
0 

IMPLEMENTATION OF REAL-TIME 
CLUSTER MANAGEMENT SYSTEM WITH 

CRASH RECOVERY 

A DISSERTATION 
Submitted in partial fulfillment of the 

erquirements for the award of the degree 
of 

MASTER OF TECHNOLOGY 
in 

INFORMATION TECHNOLOGY 

By 

GLAD VIN C DURAI 

C~1191G . 	~`- 
~e  

C CC 
The Cup r .mputing People 

MIT Roorkee - CDAC, NOIDA, 
cm56/1, "Anusandhan Bhawan' 

Sector 62, Noicla-201307 

JUNE, 2004 



CANDIDATE'S DECLARATION 

I hereby declare that the work presented in this dissertation titled "Implementation of 

Real Time Cluster Management System with Crash Recovery", in partial 

fulfillment of the requirements for the award of the degree of Master of Technology in 

Information Technology, submitted in IIT, Roorkee — CDAC, Noida, is an authentic 

record of my own work carried out during the period from May 2003 to May 2004 

under the guidance of Maj. Gen. K. N. Singh Chairman & MD, Next Gen Media 

Alliances Pvt. Ltd., New Delhi. 

The matter embodied in this dissertation has not been submitted by me for 

award of any other degree or diploma. 

Date: 2 6  - J UNF -2004 

Place: Noida 	 (Gladvin C Durai) 

CERTIFICATE 

This is to certify that the above statement made by candidate is correct to the best of 

my knowledge and belief. 

Date: 

Place: New Delhi 	 Supervisor: 

(Maj. Gen. K. N. Singh) 
Chairman & MD 
NextGen Media Alliances Pvt. Ltd. 

*O-S~u~pervisor: 

(Mr. V. N. Shukla) 
Director (Spl. Appl.) 
CDAC, Noida 



ACKNOWLEDGEMENTS 

I hereby take the privilege to express my deepest sense of gratitude to 

Prof. PREM VRAT, Director, Indian Institute of Technology, Roorkee, and 

MR. R.K.VERMA, Executive Director, CDAC, Noida for providing me with this 

valuable opportunity to carry out this work. I am very grateful to Prof. A.K.AWASTI, 

Programme Director, Prof. R.P. AGARWAL, course coordinator, IIT, Roorkee and 

MR.. V.N.SHUKLA, course coordinator, CDAC, NOIDA for providing the best of the 

facilities for the completion of this work and constant encouragement towards the goal. 

I express my sincere thanks and gratitude to Mr. RAGHAVENDRA AGARWALA, 

Chief Technical Officer and also to my Project Guide Maj. Gen. K.N.SINGH, 

Chairman, Next Gen Media Alliances Pvt. Ltd., New Delhi. I am thankful to 

Mr. MUNISH KUMAR, Dr. POONAM RANI GUPTA, Associate Professor, CDAC, 

Noida. They gave inspiration and guidance throughout the progress of this project. I feel 

very much privileged to associate myself for completing this project successfully. 

I thank my co-analysts, programmers and other team members who were with me while 

configuration, trouble shooting, and in integration of the modules. 

I owe special thanks,  to my friends, all of my classmates and other friends who have 

helped me formulate my ideas and have been a constant support. Thanks to my family 

members for their moral support. Last but not the least; I thank almighty for being on my 

side from the conception of this project to this implementation.-  

(GLADVIN C DURAI) 

Enrolment No. 029005 

ii 



Contents 

Candidate's Declaration  

Acknowledgements ii 

Abstract v 

1. Introduction 1 

1.1 Cluster Management System 1 

1.2 Present world status and Problems 2 

1.3 How the dissertation solves the above problems 2 

1.4 Dissertation Objective 3 

1.5 Report Organization 3 

2. Literature Survey 5 

2.1 Today's Scenario 5 

2.1.1 Evolution of Cluster Computing 5 

2.1.2 Common Cluster Issues and Common Cluster Solutions 7 

2.2 Native Solutions 7 

2.3 Application Development Platforms 10 

2.4 Application Servers 11 

2.4.1 BEA Architecture 12 

2.4.2 Pramati Server 15 

2.4.3 On Demand Distributed Computing with WebSphere 16 

2.4.4 Turboworx 24 

3. Analysis 25 

3.1 High End Computing 25 

3.2 Scheduling Algorithms 27 

3.3 Characteristic of a node 29 

3.4 Load sharing issue 29 

3.5 System Scalability 31 

3.6 Flexibility vs. Performance in communication Protocol 31 

3.7 Peer-to-Peer computing 32 

iii 



4. Design 33 

4.1 Interaction System 33 

4.1.1 Messages 33 

4.1.2 Interoperability with XML 34 

4.1.3 Inter system peer-to-peer communication 34 

4.2 Load Management 36 

4.2.1 Load Balancing and Informing 36 

4.2.2 Load Restriction 37 

4.3 Naming Conventions 37 

4.4 Crash Recovery 37 

4.5 Transparency to application developers 38 

4.6 Administration 39 

4.6.1 Local administration and remote administration Ul 39 

4.6.2 Self-managing, Self-organizing, Self-healing 39 

4.7 Design of Modules 40 

4.7.1 Data Flow 40 

4.7.2 Session Manager 41 

4.7.3 Generic Socket 43 

4.7.4 Process Scheduler 44 

4.8 Summary 46 

5. Implementation 47 

5.1 Application Programmers guide 47 

5.2 Administrator's guide 47 

5.3 Remote Administrator communication 48 

5.4 Marshalling and de-marshalling of data to transmit 48 

6. 	Results and discussions 49 

6.1 Starting application manager 49 

6.2 Starting programs in computer 49 

6.3 Flow of request. 50 

7. 	Conclusions 51 

References 

IV 



Abstract 

The present day organizations and large e-business requires the computing power 

of servers to increase and increase. But can the service providers keep replacing with new 

advanced system. If they are having Real Time Cluster Management System then they 

can upgrade through adding-up instead of replacing the existing servers. 

The Internet had in late 60's private networks, which were not interoperable. And 

then static web pages were published on the Internet through interoperable technologies. 

And then portals came and recently e-businesses. The future is going towards sharing of 

computing resources like SETI@home (Search for Extra-Terrestrial Intelligence) through 

distributing the computational power. 

Suppose a Web Servers like a mail server or a search engine has the server 

applications run on a single computer. Now as the processing load increases there is a 

need to upgrade the system, thus the existing system has to be replaced, which is costly 

and wastage of resources. In this case you have limitation to scale the processing 

resource. 

All the server applications are made exclusively to work on a single host 

processing units. Through the Cluster Management System, many instances of same code 

is run on different systems and thus provide scalability of processing power. This 

enhances the scalability and availability of mission-critical, TCP/IP-based services. 

The issues needed to be taken care in this mode are very unique like, 

interoperability at Operating System level, Programming Language level; asynchronous 

messaging between hosts; abstraction layer to application and to clients; session 

maintenance between cluster applications and process scheduling and various other issues 

like availability monitoring; automatic redistribution of client traffic to the surviving 

hosts, remote controllability and maintaining logs of events. 

This report explains one method by which Real Time Cluster Management 

System is achieved and how it is better with respect to other leading techniques. 

V 



Chapter 1 

INTRODUCTION 

1.1 Cluster Management System 
The real- time cluster management system can be defined as the Combination of 

network and software techniques to leverage the power of a cluster of nodes. Nodes work 

together along with load balancer and act as a single virtual server. As more and more 
processing units are added to the cluster they instead of substituting the processing 

power, they add up to the processing power of the cluster. Internet server programs 

supporting mission-critical applications such as financial transactions, database access, 

corporate intranets, and other key functions must run 24 hours a day, seven days a week. 

Clustering enables a group of independent servers to be managed as a single system. Also 

for those institutes who are doing researches, defence organisations and for those who are 
doing batch processing over night require a heavy amount of processing resource, so it 

can be bought from a commercial site. Figure 1.1 shows a typical Cluster. 

Server Cluster 

Loader Balancer 	 Clients 

Figure 1.1: Single load balancer takes request and routes to the free host. 

1 



Constantly growing organisations use this technology when they want to provide 

cost efficiency, scalability and availability of mission-critical, TCP/IP-based services. 

1.2 Present world status and Problems 
The motivation of the dissertation is that, the existing solutions have drawbacks 

and those drawbacks are removed from this dissertation. The solutions like Round Robin 

DNS [URL6], which is a centralised architecture, redirects only once and the transactions 

have to be maintained by the applications themselves. This is a simple and cheapest 

solution. This is not a robust solution and has no recovery mechanism. There is no 

asynchronous messaging which is an integral part of Cluster Management Systems. The 

Network Load Balancing package [URL7, URL8, URL15] embedded in Windows 2000 

Advanced Server and in Data Server has the advantage to have multiple concurrent 

systems waiting on the network for all the receive and except the one system everyone 

else rejects the request. This is adaptive and makes one level redirection. NLB provides 

failover support for .MS-SQL database. The problems in this are interoperability with 

non-Microsoft system and the scalability is limited by ports hence supports maximum of 

32 systems. MOSIX [URL9] is another research project done in a university at Israel. 

This supports process level redirection, and multiple level redirections too and at present 

demonstrated with 72 processors. It is working in UNIX, BSD, Linux machines. This is 

still in development stage. This has no failover recovery. It is a fully distributed 

architecture. Other solutions called application servers do exist and they cost in the range 

of seven lakhs per host (Pramati web server [URL2]) to 18 lakhs per host (BEA web 

logic-server [URL3]), but they are not customisable to the larger extend. 

