
MOBILE AGENT BASED NETWORK MANAGEMENT

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

MAHEEDHAR VALASA

igAL :IFA \
~~ l•

ra !f944
* 	Aao. No......._.....-

Dpro.!°.. i°.

IIT Roorkee - CDAC, NOIDA,
c-5611, "Anusandhan Bhawan"

Sector 62, Noida 201 307

JUNE, 2004

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "MOBILE

AGENT BASED NETWORK MANAGEMENT", in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Information

Technology, submitted in IIT-Roorkee - CDAC campus, Noida, is an authentic record

of my own work carried out during the period from June 2003 to June 2004 under the

guidance of Dr. Poonam Rani Gupta, Associate Professor, CDAC, Noida.

I have not submitted the matter embodied in this dissertation for the award of any

other degree or diploma.

Date:

Place: Noida 	 (MAHEEDHAR VALASA)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief

Date: 	 (Dr. Poonam Rani Gupta)

Place: Noida 	 Associate Professor,

CDAC, Noida.

ACKNOWLEDGEMENTS

I hereby take the privilege to express my deep sense of gratitude to Prof. PREM

VRAT, Director, Indian Institute of Technology, Roorkee, and Mr. R.K.VERMA,

Executive Director, CDAC, Noida for providing me with the valuable opportunity to

carry out this work. I am very grateful to Prof. A.K.AWASTI, Programme Director,

Prof. R.P. AGARWAL, course coordinator, M.Tech (IT), IIT, Roorkee and

Mr. V.N.SHUKLA, course coordinator, M.Tech (IT), CDAC, NOIDA for providing the

best of the facilities for the completion of this work and constant encouragement towards

the goal.

I express my sincere thanks and gratitude to my Guide Dr. POONAM RANI

GUPTA, Associate Professor, CDAC, Noida, for her inspiring guidance and sustained

interest throughout the progress of this dissertation.

I am thankful to Mr. R.K.SINGH and Mr. NIUNISH KUMAR, project

engineer, CDAC Noida, for providing necessary infrastructure to complete the

dissertation in time.

I owe special thanks to my friends, all of my classmates and other friends who

have helped me formulate my ideas and have been a constant support. I also thank my

parents and other family members for their moral support.

(MAHLEDHAR VALASA)

Enroll. No. 029011

U

CONTENTS

Candidate's Declaration

Acknowledgements ii

Abstract vi

1. INTRODUCTION 1

1.1 Limitations of SNMP 2

1.2 Distributed Network Management 3

1.3 Dissertation Objective 3

1.4 Report Organization 4

2. LITERATURE SURVEY 5

2.1 Mobile Agent - Definition 5

2.2 Background on Mobility 6

2.3 Advantages of Mobile Agents 9

2.4 Java and Mobile Agents 10

2.5 Mobile Agents and Security 11

2.6 A Survey of Mobile Agent Systems 	- 15

3. ANALYSIS 17

3.1 Integration of 	Agents and SNMP 17

3.2 MANM Hybrid Model 18

3.2.1 Management Application 20

3.2.2 Mobile Agent Execution Environment 20

3.2.3 Mobile Agent Producer 20

3.2.4 Mobile Agents 20

3.3 Mobile Agent Infrastructure 20

3.4 AgentSpace — Mobile Agent System 22

3.4.1 Mobile Agent Platform 22

3.4.2 Agent Migration 22

3.4.3 Agent Cloning 23

3.4.4 Agent Caching 23

3.4.5 AgentSpace Client Server Architecture 23

in

3.4.6 Object Model 26 •

3.4.7 The Agent Pattern in AgentSpace . 27
3.5 Simple Network Management Protocol 28

3.5.1 SNMP Management Information 29
3.5.2 Lexicographical Ordering 37
3.5.3 Protocol Specification 37.
3.5.4 Get Request PDU 41

• 3.5.5 GetNextRequestPDU 42
3.5.6 Set Request PDtJ 42

• 3.5.7 Trap PDU 43
4.. DESIGN 45

4.1 Mobile Agent Life Cycle 45
4.2 Mobile Agent Traveling Patterns 46

4.2.1 Itinerary Model. 47
4.2.2 Broadcast Model. 47

4.3 AgentSpace Design Issues 47
5. IMPLEMENTATION 53

5.1 Mobile Agents — Programmers Perspective 53
5.2 Network Management Features 56

5.2.1 Itinerary Model 57
5.2.2 Broadcast Model 57
5.2.3 Active Network Management 58

• 5.2.4 Trap Generation • 59
• 5.2.5 Runtime Decision-Making 60

5.2.6 Dynamic Service Provisioning 61

6.. RESULTS AND DISCUSSIONS 63

7. CONCLUSIONS '69

REFERENCES:

LIST OF FIGURES

Figure No. Name Page No.

Figure 3.1 MANM Architecture 19
Figure 3.2 Mobile Agent Infrastructure 21
Figure 3.3 AgentSpace — Mobile Agent System 22

Figure" 3.4 AgentSpace Client-Server Architecture .23
Figure 3.5 Structure of AgentSpace's Agent pattern — Collaboration diagram 27
Figure 3.6 SNMPv1 Architecture 29
Figure 3.7 MIB-2 Object groups 31
Figure 3.8 SNMP Message Formats 38

Figure 4.1 Mobile Agent Life Cycle 45

Figure 4.2. Interactions between Mobile Agent and SNMP Agent at Device 46

Figure 4.3 Itinerary Model 47

Figure 4.4 Broadcast Model 47
Figure 4.5 Generic Structure of Agent pattern — Class diagram 48

Figure 4.6 Agent's main groups of methods 49

Figure 4.7 Generic interaction of the Agent pattern - Scenario diagram 51
Figure 6.1 AgentSpace Server 63

Figure 6.2 AS-Client Applet 64

Figure 6.3 AS-Client's Features 64

• Figure 6.4 SNMP Manager GUI • 65
Figure 6.5 MANM Manager GUI 65
Figure 6.6 Itinerary Model Results 66

Figure 6.7 Broadcast Model Results 66

• Figure 6.8. Performance Management GUI • 66

Figure 6.9 Interface Utilization Management GUI 67

Figure 6.10 Results of Active Network-Management 67

Figure 6.11 Trap Generator GUI 68 _
Figure 6.12 Dynamic FTP Client Service Provisioning 68

v

ABSTRACT

Network management fundamentally involves monitoring and controlling the

devices connected in a network by collecting and analyzing data from them. Majority of
present day network management systems operate SNMP (Simple Network Management

Protocol). Although the centralized management approach gives network administrators a

flexibility of managing the whole network from a single place, it is prone to information

bottleneck and excessive processing load at the manager and heavy usage of network

bandwidth. Mobile agent based network management overcomes these limitations by

distributing the network management functionality. Mobile agents refer plainly to self-

contained and identifiable computer programs that can move within the network and act
on behalf of the user or another entity. These agents move to the place where data are

stored and collect the information the manager wants. The idea of a self-controlled

program execution near the data source has been proposed as the next wave to replace the

client-server paradigm as a better, more efficient and flexible mode of communication.

The mobile agent paradigm proposes to treat the network as multiple agent friendly

environments and the agents as programmatic entities that perform tasks for users.
Agents can function independent of each other or cooperate to solve problems. Mobile

agent based network management is to equip agents with network management

capabilities and allow them to issue requests to managed devices after migrating to their

place. This work investigates the advantages of using mobile agent (distributed) as

opposed to conventional (client-server or SNMP) approach to network management. To

exploit the potential of mobile agent technology it also demonstrates the application of

two traveling patterns for the mobile agent and their use. Further it incorporates new

features like trap generation, active network-management and runtime decision-making

to considerably increase the performance of mobile agent based approach to network

management.

vi

Chapter 1

INTRODUCTION

Managing large networks with hundreds of computers has become a challenging

and tedious task for today's network administrators. A typical computing infrastructure in

a medium to large-scale organization contains many nodes, possibly of different kinds,

organized into multiple local-area networks and administrative domains. So the need for

efficient tools, techniques and technologies for managing IP networks appears more

substantive than ever before and increased intelligence in management solutions is

becoming a major requirement for the communications networks in the Internet era.

Today's Network Management Systems (NMS) are mostly based on centralized manager-

agent model, where a host who acts as the manager is taking care of a set of nodes by

collecting, analyzing and configuring the appropriate management parameters.

Following some early protocols such as the Simple Gateway Monitoring Protocol

(SGMP), the Simple Network Management Protocol (SNMP) [13,30] gained acceptance

as the management protocol of choice for IP networks. SNMP provides a set of services

that allows SNMP managers interact with SNMP agents that provide access to

management information of the managed equipment (and/or software). Through this

information, a central manager, or managers provide detailed and/or enterprise wide views

of a network. This management information is referenced through a construct called a

Management Information Base (M1B) [14].

SNMP was designed to be an application-level protocol that is part of the TCP/IP

protocol suite. It is intended to operate over the User Datagram Protocol (UDP). For a

stand-alone management station, a manager process controls access to a central MIB at

the management station and provides an interface to the network manager. The manager

process achieves network management by using SNMP, which is implemented on top of

UDP, IP, and the relevant network-dependent protocols (e.g., Ethernet, FDDI, and X.25).

SNMP supports the operations: Get-Request, Get Next-Request Get-Response, Set-

Request and Trap. The first four operations are used to obtain/set object values. For each

of the Get-Request, Get Next-Request Set-Request operations there will be a Get-

Response operation. A Trap generated by an SNMP Agent is an asynchronous operation

that enables the management station of a significant event in a device. These operations

allow.SNMP managers access to management information of the managed equipment.

From its original beginnings as a "simple" solution to the challenges involved in

,managing the operation of networking equipment, SNIMP continues to evolve in support

of increasingly sophisticated requirements. Through several steps; SNMP has evolved into

three major versions, the original Simple Network Management Protocol, enhanced

SNMPv2 and SNMPv3.

1.1 Limitations of SNMP

While extremely useful as a tool in network management, concerns have been

expressed in the use of SNMP for managing large networks. These deficiencies include:

1. SNMP may not be suitable for the management of truly large networks because of

the performance limitations of polling. With SNMP, you must send one packet out

to get back one packet of information. This type of polling results in large volumes

of routine messages and yields problem response times that may be unacceptable.

2. SNMP is not well suited for retrieving large volumes of data, such as an entire

routing table.

3. SNMP traps are unacknowledged. In the typical case where UDP/IP is used to

deliver trap messages, the agent cannot be sure that a critical message has reached

the management station.

4. The basic SNMP standard provides only trivial authentication. Thus, basic SNMP

is better suited for monitoring than control.

5. SNMP does not directly support imperative commands. The only way to trigger an

event at an agent is indirectly, by setting an object value. This is a less flexible and

powerful scheme than one that would allow some sort of remote procedure call,

with parameters, conditions, status, and results to be reported.

6. The SNIVIP MIB model is limited and does not readily support applications that

makes sophisticated management queries based on object values or types.

2

7. SNIVIP does not support manager-to-manager communications. For example, there

is no mechanism that allows a management system to learn about the devices and

networks managed by another management system.

1.2 Distributed Network Management

The most suitable solution for the above-mentioned limitations is to distribute [7]

the management intelligence by bringing it as close as possible to the managed network

elements. This approach has appeared firstly in the so-called Management by Delegation

(MbD) [15] research initiative. Other related attempts are Remote Monitoring (RMON)

[30], and the proxy agent paradigm specified in the SNMPv2 [30]. Recently the Mobile

Agent technology [2,11] has emerged as a promising- solution towards implementing

strategies that distribute and automate management tasks. The Mobile Agent technology

provides an innovative software interaction paradigm that allows code migration between

hosts for remote execution and is a rapidly developing area of research in the fields of

distributed network management. This does not imply that the large system is merely

divided into smaller pieces. Instead several centralized applications each capable of

addressing a certain aspect of a problem are tied together with a communication system. It

would allow for exchange of viewpoints and coming up with strategies to make progress

or to combine the results into a solution. Each type of cooperating systems may be

considered as an agent. The mobile agent paradigm proposes to treat the network as

multiple agent friendly environments and the agents as programmatic entities that perform

tasks for users. Agents can function independent of each other. or cooperate to solve

problems.

1.3 Dissertation Objective

The purpose of this study is to investigate the use of mobile agent based approach

to network management in overcoming the limitations of conventional network

management protocols. Further to provide a solution for generating traps in a mobile

agent based network management environment and introduce new features like active

network-management, runtime decision-making to make the approach more efficient.

3

1.4 Report Organization

In chapter 2 definition of mobile agent is given with background on mobility and

the advantages of using java language for developing mobile agent applications. It also

discusses different security issues to be considered and a survey of existing mobile agent

systems. Chapter 3 covers the details of integrating mobile agents with SNMP Agents and

explains the infrastructure required to execute mobile agents with an e.g. AgentSpace

system used in the work. It also describes the MANM model and gives the details of

SNMP protocol. The fourth chapter discusses how the mobile agent life cycle is designed

and the execution process of the mobile agent at the managed device. It also explains the

AgentSpace pattern and design issues. Fifth chapter explains how to create mobile agent

based applications with AgentSpace system and the different features implemented in this

work. Chapter 6 of the report includes the GUIs built and results obtained. Chapter 7

concludes the report mentioning how MANM approach has overcome the limitations

mentioned in chapter 1 and gives further areas of improvement.

4

Chapter 2

LITERATURE SURVEY

2.1 Mobile Agent — Definition

A Mobile Agent (MA) [1,2,6,21] can be defined as a software program capable of

migrating autonomously from node to node and traverse the network carrying logic and

data, performing specialized tasks on behalf of their creators working independently or in

conjunction with other software components.

The term mobile agent contains two separate and distinct concepts: mobility and

agency. A software agent is a computational entity, which acts on behalf of others, is

autonomous, proactive, reactive, and exhibits capabilities to learn, cooperate, and move.

