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Chapter 1 

Introduction 

The batch mode of production has become increasingly important in the process 

industry during the last decade. Batch plants can be made highly flexible, and thereby 

well suited for manufacturing of a large variety of product types. Batch processing is 

normally associated with the chemical process industries. It is however, important also 

in the food industry, pharmaceutical industry etc. 

Temperature, pressure, concentration are the basic process variables. Among these 

process variables temperature is the most important for product quality as well as 

safety. For that reason an efficient robust temperature control technique is needed. 

In many fields of process industry for example the chemical industry, pharmaceu-

tical industry fertilizer industry, products in crystallized form are produced. In many 

cases products of a very specific size pattern are required for example in pharmaceu-

tical industries. It is a challenging task to produce crystals of the desired qualities 

as crystal qualities strongly depend on the temperature. The temperature control in 

batch crystallization processes is quite difficult because of the non stationary behavior 

of the batch process. 

In many batch processes for example crystallization the product properties depends 

on the temperature profile in the reactor. During the batch process it is possible to 

predict the desired temperature trajectory on the basis of the desired properties of the 

final product. To achieve the desired temperature trajectory in the reactor, a combina-

tion of a trajectory optimization and a cascade PID control system is used for which 

an accurate model of the system is required. For the optimization of the temperature 

trajectory, the optimization routine gOPT is used. To minimize the calculation time 
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of optimization the whole model of the system is simplified to a linear dynamic model 

with the help of the system identification tool box of Matlab. 

By optimization of the temperature trajectory of the reactor we can get the desired 

temperature trajectory of the thermostat and that temperature trajectory of thermo-

stat is achieved by internal PID controller. And hence we can achieve the desired 
temperature trajectory of the reactor. 

Objectives 

Following objectives have been formulated for the M.Tech dissertation: 

1. To learn the modeling, parameter estimation and optimization routine of 
gPROMS. 

2. To develop the model for thermostated batch crystallization apparatus with online 
implementation and internal control system. 

3. To conduct the experiments and obtain the results, 

4. To estimates model parameters based upon one set of experimental data by using 
parameter estimation routine of gPROMS. 

5. To validate the model with other set of experimental data. 

6. To develop the appropriate control technique for controlling the batch reactor 
temperature. 

o To obtain the simple linear model of the apparatus by using System Identi-
fication Tool Box of MATLAB. 

o To carry out the temperature trajectory optimization by using optimization 
routine of gPROMS. 

o To validate the temperature trajectory optimization result by the experi-

ment. 

o To implement the external PID controller with provision of online setpoint 
adjustment of the internal PID controller for handling the system distur-
bances. 
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• To develop the appropriate methodology for controller parameters tuning. 

7. To validate the developed control technique by the experiment. 

8. To perform a cause study for the crystallization of the L-glutamic acid. 



Chapter 2 

Literature review 

2.1 Crystallization basics 

Crystallization is a solid-liquid separation process where mass is transferred from a 

solute dissolved in a liquid phase to a solid (crystal pure) phase. Batch crystallization is 

considered as one of the important unit operation used for separation and purification 

in chemical engineering. This is because batch crystallizers are simple, flexible and 

usually involve less process development. Also, the solid product can be obtained at 

high purity and at low costs, [HJKA03]. 

Supersaturation 

The number of units per unit volume of fluid phase can be given as follows: 

n • NA  
= V 	C NA (2.1) 

A saturated fluid phase having concentration ceq  is in thermodynamic equilibrium 

with the solid phase at the relevant temperature. If the solution is liquid, the saturation 

concentration often depends strongly on temperature but only slightly on pressure. If 

a fluid phase has more units than ceq  NA , it is said to be supersaturated [Mer95]. 

Crystallization process can take place only in supersaturated phases, and the rate of 

crystallization is often deterinined by the degree of supersaturation. Supersaturation 

is expressed as difference in concentration[Mer95]. 

Ac = c — ceg 	 (2.2) 
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Relative supersaturation can be expressed as: 

S = (c — ceq ) 
Ceq 

(2.3) 

Nucleation 

Crystals are formed by the repetition of unit cells in 3-D space. Formation of new 

nucleus is called nucleation. Crystals are created when nuclei are formed and then grow. 

The kinetic processes of nucleation and crystal growth require supersaturation, which 

can generally be obtained by a change in temperature (cooling in the cause of a positive 

gradient of the solubility curve or heating in the cause of a negative gradient), by 

removing the solvent (evaporative crystallization), or by adding a drowning-out agent 

or reaction partners. The system then attempts to achieve thermodynamic equilibrium 

through nucleation and the growth of nuclei [Mer95]. Process of nucleation can be 

classified as follows: 

1. Primary nucleation 

o Primary homogeneous nucleation 

o Secondary homogeneous nucleation 

2. Secondary nucleation 

Primary nucleation 

Primary nucleation is the formation of a new solid phase from a clear liquid. This 

type of nucleation can be further subdivided into homogeneous and heterogeneous 

nucleation. Both homogeneous and heterogeneous nucleation take place in the absence 

of solution-own crystals. This occurs when a specific supersaturation, known as the 

meta stable supersaturation is exceeded in the system. 

Homogeneous primary nucleation 

If a solution contains neither solid foreign particles nor crystals of its own type, 

nuclei can be formed only by homogeneous nucleation. If supersaturation is sufficiently 

high, more and more elementary units can join together and create increasingly larger 

nuclei known as clusters [Mer95]. 
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Heterogeneous primary nucleation 

In heterogeneous nucleation, nucleation starts on foreign substrates of mostly mi-

croscopic particles, e.g. dust or dirt particles. The presence of foreign interfaces allows 

the nuclei of the new phase to be supported by a surface, which reduces their surface 

energy and globally increases the nucleation rate, thus reduces the width of the meta 

stability zone and the induction period. Concerning modeling aspects, kinetic laws are 

similar to the laws used for homogeneous nucleation. 

Secondary nucleation 

Secondary nucleation refers to the birth of new crystals at the interface of par-

ent crystals. Contrary to the relatively high super saturation required for primary 

nucleation, secondary nucleation already occurs at low to moderate values of the su-

persaturation. There are various types of secondary nucleation, but the most important 

source of secondary nuclei in crystallization is attrition. Attrition, also referred to as 

contact nucleation, occurs as a result of crystal-pump, crystal-vessel wall or crystal-

crystal collisions. 

The driving force for attrition is determined by the concentration of the various 

sized crystals and their relative motion' with respect to the pump blades, vessel walls 

or other crystals. The relative kinetic energy of a collision is determined .by the size 

and relative velocity of the particle, which in turn is a function of the slurry motion, 

viscosity and particle inertia (thus particle size). The rate coefficient or resistance for 

attrition is a function of the shape, surface roughness and mechanical properties of the 

colliding crystal. The rate coefficient is also indirectly influenced by the supersatura-

tion, which determines factors such as surface roughness and healing of corners and 

surfaces damaged due to previous collisions. 

The formation of secondary nuclei is a complex process depending on the hydrody-

namics inside a crystallizer, the attrition behavior of the crystalline material and the 

outgrowth (survival) of the attrition fragments. In draft tube, draft tube baffle and 

forced circulation crystallizers the attrition is mainly caused by collisions between crys-

tals and the pump or impeller, whereas in fluidized bed crystallizers collisions between 

crystals are considered the dominating source of attrition. 

Secondary nucleation refers to several mechanisms of nuclei production which have 
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all in common mechanical aspects induced by the stirring of the medium and the in-

teraction between the crystals already present and their environment: fluid, stirrer, 

reactor wall, and other crystals. Contact nucleation refers to the breakage of parent 

crystals due to shocks with walls, stirrer,... and release of small fragments which act as 

secondary nuclei. True secondary nucleation is less known, it refers to the existence of 

a cluster or nuclei reservoir in the boundary layer of the parent crystals. These nuclei 

are released into the liquid medium by shocks or shearing effe2t of the fluid. From a 

modeling point of view, the nucleation rate generally depends on the stirring rate, on 

the parent crystals mass or/surface area and on super saturation level (S-1) with an 

exponent ranging between 0.5 and 2.5. Consequently, the corresponding detestability 

zone is narrower than for primary nucleation. Secondary nucleation is predominant 

in continuous industrial crystallizers operated at low supersaturation levels. On the 

contrary, in precipitator, in which supersaturation, is much higher, primary nucleation 

is the main source of nuclei. 

Crystal growth and dissolution 

Crystal growth is the addition of solute molecules from a supersaturated solution 

to the crystal lattice. Besides being a mechanism responsible for increasing crystal 

size, crystal growth, or more specifically the relative growth rates of the crystal faces, 

also largely determines crystal morphology. Finally, the crystal face growth rates to-

gether with the growth mechanism determine the surface structure and purity of the 
crystal [H.11100] 

The growth rate of a particular crystal face is mostly described by its linear growth 

rate, which refers to the growth rate of that face in the direction normal to the face. 

Since the growth rates of the various crystal faces are usually not equal, an overall 

linear growth rate is often used. 

Crystal growth is a three-step process consisting of mass transfer, surface integra-

tion and heat transfer. Mass transfer and surface integration occur sequentially and 

in parallel with heat transfer. Mass transfer involves the diffusion of growth units, i.e. 

molecules, atoms or ions, to the crystal surface. Surface integration consists of surface 

diffusion, orientation and the actual incorporation into the lattice. Various mechanisms 

exist for surface integration, the most important being spiral growth, 'birth and spread' 
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growth and rough growth. Spiral growth is the most encountered growth mechanism 

under normal operating conditions[HJR00]. It is important to note that the super 

saturation, i.e. the difference in chemical potential of the crystallizing substance in 
the liquid and solid phase, need not to the same for each crystal, While the chemical 
potential in the liquid phase may be the same, the chemical potential of two neigh-
boring crystals may differ due to differences in lattice structure and/or lattice strain. 
As a result, similarly sized crystals exposed to identical growth conditions can exhibit 
different growth rates. This phenomenon is called growth rate dispersion[RJT90]. The 

mass transfer rate coefficient is a function of the diffusion coefficient, crystal size and 
local hydrodynamics. Besides on the surface integration mechanism, the rate coeffi-

cient for surface integration also depends on the size of the growth units (because of 

surface diffusion and steric orientation) and the lattice structure. 

Crystal dissolution is not the exact opposite of crystal growth. dissolution does not 

require- surface diffusion and orientation of atoms, ions or molecules, and is therefore 
in general limited by mass transfer. Crystal dissolution thus has a first order depen-
dency on the supersaturation, its driving force. The rate coefficient for dissolution is 

a function of the diffusion coefficient, crystal size and local hydrodynamics. Because 
dissolution is usually mass transfer limited, dissolution at crystal edges and corners 
is faster due to steric favoring. For this reason, crystals are easily rounded off once 

dissolution starts. 

Agglomeration 

The agglomerate is defined as the mass formed by the cementation of individual 

particles, probably by chemical forces. A mass formed by a group of particles held 

together by only inter particle forces is called an aggregate. 
Agglomerates are usually undesirable because they contain mother liquor between 

the primary crystals that form the agglomerate. This liquor is hard to remove during 

drying, and promotes caking of the product during storage. Furthermore, agglomer-
ates also tend to break more easily than solid crystals, during which they also release 

solvent. There are however also cases where agglomeration is stimulated, namely when 

the primary particles are too small for acceptable downstream solids handling. 
Agglomeration first of all requires the collision of two or more crystals. The collision 
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mechanism depends on the sizes of the crystals involved. Per kinetic (due to Brownian 

motion; small particles), orthokinetic (due to fluid shear) or inertia (due to differences 

in relaxation time; differently sized particles). Next, these crystals must form an aggre-

gate as a result of interparticle forces, such as VanderWaals (attractive), electrostatic 

(repulsive) and steric (repulsive) forces. Finally, cementation of these crystals as a 

result of growth, before the aggregate is disrupted, is required to create agglomerate. 

The driving force for agglomeration is the supersaturation. Without super satura-

tion, aggregates can be formed but agglomerates cannot. The rate coefficient or kernel 

for agglomeration is a function of the number of particles (collision chance), the sizes 

of the particles involved (agglomeration mechanism), and in the case of orthokinetic 

agglomeration the fluid shear or energy dissipation (collision chance, time between col-
lision and disruption). 

The collision frequency increases with increasing shear rate, but if the shear rate 

becomes too high, aggregates are disrupted before sufficient cementation has taken 

place. As a result, the rate constant for orthokinetic agglomeration first increases and 

subsequently decreases with shear rate. 

Breakage 

Similar to attrition, breakage can occur as a result of crystal-pump, crystal-vessel 

wall or crystal-crystal collisions. The difference between breakage and attrition is not 

a distinct one. The fracture of a particle into one slightly smaller particle and many 

much smaller fragments is defined as attrition. Breakage involves the fracture of a 

particle into two or more pieces. To accomplish the total fracture of a particle it 

required considerably more energy than that needed for attrition. If the impact energy 

of a single collision is not sufficient, repeated collisions, which result in accumulation 

of crystal stress, are required for breakage. 

The driving force and rate coefficient for breakage are mainly a function of the same 

process conditions and particle properties as discussed for attrition. In addition, the 

rate coefficient or resistance for breakage is also influenced by the collision history of 

the particles involved. 
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Segregation 

Segregation is not a crystallization mechanism in the sense that it forms a particle, 

increases its size or reduces its size. However, as it can have a significant effect on 

the final product quality it is discussed here. Particle segregation is a result of slip 

with respect to the liquid motion. An important effect that can only be described if 

segregation is taken into account is the non-uniform distribution of solids in a crystal-

lizer. For instance, if the circulation intensity is lowered in a crystallizer, the relative 

amount of solids in the lower part of the crystallizer will increase. Particle segregation 

is a function of particle size, liquid velocity, solids concentration, and the difference in 

material density between the liquid and solid phase. 

To achieve a desired CSD it is important to control supersaturation through cool-

ing temperature and agitation rate, among other factors. Crystals are formed when 

nuclei appear and then grow. In the cooling crystallization process, the kinetics of 

nucleation and crystal growth require supersaturation, which is obtained by a change 

in temperature. In continuous processes it is important to keep supersaturation at an 

optimum value that will yield a growth rate as high as possible and a low nucleation 

rate for a sufficiently coarse crystal product to be formed. This condition is difficult 

to be achieved in batch crystallization because supersaturation changes from the be-

ginning to the end of the processing. Therefore, it is desirable to set a cooling profile 

that keeps supersaturation almost constant to prevent high nucleation rates and limits 

the number of new nuclei formed. On the other hand, agitation exerts an additional 

influence on CSD. Low values induce agglomeration, aggregation, and flocculation of 

particles, whereas high values produce attrition and breakage. Again, it is desirable to 

establish an agitation profile that increases mass transfer but reduces crystal destruc-

tion. A right combination of temperature and agitation profiles may induce optimal 

operation of batch crystallizers [PEBL04]. 

Dynamic behavior 

Process conditions may vary with time. Consequently, the product quality resulting 

from a crystallization process will not always be constant in time. Dynamics in product 

quality are usually most noticeable in the crystal size distribution. Batch processes 

are inherently dynamic, but continuous processes can also exhibit dynamic behavior. 
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Dynamics in continuous processes do not only occur as a result of process disturbances 

or set point changes, but can also occur when the process inputs are kept constant 

and no disturbances occur. In the latter case, unstable process behavior is usually a 

result of the interaction between crystallization mechanisms such as nucleation and 

growth. For instance, a period of low nucleation rates will result in a decrease in the 

volume specific crystal surface area available for growth, which will lead to an increase 

in the level of super saturation and hence in the crystal growth rate. As the same 

crystal mass is being deposited on a smaller number of crystals, the average crystal 

size will increase. The increase in super saturation and crystal size can respectively 

lead to an increase in primary and secondary nucleation rates. Consequently, the super 

saturation level and average crystal size will decrease, thus leading to a new period of 
low nucleation rates[Mer95]. 

As decisions taken during design determine to a great extent the controllability of 

a process, the effect of process dynamics on product quality and process performance 

should not be postponed to the control system design stage. Dynamic modeling of 

crystallization processes is therefore essential from the process design stage onwards. 

Polymorphism 

Polymorphism is the. phenomenon that a compound has more than one crystalline 

arrangement. Different polymorphic structures exhibit different physical and chemical 

properties such as crystal morphology, solubility, and 'color, which effect the perfor-

mance of the products. L-Glutamic acid is known to have two polymorph, the a and 

form. If a form crystals are put in a saturated aqueous solution, a solvent mediated 
transformation from the a form to the (3 form will take place [OtHJ04]. 

The solvent mediated transformation process is a combinatiOn of the dissolution 

of the a form and the nucleation and subsequent growth of the )3 form. The model 

parameters for the dissolution of the a form and the nucleation and growth of the (3 

form were determined with the aid of the experimental data. The growth rate of the 

,3 form is the rate limiting step in the transformation[OtHJ04}. 
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2.2. Control. 

A control system is an essential part to ensure that the desired operating conditions 

can be maintained as close as possible during the course of a batch run (API051. Achiev-

ing the optimal operation of the batch reactor is quite difficult due to the complexity 

of the batch process which can be characterized as [API05] 

• Batch processes are generally highly nonlinear in behavior for instance crystal-

lization rate depends on the temperature and the concentration both. 

• In the batch process most of the variables and parameters are time variant for 

instance in batch crystallization process temperature and concentration both 

changes w.r.t. time. Some system parameters (e.g. heat transfer coefficient) 

may also change significantly w.r.t. time. 

• Some properties (e.g. molecular weight) are difficult to measure during the batch 

run and can be measured only at the end of the process while these need to be 

controlled during the batch run or if they can be measured (e.g. concentration) 

there is significant time delay. 

• Due to the difficulties in the measurement of the other properties in most of the 

cases temperature is used to control the other process properties. This type of 

indirect control is not so efficient. 

Usually controllers try to track the prespecified setpoint profiles for the process vari-

ables for which measurements are available (e.g. temperature) in order to obtain desired 

product properties. The prespecified setpoint profile can be obtained by offline opti-

mization. Because of modeling errors and external disturbances, even if the optimal 

profiles are tracking perfectly, the final properties may significantly differ from the de-

sired values. To account for the modeling errors and disturbances, new optimal profiles 

may be recomputed once new product property measurements are obtained. Gattu and 

Zafiriou have formulated a state estimation model based algorithm for on line modi-

fication of setpoint profiles utilizing infrequent and delayed measurement information 

of the properties to be controlled, with the goal of obtaining the desired values of the 

properties in the minimum batch time. The algorithm modifies the setpoint profile for 

the remainder of the batch after every measurement by making one step in the right 
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direction instead of attempting to find a completely new optimal profile. This results 

in robustness with respect to model error and allows improvement even with infrequent 

product property measurements [GZ99]. 

The uncertainty in the parameters may also lead to the inefficient controller per-

formance for instance uncertainty in the heat transfer coefficient and the kinetic pa-

rameters may lead to an unstable response. In the system under consideration some 

parameters like the heat transfer coefficient between the reactor liquid and the bath 

fluid and between the bath fluid and the environment are uncertain and need to be ad-

justed. Sampath and Palanki proposed a robust nonlinear control strategy for temper-

ature tracking problems in the jacketed batch reactors in the presence of the parametric 

uncertainty. A multiloop controller design methodology is used in which the inner loop 

is used as a nominal model, based on nominal parameter values, to approximately 

linearize the system in an input/outpot (I/O) sense. The outer loop is designed for 

both robust stability as well as nominal performance using recent results from robust 

control theory. In the methodology proposed by sampath and Palanki only bounds 

of the uncertain parameters are required to reduce the performance degradation. The 

uncertain parameters are pulledout from the state space equations into a block diag-

onal perturbation to obtain an equivalent system where the state space matrices do 

not depend on uncertain parameters. The closed loop system is then reduced to the 

standard feed back form [SPCCO2]. 