1.3 How the dissertation solves the above problems 
The interoperability is provided by passing XML [URL1] file transfer between 

systems and using byte streams. The parser used has the capability of parsing and de-

parsing between objects into XML files. Hence this system could be used with the 

programming language objects of visual C++, Java, and Cocoa. Having buffers at the two 

ends does asynchronous messaging. Remote admin is provided to monitor the status of 

the systems. Shell prompt also provide input channel. Using shared databases provides 

the persistence of data. The load computation is application vice hence the load is more 

2 



exact. This accommodates systems with various configurations. Applications are 

provided with wrapper classes as abstraction while communication with data objects, 

hence application programmers could easily integrate with cluster system. 

1.4 Dissertation Objective 
The purpose of this study is to investigate and implement a less featured, more 

reliable and efficient way of achieving cluster management system and to overcome the 

limitations of conventional cluster management systems. Further to provide a convenient 

reporting and controlling mechanism across the cluster nodes. 

1.5 Report Organization 
In chapter 2 definition of cluster management system is given with regard to Real 

Time Clusters. It also discusses different design issues to be considered and a survey of 

existing cluster management systems. Chapter 3 covers the details of necessary concepts 

that help in working of the Cluster systems and explains the infrastructure required to 

implement Real Time Clusters. It also describes the peer-to-peer protocol to use and the 

various scheduling algorithms in existence. Chapter 4 discusses how the identification is 

done through naming conventions and the load management is designed. The interaction 

system's capabilities are specified one by one. It also explains the module vice interaction 

and association within the module of various components. Chapter 5 explains how a 

application programmer initiates the cluster system and how to send and receive data 

through the cluster system and the method by which different features are implemented in 

this work. Chapter 6 of the report includes the GUIs built and results obtained. Chapter 7 

concludes the report mentioning how Real Time Cluster Management as implement 

through this approach has overcome the limitations mentioned in chapter 1 and gives 

further areas of improvement. 



Chapter 2 

LITERATURE SURVEY 

In this chapter a study of the requirement for Real Time Cluster Management 

System and various existing solutions is presented. 

2.1 Today's Scenario 
Most technical problems in engineering, science, medicine, and financial services 

are solved using computational workflows that integrate numerous related, but distinct 

application components. Modem computing environments are potentially excellent 

platforms for processing such workflows because they allow the work to be distributed 

among large numbers of highly capable independent machines. However, the tasks of 

integrating applications, building workflows, scheduling machines, moving data, and 

managing the entire distributed computing environment are daunting. 

Parallel computing uses multiple computers or internal processors to solve 

problems at a greater computational speed than using a single computer or processor. 

2.1.1 Evolution of Cluster Computing 
In the past, organizations performed computing tasks in highly integrated 

enterprise computing centres. Although sophisticated distributed systems existed, such as 

command-and-control and reservation systems, and the Internet Domain Name System, 

these were specialized, niche entities. The Internet's rise and the emergence of e-business 

have, however, led to a growing awareness that an enterprise's IT infrastructure also 

encompasses external networks, resources, and services. 

Initially, developers treated this new source of complexity as a network-centric 

phenomenon and attempted to construct intelligent networks that intersected with 

traditional enterprise IT data centres only at edge servers (the virtual private network 

server that connects an enterprise network to service provider resources), for example. 

These developers worked from the assumption that these servers could thus manage and 

5 



circumscribe the impact of e-business and the Internet on an enterprise's core IT 

infrastructure. 

These attempts have generally failed because IT services decomposition is also 

occurring inside enterprise IT facilities. New applications are being developed for 

programming models, such as the Enterprise JavaBeans component model, that insulate 

the application from the underlying computing platform and support portable deployment 

across multiple platforms. Thus, for example, Web serving and caching applications 

target commodity servers rather than traditional mainframe computing platforms. 

Meanwhile, Web access to enterprise resources requires ever-faster request servicing, 

further driving the need to distribute and cache content closer to the network's edge. 

The overall result is decomposition of a highly integrated internal IT 

infrastructure into a collection of heterogeneous and fragmented systems, often operated 

by different business units. Enterprises must then reintegrate these distributed servers and 

data resources with QoS, addressing issues of navigation, distributed-..sec.urity, and. 

content distribution inside the enterprise as well as on external networks. 

In parallel with these developments, enterprises require an increasingly robust IT 

infrastructure to handle the unpredictability and rapid growth associated with e-business 

ventures. Businesses are also expanding the scope and scale of their enterprise resource 

planning projects as they try to achieve better integration with customer-relationship-

management, integrated-supply-chain, and existing core systems. 

These developments have the aggregate effect of making the QoS traditionally 

associated with mainframe host-centric computing essential to the effective conduct of e-

business across distributed computing resources, both inside and outside the enterprise. 

For example, enterprises must provide consistent response times to customers, despite 

workloads with significant deviations between average and peak utilization. Thus, they 

require flexible resource allocation in accordance with workload demands and priorities. 

Yet the current paradigm for delivering QoS to applications via the vertical integration of 

platform-specific components- and services does not work in today's distributed 

environment: The decomposition of monolithic IT infrastructures is inconsistent with the 

delivery of QoS through vertical integration of services on a given platform. 

6 



Modern Pay Per Use model [10] 
Companies such as Entropia hope. to capitalize on distributed-computing 

technology by paying ordinary Web users for use of their spare computer processing 

cycles. The companies then sell access to the resulting Internet-based grid to commercial 

concerns such as genetics researchers. 

2.1.2 Common Cluster Issues and Common Cluster Management Solutions 
High-volume Web sites often use cluster of servers to support their architectures. 

A load balancer in front of such clusters directs requests to the various servers in a way 

that equalizes, as much as possible, the load placed on each. 

There are two basic approaches to scaling Web clusters: adding more servers of 

the same type (scaling out, or horizontally) or upgrading the capacity of the servers in the 

cluster (scaling up, or vertically) [9]. 

Typical questions about Web cluster design include whether to use a large number 

of low-capacity servers or a small number of high-capacity costly ones to provide a given 

performance level? How many servers of a given type are required to provide a certain 

performance level at a given cost? 

--Common Ciustet Management solutions are Native solutions like Network Load 

Balancing of Windows. Application development platforms like J2EE and Application 

Server like Weblogic Server. 

2.2 Native Solutions 
These are the ready-made solutions available for us. These architectures are less 

flexible and they have limitation in capabilities. 

2.2.1 Network Load Balancing Architecture in Windows [URL8] 
The clients are differentiated by request type and client related factors. Using this 

information "load sharing" is done by allocating some set of users for every node. Heart 

beat messages are passed among the servers to check each other node's availability. If the 

server node is offline then the clients retry the connections. Remote administration 

module is present to know the status and to configure the node. Some session has to be 

maintained by the applications themselves. 

7 



r 

2.2.2 MOSIX [URL9] 

Based on Shared memory multi-computer 
Every process has Unique Home Node, where shared memory access requests are 

sent back. The transactions is kept at the common data store where each client depended 

data could be taken from. 

Based on Distributed architecture 
This is fully distributed architecture where every system is capable of making its 

own decision for redirection of request. And it is capable of communicating with the next 

system and naming conversion can independently make. 

Implementation 
Servers and workstations are used as a single cluster by installing the same 

"mosix.map" in all the computers, with the IP addresses of all the servers and all the 

workstations. Advantage/disadvantage: your workstation is part of the pool. . 

Servers are shared while workstations join or leave the cluster, e.g. from 5PM to 

SAM. Use a simple script to decide whether MOSIX should be activated or deactivated in 

your workstation. Advantage/disadvantage: remote processes can use your workstation 

when you are not using it. 

2.2.3 Other Solutions 

2.2.3.1 PVM and MPI 
PVM (Parallel Virtual Machine) and MPI (Message Passing Interface)are both 

popular and freely available parallel software development aids. The Oak Ridge National 

Laboratory developed PVM for internal use and released it to the public after some 

refinement. A committee known as the MPI Forum developed MPI as a standard. MPI 

has become more popular to use than PVM, owing mostly to its improved portability. 

Vendors develop proprietary versions of PVM that are optimized for their platforms, but 

systems developed using one vendor's PVM might not compile on another's platform. 

Vendor support of MPI, on the other hand, was required to meet strict interface standards. 

8 



2.2.3.2 THE OPENMP 
A true multiprocessor offers multiple CPUs, each with equal access to. a .shared 

physical-memory area. Twenty years ago, Kai Li, a Yale doctoral student, proposed a 

shared-memory model for a multi-computer, which used custom software on a network 

of workstations. The software provided a layer of support for shared virtual memory that 

spanned his network of uniprocessors. Programs written for a multiprocessor would run 

more slowly on his system, but his system was a small fraction of a true MP's cost. His 

dissertation and subsequent publications influenced parallel architecture research for over 

a decade. OpenMP is a programming language based on this kind of model. 

One key difference between MPI and OpenMP is the approach to exploiting 

parallelism in an application. MPI requires the developer to convert the entire application 

immediately. OpenMP allows an incremental conversion; the developer can convert, 

profile, and tune a, large application in a stepwise fashion, simplifying the debugging and 

development process. If you decide to use OpenMP to develop a parallel system, you 

must either have access to a multiprocessor or run a custom software support layer that 

emulates these properties on a multi-computer. 