This is called as a basic agent model. A mobile agent is a software agent (which is

characterized by basic agent model) that can move between locations. In addition to the

basic model, any software agent defines a life-cycle model, a computational model, a

security model, and a communication model. A navigation model additionally

characterizes a MA. Most research examples of the MA paradigm as reported in the

literatures currently have two general goals: reduction of network traffic and

asynchronous interaction.

To make use of MAs, a system has to incorporate a mobility framework. The

framework has to provide facilities that support all of the agent models, including the

navigation model. For the life-cycle model, we need services to create, destroy, start,

suspend, stop, etc. agents. The computational model refers to the computational

capabilities of an agent, which include data manipulation and thread control primitives.

The security model describes the ways in which agents can access network resources, as

well as the ways of accessing the internals of the agents from the network. The

communication model defines the communication between agents and between an agent

and other entities (e.g. the network). Navigation model handles all issues referring to

transporting an agent (with or without its state) between two computational entities

residing in different locations.

5

The size of MAs depends on what they do. In swarm intelligence the agents are

very small. On the other hand, configuration or diagnostic agents might get quite big,

because they need to encode complex algorithms or reasoning engines., However, agents

can.' extend their capabilities on the fly, _ on-site by downloading required code off the

network. They can carry only the minimum functionality, which can grow depending on

the local environment and needs. This capability is facilitated by code mobility.

2.2 Background on Mobility [32]

MAs can be implemented using one of the two fundamental technologies mobile

code or remote objects. The ability to start a computation on a'site, suspend the execution

of the computation at some point, migrate. the computation to a remote site and resume its

execution there is called mobile communications. Some times called M,4s it is a far more

complex. problem than simple moving objects around as done in RMI or CORBA, or

moving code alone as with java applets. When an agent migrates, its state is extracted

from the source agent system and transferred to its destination where it is restored into a

new instance of an agent object. During transfer, only site-independent information is
transferred. In the case of communicating channels, this information consists of the agent

names, with which the migrating agent had opened channels as well as their current

location. The state relevant. to each particular node is transient, i.e.; it is discarded. For

example the sockets maintained in the agent control object are closed and then reopened in

the remote agent control object.

A distinction is usually made between strong migration and week migration.

Strong migration means migrating a process by sending its memory image to a remote site:

the current state of the stack, the value of the program counter, and of course all the

objects reachable from the process. Moreover, the migration may occur preemptively, the

process does not need to know it has migrated. On the other hand, weak migration usually

only involves the objects reachable from the process, and requires that the process has

agreed to migrate (it is non preemptive). But there exists no implementation of strong

migration in Java that does not break and Java model or require, user instrumentation of

the code.

6 	 _ 	__

The best-known Java libraries for MAs are Aglets [16,26] and Voyager [17]. Both

implement a form of weak migration, in the sense that an object must explicitly invoke a

primitive in order to migrate, and this can only take place at points in the execution where

a check pointed state (either implicit or explicit) is reached. A checkpoint is a place in the
code where the current state of the computation can be safely saved and restored.

For example, the MoveTo primitive of Voyager waits until all threads have

completed. On the other hand, in Ajents [18], any object can be migrated while executing

by interrupting its execution, moving the most recently check-pointed state of the object

to a remote site and re-executing the method call using the check-pointed object state.

Apart from the fact that whether check pointing occurs lies in the hands of the user

program, general and well-known issues related to checkpoint inconsistency due to

rollback are kept unresolved.

Systems also differ in the way mobile objects interact: either by remote method call

(Ajents, Voyager), or using a message-centric approach (Aglets). The default interaction

mode is usually synchronous, even if some form of asynchronous communication is

sometimes provided (in Aglets or Ajents for instance). Interacting synchronously simplifies

the overall management of migration: while a remote method or message is handled,

nothing else can happen to the two partners (and especially no migration), but this of

course incurs a performance penalty.

Remote interaction is achieved transparently by a proxy, which hides the effective

location of the destination object to the caller. The proxy also often acts as a forwarder for

locating the mobile object and is a convenient place for performing security-related

actions.

In this section two of the most popular solutions to the location problem are

given. The first solution is based on a.location server, chain offorwarders. Other solutions

exist as the one described in [19] that uses a distributed two-phase transaction and a

sophisticated reference-tracking mechanism.

Location Server. The location server responsibility is to track the location of each mobile

active object: Every time an active object migrates, it sends its new location to the location

server it belongs to. As a result of the active object leaving a host, all the references

7

pointing to its previous location become invalid. There exists different strategies for

updating those dangling references with the new location, one of them being

Lazy: when an object tries to send a message to a mobile active object using a reference
that is no longer valid, the call fails and a mechanism transparently queries the location

server for the new location of the active object, updates the reference accordingly and rem
issues the call.

• Being a centralized. solution, it is very sensitive to network or hardware failures.

Standard techniques for fault-tolerance in distributed systems could be put to use here,

• such as using a hierarchy of possibly replicated location servers instead of a single server.

• Nevertheless, this solution is costly, difficult to' administer and would certainly not scale

well.

Forwarders: An alternative solution is to use forwarders: knowing the actual location of

• a mobile object is not needed in order to communicate with it; rather, what really matters

is to make sure that the mobile object will receive the message we send to it.

To do so, a chain of references is built, each element of the chain being a

forwarder object left by the mobile object when it leaves a host and that points to the next

• location of the mobile object [17]. When a message is sent, it follows the chain until it

reaches the actual mobile object. This appears to be the solution of choice for several

systems [20].

Forwarders can be considered as a distributed solution to the location problem, as

• opposed to the previous centralized solution. Moreover, contrary to the.location server, in

• the absence of network or host failure, a message will finally reach any mobile object even

if it . never stops migrating. However, this solution also suffers from a number of

drawbacks.

First, some elements of the chain may become temporarily or permanently"

unreachable because of a network partition isolating some elements from the rest of the

• chain or just because a single machine in the chain goes down; it would destroy all the ..

forwarder located, on it The chain is then broken, and it becomes impossible to
communicate with the mobile object at the end of the chain, although it is still well and

alive.

8

2.3 Advantages of Mobile Agents

There are many advantages with the use of MAs in network management. They are

1. Efficiency savings - CPU consumption is limited, because a MA executes only on

one node at a time. Other nodes do not run an agent until needed.

2. Space savings - Resource consumption is limited, because a MA resides only on

one node at a time. In contrast, static multiple servers require duplication of

functionality at every location. MAs carry the functionality with them, so it does

not have to be duplicated. Remote objects provide similar benefits, but the costs of

the middleware might be high_

3. Reduction in network traffic - Code is very often smaller than data that it

processes, so the transfer of MAs to the sources of data creates less traffic than

transferring the data. Remote objects can help in some cases, but they also involve

marshalling of parameters, which may be large.

4. Asynchronous autonomous interaction - MAs can be delegated to perform certain

tasks even if the delegating entity does not remain active.

5. Interaction with real-time systems - Installing a MA close to a. real-time system

may prevent delays caused by network congestion. In Network Management

systems NM agents usually reside close to the hardware, so this advantage might

not be as clear as others.

6. Robustness and fault tolerance - If a distributed system starts to malfunction, then

MAs can be used to increase availability of certain services in the concerned areas.

For example, the density of fault detecting or repairing agents can be increased.

Some kind of meta-level management of agents is required to ensure that the

agent-based system fulfills its purpose.

7. Supports for heterogeneous environments - MAs are separated from the hosts by

the mobility framework. If the framework is in place, agents can target any system.

The costs of running a Java Virtual Machine (JVM) on a device are decreasing.

Java chips will probably dominate in the future, but the underlying technology is

also evolving in the direction of ever-smaller footprints (e.g. Jini).

9

8. On-line extensibility of services - MAs can be used to extend capabilities of

applications, for example, providing services. This allows for building systems that

are extremely flexible.

9. Convenient development paradigm - Creating distributed systems, based on MAs is

relatively easy. The difficult part is the mobility framework, but when it is in place,

then creating applications is facilitated. High-level, rapid application development

(RAD) environments for agents will be needed when, the field matures. It is quite

- -

	

	 probable that the flourishing, tools for object-oriented programming will evolve

into agent-oriented development environments,- which will include some

functionality to facilitate agent mobility.

10. Easy software upgrades - A NIA can be exchanged virtually at will. In contrast,

swapping functionality of servers is complicated; especially, if we want to maintain

the appropriate level of quality of service (QoS).

Although this new management approach, seems to solve the problems of

centralized management architectures, one cannot neglect the strengths of. existing

management solutions based on "legacy protocols" such as SNMP. SNIVIP is an accepted

standard, and is likely to be the network management protocol of choice for the

foreseeable future and many network nodes will be equipped with an SNMP agent. Even if

MAs were being employed for new tasks, it would be reasonable to take advantage of the

existing capabilities of the resident SNMP agent.

2.4 Java and Mobile Agents 131]

Java is the predominant language for MA systems, both for implementing MA

execution environments and for writing MA applications. The proliferation of the Java

programming language led to the development of numerous MA platforms. Actually, Java -

seems perfect for developing an execution environment for MAs, because Java offers

many features that ease its implementation and deployment.. Java' runtime systems are

available for, most hardware platforms and operating systems. Therefore, MA platforms

that are built on Java are highly portable and run seamlessly on heterogeneous systems.

Furthermore, MAs profit from continuous, performance and scalability enhancements, such

10

as increasingly sophisticated compilation techniques and other optimizations, which are

provided by the underlying Java Virtual Machine (JVM).

In addition to portable code, Java offers a serialization mechanism allowing to

capture a MA's object instance graph before it migrates to a different host, and to

resurrect the agent in the new environment. Java also supports dynamic loading and

linking of code by means of a hierarchy of class loaders. A class loader constitutes a

separate name space that can be used to isolate classes of the AS and of different agents

from each other.

In general, MA platforms execute multiple agents and service components

concurrently in a time-sharing fashion. Java caters for this need by means of multi-

threading. Java is also a safe language, which means that the execution of programs

proceeds strictly according to the language semantics. For instance, types are not

misinterpreted and data is not mistaken for executable code. The safety properties of Java

depend on techniques such as bytecode verification, strong typing, automatic memory

management, dynamic bound checks, and exception handlers. On top of that, the Java

platform includes a sophisticated security model with flexible access control based on

dynamic stack introspection.

In summary, Java is highly portable and provides easy code mobility. This caused

numerous MA systems based on Java being developed and experimented with.

2.5 Mobile Agents and Security [101

Although MAs have many benefits for distributed computing they introduce a new

dimension of security issues. Automatically executing arbitrary code any host can be

dangerous. The same, care is necessary as if manually starting programs from unknown

sources. In order to protect hosts from malicious code, agent systems usually provide a

virtual machine or interpreter to run MAs in a separate and locked environment. Any

action or communication of MAs is then only possible through the means of agent system

(AS).

!11

2.5.1 Analysis of Threats

Various kinds of attacks and threats could compromise the security of MA based.
management systems. An attack is an attempt to illegally access ° a system, a resource or
information or to execute malicious code. Attacks are classified as active and passive

attacks. The ability of an attacker to change something is characteristic for an active•
attack. In a passive . attack he/she only collects information but,, does not to actively

manipulate an object. A target of an attack can be any entity (AS, manager, MA, managed

resource) in a MA based management system as well as any relation (information channel

between two entities, a communication relation can be considered as transport of
messages, execution relation between AS and agent when an AS is executing an agent,
calling relation when an agent requests for services at AS). Therefore threats are

distinguished from attacking an entity from attacking a relation.

The three kinds of relations communication, execution and calling must be.

distinguished between attacks which are generally possible for all kinds of relations and

those which are special to a particular kind of attack.

	

2.5.1.1 	Entity Attacks

As pointed above there are four main entities, which can act as subjects as well as

objects: managers, MAs, AS, managed resources. Each of these' entities can be attacked.

The attacker tries' to become a `valid identity' by faking an identity or entity in the

management system This attack is called masquerade, e.g. if the .attacker can act as a

manager of if he/she can launch a MA or AS under the name of a legitimate subject he is

able to gain illegal access to the system. ,

	

2.5.1.2 	Relation Attacks

In addition to entity attacks, there are also 'attacks to relations between two

legitimate entities. Relations between more than two entities can be split into several two-

entity relations. Some of them apply to relations in general and some of them are specific

to a particular kind of relation. Eavesdropping of messages can enable the attacker to_ gain_.

information paving the way for further attacks or to steal confidential data. This is a

passive attack and very hard to detect.

12

It is necessary to identify the user, which is responsible for the message or action.

For example, it must be impossible to launch a MA doing malicious actions and,

afterwards, repudiate everything. This relation attack is called repudiation. Another attack

in this regard is the unauthorized replication of MAs.- A malicious MA, AS or manager

may replicate MAs. Besides, an intruder in a relation may duplicate a MA or message

during transmission.

If the attacker can actively manipulate the information channel he/she can do

alterations to messages. In this case, he/she may change the functionality or data of a

migrating agent. The AS is a mediator between MAs and hosting systems. In addition, it

provides a runtime environment for MAs. Therefore, a malicious AS. can read, alter or

delete data of a local MA (alteration of code and data).

An attacker can do a denial-of-service attack against communication relations, an

AS or a hosting system, e.g. a hostile MA overloads the attacked resource and thus it is

impossible for other legitimate subjects to use the resource. This scenario is even more

complicated if the denial-of-service attack is not done by a single MA by a distributed

group of malicious MAs.

Another attack is resource misuse. As an MA implements management

functionality and must therefore have administrator rights. The MA can abuse

communication resources, resources of the underlying host system or of the AS.