How accurately the desired operating conditions are achieved in batch processes 

also depends on the type of controller used. The most common controllers used for 

batch processes are generic model control (GMC), dual mode control (PI, PID), and 
model predictive control (MPC). Aziz et.al have conducted an experiment for studying 

the performance of the dual mode control and the generic model control [NHI00]. First 

they obtained the optimum temperature profile by solving the off line optimization 

problem. The optimum temperature profile thus obtained is then used as the setpoint 

to be tracked by different types of controller. 

GMC is a model based control strategy developed by Lee and Sullivan [PS88]. The 

main advantage of the GMC is that the nonlinear process models do not need to be 

linearized because it directly inserts nonlinear process models in to the controller itself. 

In addition, the GMC algorithm is relatively easy to implement. The desired response 
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can be obtained by incorporating only two tuning parameters [NHI00]. 

In the study [NHI00] it is found that a PI controller shows a large offset while 

PID and GMC controllers were able to track the reactor temperature with little off-

set. Based on the amount of the desired product achieved, the controller performance 

using the PID is found to be slightly better than that obtained by using the GMC. 

It is due to the larger rise time for the GMC controller compared with the PID con-

troller. The performance of the GMC controller is found to be more stable compared 

with other controllers. The response of PI and PID controllers are more sluggish than 

GMC in tracking the dynamic setpoints. 

The model predictive control (MPC) uses an internal model of the system to be 

controlled. This model is utilized to calculate predictions of the future behavior of the 

system. These predictions are then employed to, at each instant in time, to optimize 

the future behavior of the system over the input variables. The solution to this opti-

mization problem is the-optimal input signal to the system at that particular time. The 

model predictive control is the most suitable control system for the batch process but 

online optimization is required to implement the MPC. The neural network estimator 

is required to implement the generic model control. The PID is the most suitable 

controller for the system under consideration in the absence of an online optimization 

tool and neural network. 



Chapter 3 

Experimental setup 

3.1 Problem formulation 

In many chemical industries (e.g. crystallization, polymers, pharmaceutical etc.) 

batch mode of the production is preferred because batch process offers many advantages 

such as it is quite flexible, it can adopt to small volume production of various products, 

product can be modified according to market trends and new technology developed, it 
is quite save for handling dangerous as well as expensive materials. A control system 
is essential in the batch process to obtain the desired properties of the product. The 

control system ensures that the desired operating conditions can be maintained as close 

as possible during the course of a batch run. However it is quit difficult to maintain 

the optimal operating conditions in the batch run and still it is a challenging and 

interesting problem. 

In the system under consideration a thermostat is used to maintain the optimal 

temperature profile in the jacketed reactor. The reactor fluid exchanges the heat from 

the bath fluid and the bath fluid is heated or cooled in the thermostat. A prespecified 

temperature trajectory of the thermostat can be tracked by the internal PID controller. 

The temperature trajectory .of the thermostat which gives the optimal temperature 

trajectory in the reactor is needed to be estimated. The optimal temperature trajectory 

of the bath fluid can be obtained by the optimization routine of gPROMS for which an 

accurate mathematical model of the system is needed. Due to the complexity of the 
system the optimization time is very high and hence the optimization run is infeasible. 

In order to make the optimization run feasible a linear model of the systein is needed. 
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Since the linear model is not behaving exactly as the system under consideration hence 

an external controller is also needed to adjust the prespecified temperature trajectory 

of the bath fluid. The overall problem can be formulated in figure 3.1. 

Figure 3.1: Problem formulation 

3.2 System 

The system under consideration is a stirred tank batch crystallizer. The whole 
system under consideration can be classified in to three major parts: 

o Batch reactor 

o Thermostat 

o Cascade control system 

3.2.1 Batch reactor 

It is a fiat flange vessel of the type ADAV (cylindrical, jacketed, with bottom outlet 

valve) with tempering jacket. It is manufactured by HWS [hm]. The reactor is shown 



3.2. SYSTEM 	 19 

in figure 3.2, which was taken from the manufactures brochure[hmi. The reactor is 

closed by a glass lit and both reactor and lit are made of borosilicate glass (DINI SO 
3585), required physical properties are given in Appendix A.1. Values for the vari-
ous dimensions of the vessel are listed in Apendix A.1. The pressure in the reactor 
is constant (1 bar). A blade agitator of turbine type is mounted in the reactor. The 
revolution of the agitator can be adjusted at the control panel of the agitator engine or 
in the LABVIEW interface. A temperature sensor in the reactor measures the reactor 

temperature permanently and transmits the temperature data to the LABVIEW con-
trol panel. The inner reactor tank is surrounded by the tempering jacket, in which the 
bath fluid is circulated around the reactor tank. The bath fluid enters the tempering 

jacket at the bottom in tangential direction and leaves the jacket shell at the top of 

the tempering jacket 

Figure 3.2: stirred batch reactor with tempering jacket 
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3.2.2 Thermostat 
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The Thermostat is used for controlling the temperature of the reactor. It is con-

nected to the reactor with two insulated tubes at the inlet and outlet of the tempering 

jacket [hg]. The thermostat Julabo Presto LH 46 as depicted in Figure 3.3 tempers 

the bath fluid by means of an internal temperature controller[hg]. The bath fluid is 

heated/cooled in a heat exchanger tank inside the thermostat and circulated through 

the tempering jacket via a circulating pump. The bath fluid in the heat exchanger is 

well mixed due to a bypass in the heat exchanger around the tempering jacket. The 

bath fluid is heated by an electrical heater with a maximum capacity of 1.8 KW. The 

cooling is realized with a compression cooling cycle. The maximum cooling duty de-

pends on the temperature difference between the cooling liquid in the cooling coils and 

the bath fluid in the heat exchanger tank. 

The heat exchanger tank, which is surrounded by a steel cage, and the cooling ag-

gregate in turn are cooled with a combination of forced air flow by a fan and cooling 

water (from the tap). The heat exchanger tank of the thermostat is connected to a 

reservoir for maintaining the required level of bath fluid in the heat exchanger tank as 

well as the tempering jacket of the reactor. The entire system is located in a laboratory 

of the institute and therefore exposed to the ambient air at room temperature. 

Figure 3.3: Thermostat and reactor 
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Code : Name Code : Name 

2 : Local control panel 21 : Heater 

4 : Removable operating device RD 22 : Cooler 

5 : Filling funnel 23 : Circulating pump 

5a: Internal reservoir 26 : Level sensor 

8 :Exit 27a : Temperature safety sensor 

13, 14 : Connection with reactor 27b : Label safety sensor 

15 : Over flow 28a : Internal control sensor 

16 : Connection with 16a 28b : External control sensor 

16a : External reservoir 29 : Pump pressure 

20 : Heat exchanger 30 : Internal bypass 

23 : Circulating pump 31 : Water cooler 

25 : Filling valve 32 : Air cooler 

17 : Outflow for cooling water 33 : Reactor with tempering jacket 

18 : Inflow for cooling water 

3.2.3 Cascade control system 

The reactor temperature is controlled by a cascade control system. An internal 

PID controller is used to control the thermostat temperature and an external PID 

controller is used to control the reactor temperature. The thermostat temperature 

setpoint is obtained by off line optimization of the reactor temperature trajectory. 

The cascade control system is shown in figure 3.4. The adjusted setpoint temper-

ature The—set—ad;  is tracked by the thermostat temperature The  with the help of the 

internal PID controller. The setpoint temperature profile of the thermostat, The-set, 

obtain by the off line optimization of the linear model is adjusted online with the help 

of the external PID controller. 



The-set 

The-set-adj 

+ 
he-adj 

Tr 
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Figure 3.4: Cascade control system 



Chapter 4 

Tools 

4.1 gPROMS 

gPROMS is a general process modeling system widely used for simulation, opti-

mization and parameter estimation of-various processes.- gPROMS is a leading software 

in the dynamic modeling and simulation field. 

1. gPROMS allows the user to write equations almost as they would appear on 

paper. 

2. All solvers have been designed specifically for large scale systems and there are no 

limits regarding problem size other than those imposed by the available machine 

memory. Our system also consist a large number of equations so gPROMS is an 

appropriate modeling tool for it. 

3. The physical and chemical behavior of most processes are inherently discontinu-

ous. gPROMS is able to handle processes with discontinuities. 

4. In gPROMS it is very easy to construct models of complex flow sheets and pro-

cedures by decomposing them in to sub-models. So gPROMS has a modeling 

hierarchy and there is no limit on the number of levels in this modeling hierarchy. 

5. gPROMS was the first modeling system to have formal, mathematical algorithm 

for automatically optimizing large-scale dynamic processes. 

6. It has facilities for estimating model parameters through optimization from both 

steady-state and dynamic experimental data. 
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4.1.1 Modeling 

A model contains a mathematical description of the physical behavior of a given 

system. All the equations of the model are specified in the model section of gPROMS. 

gPROMS has a facility of decomposing a big model into smaller models. All the models 

have its own worksheet which have many subsections such as parameter, distribution 

domain, variable, stream, equation etc. The variables and the parameters used in the 

model are declared under the subsection parameter and variable respectively. All the 

variables that are declared in the model section can be categories in different types for 

example all temperatures can be placed in to one group and all energies can be placed 

in another group and so on. The name of each group of variables must be specified in 

the variable types section. The name of the variable types, it's lower bound, default 

value, upper bound and unit are specified in the separate table. There should be one 

connecting model where all the models are connected to each other. 

The values of all parameters are specified in the process section. The variables used 

in the model can be placed in to two groups, the time dependent variables and the time 

independent variables. The time dependent variables are calculated by gPROMS and 

these variables must be equal to the number of the equations used in the mathematical 

model. The remaining variables are time independent and the values of these variables 

are specified in the process section. The initial conditions required for solving the 

differential equations are also specified in the process section. The number of the 

initial conditions must be equal to the number of the differential equations. 

4.1.2 Parameter estimation 

Introduction 

During dynamic modeling and simulation there are many parameters involved. 

Parameters are time invariant quantities and in many cases some of these parameters 

are unknown. The value of these parameters which give the best agreement between 

the mathematical model and the experimental unit is determined by the parameter 

estimation routine of gPROMS. 

Parameter estimation in gPROMS is a reverse process. Experimental data is re-

quired as an input and values of the parameters are estimated by the parameter esti- 
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mation routine of gPROMS in order to minimize the error between the experimental 

result and the mathematical model. Required information is specified in parameter 

estimation and experiment entity. 

Parameter estimation entity 

In this section parameters to be estimated and their initial guess lower bound and 

upper bound are specified. The accuracy of estimated parameters depends on the ini-

tial guess, the lower bound and the upper bound specified. The parameter estimation 

routine of gPROMS searches the values of parameters within the specified range. If 

the actual values of the parameters lie below the specified lower bound of the para-

meters then the parameter estimation routine of gPROMS will give the lower bound 

as the estimated parameter similarly if actual values of the parameters lie above the 

specified upper bound then the specified upper bound will be obtained as the value of 

the estimated parameter, which may be inaccurate values. Parameters to be estimated 

must be declared in the assign section of the gPROMS model and their guess values 

must be specified in the process section. 
The full gPROMS path of the variables measured by the experiment are also spec-

ified in this section. The accuracy of the estimated parameters can be increased by 

using more than one variables measured by the experiment for parameter estimation 

but estimation time may also increase accordingly. For example in the system under 
consideration the parameters can be estimated by using the experimental data of either 

reactor temperature or thermostat temperature (or any other measured variables) but 

in order to get more accurate values of the estimated parameters, the experimental 

data of both that is the reactor temperature and the thermostat temperature should 

be used simultaneously. The mathematical model predicts the values obtained by the 

experiment. The variance model used for the prediction of experimental values is spec-

ified for each measured variable. The name of the variance model and its mathematical 

description are given in the following table: 
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Name Mathematical description 

Constant variance 

Constant relative variance predicted values 

Constant relative variance measured values 

Heteroscedastic predicted values 

Heteroscedastic measured values 

0-2 = W2 

a2 = w2 * Z2 + 6  

a2 = w2 * 22 + 6  

a2 = 110)2 * Z2 + 611-y 

a2 = liw2 * 22 
+ Er 

Where 

a is the variance. 

w is the standard deviation. 

- y is a parameter. 

€ is a very small but non zero number calculated by gPROMS. 

Selection of variance model 

The selection of a variance model for a particular measured variable depends on 

its characteristics. A short description of each variance model can be given as follows: 

o In a constant variance model, the measurement error has a constant standard 

deviation w. 

o In a constant relative variance model, the measurement error depends on the 

magnitude of the predicted or measured values. 

o In case of a heteroscedastic variance model, the measurement error also depends 

on the measured or predicted values, but is proportional to for example i0.59  or 
Z115Y , respectively. 

There are many possibilities for selecting a variance model. Some of them are listed 

below. 

o A measured variable may be characterized by different variance models in two (or 

more) different experiments. 

o A measured variable may be characterized by the same variance model in two 

or more different experiments but the values of the parameters (w, y) may be 

different in the two cases. 
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• A measured variable may have the same statistical variance model with the same 

parameters over all experiments. 

Selection of w and 7 

An initial guess, a lower bound and an upper bound of w and ry is required for 

parameter estimation. The accuracy of the estimated parameters very much depends 
on the initial guess, lower bound and the upper bound specified. The hierarchical 

approach is used to determine the appropriate value of the initial guess lower bound 
and the upper bound of the w and 7 For a particular mathematical model. The concept 
behind the hierarchical approach used is that for an accurate value of the initial guess, 

lower bound and the upper bound of the w and 7, there should be the best agreement 
between gPROMS model output and parameter estimation output. The step wise 
description of the hierarchical approach used can be described as follows: 

1. Assign any arbitrary value of the parameters to be estimated in the process section 

of gPROMS model and run the gPROMS model. 

2. The experimental data of some variables are required for parameters estimation. 

These variables are called measured variables. The data for the measured vari-

ables are collected from the execution output of the gPROMS model instead of 

the experiment as described in step 1. 

3. Fix any initial guess, lower bound and the upper bound of w and -y. 

4. The data for measured variables collected in step 2 are used for parameter esti-

mation. 

5. Specify the same initial guess of the parameters to be estimated as used in the 

mathematical model. 

6. Estimate the parameters by parameter estimation routines of gPROMS. 

7. Compared the estimated values of the parameters with the specified values. If 
both values are almost the same then the specified initial guess, the lower bound 
and the upper bound of w and -y are correct values for the selected mathematical 

model otherwise specify the other values for w and 7 and estimate the parameters 
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again. Repeat the steps until getting the desired values of the initial guess, lower 

bound and the upper bound of co and y. 

For the mathematical model under consideration the most suitable initial guess, lower 

bound and upper bound of co and 'y obtained by hierarchical method are given in the 

following table: 

Initial guess Lower bound Upper bound 

co -1 0.01 10 

7 0.5 0.001 1 

The experiment entities 

Full gPROMS path of measured variables followed by measured data from the 

experiment is specified in this section. The total number of the intervals followed by 

the duration of each interval of measured data is also specified. If there is any piecewise 

constant in the model then the value of this piecewise constant in each intervals should 

be also specified. 

4.1.3 Controller Tuning 

The PID controller consist of three parameters, Kc, 7'1 and Td. To find out 
the appropriate values of these parameters is called parameter setting. A systematic 

procedure is required for parameter setting. There are three methods generally used 
for tuning of PID controller. 

o Heuristic method 

o Continuous cycling method(Ziegler Nichols method) 

o Integral method 

Hierarchical method 

An approximated value of the controller parameters can be determined by this 

method. The procedure to achieve an optimal controller setting is described in following 

steps: 
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1. Eliminate the derivative and integral action by setting TD to zero and T1 to as 

large value as possible. 

2. Increase the controller gain K0  starting from very low value until continuous 

cycling occurs that is sustained oscillation with constant amplitude and set K0  to 

the half of this value. 

3. Decrease T1  in small increments until continuous cycling occurs again and set Tr  
three times of this value. 

4. Increase TD until continuous cycling occurs and set TDequal to one third of this 
value. 

This method is quite time consuming and it gives just approximated value of controller 

parameters. 

Ziegler Nichols method 

In the classical paper by Ziegler and Nichols (1942) a tuning rule is given [J1\142]. In 
order to determine the controller parameters by this method first find out the ultimate 

controller gain Kci,. It is obtained in second step of Heuristic method as described in 
previous section. At this value of controller gain determine the period of oscillation 
which is the ultimate period P. The Zigler Nichols settings are calculated from these 

values to provide a 1/4 decay ratio. Kc  = 0.6K0u , T1 = a Pu , TD = 
The Ziegler Nichols setting results in a very good disturbance response for integrating 

processes but gives poor performance for process with a dominant delay [Sko04]. 

Integral method 

This method is based on analytical criteria. In order to determine the controller 
parameters an objective function is minimized. Based on the objective function there 

are several possible criteria that we can use, some are summarized below: 

Name of criterion Objective function 

Integral of the absolute value of the error I AE = lot  I(ErroOldt 

Integral of the squared error ISE = f(t)(Error)2dt 

Integral of the time weighted absolute error IT AE = fot  I(Error)ltdt 
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This method gives an accurate value of the controller parameters for which the 

error is minimal. Among these methods ITAE is preferred because it results in 

conservative settings. In ITAE criteria errors are multiplied by the corresponding time 

hence smaller errors also take in to account in minimization of objective function while 
in IAE and ISE criteria smaller errors have no considerable effect in optimization of 
objective function. 

Controller tuning using gOPT 

A dynamic optimization tool is required for controller tuning with ITAE criteria. 
We use gOPT for minimizing the objective function of ITAE. 

4.1.4 Optimization 

Dynamic optimization is a very effective tools of gPROMS. In optimization we 

can minimize or maximize our objective function with various equality and inequal-

ity constraints. Dynamic optimization in gPROMS seeks to determine the following 
optimum variables: 

o The time horizon 

o The values in each interval of the time variant parameters 

o The values of the time invariant parameters 

o The time variation of the control variables,over the entire time horizon 

The specification which are required for the optimization are given in the table D.2. 

The result of optimization very much depends on the specification. Following points 
can help for better optimization results. 

o Initial guess, lower bound and upper bound of time horizon and for each interval 

should be as accurate as possible for reducing execution time of optimization but 

if not sure about accuracy then take longer range. 

o Piecewise constant and piecewise linear variables should be accurate but if not 

sure then do not specify initial values, gPROMS will automatically calculate these 

specifications. 
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• End point equality, end point inequality, interior point inequality should be spec-

ified according to the need of process. gPROMS will perform optimization only 

within the constraints limit. 

4.2 Labview 

The system under consideration is connected with the labview interface. Labview 
is used to supply the required input data to the system, collecting the output data 

from the system and controlling the operating condition of the system. 

