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ABSTRACT

The most building codes state that the lateral earthquake force at each story level
of an asymmetric-plan building should be applied eccentrically from their centres of
rigidity [6]. So to implement such procedures, it .is necessary to determine the locations of
centres of rigidity of each floor level in case of asymmetric-plan building. The location of
centres of rigidity of an asymmetric-plan building in itself is a very difficult and time
consuming process. In this dissertation, an evaluatioﬁ test of the approach given by
Chopra and Goel for lateral force analysis of an asymmetric-plan building without locating
the centre of rigidity of its floors is given. The shear forces in the asymmetric-plan
building are determined with the help of$taad-III package.

In one approach the lateral forces and torques are applied on the centre of rigidity
of the floor and in the second approach,the lateral forces and torques are applied at the
centre of mass of the floor. The evaluation test of approach given by Chopra and Goel
presented in this thesis dispels the long held view that location; of centres of rigidity must
be determined for the implementation of tﬁe code procedure, and therefore, it removes a

major difficulty in the analysis of buildings.
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CHAPTER -1
INTRODUCTION

Buildings subjected to earthquake force simultaneously undergo lateral as well as
torsional motions if their structural plans do not have two axes of mass and stiffness
symmetry. So the lateral forces experienced by the various resisting elements such as
, ﬁames; shear walls, etc., of an unsymmetn'cai building would differ from those
experienced by the same elements if the building had symmetric plan [3]. The lateral force
analysis of most building codes .requjres that earthquake force at each floor level of an
asymmetric-plan btﬁlding should be applied eccentrically from the centre of rigidity at a
distance equal to the design eccentricity. The design eccentricity ey to be used at the j'hA

floor Jevel is specified in most seismic codes as

ey = a ey + [ ‘ . (1.1)
and ey = ey - fb; ' ' (1.2)
where,
ey = eccentricity for the jth floor
b; = floor -plan dimension of the building perpendicular to the direction of

groundv‘m(-)tion.
a, fand & = specified coefficients of 1987 Mexico Federal District code

For each structural frame or wall of a building, eqjvalue leading to the larger design
force is to be used. The term ey is intended to accounf for the coupled lateral torsional
response of the building arising from the lack of symmetry in plan. The other term, often
called the accidental eccentricity, is specified as a fraction of the plan dimension b;, and is
included to con'sider torsional effects due to other factors, such as rotational component of
ground motiqn about a vertical axis, yield str.engths and unfavourable distribution of live-

load masses [2].



Several codes, such as Uniform Building Code (1991) and New Zealand Standard
NZS 4230 (1984), specify that the lateral force be applied at a distance equal to + S b,
from the ceﬁtre of mass, which is equivalent to &= 6= 1 in eq. (1.1). In implementing the
lateral force analysis procedures of such building codes, it is not necessary to determine
the locations of the CRs at the various floor levels. However, in building codes where the
design eccentricity foxjmula uses aor ¢ different than 1, é. g., National Building Code of
Canada (1990) and the 1987 Mexico Federal District Code, it seems necessary to
determine the locations of the CRs.

Unlike one-story buildings, there are several difficulties in establishing locations of
the centre of ﬁgidity at various floor levels of a multistory building unless it belongs to a
special class known as proportional buildings. For a proportional building, the lateral
stiffness matrix of all its resisting elements along one direction are proportional to each
other. For non-proportional buildings, it is cumbersome to determine the centres of
rigidity because of the tedious calculations involved.

In 1993, Chopra and Goel [2] presented an approach that did not require the
determination of the centres of rigidity. This motivated this study. In their study, Chopra
and Goel [2] enumerated the different definitions of the centres of rigidity as given by
earlier researchers, as well as restated their own definition [3].

Using their definition of centres of rigidity [3] as a starting point, Chopra and Goel
[2] presented an approach to apply the building code provisions for lateral load analysis of
asymmetric-plan multistory buildings. This approach did not require the expﬁcit

determination of the centres of rigidity.