Despite of these general attacks there is one, which only affects the calling

relation. The attacker can try to circumvent the dedicated calling interfaces to directly

access other methods not intended to be used. Also the communication relation is security

sensitive. An attacker may store a message or an MA and send it once more at a later time

to a destination. This is called replay attack. Moreover, an attacker can also redirect

agents and messages or delay them.

The last kind of relation attack is that against execution relations. As an MA can

only live with the aid of an AS it is even feasible for a hostile agent system to manipulate

the execution trace of an MA. For example, the AS can manipulate the runtime stack of

the MA, prevent execution of a certain function or force execution of additional

functionality. Another possible attack is to prevent execution of MAs (denial-of-

13

execution). As an AS has to execute the MA and thus has complete control of the agent,
these attacks are almost impossible to prevent. For this reason, we either, assume a

relationship of, trust between delegator/MA,can attack the AS, the underlying , hosting

system or other MAs in various ways (e.g. denial-of-service, resource misuse)........
2.5.2 Security Requirements

Regarding the various attacks it is possible to develop a defense strategy for each

kind of attack. But this approach has the drawback that any new attack requires a new

'defense strategy , and the security system always `lags behind' the attacker. The more

promising approach is to develop a security architecture which implements a more

abstract view on attacks. The OSI security architecture may be regarded as a basis, but it

must be adapted to particular characteristics of agent systems. The first step towards such

architecture is to deduce a conceptual view on counteractions against classes of attacks:

security requirements. In order to satisfy these requirements several components 'and

services have to be identified and integrated in security architecture for a mobile agent

based management system. Such architecture is able to prevent complete classes of attacks

and even future attacks belonging to one of these classes.

The security requirement is authentication. MAs are-new kind of access to systems

that need closer attention. Authentication is very fundamental, because most of the

following security requirements presuppose the ability to identify subjects and objects

unambiguously; "

Authentication is necessary to bind rights to subjects. For that purpose right's and

permissions must be described. Access control must then enforce rights and restrictions at

runtime. Each object in the system offers interfaces, which can be used by subjects. Access

control prevents illegal access Of objects. Certain management tasks require that a mobile

agents is able to delegate rights and permissions to other entities, a concept for delegation

of these rights is necessary. Security management with the aid of, mobile agents can be

carried out if such a concept is available.

Each information channel representing a . relation between' entities may need

protection. The security requirement confidentiality is satisfied if such a channel is only . .

accessible by authorized participants.

14

The aim of a lot of attacks is to alter code, data or messages or to replay/replicate

messages or MAs. Detecting such alterations, manipulations, replays and misordering can

assure the integrity of objects.. Being able to establish and enforce resource constraints can

prevent another big group of attacks: resource abuse and denial-of-service. The security

requirement non-repudiation means that it is possible to prove that a certain subject has

done a critical or sensitive action. Even a third party can prove who caused this action.

To prevent the circumvention of legal interfaces and to restrict rights the

sandboxing concept is used. A sandbox is a very restricted environment for code

execution, which only can be left in a controlled manner.

Some attacks (e.g. manipulating an MA by an AS) seem very hard or even

impossible to be prevented. If it is not possible to restrain these attacks technically an

organizational solution is necessary, e.g. a trust relation between two entities that a

particular kind of attack will not happen.

2.6 A Survey of Mobile Agent Systems

There are several research activities that are related to mobile agent (MA)

technology and many more centering on MA issues. In general, there are three targets for

MA system design and implementation: using or creating a specialized language, as

operating system (OS) services or extensions, or as application software. In the first

approach, language features provide the requirements of MA systems. The second

approach implements MA system requirements as OS extensions to take advantage of

existing OS features. Lastly, the third approach builds MA systems as specialized

application software that runs on top of an OS to provide MA functionalities. For

comparative purposes, nine current projects [21] are chosen.

• AgletTM from IBM

• Agent Tcl from Dartmouth College

• Agents for Remote Access (ARA) from the University of Kaiserslautern

• ConcordiaTM from Horizon Systems Laboratory, Mitsubishi Company

• Mole from the Institute for Parallel and Distributed Computer Systems (IPVR)

• OdysseyTM from General Magic

15

• TACOMA from Cornell University

• VoyagerTM from ObjectSpace

• Secure and High Performance Mobile Agent Infrastructure (SHIP-MAT) from the
Multimedia and Mobile Agent Research Laboratory, University of Ottawa

_Table 2.1 gives the list of major mobile agent systems and the way their features
are incorporated.

Mobile Security Portability Mobility Communication Resource
Agent management

Aglet Limited, sandbox Java Aglet tr fer - Coast, message abject Java

model P o ocol

Agent Tel .Limited, sandbox Supportmultiple Multiple protocol RPC Yes

model languagcintdrpreters' - ..

ARA Limited, sandbox Supportmultiple Multipleprotoccl RPG Yes

model language interpreters

Concordia Limited, sandbox j Java 	- Socket and java Event, group Yes, via the queue

model and secure serialization server

• channel

Mole 	-- Basicjava Java Enhahcedjava Event Java

model with code .. 	-

Odyssey Basicjava Java JavailkE, CORBA, Event Java

IIOP DOOM -

TACOMA Leeited, User None. TCP. Folder Object 	- - Operating system

fierce ll agent - -

SFEP-MAI Sandbox model, Java Java, jeva abject . Event, group room Planned

secure channel, serialization object, java syntax for

policy access control methed eat! -

Voyager Limited, sandbox - 	Java Jane object Distributed event . Jove

"" 	_ model, severe serialization, (voyager space), java

channel reflection 	. syntak for method call

Chapter 3,

ANALYSIS

3.1 Integration of Mobile Agents and SNMP

As said earlier that the mobile agent based network management must utilize the

advantages of the conventional SNMP already in use. While integrating the mobile agent

based approach with SNMP the possible interactions. [4] between a mobile agent arrived at

a device and the SNMP Agent residing at the device will be

a) A mobile agent may arrive at a. node and wish to access data, such as interface,

statistics, from the resident SNMP agent's MEB. That is, . it wants to Get or

perhaps even Set data in the SNIVIP MIB. One could equip the mobile agent with

SNNIP managerial capabilities and allow the mobile agent, acting as a manager, to

issue SNMP request packets to the resident SNW agent. Of course the mobile

agent would not have to be co-resident to be able to do this, but for security

reasons alone, it is not a good idea to allow a mobile agent to open a socket to

communicate, with the SNMP agent. A better way would be to provide a local

SNMP service or a carefully controlled secure interface to the nodes resources for
this purpose. Thete would_ still need to be an application program interface (API)

or a mechanism that. would give the mobile agent a way to make its wishes known

to the intermediary service. Such an approach can be adopted using readily

available Java SNMP classes. The advantage of such an approach is that one does

not have to modify the SNMP agent to provide access to its MIB. The cost of this

is that the mobile agent would need to have full SNMP managerial capabilities and

would have to handle such tasks as BER encoding. Another approach is to design

a lightweight protocol that would take advantage of the co-residency of the mobile

and SNMP agents. 	 •

b) A mobile agent may _ arrive at a node and have the capability of extending the

existing SNMP MIB with certain meta-variables that it brings with it. That is the.

17

mobile agent may bring with it some state, some information from the outside
network at large, that it was charged with to explore and analyze. A manager
would have to, know of the existence of such additional information to be able to
take advantage of it, but presumably it delegated the mobile agent to acquire such.
information in the first place and would have defined it as a NIIB sub-tree. The -
SNMP DPI protocol [22] and its successor the AgentX protocol [23] were

designed specifically to allow a sub-agent process to extend or enhance an existing
SNMP agent by first registering with it, and then communicating with it using the
specified protocol Clearly the SNMP agent would have to have the protocol built

in, but many agents today are DPI enabled and it appears that many future agents

will have the improved AgentX protocol incorporated. Clearly a mobile agent
could behave as an AgentX sub-agent, or better, would employ an API of a local
service that would securely accomplish the registration and pass queries back and
forth. ..In either case, the manager would need to have predefined the new MIB
variable to be dynamically added to the local SNMP MIB.

c) A mobile agent, having acquired information during its migratory activity, may
arrive at a node that consequently implies a fault or degraded performance either at
that node or else where in the network, and wish to send off a defined SNMP trap
to a remote SNMP manager.

d) Finally, it is conceivable that some entity would like to send an SNMP. trap to a
mobile agent, which is acting in the role of an SNMP manager. This assumes that

the sender can actually locate the mobile._ "manager" using the mobile agent
environment's agent location service.

3.2 MANM Hybrid Model

To take the advantages of mobile agents for network management, a flexible
architecture is designed, in which Mobile Agent based Network management (MAN"

forms a layer over conventional . SNMP based management. This ensures" that the

advantages of SNMP are not lost and also serves the purpose of managing legacy SNMP

based systems. : : .

18

As shown in figure 3.1 MANM framework [1,3] is a hybrid model, which has

features of mobile agents as well as SNMP. MANM gives the manager the flexibility of

using SNMP model or mobile agent based management depending on the management

activity that is involved. This architecture has many advantages over the existing

. architectures.

	

MS

L 	 LIEEEEP A 	_
G~

MAP 	SNMP
MAEE 	 MD

MAEE 	
.

MS — Management Station
MAP — Mobile Agent Producer
SNMP - Simple Network Management Protocol
MAEE — Mobile Agent Execution Environment
MN — Managed Device
MID — Management Information Base

Figure 3.1 MANM Architecture

In this approach the MANM station assumes responsibilities of a client. All

managed nodes are servers, which have mobile agent execution environment and respond

to SNMP queries from mobile agents when they visit the servers and manipulate data

locally. When the client in the MANM needs access to data on a network-connected

device, it does. not talk directly to the server over the network. Instead, the client actually

dispatches a mobile agent to the server's machine. Once on the server's machine, the MA

makes its requests to the server directly. When the entire transaction is complete, the

mobile agent returns to the management station with the results.

The MANM provides Java-compliant interfaces to network management services

The MANM framework consists of the following major components: -.

19
-

3.2.1' : Management Application,

The management application has a Graphical, User Interface (GUI) which
coordinates with the agent applications 'underneath. it It interacts with Mobile Agent
Producer (MAP) in configuring a MA with details such, as the parameters to be evaluated
at the managed node's site and health functions.

3.2.2 Mobile Agent Execution Environment (MAEE)

MAEE is an execution environment for the execution of MA's. MAEE could be
characterized as home for mobile agents from where they could execute their duties. The

agent comes to the managed node from the management station ,-executes its management,;

task and goes back to the management station. Server acts as a mobile agent execution
:environment in machines that host mobile agents.

3.2.3' " Mobile Agent Producer (MAP)

MAP could be characterized as a tool for generating customized MA's that are

equipped according to the requirements of network manager. By. using MAP the
functional characteristics of NIA's, which. roam in the network to collect informationfrom.
managed nodes, can be changed dynamically (i.e. at runtime). Dynamic creation and

configuration of MA's is achieved using MAP.

3.2.4
.. .
Mobile Agents (MA)

A typical mobile agent is Autonomous, Mobile, Persistent, Communicative/,

collaborative and active/proactive. The ability to travel allows mobile agents to move to
the network element, which is to be managed. In other words, mobility of MA's could be

exploited to transfer the MA to managed node and interact locally with the SNMP agent

. onthe managed node

3.3 Mobile-Agent-Infrastructure

In order to provide the mobile agents with an execution environment (MAEE)

each network component (management station_ or managed device) should have a mobile

agent infrastructure [6,8] that provides the capabilities, which are characterized by the

mobile agents as shown in figure 3.2. Different models like life-cycle model,

computational model, security model, . communication model and navigation model

characterize the definition and behavior [6] of mobile agent. In order to perform network

management functionality using mobile agent, it is necessary to have an infrastructure that

provides a framework for code mobility and mobile. agent execution. .

NC 	 NC-

MCD

McM 	 fig 	 JVM

MA
VMC 	

C

MCD

JVM-
- 	 Kernel (managed resources)

=Network Component 	 MF = Migration Facility ..
MA = Mobile Agent 	 JVM = Java Virtual Machine
MCD = Mobile Code Daemon 	MCM = Mobile Code Manager
VMC = Virtual Managed Component

Figure 3.2 Mobile Agent Infrastructure

Figure 3.2 explains the development of Mobile Agent Infrastructure. Every

network component (NC,- either management station or device) contains a Mobile. Code

Daemon (MCD) running within a Java Virtual Machine (JVM). The MCD provides a

number of services that facilitates the execution of mobile agents:

1. A Mobile Code Manager (MCM) that manages the life cycle of a mobile agent

from its arrival and authentication at the network component to its migration or

perhaps destruction.

2. A Migration Facilitator (MF) to transport mobile agents between NCs.

3. A Communication Facilitator (CF) for collaboration between local and remote

mobile agents.

21

4.. An interface called the Virtual Managed Component (VMC), which provides for

mobile agents accessing the NC's managed, objects and resources in a controlled
and secure way. The VMC [4] is responsible for management of the mobile agents
access rights and the allocation of resources to that agents.

3.4 AgentSpace - Mobile Agent System

Figure 3.3 gives the architecture "of AgentSpace system and way code and data are
moved between devices in the network. 	.

Mobile Agent 	 Mobile Agent

Code Sender 	 Receive Code
 itJ

Computer 	 Compute data

AgentSpace Runtime 	 AeenfSpace Runtime

Java VM 	 .. ' 	Java VM

OS/Hardwar a 	 Code 	 OS/Hardware

data

network .'

Figure 3.3 AgentSpace - Mobile Agent System

3.4.1 Mobile Agent Platform

The runtime system is introduced as a platform for mobile agents. It can
create/destroy mobile agents, and send/receive mobile agents to/from a runtime system
running on another computer. Also, itis characterized, in being designed for a distribution

mechanism of network protocols and applications.'

3.4.2 Agent Migration
The runtime system permits the migration of not only the code but also the values

of the instance variables: included in the agent. Hence, after migrating the agent, the values

are restored in the agent again, and then its execution starts from a given method.