2.2.4 -Comparative study of existing Native solutions 

Issues RRDNS [URL7] NLB [URL8] MOSIX [URL9] 

Architecture Centralized Fully distributed Fully distributed 

Load 
Fixed Adaptive Adaptive 

Distribution 

http like 
Valid Request 

disconnected TCP/IP Process level 
protocols 

protocols 

Popular proxy Win 2000 advanced 
Examples Data center server 

servers server 

Table 2.1: Comparison of Native Solutions 



Single point of 
Fault Tolerant Redundancy Redundancy 

failure 

Administration Local Remote & Local Local 

Project Status Popularly available Already released Development Stage 

Session 
Connection based User based N/A 

maintenance 

Redirection of 
Once Once Multiple 

request 

No failover Failover support for Failover detection 
Crash 

detection & no SQL databases and file available but no 
Recovery 

recovery & print services recovery 

Number of 
Demonstrated for up to 

system in a No limit Maximum 32 servers 
72 hosts 

cluster 

Table 2.1: Comparison of Native Solutions (Continued Page) 

2.3 Application Development Platforms 
These are custom development environments like DCOM [URL1 1, URL12] and 

J2EE [URL13] enterprise solutions. These solutions provide these features 

2.3.1 Session Manager 
This is required to keep the sessions of the users, to know the user better and to 

give him the personalised service. Security purposes so we can guarantee that a not 

logged user cannot go on for further requests so we can deny him service. Application 

session maintenance across each request transfers. 

2.3.2 Asynchronous Messaging 
All cluster nodes are not based on synchronous messaging since a sender will be 

busy to prepare the previous transfer and the receiver will be busy to execute previously 

received requests and need not be free. Also after processing all the issues of a command 

i0 



the result too has to be sent.to the client directly that is we need not traverse the same 

path, so each execute independently: 

2.3.3 Process Scheduler 
The least loaded system has to be chosen, after that naming convention has to be 

made to send it to that system. The task is done in a distributed architecture, by having 

one Process Scheduler for every computer. 

2.3.4 Interoperability 
The interoperability of using an object type which was generated in a VC++ 

program is totally different from an object type which is generated in Java program. 

Hence we need to use industry common data representation format XML [URL1] file 

format. This needs an XML parser and XML de-parser. 

1 2.3.5 Peer to Peer Technologies 
Peer-to-Peer computing is an emerging distributed computing technology that 

enables direct resource sharing of both computing -services and data files among a group 

of mutually trusted clients over the Internet. JXTA technology is a network programming 

and . computing .platform that is designed to solve a number of problems in modem 

distributed computing, especially in the area broadly referred to as peer-to-peer 

computing, or peer-to-peer networking, or simply P2P. On 25 April 2001, the first 

prototype implementation was unveiled on http://www.jxta.org. It is present on JDK 

release 1.1.4 onwards, hence it is present in most common Java platform available on 

machines running Microsoft Windows and Unix. 

2.4 Application servers [URL2,13] 
These are single function servers used for dedicated tasks like Web 

caching/acceleration, Web hosting, networked attached storage, load balancing etc. 

Appliance servers are designed for quick installation and simple maintenance. These 

systems come with a pre-loaded operating system and application software (often Web 

server software) that simplifies deployment so servers can be plugged into networks as 

easily as desktop PCs. 



2.4.1 BEA Architecture [URL3] 
BEA Tuxedo is the proven platform that simplifies distributed transaction 

processing and message-based application development while delivering unlimited 

scalability and standards-based interoperability. The figure 2.1 shows the BEA 

Architecture for the application server. 

eECa 4JebLa tic 	BEN Liquid Data 	EEFI i eLiLcu is 
tti 1 	Portal 	for UebLc"rirD 	Integration  

J 	I 	E:EA LiebLocgic 4iorkshop Framework 

w-  BEA LJebLocic Server 

BEA WebLogie JF:ockit 

~iperations Ge 	 me  n t 	Security 	AdrAi nisi rati on Cie
pl 

o
y 
ment  

Management 

BEA 4JebLociic Tu ,do Connector 

C, C+t, COBOL & CORE:I1 Environment 

Figure 2.1: BEA Architecture 

Key Features and Benefits 

The different key features of highly distributed transaction processing in BEA and 

their Benefits are listed in table 2.2. 

Feature 	 Benefit 

Distributed transaction 	Optimizes transactions across one or more databases and 

management 	 ensures data integrity across all participating resources, 

regardless of the access protocol 

Table 2.2: Highly Distributed Transaction Processing 

12 



Two-phase commit Automatically tracks transaction participants and ensures 

that all databases are updated properly, or will "roll-back", 

assuring data integrity despite component failures 

Multiple messaging Supplies' synchronous, asynchronous, and conversational 

protocols messaging APIs for heterogeneous platform support 

Transaction queuing Provides flexibility in processing or deferring transactions to 

allow distributed applications to work together in an 

asynchronous, "connection-less" fashion 

Event brokering Provides a transactional event system based on the publish- 

and-subscribe programming model 

Table 2.2: Highly Distributed Transaction Processing (Continued Page) 

The different key features of resource management in BEA and their Benefits are 

listed in table 2.3. 

Feature Benefit 

Authentication, 
Ensures data privacy when deploying BEA Tuxedo 

authorization, and 
applications across networks 

encryption (LLE) 

Security plug-in . 	Enables public key encryption, digital signatures, and 3rd 

framework 	 party security products integration 

Common Object Request 

Broker Architecture 

(CORBA) 

Allows organizations to leverage their existing investments 

in legacy applications and enables 3rd party Object Request 

Brokers to bootstrap and authenticate to BEA Tuxedo 

CORBA servers 

Table 2.3: Resource Management 

13 



Application to Transaction An X/Open API supplies a consistent application- 

Manager Interface (ATM!) programming interface for C, C++, and COBOL across all 

BEA Tuxedo platforms 

Provides sophisticated application management tools and 

Web Based OA&M GUI interfaces into the leading network and system management 

products that simplify application OA&M 

Table 2.3: Resource Management (Continued Page) 

The different key features of unlimited scalability and reliability in BEA and their 

Benefits are listed in table 2.4. 

Feature Benefit 

Enables applications to handle requests in parallel and 

Application parallelization process multiple transactions simultaneously on different, 

distributed nodes 

Replicated service Dynamically replicates distributed applications throughout 

framework the network to maximize performance and reliability 

Minimizes downtime and keeps applications running 

Robust fault management through planned and unplanned downtime by eliminating 

single points of failure 

Automated load Provides automated service replication based on real-time 

management and system loads and dynamically balances requests across all 

balancing available resources ensuring consistently high throughput 

Routes messages based on their context, content, or time of 

Data dependent routing day and enables efficient transaction processing and 

prioritization 

Table 2.4: unlimited scalability and reliability 

14 



Delivers a flexible, "in-memory" message queuing 
Advanced message 

mechanism for high performance, reliable, asynchronous 
queuing paradigm 

message delivery 

Table 2.4: unlimited scalability and reliability. (Continued Page) 

The different key features of extensible infrastructure in BEA and their Benefits 

are listed in table 2.5. 

Feature Benefit 

Provides bi-directional, peer-to-peer, cross-platform 
• WebLogic Tuxedo 

interoperability with complete transaction and security 
Connector (WTC) 

propagation for data integrity 

Streamlines complex business processes thru BEA's best-of- 
Interoperability with BEA • bread J2EE products and leverages existing BEA Tuxedo 
WebLogic Platform 

infrastructure assets 

Web services support via 

BEA WebLogic Simplifies Web services generation and deployment with a 

Workshop and Tuxedo declarative programming model 

Control 

Standards-based 
Speeds BEA Tuxedo application integration with new and 

application integration via 
existing solutions, streamlining complex business processes 

BEA WebLogic 
and connectivity with business partners 

IntegrationTM 

XML buffer and parsing Supports XML message parsing and routing to other XML- 

support capable applications (i.e. Oracle 9i or to BEA eLink). 

Table 2.5: Extensible Infrastructure 

15 



2.4.2 Pramati Server [URL2] 
Pramati Server is also one of the application server models. It is very- easy to 

configure and have rich set of features. The drawback is their cost, which ranges from 7 

lakhs per system installation. 

Key Features in Pramati Application Server 
1. Drag and drop applications into deploy "basket" directory. Server auto-generates 

missing XMLs in archives. 

2. Point and, run applications "As They Are", on Tomcat Server and Apache HTTP 

Server. No change in directories or files. 

3. Personalize shell commands by using the Extensible Pramati Server Command .Shell to 

define commands you want. 

4. Smart web load balancer, filtering requests to nodes based on sessions, URLs, 

availability and workload. 

5. Dynamic content cache turbo-charges application performance- deployed -on-Pramati-

Server. Choose what and when to cache. 

6. In-depth statistics and on-the-fly graphs highlight all parameters that show 

performance and workload. 

7. Drill-down diagnostics shrinks resolution time by separating platform issues from 

application problems. 

8. Extensive logging of J2EE server and web activity, makes for clearer and faster 

reporting of problems. 

9. High-availability data source configuration and capability to use multiple driver 

versions. 

10.Customize the server to exactly fit your application, by switching on only the required 

services, directly'in XML. 

2.4.3 On Demand Distributed Computing With"WebSphere 
Before applications can move into production, enterprises face the inevitable and 

time consuming question of what infrastructure and underlying capacity will be needed to 

support their applications. This 'capacity-planning picture isn't getting any prettier either. 

As all business applications are increasingly Internet-enabled and now available to a 

E 



global user base, this becomes more of guess estimation than exact science. On Demand 

Computing offers the promise of providing computing cycles on a pay per use basis much 

like electric or gas utilities. The ability to scale "On Demand" is great but it doesn't 

guarantee performance. This is especially true for Internet applications. Because utility 

computing doesn't necessarily place resources close to requesting users, it still forces all 

requests to a central point for processing. To successfully support Web-based 

applications and avoid the Internet bottlenecks inherent with "silo" serving, a distributed 

computing model is required. 