This study shows that by using the definition of the centres of rigidity as given by

Chopra and Goel [2), the following difficulties arise :

1. The location of the centres of rigidity for a asymmetric-plan multistory building
becomes dependent on the height-wise distribution of the lateral loads. This implies
the following :

(1) The centres éf rigidity of Chopra and Goel [2] are not the intrinsic property of the
building alone.

(ii) The centres of rigidity of Chopra and Goel [2] are not unique, as they are a function of
the height-wise distribution of lateral loads, i.e., the lateral load pattern.

(iit) For certain lateral load .patterns, it can be shown that the location of these centres of
rigidity cannot be determined, i.e., they do not exist.

(iv) If the location of the centres of rigidity cannot be determined, then the eccentricities
(es)) required for implementing the code procedures can also not be determined.

2. The lateral load pattern specified by building codes is largely based on an assumed first | -
mode shape. If higher mode effects were also desired to be considered, then the
centres of rigidity cietermined for the fundamental mode shape cannot be used for
other modes.

3. During an earthquake, the displaced shape of the structure at any instant of time
contains the contributions from all mode shapes, and the lateral load pattern varies
from instant to instant. This would imply that the location of centres of rigidity of
Chopra and Goel [2] would also vary from instant to instant, even for assumed linear

behaviour of the structure.



the inelastic domain of response is known as ductility. It includes the ability to sustain
large deformations and a capacity to absorb energy by hysteretic behaviour. Therefore
it is the most important property sought by the designer of buildings located in regions
of significant seismicity. In general, the term ductility defines thé ability of a structure
and selected structural components to deform beyond elastic limits without excessive
strength or stiffness degradation.
Ductility is also defined as the ratio of the total imposed displacements 4 at any
instant to that at the onset of yield A4,
Ductility, u = A/A,> 1
The displacements 4, and A may represent strain, curvature, rotation or deflection.
Ductility in structural ﬁembers can be developed easﬂy if the constituent material
itself is ductile. Thus, it is relatively easy to achieve the desired ductility if resistance is to
be provided by steel in tension. However, . precautions need to be taken when steel is
subjected to compression. To ensure thatlpremature buckling does not interfere with the

development of the desired large inelastic strains in compression [5].

2.2 Definitions

1. Centre of Mass : During an earthquake, the acceleration-induced mertia forces will be
generated at each floor level where the mass of an entire story may be assumed to be
concentrated. Hence, the location of a force at a particular level will be determined by the
centre of the accelerated mass at that level. This point where the mass of an éntire story is

assumed to be concentrated is known as centre of mass [5].



This study shows that by using the definition of the centres of rigidity as given by

Chopra and Goel [2], the following difficulties arise :

1.

(1)

The location of the centres of rigidity for a asymmetric-plan multistdry building
becomes dependent on the height-wise distribution of the lateral loads. This implies
the following :

The centres 6f rigidity of Chopra and Goel [2] are not the intrinsic property of the

building alone."

(i) The centres of rigidity of Chopra and Goel [2] are not unique, as they are a function of

the height-wise distribution of lateral loads, i.e., the lateral load pattern.

(iii) For certain lateral load pattemns, it can be shown that the location of these centres of

rigidity cannot be determined, i.e., they do not exist.

(iv) If the location of the centres of rigidity cannot be determined, then the eccentricities

(es;) required for implementing the code procedures can also not be determined.

The lateral load pattern specified by building codes is largely based on an assumed first |
mode shape. If higher mode effects were also desired to be considered, then the -
centres of rigidity cietermined for the ﬁmdaméﬁal mode shape cannot be used for

other modes.

During an earthquake, the displaced shape of the structure at any instant of time

contains the contributions from all mode shapes, and the lateral load pattem varies

from instant to instant. This would imply that the location of centres of rigidity of

Chopra and Goel [2] would also vary from instant to instant, even for assumed linear

behaviour of the structure.



CHAPTER -2

STRUCTURAL PROPERTIES OF BUILDINGS

2.1 Structural Properties

10

There are basically three structural properties of a seismic building.