22 ,.

3.4.3 Agent Cloning

The runtime system offers a mechanism to create a copy of an existing agent

including all instance variables. The cloned agent has the same state as the original agent

has, but its identity is different from that of the original one. If the original agent has a

reference to resources, the runtime system protects the resources appropriately.

3.4.4 Agent Caching

The runtime system can load the code of each agent on demand and cache it in

order to improve performance when particular protocols are sometimes used. The cache. is

managed in a least used order" When the state of an agent arrives at a remote node the ".

runtime system on the remote node checks a cache of codes. If the required code is not

found at the cache, it sends a load request to the previous node or certain code base

nodes. Furthermore, the runtime system ensures that mobile. agents' can be automatically

and dynamically transferred to the nodes, which are needed.

3.4.5 AgentSpace Client-Server Architecture

AgentSpace's main goals are the support, development and management of Agent

Based Applications (ABA). These goals are provided through three separated but well-

integrated components as depicted in figure 3.4.

development

applet 	 agent

aPPI applet 	 ag agent

 [AS API
management 	AS-Client 	 AS-Server 	support

Voyager 	 Voyager.

JVM 	 JVM

Client . 	hierwOrk 	Server

Web browser

Figure 3.4 AgentSpace Client-Server Architecture

23.

3.4.5 3 	Voyager

Voyager [17] is a robust, extensible, scalable solution for enterprise-distributed

development. Based on. established ORB technology, Voyager's layered and modular

architecture transparently supports multiple messaging protocols (HOP, RMI, SOAP,

DCOM), naming protocols (RMI Naming, "CORBA Naming;" JNDI), communications

protocols. (TCP/IP, SSL, SOCKS), and messaging patterns (synchronous, . one-way, ..., _ .. .

delayed-synchronous, asynchronous). It is-equipped with advanced features including:

1. Publish/subscribe

2. : Dynamic aggregation

3. Object mobility . -.

4. Federated, distributed naming service

5. Management console

6. Dynamic, automated proxy class generation

7. Remote class loading

3.4.5.4. AgentSpace Application Programming Interface (AS-API)

AS-API is a package of Java interfaces and classes that defines the rules to build

agents. In particular, the AS-API supports the programmer when building:

1. Agent classes and their instances '(agents) that are created and stored in the AS-

Server's database for later use; and

2. Client applets (that are stored in the AS-Server's file system or in the AS-Server's

database) in order to provide an interface to agents.

" These clients/applets can be either generic mini-applications - such "as the AS-

Client

 itself, see above - or specific to some particular agent, for example, to input data or

;' ... 	present a report.

25

34 6 Object Model

AgentS pace involves the support, development and management of several related
objects: contexts, places, agents, users, groups of users, permissions, ACLs (access
control lists), security managers, tickets, messages, and identities.

The context is the most important and critical, object of the AS Server as each
AS-Server is represented by one context. The context contains the major data structures
and code to support the AS Server such as lists of places; users, group's of users, meta-
agent classes and access control lists..

Each context has a number of places. The execution place, or simply place; has
mainly two objectives. First is to provide a conceptual and programming metaphor where

agents are executed and meet, other agents. Second, to provide a consistent way to define
and control access levels, and to. control computational resources.

The place has a unique, global identity and knows the identification of its
owner/manager. It also maintains a keyword/value list . that allows an informal

characterization. , Optionally, places can be . hierarchically organized. The place can also
contain the maximum and current number of agents allowed in order, to support some
resource management. In order to keep track of its, agents, the place keeps a list

containing its visitant agents and another with .its "native agents`.- The place also knows in

which place its native agents are executing at a given point of time

The agent is the basic, element of the system. Agents are identified by a unique.,

global identity. Agents have two parts:

1. A visible component, that should be developed, or specialized, by programmers

and.

2. An invisible component, called "internal-agent", kept by AgentSpace.

Agents are active objects that execute in some AS Server but from a conceptual,

perspective, they are currently in some place. Agents can navigate to other . (local . or

remote) place if they have permission to do" it. Just one user owns an agent Nevertheless

26

other users (or even agents from other users) might interact with it, if this is granted by the

agent' security policy.

The AS-Server also maintains lists of users, groups of users and ael to implement

the permission and access control mechanism. A user may belong to one or more groups.

Groups may be hierarchically organized to simplify permission management. This means

that all users of some specialized group have implicitly all the permissions they inherit

from the more general groups. By default; every AS Server defines four groups of users

and establishes a convenient security access policy, based on them: anonymous group;

end users group; place owners group; and AS Servers administrators group.

3.4.7 The Agent Pattern in AgentSpaee

Figure 3.5 shows the specific structure of the Agent pattern [33] related to the

AgentSpace framework. Due to the fact that AgentSpace has been developed on top of

the Voyager infrastructure the persistence and distributed details of the Agent pattern are

transparently supported by an internal class (i.e., not visible from the programmer's

perspective), which is called InternalAgent..

Vew
Client Agefit View 	 Internal

User

Owner

Agent 	 - sunrity .,
Agent 	 Agent 	 Security

Manager

Concrete Agent .
Place

Concrete Agent

Figure 3.5 Structure of AgentSpace's Agent Pattern — Collaboration Diagram,

It is important. to note how suitable, to support dynamic and distributed

applications, the process of creating agents (as well as places) can be. Firstly, there is no

use or explicit reference to network-enable classes. Secondly, all agents are created,

27

through a factory, method (i.e., the createAgent method) in a transparent, clean and easy

way.

Thirdly, AgentSpace provides a very extensible and elegant way to handle security
policies/strategies related .to the access and interactions between agents and end-users, and

between agents themselves. Basically, one security policy/strategy (i.e., a security manager
class) is attached to the agent object .at its creation. In AgentSpace the SecurityManager is

an abstract class from which other classes should be derived. By default, every agent is

attatched to the DefaultAgentSM class. However, other classes —_other agent's security

policies - can be defined and used by the system through the class loading and reflection

mechanisms of Java. .

Another novel aspect of AgentSpace is the well-integrated association between

users and agents/places. This mechanism, intrinsic by default in AgentSpace, provides an.

easy and clean way to develop and manage this class of applications.

3.5 Simple Network Management Protocol .

The term Simple Network Mana g ement Protocol is p 	Management 	 actually used to refer to a

collection of

specifications for network management that include- he protocol itself, the

definition of data structures, and associated concepts. The three foundation specifications

that define SNMP are

I. Structure and Identification of Management . Information for TCP/IP-based

networks [24]: describes how managed objects contained in the MIB are defined. .-

II. Management Information Base for , Network Management of TCP/IP-based

Internets: MIB-2 [14]: describes the managed objects contained in the MIB.

III. Simple Network Management Protocol [13]: defines the protocol used to manage

these objects.

Figure 3.6 provides a closer look at the protocol, context of SNMP. From a = :.

management station, three types, of SNMP, messages are issued on behalf of a management,

application: GetRequest, GetNextRequest, and SetRe quest ..The first two are variations of

the _ et function.= All three messages- are acknowledged ed by the agent in the form of a

28

GetResponse message, which is passed up to the management application. In addition, an

• agent may issue a trap message in response to an event that affects the NIIB and the

• underlying managed resources.

~------0

Message

Management Application

d

C
q

`a z a_

SNMP Manager
UDP.

TP

Network-dependent protocols

Manaeed Resources

SNMP Managed Objects

U

Ca
Q

~ U

SNMP Agent

UDP

tP

Network-dependent protocols

Network Orintcrnet

Figure 3.6 SNMPv1 Architecture

Because SNMP relies on UDP, a connectionless protocol, SNMP itself is

connectionless. No ongoing connections are maintained between a management station

and its agents. Instead, each exchange is a separate transaction between a management

station and an agent.

3.5.1 SNMP Management Information

As with any network management system, the foundation of a TCP/IP-based

network management system is a database containing information about the elements to be

managed. In both the TCP/IP and the OSI environments, the database is referred to as a

management information base (MIB). Each resource to be managed is represented by an

object. The NIB is a structured collection of such objects. For SNNM, the NUB is, in

essence, a database structure in the form of a tree. Each system (workstation,, server,

29

router, bridge, etc.) in a network or, internetwork maintains a MIB that reflects the status

of the managed resources at that system. A. network management entity can monitor the

resources at that system by reading the values of objects in the MIB and may control the

system resources at that system by modifying those values.

In order for the MIB to serve the needs of a network management system, it must
'.. 	meet. certain objectives.

• The object. or objects used to represent a particular resource must be the same at
each system

• A common scheme for representation must be used to support interoperability.

The second point is addressed by defining a structure of management information

~SIVII). 	
351 2 Structure of Management Information

The structure of management information (SMI), which is specified in RFC 1155,

- .

	

	defines the general framework within which a MIB can be defined and constructed. The

'SNIT identifies the data types that can be used in the MIB and. specifies how resources '.

within the MIB are represented and named. The philosophy behind SMI is to encourage

simplicity and extensibility within the MIB. Thus, the MIB can store only simple data

types scalars and two-dimensional arrays of scalars. SNNIP can retrieve only scalars,

including individual entries in a table. The SMI does not support the creation or retrieval

of complex data structures

To provide.a standardized way of representing management information, the SMI

must do the following.

✓ Provide a standardized technique for defining the structure of a particular -NIB.

✓ Provide a standardized technique. for defining individual objects, including the

syntax and value of each object. 	-

,. 	✓ _ Provide a standardized technique for encoding object values..

..: 	
30:

3.5.1.2 MIB Structure

All managed objects in the SNMP environment are arranged in a hierarchical or

tree structure. The leaf objects of the tree are the actual managed objects, each of which

represents some resource, activity, or related information that is to be managed. The tree

structure itself defines a grouping of objects into logically related sets.

Associated with each type of object in a MIB is an identifier of the ASN.1, type

OBJECT IDENTITIER. The identifier serves to name the object., In addition, because the

value associated with the type OBJECT IDENTIFIER is hierarchical, the naming

convention also serves to identify the structure of object types.

The Object identifier is a unique identifier for a particular object type. Its value

consists of a sequence of integers. The set of defined objects has a tree structure, with the

root of the tree being the object, referring to the ASN. 1 standard.

Root-Node

Ccitt (0) 	iso (1) , 	joint-iso-ccitt (2)

Org (3)

Dod (6)

Directory (1) 	m1mt (2) 	experimental (3) private (4)

System (1) interfaces (2) at (3) ip (4) icmp (5) tep (6) udp (7) egp (8) transmission (10) snmp (11).

Figure 3.7 MIB-2 Object groups

.. 	 - 	 31

Beginning with the root of the object identifier tree, each object identifier component

value identifies an arc in the tree. Starting from the root, there are three nodes at the first
level: iso, ccitt, and joint-iso-ccitt. Under the iso node, one subtree is for the use of other
organizations, one of which is the U.S. Department of Defense (dod). RFC 1155 makes
the assumption that one subtree under dod will be allocated for administration by the
Internet Activities Board as follows:

Internet OBJECT IDENTIFIER: _ {iso (1) org (3) dod (6) 1 }
This. is illustrated in Figure 3.7. Thus, the internet node has the object identifier

value of 1.3.6.1. This value serves as the Prefix for the nodes at the next lower level of the

tree..,

As shown in figure 3 7, the SMI document defines four nodes under the internet

node:

1. directory: reserved for future use with the OSI directory

2. mgmt: used for objects defined in IAB-approved documents

3. experimental: used to identify objects used in Internet experiments

4: private used to identify objects defined unilaterally

The mgint subtree contains the definitions of management information bases that

have been approved, by the IAB. At present, two versions, of the N1IB have been

developed, mib-1 and mib-2. The secohd MIB is an extension. of the first. Both are

provided with the same object identifier in the subtree since only one of the IVIIBs would

be present in any configuration.

Additional objects can be defined for a MIB in one of three ways:

1. The, mib-2 subtree can be expanded or replaced • by a completely new revision

(presumably mib-3). To expand,mib-2, a new subtree is defined.

2. An experimental MIB can be constructed for a particular application. Such objects,

may subsequently be 	• subtree 4
,. 	 '. 	..:.,

e moved to the m 	t 	e

3 : Private extensions can be added to the private subtree. One that is documented an

RFC is the MUX MIB (RFC 1227)

' - 	
32

3.51.3 Object Syntax

Every object within an SNMP MIB is defined in a formal way; the definition

specifies the data type of the object, its allowable forms and value ranges, and its

relationship to other objects within the MIB. The ASN.1 notation is used to define each

individual object and also to define the entire 1VIIB structure. In keeping with the objective

of simplicity, only a restricted subset of the elements and features of ASN. 1 are used.

The object identifier. is a unique identifier of an object, consisting of a sequence of,

integers, known as subidentifiers. The sequence, read from left to right, defines the

location of the object inthe NIIB.tree structure. For example object II} for tcpConnTable

is shown below.

iso 	org 	dod - internet 	mgmt mib-2 tcp 	tcpConnTable

1 	3 	6 	1 	2' 	1 	6 	 13

This identifier would normally be written as 1.3.6.1.2.1.6.13.

3.5.1.4 Encoding

Objects in the MIB are encoded using the basic encoding rules (BER) associated

with ASN. 1. While not the most compact or efficient form, of encoding, BER is a widely

used, standardized encoding scheme.

It is not possible to change the structure of a MIB by adding•or deleting object

instances (e.g., adding or deleting a row of 'a table). Nor is it possible to issue commands

for an action to be performed. Further, access is provided only to leaf objects in the object

identifier tree. That is, it is not possible to access an entire table or a row of a table with

one atomic action. These restrictions greatly simplify the implementation of SNMP. On

the other hand, they limit the capability of the network management system.

