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With the rapid development of Internet, mobile networks and high-performance 

networking technology, QoS multicast routing in networks-  has become a very important 

research issue in the areas of networks and distributed systems and considered as a 

challenging and hard problem for the next generation Internet and high-performance 

networks. This dissertation discusses the heuristic algorithms for multicast routing 

problem with multiple QoS constraints in networks. In this dissertation, Evolutionary 

Algorithms like Ant and Genetic Algorithms are developed that are capable to deal 

effectively by issues related with multicast routing for the internet and can provide QoS-

sensitive paths in a scalable and flexible way. A multicast tree selection algorithm based 

on Non-dominated Sorting technique of Genetic Algorithms is also discussed to 

simultaneously optimize multiple QoS parameters. These algorithms optimize the 

network resources like end-to-end-delay and delay jitter, and can converge to the optimal 

or near-optimal solution within a few iteration, even for the network environment with 

uncertain parameters. The incremental rate of the computational cost of these algorithms 

can be close to polynomial and is less than exponential rate. The simulations carried out 

shows that these heuristic algorithms converge to the near optimal solutions in lesser 

number of iterations. Among these algorithms, Ant Algorithm converges faster than the 

Genetic Algorithms. The scalability of these algorithms especially, the Ant Algorithm, 

proved to be noteworthy when compared to the traditional QoS multicast routing 

algorithms. 

I 
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Chapter 1 
INTRODUCTION 

Multicast is a communication service that allows simultaneous transmission of the 

same message from one source to a group of destination nodes. To implement a multicast 

session, a network must minimize the session's resource consumption while meeting the 

quality of service (QoS) requirements. An efficient allocation of network resources to 

satisfy the different QoS requirements is the primary goal of QoS-based multicast 

routing. However the inter-dependency and confliction among multiple QoS parameters 

make the problem difficult. It has been demonstrated that it is NP-complete to find a 

feasible multicast tree with two independent additive path constraints [11. NP-complete 

problems cannot be solved in the polynomial time and heuristics are required to solve 

these kind of problems. Although QoS routing over the communication networks is an 

active research area in the recent years, QoS-based multicast is a relatively new research 

topic. In addition to requiring scalable and efficient network support, multicast 

applications usually demand stringent QoS requirements. 

1.1 Motivation 

With the introduction of QoS, the multicast problem becomes more challenging. 

The QoS requirements can be classified into link constraints (e.g., bandwidth), path 

constraints (e.g., end-to-end delay) and tree constraints (e.g., delay jitter). Over the past 

decades, many unconstrained or single constrained multicast routing algorithms have 

been developed. Typical approaches [11 include 1) Applying Dijkstra's algorithm to find 

shortest path, 2) seeking the minimum network cost using Steiner tree routing algorithm, 

and 3) finding multicast trees that the paths between source nodes and the destinations are 

connected and their cost is minimized. 

A number of efficient heuristics or nature based algorithms have been proposed. 

Worth noting is that the number of studies that apply the genetic and ant algorithms to 
solve - the QoS Multicast Routing (QMR) Problems (with different types of QoS 
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constraints) is increasing [13-16, 38-401. Ant and Genetic algorithms are recently 

emerged as new heuristics that can efficiently solve large scale optimization problems. 

Ant algorithms are based on the ability of ants to find the shortest path between their nest 

and the food source during their looking for food. Some Genetic Algorithms have been 

used to solve the NP-complete problem from different aspects [38-40]. Although having 

solved the Steiner tree problem effectively, some of them only consider one evaluation 

metric and cannot be extended directly to solve the multicast routing problem with 

multiple QoS constraints. A careful analysis of these optimization schemes reveals that 

they suffer from the same drawback: multiple QoS objectives or constraints are combined 

to form a scalar single-objective function on an ad hoc basis, usually through a linear 

combination of weighted sum by different requirements. In most of the algorithms, the 

QoS constraints were often transformed into penalty functions and combined with. a cost 

function to be taken as the fitness function. Therefore the solution not only becomes 

highly sensitive to the weight vector but also demands the user to have certain knowledge 

about the problem, e.g. weight of a particular constraint. GA can be modified to optimize 

multiple QoS requirements simultaneously by incorporating the concept of Pareto 

dominance in genetic selection operation [31]. Genetic Algorithms are well suited to 

Multi-Objective Optimization problems (MOP). Multiple parameters can be formulated 

as a Multi-Objective model. Multiobjective model based on GA is used to approximate 

Pareto front by generating a set of Nondominated solutions. This approach works in a 

source-based fashion, and it assumes the complete knowledge of a network is available. 

1.2 Organization of the dissertation 

The dissertation is organized as follows. Chapter 2 describes the related work. 

Chapter 3 gives the introduction of the Ant and Genetic algorithms It also explains the 

QoS Multicast Routing Problem. Chapter 4 gives the design of the algorithms for 

finding the optimal multicast trees satisfying the QoS requirements. Chapter 5 gives the 

implementation details of the algorithms. Chapter 6 presents the results obtained from 

the simulations which is followed by Conclusion and Future work. 
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Chapter 2 
LITERATURE SURVEY 

2.1 Introduction 

This chapter deals with the literature survey pertaining to the previous work on 

multicast routing, its importance, properties of multicast trees, and significance of the 

delay and delay jitter constraints. The next two sections deals with the background of Ant 

and Genetic Algorithms and its significances followed by the mathematical formulation 

of the QoS multicast Routing Model. 

2.2 Issues in QoS Multicast Routing 

Multicast provides the efficient way of disseminating the data from a 

source to all the members in the multicast group. Instead of sending a separate copy of 

the data to each individual group member, the source just sends a single copy to all the 

destinations members. An underlying multicast routing protocol determines, with respect 

to certain optimization objectives, a multicast tree connecting the source and the group 

members. Data generated by the source node flows through the multicast tree, traversing 

each tree edge exactly once. 

The approaches for constructing the multicast trees can be classified into two 

categories [1]: 1) The Source-based Multicast Tree Approach e.g., Distance Vector 

Multicast Routing Protocol (DVMRP) and 2)The Core-based Multicast Tree Approach 

e.g., the Core-based Tree Protocol (CBT). In the Source-based approach, a tree rooted at 

the source node is constructed and connected to every member in the multicast group. 

Data packets originated at the source node are sent to all destination nodes via the links of 

the multicast tree. In the core-based approach, one node for each group is selected as the 

core. A tree rooted at the core is the constructed to all the group members. Data packets 

flow from any source to its parent and children. A node forwards packets to its parents 

and children except the one from which the data packets arrive. 
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Several optimization objectives have been used to construct the multicast trees 

[491. One popular optimization method is to minimize the sum of the costs on the links 

of a multicast tree. The minimum cost tree is called as Steiner Tree, and finding such a 

tree is NP-Complete problem. That means it could not be solved in the polynomial time. 

Several researchers have formulated, under one-to-many source based multicast 

paradigm, the problem of constructing multicast trees as a Steiner tree problem with side 

constraints such as delay, delay jitter and bandwidth. While the total tree cost is an 

important measure of bandwidth efficiency, it is not sufficient to characterize the Quality 

of Service (QoS) required by either embedded real-time applications or multimedia-

integrated services, where the bounded delay and/or a bounded delay jitter are usually a 

major criteria. 

The quality of a Multicast tree is specified with the following two parameters 

[47,481: 

> Source-destination Delay Bound, D, represents an upper bound on the acceptable 

end-to-end delay along the path fon the source node to the each of the 

destination.. This parameter specifies that packets transmitted from node v at time 

t must be received by the destination node by the time t+D. 

> Inter-Destination Delay-Jitter Bound, represents the maximum difference that can 

be tolerated between the end-to-end delays along the paths from a source nodes to 

any two destinations in the multicast group. This parameter specifies the 

requirement that the times at which data packets are received at the destination 

nodes have to be synchronized within the window of size equal to the delay jitter 

bound. 

The need for a bounded end-to-end delay is well justified. The situation in which 

a bounded interdestination delay jitter among all the group members arises is not rare. 

For example, one possible scenario occurs during a teleconference in which any current 

speaker should be heard by all the participants at approximately the same time to achieve 

the feeling of multi-party interactive face-to-face discussions. 
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Although the bounded source-desttnation 
delay jitter is also an imp°rtant QoS 

reduirement, it is not considered because of the following teason51t\ 
fitter are 

While both the source-destination delay and the interdestination delay ] mainly 
11 	 jitter ism 	y 

related to how a tree is constructed, the source-desttnation delay 1 	
than a tree 

an attribute of the path from the source to the destination, rather 

property. 
2) The source-destination delay jitter requirement is often met by buffering packets 

at the destination so as to absorb the delay jitter. 

Existing Algorithms like Jia's Distributed Algorithm 141, QoSMIC [42] are not 

suitable for large scale communication networks due to their excessive message 

processing overheads. Determining multicast routes between a single source and the 

multiple destinations is computationally intractable as the problem is NP-Complete. The 

general approach in solving such problems is to use certain heuristics to get a near- 

optimal solution in polynomial time. More recently, researches in determining QoS-based 

?nulticast routes clearly demonstrate the power of ant and genetic algorithms to get a near 

optimal solution satisfying the QOS constraints in computationally feasible time. 