Stiffness : If deformations under the action of lateral forces are to be reliably
quantiﬁed and subsequently controlled, then the designers must make a realistic
estimate of the relevant property called stiffness. This quantity relates loads or forces
to the ensuing structural deformations [5].

Strengt}i : If a concrete or masonry structure is to be protected against damage or the
damage which is repairable during a selected or specified seismic event, an inelastic
excursions during its dynamic response should be prevented. This means that the
structure must have adequate strength to resist internal actions generated during the
elastic dynamic response of the structure. Therefore, the appropriate technique for the
evaluation of earthquake—induced actions is an elastic analysis based on the stiffness
properties of the structure. The term strength in fact is the resistance of a structure or
a member or a particular section to the internal forces.

Ductility :  To minimise major damage and to ensure the survival of buildings with
moderate resistance with respect to lateral forces, the structures must be capable of
sustaining a high proportion of their initial strength when a major earthquake imposes
large deformations. These deformations méy be well beyond the elastic limit. This

ability of the structure or’its components, or of the materials used to offer resistance in



the inelastic domain of response is known as ductility. It includes the ability to sustain
large deformations and a capacity to absorb energy by hysteretic behaviour. Therefore
it is the most important property sought by the designer of buildings located in regions
of significant seismicity. In general, the term ductility defines thé ability of a structure
and selected structural components to deform beyond elastic limits without excessive
strength or stiffness degradation.
Ductility is also defined as the ratio of the total imposed displacements 4 at any
instant to that at the onset of yield A4,
Ductility, 4 = 4/4,> 1
The displacements 4, and A may represent strain, curvature, rotation or deflection.
Ductility in structural members can be developed easﬂy if the constituent material
itself is ductile. Thus, it is relatively easy to achieve the desired ductility if resistance is to
be provided by steel in tension. However, . precautions need to be taken when steel is

subjected to compression. To ensure that premature buckling does not interfere with the

development of the desired large inelastic strains in compression [5].

2.2 Definitions

1. Centre of Mass : During an earthquake, the acceleration-induced inertia forces will be
generated at each floor level where the mass of an entire story may be assumed to be
concentrated. Hence, the location of a force at a particular level will be determined by the
centre of the accelerated mass at that level. This point where the mass of an entire story is

assumed to be concentrated is known as centre of mass [5].



2. Centre of Rigidity : There are several definitions of the centre of rigidity. The

various definitions given by various scientists are as follows :

(1) Poole in 1977 defined the centre of rigidity of a story as the location of the resultant of
shear forces of various resisting elements in that story when the building is subjected
to a static lateral loading that causes no rotation in any of the stories.

(i1) Humar in 1984 defined the centre of rigidity at any floor as the point such that
application of a lateral load through this point would not cause rotation of that floor,
other floors may rotate.

(iii) Cheung and Tso in 1986 defined the centres of rigidity as the set of points located on
the building floors through which application of lateral forces would cause no rotation
of any of the floors.

(iv) Hejal and Chopra in 1987 defined the centres of rigidity of the building as the points in
the plane of the floors through which any set of static horizontal forces must be
applied in order that it may cause all floors to translate without torsion [2].

3. Floor Eccentricity : It is defined as the distance between the floor centre of mass and

the floor centre of rigidity. When the eccentricities of all floors of building are zero,

lateral motions of the building are independent of its torsional motions and the building is

said to be uncoupled [3].

2.3 Influence of Building Configuration on Seismic Response
The building configuration greatly effects the seismic response of a building. By
adopting the following fundamental principles relevant to seismic response, more suitable

structural system can be adopted.



. Simple and regular plans are preferable. Buildings with articulated plans such as T and
L shapes should be avoided or they should be subdivided into simpler forms.

. Symmetry in plan should be provided where possible. Lack of symmetry may lead to
significant torsional response. Much greater damage due to earthquakes has been
observed in buildings situated at street corners, where structural symmetry is more
difficult to achieve than in those along streets, where a more simple rectangular and
often symmetrical structural plan could be utilised.

