| IMPLEMENTATION OF REAL-TIME
CLUSTER MANAGEMENT SYSTEM WITH
CRASH RECOVERY

A DISSERTATION

- Submitted in partial fulfilimeni of the

erquirements for the award of the degree
of
"MASTER OF TECHNOLOGY

n

INFORMATION TECHNOLOGY

By
GLADVIN C DURAI

IIT Rocrkee - CDAC, NOIDA,
¢-56/1, ““Anusandhan Bhawan™
Sector 62, Noida-201 307

JUNE, 2004

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this dissertation titled “Implementation of
Real Time Cluster Management System with Crash Recovery”, in partial
fulfillment of the reqﬁirements for the award of the degree of Master of Technology in
Information Technology, submitted in IIT, Roorkee — CDAC, Noida, is an authentic
record of my own work carriéd out during the period from May 2003 to May 2004
under the guidance of Maj. Gen. K. N. Singh Chairman & MD, Next Gen Media
Alliances Pvt. Ltd., New Delhi.

The matter embodied in this dissertation has not been submitted by me for

award of any other degree or diploma.

. 6-JUNF-200 Z)
Date: X 4 G

Place: Noida (Gladvin C Durai)

CERTIFICATE

This is to certify that the above statement made by candidate is correct to the best of

my knowledge and belief. Al
R s
Date:
Place: New Delhi Supervisor:
(Maj. Gen. K. N. Singh)
Chairman & MD

NextGen Media Alliances Pvt. Ltd.
-
0-Supervisor:

(Mr. V. N. Shukla)
Director (Spl. Appl.)
CDAC, Noida

© — e —

ACKNOWLEDGEMENTS

I hereby take the privilege to express my deepest sense of gratitude to
Prof. PREM VRAT, Director, Indian Institute of Technology, Roorkee, an_d
MR. R.K.VERMA, Executive Director, CDAC, Noida for providing me with this
valuable opportunity to carry out this work. I am very grateful to Prof. AK.AWASTI,
Programme Director, Prof. R.P. AGARWAL, course coordinator, IIT, Roorkee and
MR. V.N.SHUKLA, course coordinator, CDAC, NOIDA for providing the best of the

facilities for the completion of this work and constant encouragement towards the goal.

I express my sincere thanks and gratitude to Mr. RAGHAVENDRA AGARWALA,
Chief Technical Officer and also to my Project Guide Maj. Gen. K.N.SINGH,
Chairman, Next Gen Media Alliances Pvt. Ltd.,, New Delhi. [am thankful to
Mr. MUNISH KUMAR, Dr. POONAM RANI GUPTA, Associate Professor, CDAC,
Noida. They gave inspiration and guidance throughout the progress of this project. I feel

very much privileged to associate myself for completing this project successfully.

I thank my co-analysts, programmers and other team members who were with me while

configuration, trouble shooting, and in integration of the modules.

I owe special thanks to my friends, all of my classmates and other friends who have
- helped me formulate my ideas and have been a constant support. Thanks to my family
members for their moral support. Last but not the least; I thank almighty for being on my

side from the conception of this project to this implementation.”

(GLADVIN C DURAI)
Enrolment No. 029005

ii

Contents

Candidate’s Declaration
Acknowledgements
Abstract
1. Introduction
1.1 Cluster Management System
1.2 Present world status and Problems
1.3 How the dissertation solves the above problems
1.4 Dissertation Objective
1.5 Report Organization
2. Literafure Survey
2.1 Today’s Scenario
2.1.1 Evolution of Cluster Computing
2.1.2 Common Cluster Issues and Common Cluster Solutions
2.2 Native Solutions
2.3 Application Development Platfoﬁns
2.4 Application Servers
2.4.1 BEA Architecture
2.4.2 Pramati Server ‘
2.4.3 On Demand Distributed Computing with WebSphere
2.4.4 Turboworx
3. Analysis
3.1 High End Computing
3.2 Scheduling Algorithms
3.3 Characteristic of a node
3.4 Load sharing issue
3.5 System Scalability
3.6 Flexibility vs. Performance in communication Protocol

3.7 Peer-to-Peer computing

1il

~ =~ L L it LW W NN

W W W N N RN RN e e e et e
N = = O O N bt BN N e O

4. Design

4.1 Interaction System
4.1.1 Messages
4.1.2 Interoperability with XML
4.1.3 Inter system peer-to-peer communication

4.2 Load Management
4.2.1 Load Balancing and Informing
4.2.2 Load Restriction

4.3 Naming Conventions

4.4 Crash Recovery

4.5 Transparency to application developers

4.6 Administration

4.6.1 Local administration and remote administration Ul

4.6.2 Self-managing, Self-organizing, Self-healing

4.7 Design of Modules
4.7.1 Data Flow
4.7.2 Session Manager
4.7.3 Generic Socket
4.7.4 Process Scheduler
4.8 Summary
5. Implementation
5.1 Application Programmers guide
5.2 Administrator’s guide
5.3 Remote Administrator communication
5.4 Marshalling and de-marshalling of data to transmit
6. Results and discussions '
6.1 Starting application manager
6.2 Starting programs in computer
6.3 Flow of request.
7. Conclusions

References

v

33
33
33
34
34
36
36
37
37
37
38
39
39
39
40
40
41
43
44
46
47
47
47
48
48
49
49
49
50
51

Abstract

— S — —

The present day organizations and large e-business requires the computing power

.of servers to increase and increase. But can the service providers keep replacing with new
advanced system. If they are having Real Time Cluster Management System then they
can upgrade through adding-up instead of replacing the existing servers.

The Internet had in late 60’s private networks, which were not interoperable. And
then static web pages were published on the Internet through interoperable technologies.
And then portals came and recently e-businesses. The future is going towards sharing of
computing resources like SETI@home (Search for Extra-Terrestrial Intelligence) through
distributing the computational power.

Suppose a Web Servers like a mail server or a search engine has the server
applications run on a single computer. Now as the processing load increases there is a
need to upgrade the system, thus the existing system has to be replaced, which is costly
and wastage of resources. In this case you have limitation to scale the processing
resource.

All the server applications are made exclusively to work on a single host
processing units. Through the Cluster Management System, many instances of same code
is run on different systems and thus provide scalability of processing power. This
enhances the scalability and availability of mission-critical, TCP/IP-based services.

The issues needed to be taken care in this mode are very unique like,
interoperability at Operating System level, Programming Language level; asynchronous
messaging between hosts; abstraction layer to application and to clients; session
maintenance between cluster applications and process scheduling and various other issues
like availability monitoring; automatic redistribution of client traffic to the surviving
hosts, remote controllability and maintaining logs of events.

This report explains one method by which Real Time Cluster Management

System is achieved and how it is better with respect to other leading techniques.

Chapter 1

INTRODUCTION

1.1 Cluster Management System
The real- titme cluster management system can be defined as the Combination of

network and softwére techniques to leverage the power of a cluster of nodes. Nodes work
together along with load balancer and act as a single virtual server. As more and more
processinAg units are added to the cluster they instead of substituting the processing
power, they add up to the processing power of the cluster. Internet server programs
supporting mission-critical applications such as financial transactions, database access,
cofporate intranets, and other key functions must run 24 hours a day, seven days a week.
Clustering enables a group of independent servers to be managed as a single system. Also
for those institutes who are doing researches, defence organisations and for those who are
doing batch processing over night require a heavy amount of processing resource, so it
can be bought from a commercial site. Figure 1.1 shows a typical Cluster.

Server Cluster

" Loader Balancer ' Clients

Figure 1.1: Single load balancer takes request and routes to the free .host.

Constantly growing organisations use this technology when they want to provide

cost efficiency, scalability and availability of mission-critical, TCP/IP-based services.

1.2 Present world status and Problems

The motivation of the dissertation is that, the existing solutions have drawbacks
and those drawbacks are removed from this dissertation. The solutions like Round Robin
DNS [URL6], which is a centralised architecture, redirects only once and the transactions
have to be maintained by the applications themselves. This is a simple and cheapest
solution. This is not a robust solution and has no recovery mechanism. There is no
asynchronous messaging .which‘ is an integral part of Cluster Management Systems. The
Network Load Balancing package [URL7, URLS, URL15] embedded in Windows 2000
Advanced Server and in Data Server has the advantage to have multiple concurrent
systems waiting on the network for all the receive and except the one system everyone
else rejects the request. This is adapti\}e and makes one level redirection. NLB provides
failover support for MS-SQL database. The pr'oblems in this are interoperability with
non-Microsoft system and the scalability is limited by ports hence supports maximum of
32 systems. MOSIX [URL9] is another résearoh project done in a university at Israel.
This supports process level redirection and multiple level redirections too and at present
demonstrated with 72 processors. It is working-in UNIX, BSD, Linux machines. This is
still in development stage. This has no failover recovery. It is a fully distributed
architecture. Other solutions called application servers do exist and they cost in the range
of seven lakhs per host (Pramati web servé; [URL2]) to 18 lakhs per host (BEA web

logic-server [URL3]), but they are not customisable to the larger extend. -

1.3 How the dissertation solves the above problems
The interoperability is provided by passing XML [URLI1] file transfer between

systems and using byte streams. The parser used has the capability of parsing and de-
parsing between objects into XML files. Hence this system could be used with the
programming language objects of visual C++, Java, and Cocoa. Having buffers at the two
ends does asynchronous messaging. Remote admin is provided to monitor the status of
the systems. Shell prompt also provide input channel. Using shared databases provides

the persistence of data. The load computation is application vice hence the load is more

exact. This accommodates systems with various configurations. Applications are
provided with wrapper classes as abstraction while communication with data objects,

hence application programmers could easily integrate with cluster system.

1.4 Dissertation Objective
The purpose of this study is to investigate and implement a less featured, more

reliable and efficient way of achieving cluster management system and to overcome the
limitations of conventional cluster management systems. Further to provide a convenient

reporting and controlling mechanism across the cluster nodes.

1.5 Report Organization

In chapter 2 definition of cluster management system is given with regard to Real
Time Clusters. It also discusses different design issues to be considered and a survey of
existing cluster management systems. Chapter 3 covers the details of necessary concepts
that help in working of the Cluster systems and explainsl the infrastructure required to
implement Real Time Clusters. It also describes the peer-to-peer protocol to use and the
various scheduling algorithms in existence. Chapter 4 discusses how the identification is
done through naming cenventions and the load management is designed. The interaction
system’s capabilities are specified one by one. It also explains the module vice interaction
and association within the module of various components. Chapter 5 explains how a
application programmer initiates the cluster system and how to send and receive data
through the cluster system and the method by which different features are implemented in
this work. Chapter 6 of the report includes the GUIs built and results obtained. Chapter 7
concllldes the report mentioning how Real Time Cluster Management as implement
through this approach has overcome the limitations mentioned in chapter 1 and gives

further areas of improvement.

Chapter 2

LITERATURE SURVEY

In this chapter a study of the requirement for Real Time Cluster Management

System and various existing solutions is presented.

2.1 Today’s Scenario
Most technical problems in engineering, science, medicine, and financial services

are solved using computational workflows that integrate numerous related, but distinct
application components. Modern computing environments are potentially excellent
platforms for processing such workflows because they allow the work to be distributed
among large numbers of highly capable independént machines. However, the tasks of
integrating applications, building workflows, scheduling machines, moving data, and
managing the entire distributed computing envirc;nment are daunting.

Parallel computing uses multiple computers or intérnal processors to solve

problems at a greater computational speed than using a single computer or processor.