2.3 Ant Algorithms and its Background 

Ant algorithms were first proposed by Dorigo and colleagues [6,71 as a multi- 

agent approach to difficult combinatorial optimization problems such as the traveling 

salesman problem (TSP) and the quadratic assignment problem . There is currently much 

ongoing activity in the scientific community to extend and apply ant-based algorithms to 

many different discrete optimization problems (8,91. Recent applications cover problems 

such as routing in communications networks, QoS multicast Routing and so on. 

Ant algorithm is a simulated evolution algorithm based on population and ant 

colony behaviors. The behaviors of a single ant is simple, however a population of ants 

may behave very complicated, which can complete complex tasks and even adapt to the 

change of environment. For example, when an obstacle appears on the moving path of an 

ant population, ants can find a new optimal path quickly. 
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Although the bounded source-destination delay jitter is also an important QoS 

requirement, it is not considered because of the following reasons[1[: 

1) While both the source-destination delay and the interdestination delay jitter are 

related to how a tree is constructed, the source-destination delay jitter is mainly 

an attribute of the path from the source to the destination, rather than a tree 

property. 

2) The source-destination delay jitter requirement is often met by buffering packets 

at the destination so as to absorb the delay jitter. 

Existing Algorithms like Jia's Distributed Algorithm [4], QoSMIC X42] are not 

suitable for large scale communication networks due to their excessive message 

processing overheads. Determining multicast routes between a single source and the 

multiple destinations is computationally intractable as the problem is NP-Complete. The 

general approach in solving such problems is to use certain heuristics to get a near-

optimal solution in polynomial time. More recently, researches in determining QoS-based 

multicast routes clearly demonstrate the power of ant and genetic algorithms to get a near 

optimal solution satisfying the QOS constraints in computationally feasible time. 

2.3 Ant Algorithms and its Background 

Ant algorithms were first proposed by Dorigo and colleagues [6,7] as a multi-

agent approach to difficult combinatorial optimization problems such as the traveling 

salesman problem (TSP) and the quadratic assignment problem . There is currently much 

ongoing activity in the scientific community to extend and apply ant-based algorithms to 

many different discrete optimization problems 18,91. Recent applications cover problems 

such as routing in communications networks, QoS multicast Routing and so on. 

Ant algorithm is a simulated evolution algorithm based on population and ant 

colony behaviors. The behaviors of a single ant is simple, however a population of ants 

may behave very complicated, which can complete complex tasks and even adapt to the 

change of environment. For example, when an obstacle appears on the moving path of an 

ant population, ants can find a new optimal path quickly. 
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An ant excrete a material, called pheromone, along the path on which it moves. 

Ants can sense this material and detect its intensity. They can then use pheromone 

intensity as a guide o move and tend to move toward that direction of higher intensity, 

thus the ants can find the food by this kind of information exchange. 

The key features of an ant algorithm include distributed computation, positive 

feedback, and constructive greedy heuristic. These features can help to provide premature 

convergence ant find a very good solution in a shorter period of time. Since it inception, 

the algorithm has emerged as a new heuristic to solve many stochastic combinatorial 

optimization problems. 

b) 
	

C) 

Fig 2.1: An example with real ants. 
a) Ants follow a path between points A and E. 
b) An obstacle is interposed; ants can choose to go around it following one of the 

two different paths with equal probability. 
c) On the shorter path more pheromone is laid down. 

Ant System (AS) is an algorithm, inspired by the ways ants organize themselves 

in nature, to optimize certain hard problems. The classic example tries to solve the 

traveling salesman problem (TSP) and is thus called AS-TSP. Assume a problem with n 

cities and k ants. Every ant makes a tour, visiting each city exactly once. In each city the 

ant makes a decision on where to go next with a certain probability based on visibility 
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and pheromone level between that city and every other city. When all ants have 

completed their tour, the new pheromone levels in the problem are calculated; a certain 

percentage of pheromones evaporates and new pheromones are deposited based on the 

length of the tours that visited that road (shorter tour implies more pheromones). The 

roads on the tour of the best ant, are given an additional pheromone dose. 

2.3.1 The Ant Colony Optimization Approach 
In the Ant Colony Optimization (ACO) metaheuristic a colony of artificial ants 

cooperates in finding good solutions to difficult discrete optimization problems. 

Cooperation is a key design component of ACO algorithm: The choice is to allocate the 

computational resources to a set of relatively simple agents (artificial ants) that 

communicate indirectly by stigmergy. Good solutions are an emergent property of the 

agents' cooperative interaction. Artificial ants have a double nature. On the one hand, 

they are an abstraction of those behavioral traits of real ants that seemed to be at the heart 

of the shortest path-finding behavior observed in real ant colonies. On the other hand, 

they have been enriched with some capabilities that do not find a natural counterpart. In 

fact, we want ant colony optimization to be an engineering approach to the design and 

implementation of software systems for the solution of difficult optimization problems. It 

is therefore reasonable to give artificial ants some capabilities that, although not 

corresponding to any capacity of their real ant counterparts, make them more effective 

and efficient. 

Important characteristics of Artificial Ants are the following: 

> Artificial ants have an internal state. This private state contains the memory of the 

ants' past actions. 

> Artificial ants deposit an amount of pheromone that is a function of the quality of 

the solution found. 

> Artificial ants live in a discrete world and their moves consist of transitions from 

discrete states to discrete states. 

> Artificial ants' timing in pheromone laying is problem dependent and often does 

7 



not reflect real ants' behavior. For example, in many cases artificial ants update 

pheromone trails only after having generated a solution. 

➢ To improve overall system efficiency, ACO algorithms can be enriched with extra 

capabilities such as lookahead, local optimization, backtracking, and so on that cannot 

be found in real ants. In many implementations ants have been hybridized with local 

optimization procedures (as discussed in [10, 11, 12]). There are no examples of 

backtracking procedures added to the basic ant capabilities, except for simple 

recovery procedures used by Di Caro and Dorigo [13]. 

2.3.2 Ant System 

Ant System was the first developed ACO algorithm [15, 16]. Its importance 

resides mainly in being the prototype of a number of ant algorithms that have found many 

interesting and successful applications. In AS, artificial ants build solutions (tours) of the 

TSP by moving on the problem graph from one city to another. During each iteration m 

ants build a tour executing n steps in which a probabilistic decision (state transition) rule 

is applied. In practice, when in node i the ant chooses the node j to move to, and the are 

(i,j) is added to the tour under construction. This step is repeated until the ant has 

completed its tour. 

Three AS algorithms have been defined [17, 18, 19, 20] that differ by the way 

pheromone trails are updated. These algorithms are called ant-density, ant-quantity, and 

ant-cycle. In ant-density and ant-quantity ants deposit pheromone while building a 

solution, while in ant-cycle ants deposit pheromone after they have built a complete tour. 

Preliminary experiments run on a set of benchmark problems [18,19,20] have shown that 

ant-cycle's performance was much better than that of the other two algorithms. 

Consequently, research on AS was directed toward a better understanding of the 

characteristics of ant-cycle, which is now known as Ant System, while the other two 

algorithms were abandoned. As we said, in AS after ants have built their tours, each ant 

deposits pheromone on pheromone trail variables associated to the visited arcs to make 

the visited arcs become more desirable for future ants (i.e., online delayed pheromone 

update is at work). Then the ants die. In AS no daemon activities are performed, while 
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the pheromone evaporation procedure, which happens just before ants start to deposit 

pheromone, is interleaved with the ants' activity. 

The amount of pheromone trail z j (t) associated to arc (i,j) is intended to 

represent the learned desirability of choosing city j when in city i (which also corresponds 

to the desirability that the arc (i,j) belongs to the tour built by an ant). The pheromone 

trail information is changed during problem solution to reflect the experience acquired by 

ants during problem solving. Ants deposit an amount of pheromone proportional to the 

quality of the solutions they produced: The shorter the tour generated by an ant, the 

greater the amount of pheromone it deposits on the arcs that it used to generate the tour. 

This choice helps to direct search toward good solutions. The main role of pheromone 

evaporation is to avoid stagnation, that is, the situation in which all ants end up doing the 

same tour. 

The memory (or internal state) of each ant contains the already visited cities and 

is called tabu list (in the following we will continue to use the term tabu list to indicate 

the ant's memory). The memory is used to define, for each ant k, the set of cities that ant 

located on city i still has to visit. By exploiting the memory, therefore, an ant k can build 

feasible solutions by an implicit state-space graph generation (in the TSP this corresponds 

to visiting a city exactly once). Also, memory allows the ant to cover the same path to 

deposit online delayed pheromone on the visited arcs. 