4.2.1 Control 

The setpoint temperature profiles of the thermostat temperature and reactor tem- 

perature are specified in the VI interface. The internal PID controller tracks the 
„- 

setpoint temperature profile of the thermostat while external PID controller tracks 

the setpoint temperature trajectory of the reactor temperature. The appropriate val-
ues of the controller parameters and the batch run time are specified in the VI of the 

labview. The prespecified temperature and the actual temperature of the reactor, the 
prespecified, adjusted and the actual temperature of the thermostat are displayed in 

every specified interval. The graph of the reactor temperature trajectory as well as 

thermostat temperature trajectory during batch run are also displayed. 

4.2.2 Data acquisition 

Data of all the measured variables are stored in the specified file. 

4.3 System identification 

System Identification is a kind of inverse problem selection. When obtaining a 
model by using the theory of system identification, the input sequence and the system 

response to that particular sequence are used. It is now the task of the system identi-

fication to find a model structure and a set of corresponding model parameters which 

best describe the behavior of the system given with respect to the available data. The 

steps of system identification can be structured as follows: 
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o Experimental design 

o Data collection 

o Data preprocessing 

o Model structure selection 

o Model estimation 

o D2Qconversion (special to our needs) 

o Model validation 

4.3.1 Experimental design 

Experiment design is about designing a proper expetiment, which reveals as much 

information about the system to be modeled as possible. 

4.3.2 Data collection 

Once the experiments are designed the actual input and output sequences, the 

data, have to be collected. In the system under consideration the setpoint temperature 

of the thermostat is the input sequence and the reactor temperature is the output 

sequence. Input sequence is generated by modeling in gPROMS. A Labview interface 

is used to'supply the input and to collect the output sequence from the experimental 
unit. 

4.3.3 Data Preprocessing 

The measured data often have offsets, outliers, periods of missing values, drift, 

low frequency disturbances, high frequency disturbances, and other anomalies. The 

anomalies may lead to an improperly identified system. In order to remove these 

sources of errors, data preprocessing is often required. after the data has been collected 

it should be transformed in frequency and time domain to determine if it needs to be 
preprocessed. 

The Following common processes are performed in data preprocessing: 
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Outliers detection 

When recording experimental data occasional large measurement errors may occur. 

Such errors can be caused by disturbances, conversion failures etc. The corresponding 

abnormal data points are called outliers. The outliers can be easily determined from a 

residual. As they appear as spikes in the sequence of prediction errors. 

Detrending 

Detrending of a signal involves the removal of a trend from the signal as like 

removing the mean values or linear trends, low frequency drifts and very low frequency 

disturbances etc. 

Selecting data range 

The whole-  recorded data may not be suitable for identification due to undesired 

features as missing or bad data, outburst of disturbances etc. In this cause only a 

fraction of the data should be used as working data, however remaining data can be 

used as validation data. Initially up to some span of time there is more fluctuation 

in the output of the system. The system could also become unstable at the end of 

process. Unstable response of the system is not reflecting the true behavior of the 

system. For identification only that fraction of the data should be taken which reflects 

stable behavior of the system. 

Prefiltering 

Is used for removing high frequency noise in the data of input and output signals. 

The same filter should be used for all signals. In some cases it is required that the 

identified model should be based on some specific frequency ranges. By prefiltering 

it is possible to make sure that the model concentrates on the important frequency 

ranges. 
In some cases following processes also required for data preprocessing: 

• Re—sampling, to increase estimation speed and accuracy. 

• Scaling to balance variability in signal levels. 
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0 Decimation, to remove redundancy in signals. 

4.3.4 Model structure selection 

When selecting a model structure, the container for the final model is chosen. 

That is, the number of parameters and how they appear in the model. The system 

identification toolbox provides three methods for model estimation. 

Parametric estimation 

In the system identification tool box of Matlab ARX, ARMAX, Output error 

(OE), Boxjenkins (BJ), state space and user defined models are available. Any model 

can be selected and the model order can be edited in order to get the best fit. 

Process model estimation 

The focuss is on lower order, continuous time models that are characterized by a 

time constant static gain, a possible dead time, and a possible process zero and poles. 

The structure of the estimated model is customized on the basis of knowledge of the 

system . 

The Transfer function of the process is obtained directly by this method. It is 

useful for further implementing the controller in the model or implementing the model 

in Labview. This method of model estimation is also useful when possible disturbances 

of the system is not known. A model estimated by this method can be implemented 

in gPROMS. But this method has certain limitations as like model having zeros more 

than one and poles more than three can not be estimated by this method and flexibility 

in the selection of model is also limited. 

Nonparametric estimation 

It uses spectral and correlation analysis methods and estimate frequency functions 

directly. Spectral analysis is performed using data window techniques to estimates 

the transfer function and the noise spectrum. Correlation analysis is performed using 

automatic prewhitening of the input signal. 
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4.3.5 Model estimation 

The estimation of the model deals with transforming the input and output se-

quences into the chosen container, by assigning the unknown parameters to appropriate 

value. It is a heuristic process of determining the dynamic model of the given system. 

The Model having the best agreement with the experimental unit is to be found out 
by this process. 

4.3.6 D2C Conversion 

Parametric estimation method estimates the model in discrete time domain. In 

order to implement the identified model in gPROMS it is converted in continuous 

time domain. The Discrete model is converted in to continuous domain with the help 

of matlab command window. The discrete model is transported in to the matlab 

workspace where by using the following command it is converted in to continuous 
domain: 

me = d2c(ans) 

4.3.7 Model validation 

The last part of the system identification problem, model validation, deals with 

finding out how well the above mentioned transformation went. That is, it aims at 

answering the difficult question of whether a good model was found or not. Validation 

data should be different to estimation data for comparison the dynamic behavior of 

the estimated model and the experimental setup. The identified model is analyzed and 

compared with the validation set as follows: 

• The Dynamic behavior of both models can analyzed directly in the model output. 

• The outputs of the estimated model and the validation data is compared in the 

residual analysis. 

• Bode plot of estimated model is shown in frequency response from which damping 

levels and resonance frequency can be determined. 

• The behavior of the model for step or impulse input can be analyzed by transient 

response. The disturbance spectra of the output signal of identified model can be 
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analyzed in the noise spectra. 

The deviation of the identified linear model from the original system can be analyzed 

more accurately by following analytical criteria: 

Fit 

The fitness is given by the following equation: 

Fit = [1 Y — 
IY 
MEAN (Y 
	 ] 100 	 (4.1) I )I 

Where Y is the measured output and Y is the simulated/predicted model output. A 

higher value of fit means a better model. 

Loss function 

It represents the determinant of the estimated covariance matrix of the noise 

source e(t). Generally for better fit the loss function should be minimum. But when 

comparing the loss function values between different structures that use very different 

disturbance models, an output error model may have a better input—output fit, even 

though it displays a higher value of the loss function. 

Final prediction error 

The accuracy of fitness of linear model is also determined in terms of final prediction 

error (FPE) which is calculated by following equation. 

FPE =V . (1 + d/N)/(1 — d/N) 	 (4.2) 

Where V is the loss function, d is the number of estimated parameters and N is the 

number of estimation data. 



Chapter 5 

Model 

5.1 Batch reactc 

5.1.1 Reactor 

Assumpt 

The mathematical model of the reactor is based on the following assumptions: 

• The liquid in the reactor is assumed to be ideally mixed therefore the temperature 

and the concentration variation inside the reactor are considered to be uniform. 

In practice there may be temperature and concentration variation along radial 

and axial direction inside the reactor especially for a large reactor. 

• There are no chemical reactions occurring in the reactor. 

• The tank is cylindrical in shape, made of borosilicate glass. 

• There is no inflow and outflow during process from the reactor hence total mass 

of the liquid is constant and hence mass balances are not included in the mathe-

matical model. 

• The air above the liquid surface is neglected for modeling therefore heat of evap-

oration is assumed to be equal to the heat of condensation of the liquid at the 

surface of the lid. 

• The total heat of the condensation is lost to the environment which is same as 

the heat of the evaporation of the liquid in the reactor. 
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o The heat transfer between the liquid and the air phase is neglected. 

O The rate of the energy dissipation through the agitator is assumed to be constant 

throughout the process although it depends on the temperature and concentration 

profiles of the reactor. 

Energy balance 

The liquid in the reactor is considered as the system for the energy balance. 
dE 7E- — Qwcri Q crc Qcra + P 	 (5.1) 

Where E is the energy holdup in the reactor, Q, is the rate of the heat exchange 
between the reactor liquid and the inner tank wall, Qcr, is the rate of the heat loss to 

the environment due to the condensation of the vapor at the lid of the reactor, Qcra  

is the rate of the heat exchange between the surface of the reactor uncovered with 
jacketed shell and the environment and P is the rate of the heat dissipation through 
the agitator. 

Energy holdup 

The holdup of the energy in the reactor is calculated as: 

E = mass, • cp  • (T„ — 273.15K) 	 (5.2) 

Where T,. is the temperature of the liquid inside the reactor and mass, is the mass 
and cp  is the heat capacity of the liquid phase which is the function of the reactor 
temperature. 

cp  = poly(Tr ) 	 (5.3) 

Heat exchange between the reactor liquid and inner reactor wall 

The rate of the heat exchange between the reactor liquid and the inner reactor 
wall is given as. 

Qcri = Acri ' a ' (Tr — To) 
	

(5.4) 

a is the heat transfer coefficient which is related to the nusselt number and the heat 

conductivity by the following equation. 

Nu. A 
a = 	

dn 	 (5.5) 
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The Nusselt number is calculated from the following correlation [VW] 

	

) 0.14 ( 	) 0.39 / hag  \ 0.34 

Sao 
Nu = 1.31•Rel • Pr§ • (-7L 	(Lag 

do 	do 

with the Reynolds number being 

Re = dag
2 • n p 
71 ft 

Where dag  is the diameter of the blade, hag  is the height of the blade, n is the revolutions 

per second of the agitator, 77r  is the dynamic viscosity of the reactor liquid (water) 

at reactor temperature and Rio  is the dynamic viscosity of the reactor liquid at the 

temperature of the inner side of the inner tank wall. 

The area of the the heat transfer which is the wet area on the inner side of the 

reactor tank is estimated by the following equation: 

1 
Acri = 7r • do • h f  + —

4
7 • d77,2  

The height of the liquid in the reactor is estimated as: 

V. 
h f 
' 	17r • dn2  4 

The volume of the liquid in the reactor is estimated as: 

mass, 
VT. = 	+ Vag 	 (5.10) 

The volume of the stirrer-system Vag  is also included in the volume for determining 

the heat transfer area 

Heat of condensation 

The rate of evaporation of the liquid from the surface is given as [Rex]: 

dm 
Acre  • estg  gcoef f 	 dt 	 1 — 

(5.11) 

with Acrc being the surface area, geaef f  the mass transfer coefficient and G the mass 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

concentration above the surface (the mass concentration at the glass lit is assumed 

to be zero). est 9  is an adju.sting (estimation) factor that adjusts the mass transfer 
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coefficient gcoef f for better fitting of the modeled temperature profiles. The value of 

estg  is determined by the parameter estimation. s  can be derived using the ideal gas 
law. 

1  
(5.12) 

1 
 + (

- 7P= 1) 
Pvapr 	Ra  

Pr is the pressure in the reactor, Pvap, is the vapor pressure of the reactor liquid (water) 

at the reactor temperature and R, and Ra  are the gas constants of vaporized reactor 
liquid and air, respectively. 

The mass transfer coefficient gcae ff can be obtained from the analogy of heat and 
mass transfer [Ren]: 

Sh • pa  • D 
gcoef f = 	0.9 d 	 (5.13) n 

0.9 . do is the characteristic length of the circular surface, los  denotes the density at the 
surface, D the diffusion coefficient of vapor in air and the Sherwood number Sh is the 

mass transfer analog to the Nusselt number in heat transfer. 

The density at the surface ps  can be computed from the density of the vapor paap, the 
density of air pa  (both at the temperature of the reactor) and the mass concentration 

Ss 

Ts"  Ps — 	 (5.14) 
PuoP Pa.6 

The expression for the binary diffusion coefficient D in gaseous mixtures at low 
pressures can be found on. page Da33 in the VDI Warmeatlas [VW]: 

Mr + Ma 	 1.013 

Pr • (di f fvoe-13  + f fvolY 3 ) 2  Mr Ma •  

In this expression, Mr  and Ma  are the molecular weights for the liquid in the reactor 
and air respectively; Pr  is the pressure (lbar) in the reactor and di f fvol, and di f fvola  
denote the diffusion volumes of the liquid in reactor and air, respectively. The diffusion 

volumes can be found on page Da33 in the VDI Warmeglas [VW]. 

The Sherwood number Sh as the analogue to the Nusselt number can be derived 
from a correlation of the form 

Sh = C • Gen • Scn 	 (5.16) 

The Grashof , number Gr is used in this Sherwood correlation since evaporation is 

analogue to natural convection (heat transfer). The Grashof number for mass transfer 

D = 10-4  -10-3  • Trl " (5.15) 
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can be calculated from 

Gr = g - (0.9 • dri)3  • (pa  — 
Vat 

Pa 

with //a  being the kinematic viscosity of air at the reactor temperature. 

The Schmidt number Sc amounts to 

Sc =  
D 

(5.17) 

(5.18) 

The appropriate Nusselt correlation that is analogue to the required Sherwood 
correlation was found to be the correlation for natural convection at horizontal circular 

plates with laminar flow and surface temperature higher than ambient temperature. 

The Nusselt number was substituted with the Sherwood number: 

Sh = 0.54 • (Gr • Sc)i 	 (5.19) 

Finally, the heat flow due to evaporation across the surface of the reactor liquid can 

be obtained: 
dm L  

Qcrc 	[iv dt 	r  
(5.20) 

with kr  being the heat of evaporation of the liquid in the reactor at its respective 

temperature. hi,, is evaluated at the respective reactor temperature in a polynomial 

The heat exchange between the reactor and the environment 

C2cra = estcra • (Tamb — Tr) (5.21) 

The estimation factor estcra  est stands for the product of the area of heat transfer and _  

the heat transfer coefficient. 

5.1.2 Inner tank wall 

Assumptions 

• No heat flow in tangential direction. This assumption is reasonable if the tank 

is perfectly symmetrical and there is no radial temperature gradient in the liquid 

inside the reactor as well as in the liquid in the cooling jacket which is true for the 
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ideally mixed liquid in the reactor and for the small thickness of the temperature 

jacket. 

o The heat flow along the wall (axial in the cylindrical ring and radial in the base) 

can be neglected in compared to the heat flow across the wall. This assumption 

is reasonable only when there is no temperature gradient in the axial as well as 

in the radial direction in the liquid inside the reactor and in the liquid inside the 

cooling jacket. The axial velocity of the liquid in the tempering jacket is kept 

high which insures the negligible axial temperature gradient inside the tempering 

jacket. 

Energy balance 

The above assumptions ensure that the heat flow only along the thickness of the 

inner wall. The heat balance in the cylindrical ring of the thickness yi  is given as: 

dTi(Y) dqv(v) 
(glass • est, 	c 	 0 	 (5.22) 

Pglass Pgiass  dt 	dyi  

estCP glass is  an adjusting (estimation) factor that adjusts the heat capacity of the wall 

cPgiass for better fitting of the modeled temperature profiles. 

The heat conduction in the axial direction qy(yi) is given by 

(yi)  
dyi  

est ), is an adjusting (estimation) factor that adjusts the heat conductivity of the 

wall Agia„ for better fitting of the modeled temperature profiles. The value of est ), is 

determined by parameter estimation. The following boundary condition is apply at 

the inner side of the inner wall. 

qy(0) = Qcri
A 	 (5.24) 
ti" 

with AC, i being the area of the interface to the reactor liquid. 

The following boundary condition is apply at the outer side of, the inner wall. 

gy(si)  Qcis + Qcib  (5.25) 

with Acislcib being the combined outer area of the inner tank wall and Qcis  and Qcib 

are the rate of the heat transfer in to the liquid inside the tempering jacket from the 

shell part and the bottom part of the outer side of the inner wall respectively. 

gy(yi) 	—est), • Aglass (5.23) 
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5.1.3 Tempering jacket 

The bath fluid enters at the edge of the bottom part of the tempering jacket and 
spreads around the center of the bottom hence the liquid in the bottom part of the 
tempering jacket is assumed to be ideally mixed while the liquid in the shell part of 

the tempering jacket can not be considered ideally mixed in axial direction. Hence the 

bottom and the shell part of the tempering jacket is modeled separately. 

Bottom 

The mass holdup in the bottom of the tempering jacket is assumed to be constant. 

The rate of the change of the energy in the bottom part of the tempering jacket is 
governed by the following equation: 

dE 	• 	• 
dt 

= Ein  — Ema — Q cbob Q cib 

and ko,,,t  denote the energy flow in and out the bottom part of the jacket: 

(5.26) 

kin = rh • Cpin  • (Tin — 273.15K) 	 (5.27) 

rh cp• (Tb 273.15K) 	 (5.28) 

Q cib is the rate of the heat exchange between the bath fluid in the bottom and the 
inner tank wall: 

Q cib = Acib • ester  • a • (Ti  (Si)— Tb) 

Nu • A = 	, 
achar 

0.03 • Re"' • pr 770.14 
Nu = 	 (5.31) (Reo.125 + 1.74 . (Pr —1)) • tr)  si  0.14 

Qcbab  is the rate of the heat exchange between the bath fluid in the bottom part of the 

tempering jacket and the outer tank wall: 

Q cbob 	Acbob • gcbob (5.32) 

(5.29) 

(5.30) 

gcbob = ester  • a • (Tb — Tob(0)) 	 (5.33) 
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The energy in the bottom phase is calculated from 

E= p • Vb • Cp • (Tb — 273.15K) 

with Vb being the volume of the bottom part of the jacket. 

(5.34) 

Shell 

Assumptions 

o The temperature gradient of the bath fluid in the shell part of the tempering 

jacket is negligible in the tangential as well as radial direction. 

o The temperature gradient is considered in the axial direction because the heat is 

exchanged between the bath fluid in the tempering jacket and the liquid in the 

reactor as well as with the outer tank wall. There is no axial mixing of the bath 

fluid in the shell part of the tempering jacket. 

O The holdup of the bath fluid in the shell part of the tempering jacket is constant. 

o The conductive heat flow in the axial direction is neglected in comparison to the 

convective heat flow due to the high velocity of the bath fluid. 

Energy balance 

The rate of the change of the energy in the shell part of the tempering jacket is 

governed by the following equation: 

d 	 dT,(zs )  
g 	

Ts(z,)  
zs) • cp(zs) 	+ v(z,) p(z,) cc (z9 ) 

dt 	 dz, 
di  • qci ,(z,) — 2 • (Yi  • - S jacket) • qcso, s(Z3)  (5.35) 

(1d i + (5jacket)2  — (idi) 2  

qcsos(;) = ester  • a(z3) • (Ts(zs ) — Tos(0)) 	 (5.36) 

The rate of the heat exchange between the bathe fluid in the shell and the outer tank 

wall is averaged as: 

pi • (di + 26 jacket) f 
Ls 

qcsosav z=" 	 qcsos(Z S) 
Acsos 	0 

(5.37) 



lass 	 
dy0 

dTob(y0) qy(yo) = T estA • Ag (5.40) 
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with AC308  being the area of the interface. 