Using On Demand Distributed Computing, applications not only scale on 

demand—they avoid the inherent bottlenecks on the Internet. With a few adjustments in 

application development and design, businesses can propel applications into production 

without spinning cycles on costly infrastructure decisions. Most importantly,_ the On 

Demand Distributed Computing model boosts performance so that applications are never 

"dumbed-down" to handle the vagaries of the Internet. Developers gain the freedom to 

create innovative applications in far less time than it is possible to do so with traditional 

solutions. We will see an executive level overview of how IBM WebSphere applications 

are easily deployed in the On Demand Distributed Computing model. These practices 

involve usage of the existing set of services available in Java 2 Enterprise Edition (J2EE) 

application server containers. In many instances, applications are already viable for On 

Demand Distributed Computing. In others, following a few J2EE best practices has 

applications ready for deployment in short order. 

2.4.3.1 On Demand Computing Overview 
A growing number of businesses are beginning to adopt the On Demand or Utility 

Computing model as espoused by IBM. In this approach, enterprises pay only for the 

computing cycles consumed instead of paying for infrastructure that has been built to 

weather periods of peak demand. This economic. model is well understood in other 

industries, and is just now penetrating IT. But as is true with any new technology, 

understanding when and how this architecture can be leveraged is a challenge. In theory, 

On Demand Computing offers the promise of providing computing cycles on a pay-per-

use basis, much like telephone, electric or gas utilities. This ability to scale "On Demand" 

17 



sounds great, but it doesn't guarantee application performance. This is especially true for 

the growing number of Internet applications being deployed daily. .Because many On 

Demand or utility computing architectures are centralized, they still force all requests to a 

central point for processing. To successfully support Web-based applications and avoid 

the Internet bottlenecks inherent with "silo" serving, a distributed computing model is 

required. 

Here's why: 

The infrastructure used to deliver Web applications typically includes a wide 

range of technologies including load balancers, HTTP Web servers, caching servers, 

messaging systems, transaction-processing monitors, application servers, and databases. 

A typical enterprise application infrastructure is shown in Figure 2.2. 

Network Load 
Balancer(s) 

HUp SQL 

Web 	Application 
HTML Clients 	 Server(s) 	- Server(s) 

Database 
Server(s) 

Figure 2.2: Typical J2EE Internet Infrastructure 

As performance and geographic reach requirements expand, Internet application 

infrastructure becomes increasingly heterogeneous and difficult to scale. IT managers 

continually must evaluate capacity plans to keep pace with the expected peak demand, 

and the number of "moving parts" increases points of failure. Pre-provisioning extra 

capacity as insurance against overload is financially unacceptable for most enterprises. In 

addition, it prevents innovation, as every new application requires a business case• 

proving its worth. Ideally, enterprises want computing resources when—and only 

18 



when—they are needed; they do not want to buy extra infrastructure that sits idle when 

not needed. As seen in Table 2.6, below, a recent study conducted by IBM, demonstrates 

that Intel and Unix servers deliver sub-10% utilization rates. 

Peak-hour 

Utilization 

Prime-Shift 

Utilization . 

24-hour Period 

Utilization 

Mainframes 85-100% 70% 60% 

Unix 50-70% 10-15% <10% 

Intel-based 30% 5-10% 2-5% 

Storage N/A N/A 52% 

Source: IBM Scorpion Whitepaper: Simplifying the 11 Infrastructure, Zu02 

Table 2.6: Typical Infrastructure Utilization 

"On Demand" computing provides better utilization of computing resources and 

represents a model in which computing resources are brought into service as needed. 

2.4.3.2 On Demand Distributed Computing (ODDC) 
Rather than focus on server-side technologies that tend - to deliver marginal 

performance fixes for Internet applications, enterprises can design applications such that 

they leverage the benefits of a distributed computing platform that extends beyond the 

server. In general, there are two ways in which On Demand Computing is being made 

available to businesses: through centralized and distributed architectures. Centralized 

approaches to utility computing are ideal for applications that reside on a LAN or in 

instances where user distribution is very low. With the growing number of Web Services 

and Internet-enabled applications, this isn't always the case, as users are typically spread 

across_ the Internet. In contrast . to centralized approaches, On Demand Distributed 

Computing places processing close to users so that application performance and 

reliability are improved. Businesses that factor this model into design stages are able to 

launch applications, without the normal delays of infrastructure capacity planning. 

Internet-based applications move from pilot to production more quickly and inherently 

have higher performance and reliability. 

19 



2.4.3.3 ODDC and IBM WebSphere Application Server 
Akamai's EdgeComputing service is a leading example of an On Demand 

Distributed Computing platform. Deployed at the "edge" of the network--close to users' 

access points—EdgeComputing consists of tens of thousands of servers in over 1,100 

networks around the world. J2EE application _processing is distributed across this 

platform so that "On Demand" computing is available close to requesting users. These 

globally distributed edge servers implement industry standard protocols to support tasks 

as simple as page assembly or as complex as J2EE processing. 

To further extend distributed computing capabilities beyond the presentation tier, 

Akamai supports the IBM WebSphere Application Server (WAS), Version 5.0, 

throughout this distributed computing platform. This service—Akamai EdgeComputing 

powered by WebSphere, enables enterprises to run J2EE Web tier applications in an On

•Demand WebSphere environment and to consume Internet computing resources on a 

pay-as-you-go basis. A typical Akamai EdgeComputing environment, consists of the end 

user using a browser, the enterprise (origin) running, business logic, legacy systems and 

databases, and a distributed network of servers running an embedded WAS or Tomcat 

server that supports the J2EE web application programming model. 

The EdgeComputing development model remains standard J2EE and does not 

require the use of any proprietary APIs; it is the deployment model that changes, not the 

programming model. If applications' generally follow J2EE component programming best 

practices, _ adapting the existing application for . EdgeComputing will be easier. 

EdgeComputing extends the WebSphere application-programming platform to enable the 

execution of J2EE web tier application components—JSPs, Servlets, Tag libraries, and 

JavaBeans. 

Development for EdgeComputing still relies on standard J2EE development tools 

and best practices in developing applications, but one must architect edge-enabled 

applications as two cooperating sub-applications: an edge-side application running on 

EdgeComputing Platform and an enterprise-side application. 

The beauty of this approach is that many enterprises that are. running J2EE can 

adopt On Demand Distributed Computing with few, if any, changes to enterprise 

applications. By using the existing set of services available in J2EE application server 

20 



containers, businesses can designate what processing occurs at the "edge" and what is 

handled at the enterprise origin. In general terms, this means moving what is known as 

J2EE "Web Container" application components—JSPs, Servlets, Tag libraries, and 

JavaBeans—to a  tier of "edge servers". These distributed servers field all application 

requests, process the Web Container components, and communicate with back-end 

systems as needed. These requests to back-end systems are handled via industry standard 

protocols such as HTTP, SOAP, Java RMI (Remote Machine Interface) and Java 

Database Connectors (JDBC). 

EdgeComputing Application Examples 
EdgeComputing powered by WebSphere enables a powerful new deployment 

model for J2EE Web applications. The following examples describe some applications 

modelled to run on EdgeComputing and illustrate the use of WebSphere Web Services 

and Cloudscape. in EdgeComputing applications. 

• Product Catalogue 

A product catalogue browsing application can run almost entirely on the edge in 

the EdgeComputing environment. Since most product catalogues consist of relatively 

static •product'data (not including inventory information), the edge application can utilize 

Cloudscape as the local DBMS. The data can be bundled into the edge WAR (web 

application archive- packaged j2ee components, server side database beans, shopping cart 

and static pages) along with the catalogue browsing presentation components. Using this 

deployment model, it is feasible for the end user browsing interaction to be handled 

entirely by the edge application. When a user is ready to purchase any selected items, the 

edge application tunnels back to the enterprise for order processing. 

• Marketing Promotional Contest 

An enterprise wants to conduct a large-scale marketing promotion to give away a 

certain new product. Because of the uncertainty of the number of end-  user contestants, an 

On Demand edge application is extremely beneficial to assuring a successful outcome. In 

this scenario, the application might have "random selection" logic to determine if an end 

user is a winner. An EdgeComputing application can be designed and developed to 

execute this logic on the edge, offloading the load from the enterprise. In addition, the 

1I 



corporate marketing team can implement various controls on how long the contest- runs, 

how many products are given out, the rate at which they are disbursed, or other, controls. 

The edge application executes the corresponding business logic entirely on the edge and 

retrieves the control parameters from the enterprise via Web Services calls. 

• Site Search 

Search is by far the most frequently used application on Internet sites and can 

consume significant application server resources in terms of request handling and 

requisite back end queries. When deployed using ODDC, Search applications powered by 

EdgeComputing uses Cloudscape to store data at the edge and IBM WebSphere to 

execute searches close to users, thereby offloading the load from the enterprise. 

2.4.3.4 Features of Akamai 

Cache consistency 
When objects that the edge servers deliver are cacheable, we must address the 

consistency of cached content; when they are uncacheable, high-performance delivery is 

a challenge. To address cacheable- object consistency, content providers often use 

established techniques, such as applying a "time to live" (TTL) to objects. Some objects 

might be cacheable forever, or at least until they are explicitly removed by a cache 

control utility (for more on this, see the "Lifetime Control" section). Another approach is 

to use a different URL for each object version. In addition to using a unique query string 

for this purpose, Akamai let customers place a version or generation number in the URL. 