The ant-decision table A. = [a j (t)]IN I of node i is obtained by the composition of 

the local pheromone trail values with the local heuristic values as follows: 

[Zij (t)]' [~ij (t)]~ 
a(  t) _ 	 , `dj E Ni 	- 	- 	- (2.1) 

1EN; 

where r1 (t) is the amount of pheromone trail on are (i,j) at time t and r~;j =1 / d~ is the 
heuristic value of moving from node i to node j , Ni is the set of neighbors of node i, and 

a and (3 are two parameters that control the relative weight of pheromone trail and 
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heuristic value. The probability with which an ant k chooses to go from city i to city 

j EN', while building its tour at the t-th algorithm iteration is 

' 
P;k (t) _ 

a. 
`'

(t 
) 	- 	- 	- 	- 	(2.2) 

Y a;, (t)  
/EN;` 

where Nk c Ni is the set of nodes in the neighbourhood of node i that ant k has not 

visited yet ( nodes in N are selected from those in Ni by using the ant private memory 

Mk). The role of the parameters a and (3 is the following: if a=0, the closest cities are 

more likely to be selected: This corresponds to a classical stochastic greedy algorithm 

(with multiple starting points since ants are initially randomly distributed on the nodes). 

If, on the contrary, 13=0 , only pheromone amplification is at work: This method will lead 

to the rapid emergence of a stagnation situation with the corresponding generation of 

tours that, in general, are strongly suboptimal [201. A trade-off between heuristic value 

and trail intensity therefore appears to be necessary. After all ants have completed their 

tour, pheromone evaporation on all arcs is triggered, and then each ant k deposits a 

quantity of pheromone Oz;~ (t) on each arc that it has used: 

OT; (t) = 1 / Lk (t) 	if(i,j)ciT k (t) 	- 	- 	- 	(2.3) 

where Tk(t) in the symmetric TSP arcs, and for which the pheromone trail level on the 

arcs (1,1) and (j, i) can considered to be bidirectional so that arcs (i, j) and (j, i) are 

always updated contemporaneously (in fact, they are the same arcs). Different is the case 

of the asymmetric TSP, where arcs have a directionally be different. In this case, 

therefore, when an ant moves from node i to node j only arc (i, j) and not (j, i) is 

updated. It is clear from Equation 4 that the value Az; (t) depends on how well the ant 

has performed: The shorter the tour done, the greater the amount of pheromone 

deposited. In practice, the addition of new pheromone by ants and pheromone 

evaporation are implemented by the following rule applied to all the arcs: 
in 

	

E— (1— p)z;~ (t) + Art (t) where Av, (t) = YA rA u (t) - 	_  (2.4) 
k=1 
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where m is the number of ants at each iteration (maintained constant), and p E (0,1] is the 

pheromone trial decay coefficient. The initial amount of pheromone r, (0) is set to a 

same small positive constant value io on all arcs, and the total number of ants is set to 

m=n, while a , (3 and p are respectively set to 1, 5, and 0.5; these values were 

experimentally found to be good by Dorigo [6].Dorigo et al. [19] introduced also elitist 

ants, that is, a daemon action by which the arcs used by the ant that generated the best 

tour from the beginning of the trial get extra pheromone. 

2.3.3 Salient Features of Ant Algorithms 

Ant Algorithms have the following advantages: 

1. Scalability: Population of the agents can be adapted according to the network size. 

Scalability is also promoted by local and distributed agent interactions. 

2. Fault tolerance: Swarm intelligent processes do not rely on a centralized control 

mechanism. Therefore the loss of a few nodes or links does not result in catastrophic 

failure, but rather leads to graceful, scalable degradation. 

3. Adaptation: Agents can change, die or reproduce, according to network changes. 

4. Speed: Changes in the network can be propagated very fast, in contrast with the 

Bellman-Ford algorithm 

5. Modularity: Agents act independently of other network layers 

6. Autonomy: Little or no human supervision is required. 

7. Parallelism: Agent's operations are inherently parallel. 

2.4 Genetic Algorithms 

Genetic algorithms (GAs) are optimization techniques based on the concepts of 

natural selection and genetics. In this approach, the variables are represented as genes on 

a chromosome. GAs features a group of candidate solutions (population) on the response 

surface. Through natural selection and the genetic operators, mutation and recombination, 

chromosomes with better fitness are found. Natural selection guarantees that 

chromosomes with the best fitness will propagate in future populations. Using the 

recombination operator, the GA combines genes from two parent chromosomes to form 

two new chromosomes (children) that have a high probability of having better fitness 



than their parents. Mutation allows new areas of the response surface to be explored. GAs 

offer a generational improvement in the fitness of the chromosomes and after many 

generations will create chromosomes containing the optimized variable settings. 

2.4.1 Genetic Representation 

A chromosome of the proposed GA consists of sequences of positive integers that 

represent the IDs of nodes through which a routing path passes. Each locus of the 

chromosome represents an order of a node (indicated by the gene of the locus) in a 

routing path. The gene of first locus is always reserved for the source node. The length of 

the chromosome is variable, but it should not exceed the maximum length , where is the 

total number of nodes in the network, since it never needs more than number of nodes to 

form a routing path. A chromosome (routing path) encodes the problem by listing up 

node IDs from its source node to its destination node based on topological information 

database (routing table) of the network. The information can be easily obtained and 

managed in real-time by routing protocols in wired or wireless environments, It is noted 

that the topological information database of the network can be constructed easily and 

rapidly by such routing protocols. 

S N1 NZ N3 N4 Nk-~ Nk D 

Fig 2.2: Example of routing path and its encoded chromosome 

An example of chromosome (routing path) encoding from node S to node D is 

shown, The chromosome is essentially a list of nodes along the constructed path, 

(S-~N1-~N2-+N3-~..........Nk_1-Nk-~D). The gene of the first locus encodes the source 

node, and the gene of second locus is randomly or heuristically selected from the nodes 

connected with the source node(S) that is represented by the front gene's allele. A chosen 

node is removed from the topological information database to prevent the node from 

being selected twice, thereby avoiding loops in the path. This process continues until the 

destination node is reached. It is noted that an encoding is possible only if each step of a 

path passes through a physical link in the network. 
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2.4.2 Population Initialization 

In general, there are two issues to be considered for population initialization of 

GAs: the initial population size and the procedure to initialize the population [27, 221. It 

was felt that the population size needed to increase exponentially with the complexity of 

the problem (i.e., the length of the chromosome) in order to generate good solutions. 

Recent studies have shown, however, that satisfactory results can be obtained with a 

much smaller population size. To summarize, a large population is quite useful, but it 

demands excessive costs in terms of both memory and time [27, 221. As would be 

expected, deciding adequate population size is crucial for efficiency. Secondly, there are 

two ways to generate the initial population: heuristic initialization and random 

initialization. Although the mean fitness of the heuristic initialization is already high so 

that it may help the GAs to find solutions faster, it may just explore a small part of the 

solution space and never find global optimal solutions because of the lack of diversity in. 

the population [22]. Physically, the random initialization chooses genes (nodes) from the 

topological information database in a random manner during the encoding process. It is 

possible that the algorithm encounters a node for which all of whose neighboring nodes 

have already been visited. In this case, the defective chromosome is refreshed and 

reinitialized. This may induce a subtle bias in which some partial paths are more likely to 

be generated. However, the meager bias does not significantly affect the performance of 

the algorithm. It is doubly so because it . (the bias) vanishes after evolving just a few 

generations. 

2.4.3 Fitness Function 

The fitness function interprets the chromosome in terms of physical representation 

and evaluates its fitness based on traits of being desired in the solution [21,22]. Is is 

desirable that the fitness function must accurately measure the quality of the 

chromosomes in the population. The definition of the fitness function, therefore, is very 

critical [22,24]. The fitness function in the Shortest Path routing problem is obvious 

because the Shortest Path computation amounts to finding the minimal cost path. 

Therefore, the fitness function that involves computational efficiency and accuracy (of 

the fitness measurement) is defined as follows: 
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where f; represents the fitness valueof the ith chromosome, 1; 1, the length of the ith 

chromosome, -gi (j) represents the gene(node) of the jth locus in the it" chromosome, and 

C is the cost between the links. The fitness function of GAs is generally the objective 

function that requires to be optimized 127, 22]. The fitness function has a higher value 

when the fitness characteristic of the chromosome is better than others. In addition, the 

fitness function introduces a criterion for selection of chromosomes. 

2.4.4 Selection of Chromosomes 

The selection operator is intended to improve the average quality of the 

population by giving the high-quality chromosomes a better chance to get copied into the 

next generation. The selection thereby focuses the exploration on promising regions in 

the solution space. Selection characterizes the selection schemes. It is defined as the ratio 

of the probability of selection of the best chromosome in the population to that of an 

average chromosome. Hence, a high selection pressure results in the population's 

reaching equilibrium very quickly, but it inevitably sacrifices genetic diversity (i.e., 

convergence to a suboptimal solution). 

There are two basic types of selection scheme used commonly in current practice: 

proportionate and ordinal-based selection [27,22]. Both selection schemes suffer when 

the selection pressure is inadequate (low or high). Proportionate selection picks out 

chromosomes based on • their fitness values relative to the fitness of the other 

chromosomes in the population. It is generally more sensitive to selection pressure. 

Hence, a scaling function is employed for redistributing the fitness range of the 

population in order to adapt to the selection pressure. Examples of such a selection type 

include roulette wheel selection, stochastic remainder selection, and stochastic universal 

selection. Ordinal-based selection schemes select chromosomes based not upon their 

fitness, but upon their rank within the population. The chromosomes are ranked 

according to their fitness values. It is noted that the selection pressure (intensity) is 

independent of the fitness distribution of the population, and is based solely on the 
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relative ranking of the population. Since the selection pressure is the degree to which the 

better chromosomes are favored, it drives the GA toward improved population fitness 

over 'succeeding generations. However, it can become malicious when the selection 

pressure does not impose an adequate level. In other words, it may also suffer from high 

selection pressure. 