The axial velocity of the bath fluid in the shell part of the tempering jacket is 
computed as: 

Th  
V(Z3 ) = 	

in 
 

p(zs ) • As  
with As  being the cross sectional area of the shell. 

(5.38) 

5.1.4 Outer tank wall 

The heat exchange between the outer side of the outer tank wall and the ambient 

air is governed by natural convection, which differs for the horizontal and vertical 
interface. Therefore the rate of the heat exchange between the ambient air and the 

bottom part of the tempering jacket is differ to that of the ambient air and the shell 

part of the outer tank wall. Hence the bottom part and the shell part of the outer 

tank wall is modeled separately. The inner tank wall and the outer tank wall are 
symmetric and concentric and the jacket width is relatively small. Therefore the same 

heat transfer correlations and adjusting factors are taken for the outer tank wall as in 
the inner tank wall. 

Assumptions 

• The heat is transferred only in axial direction, the radial and the tangential heat 
transfer are neglected due to the ideally mixed bath fluid in the bottom part of 

the tempering jacket. 

• The conductive heat between the bottom and the shell part of the tempering 
jacket is neglected due to the small thickness of the outer tank wall. 

Energy balance 

dTob(yo)  de(Y0)  n  
Pglass estop  • %I.  

dt 	dy 	- 
The heat conduction in axial direction qy(yo) is governed by 

(5.39) 
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The boundary conditions are given as: 

qy(0) = qcbob 	 (5.41) 

gY(51°) = qcoba 	 (5.42) 

The rate of the heat flux between the bottom part of the outer tank wall and the 

ambiance is given as: 

qcoba = 	(Tamb Tob(S0)) 

The heat transfer coefficient can be calculated from 

Nu • A a= 	 
0.9 . da 

with 0.9 • da being the characteristic length for the circular interface. 

At the different conditions the nusselt number is computed as: 

1. laminar flow 

o wall temperature higher than ambient temperature 

Nu = 0.58 . (Gr • Pr) 

o wall temperature lower than ambient temperature 

Nu = 0.54 • (Gr • Pr)i 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

2. turbulent flow (only for wall temperature lower than ambient temperature) 

Nu = 0.14 • (Gr • Pr)i 	 (5.47) 

The constraint for laminar flow is 

Gr • Pr < 8.106 	 (5.48) 

The Prandtl number (as the data for kinematic viscosity of air, and heat conductivity 

of air) needs to be evaluated at the medium temperature Tm , which is the arithmetic 

average of the ambient temperature Tamb  and the wall temperature Tob(S): 

Tm, = 0.5 • (Tomb + Tob(S0)) (5.49) 



5.1. BATCH REACTOR 	 47 

Gr = 
g • (0.9da)3  •  Tamb  (Tomb amb Tob(S)) 

V2 	  (5.50) 

v is the kinematic viscosity of air at the medium temperature, 0.9da is the charac-

teristic length of the circular interface and Tomb — Tob(S0 ) is the temperature difference 
at the transition wall - ambient air. 

Outer tank wall shell 

The rate of heat transfer in the tangential and the axial direction is assumed td 

be negligible in comparison to the radial direction. The energy balance is given as: 

dTos(yo) dgy(y0 )  0  pgias , • estc, • Cpgia.. .]tdyo  
The heat conduction in axial direction qy(yo ) is formed by 

dTos  (Yo) gy( yo ) = —est ), • Agioss 

The boundary conditions are given as: 

qy( 0 ) = qcsosau 

dyo  

(5.51) 

(5.52) 

(5.53) 

qy(S0 ) = qcosa 	 (5.54) 

qcoso = a • (Tamb — Tos (So)) 	 (5.55) 

N Ucylinder •• A =  	 (5.56) Ls  + So 
with L3  + So  being the characteristic length for the area of heat exchange. 

The Nusselt correlation is valid for 10-i < Gr • Pr < 1012  and for both wall 
temperature higher and lower than ambient temperature 

Nu = (0.825 -4.387 • (Gr • Pr • f (Pr)) s) 2 	 (5.57) 

The Grashof number is calculated from 

(5.58) 
g • (L, + S0 )3  • Tamb Ms (SO) — Tamb) 

Gr = 2 
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Where v is the kinematic viscosity of air at the medium temperature, h is the height 

of the outer side of the outer tank wall, Tamb Tos  (S) the temperature difference at 

the transition wall - ambient air and f (Pr) a correction factor: 

f (Pr) = 

16 
(Pr* +0.49218) 9  

(5.59) 
(Pr Tif 

16 

 

9 

The Prandtl number is calculated at the medium temperature, which is the arith-

metic average of the ambient temperature Tamb and the wall temperature at the outer 
side Tos(S.): 

= O.5 • (T„„,,b  + T„(S0)) (5.60) 

The Nusselt number that is calculated with the above mentioned Nusselt correlation 

applies for vertical discs. The correction for cylinders is carried out as follows: 

L s  + So  
NUcylinder Nu + 0.97 	

da 	 (5.61) 

5.2 Thermostat 

The mass holdup is constant in the heat exchanger tank and perfect insulation of 

the pipe connecting the thermostat to the tempering jacket is assumed and hence heat 

exchange of the bath fluid with the ambiance through the connecting pipe is neglected. 

The energy balance in the heat exchanger of the thermostat is formulated as: 

dE 
' 	-Clout + Q dt 	 ic Qchs (5.62) 

The energy holdup is related to the thermostat temperature by the following equation: 

E = p • Vhe  • Cp (The  273.15K) 

kin  and 

	

	are the energy flows in and out of the heat exchanger: 

kin = Thin ' Cpin  (Taut — 273.15K) 

-tout = moat • Cp ' (The — 273.15K) 

(5.63) 

(5.64) 

(5.65) 

with Tto,at being the temperature of the bath fluid leaving the tempering jacket that 

leads to the thermostat. 
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Qic is the rate of the heat exchange with heating/cooling system and Qchs  is the 

heat exchange with the steel cage of the heat exchanger tank which is computed as: 

Qchs = a • Ad, • (The — Tat) 	 (5.66) 

with 7'3, being the steel cage temperature. The heat balance in the steel cage is given 

as 
dEet 

= dt Qchs Qcsa 	 (5.67) 

where Qcsa  is the rate of the heat exchange between the steel cage and the ambient air. 

The energy holdup in the steel cage is given as: 

Est = mst • cps , • (Tst — 273.15K) 

The rate of the heat exchange with the environment is given as: 

Qcsa = 0  • -Acsa • (Tamb Tst) 

(5.68) 

(5.69) 

with Acsa  being the estimated area of heat exchange and Tamb — 7'8, being the temper-

ature difference between the air flow at ambient temperature and the steel cage. 

Nun, • 
Q — 	 

/c.s. 
(5.70) 

  

Num  = NUlaminar 2  NUturbulent 
2 
	

(5.71) 

with the scope of the application ranging from 

101  < Re < 107 	 (5.72) 

NUturbutent 
1 + 2.443 • Re-°.1  • (Pr 3  — 1) 

The Reynolds number is computed from 

U • lcsa 
Re =  	 (5.75) 

NUlarninar = 0.664 • V./ • Pri 
0.037 . Re0.8  Pr 

(5.73) 

(5.74) 

with v being the kinematic viscosity of air at the ambient temperature, u being the 

velocity of the air and /„a  is the characteristic length of the area of heat exchange. 
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5.3 Controller 

5.3.1 Internal controller 

The structure of the internal controller is provided by the manufacture according 

to which the the controller is designed. The integrator of the internal controller is 

modeled by 
dlerror  dt = error (5.76) 

and the proportional and integral part of the internal controller are summed up as 

1 	 1 Plvalue — x • (error + —
Tn 'error) p 

(5.77) 

with xp being the range of proportional gain and Tn being the integral time. The 

equation for the differentiator then reads 

dDvalue 
= I.  • Tv • din Dvalue + Tv 	 

dt 	xp 
(5.78) 

with Dvalue being the output of the differentiator, Tv being the differential time and 

din being the rate of energy change in the heat exchangei as illustrated below. Finally, 

the outputs of the PI controller and the differentiator are combined by 

PIDvalue = Dvalue — Plvalue 	 (5.79) 

The output of the internal controller PIDvalue still has to be scaled and brought to 

the corresponding value of the heating/cooling duty, which is done in the model. 

din =tin — tout + Qic Q chs (5.80) 

The setpoint can still be specified as setpoint temperature T„t , but the corresponding 

energy in the heat exchanger has to be calculated as the pseudo command variable 

setpoint: 

setpoint = p • Vhe  • Cp • (Tset — 273.15K) 	 (5.81) 

with the density p and he'4,1 capacity cp  being evaluated at the setpoint temperature 

T„t ., Vhe  is the const 	lume of the heat exchanger tank. The error is then calculated 

/from 	Ct ° ti 

error = in setpoint 	 (5.82) 
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which is the difference between the actual (in) and desired energy (setpoint) of the 

heat exchanger tank. 

maxcool = poly(The) 	 (5.83) 

maiheat = Qmax  COOlmin  • maxcool 	 (5.84) 

coo/min  is a figure smaller than one that models the persisting minimum flow of cooling 

fluid running through the cooling coils even when the thermostat is in heating mode. 

Note that the maximum cooling duty maxcool is a negative value. The effective 

maximum heating duty still depends on the bath fluid temperature to a slight extend 

since the minimum cooling coo/min  maxcool depends on the bath fluid temperature. 

Qic  = maxheat; (If PIDvalue > 1) 

Qie= maxcool; (If PIDvalue < —1) 

Qie= Q. • PIDvalue + coolmin  • maxcool; 

(If —1 < PIDvalue < 1) 

Alternate PID controller 

An alternate internal PID controller is modeled (similar to the external PID 

controller) in which the temperature is specified as the setpoint instead of energy. The 

controller heat is calculated as: 

1 , 	1 	 Tv 
d( error Qic = —{error + — f (error)dt 

xp 	Tn 0  1 + Tv --Id(er"r  dt 

Where error is given as: 

for detail refer appendix C.1. 

error = T„t  — The (5.86) 

5.3.2 External controller 

It is difficult to implement a PID controller in gPROMS. For implementing a 

model in gPROMS, the number of initial conditions must be equal to the number 

of differential equations in the model. Integration of a function w.r.t time can not 

be directly expressed in the gPROMS model builder while it can be expressed in the 

form of differential equation. Due to the simultaneous operation of differentiation 



52 	 CHAPTER 5. MODEL 

and integration of the error in a single equation gPROMS requires two initial 

conditions. On specification of two initial conditions gPROMS gives the error of 

DAE (differential-algebraic equation) index greater than one. The PID controller 

is implemented in gPROMS by special model formulation. By optimization we can 

achieve the desired temperature trajectory in the reactor but exact tracking of desired 

temperature trajectory is not possible by using only optimization, to achieve that we 

need an external controller. 

Controller input 

Error = Tract  — Tr 	 (5.87) 

Controller output 

Integral error 

Differential error 

Qpid = Kc(Error T Error 
 Td • DError) 

1 

dIError  
	 = Error 

dt 

d(Error) 
DError dt 

(5.88) 

(5.89) 

(5.90) 

Instead of using differential equation (5.90), DError can be expressed in terms of basic 

variable, reactor temperature by algebraic equation given below (for detail description 

sea Appendix C.2) 

DError = f (Tr, Tract ) (5.91) 



dt 	kin — Ectut Qic Qchs QPID 
dEpredicted = (5.92) 
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Online setpoint adjustment 

The setpoint temperature of the thermostat is tracked by the internal controller but 

the prespecified thermostat setpoint temperature trajectory may not lead to the desired 

reactor temperature trajectory hence online modification of the thermostat setpoint 

temperature is needed for obtaining the desired reactor temperature trajectory. The 

external controller is used for online modification of the setpoint temperature of the 
thermostat. 

In order to track the reactor setpoint temperature trajectory, the predicted energy 

holdup of the thermostat heat 'exchanger is calculated from the equation given below: 

On the basis of the predicted energy holdup the thermostat temperature can be pre-

dicted with the help of the following equation: 

—  Epredicted = p • Vhe • c • (Thepredicteci 	273.15K) (5.93) 

The deviation of the predicted thermostat temperature from the actual temperature is 

calculated as follows: 

VThe  = The — Tpredicted 

The new setpoint of the thermostat temperature is calculated as follows: 

(5.94) 

Tsetad  = Tee — VThe 	 (5.95) 

5.4 Crystallizadon 

Assumptions 

The following assumptions are considered in the modeling of the crystallization 

process. 

• The ideally mixed constant volume batch cooling crystallizer is used. 

• The density of the solute and the solvent are constant. 

• The attrition, breakage and agglomeration are also considered by introducing the 

production reduction term. 
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5.4.1 Population balance equation 

The population density distribution of the crystals is governed by the following 

partial differential equation: 

an, 	ac, + v • -- = at 	v • [ B° + a(L)] 	 (5.96) 

Where nT  is the total number of the crystal per unit size of the crystal at any instant 

and is given as: 

nr = n V 	 (5.97) 

Where n is the population density of the crystals and V is the magma volume. 

The rate of the crystal production per unit magma volume is given as: 

GT(L) = G(L) . n 	 (5.98) 

5.4.2 Growth rate 

The linear growth rate of the crystal is assumed to be the function of the super 

saturation (S) as well as agitator speed (N)and it's dependency is correlated as: 

G(L) = Kg Sg  Ng 	 (5.99) 

Where the growth kinetic coefficient Kg , growth order, g and q are the adjusting 

parameters that has to be estimated by the parameter estimation routine of gPROMS 

in order to obtain the best agreement between the mathematical model and the 

experimental results. 

5.4.3 Nucleation rate 

The rate of the generation of the new crystal particles per unit magma volume 

is correlated with the supersaturation, the crystal mass and the agitator speed with 

following equation: 

B°  Kb • Sth  • mg • NP 	 (5.100) 

Where nucleation kinetic coefficient (Kb) and the nucleation orders, b, j and p are 

adjusting parameters that have to be estimated by the parameter estimation routine 

of the gPROMS. 
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5.4.4 Production reduction rate 

The combined ,effect of the crystal breakage, attrition, and the crystal agglomera-

tion on the population density distribution is considered by using a single term known 
as production reduction rate which is given by the following equation: 

ce(L) = Ka  • Sd  • Mck  • Arr 	 (5.101) 

Where the adjusting parameters, the production reduction kinetic coefficient (Ka ) and 
the production reduction orders, d, c and r have to be estimated by the parameter 
estimation routine of the gPROMS. 

The mass of the crystals are estimated as: 

== 	. 	. 123 	 (5.102) 

Where pc  is the crystal density and it is assumed to be constant throughout the crys-

tallization process. The Ify is the crystal shape factor and /13  is the third moment 
defined as: 

1LT 
/13= 	n • L3dL 

Where L is the size of the crystal and LT is the the size of the largest crystal. 

(5.103) 

5.4.5 Mass balance 

The mass of the solute is transferred from the liquid phase to the solid crystalline 

phase.. The rate of the change of the solute concentration in the liquid phase is governed 
by the following equation: 

dc 	 V LT 

Tit  = - 3 P c • 	• , [/' GT (L) • L2  dL + B°  • 433 ] 	 (5.104) 
o 

It is assumed that some fine crystals of size L0  were present initially as impurity in the 
magma. 

5.4.6 The heat of the crystallization 

The heat of the crystallization is the function of the reactor temperature so it is 
correlated as: 

AHa  = esti  + est2 T,. 	 (5.105) 
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Where est1  and est2 are the adjusting factors. These adjusting factors are determined 

by using the fact that the difference in the temperature trajectory of the reactor ob-

tained by without crystallization and with crystallization is due to the heat of the 

crystallization. These adjusting factors are estimated .by the parameter estimation 

routine of gPROMS for better fitting the modeled temperature trajectory with the 

experimental temperature trajectory. 

5.4.7 Supersaturation 

The driving force for the crystallization, the supersaturation is related to the solute 

concentration by the following equation: 

S = 
(C  —  Ceq)  

Ceq 

(5.106) 

5.5 Linear model of the system 

With the help of the system identification toolbox of Matlab, the reactor temper-

ature is related to the thermostat temperature by a second order differential equation. 

Values of reactor temperature and thermostat setpoint temperature w.r.t.time are used 

for system identification. Thermostat setpoint temperature is used as an input signal 

while the reactor temperatures are used as an output signal. 

5.5.1 Discrete time IDPOLY model 

In discrete time domain the linear model is expressed by the following equation 

A(q)y(t) = B(q)u(t) + e(t) 	 (5.107) 

Where u(t) denotes the input and y(t) denotes the output signal which are the ther-

mostat temperature and reactor temperature respectively. The order of the estimated 

model is represented as [na nb nk]. The corresponding terms in order represent the 

number of poles, zeros+1, and delays respectively. The. coefficient A(q) is a function 

of q and na and can be expressed by following equation. 

A(q) = 1  + alq-1  anaq-na  (5.108) 
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The coefficient B(q) represents the delay terms and can be expressed by following 
equation. 

B(q) biq-nk b2q-(nk+i) (5.109) 

5.5.2 Continuous time IDPOLY model 

In continuous time domain the above model can be represented as 

A(s)y(t) = B(s)u(t) + C(s)e(t) 	 (5.110) 

Where A(s), B(s), and C(s) are the transfer functions characterizing the behavior of 

input signal, output signal and disturbances respectively and are given in appendix 
B.1. 

If an experiment is repeated with the same input, the output will typically be 
some what different, due to the presence of some unpredictable noise sources. The 

noises are represented by the term e(t) in the identified model. It contains all the 

influence on the measured y, known and unknown, that are not contained in the input 

u. Prediction of noise source e(t) at time t is difficult even if past data up to the 

time (t-1) have been measured very accurately. The transfer function C(s) is just a 

convenient way of capturing their character. 

The disturbance model e(t) have an importance when the model is used for 
prediction and it can be modeled by analyzing the possible disturbances on the 
system. We want to use the model for simulation, i.e., the responses to various inputs 

are to be studied. Hence the disturbance model plays no immediate role and can be 
neglected. 

Taking the Laplace transformation of the simplified linear model we get the 
following second order differential equation. 

d'y dy b  du , 
dt2  a  dt 	y — 	+ au 

Where u, and y represent the input and output signal respectively. In the system 

under consideration u is the thermostat setpoint temperature and y is the reactor 

temperature. 
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5.6 Optimization problem 

In order to maintain similarity with the gPROMS model the formulation of the 

optimization problem given here is same as it is required for implementing in gPROMS: 

5.6.1 Linear model 

dT, =x 	 (5.112) dt 
dx 	 The + ax + bT, = c—

dt + dThe 	 (5.113) dt 

dt = slope 	 (5.114) 

The time can be defined in gPROMS as follows: 

dt 
dt 

The desired trajectory of the reactor temperature is defined as: 

T„et 
 = constant dt 

Where constant is the slope of reactor temperature which varies as a piecewise constant 
with respect to time. 

Objective function for the trajectory optimization 

Following objective function is used for temperature trajectory optimization: 

Obj = f 	— Trsetldt 
	

(5.117) 

In order tp determine the temperature of the bath fluid in the thermostat The  , the 
objective function is to be minimized by the dynamic optimization tool of gPROMS 
subject to following conditions: 

o Piecewise constant variable = slope 

o Interior point inequality constraint: 

300 < Tr  < 400 

300 < The  < 400 

The  
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• Time horizon for dynamic optimization is to be fixed as 20000 seconds and it is 
divided into 20 intervals. 