. An integrated foundation system should tie together all Veﬁical structural elements in
both principal directions. Foundations resting partly on rock and on soils should
preferably be avoided. |

. Lateral forpe resisting systems within one building, with significantly different
stiffnesses such as structural walls and frames should be arranged in such a way that at
every level symmetry in lateral stiffness is not grossly violated. Thereby undesirable
torsional effects will be minimized. |

. Regularity should prevail in elevation, in both the geometry and the variation of story
stiffnesses.

. Avoid concentration of mass especially near the top of high rise buildings because it

helps in exciting the higher modes of vibration [5].



CHAPTER -3

METHOD OF SEISMIC CODE ANALYSIS

3.1 Analysis Using Centres of Rigidity
The first step in this approach is to determine the locations of the centres of
rigidity for all floor levels of the asymmetric-plan building by the matrix approach or by

the plane frame analysis approach.

3.2 Computation of Centres of Rigidity
3.2.1 Ma.trix approach

Consider an n-story building with orthogonal arrangement of lateral-load resisting
elements conﬁected by rigid floor diaphragms as shown in Fig. 3.1. For lateral force
analysis in the}y—direction, building plan is considered as symmetric about the x-axis. The

equilibrium equations for such systems are :

Kyy Kyg u, Fy
o )bl - ) =

where,
T = <y, u, u U, Uy >
Uy yly Yy2y Uyp3y oo v s Uiy e e o yn
T
and  wup = <ug, Ug, Ues, ... ... Ugy oo e Uy, >

are displacement vectors.



and u,; = lateral displacement in y-direction at a selected reference point on the j*

floor, wherej=1,2, ..., n

and ug = torsional displacement on the j* floor
FyT = <Fy]) Fyz, e wes ....Fy'” ......... Fy”>
and  Fj = <Fo, Fapy oo Fgy . Fa>

are vectors of floor forces.

F, lateral force in y-direction at the selected point on the i floor

and Fy floor torque applied on the j* floor
Various submatrices of stiffness matrix given by eq. (3.1) can be expressed in

terms of lateral stiffness matrices of individual resisting elements as follows [2].

K, = )k,
» Z,: 7 (3.2a)
K, =K, =) xk,
oo Z e (3.2b)
Ko = 2.5 ky+ 207 k, (3.20)
i i
where
X; = distance from the reference point to the i" frame oriented in the y-direction
with lateral stiffaess matrix &,
Vi = distance from the reference point to the i" frame oriented in the x-direction
with lateral stiffness matrix &,

Now equilibrium equations w.r.t. the degrees of freedom



~T - ~ .
u =<u,” uy’ > attheCRsis

yy ¥ »w XR u, ¥

' ‘ L 21 (33
Ky-Xe K, Ke+XoK, Xo~Xz K, ~K, Xy (3:3)

[ K K,-K
Uy F,

where,
Xp = diagonal matrix with its diagonal elements = xg;
X = x-coordinate of the CR of the j* floor
and |
F, = F, and F, = Fp- XiF,
where,

F, = vector of floor torques at the CR

If the lateral forces are applied at the CRs then 11:0 = 0 and the system would

undergo pure translation, i.e. u, =0

Thus eq. (3.3) becomes

K, u, = F,=F,
u, = K,'F, | (3.4)
and  (Ky, - XpKy) u, =0 | (3.5)

substituting value of u; from eq. (3.4) in eq. (3.5) we get

10



Ko - Xe Kpp) Ky ' F, =0 (3.6)
For the special class of buildings, the locations of CRs are independent of the distribution
.of lateral force. Hence, eq. (3.6) becomes
(Ko - Xa Ky) Ky = 0
Xr = K;Qy K’ (3.7)
where,

Xr

Vector of Xz

For buildings not belonging to the special class, location of CRs depends upon the
distribution of lateral force. Hence, eq. (3.6) becomes

KoK, Fy-xzF, =0

xz = [F]' Ky Ky'F, (3.8)
where
Xr = Vector of xg
K] = Diagonal matrix of F);
F, = Vector of F);

wherej=1,2,..,n

3.3 Plane Frame Analysis Approach
The location of the CRs at each floor level can be determined from equilibrium

analysis of the free body diagram of that floor when the lateral forces F; are applied at

those floor levels.

