm makes a single 
pass through a matrix of frame scores while computing locally optimized segments of 

the global alignment path. 

Cumulative 
Reference Word Template 	 Word Score 

- Optimal-
Alignment Path 

Speech: Unknown Word 

Figure 2.6 DTW Technique 
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If D(x,y) is the Euclidean distance between frame x of the speech sample and 

frame y of the reference template, and if - C(x,y) is the cumulative score along an 
optimal alignment path that leads to (x,y), then 

C(x, y) = MIN(C(x —1, y), C(x —1, y — 1), C(x, y —1)) + D(x, y) 	(2.5) 

The resulting alignment path may be visualized as a low valley of Euclidean 

distance scores, meandering through the hilly landscape of the matrix, beginning at (0, 

0) and ending at the final point (X, Y). By keeping track of back pointers, the full 

alignment path can be recovered by tracing backwards from (X, Y). An optimal 
alignment path is computed for each reference word template, and the one with the 

lowest cumulative score is considered to be the best match for the unknown speech 
sample. 

There are many variations on the DTW algorithm. For example, it is common 

to vary the local path constraints, e.g., by introducing transitions with slope 1/2 or 2, 

or weighting the transitions in various ways, or applying other kinds of slope 

constraints. While the reference word models are usually templates, they may be 

state-based models. When using states, vertical transitions are often disallowed (since 

there are fewer states than frames), and often the goal is to maximize the cumulative 

score, rather than to minimize it. 

A particularly important variation of DTW is an extension from isolated to 

continuous speech. This extension is called the One Stage DTW algorithm. Here the 

goal is to find the optimal alignment between the speech sample and the best sequence 

of reference words . The complexity of the extended algorithm is still linear in the 

length of the sample and the vocabulary size. The only modification to the basic DTW 

algorithm is that at the beginning of each reference word model (i.e., its first frame or 

state), the diagonal path is allowed to point back to the end of all reference word 

models in the preceding frame. 

Local back pointers must specify the reference word model of the preceding 

point, so that the optimal word sequence can be recovered by tracing backwards from 

the final point of the word W with the best final score. Grammars can be imposed on 

continuous speech recognition by restricting the allowed transitions at word 

boundaries. 
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2.6 VECTOR QUANTIZATION AND CLUSTERING 

While introducing Vector Quantization the first algorithm that comes into our 

mind is K-means clustering. While considering clustering lot of issues crop up. This 

can briefly classify clustering as hierarchical clustering, divisive - (top-down) 
clustering, agglomerative (bottom-up) clustering. This concept has a slew of 

applications in speech recognition 

Signal representation produces feature vector sequence which is multi-
dimensional sequence,_It can be processed by methods that directly model continuous 

space or by quantizing and modelling of discrete symbols 

Main advantages and disadvantages of quantization are reduced storage and 

computation costs. Potential loss of information due to quantization is a major 

disadvantage. It is used in signal compression, speech and image coding more 

efficient information transmission than scalar quantization (can achieve less that 1 

bit/parameter) Used for discrete acoustic modelling since early 1980s. Based on 

standard clustering algorithms Individual cluster centroids are called codewords Set of 

cluster centroids is called a codebook. 

LVQ networks classify input vectors into target classes by using a competitive 

layer to find subclasses of input vectors, and then combining them into the target 

classes. Unlike perceptions, LVQ networks can classify any set of input vectors, not 

just linearly separable sets of input vectors. The only requirement is that the 

competitive layer must have enough neurons, and each class must be assigned enough 

competitive neurons.. 

To ensure that each class is assigned an appropriate amount of competitive 

neurons, it is important that the target vectors used to initialize the LVQ network have 

the same distributions of targets as the training data the network is trained on. If this is 

done, target classes with more vectors will be the union of more subclasses. 
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Chapter 3 

NEURAL NETWORKS IN SPEECH RECOGNITION 

3.1 INTRODUCTION 

In this section we will briefly review the fundamentals of neural networks and 

how they are employed in speech recognition. There are many different types of . 

neural networks, but they all have four basic attributes: 

• A set of processing units 

• A set of connections 

• A computing procedure 

• A training procedure 

Let us now discuss each of these attributes. 

3.2 PROCESSING UNITS 

A neural network contains a potentially huge number of very simple 

processing units, roughly analogous to neurons in the brain. All these units operate 

simultaneously, supporting massive parallelism. All computation in the system is 

performed by these units and there is no other processor that oversees or coordinates 

their activity. At each moment in time each unit simply computes a scalar function of 

its local inputs, and broadcasts the result (called the activation value) to its 

neighbouring units. The units in a network are typically divided into input units, 

which receive data from the environment (such as raw sensory information); hidden 

units,_ which may internally transform the data representation; and/or output units, 

which represent decisions or control signals . 

3.3 CONNECTIONS 

The units in a network are organized into a given topology by a set of 

connections, or weights, shown as lines in a diagram. Each weight has a real value, 

typically ranging from -x to +oo , although sometimes the range is limited. The value 

(or strength) of a weight describes how much influence a unit has on its neighbor; a 
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positive weight causes one unit to excite another, while a negative weight causes one 

unit to inhibit another. Weights are usually one-directional (from input units towards 

output units), but they may be two-directional (especially when there is no distinction 

between input and output units). 