5.6.2 PID controller in linear model 

For controller parameter tuning gOPT is used. The optimization in complex model 

is not practicable due to the complexity of the model hence the same PID controller 
is also implemented in the linear model as in the complex model. 

The controller heat is calculated as: 

+ 
1.  Er 

Q pid = 	• (Error 1-• 17;  or  TD • D Error ) 
T1 

Integral error is defined as: 

'Error f (Error)dt 

error is calculated as: 

Error = Trse, — Tr 	 (5.120) 

Differential error is related to the slope of the setpoint and actual reactor temperature 
as: 

D Error = constant — x 	 (5.121) 

The external PID controller in the linear model is also used to adjust the setpoint of 

the internal controller for which controller energy should be related to the .thermostat 

temperature. There is no energy balance in the linear model even then controller energy 

can be related to the thermostat temperature by the following equation: 

Qpid = p • Vhe • Cr  • (slopeset  — slope) (5.122) 

Where p is the density of the bath fluid in the thermostat which is related to the 
thermostat temperature by a 3rd degree polynomial. The coefficients of the polynomial 
are given in the appendix A.2. 

P = Poly(The) 	 (5.123) 

C, the heat capacity of the bath fluid is also related to the thermostat temperature by 

3rd degree polynomial and coefficients of polynomial is given in the appendix A.2. 

Cr  = poly(The ) 	 (5.124) 
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Vhe  is the volume of the heat exchanger tank 

The thermostat setpoint temperature is defined as: 

These,  slope"t 
dt (5.125) 

In order to achieve the reactor setpoint temperature the prespecified thermostat set-

point temperature is adjusted as 

AThe  = Theset — The 	 (5.126) 

The controller parameters are tune using ITAE criteria which is given as: 

ITAE = f t • lerrorldt (5.127) 

In order to determine the controller parameters the ITAE is minimized using the 

optimization routine of gPROMS. 



Chapter 6 

Results and discussion 

6.1 Parameter estimation 

The mathematical model involves many parameters. The accuracy of the Mathe-

matical model depends on the fact that how accurately these parameters are adopted 

in the model. The parameters involved in the model can be divided in to three groups, 

system dependent parameters, adjusting parameters and control parameters. 

6.1.1 System dependent parameters 

These parameters are directly related to the system under consideration. Most 

of these parameters are known or can be calculated with the help of the properties 

data supplied by the manufacture and the remaining parameters are estimated by the 

parameter estimation routine of gPROMS. The system under consideration comprises 

of two subsystems, The batch reactor and the thermostat so the system• dependent 

parameters can be subdivided into two groups, reactor dependent parameters and the 

reactor independent parameters. The system dependent parameters which depend 

either on the batch reactor or batch reactor and thermostat are placed in the group 

of reactor dependent parameters and other parameters are placed in the group reactor 

independent parameters. For the same thermostat the reactor independent parameters 

will remain the same. The reactor dependent parameters which have to be estimated 

are the power of the agitator and the volumetric flow rate through the pump in the 

thermostat. 
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Power dissipated through the agitator 

The power dissipated through the agitator directly influences the temperature tra-

jectory of the reactor. The effect of the power dissipated through the agitator is shown 

in figure 6.1. The graph shows that the greater the rate of energy generated by the 

agitator the higher the temperature of the reactor at any instant. 

The deviation of the temperature trajectories obtained from the mathematical 

model from the experimental temperature trajectory are shown in figure 6.2. The 

power dissipated through the agitator depends on the power intake to the agitator 

and type and dimensions of the agitator. In the system under consideration the power 

dissipated through the agitator is a parameter which is estimated by the parameter 

estimation routine of gPROMS. The temperature trajectory obtained from the math-

ematical model at 0.002KW (estimated value) shows the best agreement with the 

experimental temperature trajectory. 
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Effect of agitator power on reactor temperature trajectory 

Time(s) 	 x 10°  

Figure 6.1: This graph shows the effect of the agitator power on the reactor temperature 

trajectory. 
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Figure 6.2: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different agitator power intake. 
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Volumetric flow rate through the pump 

The effect of the volumetric flow rate through the pump is shown in figure 6.3. 

The whole range of operating time can be divided in to two parts, heating time and 

cooling time. Which is shown in the graph with the help of a vertical line. The left 

portion of the graph shows the heating and the right portion shows the cooling. The 

graph shows that the higher the volumetric flow rate through the pump the higher will 

be the heating as well as the cooling effect. 

The deviation of the temperature trajectories obtained from the model are shown 

in figure 6.4. The volumetric.  flow rate through the pump should be proportional to 

the volume of the tempering jacket. It is an unknown parameter for the system under 

consideration. It is estimated by the parameter estimation routine of gPROMS. The 

graph shows that the temperature trajectory obtained from the mathematical model at 

0.24E — 3 m3/s (estimated value) of the volumetric flow rate through the pump gives 

best agreement with the experimental temperature trajectory. In the system under 

consideration, on increasing the volumetric flow rate through the pump, the value of 

the experimental temperature minus the temperature obtained by the mathematical 

model decreases in the heating zone while it increases in the the cooling zone at any 

instant. 
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Figure 6.3: This graph shows the effect of the volumetric flaw rate through the pump on the 

reactor temperature trajectory. 



0.5 1 1.5 2 2.5 
Time(s) x 104  

Decreasing 

6.1. PARAMETER. ESTIMATION 	 67 

Figure 6.4: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different volumetric flow rates through 

the pump. 
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6.1.2 Adjusting parameters 

In order to obtain the best agreement between the mathematical model and the sys-

tem under- consideration some adjusting parameters are introduced in the model. For 

an ideal mathematical model the values of these parameters should be unity. The values 

of these parameters are estimated by the parameter estimation routine of gPROMS. 

Mass transfer coefficient at the liquid surface 

The liquid in the reactor is vaporized in to the air above the liquid surface and it 

condenses at the lit of the reactor. The heat of condensation is lose to the environment. 

The parameter est9  is used to adjust the mass transfer coefficient for mass transfer 

from the liquid surface by the evaporation. The more the value of the est9  the more 

will be the rate of evaporation and hence the rate of the condensation heat loss to 

the environment. This effect is also shown in figure 6.5. The graph shows that on 

increasing the value of the est9  the temperature of the reactor decreases. The rate of 

the heat loss through the lit is proportional to the temperature difference between the 

reactor and the environment hence the effect of the parameter estg  is greater at higher 

temperatures of the reactor. 

The portion of the figure 6.5 enclosed within the rectangle is shown in figure 

6.6 in enlarged form.The graph shows that the smallest deviation of the temperature 

trajectory obtained by the mathematical model from the experimental temperature 

trajectory is at a estg  value of 0.5 (estimated value). The value of est9  is proportional 

to the area of interface between the liquid surface and the air above the liquid surface. 

The effect of the est9  is independent of the heating and cooling range, for the same 

difference of reactor temperature and environmental temperature it's effect will be the 

same in both regions as shown in figure 6.7. 
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Figure 6.5: This graph show the effect of the factor of the mass transfer coefficient at the 

surface (estg ) on the reactor temperature trajectory. 
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Figure 6.6: This graph shows the enlarged form of a portion of the previous graph enclosed 

within the rectangle. 
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Figure 6.7: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different values of the factor of the mass 

transfer coefficient at the surface (estg). 
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Product of the heat transfer coefficient and the area of heat exchange between 

reactor liquid and ambient air 

For the sake of simplicity, the rate of the heat lost to the environment is modeled 

by using one model. The effect of the factor est, on the temperature trajectory of 

the reactor is shown in figure 6.8. The total time span is divided in two parts by 

a vertical line. In the left portion of the graph the reactor temperature is above the 

ambient temperature hence heat is transferred from the system to the environment. 
In this time span the higher the value of estcra  the higher will be the heat loss to 

the environment hence less will be the reactor temperature at any instant. The right 

portion of the graph shows the heat gain from the environment to the system hence in 

this portion the higher the value of the est„ the higher will be the reactor temperature. 

The effect of the factor est„a  on the reactor temperature trajectory will be higher if 

the difference of the reactor temperature and the ambient temperature will be more. 

The deviation of the temperature trajectory obtained by the mathematical model 

from an experimental temperature trajectory is shown in figure 6.9. It is clear from 

the graph that the mathematical model having the value of the parameter est,a, as 
1.2E — 4 (estimated value) shows the best agreement with the experimental result. 



estcra (exp) 
Increasing 

0.0001 	.00012 
.0002 

0.000 

Decreasing 

6.1. PARAMETER ESTIMATION 	 73 

0.5 1 
Time(s) 

360 

350 

340 

330 
a) 

02 320 

I—  310 

300 

290 	 

280
0  1.5 	 2 	 2.5 

x 104 

Figure 6.8: This graph shows the effect of the product of the heat transfer coefficient and 

the area of heat exchange between reactor liquid and ambient air (est,a ) on the reactor 

temperature trajectory. 
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Figure 6.9: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different values of the product of the 

heat transfer coefficient and the area of heat exchange between reactor liquid and ambient air 

(estcra). 
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Factor of the heat transfer coefficient 

The factor of the heat transfer coefficient (esta ) is used for adjusting the heat 

transfer coefficient between the bath fluid in the tempering jacket and the surrounding 

tank wall. Although different equations are used for the heat transfer for the shell part 

of the tempering jacket and the bottom part of the tempering jacket but the same esta  

is assumed in both equations. 

The effect of esta  on the temperature trajectory is shown in figure 6.10. The 

graph shows that the higher the value of esta  the higher will be the heating as well as 

cooling effect, means esta  will always increase the rate of heat transfer irrespective of 

the direction of the heat transfer. 

The deviation of the temperature trajectories obtained by the mathematical model 
from the experimental temperature trajectory is shown in figure 6.11. The graph 

shows that the mathematical model at 2.0 (estimated) value of esta  shows the best 

agreement with the experimental result. 
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Figure 6.10: This graph shows the effect of the factor for the heat transfer coefficient between 

the bath fluid in the bottom and shell part of the tempering jacket and the surrounding tank 

walls (ester ) on the reactor temperature trajectory. 
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Figure 6.11: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different values of the factor for the heat 

transfer coefficient between the bath fluid in the bottom and shell part of the tempering jacket 

and the surrounding tank walls (ester) 
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Factor of heat conductivity 

The effect of the factor of the heat conductivity of the inner and outer tank wall 

of the reactor (estA) on the temperature trajectory is shown in figure 6.12. The 

graph shows that higher the value of est), the higher will be heating as well as cooling 

effect. The effect of the est), is higher at higher temperatures in compare to lower 

temperatures. 
The deviation of the mathematical model from the experimental result is shown in 

figure 6.13. On increasing the value of est ), the reactor temperature increases in the 

heating zone while it decreases in cooling zone. The graph shows that the mathematical 

model shows the best agreement with the experimental result at the est\ value of 0.7 

(estimated value). 



360 

350 

340 

2 330 

2 320 

a) 
1—  310 

300 

290 

280
0  

0.9 	E-0.7 
0 

- - - - Experimental 

0.5 1.5 2.5 
x104  Time(s) 

Increasing Decreasing esta. 1.3 

6.1. PARAMETER ESTIMATION 	 79 

Figure 6.12: This graph shows the effect of the factor of heat conductivity of inner and outer 

tank wall (estA) on the reactor temperature trajectory. 
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Figure 6.13: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the, model at different values of the factor of heat 

conductivity of the inner and outer tank wall (est A). 



6.1. PARAMETER ESTIMATION 	 81 

Factor of heat capacity 

The factor of heat capacity (estcp ) is added to adjust the value of the heat capacity 

of the glass. The inner tank wall, the bottom part of the outer tank wall and the shell 

part of the outer tank wall have separate factors for the heat capacity. The factors 

of the heat capacities does not have a major effect on the temperature trajectory in 

the reactor. The effect of the factor of heat capacity of the bottom and shell part of 

the outer tank wall is also negligible. The effect of the factor of heat capacity of the 

inner tank wall is small and no differences can be seen in the temperature trajectory 

plot but the differences can be seen in the error plot as shown in figure 6.14. The 

graph shows that the factor of heat capacity resists the heat transfer through the glass 

wall. The more the value of the factor of the heat capacity the less will be the heating 

as well as cooling effect. The mathematical model shows the best agreement with the 

experimental result at a estq, value of 0.8. 
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Figure 6.14: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different values of the factor of heat 

capacity of the inner tank wall (estcp). 
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Minimum cooling coefficient 

The minimum cooling coefficient also has very less effect on the temperature tra-

jectory of the reactor but the effect of the minimum cooling coefficient can be seen in 

the error plot as shown in figure 6.15. The effect of the minimum cooling coefficient is 

very less at lower temperatures in comparison to a higher temperature of the reactor. 
The graph shows that the effect of the Coo/ niin  is different in the region above ambient 
temperature to that below ambient temperature. On increasing coo/ min  the reactor 
temperature will decrease if the reactor temperature is above ambient temperature 

and it increases if the reactor temperature is below ambient temperature. The mathe-
matical model at Coo/ min  of 0.1 (estimated value) shows the best agreement with the 
experimental result. 
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Figure 6.15: This graph shows the difference of the experimental temperature trajectory and 

the temperature trajectories obtained by the model at different values of the minimum cooling 

coefficient (coolmin). 
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6.1.3 Control parameters 

There are three control parameters in the internal controller, Tn, Tv, and Xp. 

Appropriate values of these parameters are already specified in the control panel of the 

system under consideration. Still little readjustment of these control parameters are 

required in order to achieve the best agreement between the thermostat temperature 

obtained by the mathematical model and the experimental thermostat temperature. 
These values of the control parameters are adopted in the model for estimating the 
rest of the parameters. 

The external PID controller involves three control parameters, Icc , Tr and TD . For 
the tuning of these control parameters ITAE criteria is used. The following objective 
function is minimized by gOPT : 

Obj(ITAE) = ftl(T. —Trset )1 
	

(6.1) 

The optimization routine of gOPT is used for getting piecewise constant or piecewise 

linear variables in the specified intervals, in order to optimize the objective function. 

We specify the controller parameters as a piece wise constant variable and a single 

interval. The initial guess values of the parameters required for gOPT are determined 

by a heuristic method. 

6.2 Estimated parameters 

Since the control parameters are directly related to the thermostat temperature 
hence for estimating these parameters the thermostat temperature measured in the 

experiment is used. The values of the control parameters specified in the control 

panel of the experiment are taken as the initial value for estimating these parameters. 

Estimated values of the control parameters are specified in the process section for 

estimating the rest of the parameters. 

All parameters to be estimated are related to each other in the mathematical model. 

So all parameters should be estimated together for increasing the accuracy of the 

parameter estimation. In order to get the best agreement between the mathematical 

model and the system under consideration both reactor and thermostat temperature are 

taken as a measured variable. If all parameters are estimated together using thermostat 
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temperature and reactor temperature both as measured variables then the parameter 

estimation routine of gPROMS has problems such as the estimation time being very 
high, fails to converge at discontinuities, negative number raised to non integer number 
etc. The problems associated with the parameter estimation routine of gPROMS are 
mainly due to a large number of experimental data, inaccurate values of the initial 
guesses and lower bounds and upper bounds of the parameters to be estimated. So in 
order to make possible the parameter estimation in gPROMS with high accuracy of 
estimated parameters following strategy is used: 

1. In the first phase approximated values of all unknown parameters are estimated 
together by using both reactor temperature and thermostat temperature as mea-
sured variable. In order to reduce the number of experimental data, interval of 
data measurement increases. In the system under consideration, experimental 
data for the reactor temperature and the thermostat temperature are measured 

in a time interval of about 2 seconds. For parameter estimation data only in about 

100 seconds interval are taken. In order to handle discontinuities, more experi-
mental data are taken at discontinuities. So for the parameter estimation only 
about (1/50)th  of the experimental data are taken in the time span of 6.67 hours, 
which can be easily handled by the parameter estimation routine of gPROMS. 
Estimated values of the parameters are used for the second phase of parameter 
estimation. 

2. The temperature trajectory obtained by the mathematical model at the approx-
imated values of the estimated parameters in step 1 is compared with the ex-
perimental temperature trajectory. For the second phase of the parameter es-
timation the same data set for the measured variables as used in the stem 1 
are taken but more experimental data are taken in the time spans where the 

mathematical model shows more deviation from the system under consideration. 

All unknown parameters are estimated together using reactor temperature and 
thermostat temperature both as measured variables. Approximated values of the 

parameters obtained in step 1 are specified as initial guess values and also in the 
process section for the second phase parameter estimation. The lower bound and 
the upper bound of the parameters to be estimated are also adjusted accordingly. 
The estimated values of the parameters are used for the third phase parameter 
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estimation. 

3. The temperature trajectory obtained by the mathematical model at the values of 

the parameters obtained in the second phase is compared with the experimental 

temperature trajectory. The deviation of the mathematical model from the sys-
tem under consideration is reduced significantly in comparison to the mathemat-

ical model obtained in phase 1. In this phase only system dependent parameters 

are estimated together using the reactor temperature as the measured variable but 

the whole experimental data of reactor temperature are taken for the parameter 

estimation instead of using reduced data set as used in the first and the second 
phase. The estimated values of the parameters in the second phase are specified 
in the process section. The values of the system dependent parameters obtained 

in the second phase are specified as initial guess. The lower bounds and the upper 

bounds of the parameters to be estimated are adjusted accordingly.- Estimated 

values of the parameters are used for estimating the adjusting parameters in the 
4th phase of parameter estimation. 

4. In this phase the adjusting parameters est9 , est,,, est), and cooln,in  are estimated 
together using the whole experimental data of the reactor temperature. The val-

ues of the parameters obtained in the 3rd  phase are specified in the process section. 

The initial guess, the lower bounds and the upper bounds of the parameters to 
be estimated are also specified accordingly. 

5. In this phase the remaining adjusting parameters jester) , obestcp , osestep  and cool 
coefficients are estimated together using the reactor temperature as the measured 
variable. The parameters estimated in the 4th  phase are specified in the process 

section and other parameters remain unchanged. The initial guess, the lower 

bounds and the upper bounds of the parameters to be estimated in this phase are 
also specified accordingly. 

All the parameters estimated by the parameter estimation routine of gPROMS by using 

the above strategy are given in table 6.1 

The comparison of the mathematical model with the system under consideration is 
shown in figures 6.16 and 6.17. 
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Table 6.1: Estimated varameters 
Parameter 

type 

Name Symble Estimated 

value 
Internal 

Controller 

parameters 

Proportional gain XP  3 
Integral time Tn  80010 

Differential time Tv  7 
External 

Controller 

parameters 

Proportional constant Kc  1.31 
Integral time T1  4 

Differential time Td 1 
System 

dependent 

parameters 

Power dissipated through the agitator P 0.002 kw 
Volumetric flow rate through 

the pump in the thermostat 	- 
Vdod 0.00012 

Adjusting 

parameters 

Factor of the mass transfer coefficient 

at the surface of the reactor liquid 
estg  0.5 

Factor of the heat transfer coefficient 

between the bath fluid in the bottom and shell part of 

the tempering jacket and the surrounding tank walls 

ester  2 

Factor for the heat conductivity of the 

inner and outer tank wall of the reactor 
ester 0.7 

Factor for the heat capacity of the inner tank wall lest, 0.8 

Factor for the heat capacity of bottom part of 

outer tank wall 

obesteP  1.6 

Factor for the heat capacity of shell part of 

outer tank wall 

osestcp  1.6 

Minimum cooling coefficient 	 L coo/min  1 0.1 



- Experimental 
	 Mathematical model 

360 

350 

340 

"d;- 330 

2-3  320 a.) 