Free body diagrams of each story are shown in Fig. 3.2.

11



Let Vs, Vis and Vjc be the j" story shears in frames A, B and C, respectively.
Equilibrium of the forces in the y-direction at each floor level gives :
Vi -Vierd + Vig=Vierg) + Vie = Vierd = Fy (3.9)
where,
F); = lateral force at i* floor
Equilibrium of the moments about the vertical axis gives the location of the CR at

the ﬂoor level j as

(VJA -V }+1.A) Xyt (VJB B VmB) X+ (VjC - Vj+1,C) Xc

Fy

Xy = (3.10)

where x4, xp and xc = x-distances of frames A, B and C from the reference point,

respectively.

3.4 Implementation of Code Procedure

Aﬁer determining the locations of the CRs at various floor levels, the code
procedure can be implemented by applying the lateral forces F); at a distance equal to ey
from the centre of rigidity at each floor as shown in Fig. 3.3. This implies the need for
two analysis.
For first analysis.

ey = aey+ Bl (3.11)

and for second analysis

12



e = Oej-Pb (3.12)
These two conditions can be combined together as
ej = yej P b; (3.13)
where,y = a and + S b; to arrive a%?& 1D.
and y= Jdand- Bb;to arrive 3?6.12).
For buildings with rigid diaphragms, the load condition of Fig. 3.3 is equivalent to
the superposition of three load cases.
1. Lateral force F); at the floor CRs.
2. Floor torques = y e F); at the floor CRs
3. Floor torques = £ b; F; at the floor CRs
The floor torques of second and third load cases can be combined and need not be
considered separately and is equal to e,
where,
| e = yes+ B : (3.14)
For the building considered in chapter 4, the floor torques are computed in accordance
with the 1987 Mexico Federal District Code which specifies the value of coefficients, as
a=15, 6=1.0ad f=0.1,
substituting these values in eq. (3.11) and (3.12) we get,
For first analysis
eg=15e5+0.1b (3.15)
For second analysis

€4 = € - 0.1 bj (316)

13



3.5 Analysis Without Using Centres of Rigidity

This new approach to implement the .code procedure for asymmetric-plan buildings
combines the results of three sets of analysis. In these sets of analysis, the forces are
applied at the floor CMs, mmplymmg that the locations of CRs are not needed. The steps
involved in this approach are given below;

1. The first step in the analysis is to apply the lateral forces F; at the floor CMs and
building was restricted to deform only in the y-direction. For the example building,
this analysis was done by Staad-IIl package.  The forces applied at the CMs were
assumed to be distributed equally at the nodes or in proportion to its distance from the
nodes. The resulting value of the force or deformation obtained is 7 [2].

2. In the second step, the lateral forces were applied at the floor CMs and the
asymmetric-plan building was analysed as a three dimensional system to obtain the
value #? of the desired response,i.e,force or deformation. For this analysis by Staad-
I package, the forces were assumed to be distributed equally or in proportion to their

' distances from the nodes.

3.. In the third step, the asymmetric-plan building was analysed for floor torques = fb;F);
to obtain the value ¥ of the desired response, i.c., force or deformation. In this
analysis, the moments were assumed to be distributed in proportion to their distances
from the nodes. This analysis was also done by Staad-III package.

4. Inthe fouﬁh step the responses #* and +* associated with design eccentricities of eq.
(3.11) and eq. (3.12) are obtained by combining 7, ¥, and ¥ as follows

HO = 4o 69 - ) 4
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HO = P S (r(z) -V ) - ey

r@ = (1. g +'w(2) e (3.17)
and Y =rY1-9+5%-9 ’ (3.18)
Here, a=1.5and 6= 1.0

F9 =_0.5r7 + 1.5+¢7 + © | (3.19)

NCORNCRC

and ¥ (3.20)
5. The design value of the desired response is the larger of the two values #® and »?.