2.1.1 Evolution of Cluster Computing

In the past, organizations performed computing tasks in highly integrated
enterprise computing centres. Although sophisticated distributed systems existéd, such as
command-and-control and reservation systems, and the Internet Domain Name System,
these were specialized, niche entities. The Internet's rise and the emergence of e-business
have, howeVer, led to a growing awareness that an enterprise's IT infrastrucfure also
encompasses external networks, resources, and services.

Initially, developers treated this new source of complexity as a network-centric
phenomenon and attempted to construct intelligent networks that intersected with
traditional enterprise IT data centres only at edge servers (the virtual private network
server that connects an enterprise network to service provider resources), for ekample.

These developers worked from the assumption that these servers could thus manage and

circumscribe the impact of e-business and the Internet on an enterprise's core IT
infrastructure.

These attempts have generally failed because IT services decomposition is also
occurring inside enterprise IT facilities. New -applications are being developed for
programming models, such as the Enterprise JavaBeans component model, that insulate
the application from the underlying computing platform and support portable deployment
across multiple platforms. Thus, for example, Web serving and caching applications
target commodity servers rather than traditional mainframe computing platforms.
Meanwhile, Web access to enterprise resources requires ever-faster request servicing,
further driving the need to distribute and cache content closer to the network's edge.

The overall result is decomposition of a highly integrated internal IT
infrastructure into a collection of heterogeneous and fragmented systems, often operated
by different business units. Enterprises must then reintegrate these distributed servers and
data resources with QoS, addressing issues of navigation, distributed-security, and.
content distribution inside the enterprise as well as on external networks.

In parallel with these developments, enterpriseé require an increasingly robust IT
infrastructure to handle the unpredictability and rapid growth associated with e-business
ventures. Businesses are also expanding the scope and scale of their enterprise resource
planning projects as they try to achieve better integration with customer-relationship-
management, integra'ted-supply-chain, and existing core systems.

These developments have the aggregate effect of making the QoS traditionally
associated with mainframe host-centric computing essential to the effective conduct of e-
business across distributed computing resources, both inside and outside the enterprise.
For example, enterprises must provide consistent response times to customers, despite
workloads with signiﬁcanf deviations between avérage and peak utilization. Thus, they
require flexible resource allocation in accordance with workload demands and priorities.
Yet the current paradigm for delivering QoS to applications via the vertical integration of
platform-specific components- and services does not work in today's distributed
environment: The decomposition of monolithic [T infrastructures is inconsistent with the

delivery of QoS through vertical integration of services on a given platform.

Modern Pay Per Use model [10]
- Companies such as Entropia hope to capitalize on distributed-computing

technology by paying ordinary Web users for use of their spare computer processing
cycles. The companies then sell access to the resulting Internet-based grid to commercial

concerns such as genetics researchers.

2.1.2 Common Cluster Issues and Common Cluster Management Solutions
High-volume Web sites often use cluster of servers to support their architectures.

A load balancer in front of such clusters directs requests to the various servers in a way
that equalizes, as much as possible, the load placed on each.

There are two basic approaches to scaling Web clusters: adding more servers of
the same type (scaling out, or horizontally) or upgrading the capacity of the servers in the
cluster (scaling up, or vertically) [9].

Typical questions about Web cluster design include whether to use a large number
of low-capacity servers or a small number of high-capacity costly ones to provide a given
performance level? How many servers of a given type are required to provide a certain
performance level at a given cost? |

~Common Cluster Management solutions are Native solutions like Network Load

Balancing of Windows. Application development platforms like J2EE and Application

Server like Weblogic Server.

2.2 Native Solutions

These are the ready-made solutions available for us. These architectures are less

flexible and they have limitation in capabilities.

2.2.1 Network Load Balancing Architecture in Windows [URLS]
The clients are differentiated by request type and client related factors. Using this

information “load sharing” is done by allocating some set of users for every node. Heart
beat messages are passed among the servers to check each other node’s availability. If the
server node is offline then the clients retry the connections. Remote administration
module is present' to know the status and to configure the node. Some session has to be

maintained by the applications themselves.

2.2.2 MOSIX [URL9Y]

Based on Shared memory multi-computer

Every process has Unique Home Node, where shared memory access requests are
sent back. The transactions is kept at the common data store where each client depended

data could be taken from.

Based on Distributed architecture

This is fully distributed architecture where every system is capable of making its
own decision for redirection of request. And it is capable of communicating with the next

system and naming conversion can independently make.

Implementation

Servers and workstations are used as a single cluster by installing the same
"mosix.map" in all the computers, with the IP addresses of all the servers and all the
workstations. Advantage/disadvantage: your workstation is part of the pool. .

Servers are shared while workstations join or leave the cluster, e.g. from 5PM to
8AM. Use a simple script to decide whether MOSIX should be activated or deactivated in
your workstation. Advantage/disadvantage: remote processes can use your workstation

when you are not using it.

2.2.3 Other Solutions

2.2.3.1 PVM and MPI | |
PVM (Parallel Virtual Machine) and MPI (Message Passing Interface)are both

popular and freely available parallel software development aids. The Oak Ridge National
Laboratory developed PVM for internal use and released it to the public after some
refinement. A committee known as the MPI Forum developed MPI as a standard. MPI
has become more popular to use than PVM, owing mostly to its improved portability.
Vendors drevelop proprietary versions of PVM that are optimized for their platforms, but
systems developed using one vendor's PVM might not compile on another's platform.

Vendor support of MPI, on the other hand, was required to meet strict interface standards.

2.2.3.2 THE OPENMP

A true multiprocessor offers multiple CPUs, each with equal accéss to.a shared
physical-memory area. Twenty years ago, Kai Li, a Yale doctoral student, proposed a
shared-memory model for a multi-computer, which used custom software on a network
of workstations. The software provided a layer of support for shared virtual memory that
spanned his network of uniprocessors. Programs written for a multiprocessor would run
more slowly on his system, but his system was a small fraction of a true MP's cost. His
dissertation and subsequent publications influenced pafallel architecture research for over
a decade. OpenMP is a programming language based on this kind of model.

One key difference between MPI and OpenMP is the approach to ex{ﬁloiting
parallelism in an application. MPI requires the developer to convert the entire application
immediately. OpenMP-allows an incremental conversion; the developer can convert,
profile, and tune a large application in a stepwise fashion, simplifying the debugging and
development process. If you decide to use OpenMP to develop a parallel system, you
must either have access to a multiprocessor or run a custom software support layer that

emulates these properties on a multi-computer.

2.2.4 Comparative study of existing Native solutions

Issues RRDNS [URL7] NLB [URLS] MOSIX [URL9Y]
Architecture Centralized - Fully distributed Fully distributed
Load
o Fixed Adaptive Adaptive
Distribution
_ http like
Valid Request .
disconnected TCP/IP Process level
protocols
protocols
Popular proxy Win 2000 advanced
Examples Data center server
_ SEIVers server

Table 2.1: Comparison of Native Solutions

Single point of _
Fault Tolerant Redundancy Redundancy
failure
Administration | Local Remote & Local Local
Project Status | Popularly available | Already released Development Stage
Session A
_ Connection based | User based N/A
maintenance '
Redirection of
' Once Once Multiple
request
Crash No failover Failover support for Failover detection
ras
detection & no SQL databases and file | available but no
Recovery
recovery & print services recovery
Number of :
_ , Demonstrated for up to
system in a No limit Maximum 32 servers
72 hosts
cluster |

Table 2.1: Comparison of Native Solutions (Continued Page)

2.3 Application Development Platforms
These are custom development environments like DCOM [URLll URLIZ] and

J 2EE [URL13] enterprise solutions. These solutions provide these features

2.3.1 Session Manager

This is required to keep the sessions of the users, to know the user better and to
~give him the personalised service. Security purposes so we can guarantee that a not

logged user cannot go on for further requests so we can deny him service. Application

session maintenance across each request transfers.

2.3.2 Asynchronous Messaging _
All cluster nodes are not based on synchronous messaging since a sender will be

busy to prepare the previous transfer and the receiver will be busy to execute previously

received requests and need not be free. Also after processing all the issues of a command

the result too has to be sent to the client directly that is we need not traverse the same

path, so each execute independently:

2.3.3 Process Scheduler
The least loaded system has to be chosen, after that naming convention has to be

made to send it to that system. The task is done in a distributed architecture, by having

one Process Scheduler for every computer.

2.3.4 Interoperability
The interoperability of using an object type which was generated in a VC++

program is totally different from an object type which is generated in Java program.
Hence we need to use industry common data representation format XML [URLI1] file

format. This needs an XML parser and XML de-parser.

2.3.5 Peer to Peer Technologies

Peer-to-Peer computing is an emerging distributed computing technology that
enables direct resource sharing of both computing services and data files among a group
of mutually trusted clients over the Internet. JXTA technology is a network programming
and computing platform that is designed to solve a number of problems in modern
distributed computing, especially in the area broadly referred to as peer-to-peer
computing, or peer-to-peer networking, or simply P2P. On 25 April 2001, the first
prototype implementation was unveiled on http://www.jxta.org. It is present on JDK
release 1.1.4 onwards, hence it is present in most common Java platform available on

machines running Microsoft Windows and Unix.

2.4 Application servers [URL2,13]

These are single function servers used for dedicated tasks like Web
Vcaching/acceleration, Web hosting, networked attached storage, load balancing étc.
Appliance servers are designed for quick installation and simple maintenance. These
systems come with a pre-loaded operating system and application software (often Web

server software) that simplifies deployment so servers can be plugged into networks as

easily as desktop PCs.

1

2.4.1 BEA Architecture [URL3]
BEA Tuxedo is the proven platform that simplifies distributed transaction

processing and message-based application development while delivering unlimited

scalability and standards-based interoperability. The figure 2.1 shows the BEA

Architecture for the application server.

| [BER Weblogic || BER Liquid Data || BER Usblogic l
o Portal for LWebLogic Integration |
B ‘
2% BER Ueblogic Workshop Framewark J
et BEA Wsblogic Sevver j
[w=]
- BEA UebLogic TRoskit |

g

Operations
Administration
| & Management

Devel opment
Deployment

l Security

1,

C, C++, COBOL & COREA Environment

Figure 2.1: BEA Architecture

Key F eatures and Benefits
The different key features of highly distributed transaction processing in BEA and

- their Benefits are listed in table 2.2.

Feature : Benefit
Distributed transaction Optimizes transactions across one or more databases and
‘management ensures data integrity across all participating resources,
regardless of the access protocol

Table 2.2: Highly Distributed Transaction Processing

12

Two—p_hzise commit Automatically tracks transaction participants and ensures
that all databases are updated properly, or will “roll-back”,

assuring data integrity despite component failures

Multiple messaging Supplies synchronous, asynchronous, and conversational
. protocols messaging APIs for heterogeneous platform support
‘Transaction queuing Provides flexibility in processing or deferring transactions to

allow distributed applications to work together in an

asynchronous, “connection-less” fashion

Event brokering Provides a transactional event system based on the publish-

-|and-subscribe programming model

Table 2.2: Highly Distributed Transaction Processing (Continued Page)

The different key features of resource management in BEA and their Benefits are

listed in table 2.3.

“Feature ' Benefit

Authentication,

| ‘ Ensures data privacy when deploying BEA Tuxedo
-authorization, and

applications across networks

“encryption (LLE)
.Security plug-in . |Enables public key encryption, digital signatures, and 3rd
framework party security products integration

] - Allows organizations to leverage their existing investments
Common Object Request

. in legacy applications and enables 3rd party Object Request
‘Broker Architecture

Brokers to bootstrap and authenticate to BEA Tuxedo .
(CORBA) '

CORBA servers

Table 2.3: Resource Management

13

Application to Transaction

Manager Interface (ATMI)

An X/Open API supplies a consistent application-
programming ihtefface; for C, C++, and COBOL across all
BEA Tuxedo platforms

'Web Based OA&M GUI

Provides sophisticated application management tools and
interfaces into the leading netWork and system management

products that simplify épplication OA&M

Table 2.3: Resource Management (Continued Page)

The different key features of unlimited scalability and reliability in BEA and their

Benefits are listed in table 2.4.