3.5.1.5 Communities and Community Names

Network management can be viewed as a distributed application. Like other

distributed applications, network management involves the. interaction of a number of

application entities supported by an application protocol. In the case of SNMP network

33

management, the application entities are the management station applications, and the

managed station (agent) applications that use SNMP, which is the supporting protocol.

SNMP network management has several characteristics not typical of all
distributed applications. The application involves a one-to-many relationship between a

management station and a set of managed stations: The management station is able to get

and set objects in the managed stations and is able to receive traps from the managed

stations. Thus, from an operational or control point of view, the management station

"manages" a number of management stations. There may be a number of management

stations, each of , which manages all or a subset of the managed stations in the

configuration. These subsets may overlap.

Interestingly, we also need to be able to view SNMP network management as a

one-to-many relationship between a managed station and a set of management stations.

Each managed station controls its own local MIB and must be able to control the use of

that 1VUB by a number of management stations. There are three aspects to this control:

1. Authentication service: The managed station may wish to limit access to the NUB
to authorized management stations.

2. Access policy: The managed station may wish to give different access privileges to

different management stations.

3. Proxy service: A managed station may act as a proxy to other managed stations.

This may involve implementing the authentication service and/or access policy for

the other managed systems on the proxy system.

All of these aspects relate to security concerns. In an environment in which

responsibility for network components is split,'such as among a riumber of administrative

entities, managed systems need to protect themselves and their MIBs from unwanted and

unauthorized access. SNMP, as defined in RFC 1157, provides -only a primitive and

limited capability for such security, namelj' the concept of a community.

An SNMP, community is a relationship between an SNMP. agent and a, set of

SNMP managers that defines authentication, access control, and proxy characteristics.

The community concept. is a- local one, defined at the managed, system. The managed

34

system establishes one community for each desired combination of authentication, access

control, and proxy characteristics. Each community is given a unique (within this agent)

community name, and the management stations within that community are provided with

. and must employ the community name in all get and set operations. The agent may

establish a number of communities, with overlapping management station membership.

Since communities are defined locally at the agent, different agents may use the

same name. This identity of names , is irrelevant and does not indicate any similarity

between the defined communities. Thus, a management station must keep track of the

community name or names associated with each of the agents that it wishes to access.

• Authentication Service:

An authentication service is concerned with ensuring that a communication is

authentic. In the case of an SNMP message, the function of an authentication service

would be to assure the recipient that the message is from the source from which it claims

to be. As defined in RFC 1157, SNMP provides for only a trivial scheme for

authentication. Every message (get or put, request) from a management station to an agent

• includes a community name. This name functions as a password, and the message is

assumed to be authentic if the sender knows the password.

With this limited form of authentication, many network managers will be reluctant

to allow anything other than network monitoring; that is, Get and Trap operations.

Network control, via a Set operation, is clearly a more sensitive area. The community

name could be used to trigger an authentication procedure, with the name functioning

simply as an initial password-screening device. The authentication procedure could involve

the use of encryption/decryption for more secure authentication functions.

Access Policy:

By defining a community, an agent limits access to its 1VIIB to a selected set of

management stations. By the use of more than one community, the agent can provide

• different categories of MIB access to different management stations. There are two

aspects to this access control:

35

1. SNNW MIB view: a subset of the objects. within a 1VIIB. Different M1B views may

be defined for, each community. The set of objects in a view need not belong to a

single subtree of the MIB.

2. SNMP access mode: an element. of the set {READ-ONLY, READ-WRITE}. An

access mode is defined for each community.

The combination of a MIB view and an access mode is referred to as an SNMP

community profile. Thus, a. community profile consists of a,defined subset of the MIB at

the agent, plus an access mode for those objects. The SNMP access mode is applied

uniformly to all objects in the MIB view. Thus, if the access mode READ-ONLY-is

selected, it applies to all the objects in the view and limits management stations' access to

this view to read-only operations.

Within a community profile, two separate access restrictions must be reconciled.

Table 3.1 shows the rules for reconciling an object's ACCESS clause with the SNMP

access mode imposed for a particular view. 	 1•

MIB Access SNMP Access Mode -
Category .

• READ-ONLY READ-WRITE

Read-only Available for get and trap operations

Available for get and trap operations Available for get, set, and trap

Read-write operations

Available for get and trap operations. Available for get, set, and trap

but the value is implementation but the value is ; operations
Write-only

specific implementation for get and trap

operations

• Unavailable
Not accessible

Table 3.1 Access specifications 	 -

Most of the rules are straightforward. However if - an_ object -is declared as write-only, it

may be possible with SNMP to read. that object. This is an implementation specific matter.

- 	 - 	
36

3.5.2 Lexicographical Ordering

An object identifier is a sequence of integers that reflects a hierarchical or tree

structure of the objects in the MIB. Given the tree structure of a MIB, the object identifier

for a particular object maybe derived by tracing a path from the root to the object.

Because object identifiers are sequences of integers, they exhibit a lexicographical-

ordering, which can be generated by traversing the tree of object identifiers in the MIB,

provided that the child nodes of a parent node are always depicted in ascending numerical

order. This , ordering extends to object instance . identifiers, since an object instance

identifier is also a sequence of integers.

An ordering of object and object instance identifiers is important because . a -

network management station may not know the exact makeup of the MIB view that an

agent presents to it. The management station therefore needs some means of searching for

and accessing objects without specifying them by name. With the use of lexicographical

ordering, a management station can in effect traverse the structure of a MIB. At any point

in the tree, the management station can supply an object or object instance identifier and

ask for the object instance that occurs next in the ordering.

3.5.3 Protocol Specifcation

The following subsection gives the overall message format for SNMP and then

describes each of the protocol data units (PDUs) that can be carried in a message.

SNMP Formats

3.5.3.1 SNMP Formats
With SNMP, information is exchanged between a management station and an

agent in the form of an SNMP message. Each message includes a version number

indicating the version of SNMP, a community name to be used for this exchange, and one

- -

	

	of five types of protocol data units. Figure 3.8 formally depicts this structure and Table

3.2 defines constituent fields.

37

Version 	 Community 	 SNMP PDU

(a) SNMP message
PDU type 	Request - id 	0 	0 	 Variable bindings

(b) GetRequest PDU, GetNe~ctRequest PDU, and SetRequest. PDU
PDU type 	Request - id 	Error-status 	Error- index 	Variable bindings

(c) GetRes once PDU

(d) Trap PDU
Name I Value 1 	Name 2 	Value 2 	 Name n 	Value n

(e) Variable bindings

Figure 3.8 SNMP message formats

3.5.3.2 Transmission of an SNMPMessage

In principle, an,SNMP entity performs the following actions to transmit one of the .

• five PDU types to another SNMP entity:

1. The PDU is constructed, using the ASN. 1 structure defined in RFC 1157.

2. This PDU is then passed to an authentication and a community name. The

authentication service then performs any required transformations for this
exchange, such as - encryption or the inclusion of _ an authentication code, and.

returns the result.

3. The protocol entity then constructs a message, consisting of a version field, the

community name, and the result from step 2,

4. This new ASN. I object is then encoded using the basic encoding rules and passed

to the transport service.

In practice, authentication is not typically invoked.

` 	" . 	 .38 ' .

• PDU type Enter Agent- Generic Specific Time Variable
prise ; . address_ . trap trap stamp - bindings

Field Description
Version SNMP version

Community A pairing of an SNMP agent with some arbitrary set of SNMP

application entities (The name of the community acts as a password to

authenticate the SNMP message.

Request-id Used to distinguish among outstanding requests by providing

each request with a unique ID

Error-status Used to indicate that an exception occurred while processing a

request; values are noError(Q), tooBig(1), noSuchName(2), badValue(3),

• readOnly(4), genErr(5).

Error-index When 	error-status 	is 	nonzero, 	may 	provide 	additional

information by indicating which variable in a list caused the exception

Variable bindings A list of variable names and corresponding values.

Enterprise Type of object generating trap; based on sysObjectlD

Agent-addr Address of object generating trap

Generic-trap Generic 	trap 	type; values 	are 	coldStart(0), 	warmStart(l),

linkDown(2), linkup(3), authentication-Failure(4), egpNeighborLoss(5),

enterprise-specific(6)

Specific-trap Specific trap code

Time-stamp Time elapsed between the last (re)initialization of the network

entity and the generation of the trap; contains the value of sysUpTime

Table 3.2 SNMP message

3.5.3.3 Receipt of an SNMP Message

In principle, an SNNW entity performs the following actions upon reception of an

SNIVIP message.

1. It does a basic syntax-check of the message and discards the message if it fails to

parse.

2. It verifies the version number and discards the message, if there is a mismatch. •

39

3. The protocol entity then passes the user name, the PDU portion of the message,

and the source and destination transport addresses (supplied by the transport

service that delivered the message) to an authentication service.

a. If authentication fails, the authentication service signals the SNMP protocol

entity, which generates a trap and discards the message.

b. If authentication succeeds, the authentication service returns a PDU in the

form of an ASN.1 object that conforms to the structure defined in RFC

1157.

4. The protocol entity does a basic syntax-check of the PDU and discards the PDU if

it fails to parse. Otherwise, using the named community, the appropriate SNIMP

access policy is selected and the PDU is processed accordingly.

In practice, the authentication service serves merely to verify, that the community

name authorize the receipt of messages from the source SNMP entity.

3.5.3.4 Variable Bindings

All SNMP operations involve access to an object instance. Only leaf objects in the

object identifier tree may be accessed; that is, only scalar objects. However, it is possible

SNMP to group a number of operations of the same type (get, set, trap) into a single

t message. Thus, if a management station wants to get the values of all the scalar objects in g 	 g 	g
a particular group at a particular agent, it can send a single message, requesting all values,

and, get a single response,_ listing all values. This technique can greatly reduce the

communication burden of network management.

To implement multiple-object exchanges, all of the SNMP PDUs include a

variablebindings_ field. This field consists of a sequence of references. to object instances,

together with the value of those objects. Some PDUs are concerned only with the name of

the object instance (for example, get operations). In this case, the receiving protocol entity

ignores the value entries in the variablebindings field. RFC 1157 recommends that in such

cases the sending protocol entity use the ASN.1 value NULL for the value portion of the

vaviablebindings field.

40

3.5.4 GetRequest PDU

The GetRequest PDU is issued by an SNMP entity on behalf of a network

management station application. The sending entity includes the following fields in the

PDU:

PDU Type: This indicates that this is a GetRequest PDU.

• Request id The sendin entity assigns numbers such that each outstanding

request to the same agent is uniquely identified. The request-id enables the

SNMP application to correlate incoming responses with outstanding requests.

It also enables an SNMP entity to cope with duplicated PDUs generated by an

unreliable transport service.

• Variablebindings: This lists the object. instances whose values are requested.

The receiving SNNT entity responds to a GetRequest PDU with a GetResponse

PDU containing the same request-id. The GetRequest operation is atomic. If the

responding entity is able to provide values for all of the variables listed in the incoming

variablebindings list, then the GetResponse PDU includes the variablebindings field, with a

value supplied for each variable. It at least one of the variable values cannot be supplied,

then no values are returned. The following error conditions can occur.

1. An object named in the variablebindings field may not match any object

identifier in the relevant NIIB view, or a named object may be of an aggregate

type and therefore not have an associated instance value. In either case, the

responding entity , returns a GetResponse PDU with an error-status of

noSuchName and a value in the error-index field that is the index of the

problem object in the variable-bindings field. Thus, if the third variable listed in . _.

the incoming variable-bindings, field is not available for a get operation, then

the error-index field contains a 3.

2. The responding entity may be'able to supply values for all variables in the list,

but the size of the resulting GetResponse PDU may exceed a local limitation.

In that case the responding entity returns a GetResponse PDU with. an error

status of tooBig.

41

3. The responding entity may not be able to supply_ a value for atleast one of the

objects for some other reason. In that case, ',the responding entity returns a

GetResponse PDU with an error-status of genErr and. a, value in the error-

index field that is the index of the problem object in the variablebindings field.

3.5 .5 GetNextRequest PDU

The GetNextRequest PDU is almost identical to the GetRequest PDU. It has the

same PDU exchange pattern and same format as the Get-Request PDU. The only

difference is the following: In the GetRequest PDU, each variable in the variablebindings

list refers to an object instance whose value is to be returned. In the GetNextRequest

PDU, for each variable, the respondant is to return the value of, the ,object instance that is
next in lexicographical order: Like GetRequest, GetNextRequest is atomic: . Either all

requested values are returned or none is.

The apparently minor difference between GetRequest and GetNextRequest has

tremendous implications. It allows a network management station . to discover the

structure of a MIB view dynamically. It allows a network management station to discover

the structure of a MIB view dynamically. It also provides an efficient mechanism for

searching a table whose entries are unknown.

3.5.6 SetRequest PDU

The SetRequest PDU is issued by an SNMP entity on behalf of a network

management station application. It has the same PDU exchange pattern and the same

format as the GetRequest PDU. However, the SetRequest is used to write an object value

rather than read one. Thus the variablebihdings list in the SetRequest PDU includes both

object instance identifiers and a value to be assigned to each object instance listed.

The receiving SNNIP entity responds to a SetRequest PDU with a GetResponse

PDU containing the same request-id. The SetRequest operation is atomic: Either all of the

variables are updated or none is. If the. responding entity is able to set values for all of the

variables listed in the incoming variablebindmg"s list, then the GetResponse PDU includes

the variablebindings field, with. a value supplied for each, variable. If at _least one of the

variable values cannot be supplied, then no values are returned, and no values are updated.

42

The same error conditions used in the case of Get-Request may be returned

(noSuchName, tooBig, genErr). One other condition may be reported: badValue. This is

returned if the SetRequest contains at least one pairing of variable name and value that is

inconsistent. The inconsistency could be in the type, length, or actual value of the supplied

value.