Weights 

XE 

Input 

X2 

X3  

LS 

Oi  

itput 

02  

1 	1 	1 
Layer 0 	 Layer 1 	Layer 3 

(input Layer) 	(Hidden Layer) 	(Output Layer) 

Figure 3.1 Typical Neural Network Architecture 

A network can be connected with any kind of topology. Common topologies 

include unstructured, layered, recurrent, and modular networks, as shown in Figure 

2.7 Each kind of topology is best suited to a particular type of application. For 

example: unstructured networks are most useful for pattern completion (i.e., 

retrieving stored patterns by supplying any part of the pattern) layered networks are 

useful for pattern association (i.e., mapping input vectors to output vectors) recurrent 

networks are useful for pattern sequencing (i.e., following sequences- of network 

activation over time) and modular networks are useful for building complex systems 

from simpler components. 

3.4 COMPUTATION 

Computation always begins by presenting an input pattern to the network, or 

clamping a pattern of activation on the input units. Then the activations of all of the 
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remaining units are computed, either synchronously (all at once in a parallel system) 

or asynchronously (one at a time, in either randomized or natural order), as the case 

may be. In unstructured networks, this process is called spreading activation; in 
layered networks, it is called forward propagation,as it progresses from the input 
layer to the output layer. In feedforward networks (i.e., networks without feedback), 

the activations will stabilize as soon as the computations reach the output layer; but in 

recurrent networks (i.e., .networks with feedback), the activations may never stabilize, 

but may instead follow a dynamic trajectory through state space, as units are 
continuously updated. 

A given unit is typically updated in two stages: first we compute the unit's net 
input (or internal activation), and then we compute its output activation as a function 
of the net input. In the standard case, as shown in Figure 3.2(a), the net input xj for 

unitj is just the weighted sum of its inputs: 

xi = 
	

(2.6) 

where yi is the output activation of an incoming unit, and wji is the weight from unit i 
to unitj. 

3.5 TRAINING 

Training a network, in the most general sense, means adapting its connections 

so that the network exhibits the desired computational behavior for all input patterns. 

The process usually involves modifying the weights (moving the 

hyperplanes/hyperspheres); but sometimes it also involves modifying the actual 

topology of the network, i.e., adding or deleting connections from the network 

(adding or deleting hyperplanes/hyperspheres). 

In a sense, weight modification is more general than topology modification, since a 

network with abundant connections can learn to set any of its weights to zero, which 

has the same effect as deleting such weights.. However, topological changes can 

improve both generalization and the speed of learning, by constraining the class of 

functions that the network is capable of learning. 

Finding a set of weights that will enable a given network to compute .a given 

function is usually a nontrivial procedure. An analytical solution exists only in the 

simplest case of pattern association, i.e., when the network is linear and the goal is to 
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map a set of orthogonalinput vectors to output vectors. In this case, the weights are 

given by in general, networks are nonlinear and multilayered, and their weights can be 

trained only 

by an iterative procedure, such as gradient descent on a global perfonr►ance measure. 

This requires multiple passes of training on the entire training set (rather like a person 

learning a new skill); each pass is called an iteration or an epoch. Moreover, since the 

accumulated knowledge is distributed over all of-the weights, the weights must be 

modified very gently so as not to destroy all the previous learning. A small constant 

called the learning rate (e) is thus used to control the magnitude of weight 

modifications. Finding a good value for the learning rate is very important — if the 

value is too small, learning takes forever; but if the value is too large, learning 

disrupts all the previous knowledge. Unfortunately, there is no analytical method for 

finding the optimal learning rate; it is usually optimized empirically, by just trying 

different values. 

_ ~lyPllz 	(2.6) 

where y is the input vector, t is the target vector, and p is the pattern index. Most 

training procedures are essentially variations of the Hebbian Rule which reinforces 

the connection between two units if their output activations are correlated. 

3.6 A TAXONOMY OF NEURAL NETWORKS 

Now that we have presented the basic elements of neural networks, we will 

give an overview of some different types of networks. This overview will be 

organized in terms of the learning procedures used by the networks. There are three 

main classes of learning procedures: 

supervised learning, in which a "teacher" provides output targets for each input 

pattern, and corrects the network's errors explicitly. 

semi-supervised (or reinforcement) learning, in which a teacher merely indicates 

whether the network's response to a training pattern is "good" or "bad"; and 

unsupervised learning, in which there is no teacher, and the network must find 

regularities in the training data by itself. 
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Most networks fall squarely into one of these categories, but there are also various 

anomalous networks, such as hybrid networks which straddle these categories, and 

dynamic networks whose architectures can grow or shrink over time. 

3.7 SUPERVISED LEARNING 

Supervised learning means that a "teacher" provides output targets for each 

input pattern, and corrects the network's errors explicitly. This paradigm can be 

applied to many types of networks, both feedforward and recurrent in nature. We will 
discuss these two cases separately. 

3.7.1 FEEDFORWARD NETWORKS.  

Perceptrons are the simplest type of feedforward networks that use 

supervised learning. A perceptron is comprised of binary threshold units arranged into 

layers. It is trained by the Delta Rule or variations thereof. 