Feature

Benefit

Application parallelization

Enables applications to handle requests in parallel and
process multiple transactions simultaneously on different,

distributed nodes

‘Replicated service

framework

Dynamically replicates distributed applications throughout

the network to maximize performance and reliability

‘Robust fault management

Minimizes downtime and keeps applications running
through planned and ‘unp'lanned downtime by eliminating

single points of failure

Automated load
‘management and

balancing

T

Provides automated service replication based on real-time
system loads and dynamically balances requests across all

available resources ensuring consistently high throughput

Data dependent routing

Routes messages based on their context, content, or time of
day and ‘enabl_‘es efficient transaction processing and

prioritization

Table 2.4: unlimited scalability and reliability

14

Advanced message

queuing paradigm -

Delivers a flexible, “in-memory” message queuing
mechanism for high performance, reliable, asynchronous -

message delivery

Table 2.4: unlimited scalability and reliability (Continued Page)

The different key features of extensible infrastructure in BEA and their Benefits

are listed in table 2.5.
Feature Benefit
| . Provides bi-directional, peer-to-peer, cross-platform
.WebLogic Tuxedo) _ , :
interoperability with complete transaction and security
: Connector (WTC)

—

propagation for data integrity

Interoperability with BEA
‘WebLogic Platform

Streamlines complex business processes thru BEA’s best-of-
bread J2EE products and leverages existing BEA Tuxedo

infrastructure assets

' Web services support via

;%BEA WebLogic Simplifies Web services generation and deployment with a
SWOrkShop and Tuxedo declarative programming model

:Control

5Standards-based

‘application integration via

Speeds BEA Tuxedo épplication integration with new and

existing solutions,streamlining complex business processes

BEA WebLogic

) and connectivity with business partners

| Integration™

XML buffer and parsing | Supports XML message parsing and routing to other XML-
capable applications (i.e. Oracle 9i or to BEA eLink).

support

Table 2.5: Extensible Infrastructure

15

2.4.2 Pramatl Server [URL2]
Pramati Server is also one of the application server models It i is very easy to

‘conﬁgure and have rich set of features ‘The drawback is thexr cost which ranges from 7

lakhs per system installation. -

Key Features in Pramati Application Server
1. Drag and drop applications into deploy "basket" directory. Server auto-generates

missing XMLs in archives , ,
2. Point and run apphcatnons "As They Are", on Tomcat Server and Apache HTTP
‘Server. No change in directories or files. "
3. Personalize shell commands by using the Extensible Prainati Server Command Shell to
| define commands you want. | | |
4. Smart web load balancer, filtering requests to nodes based on ‘sessibns, URLs,
~ availability and workload. |
5. Dynamic content cache turbo-charges application perfdrmance?- deployed -on-Pramatt- - -
Server. Choose what and when to cache. | _ | . |
6. In-depth statistics and on-the-fly graphs highlight all parameters that show
| performance and workload. -
7. Dril]-dolwn diagnostics shrinks resolution time by separating platform issues from
application pfoblems. | |
8. Extensive logging of J2EE server and web activity, makes for clearer and faster
reponiﬁg of problems. | |
9. High-ava_ilabilify data source configuration and capability to use multiple driver
versions. | | -
10.Customize the server to exactly fit your appliclati'on, by switching on only the required

services, directlyin XML.

2.4.3 On Demand Distributed Computing With WebSphere
Before applications can move into production, enterprises face the inevitable and

time consuming question of what infrastructure and underlying capacity will be needed to
support their applications. This capacity-planning picture isn’t getting any prettier either.

As all business applications are increasingly Internet-enabled and now available to a

16

_ -global‘ user base, this becomes more of guess estimation than exact science, On Demand
Computing offers the promise of providing computing cycles on a pay per use basis much
like electric or gas utilities. The ability to scale “On Demand” is great but it doesn’t
guarantee performance. This is especially true for Internet applications. Because utility -
computing doesn’t necessarily place resources close to requesting users, it still forces all -
requests to a central point for processing. To successfully support Web-based
applications and avoid the Internet bottlenecks inherent with “silo” serving, a distributed
computing model is required.
Using On Demand Distributed Computing, applications not only scale on
vdemand—they avoid the inherent bottlenécks on the Internet. With a few adjustments in
application development and design, businesses can propel applications into production
without spinning cycles on costly infrastructure decisions. Most importantly, the On

| Demand Distributed Computing model boosts performance so that applications are never

' “dumbed-doWn” to handle the vagaries of the Internet. DevelopersA gain thé freedom to
create innovative applications in far less time than it is possible to do so with traditional .
solutions. We will see an executive level overview of how IBM WebSphere applications
are é‘asily deployed in the On Demand Distributed Computing model. These practices
involve usage of the existing set of services available in Java 2 Enterprise Edition (J2EE)
application server containers. In many instances, applications are already viable for On
Demand Distributed Computing. In others, following a few J2EE best practices has
applications ready for deployment in short order.

2.4.3.1 On Demand Computing Overview
- A growing number of businesses are beginning to adopt the On Demand or Utility

Computing model as espoused by IBM. In this approach, enterprises pay only for the

computing cycles consumed. instead of paying for infrastructure that has been buiit to
| weather periods of peak demand. This economic model is well understood in other
binduvstries‘. and is just now penetrating IT. But as is true with any new technology,
understanding when and how this architecture can be_levéraged isa challenge. In theory,
On Demand Computing offers the promise of providiﬂg computing cycles ona pa};-per-

use basis, much like telephone, electric or gas utilities. This ability to scale “On Demand”

17

sounds great, but it doesn’t guarantee application perfpfmance. This is especially true for
the growing number of Internet applications being deployed"daily. .'Becaixsc many On
Demand or utility computing'architebfurés are centralized, they still force all r‘eques‘tsfto a
central point for proceSsing. To su_céessfully support Web'-bésed applicatiéns and avoid
the Internet bottlenecks inherent with “silo” serving, a distributed éomputing model 1s
required. : a

Heére’s why: | » -

The infrastructure used to deliver Web applications typically includes a wide
- range of technologies including load -baiancers_, HTTP Web servers, caching sgrvers,
messaging systems, transaction-proceséing monitors, application servers, and databases.

A typical entelfprise application infrastructure is shown in Figure 2.2.

- B
Network Load , -
Balancer(s) [— — A '
(= LB | Htt | ‘Http . SQ\L‘ -
Http zi .
s — %. == | ¥
S
) - Web Application Database
HTML Chients Server(s) ‘Server(s) Server(s)

Figure 2.2: Typical J2EE Internet Infrastructure

As performance and geographic reach requirements expand, Internet application
infrastructure becomes increasingly heterogeneous and difficult to scale. IT managers
continually must evaluate capacity plans to keep pace .witﬂthe expected peak demand,
and the number of “moving parts” increases points of failure. Pre-provisioning extra
capacity as insurance against overload is financially unabceptable for most enterprises. In
addition, it prevents .innovation‘, as every new application_ requires a business case"

proving its worth. Ideally, enterprises want computing resources when—and orily

18

~ when—they are needed; they do not want to buy extra infrastructure that sits idle when
not needed. As seen in Table 2.6, belbw, a récent study conducted by IBM, demonstrates

 that Intel and Unix servers deliver sub-10% utilization rates.

Peak-hour Prime-Shift 24-hour Period
Utilization Utilization Utilization
Mainframes |'85-100% 70% 60%
Unix 50-70% 10-15% <10%
Intel-based 30% 5-10% 2-5% |
Storage N/A | N/A i 2%

Source: IBM Scorpion Whitepaper: Simplifying the IT Infrastructure, 2002 -

Table 2.6: Tybical Infrastructure Utilization

“On D‘emai_l‘d” computing provides better utilization of computing resources and

represents a model in which computing resources are brought into service as needed.

2.4.3.2 On Demand Distributed Computing (ODDC)
Rather than focus on server-side technologies that tend -to deliver marginal

performance fixes for Internet applications, enterprises can design applications such that
they leverage the benefits of a distributed computing platform that extends beyond the
server. In general, there are two ways in which On Demand Computing is being made
available to businesses: through centralized and distributed architectures. Centralized
" approaches to utilify éomput'ing are ideal fof applications that reside on a LAN or in
instances where user distribution is very low. With the growing number of Web Services
and Internet-enabled applications, this isn’t always the case, as users are typically spread
across the Internet. In contrast to centralized approaches, On Demand Distributed

- Computing places processing close to users so that application performance and
. reliabiliiy are improved. Businesses that factor this model into design stages are able to
launch applicatidns without the normal delays of infrastructure capacity planning. -
Internet-based apphcatxons move from pﬂot to productlon more quickly and inherently

have higher performance and reliability.

19

"2.4.3.3 ODDC and IBM WebSphere 'Application Servé_r o

. Akamai’s EdgeComputing service is- a leading example of an On Demand
Distributed Computmg platform Deployed at the “edge” of the networkéelose to users’
~ access pomts—EdgeComputmg consists of tens of thousands of servers in over 1,100
networks around the world. JJEE apphcatlon processing is dlstrlbuted across this
.platform so that “On Demand” computmg is available close to requestmg users. These
globally distributed edge servers implement mdustry standard protocols to support tasks
as simple as page assembly or as complex as J2EE processing.
| To further extend dxstnbuted computmg capabilities beyond the presentatlon tier, |

Akamai supports the IBM WebSphere Application Server (WAS), Version 5.0,

throughout this distributed computing platform. This service—Akamai EdgeComputing
| powered by WebSphere, enables enterprises to run J2EE Web tier appl'ications in an On
Demand WebSphere environment and to. consume Internet computing resources on a
‘pay-as-you-go basis. A typical Akamai EdgeComputlng environment, consists of the end
user using a browser, the entefprlse (origin) running. bnsiness logic, legacy bsystems and
databéses, and a distributed network of servers running an embedded WAS or Tomcat
server that supports the J2EE web application programmmg model.