3.5.7 -Trap PD U

The Trap PDU is issued by an SNW entity on behalf of .a network management

agent application. It is used to provide the management station with an asynchronous

notification of some significant event. Its format is quite different from that of the other

SNMP PDUs. The fields are

• PDU type: indicating that this is a Trap PDU

• Enterprise: identifies the network management system subsystem that generated

the trap (its value is taken from sysObjectlD in the System group).

• Agent-addr: the IP address of the object generating the trap.

• Generic-trap: one of the predefined trap types.

• Specific-trap: a code that indicates more specifically the nature of the trap.

• Time-stamp: the time between the last (re)initialization of the network entity that

issued the trap and the generation of the trap.

• Variable bindings: additional information relating to the trap (The significance of

this field is implementation-specific).

• The generic-trap field may take on one of seven values.

1. ColdStart(0): The sending SNMP'entity is reinitializing itself such that the agent's

configuration or the protocol entity implementation may be altered. Typically, this

• is an unexpected restart due, to a crash or major fault.

2. WarmStart(l): The sending SNMP entity is reinitializing itself such that neither the

agent's configuration nor the protocol entity implementation., is altered. Typically

this is a routine restart.

43

3., LinkDown(2): Signals a failure in one of the communications links of the agent,

The first element in the variablebindings fieldis the name and value of the ifndex

instance for the referenced interface.

4. Linkup(3): Signals that one of the communications links of the agent has come up.

The first element in the variablebindings field is the name and value of the iflidex

instance for the referenced interface.

5. AuthenticationFailure(4): This signals that the sending protocol entity has received

a protocol message that has failed authentication.

6. EgpNeighborLoss(5): This signals that an EGP neighbor for whom the sending,

protocol entity was an EGP peer has been marked down and the peer relationship

no longer exists.

7. EnterpriseSpecific(6): Signifies that the sending protocol entity recognizes that

some enterprise-specific event has occurred. The specific trap field indicates the

type of trap.

Unlike the GetRequest, GetNextRequest, and SetRequest PDUs, the TrapPDU

does not elicit a response, from the other side.

Chapter 4

DESIGN

4.1 	Mobile Agent Life Cycle

Figure 4.1 gives the mobile agent life cycle with respect to network manager, mobile

- -

Manager MA Server Mobile Agent

Create MA Listen for Load State 	-
Instance Incoming MAs

Define itinerary No Return OIDs

MAc
Arrived

Save State Yes
Computation

Decompress, Dc- Required

Compress serialize &
No

Yes Authenticate
& Dispatch MA

Obtain OIDs Compute
Load State Requested Value

Perform NM
task & ret. data -

Display Results Encrypt & Save

Get next host Result
name

End Return next node
Serialize

&Compress MA
Save State

Yes
Last
Node

•

End 	.
No

-Dispatch to next
- host

Figure 4.1 Mobile Agent Life Cycle, . 	.

45

agent server and mobile agent perspective. The manager specifies all tthe-information related

to the operations that should be performed at the device like, type of SNMP operation,

object Ids etc.
MA Server

No 	 Yes 	 SNMP Agent
' 	 Total Stay

Time > Time
Spent

Check Community Construct SNIVIP 	&Authenticate

	

Fetch the next 	 PDiJ
device address

Perform SNMP
Request 	 Perform.

	

Move to next 	 database access
device 	 Store response as

record

MIB.
• Wait for polling

interval time

Figure 4.2 Interactions between Mobile Agent and SNMP Agent at Device

Figure 4.2 shows the interaction between a mobile agent arrived at a device and the

SNMP agent residing at that device.. Each mobile ,agent carries with it the total time it

should stay at the device, and the polling interval between the SNIVIP requests that should be

queried to the local SNMP Agent.

4.2 Mobile Agent Traveling Patterns

In this work two traveling patterns [5] are followed by the mobile agents for

performing the management tasks, itinerary model and broadcast model. The following

figures represent the way the mobile agents move in the network.

46

Figure 4.3 Itinerary Model 	 Figure 4.4 Broadcast Model

4.2.1 Itinerary Model

In this model the, mobile agent is equipped with the List of devices to be traversed

and the operations to be performed at each of the devices. The mobile agent traverses

through the list in the order specified by the manager and collects the results at each of the

device and carries back to the manager after all the devices are traversed.

4.2.2 Broadcast Model

In this model manager creates as many mobile agents as there are devices to. be

managed each of them equipped with its own properties for performing the operations at the

device. After the task is completed the mobile agent will be back to the manager with the

results obtained.

4.3 AgentSpace Design Issues

The main participants in the pattern are

4.3.1 Client
• Manipulates agents through the AgentView reference.

• 47

• Clients can be other agents or other objects (for instance Java applets).

4.3.2 AgentView

• The AgentView is an adaptation of the Proxy [25] and Remote Proxy patterns.. This

pattern is very suitable to support transparent and secure access to these different

types of objects.

• The aim of AgentView is to provide transparent access to agents. This access is

done indirectly through proxies in order to protect them, and to hide transparently

their current localization (this is important due to the mobility characteristic).

• Additionally, AgentView avoids the need to create and manage remote/virtual

classes (e.g., stubs and skeletons in RMI and CORBA implementations). Usual

examples of operations provided/protected through agent proxies are: sendMessage,

getCurrentPlace, start, moveTo, getClassName, etc.

View 	 - 	 -
Client 	 Agent View 	user 	Internal

User

-. 	- 	
View 	Owner

Security

Security
Agent 	 Manager

- 	 .. 	 Concrete 	Agent 	 - Place

Concrete Agent

Agent Component

Figure 4.5 Generic Structure of Agent Pattern — class diagram

• 4.3.3 User

• The user is identified by a unique identity, which may contains for instance.' his/her

name; a public key; a set of certificates; the organization and country he/she belongs

to; and his/her e-mail. Moreover, the user can have different identifiers depending on

the context he/she belongs to. This specific identity, managed in every 'Agent

48

Server's context, is represented by the User class, which may contain, in addition to

all fields mentioned above, the authentication attributes (e.g., login and password).

• The agent's owner has necessarily an associated user identity, represented always by

a User instance.

• Different users can access, the same agent however, only through the corresponding

AgentView instance. Depending on the agent's security manager, each access is

allowed or, not (see Figure 3.7).

4.3.4 Agent

• The Agent abstract class is the visible and extensible part of the Agent pattern"

• Basically, programmers should derive the Agent abstract class in order to build their

own concrete classes. The agent class has three main groups of methods as. depicted , 	.. -

in Figure 4.6: (1) public final; (2) callbacks; and (3) helper methods.

•

Final 	 final ethod
Client 	 Concrete 	 AS-Server

Agetit 	 A ent el er Objec 	Vier 	Q 	g ~ P 	 (Internal

	

Methods 	methods) 	"allb-.k etho 	Agent)

Figure 4.6 Agent's main groups of methods

• Final methods are pre-defined operations provided by all agent classes that cannot,

be changed by the programmer. Examples of these final methods are moveTo, save,

die, backHome, clone, getld, sendMessage, etc.

On the other hand, callbacks are methods customized by specific agent classes, and

• are usually invoked transparently as the result of some event. Events are trigged by

some action started by the agent itself or by other related entity, such as another

agent, an end user (via same applet), a time service, etc. The callback mechanism

provides the desired extensibility. of the Agent pattern. Usual examples of callbacks

are: run, onCreation, beforeDie, handleMessage, etc.

49".

• Finally, agent classes also have helper methods, generally with private or protected

access modifiers, in order to support specific functions of that class/object. These

methods are used internally by callback methods.

• The Agent instance provides transparently several services, such as: persistence,

communication, mobility, naming and access control. Additionally, the Agent

instance may keep related information, such as: the current and native place

identities, security policy object, a reference to the concrete agent itself, its own

identity, its owner identity, a reference to the involved security manager, and the

group of threads involved.

4.3.5 ConcreteAgent

• Concrete agent classes are Agent subclasses.

• Basically they define helper methods and specialized callbacks that, as a whole,

implement the agent's specific functionality.

4.3.6 SecurityManager 	 ,

• This class specifies the agent access security policy.

• The agent's SecurityManager instance controls all the operations made available on

the agent component through each AgentView instance.

4.3.7 ExecutionPlace

• This class specifies the agent's computational environment, which corresponds to the

place where it was created as well as where it is currently resident.
• This class offers specific functions provided by the involved agent support system.
• The notion of execution places is a crucial component supported by mobile agent

frameworks due to the need of handling conveniently agent's mobility operations.

4.3.8 Collaborations

Clients call standard agent operations through an AgentView instance. Depending on

the agent's security policy and on the involved user, the operation is executed, or not, on the

involved agent inst 	cL LI&p~

G l/94y

50

doOperationO

getSecurityManager

checkAccessQ

doOperationQ

invokeCallbacko

in keHelperMethbdO

{if had access}

invokeFinalMethod

cl: 	 avl: 	 agent: 	 cagent: 	 sm:

Client 	AgentView 	Agent: 	ConcreteAgent SecurityManager

	

At Device A 	 At Device B

Figure 4.7 Generic interaction of the Agent Pattern — scenario diagram

Final methods are basically executed by the Agent instance. On the other hand,

Callbacks, resulting from the execution of final methods (e.g., moveTo, die, sendMessage),

are executed by the concrete agent instance. Lastly, some helper methods may be invoked

by the execution of some callbacks, and this process might be repeated several times.

Figure, 3.7,shows a UML collaboration scenario, between an abstract client (i e., the

cl object), located in some device, and an abstract agent (i.e., the agent instance) located in

another device.

Chapter 5

IMPLEMENTATION

The Mobile Agent based Network Management is implemented using

	

Programming Language: 	Java (JDK1.1.8)

K-Prolog

• Platform: 	Windows98

	

Tools/Packages: 	AgentSpace (Mobile Agent System)

Snmp4_13 (Westhawk's java based SNMP Package)

NetComponents (FTP, ICMP etc protocols package)

Jftp (Java based FTP server)

JIPL (Java - Prolog Interface)

	

Database: 	MS-Access

5.1 Mobile Agents - Programmers Perspective

In order to invoke a mobile agent first a meta agent class object should be written

(i,e a file with mac extension) which describes the respective agent class, It contains the

details like the class name, description, version, author, initialization, properties etc. A
mobile agent class can be invoked from the agentspace system after this meta agent class is

loaded in the system which invokes the class written as follows.

5.1.1 Creating agents

Agents are instances of some Agent derived class. They are created either:

• interactively through the AS-Client (or a similar tool), or

• by any previous created, agent.

5.1.1.1 Agent creation, using' AS-Client tools

In-the first case, the AS-Client should perform basically the following algorithm

(e g.; in some Applet extended class):
InteinalUser user=AgentSpace.getUserByLogin(asid, "user-login"; "user-

ContextView-ev= Agentspace.getContextView(asid, user);
PlaceView pv= cv.getPlacebt(getCurrentPlaceO);

53

AgentView av pv.createAgent(user, "examples.MANM.MANMStinerary"); -

Firstly, one needs to get the ContextView and the InternalUser objects, respectively

cv and user. The user . has to specify login information, so that the cv object can check

permissions.

Then, a reference is needed (eventually a remote reference) to the place where the

agent should be created. Eventually an exception may be raised, in case the place doesn't

exist, or if the user hasn't access to it. The security strategy may vary between places. For

instance, one place may adopt a security strategy based on users ACL, while another may

adopt a security strategy based on a previous agent classes record.

Lastly, the agent is created by specifying user information and the agent class• naive.
For security reasons, it is not allowed the agent creation from remote agent classes.

5.1.1.2 Agent creation from another agent

Let's suppose that the MANMManager agent - class creates an instance of

examples. MANM.MANMItinerary class in the same place as it is currently running at, and

additionally creates a clone of itself

The algorithm below shows the two ways to create agents: by explicit agent class

specification, or by cloning. Note that the created agents are attached to the current place

and have the same owner (InternalUsery as the corresponding agent creator's owner. Still,

the same security issues should be posed as referred to above.
class MANMManager extends inesc.agentspace.Agent { 	,-

void run()

PlaceView pv= getcurrentPlaceO;.
- 	AgentView avl= pv.createAgent(getownerO , 	,

• "examples.MANM.MANMItinerary"); 	- 	 ,- 	-
• . avl. start O-;. 	_. 	 ...

} AgentView av2= clone;

5.1.2 Obtaining references to agents

• An AgentView object, as seen above, is an agent reference. There are several ways
to get an agent view: .

54

• as the result of agent creation methods (createAgent and clone, as above); as well

as

through an AgentView factory method.

To obtain a reference to any agent, through an AgentView factory, it is only need•

to know its corresponding identity (aid). With this aid the factory method getAgentOf can

be invoked from the ContektView object.
" - 	AgentId aidl= new AgentId("90.0.11.29:8888/PID_1IAID7"); 	- 	-

. 	AgentView avl= cv.getAgentoi(aidl.toStringO); 	-
"

	

	AgentView av2= cv.getAgentOf("90.0.17.61:8888/PID 2IAID 17");-

5.1.3 Agents Navigation

In general, Java agents are not able, like other MASs (e.g., Telescript or Agent-

Tel), to keep their execution state after a navigation operation. This limitation is due to the

fact that it is not possible (in the current Java version) to access a thread's execution stack.

AgentSpace uses Java's reflection capabilities to give programmers the possibility to specify

the callback they want to be invoked after that operation, instead of always calling the same' .

callback after the move/dispatch operation (as the run callback it f Aglets system), This

approach reduces significantly the current Java limitation, offering a more elegant and

simple way to program agent classes as it (avoiding the "spaghetti code" of long switch

instructions found in Aglets agents).