3.8 SEMI-SUPERVISED LEARNING 

In semi-supervised learning (also called reinforcement learning), an external 
teacher does not provide explicit targets for the network's outputs, but only evaluates 

the network's behavior as "good" or "bad". Different types of semi-supervised 

networks are distinguished not so much by their topologies (which are fairly 

arbitrary), but by the- nature of their environment and their learning procedures. The 

environment may be either static or dynamic, i.e., the definition of "good" behavior 

may be fixed or it may change over time; likewise, evaluations may either be 

deterministic or probabilistic. This algorithm assumes stochastic output units which 

enable the network to try out various behaviors. The problem of semi-supervised 

learning is reduced to the problem of supervised learning, by setting the training 

targets to be either the actual outputs or their negations, depending on whether the 

network's behavior was judged "good" or "bad"; the network is then trained using the 
Delta Rule, where the targets are compared against the network's mean outputs, and 
error is back propagated through the network if necessary. 

Another approach, which can be applied to either static or dynamic 

environments, is to introduce an auxiliary network which tries to model the 

environment. This auxiliary network maps environmental data (consisting of both the 

input and output of the first network)- to a reinforcement signal. Thus, the problem of 

semi-supervised learning is reduced to two stages of supervised learning with known 
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targets — first the auxiliary network is trained to properly model the environment, 

and then backpropagation can be applied,  through both networks, so that each output 

of the original network has a distinct error signal coming from the auxiliary network. 

A similar approach, which applies only to dynamic environments, is to 

enhance the auxiliary network so that it becomes a critic ,which maps environmental 

data plus the reinforcement signal to a prediction of the future reinforcement signal. 

By comparing the expected and actual reinforcement signal, we can determine 

whether the original network's performance exceeds or falls short of expectation, and 

we can then reward or punish it accordingly. 

3.9 UNSUPERVISED LEARNING 

In unsupervised learning, there is no teacher, and a network must detect 

regularities in the input data by itself. Such self-organizing networks can be used for 

compressing, clustering, quantizing, classifying, or mapping input data. One way to 

perform unsupervised training is to recast it into the paradigm of supervised training, 

by designating an artificial target for each input _pattern, and applying 

backpropagation. In particular, we can train a network to reconstruct the input patterns 

on the output layer, while passing the data through a bottleneck of hidden units. Such 

a network learns to preserve as much information as possible in the hidden layer; 

hence the hidden layer becomes a compressed representation of the input data. This 

type of network is often called an encoder, especially when the inputs/outputs are 

binary vectors. We also say that this network performs dimensionality reduction. 

Other types of unsupervised networks (usually without hidden units) are 

trained with Hebbian learning. Hebbian learning can be used, for example, to train a 

single linear unit to recognize the familiarity of an input pattern, or by extension to 

train a set of M linear output units to project an input pattern onto the M principal 

components of the distribution, thus forming a compressed representation of the 

inputs on the output layer. With linear units, however, the standard Hebb Rule would 

cause the weights to grow without bounds, hence this rule must be modified to 

prevent the weights from growing too large. 
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3.10 EXISTING RECOGNIZERS AND SHORTCOMINGS 

At present most of the recognizers are based on Hidden Markov Models. 

These recognizers are based on statistical techniques They model the statistical 

properties of the natural - language. They have to be trained using clean data base. 

These HMM based models give a good performance in noise free conditions but in 

the presence of noise the performance degrades considerably. 

There are purely Neural Network based models. These models are good 

approximators they give a good performance in presence of noise they. But these 

recognizers are poor in temporal modeling. We 'need a recognizer which is good in 

modeling temporal information and fault tolerant 
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Chapter 4 

ADAPTIVE AND RADIAL BASIS NETWORKS 

• 	4.1 INTRODUCTION 

Artificial neural networks have been very successful in solving many 

classification and pattern recognition problems. However, there is always the question 

of what momentum, learning rate, epoch or sigmoid parameter to use to get the best 

trained network that could generalize appropriately. Most of the time, this is done by 

trial and error. and using prior experience. Genetic algorithm (GA) was used to 

determine the optimal control parameters (learning rate, momentum, epoch and 

sigmoid parameter) for a RBF network and a second GA to optimize the frequencies 

of the training data. They found that the optimal learning rate and sigmoid parameter 

were higher than normal heuristic values and that the momentum and epoch optimised 

to a lower value. GAS is used . in the optimization of two parameters, namely the 

learning rate and momentum which were found to converge to larger than 

conventional values. GAS[3] was to determine the topology as well as the learning 

rate and exponential decay (of the learning rate) for a RBF neural network. It was 

found that high learning rates were optimal and that the network learned much faster 

with these genetically. derived parameters. 	- 

One of the main problems of using the RBF neural network as a classifier is 

that of generalization. If a large representative set of training samples is available, all 

parts of the decision space are well represented and the trained network is capable of 

classifying all test samples. 

However, if only a small training sample set is available, the network will be 

trained only by this limited sample set which may not represent all aspects of the 

decision space of the problem. As such, the network will not accurately classify data 

which has not been represented in the training set. This is called poor generalization 

of the network. 

One way to overcome poor generalization is to add noise to the training data to 

prevent over specification. Another method was investigated by Hunt et al [4] who 
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used fuzzy memberships as an adjunct to RBF to overcome this problem. It was found 

that the performance of the Fuzzy Radial Basis Neural (FRBNN) network was better 

especially for problems where there was much overlapping of classes and where the 

training data sets were quite small. 