The EdgeComputing development model remains standard J2EE and does not
require the use of any proprietary APIs; it is the deployment model that changes, not the
programming model. If applications generally follow J2EE component progr’arnming best
practices, . adapting the existing application for. EdgeComputing "will he easier,

EdgeComputing extends the WebSphere application-programming platform to enable the

‘, ‘execution of J2EE web tier application components—JSPs, Servlets, Tag libraries, and
JavaBeans. | | -

‘ Development for EdgeComputing still relies on standard J2EE deve]ooment tools

‘and best practiees in developing fap;')lications, but one must architect edge-enabled

» applicetions as two coopefating sub- applicationS' an edge?Side epplication running on

EdgeComputmg Platform and an enterprtse-mde apphcanon

The beauty of this approach ‘is that many enterpnses that are running J2EE can

adopt On Demand Dtstnbuted Computmg with few, if any, changes to enterprise

apphcatlons. By using the existing set of services available in J2EE application server

20

» containers, businesses can designate what processing occurs at the “edée” and what is:
“handled at the enterprise origin. In general terms, this means moving what is known as
J2EE “Web Container” application compone_nts—JSPs, Serviets, Tag libraries, and
JavaBeans—to a tier of “edge servers”. These distributed servers field all application
requests, process the Web. Container components, and communicate with back-end -
systems as needed. These requests to back-end sysiems are handled via industry standard
.p'ro‘toc'ols such as HTTP, SOAP, Java RMI (Remote Machine Interface) and Java
Database Connectors (JDBC). |

| EdgeComputing Application Examples |
EdgeComputing powered by WebSphere enables a powerful new deployment
model for J2EE Web applications. The following exafnples describe some appIicati'ons
modelled to run on Edg_eComputing and illustrate the use of WebSphere Web Services
and-CloudScape. in EdgeComputing applications.
» Product Catalogue ' |
A product catalogue browsing application can run almost entirely on the edge in
the EdgeComputing environment. Since most product catalogues consist of relatively
: static -productd‘ata--(not including inventory information), the edge application can utilize
Cloudscape as tﬁg local DBMS. The data can be bundled into the edge WAR (web
application archive- packaged j2ee components, server side database beans, shopping cart
and static pages) along with the catalbgue browsing presentation components. Using this
~ deployment model, it is feasible for the end user broWsing interaction to be handled
entirely by the edge ‘applicati(_m. When a user is ready to pufchase aﬁy selected items, the
- edge applicatioﬁ tunnéis back to the entérprise for order processing.
* Marketing Promotiona] Contest _
An enterprise wants to conduct a large-scale marketing promotion to give away a
| 'cettai-n new product. Because of the uncertainty of the number of end user contestants, an
On Demand edge application is extremely beneficial fo 'assuring a successful outcome. In -
- this scenario,. the aI-)pl'ication might have “random selection” logic to determine if an end
user is a Winner. An EdgeComputing application éan be designed and developed to-

execute this logic on the edge, offloading the load from the enterprise. In addition, the

21

corporate marketmg team can 1mp1ement various controls on how long the contest- runs,
l, how many products are given out, the rate at whlch they are d1sbursed or other controls.
The edge apphcatlon executes the correspondmg business logic entlrely on the edge and
retrieves the control parameters from the enterprise via Web Services calls.
. Slte Search ' | '

Search is by far the most frequently used appllcatlon on Internet sites and can
consume 51gn1ﬁcant apphcatlon server resources in terms of request handling and
requisite back end queries. When deployed using ODDC, Search applications powered by
EdgeComputing uses Cloudscape to store data at the edge and IBM WebSphere to

execute searches close to users, thereby offloading the load from the enterprise.

2434 Features of Akamai

Cache consistency

“When objects that the edge servers deliver are cacheable we must address the
consistency of cached content; when they are uncacheable, high-performance delivery is
a challenge. To address cacheable-object consistency, content providers ‘often -',us,e
established techniques, such as applying a "time.to live" (TTL) to objects. Some objects
might be :cacheabl'e forever, or at'least until they are explicitly removed by a cache
control utility (for more on this, see the "Lifetime Control" section). Another approach is
to use a different URL for each object version. In addition to using a unique query string_
for this purpose, Akamai let custorhers place a version or generation number in the URL. .
Versioned objects typically have. infinite TTLs. To improve uncacheable objects’
performance, Akamai introduce an edge server between the client and origin to split the
client's TCP connection into two separate connections one from the client to the edge
server and one from the edge server to the origin. 'Contrary to intuitiou; splitting the
connection can deliver faster responses in some cases because the edge server can react to
packet loss more quickly than the origin server,‘ improving the connection's bandwidth-

delay product. Akamai also map clients to edge'servers that have low congestion and
packet loss. Funhemore, the edge server can acoept_the origin server's response faster
thart the client could, and can serve it from memory at the client's pace. This frees up

origin server resources to serve subsequent requests, reducing origin site demand even for

22

uncacheable content. Finally, the edge server can maintain much longer persistent
connections with the client than can an ongm server; the origin need only mamtam :

connectlons w1th relatively few Akamai edge servers.

. Lifetime control ,
‘In some cases, the edge server must remove certam objects from all servers on

demand. This mlght be in response to a request from an Akamai customer (the content's |
* provider), or initiated by an interface that lets content publishing syster'nsl schedule
- invalidations when confent changes. _Because most Web objects change infrequently,
heuristic caching policies in Web proxies typically hold copies long after they change.
Akamai's edge servers support on-demand purges for changed or otherwise invalid

content.

| Authentlcanon and Authonzatlon _
When serving protected content, edge servers must elther contain authorization

 features or relay authentication tokens to the origin server for authorization. In the latter |
~ case, the edg-ea server must be careful not to evict the protected content on a request
authorization failure. Akamai lets content providers authorize every user request from
their o’wn. site by passing reqﬁest headers from ouf. edge servers to. their content servers
prior to serving'each client request. Akamat edge servers can aiso process authorization
tokens that the origin server attaches to the request, thereby avoiding a round trip to the

origin server on each request.

‘ Integnty control
A server must ensure that each client request receives the correct response and

also detect when origin servers issue incomplete responses and avoid caching those
- Tesponses. Edge servers can contain content from many customer oﬁgin servers, and it's
: 'imperative that they not serve-content to the wrong customer regardless of the content’s
“name or how clients access it. Furthermore, a server should detect when cached objects
become corrupted (due to disk failufe, for example) and re-fetch them if they do. In
* Akamai's system, they have built a content integrity eheck feature into our software; prior -

to ‘serving. each block of a Tesponse, t_he s_erver- double checks that the content is

23

* associated with the request ThlS protects the edge server from servmg content that was

’corrupted on disk or. confused m memory due to a software ErTor.

" Visibility into access patterns

Customers want to see detarled content-access logs To offer this, Akamai
aggregate individual server logs and extract relevant entries for each customer. Log
'delivery and.ag'gregation involves a signiﬂca_nt'data' flow, however, and collecting and
processing all the logs can take time. Some content providers alsofwant real-time delivery
information about their site. In this case, Alrarr_iai focus on giving customers content

delivery rates and client locations, rather tha_n full log details.

2. 4 3.5 Summary for On Demand Computmg :
Before busmesses embrace “On Demand’ they must realize that tlns new

'_ deployment model does not guarantee Internet application perfonnance To successfully
support Web-based applications and avoid the Internet bottlenecks inherent with “silo”

serving, a distributed computing' model is requlred Usmg On Demand Distributed
- Computing, Internet applications can'deliver_ new levels of performance and relrability |
regardless of user location or load. By using the existing set of services available in J2EE

application. -

- 2.4.4 Turboworx _ : , : o
TurboWorx provides the world's only fully integrated; end-to-end solution for
creating, managing, and accelerating technical computing applications,' workflows and
data processing in heterogeneous distributed computing environments including clusters
and grids. TurboWorx's Smarthd technology is built on an open development
environment and is available for all major operatmg systems
| TurboWorx's suite of products addresses these - problems The ﬂexrblllty of
TurboWorx solutions facilitates an ongomg process of experimentation and improvement
- attributes not present in the usual solutions built on traditional scripts ‘and batch
processing queues. As a result sc1ent1sts engmeers, analysts and others can solve

complex computing problems -with reusable workﬂows which become valuable assets to

their businesses. - -

24

Chapte‘r_-3

ANALYSIS

In this chapter we will go through' the issues related to concepts of different

. 'parallel computing models, schedulmg algorithms, load sharing, scalablllty and inter -

" ‘node commumcatlon

As Web sites become popular, they are mcreasmgly vulnerable to the flash crowd
problem in whlch request load overwhelms some aspect of the site's mfrastructure such
as the front-end Web server, network equipment, or bandwidth, or (in more advanced
sites) the back-end transaction-processing infrastructure. The resulting overload can crash
a site or cause unusually high response times both of which can translate into lost revenue -

or negative customer attitudes toward a product or brand. This requires using a high

performanee than the average load performance systems.

| 3.1 High End Computmg

in ‘a supercomputing facility that hosts hlgh-performance servers, users can
submlt various apphcatlons, data- or processor-intensive (or both). Users can supply their
own software and data or use the locally available software on their respective dafa. Thus,
“the type of applications executed can vary widely and, consequently, so can the

. respective applications' computation times.

- 3.1.1 Multiprocessor Systems: (Multiple Processors in a Single System) ,
Multiple processors were once the exclusive domain of mainframes and high-end

servers. Today; they are common in all kinds of sysfems including high-end PCs and
- workstatlons The most common archltecture used in these devices is symmetrlcal'
multlprocessmg (SMP). The term symmetncal' is both important and misleading,
Multiple processors are, by deﬁmtlon symmetncal if any of them can execute any given
functlon }

- This pomt might seem hardly worth emphasizing, but when multlprocessmg R

- models first appeared, some were not symmetncal. On these sy,stems,, one or more -

25

processors were dedlcated to certam specrﬁc functrons—generally, runmng the operatmg
" system or .one of its subsystems These processors “could not Tun user code and SO the

: desrgn was not symmetncal since it ‘was not true that any glven task could run on any'_ o

pI‘OCESSOl'

3 1.2 Massively Parallel Systems: (Collaboratmg without Shared Resources) ‘
' Massrve]y paral]el processmg (MPP) takes the concepts multlprocessor systems

and expands them in a different.direction. MPP systems use hundreds of processors, each
~ one supported by its own. memory.and its own copy of the,operatmg system. Each of

these independent computing units is called a node. Nodes share information over a

custom high-speed interconnects. MPP systems differ from the systems descrlbed o

prevrously because all nodes are workmg under the control ofa smgle program
For MPP computatron to work correctly, the software has to be capable of
partitronmg its work and the data it operates on over hundreds of processors This -
requirement necessitates specrahzed skills ‘and - uncommon programmmg tools and :
N techmques MPP is used in screntrﬁc apphcatlons and in advanced business contexts such
 as data warehousmg and decision support. In both of these business apphcatrons chunks
of data are analyzed separately and the resu]ts are later aggregated—an almost perfect

match for MPP- style computmg

313 Clusters: (Aggregatmg Machines into a Smgle System) v
' A cluster is a group of individual, stand-a]one computers that work together and

that outside systems view as a smgle computmg resource. The individual systems (nodes)
that make up the cluster commumcate wrth each other via high-speed connectrons such as
Grgabrt Ethemet ATM ora proprretary link. For easrer management clusters use specral
software to coordinate and manage _therr activities, depending on how ,they are used.
Clusters are particularly "well suited to me_eting the needs ‘_"of high-availability, load
balancing and scientific computing. . ‘. o N |
-+ Highly avallable clusters consist of two or more nodes that are exact mirror 1mages of
- each other. If the prrmary system goes down due to hardware malfunctron, for example,
fail-over'software immediately makes -its twin .s'yste'm the primary node. This approach

enables work to continue without interruption. -

26

* Load-balancing clusters process heauy volumes of transactions of a similar type. For-'
example, enterprises often use clusters for hosting Web servers vor handling database
: transactions. The cluster routes the incorning transaction stream to whichever node in
. the system is most able to handle it. Sometimes this decision is based on workload and

- sometimes it is based on other factors.

'3.1.4 Grids: (Resource Sharing among Separate, Distinct Systems)
 While clusters are groups of computers tied together as a single device, grids

consist of multiple systems that work together while main_taining their distinct identities

- This model already has been demonstrated in the wider community of users with *

the SETI project (among others) which used the home PCs of volunteers to perform L

ana]ysrs of astronomlcal data A
Term computatlonal grid comes from an analogy with the electric power gnd
-+ Electric power is ubiquitous -)
~« Don't need to know the source (transformer generator) of the power or the

power company that serves it

32 Scheduhng Algorlthms -
o Scheduhng algorrthm is used to distribute trafﬁc among the cluster nodes We

“will go through some of the common schedulmg algorithms and therr charactenstrcs

3.2.1 Round—Robm Scheduling
Drstnbutes each request sequentially around the pool of real servers. Using 1 thrs '

algorithm, _all the real servers are treated as equals. without regard to -capacity or load. . -
This scheduling,rnodel resembles round-robin DNS hut is more granular-due to the fact i

- that it is network-connection based and not host-based.