Tournament selection, selection, truncation selection, and linear ranking selection 

schemes are included in the ordinal-based selection type. On the other hand, tournament 

selection without replacement is perceived as an effort to keep the selection noise as low 

as possible [27]. Recall that tournament selection without replacement works by means of 

choosing non-overlapping random sets of chromosomes (tournament size) from the 

population and then selecting the best chromosome from each set to serve as a parent for 

the next generation. Typically, the tournament size is two (pair wise tournament), and it 

would adjust the selection pressure: the selection pressure increases as the tournament 

size becomes larger [22]. Recall that the selection pressure is the expected average fitness 

of the population after selection. As selection pressure increases, the probability of 

making the wrong decision increases exponentially although the convergence of the GAs 

may be fast. Therefore, the pair wise tournament selection without replacement is 

employed for the proposed GA: two chromosomes are picked and the one that is fitter is 

selected. However, the same chromosome should not be picked twice as a parent. 

2.4.5 Focusing Effect 

This focusing effect allows GAs to quickly concentrate the search into favorable 

sub-dimensions of the overall problem, and results in a fairly rapid convergence to a 

reasonably good solution. Unfortunately, this solution will often not be the overall 

optimal solution. If the optimal solution is desired, this focusing effect should be reduced. 

There are several factors that promote focusing. These include 

• Using a small population size. 

• Using a Mating Pool, or choosing both parents based upon their fitness. 

• Not allowing for mutation. 

• Not selecting both an offspring and its compliment. 
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• Immediately replacing the weakest member of the population with an offspring 

(unless it was one of the parents). 

There are several factors that retard focusing. These include 

• Using a large population size. 

• Choosing one parent randomly. 

• Allowing for significant mutations. 

• Selecting both an offspring and its compliment. 

• Allowing a member of the current population to mate before it is removed. 

2.4.6 Steps for Genetic Algorithms 

1. Determine a Coding Scheme, a Genetic Alphabet, and a Genetic Vector Form. 

2. Determine the population size; i.e. the number of solutions you want to store. 

3. Create an initial population. This can be randomly generated solutions, with or 

without local optimization, or the results obtained from a different search. 

4. Choose how you want to select the parents. 

a. Choose one parent randomly and one based upon its fitness. 

b. Choose both parents based upon their fitness. 

c. Place members of the population in a Mating Pool in numbers 

proportional to thier fitness and randomly select from this pool. 

d. Choose one parent randomly, or biased by its fitness, and the other by 

choosing the solution that is most similar to it. 

5. Determine a Mating Operator and the probability of mating (Pmate) 

6. Choose a Mutation Operator and a probability of mutation (Pmutate)• In GAs, the 

Mutation Operator has a minor role, and Pmutate  is often set to 0. Otherwise, the 

operator generally changes a value in the Genetic Vector by a small amount. 

7. Determine whether or not you want to use a Maturation Operator. Though this is  

not discussed much in the literature, I have found that the results of a search can 

be greatly improved if the offspring (and initial population if necessary) are 
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subjected to an optimization, or some other check, before their fitness is 

determined. Possible operators include 

a. requiring an offspring to be unique. 

b. a local optimization. 

c. a Simulated Annealing or other non-local search. 

8. Determine which offspring should be kept. Possible choices include 

a. use either a single mating or multiple matings for each pari of parents 

chosen. 

b. generate only a single offspring from each mating or the complimentary 

pair of offspring. 

c. keep only the best offspring from the generated set, or the best n offspring, 

or keep the best offspring and its compliment. 

9. Determine what you want of do with the new offspring. Some choices include 

a. placing the new offspring in a new population. When the new population 

has reached a given size (usually the size of the initial population) you can 

	

i, 	replace the current population with the new population, with or 

without copying the best solution from the current population to 

the new one. Keeping the best solution is known as the elitist 

strategy. 

ii. Deterministically choose the best solutions from the combined 

current + new population. 

iii. Probabilistically choose solutions from the combined current + 

new population. 

These are called generational algorithms since a new offspring cannot be 

used as a parent until the new offspring population is large enough to consider 

some or all of it as the new parent population (e.g. a new generation of parents). 

b. Replace members of the current population with the chosen offspring. 

Possible replacements include 

i. Replace the weakest member in the population. 

ii. Replace the weaker parent. 
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iii. Replace the parent that is most similar to the offspring. 

iv. Replace a member using a combination of lack of fitness and 

similarity to the offspring. 

These are non-generational algorithms since each new offspring can be 

considered as parents in the next mating. 

2.4.7 Advantages of Using Genetic Algorithms 

• Discontinuities present on. the response surface have little effect on overall 

optimization performance. 

• They are resistant to becoming trapped in local optima. 

• They perform very well for large-scale optimization problems. 

• Can be employed for a wide variety of optimization problems. 

2.5 Multi Objective Genetic Algorithms 

Many real world -  problems require simultaneous optimization of multiple 

objectives, which is quite different from the single objective optimization. However, the 

single best solution may not exist with respect to all objectives under consideration. 

Instead, there might exist a set of solutions superior to the rest in the entire search space. 

Such a solution set is termed as "Pareto-optimal"[32]. Since none of the solutions in this 

set is absolutely better than any other, the user is given the freedom to choose the best 

possible solution that conforms to the application specific requirements. A Pareto-optimal 

solution is defined as follows: 

Definition[32]: A point x is Pareto-optimal if for every x either n; (f; (x)= f; (x*)) 

or there is at least one i such that (f (x) > f; (x*)), `di E I (set of integers), where f; (x) is 

the fitness function. In other words, x*  is Pareto-optimal if there exists no feasible vector 

x which would decrease some criterion without causing a simultaneous increase in at 

least one other criterion. 



A common difficulty with multi-objective optimization problem is the conflict 

between the objectives. In general, none of the feasible solutions allow simultaneous 

optimal solutions for all objectives. Thus, mathematically the most favorable Pareto-

optimum is the solution that offers the least objective conflict. In order to find such 

solutions, classical methods scalarize the objective vector into one objective. The 

simplest of all classical techniques is the weighted sum method. It aggregates the 

objectives into a single and parameterized objective through a linear combination of the 

objectives. However, setting up an appropriate weight vector also depends on the scaling 

of each objective function. It is likely that different objectives take different orders of 

magnitude. When such objectives are weighted to form a composite objective function, it 

would be better to scale them appropriately so that each has more or less the same order 

or magnitude. Moreover, the solution obtained through this strategy largely depends on 

the underlying weight vector. 

.2.5.1 Pareto-Based Approach 

In order to overcome such difficulties, Pareto-based evolutionary optimization has 

become an alternative to classical techniques such as weighted sum method. This 

approach was first proposed by Goldberg in [211 and it explicitly uses Pareto dominance 

in order to determine the reproduction probability of each individual. 

The idea behind Non-dominated Sorting Genetic Algorithm (NSGA) is that a 

ranking selection n method is used to emphasize good points and a niche method is used 

to maintain stable subpopulations of good points. It varies from simple genetic algorithm 

only in the way the selection operator works. The crossover and mutation remain as 

usual. Before the selection is performed, the population is ranked on the basis of an 

individual's non domination. The non dominated individuals present in the population are 

first identified from the current population. Then, all these individuals are assumed to 

constitute the first non dominated front in the population and assigned a large dummy 

fitness value. The same fitness value is assigned to give an equal reproductive potential to 

all these non dominated individuals. In order to maintain the diversity in the population, 

these classified individuals are then shared with their dummy fitness values. Sharing is 
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achieved by performing selection operation using degraded fitness values obtained by 

dividing the original fitness value of an individual by a quantity proportional to the 

number of individuals around it. Thereafter, the population is reproduced according to the 

dummy fitness values.' Since individuals in the first front have the maximum .fitness 

value, they get more copies than the rest of the population. The efficiency of NSGA lies 

in the way multiple objectives are reduced to a dummy fitness function using non 

dominated sorting procedures. 

Niched-Pareto Genetic Algorithm (NPGA) uses tournament selection based on 

non dominance. In the original proposal of the NPGA, the idea was to use a sample of the 

population to determine who is the winner between two candidate solutions to be 

selected, and to choose one of them based on nondominance with respect to the sample 

taken. To adapt the NPGA to solve single-objective parameter called selection ratio ( Si ), 

which indicates the minimum number of individuals that will be selected through 

dominance-based tournament selection. The remainder will be selected using a purely 

probabilistic approach. In other words, (Sr ,, 1 ) individuals in the population are 

probabilistically selected. Each candidate has a probability of 50% of being selected. 

When comparing two individuals, we can have three possible situations: 

1. Both are feasible. In this case, the individual with a better fitness value wins. 

2. One is infeasible, and the other is feasible. The feasible individual wins, 

regardless of its fitness function value. 

3. Both are infeasible. The individual with the lowest amount of constraint 

violation wins, regardless of its fitness function value. 