4.2 ADAPTIVE NEURAL NETWORK 

In crisp sets, an element either belongs or does not belong to a set. In fuzzy 

sets, it is possible for an element to belong partially or wholly to more than one set. A 

membership value of 0 means that the element is not a member of the set and a value 

of 1 means that the element belongs entirely in the set. A membership value of 0.3 

means that the element belongs partly (0.3) in this set and partly in another [5]. 

Fuzzy back propagation (FBP) algorithm by incorporates the membership 

values (p(k)) into the SBP. p(k) is multiplied into the total training error expression 

before the errors are propagated backwards to initiate a change in weights. The 

rationale behind this is that the training error should be weighted more if the kth 

pattern has a high membership value in the class and weighted less if it has a low 

membership value. Hunt [4] suggested that the membership function could be varied 

according to the classification problem at hand by the introduction of a 

fuzzy/concentration parameter m. This fuzzy parameter determines the shape of the 

membership function. 

Layer 1 	 Layer 4 

X 

A 

X Y 

Figure 4.1 Adaptive Neuro-Fuzzy Inference System 
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4.3 RADIAL BASIS FUNCTIONS NETWORKS 

The process of learning an input-output mapping can be regarded as finding an 

approximation of a multidimensional function. As the set of examples is finite, the 

problem can be seen as that of hypersurface reconstruction. This point of view is the 

motivation behind the regularization networks [3] which include RBFNs as a special 

case. The two layers of. a RBFN have different interpretations. Each neuron in the 

hidden layer can be seen as a center ci, whose coordinates are their weights wi 2 <n. 

Each center 

computes a function that decreases (or increases) monotonically as the distance to that 

center grows. A common choice is the Gaussian function and a possible distance 

measure is the squared Euclidean norm: 

m 

f; (x) = w;o + 	TV j (Pj (x) 
	

(4.1) 
i=1 

where 6 is the width associated with the i f̀' center increases rapidly if i is small and 

slowly if it is large. The neurons of the output layer have a more usual interpretation. 

Each one computes the following summation: Once the locations and widths of the 

centers are defined, the network can be seen as a linear model [17], and the weights 

wi can be calculated either by an algebraic singleshot process or by a gradient descent 

method as in [24, 25]. Several approaches have been proposed to determine the 

configurations of the centers. In the seminal work of [3], the centers of the 

regularization networks were coincident with the input vectors. Alternatively [11], 

the input vectors are clustered, and the center of each cluster becomes a network 

center. The widths of the centers can be determined using various k-nearest-neighbor 

heuristics. There is, however, a drawback associated with this approach: the optimal 

location of the centers do not necessarily lie within the convex hull of the training 

data [15, 25]. A different approach is the Forward Selection algorithm [ 17] and its 

derivatives [5, 16, 18]. They are similar to connectionist constructive methods. The 

process starts with an empty subset to which one center (taken from the set of input 

vectors) is added at a time: the one which most reduces the cost function. This is 

clearly a hill-climbing method. Although these are effective ways of training a:RBFN, 

there is no guarantee that the configuration found is the best possible combination of 
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centers and weights. In fact, there is some evidence in the literature that "moving" the 

centers while determining the weights can improve significantly the performance of 

the network [24]. Given a deterministic algorithm to compute the weights of the 

output layer, what is needed, therefore, is an effective way of trying different centers 

positions and widths. As one cannot test every possible combination, a heuristic is 

needed, and the GA is a natural candidate. 

There are several possibilities of using a GA to configure a RBFN. A 

straightforward approach is to fix a topology and use the GA as an optimization tool 

to compute all free-parameters. It has been done in [7] for time-series forecasting. In 

[1],  the number of hidden neurons was also fixed, and the GA optimized only the 

location of the centers. The k-nearest neighbor heuristic and the singular value 

decomposition computed the widths of the centers and output weights, respectively. 

Whitehead and Choate [26] also fixed the number of centers, and evolved their 

locations and widths, but on a completely different and interesting— approach: 

instead of encoding a "network in each individual, the entire set of chromosomes 

cooperate to constitute a RBFN, each one being a center. 

I 
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Functions 

Figure 4.2 Radial Basis Function Neural Network 
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Another idea is to hybridize the configuration process, using the GA as a 

support tool. Chen et. al. [8] presented a two-level learning method for RBFN. A 

regularized orthogonal least squares (ROLS) algorithm1 was employed to construct 

the RBFNs at the inner level, while the two main parameters of this algorithm were 

optimized by a GA process at the outer level. In [3], the GA was used to optimize the 

number and initial positions of the clusters' centers of the k-means algorithm; the 

RBFN training then proceeded as in [ii]. The most common approach (and most 

promising, in our opinion) is to use a GA to set the network's topology and centers' 

locations and widths, while the weights in the output layer are computed by an 

algebraic or gradient-descent. method. Naturally, there are many differences between 

them: for example, an indirect representation is used; the locations of the centers are 

governed by space-filling curves, whose parameters evolve genetically. Another 

example is, [4], in which the basis functions are not restricted to Gaussians and are 

also subjected to evolution. The method proposed here can be included in this 

category and, like others, has its own peculiarities. They will be presented in the next 

section. 