For the example bmldmg the design value of shear is the larger of I/j(”) and V¥ [2].
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CHAFTER - 4

ANALYSIS OF ASYMMETRIC PLAN BUILDING

4.1 Dimensions of Building

The building considered in the analysis of code procedure is a four story
asymmetric plan building having three frames A, B and C as shown in Fig. 4.1.

The building is symmetric in the x-direction.  The building possesses stiffness only

in the y-direction. The building has following properties.

Height of building = 16 m (4 m each story)
No. of Bays = 2 of 10 m each
Moment of mertia for all beams, M.1.= 03 m'

Moment of inertia of columns = 0.05 m* |

of frames A and C

Moment of inertia of = 0.1 m*
columns of frame B
Floor weights, W = 20 KN for each of two bottom floors and
10 KN for each of two top floors
The four story asymmetric plan building as shown in Fig. 4.1 has been designed as

per the seismic provisions of the 1987 Mexico Federal District Code in which :

Seismic coefficient, C = 06
Yield reduction factor, Q = 2.0
Total floor weight, W = 20x2+10x2
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\ = 60 KN

Base shear, Vg C.W/Q

(0.6x60)/2

18 KN

4.2 Determination of Centres of Rigidity
4.2.1 Matrix Approach

The building possesses stiffness only in the y-direction.' Most buildings, however,
possesses stiffness in the x-direction also. For such buildings the stiffness is given by eq.
(3.2¢).

The lateral stiffness matrices of frames A, B and C as determined from matrix

structural analysis program are given as :

[ 357 -187 018 —-00I]

E |-187 340 -18 016
M7 100| 018 -186 337 -167
-00!/ 016 -167 152 |

[ 693 -375 057 -005]
E |-375 637 -368 0.50

~100| 0.57 -368 6.23 -3.06

-005 050 -306 261
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(355 -169 0 0]
E |-169 153 0 0

ke =T00| 0 0 0
0 0 0 0]

Putting these values in eq. (3.2a) and (3.2b) the values of X, and K,y can be

determined as :

C

K,=2k,=Dk, =k, +hy+k,

A

[ 1405 =731 075 =006
E |-731 1130 -554 066

Ko =%00| 075 -554 960 ~—473

-006 066 -473 413 |

(4.1)

NOWKyg =KQ, = Zx, kyi
H

Taking frame A as the reference frame, we get x, = 0, x5 = 10 m and xc =20 m

c :
Ko = in k,=0+xpksp+xchc
A

(14030 -7130 570 -05 ]
E |~-7130 9430 -3680 5.00
K,=— (4.2)
* 7 00| 570 -36.80 6230 3060
| -050 500 -3060 2610 |
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4.2.2 Storywise Distribution of Lateral Force

Lateral force at each floor level is calculated as shown in Table 4.1.

Table 4.1 : Storywise Distribution of Lateral Force

Story j Height, 4; Weight, ¥ Wihj Lateral force (KN)
m KN Wihj
(m) (KN) po Oy,
2. Wk
5
m | 3) (4) ©)
1 4.0 20.0 80 2.77
2 8.0 20.0 160 5.54
3 12.0 10.0 120 4.15
4 16.0 10.0 160 5.54
2 =520

Lateral force vector is given as

FT =<277 554 415 554>

4.2.3 Calculation of Centres of Rigidity

Hence from eq. (3.8) location of centre of rigidity is
xx = [F]' Ky K,'F, 4.3)
A computer program was made for calculating the inverse with the help of book

“A numerical library in C for Scientists and Engineers [4].
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5 18 18 17
1118 37 40 40

K, = %18 40 67 70
17 40 70 99
03610 0 0 0
“ 0 01805 0 0
[Fy] B 0 02410 0
0 0 0 01805