Versioned objects typically have. infinite TTLs. To improve uncacheable objects' 

performance, Akamai introduce an edge server between the client and origin to split the 

client's TCP connection into two separate connections one from the client to the edge 

server and one from the edge server to the origin. Contrary to intuition, splitting the 

connection can deliver faster responses in some cases because the edge server can react to 

packet loss more quickly than the origin server, improving the connection's bandwidth-

delay product. Akamai also map clients to edge servers that have low congestion and 

packet loss. Furthermore, the edge server can accept the origin server's response faster 

than the client could, and can serve it from memory at the client's pace. This frees up 

origin server resources to serve subsequent requests, reducing origin site demand even for 

22 



uncacheable content. Finally, the edge server can maintain much longer persistent 

connections with the client than can an origin server; the origin need only maintain 

connections with relatively few Akamai edge servers. 

Lifetime control 
In some cases, the edge server must remove certain objects from all servers on 

demand. This might be in response to a request from an Akamai customer (the content's 

provider), or initiated by an interface that lets content publishing systems schedule 

invalidations when content changes. Because most Web objects change infrequently, 

heuristic caching policies in Web proxies typically hold copies long, after they change. 

Akamai's edge servers support on-demand purges for changed or otherwise invalid 

content. 

Authentication and Authorization 
When serving protected content, edge servers must either contain authorization 

features or relay authentication tokens to the origin server for authorization. In the latter 

case, the edge server must be careful not to evict the protected content on a request 

authorization failure. Akamai lets content providers authorize every user request from 

their own site by passing request headers from our edge servers to. their content servers 

prior to serving each client request. Akamai edge servers can also process authorization 

tokens that the origin server attaches to the request, thereby avoiding a round trip to the 

origin server on each request. 

Integrity control 
A server must ensure that each client request receives the correct response, and 

also detect when origin servers issue incomplete responses and avoid caching those 

responses. Edge servers can contain content from many customer origin servers, and it's 

• imperative that they not serve content to the wrong customer regardless of the content's 

name or how clients access it. Furthermore, a server should detect when cached objects 

become corrupted (due to disk failure, for example) and re-fetch them if they do. In 

Akamai's system, they have built a content integrity check feature into our software; prior 

to serving each block of a response, the server double checks that the content is 

23 



associated with the request. This protects the edge server from serving content 'that .was 

• corrupted on disk or. confused in memory due to a software error. , 

Visibility into access patterns 
Customers want to see detailed content-access logs. To offer- this, .Akamai 

aggregate individual server logs and extract relevant entries for each customer. Log 

delivery and aggregation involves a significant data flow, however, and collecting and 

processing all the logs can take time. Some content providers also want real-time delivery 

information about their site. In this case, Akamai focus on giving customers content 

delivery rates and client locations, rather than full log details. 

2.4.3.5 Summary for On Demand Computing 
Before businesses embrace "On Demand", they must realize that this new 

deployment model does not guarantee Internet application performance. To successfully 

support Web-based applications and avoid the Internet bottlenecks inherent with "silo" 

serving, a distributed computing model is required. Using On Demand Distributed 

Computing, Internet applications can deliver new levels of performance and reliability 

regardless of user location or load. By using the existing set of services available in J2EE 

application. 

2.4.4 Turboworx 
TurboWorx provides the world's only fully integrated, end-to-end solution for 

creating, managing, and accelerating technical computing applications, workflows and 

data processing in heterogeneous distributed computing environments, including clusters 

and grids. TurboWorx's SmartGrid technology is built on an open development 

environment and is available for all major operating systems. 

TurboWorx's suite of products addresses these -problems. The flexibility of 

TurboWorx solutions facilitates an ongoing process of experimentation_ and improvement 

- attributes not present in the usual solutions built on traditional scripts and batch 

processing queues. As a result, scientists, engineers, analysts and others can solve 

complex computing problems with reusable workflows, which, become valuable assets to 

their businesses. - 

24 



Chapter 3 

ANALYSIS 

In this chapter we will go through, the issues related to concepts of different 

parallel computing models, scheduling algorithms, load sharing, scalability and inter 

node communication. 

As Web sites become popular, they are increasingly vulnerable to the flash crowd 

problem, in which request load overwhelms some aspect of the site's infrastructure, such 

as the front-end Web server, network equipment, or bandwidth, or (in more advanced 

sites) the back-end transaction-processing infrastructure. The resulting overload can crash 

a site or cause unusually high response times both of which can translate into lost revenue• 

or negative, customer attitudes toward a:  product or brand. This requires using a high 

performance than the average load performance systems. 

3.1 High End Computing 
'in 'a supercomputing facility that hosts high-performance servers, users can 

submit various applications, data- or processor-intensive (or both). Users can supply their 

own software and data or use the locally available software on their respective data. Thus, 

the type of applications executed can vary widely and, consequently, so can the 

respective applications' computation times. 

3.1.1 Multiprocessor Systems: (Multiple Processors in a Single System) 
Multiple processors were once the exclusive domain of mainframes and high-end 

servers. Today, they are common in all kinds of systems, including high-end PCs and 

workstations. The most common architecture used in these devices is symmetrical 

multiprocessing (SMP). The term 'symmetrical' is both important _ and misleading 

Multiple processors are, by definition, symmetrical if any of them can execute any given 

function. 

This point might seem hardly worth emphasizing, but when multiprocessing 

models first appeared, some were not symmetrical. On these systems,, one or more 

25 



processors were dedicated to certain specific functions—generally, running the operating 

system or one of its subsystems. These processors -could not run user code and so the 

design was not symmetrical, since it was not true that any given task could run on any, 

processor. 

3.1.2 Massively Parallel Systems: (Collaborating without Shared Resources) 
Massively parallel processing (MPP) takes the concepts multiprocessor systems 

and expands them in a different- direction. MPP systems use hundreds of processors, each 

one supported by its own- memory . and its own copy of the , operating system. Each of 

these independent computing units is called a node. Nodes share information over a 

custom high-speed interconnects. MPP systems differ from the systems described 

previously because all nodes are working under the control of a single program. 

For MPP computation to work correctly, the -software has to be capable of 

partitioning its work and the data it operates on over hundreds of processors. This 

requirement necessitates specialized skills and, uncommon programming tools and 

techniques. MPP-is used in scientific applications and in advanced business contexts such 

as data warehousing and decision support. In both of these business applications, chunks 

of data are analyzed separately and the results are later aggregated—an almost perfect 

match for MPP-style computing. 

3.1.3 Clusters: (Aggregating. Machines into a Single System)' 
A cluster is a group of individual, stand-alone computers that .work together and 

that outside systems view as a single computing resource. The individual systems (nodes) 

that make up the cluster communicate with each other via high-speed connections such as 

Gigabit Ethernet, ATM, or a proprietary link. For easier management, clusters use special 

software to -coordinate and manage their, activities, depending on how they are used. 

Clusters are particularly well suited to meeting the needs  of high-availability, load 

balancing and scientific computing. 

• Highly available clusters consist of two or more nodes that are exact mirror images of 

each other. If the primary system goes down due to hardware malfunction, for example, 

fail-over software immediately makes its twin system the primary node. This approach 

enables work to continue without interruption. 

26 



• Load-balancing clusters process heavy volumes of transactions of a similar type. For 

• example, enterprises often use clusters for hosting Web servers or handling database 

transactions. The cluster routes the incoming transaction stream to whichever node in 

the system is most able to handle it. Sometimes this decision is based on workload and 

sometimes it is based on other factors. 

3.1.4 Grids: (Resource Sharing among Separate, Distinct Systems) 
While clusters are groups of computers tied together as a single device, grids 

consist of multiple systems that work together while maintaining their distinct identities •  

This model already has, been demonstrated in the wider community of users with 

the SETI project (among others), which used the home PCs of volunteers to perform 

analysis of astronomical data 

Term computational grid comes from an analogy with the electric power grid; 

• Electric power is ubiquitous 

• Don't need to know the source (transformer, generator) of the power or the 

power company that serves it 

3.2 Scheduling Algorithms 
Scheduling algorithm is used to distribute traffic among the cluster nodes. We 

will go through some of the common scheduling algorithms and their characteristics. 

3.2.1 Round-Robin Scheduling 	 . 
Distributes each request sequentially around the pool of real servers. Using this 

algorithm, all the real servers are treated as equals. without regard to capacity or load. -

This scheduling model resembles round-robin DNS but is more granular due to the fact 

that it is network-connection based and not host-based. 

3.2.2 Weighted Round-Robin Scheduling 
Distributes each request sequentially around the pool of real-  servers but gives 

more jobs.  to servers with greater capacity. Capacity is indicated.  by a user-assigned 

weight .factor, which is then adjusted upward or downward by dynamic Ioad information. 

Weighted round-robin scheduling is a preferred- choice if. there - are significant 

differences in the capacity of real servers in the pool. However, if the request load varies 

27 	. 



dramatically, the more heavily weighted server may answer more than its share of 

• requests. 

• 3.2.3 Least-Connection 
Distributes more requests to real servers with fewer active connections. Because it 

keeps track of live connections to the real servers through the tables, least-connection is a 

• type of dynamic scheduling algorithm, making it a better choice if there is a high degree 

of variation in the request load. It is best suited fora real server pool where each member 

node has roughly the same capacity. If a group of servers have different capabilities,. 

weighted least-connection scheduling is a better choice. 

3.2.4 Weighted Least-Connections 
Distributes more requests to servers with fewer active connections relative to their 

capacities. Capacity is indicated by 'a user-assigned weight, which is then, adjusted 

upward or downward by dynamic load information. The addition of weighting makes this 

algorithm ideal when the real server pool contains hardware of varying capacity. 