4.4 RADIALBASIS FUNCTIONS 

The RBF neural network used, has an identical architecture to the MLP with 

three layers of neurons fully connected. The first layer is responsible for coupling the 

input vector to the network and have a linear neuron 'function. The last layer have a 

number of neurons equivalent to the speaker classes to be identified and uses an 

adjustable sigmoid as neuron function. It is in the hidden layer that we can find the 

main difference between the MLP and RBF because it uses special type of neural 

functions. 

These neurons present a neural function with a response that decrease in a 

monotonic way in relation to a central point, the radial basis function [2], thus making 

an activation region that forms the basis of the concept of the kernel classifiers. In 

Table 4.1 the most common radial basis function are illustrated [8]. The use of radial 

basis functions in the hidden layer defines a nonlinear mapping of the input vector to 

a projection space, trying to make the input vectors linearly separable. This property 

of the radial basis functions is described in the Cover's theorem of pattern separation 

[3] which states that bringing a pattern classification problem into a highly 
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dimensional space can make observable properties that are hidden in the original 

space and thus making the problem linearly separable. 

Table 4.1 Radial Basis Functions 

Function Formula 

Gaussian 0(z) = 

Multiquadratic 0(z) — (1 + z) 2  

Inverse Multiquadratic 
_t 

0(z) -- (1 + z) 2  

Cauchy O(z) — (1 + z)-1  

In this work the neuron function chosen for the hidden layer is the Gaussian 

function, making the response of the corresponding neurons to vary inversely with the 

distance from the function center. The training of a RBF neural network can be 

divided in two distinct phases: the first one comprises the determination of the radial 

basis function centers and widths, and the second one consists in updating the 

connection weights according to the training algorithm. For the determination of RBF 

centers there are several alternatives, the most used are the K-Means algorithm [11], 

the LBG [4] and learning vector quantization (LVQ) [12], which are applied over the 

training set of samples in order to choose or generate a representation for each class of 

patterns in the problem. Frequently the literature points to the random choice of 

vectors from training set for building the RBF centers, but this is not a good choice 

because we can not ensure a good coverage of the sample space. It is preferable to use 

an algorithm that makes this choice in some statistical way. In this work- the centers 

were obtained using the LBG algorithm and the widths of the RBFs were obtained 

through a distance analysis of the centers obtained using a Euclidean distance. 
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Chapter 5 

DESIGN AND ANALYSIS 

5.1 GENETIC ALGORITHM. 

Genetic Algorithms (GAS) are search algorithms based on the mechanics of 

natural selection and genetics. They were originally developed by John Holland at the 

University of Michigan in the early 1970's [8]. The aim for their development is to 

produce algorithms which can solve difficult search problems just as nature has done 

through `survival of the fittest'. Individuals in a population are represented by a string 

of O's and I's. These individuals compete against one another to survive: in the next 

generation. This is done by evaluating a fitness value for each individual. This fitness 

value determines the selection of the next generation. Other \genetic mechanisms like 

crossover and mutation also operate on the new population. Crossover is the process 

whereby a pair of individuals exchange parts of their genes to form new structures. 

Mutation is a mechanism whereby a value of one or more of the O's and l's that make 

up an individual is changed to form a new structure. Mutation is only introduced at a 

very small rate but it is necessary in order to ensure that the search space is more 

thoroughly explored for a potentially better solution [7]. 

A GA was used to predetermine the control parameters of the SBP and FBP 

neural network. The genetic algorithm used is GENESIS version 5.0 . Representation 

of Genes. The SBP structure contains a string of length 33 which represents the 

sigmoid parameter, Learning rate, momentum and epoch respectively. 

The FBP structure contains a string of length 42 which represents the fuzzy 

parameter, sigmoid parameter, learning rate, momentum and epoch respectively . 

Ranges. 

0 <= fuzzy parameter <= 5.11 (Only for the FBP) 

0<= learning rate <= 5.11 

0 <= momentum <= 0.99 
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0 <= epoch <= 256 (This range varies according to the size 

of the training data used) 

0 <= sigmoid parameter <= 5.1 I 

These ranges have been chosen to reflect normal 

heuristic values 

GA Parameters. 

Fitness: RMS Error of test & train data 

,Population Size: 50 

No. of Generations 20 

Mutation Rate: 0.01 

Crossover Rate: 0.6 

Generation Gap: 1.0 

The elitist strategy and ranking were used in the GA. No initialization tile was 

used as early experiments showed that a better solution was reached when the first 

population was not restricted by the use of an initialization file. Architecture of the 

neural network A network with 1 hidden layer was used. The number of nodes in the 

hidden layer was set for each data set. The architecture for the bottle data was chosen 
} 

from previous experiments done in [23]. All other architectures were selected to be as 

similar as possible. It is to be noted that to some degree the architecture used is 

irrelevant since a relative performance is sought rather than an absolute one. 