_3 2 2 Werghted Round-Robin Schedulmg »
| Drstnbutes each request sequentrally around the pool of real servers -but grves

: »-more _]ObS to servers with greater capacity. Capacrty is indicated by a user~assrgned |
weight’ factor, whlch is then adjusted upward or downward by dynamrc load information. -
Weighted round-robm scheduhng is a preferred choice if there are srgmﬁcant |

- drfferences in the capacrty of real servers in the pool However, if the request load varies)

27

dramatrcally, the ‘more heavrly werghted server may answer more than 1ts share of

: requests |

323 Least-Connectton |

Distributes more requests to real servers wrth fewer actrve connecttons Because 1t T

. keeps track of live conneettons to the real servers through the tables least-connection is a
" type of dynamlc schedulmg algonthm- makmg ita better chorce if there is a high degree
of variation in the request load. It is best smted for a real server pool where each member
: node has roughly the same capacxty If a group of servers have different capabllltxes

werghted least-connectron schedulmg is a better cho;ce

' 3 2. 4 Welghted Least-Connectlons -
Drstnbutes more requests to servers wrth fewer active connections relatrve to therr

E capacrtles' Capacity is indicated by'a user-assrgned welght which is then adjusted
"upward or downward by dynamic load mformatton The addition of wetghtmg makes this

. algonthm ideal when the real server pool contalns hardware of varymg capacrty

- 3.25 Locality-Based Least—Connectlon Schedulmg .
Distributes more requests to servers with fewer active connectlons relative to their

" destination IPs. This algorithm is desrgned for use in a proxy-cache server c]uster It'
,7 routes the packets for an IP address. to the server for that address unless that server is B
above its capacrty and has a server in 1ts half load, in whlch case it assigns the IP address |

to the least loaded real server

3.2 6 Locahty-Based Least—Connectlon Scheduhng with Replication Schedulmg
. Distributes more requests to servers wrth fewer active connections relative to their

‘destmatron IPs. This algorithm is also desrgned for useina proxy-cache server cluster It
differs from Locality-Based Least_-Connec_tron_ Scheduling by‘ mapplng the target IP |
addressto a subset of real server nodes. Requests are then routed to the server in this
subset with the lowest number of connections. If all the nodes for the destination IP are 4,
’above capacrty, it replicates a new server for that destmatlon P address by addmg the

- real server wrth the least connectrons from the overall pool of real servers to the subset of

- 28

' _real servers for that destination IP The most loaded node is then dropped frorn the real" '

server subset to prevent over-rephcatron

3 2.7 Destmatlon Hash. Schedulmg 7 : 7
o » Distributes: requests to the pool of real servers by looking up the destination IP in

- a statlc hash; table_. This algonthm is designed fcr use in a proxy-cache server - cluster.

..3.2 8 Source Hash Scheduling .
o sttnbutes requests to the “pool of real servers by looking up the source IP in a

: statnc hash table. ThlS algorlthm is desngnated for routers with multiple firewalls.

33 Characteristic of a node
Any node in the perspectrve of clustenng can have these characteristic defined as

: 'f'bemg nearest, bemg available, bemg hkely
| | 1. Nearest 1s a function of network topology and dynamlc link charactenstlcs A
S server wrth a lower round-trip t:me is consxdered nearer than one with a hrgher
. round-tnp time. Likewise, a server with low packet loss to the chent is nearer than
"~ one W1th hlgh packet loss. The des1gn is covered in master/local servers’ toplc in.
chapter 4. ' | ’
2. ; Available is a function of load and netvvork bandwidth' A server carrying too rnuch '
~ loadora data center serving near its bandwrdth capacity is unavailable to serve |
- more chents The 100% utlhzatlon is not optrmum as we study from. queumg
theory Hence the de51gn is covered in- Settmg upper. limit toprc in chapter 4.
: _ 3 - Likely i isa functlon of whxch servers carry the content for each customer in a data -
o center: If all servers served all the content by round-robin DNS for example then
the servers' dlSk and memory resources would be consumed by the most popular set

: of objects Thls is explamed in more broader way in the Load sharmg issues tOplC

5,23 4 Load sharmg issue L |
L LOAD sharmg provxdes a system mechamsm to dynamrca]ly mrgrate jObS from f

| 'heav1ly loaded workstatmns to - hghtly loaded workstatlons, aiming at fully utilizing

o ,";system resources. Followmg the load sharmg prmmple, researchers have demgned’f o

i 'ﬂdrfferent alternatwes by balancmg the number of Jobs/tasks among the workstanons (see n

2 u

e.g. '[7] [8]), by consrdermg memory allocatlon requlrements of jObS (see e.g. [5], [6]).
~ and by consrdermg both CPU and memory resources (see e.g., [3], [4] [2]) In a cluster _. '

system w1th dynamtc load sharmg support a new _]Ob can be subrmtted to a workstatton '

ora runmng]Ob can be mlgrated to the workstatton under followmg condmons When the S

f workstatron has 1dle memory space the job can be accepted if the number of runmng jObS
in the workstatron is Stlll less than a predetermmed threshold Wthh 1s the maximum
number of _]Ob slots a CPU is wxllmg to take (also called the CPU Threshold) When the
" workstation does not have idle memory space, or is even oversrzed no JObS will be

R accepted without further checkmg the status of the CPU threshold o |
| However, in such- a system a small number of runmng _]obs w1th large memory o
“ allocatlon requtrements can be scattered among workstatrons to qurckly use ‘up the ~
| memory space, 1mpedmg job subm1ss1ons to- these workstatlons Since these large _]obs '
: normally have long remaining processmg times, eventually, all the workstatrons may
become ‘heavily loaded, stoppmg _]Ob submrssrons and mrgratlons We can call this

: phenomenon the job-blocking problem Wthh 18 rooted from unsu1table placements of
these large Jobs The ex1stence of these large jobsina few workstatlons may increase the
.queumg delay times of the rest of jObS wrth relatrvely small - memory. requrrements

slowing down execut1ons of 1nd1v1dual jobs and decreasmg the cluster system s

throughput. Smce job sizes mcludmg the memory allocatlons are unknown in advance, -

~the possrblhty of unsurtable job placements to cause the blockmg problem 1is hlgh and
exrstmg load sharmg schemes are: unable to effectlvely handle this problem ‘ |
“When both]ob submlssrons and mlgratlons are blocked ina cluster it implies that

the resource allocatron in each workstat1on erther reaches its. memory threshold due to -

o arrivals of some jObS thh large memory demands, or reaches its’ CPU threshold or both.

Further _]Ob submissions or mlgratlons will cause more page: faults or queumg delays in a :
destmatlon workstation. One srmple solutton would be to temporanly suspend the large
jobs so that the job submtsslons wlll. not be: b]ocked. How_ever, thrs approach will not be

fair to the large jobs that- may starve if job submissions continue to ﬂow' or that can be

executed only when the cluster becomes llghtly loaded. It is observed that. CPU and

memory resources are actually not: fully utlhzed dunng the penod of blockmg [1] For

example some workstatlons reachmg therr CPU thresholds may stlll have 1dle memory

o300

space whlle some workstatlons expenencmg page’ faults may Stlll have additional _]Ob :

' slots avallable

Recent expenments show that, when a cluster system is not able to further accept o

or migrate jobs, there are still large accumulated 1dle memory space volumes available *

. among the workstatxons This is because demanded memory allocatlons of a handful of

_]ObS could not fit in any smgle workstation with other runnmg jobs. It is also found that o

jobs are not- evenly drstnbuted among workstatlons Wthl‘l increases the total job queuing R

- tlme

This problem is solved out in limited resource allocation design in Chapter 4.

3. 5 System Scalabthty

Network must scale to ‘support many geographlcally drstrrbuted servers and many.
customers with differing. needs. This presents the following challenges
e Momtormg and controllmg of w1dely drstnbuted servers, while keepmg momtormg
 bandwidth toa. minimum. 7 '
. Momtonng network conditions across and between locatlons aggregatmg that
information. Success here depends on m1n1m12mg the overhead added to avoid long
lookup times.
e Isolating customers-'s‘o they cannot_-negatively affect each other.

e Collecting logs with information about user requests '

- 3.6 Flexrbrlrty vs. Performance i m commumcatmn protocol
o ; Hrgh-performance software communication approaches have mcreased the needi

~ for flexible and hlgh-performance communication systems When trymg to reap the well-' .

known benefits of these approaches the question of what commumcatron infrastructure.

should be used to hnk the vanous components arises. In this context, flexibility and high- | e

performance ‘seem. to be. mcompatrble goals Traditional HPC—style commumcanon—“ o

] lrbrarxes such as MPI offer good performance but are not mtended for loosely-coupled : F :

systems Object— and metadata-based approaches like XML offer the needed plug-and-m." S

play ﬂexrblhty, but wrth srgmﬁcantly Iower performance We observe that the ﬂex1b111ty.€- S

. and baseline performance of data exchange systems are strongly determmed by their wire: e

~ formats, or by how they represent data for transmlssron._rn heterogeneous enwronmentst .

3

L3, 7 Peer-to-Peer (PZP) COmP“t‘“g

There are -several reasons why peer-to-peer computmg model is demandmg [1 1]

One of the reasons is that the mcreasmg amounts ‘of Web content and bandw1dth among .

__ chents W111 get under-utlhsed if chent/server models contmue to be- dominant in the -
'Internet such as the centrahzed Web search engmes and Web servers Similarly, if every
‘ _chent has to be served by a proxy on a mtss the number of chents connected to the proxy -
. 'wrl] be hmtted (nonscalable) and the avallable bandwrdths among the chents wrll be-
under-utlhsed P2P systems can be classified- 1nto two classes: a- pure P2P, where peers‘i
‘ ?share data without a centrahzed coordmatlon and a. hybnd P2P where some ‘operations

are mtentlonally centrahzed such as mdexmg of peers files.

32

Chapterd.

DESIGN

E v4 1 Interactlon System |
-~ The interaction system takes care of the way data is transmitted with in- system :

.- and how data is transmitted from outside to. 1ns1de of the system. These two cases are
'totally drverse srtuatlons When data is transmltted thh in system it is in a secure, less
' crash prone, Kknown (hmrted diversity) nodes. When data is transmitted from outsrde the -

: system to msrde the system the data starts from chent passes through mtemet cloud and - |

_reaches our system thus 1t 1s error prone, insecure path client server scenano, unhmrted; e

ways in whrch the mteractlon occurs The chent till the system mteractron is not

considered here. We start lookmg at the’ system on recenvmg a neutral data format from:

outs1de the system how we go on Wlthm the system

‘ 41 lMessages ‘

Messages are desrgned to be: usable on top of asynchronous rehab]e and"_ _

umdrrectlonal transport Therefore, -a message- is’ desrgned as a plpe, contammg an.

envelope and a stack of protocol headers wrth bodres The envelope contains a header the

source endpomt and the destmatron endpomt An endpomt isa logrcal destmatlon grven»'

_in the form’ of a URL on any networkmg transport capable of sending and recexvmg“"

.stream-style rnessages Endpomts are typrcally mapped to physical - addresses by a ¢ -
messagmg layer. Such a message format- is de51gned to support multrple transport -

o standards

Each protocol body contains a varrable number of bytes and one or more 1dent1ty -

T of the sender to the receiver. For examp]e a message body may be encoded wrth the

J'}_header provrdmg further mformatlon on how to decode the content

4 1. 2 Interoperablllty wrth XML ' : L
" . Fach programmmg language contams objects w1th drfferent representat;on m‘v' ‘

fmemory For us to 1ntegrate between them we need to convert our requests mto af.;

) standard representatton we are. usmg XML ﬁle [URLI] format and then transmlt usmg‘_"‘,{ .