3.2.5 Locality-Based Least-Connection Scheduling 
Distributes more requests to servers with fewer active connections relative to their 

destination IPs. This algorithm is designed for use in a proxy-cache server cluster. It 

routes the packets for an IP address to the server for that address unless that server is 

above its capacity and has a server in its half load, in which case it assigns the IP address 

to the least loaded real server. 

3.2.6. Locality-Based Least-Connection Scheduling with Replication Scheduling 
Distributes more requests to. servers with fewer active connections relative to their 

destination IPs. This algorithm is also designed for use in-  a proxy-cache server cluster. It 

differs from Locality-Based Least-Connection Scheduling by mapping the target IP 

address' to a subset of real server nodes. Requests are then routed to the server in .this 

subset with the lowest number of connections. If all_the.nodes for the destination IP are 

above capacity, it replicates a new server for that destination IP address by adding the 

real server with the least connections from the overall ,pool of real servers to the subset of 

28 



• real servers for that destination IP. The most loaded node is then dropped from the real 
server subset to prevent over-replication. 

3.2.7 Destination Hash Scheduling 
Distributes requests to the pool of real. servers by looking up the destination IP in 

a static hash- table. This algorithm is designed ° for use in a proxy-cache server cluster. 

"3.2.8 Source Hash Scheduling 
Distributes requests to the pool of real servers by looking up the source IP in a 

• static hash table. This algorithm is designated for routers with multiple firewalls. 

3.3 Characteristic of a node 
Any node. in the perspective ,of clustering can have these characteristic defined as 

being. nearest,. being_ available, being likely. " 
1. Nearest; is a function of network topology, and dynamic link characteristics: A 

server with a lower round-trip time is considered nearer than one with a higher,  

round-trip time. Likewise, a server with low packet loss to the client is nearer than 
one with high packet loss. The design is covered in master/local servers' topic in. 
chapter 4. 

2. Available is a function of load and network bandwidth: A server carrying too much 

load or a data center serving near its bandwidth capacity is unavailable to serve 
more clients. The 100% utilization is not optimum as we study from-queuing , . 
theory. Hence the design is covered in-Setting upper. limit topic in chapter 4. 

3. .. Likely is a function of which servers carry the content, for each customer in a data 
center: If all servers served all the content by round-robin DNS, for example then 
the -servers' disk and memory resources would be consumed by the most popular set 
of objects. This is explained- in more broader way in the Load sharing issues topic. 

3.4 Load sharing issue 
LOAD sharing- provides a system mechanism to dynamically migrate jobs from 

heavily loaded workstations to - lightly loaded workstations, aiming at fully_ utilizing 

• system resources. Following the load- sharing principle, researchers have designed 
different alternatives by balancing the number of jobs/tasks among the workstations. (see, 

29 . 



e.g., [7], [8]), by considering memory allocation requirements of jobs '(see,, e.g., [5], [6]) 

and by considering both CPU and memory resources (see, e.g., [3], [4] [2]).;  In a cluster 

system with dynamic load sharing -support, a -new job can be submitted to a workstation 

or a running job can be migrated to the workstation under following conditions. When the 

workstation has idle memory space, the job can be accepted if the number of running jobs 

• in the workstation is still less than a .predetermined threshold which is the maximum 

number of job slots a CPU is willing to take (also called the CPU Threshold). When the 

workstation does not have idle memory space, or is even oversized, no jobs will be 

accepted without further checking the status of the CPU threshold. 

However, in such a system, a small number of running jobs with 'large memory 

• allocation requirements can be scattered among workstations to quickly use up the 

• memory space, impeding job submissions to these workstations. Since these large jobs 

• normally have long remaining processing times, eventually, all the workstations may 

become heavily loaded, stopping job submissions and migrations. We can call this 

phenomenon the job-blocking problem,. which, is rooted from unsuitable placements of 

these large jobs. The existence of these large jobs in a few workstations may increase the 

queuing -delay times of the rest of jobs with relatively small - memory requirements, 

slowing down executions of individual jobs and decreasing the cluster system's 

throughput-. Since job sizes including the memory allocations are unknown in advance, 

the possibility of unsuitable job placements to cause the blocking problem is high and 

existing load sharing schemes are unable to effectively handle this problem. 

When both job submissions and migrations are blocked in.a cluster, it implies that 

the resource allocation in each workstation either reaches its. memory threshold due to 

arrivals of some jobs with large memory demands, or reaches its'CPU threshold, or both. 

Further job submissions or migrations will cause more page faults or queuing delays in a 

destination workstation. One simple solution would be to temporarily suspend the large 

jobs so that the job submissions will, not be blocked. However, this approach will not be 

fair to the large jobs that may starve if job submissions continue to flow, or that can be 

executed only when the cluster becomes lightly loaded. It is 'observed that . CPU .. and 

'memory resources are actually, not - fully -utilized during the period of blocking [1]. For 

example, . some workstations reaching their CPU thresholds may.. still "have idle memory 

30 



space, while some workstations experiencing page faults may still have additional job  

slots-available. 
Recent experiments show that, when a cluster system is not able to further accept• 

or migrate jobs, there are still large accumulated idle memory space volumes available 
among the workstations. This is because demanded memory allocations of a handful of 
jobs could not fit in any single workstation with other running jobs. It is also found that 

jobs are not evenlydistributed among workstations, which increases the total job queuing 

time. 
This problem is solved out in limited resource allocation design in Chapter 4. 

3.5 System Scalability 
Network must scale to support many geographically distributed servers and many 

customers with differing needs. This presents the following challenges. 

• Monitoring and controlling of widely distributed servers, while keeping monitoring 

bandwidth to a minimum. 

• Monitoring network conditions across and between locations, aggregating that 
information. Success here depends on minimizing the overhead added to avoid long 

lookup times. 
• Isolating customers so they cannot negatively affect each other. 

• Collecting logs with information about user requests 

• 3.6 Flexibility vs. Performance in. communication protocol 
High-performance .software communication approaches have increased the -need 

for flexible and high-performance communication systems. When trying to reap the, well- . 
• known benefits of these approaches, the question of. what communication infrastructure. 

should be used to link the various components arises. In this context, flexibility and high-
performance seem to be . incompatible goals._ Traditional HPC-style communication-
libraries, such as MPI, offer good performance, but are not intended for loosely-coupled 
systems. Object- and metadata-based approaches Like XML offer the needed plug-and-
play 

 

 flexibility, but with significantly lower performance. We observe that the flexibility 
and baseline performance of data exchange systems-  are strongly determined by their wire 

formats, or by how they represent data for transmission inheterogeneous environments. 

..  31 
 • 





Chapter, 4 

DESIGN 

4.1 Interaction System 
The interaction system takes care of the way data is transmitted with in system 

and how data is transmitted from outside to . inside of the system. These two cases are 

totally diverse situations. When data is transmitted with in system it is in a secure, less 

crash prone, known (limited diversity) nodes. When data is transmitted from outside the 

system to inside, the system the data starts from client passes through internet cloud and 

reaches our system, thus it is error prone, insecure path, client server scenario, unlimited; 

ways in which the interaction occurs. The 'client till the system interaction is not 

considered here. We start looking at the-  system on receiving a neutral data format, from- 

• outside the system, how we go on within the system. 

4.L1" Messages 
Messages are designed to be usable on top of asynchronous, - reliable and 

unidirectional. transport. Therefore, a message is-  designed as a pipe,, containing an 

envelope and a stack of protocol headers with bodies. The envelope contains a header, the 

source endpoint and the destination endpoint. An endpoint is a logical destination, given' 

in the. form of .a URL, on any networking transport capable of sending and receiving 

stream-style messages. Endpoints are typically mapped to physical addresses by a 

messaging layer. Such a message format is designed to support multiple transport 

• standards. 

Each protocol body contains a variable 'number. of bytes and one or more identity 

of the sender to the receiver. For example, a message body may 	encoded, with the 

header providing further information on how to decode the content. 

33, 



4:1.2 Interoperability with XML 
Each programming language contains objects with <different representation, in 

memory.' For us to integrate between them we ,need to convert our requests into a 

standard representation we are using XML file [URL1] format and then transmit using  

industry: standard network protocol TCP/IP. This needs XML parser and de-parser: 

We need to make a generic parser and de-parser, since we are not aware of the 

next request we might receive. But, each request type has a different data type and 

different number of data members hence we will implement the schema. validation per 

object basis'. We have solved it by having first few bytes in the header as reference. and 

then using "it'we will use the appropriate parser or de-parser to convert from XML file. 

The reverse direction from programming language Objects to XML tile, we use . 

polymorphism to implement in a generic way. 

4.1.2.1 Flexibility vs. Performance in communication protocol 
After examining the performance implications of using a number of different- 

format, I use valid XML having strict-in- the sequence- of. data, -hence_ flexibility and-

human debugging is also permitted, while the performance is still maintained high.. 

4.1.3. Inter system peer-to-peer communication 
Among the server hosts, peer-to-peer communication has the communicating 

systems to have equal priority over one another and a system can with full authority to 

send the data This violated the traditional.  client server technology where the systems 

will have client to originate request and. server to give response- after this. Here the 

origination of connection does not mostly matter except the server socket is invoked to 

show willingness to. communicate. 

The . transmitting thread & receiving thread . for each of the host systems, 

processing thread should work independently: for each connection [12]. `Hence we go for 

an asynchronous communication model, where in the transmitting system will provide 

the transmitting unit the sufficient information to. send and keep on processing with next' . 

information. The transmitting thread is woken up when it receives a message to transmit 

and transmits the, data and again goes:  to suspend state. Similarly on the receiving side the 

34 



receiving thread waits for information at the input stream and when data come it extracts 

and puts into- the queue for the processing system to process, after putting- into the queue 

this thread goes into wait state. The processing thread after processing the requests can go 

into suspend mode till the receiving thread gives the. data. Hence the system is not under-

resourced (no thread has'to wait, when data is in the queue) or over-resourced (no thread' 

is polling for data). 