5.2 A FUZZY MEMBERSHIP FUNCTION 

A bottom-up, rule-based, acoustic-phonetic decoder retrieves and scores the 

phonetic hypotheses from a speech signal [3]. To improve recognition performances 

by restoring the phonetic list, additional knowledge sources (top-down rules) have 

been determined to verify coarticulation features. Applied to a phonetic hypothesis, 

each rule returns a numeric parameter related to a fuzzy number via a procedure 

described in [5] a fuzzy set of rule parameters is made up and the membership 

function CR () is drawn from one-speaker database histograms. 
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Let F be the class of unvoiced fricatives. A 400-observation histogram HRl is 

drawn for correct recognition of F-phonemes by a given rule R, and a 

250observation histogram HR2 is drawn for. non-F- phonemes recognized as F-

phonemes at bottom-up de-coding (the vertical axis is the zero-crossing rate 

parameters returned by R). The few number of observations and the fact that the rule 

is only applied to a one-speaker database explain why the statistics are not sufficient 

for generalization, and why a fuzzy member ship function is needed gives a method to 

compute a possibilistic function 7ri () from histogram HRi. 

The more is the possibility of an erroneous recognition, the less must be the 

possibility of a correct recognition. Our fuzzy function CR () is. more robust to 

irrelevant histogram variations. In case of null probabilities, the value of ignorance is 

0.5. In case of a HR2 peak higher than the corresponding H RI peak, the c:R ()values 

are under 0.5. The possibility function 7r() is not able to distinguish between 

ignorance and a higher HR2 peak. 

5.3 EVOLUTION 

The task assigned to GA consists in searching, through all the rotation axes 

defined by PCA, the best base of vectors. Evolution is driven by a fitness function 

defined in term of recognition rate. According to the algorithm given in Figure 5.1, 

the search of the best projecting space is operated. After the creation of the clean 

corpus (acoustical analysis + PCA Projected), the ANN is trained until it has 

converged. The Principal Components used for the projection of the corpus allow the 

creation of a population of individuals  which are able to evolve to adapt to the noisy 

environment. The best projections basis are selected for the reproduction. Proceed 

PCA of data in canonical environment Train the ANN on these PCA data. 

Individuals are selected by a classical roulette wheel [3] which consist in 

selecting individual proportionally their fitness. This fitness is computed by the 

evaluation function. The reproduction is operated by mutation and crossover. As the 

genotype is encoded with real values, GA operates a gaussian mutation with a 

standard deviation of 0.1. 
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Generate a population of components 

For n generation do 	~ 

For each set of Components do 

Project noisy data in the subspace defined by these Components 

Evaluate these Components by Testing the ASRS with the projected 

data 

End For 

Select and Reproduce Components 

End For. 

Figure 5.1 Genetic Algorithm implementation of ASR 

The crossover is a simple recombination which consist in selecting a position 

cut, and flipping the right parts of the genotype as the example. below shows: 

Table 5.1. Operator of crossover 

Parentl :0100111101 	Childl :0100110100 

Parent 2 :1011110100 	Child2 : 1011111101 

5.4 VECTOR QUANTIZATION 

The use of the Kohonen's SOM to train a RBFN is not a new approach. In [2] 

for example, Kohonen's SOM is employed to find the initial centers of the radial units 

and, then, a modified Learning Vector Quantization (LVQ2.1) algorithm [17] is 

utilized to tune all the parameters of the RBFN. Here, the Kohonen's SOM will be 

applied to train a RBFN employed to pattern recognition in a FDI scheme. Some 

changes will be made to adequate the Kohonen's SOM in this problem. The first step 

is to separate the training set according to the different classes. This procedure is 

adopted to avoid that patterns belonging to different classes are tuned to the same 

radial unit. Thus, the algorithm described below should be repeated for each class. 

Initially, all patterns of each class are chosen as radial unit centers. The neuron 
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activations of all radial units for each training pattern are calculated employing the 

Equation (5) and the unit with the highest activation is selected according to 

h (t) = max {h;  (x(t))I 
j 

(5.1) 

where j=1,...,mk (mk is the number of patterns in the class k), k=1,...,q (q is the 

number of classes) and t=1,...,tmax  is the discrete-time coordinate. The next step is to 

update the radial unit centers according to 

1u (t + 1) _ 1~ (t) + a(t)fl(t)[x(t) — p; (t)] 	(5.2) 

where a(t) is a decaying function of time that defines the learning rate and (3(t) is a 

function of the vector distance from the radial unit center pj to the radial unit center 

p.c. Here;  this function is given by 

1 
 

2 ' if R' (ic  _ i~ ) < 
a(t ),  

fl(t) = 1+ I1
R-1(' _.)~~ 

(5.3) 

0 otherwise 

where 6(t) is a decaying function of time that, defines the neighborhood size around 

the radial unit center etc. If the number of iterations (tmax) is sufficiently large and the 

training parameters are chosen appropriately, the radial unit centers in the same 

cluster will move to the cluster center. Thus, as some radial units have centers very 

near, they will be grouped. This is made calculating the distance between the radial 

unit centers. If the norm of the distance of two radial unit' centers is very small, one 

radial unit is pruned. Thus, the complexity of the network is reduced because. the 

number of adaptive parameters decreases. This procedure is important because if there 

are radial unit centers very close, then the matrix inverse used to determine the 

optimal weights will have ill-posed problems. 