• 310 
I- 

6.2. ESTIMATED PARAMETERS 	 89 

300 

290 - 	 

280
0  0.5 	 1 	 1.5 	 2 	 2 5 

x 104  

2 

1.5 

1 

0.5 
2 
w 

-0.5 

-1 

-1.5
0  0.5 	 1 	 1.5 

Time(s)  
2 	 25 

x 104  

0 

Figure 6.16: The first graph shows the experimental temperature trajectory of the reactor 

and the reactor temperature trajectory obtained by the mathematical model at the estimated 

values of the parameters and the second graph shows the difference of the experimental reactor 

temperature trajectory and the- temperature trajectories obtained by the mathematical model 
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stat and the thermostat temperature trajectory obtained by the mathematical model at the 

estimated values of the parameters and the second graph shows the difference of the exper-

imental thermostat temperature trajectory and the temperature trajectories obtained by the 

mathematical model 
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6.3 System identification 

The experiments are performed at different conditions and for system identifica-

tion three sets of experimental data are collected. In order to get a more accurate 

model, the system is identified using two different sets of experimental data and the 

estimated models are validated with all three experimental data. To ensure that the 

selected model which gives best agreement with one experiment is also good for other 

experiments, two estimations are performed. 

6.3.1 First estimation 

The input output signals as shown in figure 6.18 are taken for system identification. 

In the beginning the system shows unstable response so the initial data are not suitable 

for system identification. After removing undesired data the input output signal which 

are used for system identification are shown in figure 6.19. 
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Figure 6.18: These graphs show the input and output signal used for system identification. 

The first graph shows the output signal generated by the system and the second graph shows 

the input signal given to the system. 
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Input and output signals 

Figure 6.19: These graphs show the input and output signal used for system identification. 

The first graph show the output signal generated by the system and the second graph show the 

input signal given to the system. 
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Model selection 

The system is identified with ARX, ARMAX, OE,_ BJ, P2DZ and P3DZ model 

structure. Three sets of experimental results are used for model validation. The devi-

ation of each estimated model with the experimental result are shown in the figures. 

Validation 1 

The same data which is used for model estimation is used for model validation. 

The comparison of the ARX and ARMAX linear model with the system behavior is 

shown in figure 6.20. The behavior of both linear models are similar. The linear ARX 

and ARMAX models show more deviation in the initial as well as in the last span of 

process times. This deviation arises due to the discontinuities present in the model. 

The linear model tries to fit the larger portion of the temperature trajectory which 

lies between these two discontinuous points hence beyond these two points there is a 

comparatively large deviation. The error plot shows that the experimental temperature 

trajectory deviated from the temperature trajectory obtained by the linear model by 

—1 to 1.4 K. 

The comparison of the OE and BJ linear model with the system is given in figure 
6.21. The figure shows that the OE linear model has the best agreement with the 

system. The experimental temperature trajectory is deviated from the linear model 

only by —0.3 to 0.5 K which is the least value compared to other linear models. The 

BJ linear model shows the little more deviation from the system in comparison to 
the OE model but still less deviation in comparison to other linear models. The loss 
function and the FPE of the OE and BJ linear models are very high compared to 
the ARX and ARMAX linear models (refer table 6.2) hence these models may not 

always reflect the true behavior of the system. 

The linear process models P2DZ and P3DZ are compared with the system in figure 

6.22. The process models also show better agreement with the system in comparison 

to the ARX and ARMAX linear models but poor agreement in comparison to the OE 

and BJ linear models in all other points except the initial time where sudden large 

deviation is found. The loss function and the FPE of the P2DZ linear model are 

highest among the linear models. The loss function and the FPE of the P3DZ model 

is little less in comparison to the P2DZ and the OE linear model but still very high in 
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comparison to the ARX and ARMAX linear model. Hence the ARX and ARMAX 

may shows the system behavior better in comparison to the process models. 
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Figure 6.20: Validation 1 for ARX and ARM AX model. 



340 

330 

320 

310 

- 300 

290 

0.5 
	

1 
	

1.5 
	

2 
Time(s) 	 x 10'  

Measured and simulated model output(0E) 

28°0 

290 

280
0  1.5 0.5 2 

x 10' Time(s) 

Measured and simulated model output (Si) 
340 

- Experimental 
---- Estimated model 330 

320 

a 
310 

E a 

300 

-- Estimated model 
data2 

0.5 1.5 

0.8 

0.5 

0.4 

0.3 

0.2 

i!j  0.1 

0 

-0.1 

-0.2 

-0.3 

-0,4
0 1 

Time(s) 
2 

x 10' 

6.3. SYSTEM IDENTIFICATION 	 97 

Measured minus simulated model output (OE) Measured minus simulated model output (BJ) 

Figure 6.21: Validation 1 for OE and BJ model. 
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Figure 6.22: Validation 1 for P2DZ and P3DZ model. 
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Validation2 

Validation data is different to that of the estimation data. The same linear models 

which are estimated in the subsection, first estimation are validated with the other 

set of the experimental data. The input output signal used for the model validation 

are shown in figure 6.23. For this input signal the output signal is calculated by 

each estimated linear model and these output signals calculated by the linear models 

are compared with the outpiit signal obtained by the experiment for the same input 
signal. With this validation data the process models, P2DZ and P3DZ show very 
large deviation from the system behavior. Hence the process models should not be 

used for the system under consideration. 
The behavior of the ARX and the ARM AX linear models are compared with 

the system behavior in figure 6.24. The behavior of the both models are similar. As 

shown in figure, these linear models follow the system behavior but not exactly track 

the system behavior. One of the possible reason of this deviation may be that the set 

of the data used for the linear model estimation and the set of the data used for the 

model validation are collected from the experiment at different initial conditions. The 

deviation of the experimental temperature trajectory from the ARX and ARMAX 

linear models temperature trajectory lies between —2 to 5 K which is quite large. 

The comparison of the OE and BJ linear model with the system is shown in figure 

6.25. The BJ linear model shows better agreement with the system behavior compared 
to OE linear model while in validation 1, the OE model was showing better agreement. 

The experimental temperature trajectory deviated from the OE linear model temper-

ature trajectory from —0.75 to 2.8 K and from the B1 linear model from —1.4 to 0.5 K. 
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Figure 6.23: These graphs show the input and output signal used for model validation. The 

first graph shows the output signal generated by the system and the second graph shows the 

input signal given to the system. 
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Figure 6.24: Validation 2 for ARX and ARM AX model. 
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Measured and slmutated model output (OE) Measured and simulates 
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Figure 6.25: Validation 2 for OE and BJ model. 
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Validation3 

The same linear models which are estimated in the subsection, first estimation are 

validated with another set of the experimental data. The input output signal used for 

the model validation are shown in figure 6.26. For this input signal the output signal 

is calculated by each estimated linear models and these output signals calculated by 

the linear models are compared with the output signal obtained by the experiment 

for the same input signal. With this validation data the process models, P2DZ and 
P3DZ also show very large deviation from the system behavior. Hence the process 
models should not be used for .the system under consideration. 

The comparison of the ARX and ARMAX linear models with the system behavior 

for this set of the validation data is given in figure 6.27. For this set of validation 

data the ARX and the ARMAX model show a better fit with the experimental result 

in comparison to validation 2. The linear deviation of the ARX, ARMAX model 

from the system is also present in this case as in validation 2 due to the same reason 

but for this set of the validation data the deviation is less it varied from —2 to 3. The 
negative deviation is only in the initial unstable region while in the rest span of the 

time there are only positive deviations. 

The comparison of the OE and the BJ linear models with the system behavior for 

this set of data is shown in figure 6.28. In this validation the OE model is showing 

better fit with the experimental result in compared to validation 2. However BJ 

model is showing the little better fit in compared to OE model. 
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Figure 6.26: These graphs show the input and output signal used for model validation. The 

first graph shows the output signal generated by the system and the second graph shows the 

input signal given to the system. 
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Figure 6.27: Validation 3 for ARX and ARMAX model. 
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Figure 6.28: Validation 3 for OE and BJ model. 
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6.3.2 Second Estimation 

In this estimation the linear models are estimated by using another set of estimated 

data, the input output signal of which are shown in figure 6.26. The estimated models 

are validated with another 2 set of the experimental data and with the estimation data 
itself. 

Validation 1 

The input output signal used for validating the estimated model are shown in 
figure 6.19. The figure 6.29 compared the ARX and ARMAX linear models with the 
system behavior. At the initial point the linear models show large deviation because 
the estimation data are measured from the initial time while the initial values of the 
validation data are not included. The ARX and the ARMAX model show good 
agreement with the experimental result. 

The comparison of the OE and BJ linear models with the system behavior is shown 

in figure 6.30. There is very little improvement in the fits of OE and BJ models in 

comparison to the ARX and ARMAX model but the loss function and the FPE of 
the OE and BJ models are still very high compared to the ARX and ARMAX models 

refer table 6.2. 



- Experimental 
---- Estimated model 

Measured minus simulated model output (ARX) Measured minus simulated model output (ARMAX) 

108 	 CHAPTER 6. RESULTS AND DISCUSSION 

Measured and simulated model output (ARX) Measured and simulated model output (ARMAX) 

Figure 6.29: Validation 1 for ARX and ARMAX model. 
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Figure 6.30: Validation 1 for OE and BJ model. 
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Validation 2 

The input output signal used for validation 2 are shown in figure 6.23. This 

validation data is different to that of estimation data. 

Figure 6.31 compared the behavior of the ARX and ARMAX linear model with 

the system behavior for this set of validation data. The figure shows that the ARX 

and ARMAX models have good agreement with the experimental results, even though 

the estimation and the validation data are not same. Hence the ARX and ARMAX 

linear models reflect the true behavior of the system. 

The comparison of the OE and the BJ linear models with the system behavior is 

shown in figure 6.32. On comparison the figures 6.31 and 6.32 it is clear that ARX 
and ARMAX models are fitting better compared to the OE and BJ models. 
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Figure 6.31: Validation 2 for ARX and ARMAX model. 
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Figure 6.32: Validation 2 for OE and BJ model. 
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Validation 3 

The input output signal used for this validation are shown in figure 6.26. This 

validation data is the same to that of the estimation data. 

The figure 6.33 shows the comparison of the ARX and ARMAX linear model with 

the system behavior. The graph shows good agreement between linear models (ARX 

and ARMAX) and the system. 

The comparison of the OE and BJ linear models with the system behavior are 

shown in figure 6.34. On comparing the figure 6.33 and 6.34 it is clear that the ARX 

and ARMAX models are fitting as good as OE and BJ model. 

For the accuracy measurement of the estimated model different terms are used (e.g 
loss function, FPE, Fit). The values of these terms for the different models are given 

in table 6.2. 
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Validation 3 

The input output signal used for this validation are shown in figure 6.26. This 

validation data is the same to that of the estimation data. 

The figure 6.33 shows the comparison of the ARX and ARMAX linear model with 

the system behavior. The graph shows good agreement between linear models (ARX 

and ARMAX) and the system. 

The comparison of the DE and BJ linear models with the system behavior are 

shown in figure 6.34. On comparing the figure 6.33 and 6.34 it is clear that the ARX 

and ARMAX models are fitting as good as OE and BJ model. 

For the accuracy measurement of the estimated model different terms are used (e.g 

loss function, FPE, Fit). The values of these terms for the different models are given 

in table 6.2. 
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Figure 6.33: Validation 3 for ARX and ARMAX model. 
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Figure 6.34: Validation 3 for OE and BJ model. 
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Table 6.2: Comparison of the system identification methods 

Model 

Estimation from experiment) Estimation from experiment2 

LF 

10-5 

FPE 

10-5 

Fit LF 

10-5 

FPE 

10-5 

Fit 

V1 V2 V3 V1 V2 V3 

ARX 

[2240] 

2.82863 2.83192 96.82 57.5 68.45 1.87367 1.87574 91.53 90.91 97.28 

[22140] 

ARMAX2.81107 2.8489 97.05 57.4 68.05 1.80165 1.82467 91.54 90.91 97.23 

OE 

[2218] 

2357.89 2373.71 

[2215]  

99.23 71.83 82.88 1903.6 1914.13 92.89 91.3 97.64 

BJ 

[222240] 

59.9107 60.8053 98.63 89.42 86.57 36.425 36.7883 93.68 91.94 98.01 

P2DZ 2613.7 2617.5 98.18 53.22 66.29 3173.15 1177.53 92.66 89.9 Low 

P3DZ 2012.82 2016.33 99.07 53.71 66.6 2003.05 2006.37 94.82 90.8 Low 
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6.4 Linear model of the system 

The table 6.2 show that the ARX model have lowest value of the loss function 

and F PE and it also fit good to the experimental result hence this model is taken for 

further consideration. The linear model is given as: 

d'y dy 	du , 
dt2  + a  dt + by = c-- + au 	 (6.2) dt 

Where u, and y represents the input and output signal respectively. In the system 

under consideration u is the thermostat setpoint temperature and y is the reactor 

temperature. coefficients a, b, 'c, d are given in the appendix A.2 

6.5 Temperature trajectory optimization 

6.5.1 Optimization alone 

The thermostat setpoint temperature profile is obtained by the minimization 

of the area between the desired reactor temperatUre profile and the actual reactor 

temperature profile, using the dynamic optimization routine of gPROMS. In the 

linear model the optimized reactor temperature profile shows good agreement with 

the desired reactor temperature profile, which is shown in figure 6.35. The difference 

of the optimized reactor temperature trajectory and the desired reactor temperature 

trajectory is shown in figure 6.36. 

The experiment is performed using an optimized setpoint temperature profile of 

the thermostat and the obtained reactor temperature profile is shown in figure 6.37. 

The experimental reactor temperature profile is not showing good agreement with the 

desired reactor temperature profile. In figure 6.37 it can be seen that the reactor 

temperature deviates more during the start of the cooling of the reactor fluid, may be 

in this region the linear model does not fit the system very well. 
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Figure 6.35: Deviation of optimize reactor temperature trajectory from the desired reactor 

temperature in the linear model 
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Figure 6.36: Difference of the the optimize reactor temperature trajectory in the linear model 

and desired reactor temperature trajectory 
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Figure 6.37: Deviation of the experimental reactor temperciture trajectory from the desired 

reactor temperature trajectory 
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Figure 6.38: Difference of the experimental reactor temperature trajeCtory and desired reactor 

temperature trajectory 
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6.5.2 Optimization with addition PID 

The result of the desired reactor temperature tracking by optimization is very sen-

sitive towards ambient temperature, system conditions, system identification error. To 

accommodate these factors during the experiment and to ensure the exact tracking of 

the prespecified reactor temperature profile online adjustment of the optimized setpoint 

temperature of the thermostat is needed. The external PID controller is used to adjust 

the prespecified setpoint temperature of the thermostat (setpoint temperature of the 

internal controller). In order to achieve the desired reactor temperature trajectory, the 

setpoint temperature trajectory of the internal controller is adjusted online which is 

shown in figure 6.39. 

The external PID controller is implemented in the model. The experimental re-

actor temperature trajectory obtained by using optimization and an additional PID 

controller both is compared with that obtained by the mathematical model in figure 

6.40. A good agreement between the experimental result and the mathematical model 

is shown. The difference of the experimental and mathematical model's result can be 

seen in figure 6.41 which is negligible. 

The ITAE criteria is used for the tuning of the controller parameters. gOPT is 

used as an optimization tool. Due to the complexity of the model the optimization time 

is about 30 hours which is impracticable. In order to tune the controller parameters 

with gOPT, the same external PID controller is also implemented in the linear model. 

The external PID controller in the linear model is also showing good agreement with 

the experimental result which can be seen in figure 6.42. The difference of the exper-

imental and the linear model result is shown in figure 6.43. 

The experimental reactor temperature trajectory obtained by using optimization 

and PID controller both is compared with the desired reactor temperature profile in 

figure 6.44. The figure shows that the reactor temperature tracks the prespecified 

reactor temperature profile very well. The difference of the experimental reactor tem-

perature trajectory and the prespecified temperature trajectory is shown in figure 6.45. 

The difference is so less that it can be tolerated. 
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Figure 6.39: Online adjusted and prespecified setpoint temperature trajectory of internal con-

troller 
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Figure 6.40: Deviation of experimental reactor temperature trajectory from the model 
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Figure 6.41: Difference of the the experimental reactor temperature trajectory and the modeled 

reactor temperature trajectory 
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Figure 6.42: Deviation of the experimental reactor tempeiature trajectory from the linear 

model 
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Experimental minus linear model reactor temperature 

Figure 6.43: Difference of the experimental reactor temperature trajectory and the linear 

model reactor temperature trajectory 
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Figure 6.44: Deviation of the experimental reactor temperature trajectory from the desired 

reactor temperature trajectory 
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Experimental minus desired reactor temperature 

Figure 6.45: Difference of the the experimental reactor temperature trajectory and the desired 

reactor temperature trajectory 
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6.5.3 Controller alone 

In order to show the importance of temperature trajectory optimization, an exper-

iment is performed without optimization. The setpoint of the thermostat temperature 

is fixed as a constant value and the external PID controller is allowed to adjust the 

thermostat setpoint temperature in order to track the prespecified reactor temperature 

trajectory. The experimental result is shown in figure 6.46. The figure shows a large 

deviation of the experimental reactor trajectory from the desired reactor trajectory 

hence temperature trajectory optimization is essential for exact tracking of the desired 

reactor temperature. 
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Figure 6.46: Deviation of the experimental reactor temperature trajectory from the desired 

reactor temperature trajectory 



Chapter 7 

Case study 

A cause study is perform to show the transformation of a form of L-Glutamic acid 

to the /3 form. 

7.1 Model 

There are two phase, the solid crystalline phase and the solution phase. The a 

form is dissolving in the solution phase while /3 form is crystallizing. The change in 

the mole of the solution is governed by the following equation: 

dM

t 
f  = M

f 
 • Y 	 (7.1) 
 

Where Mf is the total mole of the solution, Y is a variable given as: 

Y = —0.5L•Aas•(Ga—Da)— P1("' • Ky• 	Ba — 0.5121•240,• (G — Do)— f; - • Ky• Ln3g • Bo 

(7.2) 

Where G is the crystal growth rate, B is the nucleation rate, D is the dissolution rate. 

p, pc, and pp are molar density of the solution, a form and the /3 form respectively. Ac,s  

and A08  are specific surface area of the a and the /3 form which are given as: 

A,B  = 	 (7.3) 

Ao  
A08 

V 	
(7.4) 

Where V is the magma volume. A,„ and Ao  are the total surface area of the a and /3 

form respectively. 
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Growth rate 

The growth rate of the a form is given as: 

	

Ga = kg  • Sg 
	

(7.5) 

Where kgo, is the growth rate constant of a form and Sa  is the supersaturation of a 

form. 

The growth rate of the /3 form is given as: 

	

Gp kgo  • SI 	 (7.6) 

Where kgo  is the growth rate constant of /3 form and So  is the supersaturation of /3 

form. 