. mdustry standard network protocol TCP/IP Tlns needs XML parser and de-parser

We need to make a genenc parser and de-parser, smce we are not aware of the
~next request we mlght receive. But “‘each request type has a dlfferent data type and
- drfferent number of data members hence we- wrll 1mplement the schema vahdatlon per
‘;object basrs We have solved it by havmg ﬁrst few bytes in the header as reference and
o then usmg it we will use the approprlate parser or de—parser to convert from XML ﬁle

The reverse dlrectlon from programmmg language Ob_]CCtS to XML frle we usef‘. ‘A

polymorphrsm to lmplement n a genenc way

© 4121 Flexrblhty Vs. Performance in commumcatron protocol .
After examining the performance 1mphcatrons of usmg a number of drffererrt'

format I use valid XML havmg stnct m the sequence of data hence ﬂexrblhty and-l

"_'human debuggmg is also perrmtted whlle the performance is strll mamtamed hlgh

i 3 Inter system peer-to-peer commumcatlon

Among the - server hosts, peer—to-peer commumcatlon has the commumcatmg; PR

e systems to have equal pnorlty over. one another and a system can ‘with full authorlty to

R send the data Thls violated the tradltlonal chent server technology where the systems)

L w1ll have chent to orlgmate request and server to glve response after this. Here the |

' -onomatlon of connectlon does not’ mostly matter except the server socket is mvoked to '
| show w1lhngness to commumcate | ' ‘
, The transmlttmg thread & recelvmg thread for each of the “host systems)
s processmg thread should work mdependently for: each connectron [12] Hence we go for
~an asynchronous commumcatlon model where m the transmlttmg system w1ll provrde :
. the transmlttmg unit the sufficient 1nformat10n to, send and keep on processmg w1th next‘ ‘
'mformatlon The transmlttmg thread Is woken up when it recelves a message to transmit

.and transmrts the data and agam goes to suspend state Srmllarly on the receiving s1de the.

om

_ 'rece'iving' thread waits for information at the input stream and when data come it extracts

" and puts 1nto the queue for the processing system to process after putting into the queue

| ~ this thread goes mto wait state. The processmg thread after processing the requests can go
" into suspend mode till the recervmg thread gives the data. Hence the systern is not under-
- resourced (no thread has to wait, when data is in. the queue) or over-resourced (no thread"'

is pollmg for data)

4. 1 3.1 Peergroups ‘
A peer . group is.a virtual entity that Speaks the set of peer group protocols

'Typrcally, a peer group is a collection of cooperatmg peers providing'a common set of _

services;

. 4.13.2 Pipes

Pipes are commumcatron channels for - sendlng and receiving. messages and they. -

o 'are asynchronous They are also umdtrectlonal so there are input plpes and output ptpes

Pipes are virtual, in that a plpe S endpomt can be bound to one or more peer endpomts

A p1pe is usually dynarmcally bound to a peer at runtime via the Plpe Binding -

o) Protocol This also 1mphes that a pipe can be moved around and bound to drfferent peers.

L at different tlmes ThlS is useful for example when a collectron of peers together provide -

a hlgh level of fault tolerance where a crashed peer may be replaced by anewpeerata

- different locatlon w1th the latter taking over the exrstmg prpe to keep the commumcatlon'

- gomg

413, 3 Pomt to. Pomt pipe. and Propagatmg plpe

A pomt-to-pomt pipe connects exactly two- peer endpomts together The plpe isan . |

| output pipe to the sender and input pipe to the recerver wrth trafﬂc gomg in one du'ectlon', ‘

. .'only from the sender to the recerver A propagate pzpe connects multlple peer. endpomtsv 1

together from one output prpe to one or more mput prpes Accordmgly, any message sent: T
2 -»mto the output prpe is sent to all mput ptpes I o
For example when multlple controls a smgle node has to take then the response -

and requests should be broadcasted to all the connected system

4. 2 Load Management

Any request to process is consrdered a. load on our system How we take care of '

" load and how we gomg to set an upper bound for the load a system can take We wnll see S

e 'these tOplCS

' 4 2 1 Load balancmg and mformmg :
- A system mlght have many’ apphcatlons runnmg and one applrcatlon can have

) hlgher priority whrch means that. apphcatron can use more of the CPU. time, hence a less
. :‘prlonty process can be over loaded but strll the system is not overloaded and vrce versa
| Hence load information i is computed per apphcatron basis.- A .
The load status: vanes less frequently also for applrcatlons whrch take longer tlme.
o to process each request; the load could be sent wrth some gap Informmg to the next‘“-_‘ :
- system is done penodlcally | Co | _ v
When latest mformatlon about load comes ‘the old 1nforrnatron has no value As
" the present state of an appllcatlon 1s gwen by the latest load 1nformatron only;we erase

the prevrous load mformatron when latest load mformatlon comes

"4, 2.11 Process Scheduler .~ * : , _
o Every request 1s 1dent1ﬁed by request type and it is pre-assrgned to a processmg -

code. When thrs request reaches Process Scheduler it decrdes where to: execute that' .

T processmg code

The load balancmg system at every system contmuously monltors the state of

" services and thelr servers and networks Each of the content servers frequently reports its

:' ~load to every momtormg apphcatnon (Process Scheduler) Wl‘llCh aggregates and then

| determines which IP address to retum when resolvmg request The server can thus shed a o
'L'fractron of its load when 1t 18 expenencmg moderate to hrgh load _ o
To momtor the entrre system s health the Apphcatron Manager grves ‘work to the :
K CPU and ﬁnds the response tlme Apphcatlon Manager uses thrs 1nformatlon to momtor
| overall system performance and to automatlcally detect and suspend problematlc servers
In addition to load balancmg metncs, the Applrcatron Manager reports loads to:“

o centrahzed server namely LAN Manager

C36

- “4.2. 2 Load Restrlctron ,' , , | |
o There is an upper: hmrt set in every system and the system 1s monitored: weather'.

© its upper llmlt is crossed or not. When the new job comes and thrs new _)Ob made the

‘ -'upper hmrt to exceed then the new job’s thread is grven less pnorlty or is abruptly : _'

L suspended

4, 3 Nammg conveutlons

We: as51gn -each Process Scheduler a drstmct TP address namely Process e

"Scheduler-mdlces We mdex each message in our workload, for the purposes of .

-vrdentrﬁcatron and addressmg, with a d1st1nct posrtrve integer. Each request type has a. -

index.

. '4.3.1 Limited resource allocation : :
Wlth reference to- the analysis of load sharmg 1ssues when we have the node

- "bemg allotted all kinds of _]ObS then the node’s- v1rtual memory gets full and the. page -- . :

. faults starts to oceur. Thus making the node to produce large delay: Allottmg a node with: . . -

 specific resource solves this problem. And the resources are pre deﬁned i the?-s'
- Apphcatlon Manager that this node could do these JObS alone. We now are able to restnct e

S the resources ina streamlmed way and nodes are utlhzed in-a efficient way.

'4 4 Crash Recovery

- Crash Recovery is achleved by continuous momtonng for: excepttons at the L

B 4Apphcatron Manager and at the LAN Manager side, 1t is done by the admrmstrator Also .

:by keepmg the logs and when an appllcatron fails, then the state of the apphcatlon at the .~

' time of crash is a. valuable resource to recover from any such crash [13] in the future. -

Defect report is prepared from thrs log by the mamtenance team and also to 1dent1fy the B

= E _faulty module by the developers

< Crash Avordance : e :
XML 1s used for crash avordance, thls avords mrss representatlon of data

L 4 4. 1 Usmg the event log as a data source for crash recovel'y

You can. use the. Event Log service to gather mformatron about hardware

y software and system problems Cluster System records events in three types of logs

“--:Applrcatlon Log The Apphcatton Log contams events logged by apphcatlons or .-

| E programs For example a database program mtght record a ﬁle error m the Apphcatton:-i__

- - Log The program developer decrdes whlch events to record

e :System Log The System Log contams events logged by the Cluster system components;)

RN For example the fallure of a drtver or other system component to load during startup is

': ': recorded in'the System Log The event types logged by system components are
| predetennmed for the operatmg system The event types are ' ,
- Error A srgmﬁcant problem, such as loss of data or loss of functtonahty For example
L ifa servrce fatls to load durmg startup, an error is logged ‘ ,
;.:Warmng An event that is not necessanly s1gmﬁcant but may mdlcate a possrble future ;
problem. For example when disk space is low a warmng is logged 7 A
'_.Informatton An event that descnbes the ‘successful operatton of an applrcatlon drrver
or service. For example when a network dnver Toads successfully, an mforrnatlon '
. -event is. logged o L
'rf Success Audrt An audrted secunty access attempt that succeeds For example a user s.'-:"
S successful attempt to log on to the: system is logged asa Success Audrt event
- Farlure Audrt An audlted secunty access attempt that falls For example, 1f a user tries
to access a network dnve and falls the attempt is. logged as a Fallure Audlt event. _
L The ‘Event Log servrce starts automatrcally when you. start Cluster System By; i
B default securlty loggmg is tumed off ' .

. 4, S Transparency to appllcatron developers

The apphcatrons work wrth a v1ew that it is the only one apphcatlon 1S processmg
 that request type Hence we gtve to the applxcatlons programmer a level of abstractlon;' L

that he need not worry about the load. sharmg But the persrstent data need to- be stored f :
| l onto the centrahsed database as they are not mtermedlate data o :

The apphcatrons programmer needs to be abstracted the communication -of

f ~request to it and the. response from 1t Thus we have provrded request and the ‘

o commumcatron together

T R

4 6 Admlmstratlon |
Remote administration 1s the way of admmlstermg an apphcatlon from an .

' apphcatton whtch is run as a separate process than the application and itis connected by

: network The remote admmtstratton sends status messages error messages clearmg of '

checkpomts together w1th ttmestamp and the module which has sent it. The status

. messages are for saytng what each module has done. This is for debuggmg purpose The o

' .'~errors are the unexpected srtuatlons that happen at runtrme of the program

We send excepttons name its lme of code and the cause of exceptton to the_ st

. remote. admrmstrator Thts is for debuggmg purpose Check pomts are the places in the

' code if successfully crossed mean the functtonaltty has been successfully executed by our .

- code These checkpomts are for demo purpose and testmg purposes

Remote admmtstrator needs specral 1nformatton to be transmitted so we need to

: send less data only For a human pomt of vrew to debug, show demo it is enough we

' con51der OS level processes So each OS process. has a remote administration-

transmlttmg umt So that for all the modules the messages is transmrtted through the

‘_ same channel and saymg as another tag from drfferentlates them and wh1ch functron the '
message orrgmated » o , _
" The locatton of remote admtmstrator need not be known for the applrcattons .

: hence we have server soclcet for the apphcattons and the remote admmrstrator connect to

this system.

' 4 6. 1 Local admrmstratlon and remote administration User Interfaces o
In local admtmstratlon the admmrstrator is grven provision to mdwrdually control -

i a system by using a shell prompt in it. In remote admrntstratton the admlmstrator can srt
ina remote terminal and mampulate wrth the. controls in every system By this he wrll be 7 ;

’ ,able to have control over, more systems in the network

; j4 6 2 Self—managmg, Self-orgamzmg, Self-healmg

The admmtstratton program has aset of rules, whtch guldes it to manage some the .

- troubles and some of the uttlttres by 1tself For exarnple mformmg about a new system._: N

R that has been added to the network 1o every other system that it knows e

39

'-‘47Des1gn ofModules o S | o
N We wrll go through the vanous class dragrams and thelr assocratlons and! ..