4.1.3.1 Peer groups 
A peer . group is. a virtual entity that speaks the set of peer group protocols. 

Typically, a peer group is a collection of cooperating peers providing a common set of, 

services. 

• . 	4.1.3.2 Pipes 
Pipes are communication channels for sending and receiving messages and they 

are _asynchronous.` They are also unidirectional, so there are input pipes and output pipes. 

• Pipes are virtual, in that a pipe's endpoint can be bound to one or more peer endpoints. 

A pipe is usually dynamically bound to a peer at runtime via the Pipe Binding 

Protocol. This also implies that a pipe can be moved around and bound to different peers 

at different times., This is useful, for example, when a collection of peers together provide 

a high level of fault tolerance, where a crashed peer may be replaced by ,a new .peer at a 

different location, with the latter taking over the existing pipe to keep the communication 

going. 

4.1.3.3 Point to Point pipe and Propagating pipe 
A point-to-point pipe connects exactly two peer endpoints together. The pipe is an 

".. 	output pipe to the sender and input pipe to the receiver, with traffic going in one direction 

only from the sender to the receiver. A propagate pipe connects multiple peer endpoints 

together, from one output -pipe to one or more input pipes. Accordingly, any message sent 

into the output pipe; is sent to all input pipes. 

For example when multiple controls a single node,  has to take then the response 

and requests should be broadcasted to all the connected, system. 

35 



4.2 Load Management 
Any request to process is considered a.load on our system. How we take care of 

load and how we going to set an upper bound :for :the load a system can take: ;We will see 
these topics 

4 -2.1 Load balancing and informing 
A -system might have many applications running and one application can have 

higher priority which means that application can use more of the CPU time, hence a less 

priority process can be over loaded but still the system is not overloaded and vice versa.. 
Hence load information is computed per application basis: 

The load status ,varies less frequently also for applications,` which take longer time 

to process each request; the load could be sent with some gap., Informing to the next 

system is done periodically. 

When latest information about load comes, the old information has no value. As 

the present state of an application is given by the latest load information curly;-we-erase-

the previous load information when latest load information comes . 

4.2.1.1 Process Scheduler 
Every request is identified by request type and it is pre-assigned to a processing 

code. When this request reaches Process Scheduler, it decides _where- to ::execute that 
processing code:. 

The load balancing :system at every system continuously monitors the state of 

services and their servers and networks.._ Each of-the content servers frequently reports its 
=load to every monitoring application' _(Process Scheduler), which aggregates and then 

determines which IP address to return when resolving request. The server can thus shed a 
fraction of its load when it is experiencing .moderate to high load. 

To monitor the entire -system's health the Application Manager gives work to the 
CPU and finds the response time. Application Manager uses this information to monitor 

overall system performance and to -automatically: detect and suspend problematic servers. 

In addition to load balancing -metrics,. the Application -Manager reports loads" to 

centralized server namely LAN Manager 

-36 



4.2.2 Load Restriction 
There is an upper limit set in every system andthe system is monitored weather' 

its upper limit, is crossed or not When the new job. comes and this new job made the 
upper limit-  to exceed then the new job's thread is given less priority or is abruptly 
suspended.. 

4.3 Naming. conventions 
We assign. each Process Scheduler a distinct IP address namely Process 

Scheduler-indices. We index each message in our workload, for the purposes of 
identification. and addressing, with a distinct positive-integer. Each request type has a. 
index. 

4.3.1 Limited resource allocation 
With reference- to the analysis of load sharing issues, when, we have the node. 

being allotted all kinds of jobs, then the node's - virtual memory gets full and the page 
faults starts to occur. Thus- making the node to produce large delay. Allotting a node with, 
specific resource solves this problem. And the resources are pre defined in thef-
Application Manager that this node could do these jobs alone. We now are able to restrict 
the resources in a streamlined way and nodes are utilized in a efficient way. 

4.4 Crash Recovery 
Crash Recovery is achieved by continuous monitoring for exceptions : at the , . 

Application Manager and at the LAN Manager. side, it is done by the' administrator. Also.'  
by keeping the logs and when an application fails, then the state of the application at -the" . 
time of crash is a. valuable resource to recover from any such crash' [ 13] in the future. 
Defect report is prepared from this log by the maintenance team and also to,  identify the 

faulty module by the developers. 

Crash Avoidance 
XML is used for crash avoidance; this avoids miss representation of data. 

4.4.1, Using the event log as a data source for crash recovery 
You can . use the . Event Log service to gather.-. information about hardware, 

software and system problems. Cluster System records events in three types of logs. 

;  
37 



~ysLem Log. i nc Oyswwm t vg conuams cv.cnLS ioggeu,uy the %_iuster system components. 

For example, the failure of a driver or other system component to load during startup is 
recorded in the System Log. The event types. logged by system components are 
predetermined for the operating system: The event types are, 
Error. A significant problem, such as loss of data or loss of functionality. For example, 
if a service fails to load during startup, an error is logged. 
Warning. An event that is not necessarily significant, but may indicate a possible future 
problem. For example, when disk space is low, a warning is logged.' 

. • .,Information. An event that describes the -successful operation of an application, driver, 
or .service. ' For example, when a network driver loads successfully, an information 
event is. logged. 
Success Audit. An audited security access attempt that _succeeds.. For example, a user's 
successful attempt to log on to the system is logged as a Success Audit event. 
Failure Audit. An audited -security access attempt that fails .-For .example, if a user tries 
to access a network drive and fails, the attempt is logged-  as. a Failure Audit event. 

The Event Log service starts -.automatically when you , start Cluster System By 
default, security logging is turned off. 

4.5 Transparency to application developers 
The applications work with a view that it is the only one application is processing 

that request type. Hence. we 'give to the applications .programmer a level of abstraction- 
that he need not worry about the load .sharing. But the persistent data need to be stored 
onto the centralised database as they are not intermediate data. ' : 

The annlications nroarammer - needs to be. abstracted" .the communication of 



4.6 Administration 
Remote administration is the way- of administering an application: from an 

application, which is run as a .separate process than the application and it is connected by 
network. The remote administration sends status messages, error messages, clearing of 
checkpoints; together with timestamp and, the module, which has sent, it. The status 

• messages are for saying:  what each module has done. This is for debugging purpose. The 

errors are the unexpected situations that happen at runtime of the program. 
We send exceptions name, its line of code and the cause of exception to the 

remote. administrator.. This is for. debugging purpose. Check points are the places in the 
code if successfully crossed mean- the functionality has"been successfully. executed by our . 

code. These checkpoints are for demo purpose and testing purposes. 
Remote administrator needs special -information to be transmitted so we need to 

send less data only. For a human point of .view to debug, show demo it is enough we 

consider OS level :processes. So, each OS process has a remote administration-

transmitting unit. So that for all the modules the messages is transmitted through the 
same channel and saying:  as another tag from differentiates them and which function the 

message, originated. 
The location of remote administrator need not be known for the applications 

hence we have server socket for the applications and the remote administrator connect to 

this system. 

4.6.1 Local administration and remote administration. User Interfaces 
-In local- administration the administrator is given provision to individually control 

a system by. using a shell prompt in it. In remote administration the administrator can sit 

in a remote terminal and manipulate.with the controls in every system. By this he will be 

able to have control over more systems in the network. 

4 6.2 Self-managing, Self-organizing, Self-healing 
The administration program has a set of rules, which guides it to manage some the 

troubles and some of the utilities- by itself. For example informing_ about` a new system •. ` . 

that has been added to the network, to every other system that it knows: 

39. 





requisition and returning the results from that task- at a subsequent time. The security of a' 

request . is enhanced, if the Session Manager can easily keep track of which Process 



ReadObject does "asynchronous fetch =:from Software Firewall. The interaction 





SynLinkedList =provides .thread synchronisation by making a thread to wait till data comes 



4.7.4.1 Dispatcher 	 _ 
Dispatcher is used to deal with load balancing for a. single request type. Hence 

there will be every instance for each request it receives from session manager and for 

every instance the local application is going to give. The dispatcher. content is described 

in Figure 4.6. 

Dispatcher (to deal with Objld 1) located at Process Scheduler-3 
GenericSocket I 	 lGenericSàcket+ I 	 IGenericSocket 
+ SocketReader 	IsoCketReader(to 	+ SocketReader 

(to receive from 	 receive from 	 (to receive from 

PS2) 	
Session Manager) 	 PS4) 

Load tnt 

D 1.--__  GenericSocket 	

Lapplicatior 

+ Transmitter  
(to send to PSI)  

ynLinkedList. I e SynLinkedList e 	 I  rree  J'c  

i  

GenericSocket 	GenericSocket 
+Transmitter 	+Transmitter 
(to send to 	(to send to PS5) 
application) 

Reference: 

SynList 	a 
a 

fe  remove n 

GenericSocket 
+ SocketReader 
(to receive load 
from PSI) 

Figure 4.6: Dispatcher instance's content 

45- 



4.7.5 Wrapper Class forapplications  
The wrapper class is used to provide application programmers the interface to the 

= 	cluster: -Using the wrapper class an :application can send a request to be processed in 

some .place in the cluster, also the receiving of any request is through the wrapper class. .: 

The data flow with the wrapper class is shown in Figure 4.7. 