Example l: For the training, two classes with 20 random patterns each (normal 

distribution) in a 2-dimensional input space are generated. The patterns in the first 

class are generated with mean=[0.5 0.5]T and variance=[0.01 0.09]T and in the 

second class with mean=[0 0]T and variance=[0.01 0.09]T. The two training 

algorithms employ the same input patterns and the diagonal of the matrix R that 

defines the size of the receptive field is [0.2 0.6]T. The FS uses a fixed threshold to 

42 



halt the radial unit selection. The FS algorithm selects two radial units centered in 

[0.047 - 0.083]T and in [0.578 0.589]T: The Kohonen's SOM algorithm selects two 

radial units centered in [0.015 0.039]T and in [0.513 0.560]T. For the generalization 

test, .200 patterns with the same characteristics of the training set are employed. 

Figure 3 displays the generalization test patterns and the receptive field formed by the 

RBFN trained with FS and the displays for the .RBFN trained with Kohonen's SOM. 

5.5 SUMMARY 

In this section, the neural network based transformation methods have been 

evaluated on a large vocabulary continuous speech recognition task in a noisy 

reverberant enclosure. It has been experimentally proved that the conditional 

• probability of a feature vector given a state is a better optimization criterion than the 

mean squared error for the synergistic use of neural network and HMM. The MLNN 

• can be combined with traditional neural network that uses the stereo data. The 

combined networks further improves the performance by doing both feature and 

model transformation at the same time. The MLNN can also be applied to the 

unsupervised speaker adaptation. 

e 
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Chapter 6 

RESULTS 

6.1 SIGNAL ANALYSIS 

Speech data base is composed of three speakers uttering digits from zero to 

nine. Figure 6.1 is an example of the signal in time domain. These speech files in way 

format is fed as input to the signal processing module The signal processing module 

extracts the necessary features which are pertinent to speech recognition. 

Figure 6.1 Time Domain Signal 
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Figure 5.2 Frequency Domain Signal 

In the above Figure 5.2 we observe the frequency histograms of the same 

signal.. Here we observe that like in any speech signal most of the energy of the signal 

is concentrated in the frequency band between 300 — 3000 hz. This signal is also 

interspersed with noise. The noise is Additive White and Gaussian Noise. As need a 

"clean" speech signal. We need some mechanism to remove the noise. 

Spectrogram is the time by frequency plot of the speech signal the darkness 

indicates the intensity of the speech signal it forms the third dimension of the signal. 

The spectrogram gives a clear idea about the speech sound uttered by the speakers. 
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Figure 6.3 Spectrogram of Speech Signal 

6.2 PRE-PROCESSING 

To train our recognizer we need a set of training data that is free from noise or 

the maximum signal power to noise ratio should not be less than 30dB. Since it not 

feasible to simulate such kind of environment in the laboratory we have to explore 

other techniques. So we introduce adaptive noise cancellation which cancels out the 

noise. Only this data is used for training. 
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Figure 6.4 Speech Signal with Error after Noise Cancellation 

This is achieved by an ANFIS with the following fuzzy membership function 

Figure 6.5 Result of ANFIS in noise cancellation 
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Figure 6.6 Fuzzy Membersip Functions used in noise canceller 
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6.3 VECTOR QUANTIZATION AND FUZZY C MEANS CLUSTERING 
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Figure 6.6 Fuzzy C Means clustering 

Vector Quantization is employed to reduce the amount of data. Neural based 

techniques such as learning vector quantizer. Kohonen self organizing map is used 

.Here Fuzzy C means technique is used. To achieve this we can either use a 

conventional algorithm such as Lindo Buzo Gray (LBG) algorithm or some self-

learning Neural-Network such as LVQ network. 

LBG'-algorithm is time intensive ie. It computes Euclidian Distance between 

every node., LVQ does not approximate accurately because it uses winner take all 

paradigm. We find that Fuzzy C Means clustering gives the better performance than 

the other algorithm because it is fast and approximates fuzzy data well. 
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Figure 6.7 Various activation functions used for output layer 

Figure 6.7 Gaussian activation function used for hidden layer 

6.4 RADIAL-BASIS FUNCTION RECOGNIZER 

We use the Gaussian function as the radial basis function in the kernel of the 

neural network. Here by controlling the standard deviation of the Gaussian function 

and the number of neurons in the hidden layer we can achieve a greater accuracy of 

approximation. 
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Figure 6.8 Convergence characteristics of RBFNN 

In figure 6.8 the convergence characteristics of RBFNN is observed. We need 

to a larger training pattern set to train the network for accurate recognition. The error 

rate decreases exponentially for the initial pattern and it slows down as number of 

patterns are increased. 

6.4.1 OPTIMIZATION OF RBFNN USING GENETIC ALGORITHMS 

The mean square error has to be decreased and computation time also has to 

be decreased subject to constraints The variables in our control are standard deviation 

of the kernel function and the number of neurons in the hidden layer. The 

chromosome is encoded using these characteristics. The fitness is computed as a 
function of the chromosome mapping on to MSE. In figure 6.8 we observe the fitness 

is increasing as the number of generations increase. 
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Figure 6.8 Genetic Algorithm for optimizing the architecture of RBFNN 

6.5 ANFIS RECOGNIZER 
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Figure 6.8 Membership Function of ANFIS 
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Figure 6.9 Convergence Characteristics of ANFIS Recognizer 