Before a move operation, every agent needs to have a Ticket object in order to be

accepted in the target place. A Ticket is. a. certificated object that keeps the information,

required by the target place security policy in order the agent may be accepted. There are

two final methods concerning agent mobility: moveTo; and backHome. The second method

gives the agent the possibility to go back home, and after that, in its native place, to have its

afterBackHome callback invoked.
- 	_ 	class MANMItinerary' extends ,inesc.agentspace.Agent f

void run)) {

Ticket tck= new Ticket(this);
PlaceId pid=,new Placeld(getcurrentPlaceldO.toStringO);
moveTo(pid, tck, "atDevice")

void atDevice O_
processSNMPRequestO;
backHome;

55

	

- 	- 	void afterBackHoine O { 	 - 	-

	

- ,. 	System.out.println("Results:");

5.1.4 Agents' communication

AgentSpace provides two basic and complementary ways to support inter-agent -
communication, namely: i) the AgentView' sendMessage method; and ii) the
Remotelnvocation instance.

The AgentView' sendMessage mechanism permits to send a Message . object and

,provides a simple but effective communication.
• A Message class basically keeps: a key-tag attribute indicating the meaning of its .

• content, in some application-dependent context;

1. a content object;

2. a message creation timestamp; and

	

' = 	3. the agent/object message sender.'
Message msg1= new Message(aid, "trap", trapPDU);
av1= cv.getAgentOf(aidl.toStringO);
avi.sendMessage(msgl);

As a side effect of invoking sendMessage, its corresponding agent's handleMessage
callback is invoked by the AS-Server. So; the agent class programmer is responsible by this

callback, in order to handle conveniently the behavior related to the received messages.
The Remotelnvocation is a class that allows encapsulating the, dynamically created

Voyager's messenger. It 'provides a powerful way to invoke the agent's remote static

methods. Due to Voyager capabilities, AgentSpace , supports consequently OneWay,

Synchronous, and Future message types.

5.2 Network Management Features

This work introduces different network management .features based on mobile •

agents beyond basic itinerary model, like trap generation, active network management

functionality based approach to reduce the amount of data carried by mobile agent, runtime

56

decision-making and dynamic service provisioning, which considerably increase the

efficiency of network management.

5.2.1 Itinerary Model

Itinerary model is described as roaming management model. In this scheme a mobile

agent visits the set of devices to be managed sequentially. The mobile agent is configured

with the list of devices to be visited during its itinerary and also the SNMP statistics to be

analyzed. Configuration of agents is done while AgentSpace server creates the agents at

network management station A mobile agent sequentially visits all devices to be managed.

At each managed device it obtains required information, performs necessary calculations in

analyzing data to reduce its size before it visits the next managed device. E.g.: - If a user

wants to calculate the percentages of input and output errors at an interface he has to

extract 8 MIIB variables and then calculate the percentage, instead the mobile agent may be

equipped with those calculation formulas so that it can directly return the percentage errors.

instead of all the objects' values like:
Percent input errors = ((ifinErrors)/(total packets received))*100

Percent output errors = ((ifOutErrors)/(total packets sent))*100,

Where
Total packets received 	(iflnUcastPkts + ifInBroadcasts 	-

+ifInMulticasts),

Total packetssent = (ifOutUcastPkts + ifOutBroadcasts,
- 	- 	+ifOutMulticasts),

This function is often used in fault monitoring. If the interface error rate is more

than 1%, then there is a problem with the interface of the machine. If the "error rate is less

than 1% and network shows poor performance, then it could be deduced that there is a

problem with the media.

5.2.2 Broadcast Model

In this model a MA is dispatched to each managed device. All the dispatched MA's

stay at their respective device and. analyze it for amount of time specified by the user. NIA's

poll the managed devices after each polling interval. Each MA agent stays there for an

'amount of time equal to the total number of polling intervals. It executes its task after each

. polling interval, performing necessary calculations on obtained management statistics,

57
	•

analyzing them by, using some functions equipped into the MA as in the above model and

get back to the manager. E.g.: - A performance management application can use iflnOctets

and ifOutOctets of the interfaces group in MIB to compute the "utilization of an interface

over an interval of time. To perform this computation, two different polling intervals are

required: one to fmd total bytes per second at time x and another to find total bytes per

second at time y. The following equation computes utilization, U(t) for the polling interval,.,,

(x-Y) seconds:
• U(t) _ (((ifInOctetsy - ifInOctetsx) 1- (ifOutOctetsy - ifbbtOctetsx))*8) / ((y-x)*ifSpeed)

Where, speed is, the. bandwidth of the interface, inOctetsx is the bytes received by

the interface at time x, ifOuUOctetsx is the bytes sent by_the interface at time x,..(y-x) is the

polling interval.

5.2.3 Active Network-Management

• Present work exploits the persistency feature of mobile agent further to achieve

active network-management where the management functionality will be active all the time

at the device. This is possible by making the mobile agent stay at the device forever and•

return the results as and when required by the user or if there is any change in the. device

objects' values. This considerably reduces the amount of data being transferred as well as

network traffic. This will be more ,advantageous when . the user can change the ,.

configuration of the mobile agent ent from the remote station as one wants different types of

monitoring operations (E.g. performance, efficiency etc) to be carried by the mobile agent

with time. This. is achieved in the system with the AgentView class, which provides, an -`

interface to the remote mobile agent so that its configuration can be changed at runtime by

sending a, message (Message object) containing the action to be taken. Here to return the

object values from the device, the mobile agent connects with a process running at AS-

Client, via. socket communication. Whenever user wants to obtain values he sends a

message object using AgentView class's sendMessageO method to the mobile agent at the

device as a signal to retrieve the results the mobile agent has obtained so far '

58

5.2.4 Trap Generation

A trap enables the management station of a significant event in a device.

Irrespective of the type of network management approach being used (mobile agent or

SNW), traps play vital role. The important question in case of mobile agent based

approach is, how to make a remote mobile agent receive a trap from a device in the

network, which doesn't have any information about the present location of the mobile

manager (agent). This is important because of two reasons:

1. If a device which is included in the deployed mobile agent's itinerary, has generated

a trap specifying a significant event before the mobile agent reaches that device,

then the mobile agent has to respond to the trap accordingly (changing the task to

be done at that device like bypassing if from itinerary etc) instead of going ahead

With its task.

• 2. Iithe trap generating device is not in the itinerary or the trap was generated after it

has moved away from the device then it has to take the decision of whether to log,

or forward to other network_ management system (in case of multiple managers) or

taking any other action.

The AgentSpace mobile agent system provides an interface to the mobile agent

generated and makes this trap generation to a mobile manager possible. In order to receive

the traps from the devices a thread process running parallel to agent configuration class is

created_ which will be executing at the AS-Client. It is important to note here that a process

running outside the AgentSpace system can't send a message to the mobile manager since.

it can't create an AgentView object. When a trap is received the process. will send a

message object containing the trap related information like the source, type of the trap to

the manager in the network with the help of AgentView class's sendMessageO method.

' Whenever the mobile manager receives a message it will take the corresponding actions by

.:: 	calling the appropriate methods for different conditions as specified_ above.

The mobile agent can perform the predefined tasks for the different conditions

specified above in two ways:

1. It can create another mobile agent and will be sent to the trap-generated device with

predefined task according to the type of trap received.

59

2. It can modify its itinerary so that the next immediate device to be visited being the
trap generated device. After performing the task there it will follow the rest of the
itinerary as specified.
This system defines tasks that a mobile agent should perform at the trap-generated

device in each of the cases specified above . for the different type of traps that could be, -

-. 	received.

5.2.5 Runtime Decision-Making

Java Interface for .ProLog [27] (JIPL) provides an interface between java and
prolog, which is used in this work to make the mobile agent to take decisions at runtime.

One of the main drawbacks of SNMP being management intelligence: too centralized, the
use of prolog for distributing the decision-making capability makes this system more
efficient. So that most of the decisions can be taken at the device itself. This not only

reduces the task of centralized manager but . also makes the responses to the events
instantaneous. As explained in the previous section there are instances that require
different actions to be taken for different events.makes the use of prolog more useful. E.g.

Consider the case in trap generation discussed above. For each type of trap, received by
the mobile agent, it has to take different actions defined earlier by the manager for all the
cases discussed in the previous section.
:-module decision.

• :-public decision/2.
decision(TrapType,Ob):-

-decide("0",TrapType),
javaMethod(Ob,displayTrap("display"););
javaMethod(Ob,logTrap("log");_),. 	 -
purge(decision.pl).

decision(TrapType,Ob) :-
decide("1",TrapType), 	 -
javaMethod(Ob,forwardTrap("forward"),);
purge(decision.pl).

decide(X,X). 	 - 	-

- so that the corresponding method is invoked from prolog. Though this - ekample '
looks simple, these types of decisions will be more efficient in case a mobile manager want
to select the type of service it can temporarily provide at the remote site or in deciding the

type of operation to be performed because of specific events (E. g.. -attacks to Intrusion

detection systems, service failures at web sewers etc) [28] occurring at the device. - ,

60..,

5.2.6 Dynamic Service Provisioning

This feature greatly reduces the amount of time the system should be idle when an

error occurred in the system stops a service it is providing. One can temporarily provide a

service using mobile agent at the remote site before the administrator rectifies the system,-

This feature is also useful in restoring a system to its normal position. E.g. suppose a file is.

corrupted in a system, which is to be restored to continue its service and that there is no ftp

client application available even if the administrator wants to restore the file. Then the

SNMPAgent can generate a trap to, a mobile agent (manager) with the information

containing the file corrupted, location of the file and the system address. Then the mobile

agent will move to the system and perform file transfer from a system containing the

required files 'to the system to be rectified. This is possible by temporarily transferring ftp„

,client application to the remote system and connecting to an ftp server residing at remote_

• 'site. This feature is implemented in the work using jftp, a java based ftp client application.

61

JAVA

•\egantrpaace>j&uae -nnjit °-c:tar:api&tle As;:iervrp`raaplo\e~ -esatarss'.; 	c%jipE ar'c:\ni,t onpowantar;c: agent pt~ce' aptic 	tives\examp 4a\NA 4N>c:1j 4 c1..t .8\:i
\C ZAY't s`Si .,zau:r :\vuyas ssY•1 ..@.1\13te~,urryagrrl .@.t.jar irrc~c.~xs .. rvar.A D.a.+erHrn

ravot conf.ig\ -port 	A 	-dh 8858
gentspace DLeman Alfa .1.2.0. Copyri~s ht- i98
L. : la. vez •-- Contexto ainda nao criado 	unu criar??
x 	P *v"Ord

aicn
adraS.npvcl

s> he:ln

ears optiona include:
a►e 1p
air
Asa zg
7.0
xwp
zam
sanpp

oaac Cwataeiaea---nsae>
anal <file-naune> <wetaciaoe-nane>
rau►c <wstwclaac••nane>
cp <place-aliae> C<owner>l Lea)
rp <pid>
ca (phi) (al#ae) (ame) C<1ni>1 1<sc>1
ra <aid>
he <o ld>
a
Z

show tide ae sage
ufsow context
show)laces
allow Ac 1 context
show Ga•oops

chow My Places,
show !1y Agents
show Ely Peeni~za3onc
show NntaR$sntClesaes
show tletaAgentCiacc details
add MetaRgentClaee
renove fetaA eneClara
create place
renuue place
Create agent
ranee agent
agent interfacrs
eaue all <context>
<ax?ait - Setruar %lbut4lown

Figure 6.2 AS-Client Applet

Figure 6.3 AS-Client's Features

64

6.3 SNMP Manager GUI

Figure 6.4 gives the SNIVIP based network management GUI for the manager who

selects the SNMP operation (request type), objects to be retrieved or set, the agent

address and sends request for the SNMP agent. The results obtained are viewed in a table,

which contains the time of retrieval, device name, and results.

Raquest Type 	Selactihe Object 	Value 8 I Ctetl Objects

y.Oest
O tObJetty, 	sgsName 	 mtach-T lab t L'+j~: 	sYeCOntact 	VMaheedh

... 	
:i::::.: ` ..:...: i A!lant Atldrass 	90.0.1 0.23 	______________

VIEW DATABASE 	—_—_—_—_

gjfioteiiiJl3uyTex's:'..32tij,9_'ctS4 i 	 9ii9es.i3O,'fatci'..
FvI Jan OI 	l_: ,MAHEEOHAR__,ysysOBSC __..__..

J 	t Ot O1 	MIIH EEOH 	y V TI
Intel-p440GB 	:GVt------ 	gU__.

I 	O 	 O 	fa
}MAH J 	1 01 	EEDHAR b(tIO 2 	 O 	V

Fri Jan 01 01 .. MAHEEDHAR 	y D ._I t I p4 4000 	1Oetobject SO ..
Fri J 	01 01 	MAH EEDHAR 	yUpTi 10 	 O tob)e t5U
FriJ 	01 01.... M HEEOH R 	y Obl 	O 3 	 O tOb o 	SU 	P
FM Jart Ot Ot:_.. MAHEEDHAR. sysDescr [iota l-p4400H 	Oc1ect SUS..
F IJ 	01 Ot 	IMAHEEDHAR 	y U TI
F IJ 	.MAHEEDHAR 	y Obj 	tl0 01 01

f 0 	 bJ 	tSU

	

G tOb(tuU {2.
Fri J 	01 Ot 	MAHEEDHAR 	y D $ i t 4p4 4000 	:SctObjectuu. v~15

~,i 	 F J 	❑t 01MAHEEDHAR 	y U TI
,,,~,.. Frl Jan 	 01..:~MAFiEEDHAR__:ISy5 D

(10
	

0501 	SV

Fr! 401'S Ot 01 	.YMAHEEDHAR 	y De
D0aCr Z 	 .eetohjactSV„--

I. tal p4 40GB 	G tObje t 9U
Fri Jan 01 0:1 	. 	IAHCEDHAR 	tID
FrI.J.. 	.01 01 	iMAHEEDHAR 	1 ynOont 	.. _

Up
.