Process Scheduler 	 Session Mana er 

- Generated Objects- is processed by some Application. 
Computed Objects- is sent back to the user .., 

Figure 4.7: Data flow diagram with Wrapper class 

4.8 Summary 
We have.  seen, how to solve the issues of interaction system, load management, 

naming convention, crash recovery and the module design in the code level. 



Chapter 5 

IMPLEMENTATION 

5.1 Application Programmer's guide 
-Create instance of in direction wrapper class for the specific request type this code 

is able, to process. Specify the new request type.  in the generic Socket class Then -start 

using the cluster system by calling the function waitNFetchO. This method is . thread 

synchronized and retrieves the data ; from ,buffer. If the .buffer is empty_ then the method 

bring the invoking code to a wait state (Suspend state). When data comes then thread is 

waken upby, the -adding code so that this code is able to utilize the data. 

Instance of wrapper class: is created by calling the appropriate constructor 

'Obj77AppinO,-here 77 is the request. id: and this is the application wrapper for receiving 

data. Similarly use.Obj.77AppOutO for sending data. As per the configuration entered in 

the GenencSocket class ;about the request type, the out will send to either client or to any 

other application for further processing: If - it is for further - processing then . 

ProcessScheduler decides where to execute the code. 

5.2 Administrator's Guide 
The administrator use. the software to deploy the cluster code and the application 

on ° to their " site In this situation the - 'cluster system's remote admin and local,  

administration module help in deploying' the, required applications in specific computer 

nodes and they can see the status: of the applications that are hosted by using the GUI' 

provided. To send commands to -the application is by selecting, the computer to give 

command and choose one of the command that the application provides: Thus: we have 

the latest set of commands to interact with the application. To start ° any application in a 

computer select the application- manager in that computer and issue the command start 

applicationName -thus that application is -started after checking all security and the initial 

47 



set-up are done to ensure successful- deployment. Then the destination platform is 



Chapter 6 

RESULTS AND,  DISCUSSIONS 

6.t Starting Application Manager 
Application Manager is the program used for remote administration purpose used 

to initiate-  any other programs. This is started by calling 

Java remoteadmin. source .AppManager. Then the commands are typed to start the other 

applications. Figure 6.1 shows the console screen of the Application Manager being . 	. 

started and is ready to- get inputs. 

 

Figure 6.1: Starting Application Manager  

6.2 Starting programs in a computer 	. 
From the application manager's shell window, type the command start Firewall; 	V. 

start ps, start sm. These will start corresponding screens in separate windows. This can  be 

seen in the figure 6.2. 

This mode of invoking the start command requires an instance of application 

manager tobe in running state in that computer. Thus we need to start an instance of 

application manager" manually and thefl application manager automatically without the 

administrator's consent does the other issues. 

49 



Figure 6.2 Starting programs 

6.2.1 Starting applications 
On starting the application the required information is passed between the 

application by the application manager automatically. The starting of application involves 

the starting of process scheduler also, because process scheduler dispatches the request to 

the applications. The application User Management System is started as in Figure 6.2. 

The command is same, start urns. 

6.3 Flow of request 
The data flow can be traced from the. firewall to session manager to process 

scheduler and then to application and back to process scheduler and then to any other 

application and then to session manager and then to firewall to client. This flow can be 

seen with respect to the request type that is - being passed between the cluster nodes - as 

seen in the Figure 6.3 

Auto 

Figure 6.3 Process Scheduler doing load bal' 	 ! 	nces 



Chapter 7 

CONCLUSIONS 

Today the growth rate of computing power is very high, but instead of replacing 

the old systems with new . system, the Real Time Cluster Management . System helps in 

.,successful up gradation of Web Servers. And it avoids the Internet bottlenecks inherent 

with "silo" serving.. Using Real. Time Cluster Management System, Internet applications 

can deliver new levels of performance and reliability regardless of. user location or load. 

The cost was definitely cheaper than the other model, which are less flexible. 

This proven model means that enterprises needn't expend time or money on 

complex capacity forecasting. For developers, the Cluster Management System boosts 

performance so that applications are never "dumbed-down" to handle the vagaries of the 

Internet. Enterprises can create innovative applications in far less time than possible with 

traditional solutions. The distributed architecture has eliminated the single point of 

failure. And also the crash recovery module has provided a situation to host the server in 

a continuous working mode round the clock. 

Future Scope 
Some, areas for improvement were identified during the dissertation, which 

include if the load 'information is not available for a long time then the load can be 

assumed to be heavier of so many factors [URL9]. Providing a proxy server capable .of 

handling users with secure encrypted path, between the remote administration servers so 

that an administrator can connect through a secure path to the internal applications and 

the internal servers can use another load balancing server from another subnet. Some 

utility can be made which can roll back the servers to a stable state in the past. 

51 



REFERENCES 

[1] L. Xiao, S. Chen and X. Zhang, "Dynamic Cluster Resource Allocations for Jobs 

with Known and Unknown Memory Demands", IEEE Trans. Parallel and 

Distributed Systems, vol. 13, no. 3, pp. 223-240, 2002. 

[2] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, and A. Keren, "An Opportunity 

Cost Approach for Job Assignment and Reassignment in a Scalable Computing 

Cluster", IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 7, pp. 760-768, 

July 2000. 

[3] L. Xiao; X. Zhang, and S.A. Kubricht, "Incorporating Job Migration and Network 

RAM to. Share Cluster Memory Resources", Proc. Ninth IEEE Int'l Symp. High 

Performance Distributed Computing, pp. 71-78, Aug. 2000. 

[4] X. Zhang, Y. Qu, and L. Xiao, "Improving Distributed Workload Performance by 

Sharing Both CPU and Memory Resources", Proc. 20th Int'l " Conf Distributed 

Computing Systems, pp. 233-241, Apr. 2000.. 

[5] A. Barak and A. Braverman, "Memory Ushering in a Scalable Computing. Cluster, 

J. Microprocessors and Microsystems", vol. 22, nos. 3-4, pp. 175-182, Aug. 1998. 

[6] A. Batat and D.G. Feitelson, "Gang Scheduling with Memory Considerations",. 

Proc. 14th Int'l Parallel and Distributed Processing Symp., pp. 109-114; May 2000. 

[7] M. Harchol-Balter and A.B. Downey, "Exploiting Process Lifetime Distributions 

for Dynamic Load Balancing",. ACM Trans. Computer Systems, vol. 15, no. 3, pp. 

253-285,,1997. 



[8] V. Karamcheti and A. Chien, "A Hierarchical Load-Balancing Framework for 

Dynamic Multithreaded Computations", Proc. Supercomputing Conf., Nov. 1998. 

[9]' - D.A. Menasce and V.A.F. Almeida , "Scaling for E-Business: Technologies, 

Models,,  Performance, and Capacity Planning", Prentice Hall, Upper Saddle River, 

N.J.,2000. 

[10] CNet News clip, "Pay per Use Computing Cycle", http://news.com.com/2100-

1001-270988.html?legacy=cnet, dated 01' August 2001. 

[11] L. Gong , "JXTA: A Network Programming Environment, IEEE Internet 

Computing", vol. 5,no. 3,; May/June 2001. 

[12] Jack Shirazi, "Distributed Computing of book on Java Performance tuning" Chapter. 

12, published by O'Reilly press, 2000. 

[13] Y Tolima, "Fault Tolerance", IEEE Distributed. Systems Online,. February 2004. 

[ 14] Li Xiao and Xiaodong Zhang, "Adaptive Memory Allocations in Clusters to Handle 

Unexpectedly Large Data-Intensive Jobs", IEEE Trans. Parallel "and Distributed 

Systems, vol. 15, no. 7, pp. 577-592, July 2004 

URLs 	. 
[URL 1 ] 	XML 	Task 	Force, 	"eXtended 	. Markup ' . Language";  

http://www.w3.org/XML/ 

[URL2] 	Web Application Server, "Specialized in J2EE application hosting 

Servers", http://www.pramati.com/index.htm 

[URL3] 	Web Application Server, "Specialized in .J2EE application hosting 

Servers", http://www.bea.com 

54 



[URL4] 	Space Research Centre, "Collects computing power from normal pcs to do 

compute on signals", http://setiathome.ssl.berkeley.edu/ 

[URL 5] 	Information on the Windows 2000 Server family, "Configurations and 

benefits from the windows 2000 Family Servers", 

http://www.microsoft.com/windows2000/guide/server 

[URL6] 	Rich Farrell, "Distributed Computing", published in Network World on 

Sep-97' http://www.nwfusion.com/netresources/0922web2.html 

[URL7] 	"Parallel Computing", Published • on November 5, 2002 at Techrepublic 

hosted at http://techrepublic.com.com/5100-6268-106123 5.html 

[URL8] 	BED Windows Networking & Communications Team, "Network Load 

Balancing in Windows2000", Whitepaper published at Microsoft website 

created by, www.microsoft.com/windows2000/docs/NLBtech2.doc 

[URL9] 	MOSIX, "University Project on shared memory cluster computing", 

http://www.mosix.org 

[URLIO] 	Java Performance Tuning,. "kernel level, OS level, application level 

Performance tuning", www.javaperformancetuning.com 

[URLI1] 	Microsoft Component Service, "Server Operating System a Technological, 

overview", http://www.microsoft.com/com/wpaper/compsvcs.asp 

[URL-12] 	DCOM overview, "Technical tutorial on COM object . model",. 

http://msdn.microsoft.com/library/default.asp?url=/library/en- 

us/dndcom/html/msdn_dcomtec.asp 

55 




	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	 Chapter 6
	Chapter 7
	References