Our approach does not require niching or any other approach to keep diversity, 

since the value of Sr  will control the diversity of the population. For the experiments a 

value close to one (>0.8) was adopted [31]. 

The pseudocode is presented where oldpop is the current population, tdo,n  is the 

size of the comparison set and flip is a function that returns TRUE with probability P: 
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function select 
begin 

candidate_I = toumlist[O]; 
candidate_2 = tournlist[1]; 
i f (flip(Sr)) /* fitness-feasibility-nondominance based tournament */ 
begin 

i f (oldpop[candidate_1]=feasible AND oldpop[candidate_2]=feasible) 
i f (oldpop[candidate_l].fitness >= oldpop[candidate_2].fitness) 

winner=candidate_1; /* fitness checking */ 
else 

winner=candidate_2; 
else /* feasibility checking */ 
i f (oldpop[candidate_1 ]=feasible AND oldpop[candidate_2]=nonfeasible) 

winner=candidate_1; 
else 
if (oldpop[candidate_1]=nonfeasible AND oldpop[candidate_2]=feasible) 

winner=candidate_2; 
else 

begin 
shuffle(tournlist); /* nondominance checking */ 
candidate_ I_ dominated = FALSE; 
candidate_ 2 dominated = FALSE; 
for (i=2 to tdom+2) 
begin 

comparison_individual=toumlist[i]; 
if 	(oldpop[comparison_individual] 	dominates 

oldpop[candidate_1]) 
candidate_] _dominated=TRUE; 

if 	(oldpop[comparison_individual] 	dominates 
oldpop[candidate_2]) 

candidate 2_dominated=TRUE; 
end 
i 	f 	(candidate_1_dominated=TRUE 	AND 

candidate_2_dominated=FALSE) 
winner=candidate_2; 

else 
i 	f 	(candidate_1_dominated=FALSE 	AND 

candidate_2_dominated=TRUE) 
winner=candidate_ 1; 

else /* tie 	break with accumulated constraint violation */ 
i f (oldpop[candidate_1].sumviol < oldpop[candidate_2].sumviol) 

winner=candidate_ 1; 
else 

winner=candidate_2; 
end 

end 
else 
i f (flip(0.5)) /* pure probabilistic selection */ 

winner=candidate_]; 
else 

winner=candidate_2; 
return(winner); 

end 
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Pareto optimal solutions are also termed non-inferior, admissible, or efficient 

ones. Their corresponding vectors are termed Nondominated [13]. The Nondominated 

vectors plotted in objective space are known as the Pareto front. Conventional 

optimization techniques, such as gradient-based and simplex-based methods are difficult 

to extend to the multiobjective case. GAs have been recognized to be well-suited to 

multiobjective optimization, because many individuals can search for multiple good 

solutions in parallel, 

eventually taking advantage of gene similarities available in the family of possible 

solutions to the related problem. The ability to handle complex problems, involving 

features such as discontinuities and disjointed feasible spaces reinforces the potential 

effectiveness of GAs in multiobjective optimization. An approach to Multi-objective 

genetic algorithm (MOGA) varies from ordinary GAs only in its selection operator. 

Before performing the selection, the population is ranked on the basis of individual's 

chromosomes non-domination. A set of non-dominated strings are those which are 

better than others in the current population, when all the objective parameters are 

considered. All such non-dominated strings are included to form the initial Pareto-

optimal front [32]. As MOGA iterated in every generation, the non-dominated , Pareto-

optimal solutions are found and genetic operations are performed on them to improve 

their fitness values. The non-dominated solution set quickly proceeds towards the global 

optimal and gets saturated at a near optimal point. However, the procedue for obtaining 

non-domination between a pair of strings might result in a tie (both are either dominated 

or non-dominated). The concept of Niche Sharing [31] can be used to resolve such ties. 

Given an optimization function has several; peaks, the goal of fitness sharing is to 

distribute the population over the different peaks in the search space, where each, peaks 

receives a fraction of the entire population according to its height. One practical way to 

achieve such fitness-sharing is to degrade an individuals strings fitness, by dividing it by 

niche count for that individual. The intuition behind the niche count is that it is a good 

estimate about the crowd of the neighborhood of a particular individual . 
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2.6 Mathematical Formulation of QoS Multicast Routing Model 

The objective of QMR is to find the optimal path, which starts from the source 

node and passes through all destination nodes, that meets all QoS constraints with 

minimum cost or reaches a specific service level in a distributed network. For 

convenience, the network is considered as a connected, undirected and weighted graph. 

Let N(V,E) represents a network, where V denotes the set of network nodes and 

E denotes the set of bi-directional links, 

s E V, is the source node in multicast group. 

M c {V — {s}) , is the set of destination nodes in multicast group. 

R + , denotes the set of positive real numbers and 

R + denotes the set of non-negative real numbers. 

Assume that there are 4 QoS measures associated with each edge: network delay 

refers to the average time an IP packet needs to be transmitted through the network; 

network jitter refers to the range of time an IP packet need to be transmitted through the 

network; network bandwidth is the determinative factor that reduces the end-to-end 

delay. Thus, for any link eCE, we denote: 

Delay Function, delay (e): E _+ R. 

Delay jitter Function, delay jitter (e): E * R + , 	 - 	 (2.6) 

Bandwidth Function, bandwidth (e): E —+ R+ 

Cost Function, cost (e): E `~ R + . 

Similarly, fore each node n€V, the four measures can be denoted as: 

Delay Function, delay (n): V —> R+, 

Packet Loss-rate Function, Packet_loss(n): V _+ R+, 	 - (2.7) 

Cost Function, cost (n): V -> R+, 
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Delay jitter Function, delay_jitter(n): V * R+  
IP packet may be damaged or lost in the transmission, if the loss rate is too high, 

obviously the data will be damaged. 

Given a source node sCV and a set of destinations, M, the following relationships 

exist in the multicast tree T(s, M) composed of s and M. 

Delay (PT(s,t))= eepT(s,f)  delay(e) + nepT(s,t) delay(n) - 	- 	- 	(2.8) 

Cost (T(s,M))= cEpT(s,l)  cost(e) + nEpT(sj) cost(n) 	- 	- 	- 	(2.9) 

Bandwidth (PT(s,t))= min{bandwidth(e),e E  PT(s,t)} - 	- 	- 	(2.10) 

Delay jitter (PT(s, t))= cepT(s,1)  delayjitter(e) + nepT(s,') delayjitter(n) 	- (2.11) 

Packet loss (PT(S, t)) = 1 - nEpT(s,') (1-packet_loss(n)) 	- 	- 	(2.12) 

Where PT(S,t)  is the routing path from source s to destination t in the multicast 

tree T(s,M). The objective of the QoS multicast routing problem is to find a multicast tree 

T(s,M), which satisfies: 

Delay constraint: delay(PT(s,t))<=Dt  

Bandwidth constraint: bandwidth(PT(s,t))>=B 	 - 	- 	(2.13) 

Delay jitter constraint: delay_jitter(PT(s,t))<=DJt  

Packet Loss-rate constraint: Packet loss(PT(s,t))<=PLC  

Such that Cost (T(s,M)) is minimized for all multicast trees that satisfy the above 

constraints. Where B is the Bandwidth constraint, D, , DJ, , PL, are the Delay, Delay 

jitter and Packet loss-rate constraints of the destination node t respectively. In this model, 

all bandwidth of the multicast destination nodes are assumed to be identical, however, 

delay, delay jitter and packet loss rate constraints can be different. 
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2.7 Summary 
With the increasing demand for real-time services in next generation 

communication networks, QoS based Multicast Routing offers significant challenges. 

This chapter gives the overview of the multicast routing and the significance of delay and 

delay jitter its QoS constraints. The background of two Evolutionary Algorithms namely 

Ant and Genetic Algorithms are discussed. Ant Algorithms are simulated evolution 

algorithm based on the population and ant colony behavior. Genetic Algorithms are the 

optimization techniques based on the concept of natural selection and survival of the 

fittest. Multiobjective optimization techniques like Pareto-optimality are also discussed. 

This chapter is concluded by describing the mathematical formulation of QoS Multicast 

Routing Model. 
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Chapter 3 

QOS MULTICAST ROUTING USING ANT ALGORITHM 

3.1 Introduction 

An Ant Colony based heuristic is presented to solve the QoS Constrained 

Multicast Routing problem. This Ant based algorithm considers the QoS metrics like 

delay and delay jitter to find the multicast tree that minimizes the total cost. 

3.2 Description of the Algorithm 

Given the values of (d, , dj;  , pl;  .c;) for all nodes, ( d1  , dj , b11  , c;!) for all edges, 

and the value of the constraints D, DJ, B,PL, the procedure can be divided into following 

steps: 

Step 1) Initialize network nodes. 

Set T: =0(t is a timer and can be omitted.). NC:=O (NC is a loop counter); 

Assign an initial value > (t)   c  to the pheromone intensity of every edge 

(i,j) and Az;J  = 0 

Put m ants to the source node. 

Step 2) Check PL (packet loss rate) of all nodes, delete the edges linking those 

nodes that do not meet PL constraint. 

Step 3) Check B (bandwidth) of all edges, delete those edges that do not satisfy 

the bandwidth requirements. 