Nucleation rate 

The nucleation rate of the a form is given as: 

	

Be, = kn,c, • S: 
	

(7.7) 

Where kiic, is the nucleation rate constant of a and n is the nucleation order. 

The nucleation rate of the /3 form is given as: 

Bp 	kno  • ST/4. 	 (7.8) 

Where kris  is the nucleation rate constant of /3 

Dissolution rate 

Dissolution rate of the a form is given as: 

	

= kd. Scc! 
	

(7.9) 

	

Do = kdo  • S;13 	 (7.10) 

Where kdc, and kdo  is the dissolution rate constant of a and /3 form and d is the 
dissolution order. 
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Supersaturation 

The supersaturation of the a form is given as: 

• If Ma  > 0 

• If Ma  < 0 

(X — X ascii 
Sa 	 (7.11) 

Xr y —sat 

• 0 	 (7.12) 

The supersaturation of the 0 form is given as: 

• If x > xpsa, 

• If x < xasa, 

(x — X osat ) 
Sp = 	 

X f3,at  
(7.13) 

Sp = 0 	 (7.14) 

Where x is the mole fraction of solute in the solution, xasa, and xosa, are the mole 

fraction of the a and 0 form- in the solution at the saturation. 

The mole fraction is related with the concentration by following equations: 

xasa, • (18 • 	+ C,3.9„t ) + 147.13(100 — Casat — C080t)) = 18 • Casat 

X psat  • (18 • (Casat COsat) + 147.13(100 — Casa — Ci3.9.1)) = 18  • Cosat 

(7.15) 

(7.16) 

Where Casa, and Cflaa, are the mass concentration of the a and /3 form at the saturation 

which are governed by the following equations: 

Calla = aa EXP(bc, • (Tr  — 273.15)) 	 (7.17) 

C osat  = ao EXP(bp • (T,. — 273.15)) 	 (7.18) 

Where Tr  is the reactor temperature. Coefficients aa , b,, ap, by are taken from the 

published literature [OtHJ04] and given in appendix E. 

The mole fraction of the solute in the solution is given as: 

dx 
dt 	

• (1— x) 	 (7.19) 

The mole fraction of the solvent in the solution is given as: 

. xw  = 1 — x 	 (7.20) 
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Total number of crystals 

Number of the a and 0 form of the crystals are governed by the following equations: 

dN, 
= 

mf 	
(7.21) dt 

dt 
Bo 	 (7.22) 

p 

Crystal size 

Total length of the a and 3  form of the crystals are governed by the following 

equations: 
dL, 

= Na  • (L„ 	— D,) 	 (7.23) dt 

	

dt = No  • (Lon  + Go  — Do ) 	 (7.24) dt 

The average size of the a and 0 is given by following equations: 

La  
Na  

La  
Na  

(7.25) 

(7.26) 

Total surface area of the crystals 

Surface area of the a and Q form of the crystals are governed by the following 
equations: 

dA
' = Ka • 	• (L,„j 2  + 2• La •(Ga— D,„) dt 

d

dt
Ag  

= Ka  • No • (Lo„)2  ± 2 • Lo • (Go — D/3) 

(7.27) 

(7.28) 

Mole balance of the crystal polymorph 

dNo  mf  

The change in the mole of the a and 0 form in the crystalline phase is governed 
by the following equations: 

dM , 	 A, 
= Pa k, • Na• La% + 3 	(GQ  — Da) 	 (7.29) dt 	 rt;a, 

o  
ddt 
M 	 Ao = 	lc, • Na  • Lan + 3 k (G — D0) a  (7.30) 
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7.2 Result 

This model is implemented in the gPROMS. The value of the parameters, and 

initial conditions are given in appendix E. The simulation results shows good agree-

ment with the published result in the literature [SN03]. In order to study the effect 

of seeding in the crystallization, the model is implemented for unseeded and seeded 

crystallization both. 

Unseeded crystallization 

In this case it is assume that no seed of the /3 form is present in the magma. The 

growth rate of the a form is also assumed to be negligible in compared to it's dissolution 

rate. Figure 7.1 shows the decrease in mole of a form in the solid crystalline phase. 

This figure also show the effect of, ratio of growth of /3 form and dissolution of a form 

on the molar change of a form in the solid crystalline phase. The change in mole of 

the /3 form is shown in figure 7.2 for the same ration of growth and dissolution rate 

constant. The change in supersaturation of )3 form is shown in figure 7.3 

Seeded crystallization 

In this case it is assumed that some seed of the )3 form is already present in the 

magma . Figure 7.4 shows the decrease in mole of a form in the solid crystalline 

phase. This figure also show the effect of, ratio of growth of )3 form and dissolution of 

a form on the molar change of a form in the solid crystalline phase. The change in 

mole of the /3 form is shown in figure 7.5 for the same ratio of growth and dissolution 

rate constant. The change in supersaturation of /3 form is shown in figure 7.6. On 

comparing the seeded crystallization with unseeded crystallization it can be seen that, 

seeding increases the dissolution rate of a form as well as growth rate of /3 form. 
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Figure 7.3: Supersaturation of /3 form in unseeded crystallization 



7.2. RESULT 	 141 

  

  

	 kg/k-d  = 0.5 

— – kg/kd  = 1 
	kg/kd = 10 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

0.5 
	

1 	 1.5 	 2 
Time(s) 	 x 104 

Figure 7.4: This graph shows the change in mole of a form of L-glutamic acid in seeded 

crystallization 



/ 
/ 

/ 

/ 

/ 

I 

..• 

/ 

142 	 CHAPTER 7. CASE STUDY 

1.4 

1.2 

0.8 
n. 

0.6 

0.4 

0.2 	/ 

— — — kg  /kd  = 1 

	 kg/kd =10 

	 kg/kd =0.5 _ 

0 	 0.5 	 1 	 1.5 	 2 
Time(s) 	 x 104  

Figure 7.5: This graph shows the change in mole of /3 form of L-glutamic acid in seeded 

crystallization 



0.12 

of 0.1 

0.08 

0.06 

0.04 

0.02 

7.2. RESULT 	 143 

N 

0.2 

0.18 
• 

0.16- 

014 L  L 	• 
■ 

	 kg/kd = 10 

— — — k g  /kd  =1 	- 
	 kg/kd =0.5 - 

1.5 
	

2 

X 10 4 

0.5 
	

1 
Time(s) 

Figure 7.6: Supersaturation of /3 form in seeded crystallization 



Chapter 8 

Conclusions and recommendations 

8.1 Conclusions 

In the course of this project an appropriate methodology is developed for control-

ling the batch reactor temperature. An optimization technique is integrated with the 

controller for which a mathematical model is implemented in gPROMS. with the ex-

periment it is proved that the mathematical model has a very good agreement with 

the system under consideration. Further more it is also proved that the optimization 

with an integrated control technique is very efficient for the temperature control of the 

batch reactor. 

The mathematical model involves many unknown parameters which are estimated 

by the parameter estimation routine of gPROMS. But before that it is proved that the 

parameter estimation routine of gPROMS is reliable and can be adopted for accurate 

parameter estimation. The appropriate variance model and the value of the parameters 

w and ry which are prerequirement for parameter estimation are also estimated. For 

making the model more general and flexible to adopt any change in the system, the 

effect of the parameters are also studied 

In order to reduce the optimization time and hence making the optimization prob-

lem more suitable for the experiment purpose a linear model of the system is developed. 

It is proved that the ARX model is best to our system. With the experiment it is proved 

that the linear model is also behaving as the system under consideration. 

The appropriate setpoint temperature trajectory of the thermostat which gives the 

minimum deviation of the reactor temperature from the prespecified setpoint temper- 
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ature trajectory of the reactor is determined by optimization. To track the setpoint 

temperature of the thermostat an internal PID controller is implemented. For han-

dling the system disturbances a suitable model is developed for online adjustment of the 

prespecified thermostat setpoint trajectory. To achieve this an external PID controller 

is implemented. A strategy is developed to use the optimization routine of gPROMS 

for tuning the controller parameter which is proved to be a very efficient technique for 

determining the appropriate controller parameters. 

8.2 Recommendation for future work 

In the course of future work the developed methodology can be used for process 

control. For example for a crystallization process this technique may be very useful. 

Some substance show polymorphism, for example L-glutamic acid has two polymorph 

that are the stable a form and the unstable form. The formation of these poly-

morph largely depends on the reactor temperature. It is possible to achieve a fixed 

composition of a and form by maintaining the specific temperature profile in the 

reactor which can be obtained by the optimization. A model for the crystallization of 

the L-glutamic acid is already implemented in gPROMS which shows good agreement 

with the published result in the literature [SNO3]. In the course of future work this 

model can be validated by the experiment. 

The linear model of the system and the developed temperature trajectory optimiza-

tion strategy can be used for developing a predictive controller. In the course of this 

work the optimized temperature trajectory is obtained by off line optimization. In 

the course of future work the optimization tool can be integrated with the Labview 

interface and online optimization can be achieved using the already estimated linear 

model of the system. 
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Process section 

A.1 Model 

Specified parameters 

g := 9.81; # m/s-2, 

gravity constant pi := 3.14159265; 

#Geometric parameters for the reactor 

m, inner diameter of inner tank 

m, outer diameter of inner tank 

m, outer diameter of outer tank 

m, diameter of inlet of tempering jacket 

m, thickness of inner tank wall 

m, thickness of outer tank wall 

m, 	height of tempering jacket shell 

delta_jacket := 10E-3; 	m, 	width of tempering jacket 

d_ag := 0.05; 	m, 	diameter of agitator blade 

h_ag := 0.005; 	m, height of agitator blade 

V_ag := 0.03E-3; 	m-3, volume of agitator including baffles 

*parameters for thermostat 

V_he := 4.53E-3; 	m"3, volume of heat exchanger (estimated value) 

Q_max := 1.1; 	kW , maximum heating duty of heater in thermostat 

# parameters for stability of conversion in gPROMS 

eps_1 := 1.3; 

eps_2 := 200; 

# variable parameters (value can differ for each run) 

mass_r := 1; 	kg, mass of liquid in reactor 

p_r := 1; 
	

bar, pressure in reactor 

T_amb := 293.15; 
	K, temperature of ambient air 

in := 6.67; 
	

1/s revolutions of agitator 

# temperature independent physical properties 

# liquid in reactor (water),(VDI Wrmeatlas, 6. Auflage, 1991, physical properties section) 

M_r := 18.02; 	kg/kmol, mole weight 

do := 0.12; 

di := 0.13; 

da := 0.15; 

dO := 15E-3; 

Si := 4E-3; 

So := 5E-3; 

Ls := 0.11; 
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R_r := 0.461522; 	kJ/kg/K, gas constant 

diffvol_r := 12.7; 	diffusion volume, (VDI Wrmeatlas, 6. Auflage, 1991, Da33) 

# ambient air (VDI Wrmeatlas, 6. Auflage, 1991, physical properties section) 

M_a 	28.96; 	kg/kmol mole weight 

R_a := 0.28722; 	kJ/kg/K gas constant 

diffvol_a := 20.1; 	diffusion volume (VDI Wrmeatlas, 6. Auflage, 1991, Da33) 

# borosilicate glass (reactor tanks) 

cp_glass := 0.98; 	kJ/kg/K, specific heat capacity 

rho_glass := 2.23E3; 	kg/m-3, density 

lambda_glass 	1.2E-3; kW/m/K, heat conductivity 

# steel (steel cage of heat exchanger) 

cp_st := 0.6; 	kJ/kg/K, specific heat capacity 

# coefficients for polynomials of temperature dependent physical 

properties 

# reactor liquid (water), 	(VDI Wrmeatlas, 6. Auflage, 1991, physical properties section) 

order_r :. 4; 

rho_coeff_r(4) := 1.6046119E-5; 

rho_coeff_r(3) := -1.9112884E-2; 

rho_coeff_r(2) := 6.8714806; 

rho_coeff_r(1) := 2.2203125E+2; 

cp_coeff_r(4) := -3.4133333E-7; 

cp_coeff_r(3) := 3.397056E-4; 

cp_coeff_r(2) := -1.1226625E-1; 

cp_coeff_r(1) := 1.6504143E+1; 

lambda_coeff_r(4) 	0; 

lambda_coeff_r(3) := -9.2E-9; 

lambda_coeff_r(2) := 7.13116E-6; 

lambda_coeff_r(1) := -7.0062587E-4; 

eta_coeff_r(4) := -4.0981333E-9; 

eta_coeff_r(3) := 4.1122154E-6; 

eta_coeff_r(2) := -1.3815594E-3; 

eta_coeff_r(1) := 1.5586862E-1; 

pr_coeff_r(4) :- -3.6213333E-5; 

pr_coeff_r(3) 3.6227016E-2; 

pr_coeff_r(2) := -12.121256; 

pr_coeff_r(1) ;= 1359.5265; 

hv_coeff_r(4) := 0; 

hv_coeff_r(3) := 0; 

hv_coeff_r(2) := -2.430021; 

hv_coeff_r(1) 3.165846E+3; 

pvap_coeff_r(4) :-1.597053E-6; 

pvap_coeff_r(3) :-1.393776E-3; 

pvap_coeff_r(2) :=4.0654822E-1; 

pvap_coeff_r(1) :=-3.9606168E+1; 

rho_coeff_vap(4) :=8.2659163E-7; 

rho_coeff_vap(3) :=-7.1409841E-4; 

rho_coeff_vap(2) :=2.0642705E-1; 
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rho_coeff_vap(1) :=-1.9950098E+1; 

# bath fluid (Baysilone M5) 

order_b := 4; 

rho_coeff_b(4) := 0; 

rho_coeffb(3) :- 0; 

rho_coeff_b(2) := -8.1250000E-01; 

rho_coeff_b(1) := 1.1681844E+03; 

cp_coeff_b(4) :. 0; 

cp_coeff_b(3) := 0; 

cp_coeff_b(2) := 1.6000000E-03; 

cp_coeff_b(1) := 1.0329600E+00; 

lambda_coeff_b(4) :. 0; 

lambda_coeff_b(3) := 0; 

lambda_coeff_b(2) := -2.2666667E-07; 

lambda_coeff_b(1) := 1.8358067E-04; 

eta_coeff_b(4) := 0; 

eta_coeff_b(3) := 0; 

eta_coeff_b(2) := -3.8106667E-05; 

eta_coeff_b(1) := 1.5961503E-02; 

pr_coeff_b(4) :0 0; 

pr_coeff_b(3) := 0; 

pr_coeff_b(2) := -4.1640000E-01; 

pr_coeff_b(1) := 1.8402966E+02; 

# ambient air, see [4] for reference (physical properties section) 

order_a := 4; 

rho_coeff_a(4) :=0; 

rho_coeff_a(3) :=1.205495E-6; 

rho_coeff_a(2) :=-1.121029E-2; 

rho_coeff_a(1) :=3.439576; 

lambda_coeff_a(4) := 0; 

lambda_coeff_a(3) := 0; 

lambda_coeff_a(2) := 7.3642867E-8; 

lambda_coeff_a(1) := 4.0873107E-6; 

nu_coeff_a(4) := 0; 

nu_coeff_a(3) := 1.0353346E-10; 

nu_coeff_a(2) := 3.3041402E-8; 

nu_coeff_a(1) := -3.233218E-6; 

pr_coeff_a(4) := 0; 

pr_coeff_a(3) := 5.833333E-7; 

pr_coeff_a(2) := -4.862464E-4; 

pr_coeff_a(1) := 8.069223E-1; 

# multiplication factor for external controller parameters 

(estimated) 

p.Kp :=0.06876; 	multiplication factor for proportional constant 

P.Ki :=1500; 	multiplication factor for integral time 

p.Kd :=1.2; 	multiplication factor for differential time 
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distribution domains 

yi := [CFDM, 4 ,50]; inner tank wall 

yo := [CFDM, 4 ,50]; outer tank wall 

zs := [CFDM, 4 ,50]; shell part of tempering jacket' 

Specified, variables 

r.P:= 0.002; kW, 	capacity of agitator 

he.Vdot := 0.24E-3; 	m-3/2 , 	volumetric flow rate through pump 

chs.alpha := 0.0935839; kW/m-2/K, heat transfer coefficient between bath fluid in heat 

exchanger and steel cage of heat exchanger 

chs.A_chs := 0.164; 	m-2, 	area of heat exchange between bath fluid 

in heat exchanger and steel cage of heat exchanger 

st.m_st := 9.63804; 	kg, 	mass of steel cage around heat exchanger 

csa.0 := 1; 	m/s, 	velocity of air flow around heat exchanger in 

thermostat 

csa.l_csa := 0.165; 	characteristic length for heat transfer between 

steel cage of heat exchanger and forced air flow 

around heat exchanger 

csa.A_csa := 0.15; 	m"2, 	area of heat exchange between steel cage of heat 

exchanger and forced air flow around heat exchanger 

ic.slope:=0.00909712; 	slope of the thermostat setpoint temperature 

# Internal controller 

ic.Tn := 80010; 	a, 	integral time of internal controller 

ic.Tv :=.7; 	s, 	differential time of internal controller 

ic.xp := 3; 	kJ, 	range of proportional gain (kJ since energy is 

controlled) 

# External controller 

p.Kc_exp :=1.31; 	proportional constant 

P.Ti_exp :=4; 	integral time 

P.Td_exp :=1; 	differential time 

# Adjusting factors 

cra.est_cra := 0.00012; kW/K, estimation parameter for product of heat transfer 

coefficient and area of heat exchange between reactor 

liquid and ambient air 

crc.est_g := 0.5; 	factor for mass transfer coefficient at the surface 

of reactor liquid 

cis.est_alpha := 2; 	factor for heat transfer coefficient between bath fluid 

in the tempering jacket and surrounding tank walls 

(identical with cib.est_alpha) 

i.est_lambda := 0.7; 	factor for heat conductivity of inner and outer tank wall 

i.est_cp := 0.8; 	factor for heat capacity of inner tank wall 

ob.est_cp := 1.6; 	factor for heat capacity of bottom part of outer tank wall 

os.est_fambda := 1.08864; 	factor for heat conductivity of shell part of outer tank 

wall 

os.est_cp := 1.3; 	factor for heat capacity of shell part of outer tank wall 
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cich.cool_coeff_4 := -3.08959E-007; coefficients for polynomial for cooling duty of 

thermostat 

cich.cool_coeff_3 := 0.000572537; 

cich.cool_coeff_2 	-0.288926; 

cich.cool_coeff_1 :. 41.8024; 

cich.cool_min 	0.1; 	minimum cooling r^.444-ient 

Initial conditions 

r.T_r . 293.15; 

i.T_i(O:Si) = 293.15; 

b.T_b a 293.15; 

s.T_8(01+;Ls) . 293.15; 

ob.T_ob(O:So) . 293.15; 

os.T_os(0:So) . 293.15; 

he.T_he . 293.16; 

st.T_st = 293.15; 

ic.I_error = 0; 

ic.PIDvalue . 0.2; 

ic.t=0; 

ic.delta_T_r .0; 

ic.T_seti .293.15; 

ic.T_set =293.16; 

ic.TBuffer_given =0; 

p.IError 00; 

K, temperature of reactor liquid 

K, temperature of inner tank wall 
K, temperature of bottom part of tempering jacket 