2 	 G tObjb tSO 	-
t O 	... 	je

FI'IJan01.01___.i MAHEEDHAR__ynC_o nta ct_
FrlJan n'I O'I :...[MAEEOHAR... sysOSS[r H

Maheerlhar V... 	tOblect SU... 9
 Intal-p4~4008 	:etO bject aU...

..

X62:

Figure 6.4 SNMP Manager GUI

6.4 MANM — ItineraryBroadcast Model

Device Ad Cress 	Place ID 	 -
 J90.O.i 7.61 	PID_1 :br:

SNMP Requset Type 	”'
l OetObjecta .- OetNextObJect 	lW. SetObject

_ 	object List 	 Object ID 	 Value
1.3.6.1 .2.1 .1 .1 	Set Value 	 ,a- 	1.3.6.1 .2.1 .1 .1 	:Intel-p3 : 	 ;15. . 1.3.6.1.2.1.1.2 	 4tD?: .

	
1.3.6.1.2.1.1.4 	Mahee9444194260

	

.. 	...- 	 1.3.6.1.2.1.1.3

1.3.8 1 2 1.1.5

- 	 Device List

	

- 	2 	 Po1lltlg Interval 	500 	 5..':.°': P213115 T02 ::: 90011.29:0909IPID_1
9D.

-
0.

-
17.61 :88981PID-1

Staying Time 	500 	 ~ M ~~~~

..,Yc,qk,k

Figure 6.5 MANM Manager GUI

65

Figure 6.5 shows the MANM Manager GUI for two of the traveling patterns
discussed in the previous chapter ie. itinerary model and broadcast model. The GUI asks

for the device address, place id, objects to be retrieved at the device, polling interval

between queries and the total time the mobile agent should be stayed at the device.

Figure 6.6 Itinerary Model Results

Figure 6.7 Broadcast Model Results

Figures 6.6 and 6.7 show the outputs obtained for itinerary model and broadcast

model. In itinerary model single mobile agent returns with results at all the devices. Where

as in broadcast model each mobile agent returns with the results at the corresponding

device.

SNMP Request Type
GetObject 	C ; GetNextObject C. Setobject

• (Object List Object ID 	 Value

•-

Set Value 	 • 	r
1.3.6.1.2.1.2.2.1.1
1361122111 	~''~'- ~.~. ~

1.3.6.1 2 1.2.2.110
1 "3.6.1.2,1.2.2"1.1 6
1,3.6.1.2.1.2.2.1.5

1 3 6 1 2 1 2 2 1 .1 	+' 	 ~~6~

Device List

Device Address 	90.0.1 7.61 90.0.11.29:98681PID_1

Place ID 	
.......

 " 	90.0.17.61:68881PID_t
•<.,.:.;... zcx- 	 7

ii

Figure 6.8 Performance Management GUI

66

Polling Interval 	1500

Staying Time
SNMP Request Type

GetObject 	C GetNextObject 	C- SetObject
Object List Object 1E) 	 Value

	

.3.6.1.21.2.2.1.5 	j 	Set Value 	 ...

.3.6.1.2.1.2.2.1.1

	

.3.6.1.2.1.2.2.1.1 	 . 	.-

36.1.2.1 .2.2.1.1
1.3.6.1.2.1.2.2 1.1
1.3 6.1 2.1.2.2.1.1

.3.61 2.1.2.2 1.1j 1.3.6 1.2.1.2 2 12lJ

Device List
Device Address 	190.0.1 7.61 	2!J

Place ID
frID_1

..

Figure 6.9 Interface Utilization Management GUI

- - 	Figures 6.8. and 6.9 show slightly modified manager GUIs for returning with

calculated performance and utilization values instead of all the object values. While

deploying MAs for calculating utilization a single mobile agent will be cloned and

deployed to as many devices as mentioned because the functionality of each MA is same.

6.5 Active Network-Management

Figure 6.10 Results of Active Network-Management

Figure 6.10 gives the results for active network-management. Once MAs are - -,

deployed they return the results through socket communication and they keep monitoring

67

the device for changes. Only when there' is a change, they return the changed values to the
manager_

6.6 Trap Generator and Dynamic Service Provisioning example with
Runtime Decision-Malang

ListenerAc dress 911.0.71.29

Enterprise OIO 1T 24

i Agent Address 90.0.17.51

Generic Trap Enterpilsa spasiffc (6)

Specific Trap p

Var9ind Ust

Object IDs 1224.6.1

Object Values 	I1ftt~.zip

Figure 6.11 Trap Generator GUI

Figure 6.11 shows the GUI of trap generator when an enterprise specific trap has

occurred. It specifies the related information in object Ids and Object Values fields that

there is an error occurred in file jftp.zip and it has to be replaced. When the mobile agent

(manager) receives this trap it takes the decision to provide FTP client service to transfer

the specific file from a remote station. Figure 6.12 shows the output where K-prolog is

started, ftp connection is established and the file is transferred.

Figure 6.12 Dynamic FTP Client Service Provisioning

1 68

• Today's complex and heterogeneous networking environments require flexible and

distributed network management solutions. Towards this end the MA based approach

presents distinct advantages when compared with the techniques, which are currently in

operation. This work implemented a hybrid model based on mobile agent and SNMP

strategies for efficient management of heterogeneous networks. To exploit the potential of

mobile agent technology the work has incorporated, two agent-traveling patterns and

introduced active network management to considerably decrease the load of mobile agents

and give instantaneous responses to changes in the network. This work proposes new .

methods to make the SNMP Agent able to generate traps to a mobile manager. The MAs

are provided with runtime decision-making as well as dynamic service provisioning ..

capabilities to make the best use of mobile agent technology in network management. This

makes the application very efficient as it can take the managerial decisions by itself and

considerably reduce the response time of the manager for error recovery. From this work

it is concluded that the mobile agent technology clearly overcomes many of the limitations

existing in conventional network management approaches like in reducing network traffic,

extracting large amounts of data, scalability etc.

Future Scope:

Few areas of improvement were identified during the dissertation, which include

optimization of MA placement and deployment strategies [9,12] so that the amount of

time to traverse the network can be reduced. Providing the MA with more intelligence by

dynamically extending the decision-making capabilities according to different events

occurring in the network. It is also observed that even though java is a suitable language

for MA applications, . improved bytecode verification is necessary because bytecode

verifiers of several current standard java implementations also accept bytecode that does

not represent a valid java program. So security measures have to be taken accordingly.

69

References:

[1] Maheedhar Valasa, Dr.P.RGupta, "Mobile Agent based Network Management",

International Conference/workshop on Mobile Systems, E-Commerce and Agent

Technology, (DMS/MSEAT'04) September 8-10, 2004.

[2] Andrzej Bieszazad, Bernard Pagurek and Tony. White "Mobile Agents for Network

Management IEEE Communications Surveys, Fourth Quarter 1998. Vol .1 No .I

www.scs. carleton.ca/—arpwhite/documents/ieee-cs-sep98.pdf

[3] Manoj Kumar Kona and Cheng-Zhong Xu "A Framework for Network Management_..

using Mobile Agents",IEEE/IPDPS-2002 Workshops, April 15-19 2002.

www ece eng wayne edu/—czxu/paper/icecol .pdf

[4] B. Pagurek, Y. Wang and T. White "Integration of Mobile Agents with SNMP: Why

and How" 2000 IEEE www.sce.carleton.ca/netmanage/papers/integration.pdf

[5] Iwan Adhicandra, Colin Pattinson, Ebrahim Shaghouei, "Using Mobile Agents to

Improve Performance of Network Management Operations, PGNet, 16-17 June 2003.

http://www.cms.1ivjm.acuk'pgnet2003/submissionsfPaper-I 2.pdf

[6] Tarag Fahad, Sufian .Yousef & Caroline Strange "A Study of the Behavior of the

Mobile Agent in the Network Management Systems PGNet 2003.

www.cms.1ivjm.ac.uk/pgnet2003/submisionsIPaper-02.PDF

[7] Danny B.Lange "Mobile Objects and Mobile Agents: The Future of Distributed

Computing", pp 1-12, ECOOP'98.

www.ifs.uni-linz.ac.at/ -ecoop/cd/papers/1445/14450001.pdf

[8] Damianos Gavalos, Dominic Greenwood Mohammad Ghanbari Mike O' Mahony, "An .

Infrastructure for Distributed and Dynamic Network Management based on Mobile Agent

Technology." www.simpleweb.org/bibliography/articies/general/gavalas-3.pdf

71

[9] Angelos Michalas, Theodore kotsilieries, Stylianos kalogeropoulos, George Karetsos,

Moshe sidi, "Enhancing the Performance• of Mobile Agent based Network Management
Applications" pp. 432-438, 2001 IEEE.

[10] H.Reiser, G.Vogt "Security Requirements for Management Systems using Mobile

Agents", pp,160-166, 2000 IEEE.

www.mnmteam. informatik.uni-muenchet&. de/Literatur/

MNMPub/Publikationen/revo00a/PDF

[11] Paulo Marques, Paulo Simoes, Luis Silva, Fernando Boavida,-Joao Silva, "Providing

Applications with Mobile Agent Technology", . IEEE OPENARCH. , 2001.

http://comet.cti.columbia.edu/activities/ openarch2001/papers2001/OA 12.PDF

[12] Xiapu Luo, Puliu Yan, Cheng Cheng Guo, Yaguan Tang, "Optimal Placement and

Deployment Strategies in Mobile Agent based Network Management" pp, 753-758, 2002

• IEEE.

[13] J.Case, M.Fedor, M.Schoffstall, J.I~avin, A Simple Network Management Protocol

(SNMP), IETF RFC 1157, 1990. http://rfe.netlrfcl157.html

[14] M...Rose and K. McCloghrie .."Management,. Information Base for. Network

Management of TCP/IP based Internets _ M B-2" RFC 1213, •, march ,.

1991. http: //rfc. net/rfc l 2l 3. html

[15] Yemini Y., Goldszmidt G., and Yemini ..."Network Management byDelegation."

Proceedings of ISINM '91, Integrated .Management II (Krishnan and Zimmer Eds.) pp.

95-97, 	North 	Holland . Pub., 	April 	1991. ; www.simpleweb.org/bibliography/

articles/general/gol9110.pdf

[16] Bill Venners. Under the hood: The architecture of aglets.JavaWorld:IDG's

magazine for the java community, 2(4), April 1997. 	 •

.72

[17] ObjectSpace,Inc. ObjectSpace Voyager

http://www.objectspace.com/developers/voyager/index.html

[18] M. Izatt and P. Chan, "Ajents: Towards an Environment for Parallel, Distributed and

Mobile Java Applications". In Proc. Of the 1999 Java Grande Conference. ACM, 1999.
wwiv.cs. ucsb.edu/conferences/java99/papers/13-izatt.pdf

. [19] E Bruneton. Indirection-Free Referencing for Mobile Components. In Proc. Of the

1999 International Conference on Pardllel and Distributed Processing Techniques and

Applications (PDPTA'99), Madeira Island, Portugal, April 1999.

[20] K. Kiniry and D. Zimmerman. "A hands-on look at Java mobile agents. IEEE internet

computing", 1(4):21-30, July/August 1997.

[21] Vu Anh Pham and Ahmed Karmouch, University of Ottawa, Ontario "Mobile

Software Agents: An Overview", IEEE Communications Magazine, July 1998.
www.cs.wpi.edu/—emmanuelUcourses/ mobile_computing/papers/pham_mobile_agents.pdf

[22] Wijnen B., Carpenter G., Curran K., Sehgal A., Waters G. The SNMP Distributed .

Protocol Interface", Version 2.0, RFC 15,92, March 1994. www.apps.ietf.org/rfc/rfcl592.html

[23] Daniele M., Wijnen B., and Francisco D., "Agent Extensibility Protocol Version 1",

RFC2257, January 1998. www.apps.ietf.org/rfc/rfc2257.html

[24] M. Rose and K McCloghrie "Structure and Identification of Management

Information for TCP/IP based Internets" RFC 1155, May 1990. wvw.ietf.org/rtcIrfc1 l55.txt

[25] E.Gamma, R Helm, R. Johnson, J. Vlissides. "Design Patterns — Elements of

Reusable Object-Oriented Software." 1st Edition, Addison-Wesley Longman. 1995.

[26] IBM Tokyo Research Laboratory. "The Aglets Workbench: Programming Mobile

Agents in Java", 1997.

73

[27] JIPL: A Java Interface for Prolog, K- Prolog.

http://www.kprolog.com/jipLfindex_e.html

[28] Anand Tripathi, Tanvir Ahmed, Sumedh Pathak, and Megan Carney "Design of a

Dynamically Extensible System for Network Monitoring using Mobile Agents"

www cs.umn. edu/Ajantaipapers/network-monitoring: pdf

[29] , 	AgentSpace: 	A 	Next-Generation 	Mobile 	Agent 	System.

http://berlin.inesc.pt/agentspace/ -

[30] William Stallings. "SNMP, SNMPv2 and RMON: Practical Network Management"
1st Edition, Addison - Wesley 1999.

[31] Walter Binder, Volker Roth "Secure Mobile Agent Systems Using Java: Where are

We Heading?" ACM 2002. www.igd.thg.de/.-vroth/papers/vroth2b_sac.pdf-

[32] Francoise Baude, Denis Caramel, Fabrice, - Huet, and - Julien. , Vayssiere,

"Communicating Mobile Active Objects in Java", pp. 633-643, HPCN 2000:

[33] Alberto Silva, Jose Delgado ,"The Agent Pattern for Mobile Agent Systems", 3rd

European conference on Pattern Languages of Programming and -Computing, Euro

PIoP'98.

74

	Title

	Abstract

	Chapter 1
	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5
	Chapter 6

	Chapter 7

	References