Step 4) Setup tabu table 

Set s:=1 

For k:=1 to m 

Put the value of source node into tabuk(s) 
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Here tabu is used to save the nodes that were reached before t. tabuk(s) denotes 

the s-th node visited by the k-th ant in the current route and s is the index of tabu table. 

Step 5) Repeat this step until the tabu is full. 

Set s:=s+1. 

For K:=1 to m 

Choose a node (or the next node) j according to the following 

probability: 

pk (t) = 	 Q j E allowed 
!J 	I keallowedk `~/j (t)1' 0 ̀ 17ij ] 	 - 	(3.1) 

0 	 ,otherwise 

Compute the delay and delay jitter to reach node j, and compare the result with 

delay D and the delay jitter DJ. If the result exceeds the constraints, choose a new node; 

otherwise move the k-th ant to node j. 

Put j into tabuk(s) ,where r y (t) is the pheromone intensity of edge (i ,j) at t, and J 	() 	 p 	 t3' 	g (~J) 

a,(3 denote the information accumulated during the movement of ants and the different 

effects of factors in the path selection. 

Allowedk={0,1,2...N-1}-tabuk(s) denotes the node that the k-th ant can select in 

the next step. When using ant algorithm to solve TSP (Traveling Salesman Problem), 

rl j l/d J where did is the delay between the nodes i and j. However, in this study it is 

not the length of the path that will affect the probability, but the next node, the delay of 

edges linking them and the delay jitter. Thus, we set  

Step 6) Compute Azk 'U and 
For k:=1 torn 

For every edge(i,j) 

For k:=1 to m 
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A k =L if(i,j)Etabuk 
Set 	 k 

	

=0, 	otherwise 	 - 	- 	- 	- (3.2) 

Set 
Az, — Az, + Oz k 

Ark 
 is the pheromone amount left by the k-th ant at edge(i,j) during the 

period from t to t+n. ArU is the sum of pheramone amount left at edge(I,j) in this loop. 

LK is the total path length of the k-th ant . Here LK is the summary of d and dj of all 

nodes and edges passed by the k-th ant through its path, and Q is a constant. 

Step 7) Compute z~' (t + n) for every edge (i,j); 

Set 
r (t+n)= p*z~(t)+Ar;~ 

t:=t+n; NC: =NC+ 1; 

Set Az'i 0 to every edge (i,j); 

Where parameter P must be set to a value less than 1 to avoid the infinite 

accumulation of pheromone. 

Step 8) Check stop condition. 

If (NC<NCMAX) and (not develop state) 
Then 

Empty all tabu; go to step 2 
Else 

Output the minimum cost path until all nodes have been passed. 

3.3 Summary 

Ant algorithm is a simulated evolution algorithm based on population and ant 

colony behaviors in which information exchange and collaboration among units play an 

important role. The key features of the algorithm include distributed computation, 

positive feedback and constructive greedy heuristic. These features can help to avoid 

premature convergence and find a good solution in shorter period of time. 
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3.4 Dataflow Diagram of the Ant Algorithm 

t = 0; NC = 0; o(t)=c for o1 =0 
Place Place the m ants on the n nodes 	 Initialize 

Update tabuk(s) until tabu is full 

Tabu list management 

~ ru (tv"177V 
J
7Q 	 Choose the cityj 

l l 	a 	if j E allowed k 	Use probability 

p ( t ) 	 L Zik ( t )J [ T ik ] 
  keallowed Move k-th ant to town j. 

0 	 otherwise 	Insert town j in tabuk(s) 

Compute the length Lk of every ant 
Update the shortest tour found 

For every edge (i,j) 
Computer (t+n)= pr y (t)+dzt~ 

For k:=1 to m do 

Q if (i, j) E tour described by tabu k 
= Lk 

0 	otherwise 

Yes 

Set t = t + n; NC=NC+1; Aojj=0 	 NC<NC„ 

No 

Terminate 

Fig 3.1 Ant Algorithm for Solving QoS Multicast Routing 
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Chapter 4 

QOS MULTICAST ROUTING USING GENETIC ALGORITHM 

4.1 Introduction 

Genetic Algorithms are optimization techniques based on the concepts of natural 

selection and genetics. In this approach, variables are represented as genes on the 

chromosomes. The main operations performed in Genetic Algorithm are Selection, 

Cross-over and Mutation. Genetic Algorithms are well suited to solve the NP-Complete 

problems like QOS Multicast Routing. This algorithm finds the optimal multicast tree 

satisfying the QoS constraints like delay and delay jitter. 

4.2 Coding Scheme 

_ To conform with the requirements of solving the QoS multicast routing problem 

using a Genetic Algorithm, the possible solutions of the problem needs to be mapped to a 

symbolic state space. The possible solutions form what is called a the population from 

which we try to select the best possible solutions after improving the overall quality of 

the solutions in the population using genetic operators like selection, cross-over and 

mutation. Since we are dealing with the multicast routing problem, a solution should 

actually depicts a tree with source as the root and the destinations as the leaves. 

Therefore the solution is encoded as follows: 

First we list all the possible paths between the source and a particular destination 

and keep them in a pool. Note that a path is a sequence of network nodes. Now for the 

larger networks, there can be a huge number of such paths. However, we actually select 

those paths which conform to our bandwidth requirement. (ie., those paths having their 

capacities less than the required bandwidth are excluded). Still the number of possible 

paths could be large, especially for the large networks. These pools of valid paths 

between the source and the set of destinations are prepared. 
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After creating such pools we take one solution randomly from each pool and 

concatenate all the solutions to giver a multicast solution. The multicast solution string 

can be at-most of length c*n, where c is the number of destinations and n is the number 

of network nodes. In genetic algorithm terminology, the solution strings thus formed are 

called chromosomes and the components of the chromosomes are called genes. 

uuuuuuuugguuuuuuuuu 
Fig 4.1 Chromosome Coding Scheme 

Consider the above figure 4.1, the above chromosome represents the multicast 

tree with the source 1 and the destinations 4,5,6,7. -1 represents a marker to distinguish 

the paths between each pair of source and destination. The initial population is selected 

from these pools by randomly picking up path for each set of destination 

4.3 Fitness Function 

Fitness function should describe the performance f the selected individuals. The 

individual with good performance has high fitness level, and the individual with bad 

performance level has low fitness level. The fitness function of the algorithm to calculate 

the QOS parameter like end-to-end delay ,delay jitter, cost is F(T)=f~ (Afd + BfdJ + CfdJ ), 

where fc ,fd ,fd  ,fd denotes cost, end-to-end delay , delay jitter and bandwidth functions. 

A,B,C are the positive weight of fd ,fd~ ,fd respectively, by means of iterative applications 

of GA operations, it is possible to find out the best representative solution from the entire 

population within a few iterations. The best solutions for multicast tree M are selected in 

each iteration with the help of an fitness function F. Several fitness functions can be 

designed from the different objectives. One choice is linear combination and the other is 

quadratic combination. 

With the help of fitness function F , the quality of solutions is the improved by 

applying the genetic algorithm operations, namely selection, cross-over and mutation. 

These three operations are mainly string manipulation operations in which the string 



elements are changed or mixed so as to get a good variation of properties from each 

solution, and to preserve the good qualities of the solution for the next generation. This 

improvement ultimately converges with iterations resulting in optimal or near-optimal 
solution. 

4.4 Selection Operation 

Selection is mainly the operation to increase the number of good solution in the 

population in every iteration of the algorithm. The solutions are assigned a probability of 

being selected in the next generation which is proportional to its fitness function, F. In 

this way better solutions replaces the inferior ones in the next generation. The selection of 

the next generation solutions is done by the roulette wheel scheme once the probabilities 

of selection is given. 

4.5 Cross-Over Operation 

Cross-over operation mingles the genes or component of the solution to generate 

new representative solutions containing the properties of more then two solutions. Thus, 

this operation helps in getting out of localization problem which is common in an 

optimization procedure 

Before Cross-over 
1234 12765 1276 1237 

12734 1845 18546 127 

After Cross-over 
1 2 3 4 1 2 7 6 5 1 8 5 4 611  271  

1 2 7 3 411  8 4 5 1 2 7 611  2 3 7 

Fig 4.2 Cross-over operation between two chromosomes 
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In our case the multicast trees are represented as concatenation of paths between 

the source and the destinations. We pick two solutions randomly from the population for 

cross-over operation. The first m genes or paths out of total c paths (m < c) of the first 

solution is concatenated with the last c-m genes of the second solution to get the new 

solution. The two remaining sections of the original solutions are again concatenated to 

form another new solution. These two new solutions replaces the original solutions in the 

new population. 

4.6 Mutation 

Mutation changes or mutates gene in a chromosome to introduce a new solution 

in the solution space. This operation also has the similar role in the optimization 

procedures that of the cross-over operation. Here we pick one solution from the 

population for mutation operation. One of the constituting genes is chosen randomly from 

the selected solution and is replaces with the other gene or path between the source and 

destination as it was in the original gene. To illustrate the operation , a chromosome such 

as [1 2 3 4 -1 1 2 7 6 5 -1 1 2 7 6 -1 1 2 3 7] can undergo the mutation operation with a 

certain low probability and yield another chromosome such as [ 1 2 3 4 -1 1 2 3 4 5 -1 1 2 

7 6 -1 1 2 3 7].. In this operation the path between node 1 and 5 (ie., 1 2 7 6 5) is changes 

with another alternative path (ie., ' 1 2 3 4 5). 