It is observed that ANFIS converges faster than RBFNN during training. Here 

the fuzzy membership function is responsible for speed and accuracy of the 

recognizer. In figure 6.10 step size of the membership function is changed with 

epochs. In figure 6.11 step size of the membership function is held constant with 

number of training epochs. This enables the selection of the right membership 

function 
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Figure 6.10 Convergence Characteristics and variable Step Size of M F 
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6.6 COMPARISON OF RECOGNITION ACCURACY 

Here it is observed that the ANFIS gives a better performance than RBFNN in 

terms of recognition in the presence of noise.Since anfis models fuzzy inputs 

better this accounts for the obtained results 
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Figure 6.11 Comparison of RBF and ANFIS in the presence of Noise. 
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Chapter 7 
CONCLUSIONS AND FUTURE WORK 

With recent advances in speech recognition technology, continuous density 

Hidden Markov Model (HMM) based speech recognizers have achieved a high level 

of performance in controlled environments, such as close-talking and matched 

training and testing acoustical environments. However, the recognition performance is-

typically degraded if the training and testing environments are not matched. Examples 

of such mismatches include different ambient noise levels, close talking vs. distant 

talking, different microphones, and different transmission channels (e.g., telephone 

speech). To improve performance, speech recognizers are usually trained under the 

specific application environment where the recognizer will be actually used. 

However, training a speech recognizer for each particular environment is an 

expensive and time consuming task in terms of training data collection and 

computation. Furthermore, because the recognizer is trained in an adverse 

environment, performance is usually diminished from that in a pristine environment. 

In this dissertation, a softcomputing based transformation approach for robust speech 

recognition has been explored. 

The neural network, referred to as Radial Basis Function Neural Network 

(RBFNN), is trained to maximize the likelihood of the speech - from the testing_ 

environment. Because it requires only a small amount of training data, the proposed 

approach is especially cost-effective when it is expensive to collect data in a new 

environment. It therefore permits the recognizer which has been trained once on clean 

close-talking speech to be used in a wide variety of less favorable environments. The 

advantages of the approach are as follows. First,-  it does not require retraining of the 

speech recognizer, so the expensive task in terms of training data collection and 

computational time is avoided. Second, it does not require any knowledge about the 

distortion, yet it automatically learns the mapping function between the training and 

testing environments. Third, since the Radial Basis Function Neural Network is 

known to be able to model nonlinear functions, the neural network based approach is 

able to handle nonlinear distortions. Finally, the feature transformation neural network 

using stereo data can learn an inverse distortion function, so its performance upper 
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bound is that of a clean speech recognizer with matched training and testing 

environments. This bound is typically higher than the recognizer laboriously retrained 

for the specific environment. Further, the model transformation does not require 

stereo data. It can be used where the inverse function may not be physically realizable 

or where the network cannot be well trained with a limited amount of information. 

Additive noise causes non-linear distortion in the cepstral domain. A feature 

transformation neural network that uses stereo data and mean squared error as its 

objective function has been used ' to handle the non-linear distortion. From the 

experiment of continuous speech recognition in adverse acoustical environments, it 

has been found that this non-linear transformation works well in additive noise case. 

The anomaly of the traditional mean squared error criterion for the objective function 

of neural networks has been analyzed. A new objective function for the neural 

network has been established. 

The adaptation can be done in the feature domain or in the model domain. The 

new objective function has been demonstrated for both feature transformation and 

model transformation. In feature transformation, feature vectors are transformed to 

best match a clean speech statistics. In model transformation, both mean vectors and 

covariance matrices are transformed to best match a testing environment. The tandem 

combination of feature transformation and model transformation has been established. 

Feature transformation that uses stereo data can learn complex inverse transformation 

functions, while the feature transformation RBFNN may not, in practice. The mean 

and variance transformation RBFNN can learn the distortion function that degrades 

clean speech statistics. It has been found that the network and the model 

transformation RBFNN are complementary, and that tandem use of the networks is 

advantageous. 

RBFNN also has its shortcomings. It is slow in execution it cannot model 

unclear inputs properly. Even though it is flexible it does not respond fast to give a 

better fit. ANFIS comes in to solve this problem. Not only is ANFIS fast, to respond to 

different input patterns it also models fuzzy inputs properly. It also gives a very good 

performance in the presence of noise. Only drawback of ANFIS being its complex-

membership function 
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Training can be done in an unsupervised fashion by making use of the 

recognized output for unknown speech. The proposed algorithm has been applied to 

large vocabulary continuous speech recognition and evaluated under various adverse 

acoustical environments, which involves background noise, reverberation, differences 

in microphones, and telephone band limitation. It has also been applied to 

unsupervised speaker adaptation. 

The model transformation RBFNN and ANFIS experiment done in this 

research uses only one network to transform all means (or variances) of a recognizer. 

This can be modified to be state-dependent, where each state has 'its own neural 

network to transform the parameters. The states can be grouped using tree structure so 

that those states that do not have enough training data can share a network. The 

RBFNN and ANFIS are a good candidates for discriminative training methods, 

because alternative hypotheses or confusable targets can be provided from a speech 

recognizer. In this case, mutual information is a good candidate for the neural network 

objective functions. In future work these techniques have to be applied for large 

vocabulary speech recognition systems. A better integration hybrid of HMM and 

neural networks has to be achieved, We can dramatically improve the speech 

recognition by using language modeling. 
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