B . -mteractron w;th other modules

,471Data Flow RN

“The. ﬂow of any request that comes to the Real Trme Cluster Management System -

EE ,*.1s given in Fxgure 4.1. In the dlagram, the Flrewall mteracts w:th the client and hence

forms as User Manager The Sessron Manager holds the XML parsmg and de-parsmg :
, ‘:functlonahty Process Scheduler drstrlbutes the load among the process schedulers-, :

B ’remdmg in another computer

o 'Fire'Wall" -

.- Session
- ‘Manager -

Il'h- |

in i

o Process

R N A 1
- Scheduler

; f?J'ff I

App'lic.éti(.)n:‘] Aeo | Ao | Aoo | -~} Ao |'i i - | Aoo

. i Autonomous:
| computer. . -

'Figure 4.1: DataiFlm_V diagrarn of Real_."ll‘irheé'plhster v"Management System

L 4.7. 2 Sessnon Manager :

The sessron manager takes care: of domg collaboratlve computmg whercm Process

| Scheduler regrster at Sessron Manager recelvmg subsequent task to compute at each

C.40.

- :requlsrtron and retummg the results from that task ata subsequent time. The securrty ofa’ "

- request is enhanced if the Sess1on Manager can easrly keep track of whlch Process -

Scheduler computed which tasks thereby endowmg the request with. accountablhty
We develop a framework for constructmg computatronally llghtwerght schemes
= for endowmg requests with accountabrhty ‘Session manager being the first system for the
' -chent it has to handle requests of type XML file. Sessron Manager with Flrewall Process .

- »Scheduler and Apphcatrons interaction is descnbed in Frgure 4.2

(Firewall)

\ XML Parser, De-parser .

R : “\\ ‘ Dispatch

. (Redundant log—
. onRai d): / \Nﬁgfm - every user

prOgram ,
,\‘\\\ - - ,bata
App PS -':P.roeess ,‘
s S'cheduler:. |
e |

y Figure 4,2&_ SeSsion_ Manager’s interaction With other modules. R

The Sess10n Manager module $ assocxatron 1s as descnbed m Fxgure 4 3. The
' FrrewallObj is the class mstance recerved or sent w1th Software Flrewall To transmlt the

user’s request along w1th the request id that s attached w1th every request

e

ReadObject does asynchronous fetch from Software Flrewall The mteractron,
wrth ﬁrewall is hke any other dlstnbuted computmg mteractron but the stream 1s a.bi-

dlrectrona] SocketByteReader converts the XML ﬁle recelved from Flrewall usmg the

XML parser TransmltterByte converts obJects from server apphcatrons mto XML ﬁle
s usmg XML de-parser and sends to Frrewall

Ve -

L Fnrev&auom

.;messagetd[] byte -
- ; oxmifilef] - byte -

SynLinkedList- | -

[s
" fom lanig)- |-

. 'QaddData(v)} |
_ . 4| Sremowe().

| i) ScumentThres..
ok Svield
‘<>sze0ﬂ-|st() -"2yslee:§z) o
<>wa|tNRemove() SR
. sll/ | '-\" /» -
Share&Llsthte[Sata AN
[

3 B / B .A:V_.(. /
:»'-)) . ji. N ; o . { ".‘ l.’:‘:"(: B

‘. Seriglizable - /. |

i
{
" (romig) - - !

C 4t TransmitterByte” R
SV Douflibyte

. C ol |4PTransmitterByte() -

ARERE B R Srun() - -
et f . > \ T (. . Ostatus() .
T j."'-.:_ D ﬁshutd_own(). B

g } ParserSocket R R T ,SOcketByteReader
~"§Create$ocket() N ,Qaddeuffer_() -
wlteToSOcket() o A 2s;tatus() :
tatus() S Lo o i) Sshutdown()

- %hutdom() I TR V'Lﬁpavrse‘String()

Figure 4.3: Session -manaugér;rnodule’s associations -

_42".

4 7 3 GenerncSocket mteractlons

- GenericSocket is used to achieve peer-to peer mteractlon within mtemal modulesz B

_ w1th one another the GenencSocket class s assoc1at10ns is deplcted i Frgure 4 4

GenericSocket.

Thread - |
~ (from lang)

'} ScunentThread()

- %Remotelp String .

’ Q;ConnectsonNameForUs Sting- . .
,&RemoteConnectionName : Stnng ot

- |@Direction : int
. i@ isSenerSocket : boolean
Q)lsBlocked boolean
-+ “i@localPort: int
- 1@ RemotePort : int .
%IpAddress ‘String
. ¢shutdown : boolean = true -

7 I ’ ~ N "‘\-}:.“

/ : B A : Transmitter: | -

e
Bbuf] : byte -

i
i
o ‘ " Snun()
[_; : N ﬁTransmmer()
N
|
i

T
I

i
Fe

%%hm HashMap = new HashMapJ) A

1@ cumentConn S int=0 -

- (@maxConn:int=1 -
I@IN:int=0

. |®QUI:int=1 -
,;Q>BOTH int=2

" SocketReader

 [DBuf: byte = newbyte [1024] | /| |

.%DataRead boolean = false S

PAwilable : int = - 1 /’

1 Sang -
°shutdown() ,_
7. 1 SGenericSocket()-
- SgetPort()
; SwriteToSocket()
@createSocket()
+ Sstatus()
: 11 f;.“irjcConn() - ‘
~ - SGenericSacket() -

"Nﬂ() : v ";-”"‘"

i PSocketReader() _ [

' . data,f
SharedLnst Data V/ :

e SynLunkedLlst 1. L

%ddData(). IR W
Sremove() |-
sizeOfList() -
SwaitNRemowe() |

Figure 4.4: .Gen_ericSO'cket cla’ss. »as_s'_bciations_. -

GenencSocket connects to the next. system erther in cllent or server socket of

TCP/IP It then mvokes SocketReader or transmltter SocketReader prowdes readmg of

| . objects in a separate thread Transmltter provrder sends objects in a separate thread

: . ijankedLrst provrdes thread synchromsatton by makmg a thread to wart tlll data comes _. :

e .f;m and when data comes m 1t 1t wakes the wartmg thread

‘-__.“_:,;;474Process Scheduler T L St _ IS
‘ The Process Scheduler 1s composed of a placeholder that mmates all load_"-, e

" f"'balancmg features The load balancmg for every request type 1s taken care by the"-.

| smdependent Dlspatcher mstances whtch 1is Specrﬁc for every request type The :.

. . zcomponents of Process Scheduler is descnbed in Frgure 4, 5

' ProcessSchedulerServer
: Dlspatcher I Drspatcher -

|7 | Dispatcher - | . | Dispatcher -

" . Figure 4.5: Process Scheduler Program co-ordinator -~ =

o4

47, 4 1 Dispatcher
- Dispatcher is used to deal thh load balancmg for a single request type Hence .

there will be every instance for each request it receives from session manager and for
every instance the local application is going to give. The dispatcher content is described

in Figure 4.6.

Dlspatcher (to deal with ObjId1) located at Process Scheduler—

GenencSocket GenericSocket + Gener:cSocke1
+ SocketReader! SocketReader (to |+ SocketReader
(to receive from receive from (to receive from
PS2) . i Session Manager) PS4)

7
/

. {LoadBalanc / __________

/

--------- L ..,
SynLinkedList oad l?fonnntlon
; & SynLinkedList inkedList | | " & |SynLinkedList
q e |e
:.’;_1‘— reniove remove.
GenericSocket ' GenericSocket GenericSocket - |GenericSocket
d. 4]+ Transmitter + SocketReader + Transmitter + Transmitter
L] (tosend to PS1} - (to receive from| L3 |(tosendto (to send to PS5)
application) " |application)
Reference:
] SynList- g
‘ 8l—
3 -3
remove g
e
Ry
) <. GenericSocket
) + SocketReader
(to receive load
from PS1)

: Fi‘guré 4.6: Dispatcher instance’s content

45

- 4. 5 Wrapper Class for apphcatlons R . ,

o The wrapper class 1s used to prov1de apphcatlon programmers the mterface to the |
' cluster -Using. the wrapper class an apphcatlon can send a request to be processed m'f'
some place in the cluster also the recetvmg of any request 1s through the wrapper class.: '

o The data ﬂow with the wrapper class 18 shown in Flgure 47.

Process Scheduler e | Sessron Manager |
[- — |

1 Applicationt}, - -
’ (Object 1's Buffer (i/p) | ‘Object 2’s Buffer (i/p) -\
5 . : readl to process objl- _ ol
@) . : \ fetch() .- S B Thread2 to o
3 . AﬂOUf},’me() - . |- - | process ob_]l 3
= » . . gL
84_ _ \ e L 8 7
Object 3's Buffer (o/p) - - | Object4’s Buffer (o/p) - .
Generated Objects- is processed by some Apphcatlon
Computed Ob_]ects- is sent back to theuser -
Figure 4.7: Data flow diagram with Wra_pper class -
4 8 Summary

We have seen, how to solve the issues of mteractmn system load management .

naming conventlon crash recovery and the module des1gn in the code level.

46

~ Chapter5

_ IMPLEMENTATION

|

s, 1 Apphcatton Programmer s gurde

Create mstance of in drrectton wrapper class for the specific request type thrs code :

A s able to process Spec1fy the new request type in the genenc Socket class Then staxtf', R

' fusmg the cluster system by callmg the functton wattNFetch() Thxs method is. thread'? B

' synchromzed and retrieves the data from buffer If the buffer is empty. then the method‘ o o

o ‘brmg the mvokmg code to a wait state (Suspend state) When data comes then thread is

. _waken up by the addmg code 50 that this code is able to utilize the data '

Instance of wrapper class. is created by callmg the approprrate constructorf

-:Obj 77Appln() here 77 1s the request. id and thlS is the apphcatlon wrapper for recetvmg |

. rdata Stm1lar1y use. Ob)77AppOut() for sendmg data As per the conﬁguratlon entered in

' jthe GenencSocket class about the request type, the out w1ll send to either client or to any‘ o

o “‘,"‘other apphcatton for further processmg If- it is for further processmg then.f:_,_ R

| ProcessScheduler decrdes where to execute the code It

h ‘.»5 2 Admlmstrator s Gurde

‘The admlmstrator use. the software to deploy the cluster code and the appltcattonf e |

'on to therr sr te. In this srtuatron the ‘cluster system s remote admm and ‘local

_ .admmtstranon module help in deploymg the. requrred applicationsin- specrﬁc cornputer_'--_ SRR

nodes and they can se¢ the status’ of the apphcatlons that are hosted by using ‘the GUI‘__.-- .