K, temperature of shell part of tempering jacket 

K, temperature of bottom part of outer tank wall 

K, temperature of shell part of outer tank wall 

K, temperature of bath fluid in heat exchanger 

K, temperature of steel cage of heat exchanger 

integral of error of internal controller 

output of internal controller 

s, time 

objective function for temperature trajectory 

optimization 

K, pre specified thermostat setpoint temperature 

K, adjusted thermostat setpoint temperature 

K, reactor setpoint temperature 

integral error of external controller 

Optimize slope of thermostat setpoint temperature profile 

# obtain by temperature trajectory optimization 

# operation schedule 

SCHEDULE 

SEQUENCE 

RESET com.ic.slope := 0; 

END 

CONTINUE FOR 1881.6 

RESET com.ic.slope :. -0.013066667; 

END 

CONTINUE FOR 5.4 

RESET com.ic.slope 0.0751; 

END 

CONTINUE FOR 322.8 

RESET com.ic.slope := 0.020083333; 

END 

CONTINUE FOR 1651.8 

RESET com.ic.slope :. 0.022783333; 

END 
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CONTINUE FOR 12 

RESET com.ic.slope := 0.0044333333; 

END 

CONTINUE FOR 0.6 

RESET com.ic.slope := -0.016267; 

END 

CONTINUE FOR 0.6 

RESET com.ic.slope := -0.0499; 

END 

CONTINUE FOR 350.4 

RESET com.ic.slope := 0; 

END 

CONTINUE FOR 1591.2 

RESET com.ic.slope := -0.037583333; 

END 

CONTINUE FOR 484.8 

RESET com.ic.slope := -0.014066667; 

END 

CONTINUE FOR 999.6 

RESET com.ic.slope := -0.02925; 

END 

CONTINUE FOR 625 

RESET com.ic.slope := -0.020066667; 

END 

CONTINUE FOR 1111.2 

RESET com.ic.slope := 0.08725; 

END 	• 

CONTINUE FOR 214.2 

RESET com.ic.slope := 0.0; 

END 

CONTINUE FOR 849 

END 

A.2 Linear model 

Specified parameters 

V_he := 4.53E-3; 	m-3, volume of heat exchanger 

# polynomial coefficient for bath fluid density 

order_b := 4; 

rho_coeff_b(4) := 0; 

rho_coeff_b(3) := 0; 

rho_coeff_b(2) := -8.1250000E-01; 

rho_coeff_b(1) := 1.1681844E+03; 

#polynomial coefficient for bath fluid heat capacity 

cp_coeff_b(4) := 0; 
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cp_coeff_b(3) := 0; 

cp_coeff_b(2) := 1.6000000E-03; 

cp_coeff_b(1) := 1.0329600E+00; 

#coefficient of linear model obtain by system identification 

a = 0.5708; 

b = 0.0005504; 

c = 0.02294; 

d = 0.0005481; 

# multiplication factor for controller parameters (estimated) 

kp = 0.1484; 	multiplication factor for proportional constant 

ki = 1500; 	multiplication factor for integral time 

kd = 1.2; 	multiplication factor for differential time 

Specified variables 

# controller parameters 

Kc_exp := 1.31; 

Ti_exp := 4; 

Td_exp := 1; 

slopel := 0.008 

proportional constant 

integral time 

differential time 

slope of thermostat setpoint temperature 

Initial conditions 

y = 293.15; 

x = 0; 

u = 293.15; 

ul = 293.15; 

t = 0; 

K, reactor temperature 

reactor temperature slope 

K, thermostat temperature 

K, thermostat setpoint temperature 

s, time 

Tbuffer_given = 293.15; K, reactor setpoint temperature 

IError = 0; 	integral error 

delta_y = 0; 	objective function for trajectory optimization 

Optimize slope of thermostat setpoint temperature profile 

# obtain by temperature trajectory optimization 

# operation schedule 

SCHEDULE 

SEQUENCE 

RESET s.slopel := 0; 

END 

CONTINUE FOR 1881.6 

RESET s.slopel := -0.013066667; 

END 

CONTINUE FOR 5.4 

RESET s.slopel := 0.0751; 

END 

CONTINUE FOR 322.8 
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RESET com.s.slopel 	:= 0.020083333; 

END 

CONTINUE FOR 1651.8 

RESET s.slopel := 0.022783333; 

END 

CONTINUE FOR 12 

RESET s.slopel := 0.0044333333; 

END 

CONTINUE FOR 0.6 

RESET s.slopel := -0.016267; 

END 

CONTINUE FOR 0.6 

RESET s.slopel := -0.0499; 

END 

CONTINUE FOR 350.4 

RESET s.slopel := 0; 

END 

CONTINUE FOR 1591.2 

RESET s.slopel := -0.037583333; 

END 

CONTINUE FOR 484.8 

RESET s.slopel := -0.014066667; 

END 

CONTINUE FOR 999.6 

RESET s.slopel := -0.02925; 

END 

CONTINUE FOR 625 

RESET s.slopel := -0.020066667; 

END 

CONTINUE FOR 1111.2 

RESET s.slopel := 0.08725; 

END 

CONTINUE FOR 214.2 

RESET s.slopel := 0.0; 

END 

CONTINUE FOR 849 

END 
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System identification 

B.1 1 Liter reactor 

# estimation from experimental data set 1 (use for optimization in 

linear model) 

#Discrete-time IDPOLY model: 

A(q)y(t) ° B(q)u(t) + e(t) 

A(q) ° 	1 - 1.318 (+-0.00869) q--1 + 0.3193 (+-0.008674) q^-2 

B(q) = 0.02812 (+-0.001083) q"-30 - 0.02682 (+-0.00108) q"-31 

Estimated using ARX from data set lliter Loss function 4.20208e-005 

and FPE 4.20489e-005 Sampling interval: 2 

# Continuous-time IDPOLY model: 

A(s)y(t) = B(s)u(t) + C(s)e(t) 

A(s) = s-2 + 0.5708 s +0.0005504 

B(s) ° 0.02294 s + 0.0006481 

C(s) = s-2 + 1.18 s + 0.4194 

# estimation from experimental data set 2 (just for comparison) 

#Discrete-timeIDPOLY model: 

A(q)y(t) = B(q)u(t) + e(t) 

A(q) = 1 - 1.004(+-0.01257) q--1 + 0.006654 (+-0.01254) q--2 

B(q) = 0.0523 (+-0.001709) q--30.- 0.05008 (+-0.001702) q--31 

Estimated using ARX from data set validation Loss function 

8.29832e-005 and FPE 8.30855e-005 Sampling interval: 2 

#Continuous-time IDPOLY model: 

A(s)y(t) = B(s)u(t) + C(s)e(t) 

A(s)=8-2 + 2.506 s + 0.002815 

B(s) = 0.1276 s + 0.002804 

C(s) = s-2 + 3.009 s + 1.262 

B.2 6 Liter reactor 

# estimation from experiment 1 
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#ARX 2240 

#Discrete-time IDPOLY model: 

A(q)y(t) = B(q)u(t) + e(t) 

A(q)=.1-0.7966(+-0.01182) q--1 - 0.2036 (+-0.01181) q--2 

B(q) = 0.02671(+-0.002499) q--40 - 0.02587 (+-0.0025) q--41 

#Continuous-time IDPOLY model: 

A(s)y(t) = B(s)u(t) + C(s)e(t) 

A(s) = s-2 + 0.7958 s + 0.0002798 

B(s) = 0.01754 s + 0.0002778 

C(s) = s-2 + 1.188 s + 0.3305 

#ARMAX[22140] 

#Discrete-time IDPOLY model: 

A(q)y(t) =•B(q)u(t) + C(q)e(t) 

A(q) = 1- 1.075 (+-0.04778) q--1 + 0.07591 (+-0.04775) q--2 

B(q) = 0.02603 (+-0.002258) q--40 - 0.0254 (+-0.002248) q--41 

C(q) = 1 - 0.3047 (+-0.04622) q--1 

#Continuous-time IDPOLY model: 

A(s)y(t) = B(s)u(t) + C(s)e(t) 

A(s) =s-2 + 1.289 s + 0.0004463 

B(s) = 0.03671 s + 0.0004432 

C(s) = s-2 + 1.691 s + 0.485 

#0E [2218] 

#Discrete-time IDPOLY model: 

y(t) = [B(q)/F(q)]u(t) + e(t) 

B(q)=0.0007713 q--18 - 0.0007707 q--19 

F(q) = 1 - 1.998 q--1 + 0.9983 q--2 

#Continuous-time IDPOLY model: 

y(t) = [B(s)/F(s)]u(t) + e(t) 

B(s)=0.0003858 s + 1.622e-007 

F(s) = s-2 + 0.0008548 s + 1.629e-007 

#8.1[222240] 

#Discrete-time IDPOLY model: 

y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)]e(t) 

B(q) = 0.01445 (+-0.01195) q--40 - 0.0137 (+-0.01169) q--41 

C(q) = 1 + 0.1816 (+-0.6266) q--1 - 0.1948 (+-0.1909) q--2 

D(q) = 1 - 0.5135 (+-0.6318) q--1 - 0.4861 (+-0.6317) q--2 

F(q) = 1 - 0.9751 (+-0.7565) q--1 - 0.02411 (+-0.756) q--2 

#Continuous-time IDPOLY model: 

y(t) = [13(s)/F(s)311(t) +[C(s)/D(s)]e(t) 

B(s) = 0.02532 s + 0.0006842 

C(s) = s-2 + 0.7002 s + 0.1197 

D(s) = s-2 + 0.3607 s + 5.053e-005 

F(s) = 	+ 1.863 s + 0.0006791 
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#P2DZ 

#Process model with transfer function 

1+Tz*s 

G(s) = K * 	 * exp(-Td*s) 

(1+Tpl*s)(1+Tp2*s) 

with 	K = 0.99145+-0.00012837 

Tpl = 3532.2+-17.825 

Tp2 = 1070.2+-32.018 

Td = 60+-2.2908 

Tz = 1602+-44.499 

#P3DZ Process model with transfer function 

1+Tz*s 

G(s) = K * 

	

	  * exp(-Td*s) 

(1+Tpl*s)(1+Tp2*s)(1+Tp3*8) 

with 	K = 0.99165+-0.00014949 

Tp1 = 3524.8+-17.123 

Tp2 = 954.3+-34.571 

Tp3 = 44.156+-4.4028 

Td = 57.763+-0.0058543 

Tz = 1522.7+-44.028 

# estimation from experiment 2 

#ARI([2240] 

Discrete-time IDPOLY model: 

A(q)y(t) = B(q)u(t) + e(t) 

A(q) = 1-0.641 (+-0.011) q--1 - 0.358 (+-0.01099) q--2 

B(q) = 0.000282 (+-0.0004077) q--40 + 0.0007082 (4-0.0004081) q--41 

#Continuous-time IDPOLY model: 

A(s)y(t) = B(s)u(t) + C(s)e(t) 

A(s) =s"2 + 0.5136 s + 0.0001871 

B(s) = 0.0001958 a + 0.0001871 

C(s) = s"2 + 0.8458 a + 0.189 

#ARMAX[22140] 

#Discrete-time IDPOLY model: 

A(q)y(t) = B(q)u(t) + C(q)e(t) 

A(q) = 

B(q) = 

C(q) = 

1 - 1.048 

0.0004733 

1 - 0.4875 

(+-0.02602) q"-1 + 0.04848 (+-0.026) q"-2 

(+-0.0002066) q"-40 + 0.0002202 (+-0.0002086) 

(+-0.02258) q^-1 

q"-41 

#Continuous-time IDPOLY model: 

A(s)y(t) = B(s)u(t) + C(s)e(t) 

A(s) = s"2 + 1.513 s + 0.0005516 

B(s) = -4.205e-005 s + 0.0005516 

C(s) = s"2 + 1.818 s + 0.4076 

#0E[2215] 

#Discrete-time IDPOLY model: 

y(t) = [B(q)/F(q)]u(t) + e(t) 

B(q) =0.0002677 q"-15 - 0.0002495 q"-16 

F(q) = 1 - 1.975 q^-1 + 0.9752 q"-2 
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#Continuous-time IDPOLY model: 

y(t) = [B(s)/F(s)]u(t) + e(t) 

B(s) =0.0001309 s + 4.591e-006 

F(s) = s-2 + 0.01257 s + 4.591e-006 

#8.7[222 	25] 

#Discrete-time IDPOLY model: 

y(t) = 	[B(q)/F(q)]u(t) 	4-(C(q)/D(q)le(t) 

B(q) = -0.002304 (+-0.004876) q--25 + 0.002538(+-0.005236) q--26 

C(q) = 1 + 0.3021 	(+-0.5729) q--1 + 0.06766 (+-0.1951) q--2 

D(q) = 1 - 1.113 (+-0.6069) q--1 + 0.1133 (+-0.6069) q--2 

F(q) = 1 - 1.675 (+-0.5277) q"-1 + 0.6756 (+-0.5274) q"-2 

#Continuous-time IDPOLY model: 

y(t) = EB(s)/F(s)]u(t) +[C(s)/D(s)]e(t) 

B(s) = -0.001468 s +.7.083e-005 

C(s) = s-2 + 1.702 s + 0.8411 D(s) = s-2 + 1.089 s - 1.028e-005 

F(s) = s-2 + 0.1961 s + 6.931e-005 

#P2DZ 

#Process model with transfer function 

1+Tz*s 

G(s) = K * 

	

	 * exp(-Td*s) 

(1+Tpl*s)(1+Tp2*s) 

with 	K = 1.0001 

Tpl = 2681.6 

Tp2 = 0.001 

Td = 60 

Tz = -3.6273 

#P2DZ 

#Process model with transfer function 

1+Tz*s 

0(s) = K * 

	

	  * exp(-Td*s) 

(1+Tpl*s)(1+Tp2*s)(1+Tp3*s) 

with 	K = 0.99985+-4.3777e-005 

Tpi = 2593.8+-17.36 

Tp2 = 646.01+-91.189 

Tp3 = 11.127+-6.3474 

Td = 56.591+-6.1338 

Tz = 607.54+-84.359 



Appendix C 

PID controller 

C.1 Internal controller 

# Optional internal PID controller 

error = T_set - T_he; #error is expressed directly in term of temperature instead of energy 

$I_error = error; 	#integral of error 

Plvalue = 1/xp*(error +I_error/In); 

Q_ic = (-Dvalue+Plvalue) # controller heat, calculated as provided by the the manufacture 

Dvalue*xp*(I+Tv*D_error) =Tv*D_error; 

D_error*V_he*(rho*cp+T_he*(rho*y_cp + cp*y_rho)) =slope*V_he*(rho*cp+T_he*(rho*y_cp + cp*y_rhoY) 

-(E_in - E_out + Q_ic- Q_chs); 

y_cp =3*cp_coeff_b(4)*(T_he)'2+2*cp_coeff_b(3)*(T_he)+cp_coeft_b(2); 

y_rho = 3*rho_coeff_b(4) +2* rho_coeff_b(3) + rho_coeff_b(2); 

C.2 External controller 

# The differential error is related to the reactor temperature by 

the following equation: 

DError*mass_r*(4+(T_r-273.15)*(3*cp_coeff_r(4)*(T_r)-2+2*cp_coeff_r(3)*(T_O+ 

cp_coeff_r(2)))=Constant*mass_r*(Cp+(T_r-273.15)*(3*cp_coeff_r(4)*(T_r)-2 

+ 2*cp_coeff_r(3)*(T_r)^1 + cp_coeff_r(2)))-(-Q_cri -Q_crc+Q_cra+P); 
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Entities in gPROMS 

Model section entities 

PARAMETER 

Parameter name as integer or real or logical (default value) 

Parameter name as array (size) of integer 

Parameter name as foreign object (foreign object class) 

DISTRIBUTION DOMAIN 

Domain name as (lower bound:upper bound) 

Domain name as array (size) of (lower bound:upper bound) 
UNIT 

Unit name as unit model name 

Unit, name as array (size) of unit model name 
VARIABLE 

Variable name as variable type 

Variable name as array (size) of variable type 

Variable name as distribution (domain name) of variable type 
STREAM 

Stream name: Variable path (....) as stream type 

Stream name: Variable path (....) as array of stream type 
SET 

Parameter path :=expression; 

BOUNDARY 
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Boundary equations 

EQUATION 



Specification Coments 

HORION 

{IV} : {LB} : {UB} 

INTERVALS 

{number of intervals} 

{IV} : {LB} : {UB} 

PIECEWISE CONSTANT 

{variable name} 

{initial profile specification} 

PIECEWISE LINEAR 

{variable name} 

{initial profile specification} 

TIME INVARIANT 

{variable name} 

initial value specification 

ENDPOINT EQUALITY 

{variable name} 

{value} 

ENDPOINT INEQUALITY . 

{variable name} 

{LB :U B} 

INTERIOR POINT 

interior point constraint is to be im- 

posed 

{variable name} 

{LB : UB} 

MAXIMISE 

{variable name} 

Time horizon specification 

Initial guess for tf followed by tTin and et" 

Intervals in control variable profiles 

Specify number of intervals 

Initial guess,lower bound and upper bound for 

the length of each interval 

Specification of a piecewise constant control 

variable 

Its full gPROMS path name 

Optional 

Specification of a piecewise linear control vari- 

able 

Its full gPROMS path name 

Optional 

Specification of a time invariant parameter 

Its full gPROMS path name 

Optional 

Specification of a variable on which an equality 

end point constraint is to be imposed 

Its full gPROMS path name 

Its value 

Specification of a variable on which an inequality 

end point constraint is to be imposed 

Its full gPROMS path name 

Lower bound and upper bound of constraint 

Specification of a variable on which an 

Its full gPROMS path name 

Lower bound and upper bound of constraint 

or MINIMISE 

Full gPROMS path of objective function 

163 

Table D.1: Optimization entities 
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Case study 

Process section for crystallization of L-glutarnic acid 

Specified parameters 

# in the gPROM model r is assume alpha form and s is assume beta 

form 

k_v 	:= 0.5236; 	volumetric shape factor 

k_a 	:. 3.1416; 	area shape factor 

k_gr 	0; 	growth rate constant of alpha form 

k_gs 	:= 0.5E-07; 	growth rate constant of beta form 

k_dr 	:. 1E-07; 	dissolution rate constant of alpha form 

k_ds 	:= 0; 	dissolution rate constant of beta form 

k_nr 	:= 0; 	nucleation rate constant of alpha form 

k_ns 	:= 1E08; 	nucleation rate constant of beta form 

g 	:=1; 	growth rate order 

nucleation rate order 

L_nr 	:=1E-08; 	size of seed of alpha form 

L_ns 	:=1E-08; #0, for unseeded, size of seed of beta form 

rho_s :=17000; 

rho 	:=17000; 

rho_r :=17000; 

a_alpha :=0.44283; 

a_beta :=0.35597; 

b_alpha :=0.03656; 

b_beta:=0.03423; 

density of beta form 

density of solution 

density of alpha form 

Specified variables 

V :=4.4E-04; 

T_r := 390 
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Initial conditions 

x 	= 	0.12; 

L_r = 9998.6752; 

L_s = 	9998.6752; # 0, for unseeded 

M_r - 	0.89; 

M_s = 	0.0089; 	# 0, for unseeded 

A_r = 	3.1412; 

A_s = 	0.31412; 	# 0, for unseeded 

Nr = 99986752.48; 

Ns = 	999867524.8; # 0, for unseeded 

m_f = 	10; 
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