Successive application of these operations in each iteration make it possible to get 

a near-optimal solution within few iterations, even for larger networks. 

4.7 Summary 

Genetic Algorithm acquires the solution by representing a multicast tree as a 

chromosome so as to save the coding spaces and reduce the decoding operations 

(compared with binary coding mechanisms). The optimal multicast tree is acquired in 

successive iterations by applying the Genetic operations like Selection, Cross-over ad 

Mutation. 
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4.8 Dataflow Diagram of Genetic Algorithm 

Input Network 

Construct banks of 
Source Node 	 routes from source to 
Destination Nodes 	 each destination 

Initial population is 
constructed 

Fitness Computation 

Selection operations 

Cross-over operations 

Mutation operations 

m 	 Yes 
If 0 fitness 
< precision 
	 Terminate 

Fig 4.3 Genetic Algorithm for Solving QoS Multicast Routing 
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Chapter 5 

QOS MULTICAST ROUTING USING MULTI-OBJECTIVE GA 

5.1 Introduction 

Multi-objective Genetic Algorithm differs from the simple Genetic Algorithm 

only in its Selection operation. The underlying novelty in the Multi-objective algorithm is 

that it does not combine the constraint functions on an ad hoc basis to form a scalar 

objective function, but attempts to tackle the problem from the perspectives of multi-

objective optimizations. The motivation -behind developing such an algorithm is to 

provide the user with a set of Pareto-optimal solutions, and give him the liberty to choose 

the best one, depending on his own requirements (if any), from this set. 

5.2 Description of the Algorithm 

The algorithm consists of following steps: 

The Network-generation part of the algorithm is quite simple. It takes the number 

of nodes as input and generates the graph dynamically with random, connectivity to•

represent the network. 

The major part of the algorithm is QoS based multicast route discovery. This 

function takes the source node Vs and a specific number of multicast destination nodes, 

say, VdI Vd2 Vd3 Vd4 .......Vdn as input. 

It calls the function path finding to find all possible multicast paths from Vs  to 

each of Vdl Vd2 Vd3 Vd4 .......Vdn , using the basic depth first search(dfs) algorithm. This 

gives birth to the initial set of multicast trees. The primary objective of our algorithm is 

to find the multicast trees, from this set, which will satisfy the three above-mentioned 

QoS parameters. 

Since the underlying approach is based on multi-objective genetic 

algorithms(MOGA), our next step is to map the problem in a search space suitable to 

MOGA. Each of all the generated multicast trees is mapped to a string consisting of the 
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sequence of nodes along the path from the source VS  to each of destinations Val Vd2 Vd3 

Vd4 ...... Van  . To mark the end of a path from a source to a single destination, we use -1 

as sentinel. Figure 1 below gives a clear view of this scenario where a multicast tree is 

represented by a string. The set of all such strings constitute the initial population. The 

size of this population popsize depends on how the strings are created, which in turn 

depends on the network topology and the number of multicast destination nodes. The role 

of multi-objective-genetic algorithms now comes into the feature. The fitness 

computation() function computes the values of the three pre-defined QoS parameters 

individually. The objective of the algorithm now boils down to a search for different 

multicast paths which will improve the values of these QoS parameters at each iteration. 

The Niched Pareto Optimization function comes next. The key idea to develop 

this approach is to use a ranking selection method to emphasize the good points and 

incorporate the concept of niching to maintain stable subpopulations of good points. The 

binary relation of domination leads to a binary tournament between any two randomly 

selected individuals. However, we wanted to get more domination pressure together with 

the control over that pressure. In order to achieve this goal, a comparison set of 

individuals are picked at random from the population. 

The size of this comparison set tdo,, gives us a good control over the selection 

pressure. If a small tdon, is chosen , only a few pareto optimal points will be found. 

Instead,choosing of a very large tdon, 	might result into a premature convergence. In 

this algorithm we have taken tdom  =0.20(popsize). Each of the two randomly selected 

individuals is now compared against each individual in the comparison set. If one 

candidate is dominated and the other is not then the latter is selected for selection. On the 

other hand, if both of the individuals are dominated or if both are non-dominated then we 

use the concept of niched sharing to resolve the tie. 
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To incorporate this idea of fitness sharing we compute the value of niche count 

for every individual string present in the population, as: 

popsize 

m, = Z Sh [d sc.s2 ] 	- 	- 	- 	(5.1) 
J=1 

where ds,sz is he distance between individuals sl and s2 and Sh [d5152 ] is the sharing 
function. For simplicity, triangular sharing function has been used: 

ds~,s2 
Sh [ds1,sz 1= 1— 	 - 	- 	-  (5.2) 

6share 

for d <= 6share and Sh [d]=O otherwise. Here 0share is the niche radius, and it is a good 

estimate of minimal separation expected between the goal of solutions. Individuals within 

6share distance of each other degrade each other's fitness, as they are in the same niche. 

A new idea of adaptive sharing is introduced, i.e. the value of ashare is no longer 

kept fixed. Depending on the fitness values of the particular string chosen and the 

population density in the search space ashare is dynamically updated in every iteration of 

the algorithm. 

To implement this adaptive sharing, there are two choices: 

(a) Genotypic Sharing, which is based on the distance between the individual genes of 

the chromosome and 

(b) Phenotypic Sharing based on the distance between the fitness values of the entire 

chromosome. 

Genotypic sharing can sometimes gives a good picture of the internal 

chromosomal structure, but results of recent researches had focused the superiority of the 

Phenotypic sharing over it. Moreover, the intuition and logic behind the distance between 

the corresponding genes(nodes) of the two chromosomes(strings) is also quite fuzzy in 

our case. This phenotypic distance between two strings is nothing but the Euclidian 

distance between their different fitness values: 

39 



~,7 

	= 
	 2 	2 	 2 

us1,s2 — V((5d"'Y,t,,2 ) + (8bws1,,2 ) + (8jitte,.si,.s2 ) 

where gdelaysl ,s2 = Pr (ds1 <t) — Pr (ds2 <t), 	 - 	- (5.3) 

~bws~,sz = Prs1(B) — Pi 2 (B) , 

6 itteJ 1 sz = Pr (djs, < t) — pr (djs2 <t) 

where Pr (d 1 < t) is the probability that the delay di of the selected tree sl will meet 

the specific delay constraint, is obtained by taking the product of delays over individual 

paths in that tree. Pr 1(B) is the probability with which the bandwidth guarantee of B is 

satisfied for an entire multicast tree sl. Pr (cjsl < t) is the probability that the delay-

jitter djs1 of the selected tree sl will meet the specific delay jitter constraint, is obtained 

by taking the product of delay jitter over individual paths in that tree. 

Similarly, We compute the niche radius 6share as some fraction (precisely one-

fourth) of the maximum separation possible in the population ie., 

	

j(8 (IC/ 
	(r 

w,u 
2  (r 

 
2 

\UdetnYwu ) + ( bu• ) + ( jittermw ) 
6shnre  4 

where ddelayM,~ = PrMAX (d < t) — PrMIN (d < t) 	- 	- 	(5.4) 

8bwMAX Prm x (B) — PrMIN (B) 
J jitterMAX = PrMAX (dj <t) — PrMIN (d.I < t) 

As the algorithm executes, at every iteration the genetic operations dynamically 

update the chromosomes and try to improve the corresponding probabilities. Hence, the 

	

values of 8de1ay,y, r 	 are updated, which in turn update ashare to reflect 

the correct niche radius. A careful study into the niche sharing, concept discussed in [291 

reveals that it is not necessary to decrease the fitness values of the two non-dominated 

40 



chromosomes by dividing them by niche-count. We make the algorithm much simpler by 

just evaluating the niche counts and selecting the string having less niche count. 

As the algorithm executes, at every iteration we get a set of non-dominated strings 

whose fitness values represent the Pareto-optimal solutions for that iteration. The niche 

sharing helps to converge the algorithm quickly by applying a dynamically controlled 

selection pressure. In fact, simulation results also demonstrate that the density of the 

Pareto-optimal solutions increase as the algorithm executes. 

The cross over and mutation operations are same as normal genetic algorithms. 

But, we have to take care of the fact that these operations must not produce any illegal 

paths. A close look into the structure of the chromosome reveals that these genetic 

operations can not be performed on any arbitrary gene (network nodes), as that can gives 

birth to some paths which do not exist at all. Both the cross-over and mutation operations 

can only be performed at the end of an existing path, i.e. immediately after a particular 

sentinel, represented by -1. To give an equal probability to all such possible cross-over 

and mutation points, we randomly select one such point. The crossover operation is 

performed by swapping the portion of the two consecutive chromosomes after the 

particular selected point. In case of mutation we just replace the part of the chromosome 

after the mutation point by a corresponding part of any other valid chromosome. 