?provrded To send commands to the appltcatron is by selectmg the computer to gtve' o

f;cornmand and choose ‘one of the command that the apphcatton prov1des Thus we have_ SRR

Lo "?fthe latest set. of commands to 1nteract wrth the apphcatlon To start any apphcatron ina-

'computer select the appllcatton manager in: that computer and 1ssue the command startf‘: ‘4_,‘. -

- » applrcattonName thus that apphcatton is started after checkmg all secunty and the mmal‘.‘ R

.,,.47: :

' set up are - done to ensure successful deployment Then the destmatlon platform is

- 1dent1ﬁed and the apphcanon is 1n1t1ated as 1t has to be done in that platform

| f"S 3 Remote Admrmstrator Commumcatlon

-The remote admmrstrator also commumcates through a request type thrs requestj’ S

r-type has the request command added mformatlon destmatron node’ s path and source
~node’s path from the current locatlon) o '_ : B | |
o The shutdown command when 1t is 1ssued to an apphcanon it mforms to 1t s dtrect
' supenor and then ShutdOWn hence the remote adnumstrator commumcatron path 1s ;-

| ‘broken to show the drsconnectlon for that apphcatron

54 Marshallmg and De-marshallmg of data to transmrt
When we send an mstance object: from one system to another 1t must be converted
v_»to byte stream and be transmrtted Tl‘llS is- done through XML parsmg and deparsmg for -
:_~the transmrssron between Java and VC++ systems " This requlres the object to be
- marshalled be extendlno parsmg or deparsmg mterface as per. the role. To transmlt w1th : .
. m Java then Java s burlt in stream 1s used namely ObJectlnputStream and _

-i. : _-ObJectOutputStream ThlS requrres the obJects to be transmrtted be extendmg the '

L —}Senallzable class

- '5 5 Workmg Envrronment , S
" The Dlssertatron was 1mplemented and tested usmg the followmg env1ronments

'Q‘.'Operatmg Systems o o
' 1. Wmdows 2000 XP, 2003

2 Redhat Lmux 8 0- and above versrons |
3 Macmtosh Jaguar vers1ons SRR

L Programmmg Language and run tlme env1ronment
' ISunJaval41 R

2 V:sual C-H~ 6. O (for sendmg requests from extemal source)

vl-lardware , C
1 RAM l GB

2 Xeon Processor w1th 2. 6GHz Speed each

. 48 W

Chapter 6

~RESULTS AND DISCUSSIONS

6. 1 Startmg Appllcatlon Manager . :
L Apphcatron Manager 1s the program used for remote admmlstratlon purpose used
| "'to | initiate any " other programs This s | started by callmg.
| java remoteadmm source AppManager Then the commands are typed to start the other :
';apphcanons Frgure 6 1 shows the conso]e screen of the Apphcanon Manager bemg

- started and is ready to- get mputs

8 TE B s el h ot 2 3 e M e 2 Sk 7 a1 |

Arplication Manager Starting in 3.6 Seconds....

openin% rorts touwards lan manager
iready to receive commands from remoteadmin

Give your commands
B -.’ .

Flgure 6.1: Startmg Appllcatron Manager :

: 6 2 Startmg programs ina computer :
From the apphcatron manager’s shell wmdow type the command start Frrewall

start s, start sm. These will start correspondmg screens in separate wmdows This can'be R
seen in the figure 6.2. ' | | | | |
o This mode - of invoking the start command 'reQuires an instance of appli'catio'n- B
" manager- to be in running state in-that computer Thus we need to start an mstance of ¥

apphcatron manager manually and the apphcatron manager automatrcally wrthout the L

: 'admmrstrator s consent does the other issues. o

49

anplication Managexr Starting in 3.6 Seconds....

ﬂopening »orts towards lan manager
Bready 0o receive commands from remoteadmin

R Give your commands
B >start firewall
EHindous system detected
ERstarting irewall
7>

Received objectl8 from playeyr

sent to sn

*w¥ual ting. for reponse)

received ohjectld from session manager
jclosing the threa

Rece:ved nbaectzl from player

sent to

-ii*uazt:ns foxy reponse .

received object2l firom session managex
Received object32 from player

gclosing the thread

' Figure 6.2 Starting programs

6.2.1 Startmg applications .

On starting the - apphcatron the requlred information is passed between the
"apphcatron by the applrcatron manager automatically. The startmg of apphcatron mvolves
* the starting ’of process scheduler also, because ,process scheduler dlspatches the request to
the applieations. The application Us'er Management System is started as in Figure 6.2.

The command 1s same, start ums.

.6 3 Flow of request
The data flow can be traced from the firewall to sessmn manager t0 process

scheduler and then to application and back to process scheduler and then to any other
apphcatlon and then to session manager and then to firewall to chent ThlS flow can be

~seen with respect to the request type that is- bemg passed between the cluster nodes as

seen In the Figure 6.3 |

Blreceiving object 22 from sm
isending to ums

_ Figure 6.3 Process Scheduler doing load balx

| ;&00.¥§0mn~u="@“'“' :

I}atemnum--ﬂml"nﬂ

L | ~ Chapter 7

‘CONCLUSIONS |

Today the growth rate of computmg power is very hlgh but instead of replacmg‘
the old systems with new . system, the Real Tlme Cluster Managernent System helps in
;succcssful up gradatlon of Web Servers, And'it avoids the Internet bottlenecks. mherent
| w1th “silo” serving. Using Real Time Cluster Management System, Internet apphcatlons |
' can deliver new levels of performance and rehablhty regardless of user location or load.
 The cost was definitely cheaper than the other model, which are less flexible.
. 'This’ o;oyon modell means tﬁat enterprises needn’t expend time or money on
© complex capéc’ity forecéstirig For developers, ‘thé Ciuster Managément’»System boosts
vperformance) that apphcanons are never “dumbed-down” to handle the vaganes of the

Internet. Enterpnses can create’ mnovatlve apphcatlons in far less time than p0531ble with

- traditional squtlons The distributed architecture has eliminated the single point of) |

: fallure And also the crash recovery module has provided a situation to host the server in

a contmuous workmg mode round the clock.

Future Scope , _
Some _areas for improvement were identified during the dissertation, which

include if the lood information is not available for a long time then the load can be
“assumed to be heavier of so many factors [URL9j. Providing a proxy server capable of -

' handling users with secure encrypted path, Abetwcen the remote administra;ion SEIvers so
‘that an administrator can connect throogh a secure ,path' to the internal applications and: -

the i_ntemol servers can use another load balarioing server from another subnet. Some

utility canfbve'made wh‘ic‘h‘can-roll back the servers to a stable state in the past.

51

REFERENCES

J ‘[1]

o)

[31

L. Xiao, S. Chen and X. Zhang, “Dynamlc Cluster Resource Allocatxons for Jobs -

with-- Known and Unlcnown Memory Demands”, IEEE Trans Parallel and

'Dlstnbuted Systems vol. 13 no. 3 pp 223-240 2002

Y. Amir, B. Awerbuch A 'Barak"R Borgstrom ‘and A Keren, “An Opportunity

Cost Approach for Job: Assngnment and Reassngnment in a Scalable Computmg
Cluster”, IEEE Trans Parallel and sttnbuted Systems, vol. 11 mno.7, pp 760-768, “
July 2000. '

L. Xiao, X. Zhang, and S.A. Kubncht “Incorporatmg Job Mlgratlon and Network‘ o

"~ RAM to Share Cluster Memory Resources”, Proc. Ninth IEEE Int’] Symp ngh

@
S Sharmg Both CPU and Memory Resources” Proc. 20th Int’l” Conf. Dlstnbuted

" Performance Distributed Computmg, PP 71 78, Aug. 2000.

X. | Zhang, Y. Qu, and L. Xiao, “Improving Distributed Workload Performance by

Computmg Systems pp 233- 241, Apr 2000..

‘ [_5]":

A. Barak and A. Braverman “Memory Ushenng in a Scalable Computmg Cluster,

L Mlcroprocessors and Mlcrosystems vol 22, nos. 3-4 Pp- 175 182, Aug. 1998

- me

A. Batatv and D.G. Feitelson, “Gang Scheduling with Memory Considerations”,
Proc. 14th Int’] Parallel and Distn'buted Processing Symp., pp. 109-114; May 2000. |

M. Harchol- Balter and A.B: DoWney,“‘Exploiting Process Lifetimev Distributions

for Dynamlc Load Balancmg .ACM Trans. Computer Systems, vol. 15, no. 3, pp. g

= 253-285 1997.

- 53

(8]

V. Karamcheti and A. Chien, “A 'Hierar'c:hical Load-Balancing Framework for

- Dynamic Multithreaded Con}pgtatrorls’f;_ Proc. Supercomputing Conf., Nov. 1998.

[5)

[10]

i

[12]

‘D.A. Menascé and V.AF. ’Almeide ; “Sealing for E- BosineSS' Technologies o

Models, Performance, and Capacrty P]annmg” Prentlce Hall Upper Saddle River,

N.J. 2000

CNet News clip, “Pay per Use Computing Cycle'”; http://news.com.com/2100-
1001-270988 html?legacy=cnet, dated 01° August 2001.

L. Gong , “JXTA: A Network Programmmg Env1ronment IEEE Internet

_ Computmg vol. 5,no. 3,, May/June 2001.

Jack Shlrazr “Dlsmbuted Computmg of book on Java Performance tunmg” Chapter.
12, pubhshed by O’Reilly press 2000. -

Y Tohma, “Fault Tolerance”, IEEE Distributed Systems Online, February 2004.

Li Xiao and Xiaodong Zhang, -“Adaptive Memory Allocations in Clusters to Handle

Unexpectedly Large Data-Intensrve Jobs", IEEE Trans. Parallel’ and Dlstnbutedv
Systems, vol. 15, no. 7, pp. 577-592, July 2004

[URL1] ~ XML Task . Force, =~ “eXtended ~ Markup . Language”; '
- " http://www.w3.org/XML/ | |
[URL2] Web App‘lication -Server, “Speciali-zed in J2EE application hosting

- Servers”, http://www.pramati.com/index.lrtm y

we

[URL3] Web Applicatiorr Serrrer “Specmhzed in JZEE apphcatron hostmg

Servers”, http: //www bea.com

54

[URLA]

[URL 5}

[URLS]
[URLT]

[URLS]

.[URL9.]

[URLI0]

[URL11]

' [URL12] ' DCOM overview, “Technical tutorial on COM object _model”, . .

:Space Research Centre, “Collects computmg power from normal pes to do

compute on signals”, http: //setxathome ssl. berkeley edu/

Information on the Windows 2000 Sefver family,r “Conﬁgurations and

benefits from the windows 2000 Family Servers”,

http:/iwww mlcrosoft com/wmdowsZOOO/ guide/server

Rich Farreil, “Distributed Computmg pubhshed in Network World on
Sep-97’ http: Iwww. nwfusxon com/netresources/0922web2. html

“Parallel Computing”, Published on November 5, 2002 at Techrepubhc

hosted at http //techrepubllc com. com/S 100-6268-1061235.html

BED Windows Networking & Communications Team, “Network Load -
Balancing in Windows2000”, Whitepéper published at Microsoft website
created by, www.microsoft.com/windows2000/docs/NLBtech2.doc

MOSIX, “‘University Project on shared memory cluster eomputing”, 7

http://www.mosix.org

Java Performance Tuning, “kemnel level, OS level, applxcatlon Ievel '

. Performance tuning”, www Javaperformancetumng com

; Microsoft Component Service, “Server Operating System a Technological

© overview”, http://wWw.microsoft.com/com/wpaper/compsvcs.asp ‘

' | 'http ://msdn.microsoft. com/hbrary/default asp"url-—/hbrary/en-

us/dndcom/html/msdn _dcomtec.asp

55

[URLI3] ~
" JavaB.ea_ns hitp: //www mlcrosoft com/com/wpaper/mts-e_;b asp

~ [URL14] -
| : _V http: //research mlcrosoft com/lampson/Zl CrashRecovery/Acrobat pdf

[URL15]

M.TS,‘ “Comparmg Mlcrosoft Transactlon Server to Enterprlse

Crash Recovery, “Crash Recovery ina Dlstnbuted Data Storage System Lo

Applicatibn ‘Architecture for NET “Desigrﬁng Avp.plications'and Services -

- on Wmdows Network Load Balancmg “ C]hste S 2000 '
| - http: //msdn mlcrosoft com/hbrary/defau]t asp?url—/hbrary/en- '
: us/dnbda/html/dlstapp asp

56

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	 Chapter 6
	Chapter 7
	References