5.3 Summary 
Careful analysis of existing optimization schemes for QoS Multicast Routing 

Algorithms reveals that most of them suffer from the same drawback: multiple objectives 

are combined to form the single scalar objective function on an ad hoc basis, usually in a 

linear combination of multiple attributes. This not only makes solution highly sensitive to 

the chosen weight vectors but also demands the user to have some knowledge about the 

priority of a particular objective parameter. The users will therefore be more interested in 

obtaining the set of acceptable non-dominated solutions, one of more of which can be 

selected according to the QoS requirements. We recognize that Genetic Algorithms are 

readily modified to deal with multiple objectives by incorporating the concept of Pareto 

Non-dominance in its selection operation. 
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5.4 Dataflow Diagram of the Algorithm 

Input Network 

Source Node 	 Find initial routes 
Destination Nodes 	 Map them to strings 

Compute Fitness values 

Comparison Set 
Calculation 

Tournament Selection, 
Niche-Pareto-Optimization 
& Tie-breaking 

Calculate Adaptive 	 Basic GA operations 
Sharing 

No 	Check if Fitness 
improvement is less than 
Precision 

Yes 

Terminate and obtain Pareto-
Optimal output strings 
(Multicast Trees) 

Fig 5.1 Multiobjective Genetic Algorithm for solving QoS Multicast Routing 
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Chapter 6 
IMPLEMENTATION 

The first phase of the simulation is generation of the network with QoS 

parameters. Network topologies used in the simulations are deliberately manipulated to 

simulate wide area sparse networks. A large network is likely to be loosely 

interconnected. An n-node graph is considered to be sparse when less than 5% of he 

possible edges are present in the graph. The network graph is constructed using the basic 

Waxman method for the generation of the edges with cost, delay, jitter, bandwidth 

constraints. These constraints are assumed to follow the exponential distribution. In the 

simulations, group size are always made less than 20% of the total nodes, because 

multicast applications running in a wide area network usually involve only a small 

number of nodes in the network, such as video conference systems, co-operative editing 

systems etc. 

The next phase of the simulation is finding out the optimal multicast trees from 

the generated topologies using the Ant and Genetic algorithms for different multicast 

group sizes. In the network topologies generated, the nodes in the graph are labeled 

starting form 1.Group members are selected by the users input. Large numbers of 

simulations are performed with varying number of multicast group size and network size. 

The results of the simulations are compared with results obtained using the exhaustive 

search methods. The simulations are carried out using GNU C++ compiler in UNIX 

environment. The graphs for the results obtained during the simulations are generated 
using Xgraph utility. 
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Pheromone Trail intensity oc = 1.0 
Pheromone Trail Visibility 3 = 5.0 
Evaporation Coefficient p = 0.5 
Initial Pheromone Deposit z =0.01 " 
Constant Q=100 
Number of Ants M=number of nodes, N 

Fig 6.1 Parameters for Ant Algorithm 

Cross-over probability Pr  = 0.8 
Mutation Probability fp",=O.l 

Fig 6.2 Parameters for Genetic Algorithm 

Cross-over probability P, = 0.8 ! 
Mutation Probability Pm  = 0.1 
Initial Population Po = 10 
Size of Comparison Set tdom  = 0.20(popsize) 

Fig 6.3 Parameters for Multi-Objective Genetic Algorithm 
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Chapter 7 

SIMULATION RESULTS 
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Fig 7.1 Performance Evaluation of the Parameters 

In Fig7.1, the parameters of the Ant Algorithm are considered and their 

performance is checked. The dashed line denotes the cost curve with parameters a=1, (3= 

5, p=0.5. The straight line denotes the cost curve with parameters c=l, f3 1, p=0.5. From 

the graph, it can be clearly stated that the algorithm has good convergence with the 

parameter 3= 5. 
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Fig 7.2 Network Graph. 

Fig 7.2 depicts the Sample Network Topology with 25 nodes. The network graph 

is constructed using the basic Waxman method for the generation of the edges with cost, 

delay, jitter, bandwidth constraints. Parameters used are c=0.26 and (3=0.4 These 

constraints are assumed to follow the exponential distribution. In the simulations,. group 

size are always made less than 20% of the total nodes, because multicast applications 

running in a wide area network usually involve only a small number of nodes in the 

network 
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Fig 7.3 Convergence Graph Of Ant Algorithm 

Fig 7.3 depicts the Convergence Graph of the Ant Algorithm. The straight line 

represents the cost of the multicast tree. The dash and dotted line represents the delay and 

delay jitter of the multicast tree respectively. The Algorithm finds the optimal multicast 

tree with few iterations and the cost line becomes stable. 
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Fig 7.4 Convergence Graph Of Genetic Algorithm 

Fig 7.4 depicts the Convergence Graph of the Genetic Algorithm. The straight 

line represents the cost of the multicast tree. The dash and dotted line represents the delay 

and delay jitter of the multicast tree respectively. The Algorithm finds the optimal 

multicast tree within a few generations and the cost line becomes stable. 

120 

100 

80 

60 

48 



'C:\ANT.DAT' 	/ 
'C:\GADAT — 

i 

/ 

40 	60 	80 	100 	120 	140 	160 	180 	200 

--> Number of Nodes 

550 

500' 

CI, 450 
0 

400 
Ii) 

o 350 
ai 
E 300 

250 

200 

150 

100 

50 

0 
20 

Fig 7.5. Comparison Graph for Ant and Genetic Algorithm 

Fig 7.5 illustrates the performance of Ant and Genetic Algorithms. Simulations 

are performed with different multicast group sizes and the networks on these algorithms. 

From the graph, it is clear that Ant Algorithms take lesser number of iterations when 

compared to Genetic Algorithms to obtain the optimal or near optimal solutions. Ant 

algorithms show faster convergence towards optimal solution when compared to Genetic 

Algorithms. 
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Fig 7.6 Convergence Graph of Pareto-optimal End-to-End Delay 

Fig 7.6 explains the convergence of End-to-End Delay in Multi-Objective Genetic 

Algorithm. This vividly explains how the pareto-optimal fronts are developed in the 

Multi-objective Genetic Algorithm and proceeds towards global optima in a feasible 

time. The set of Non-dominated solutions converges to a narrow range and move 

towards the optimal solution 
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Fig 7.7Convergence Graph of Pareto-Optimal Bandwidth Utilization 

Fig 7.7 explains the convergence of pareto-optimal Bandwidth Utilization. This 

explains how the pareto-optimal fronts are developed in the Multi-objective Genetic 

Algorithm and proceeds towards global optima in a feasible time. The set of Non-

dominated solutions converges to a narrow range and move towards the optimal solution 
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Chapter 8 

CONCLUSIONS AND FUTURE WORK 

In this thesis, the three heuristics are described for solving the QoS multicast 

routing problem. There are Ant Algorithm, Genetic Algorithm and Multi-objective 

Genetic Algorithm 

The Ant algorithm described has the following characteristics: 1) the cost curve of 

this algorithm is somewhat stable, and the optimum or suboptimum can be found quickly 

Therefore, the algorithm is able to efficiently improve the transmission quality of the data 

packets in the network 2) the algorithm has good scalability. This is because the ant 

algorithm leaves the information on the path for the sake of next routing during the 

search process. The information is kept when more nodes are added. With this 

information the expanded network can be routed quickly. Applying Ant algorithm to 

solve the QoS multicast routing problem is a new research area. More extensive 

simulations are to be conducted on this algorithm in both wired and wireless networks. 

The relationship between the number of added nodes and the initial nodes should be 

explored. 

Genetic Algorithms are well suited to Multiobj ective optimization problems. Multiple 

parameters can be formulated as a Multiobjective model. In this thesis, instead of 

traditional bit string encoding of chromosomes, the path along the source to each of the 

destinations are considered and genetic operations are applied on the paths. 

Careful analysis of existing optimization schemes for QoS Multicast Routing 

Algorithms reveals that most of them suffer from the same drawback: multiple objectives 

are combined to form the single scalar objective function on an ad hoc basis, usually in a 

linear combination of multiple attributes. This not only makes solution highly sensitive to 

the chosen weight vectors but also demands the user to have some knowledge about the 

priority of a particular objective parameter. The users will therefore be more interested in 
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obtaining the set of acceptable non-dominated solutions, one of more of which can be 

selected according to the QoS requirements. We recognize that Genetic Algorithms are 

readily modified to deal with multiple objectives by incorporating the concept of pareto 

Non-dominance in its selection operation. 

In this thesis, a Multiobjective model based on Genetic Algorithm is described to 

approximate Pareto front by generating a set of non-dominated solutions. These 

algorithms are source based fashion, and it assumes the complete knowledge of a network 

is available. Simulation results delineate the efficiency, performance and scalability of 

the algorithms. Researches in the QoS routings are mostly done to optimize the QoS 

parameters by combining their different. Conflicting characteristics into a single scalar 

function with the real , intuition and logic behind the combination being often fuzzy. A 

future interest is to mathematically model this protocol to analyze its performance and 

complexity. 

Since these heuristics are source based fashioned, these are well suited for the 

Integrated Services (INTSERV) QoS environment. However further research interests 

are in extending these algorithms for the Differentiated Services (DIFFSERV) 

environment.The Ant and Genetic Algorithms proved to be the significant research areas 

in the area of QoS multicasting, as these algorithms converge faster and can be used to 

find the efficient QoS multicast trees even for larger networks. 
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