Hence, after substituting these values in eq. (4.3) we get

03610 0 0 0 1403 -713 57 =05
| E 0 01805 0 0 ~713 943 -368 5
*r T FE 700 | 0 0 02410 0 57 -368 623 —306
0 0 0 01805| |-05 5 -306 2610
(15 18 18 17](277
18 37 40 40||5.54
X118 40 67 70|)4.15
17 40 70 99]||5.54
8.55
- 1757
&= =614
599
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4.3 Plane Frame Analysis Approach

From eq. (3.10) the location of centre of rigidity of each floor level j is given as

XR] _ (VJA - VjH,A) X, t (Vj - I;{H,B) Xg + (V}C - Vj+1,C) Xc (4.4)
¥ .

Free body diagram of each floor is shown in Fig. 3.2.
4.3.1 The story shears in various frames at each floor level are given in Table 4.2. These
are obtained by making the two dimensional model of frames A, B and C as shown in

Fig. 4.2.

Table 4.2 : Story Shears in Various Frames of Building

Floor j Story Shear in Frame A | Story Shear in Frame B | Story Shear in Frame C
| ) () (N
| 1 4.80 8.42 4.78
2 4.26 6.32 4.64
3 3.82 5.88 -
4 222 , 3.32 -

4.3.2 Determination of Centre of Rigidity
To determine the location of centres of rigidity at each floor level, take frame A as

the reference frame and making use of eq. (4.4), we get
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x4=0,xz =10mand xc=20m

Location of centre of rigidity at first floor

(4.80-4.26)x0 + (8.42-6.32) x 10 + (478 - 464) x 20

XRI = 277
Xm = 859 m
- Similarly

(4.26 - 3.82) x0 + (6.32-5.88) x 10 + (464 - 0) x 20
Xu = 5.54

Xpz = 17.55m

(3.82-222)x0 + (5.88-3.32)x10+0
Ao = 415

XR3 = 6.17m

(222-0)x0+(332-0)x10+0
B 5.54

Xrs = 5.99m
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Hence, the eccentricity of the various CRs of the floors from the CMs are given as

CR; = 859-10 = -141m

CR, = 17.55-10 = 7.55m
CR; = 6.17-5 = 1.17m
CRy =599-5=099m
Table 4.3 shows the location of the CRs and the floor eccentricity of the 4-story
asymmetric-plan building.

Table 4.3 : Location of Centres of Rigidity and Floor eccentricities of Building

Floor (j) Location of CRs (m) ~ Floor eccentricity e, (m)
1 8.59 -1.41
2 17.55 7.55
3 6.17 1.17
4 5.99 0.99

4.4 Implementation of Code Procedure
In this section, the values of floor torques are caloulated in accordance with the
1987 Mexico Federal District Code Provisions for two values of ey given by eq. (3.15)
and eq. (3.16) as
For first analysisey; = 1.5e;+ 0.1; | (4.5)
For second analysis e = eg- 0.1 b; (4.6)
The values of floor torques calculated for both the analysis are given in Tables 4.4

and 4.5.

23




Clockwise torque is considered positive and anticlockwise torque is negative.

For first Analysis :

Table 4.4 : Calculation of Floor Torques for Building by first analysis

Floor | Lateral Floor Floor-plan Design eccentricity Floor
j force F; | eccentricity | Dimension of | edj= 1.5 esj + 0.1 bg Torques
ey Building bj Fg=e4F;
(KN) (m) (m) . () (KN-m)
(D 2) €) (4) () (6)
1 "2.77 -1.41 20 -0.115 -0.32
2 - 5.54 7.55 20 13.325 73.82
3 4.15 1.17 10 2.755 11.43
4 5.54 0.99 10 2.485 13.77

For second analysis :

Table 4.5 : Calculation of floor Torques for building

Floor Lateral Floor Floor-plan Design Floor Torques
j force F); | eccentricity | Dimension of |  eccentricity Fo=ezFy
esj building b, eq =ey;0.1b
(KN) (m) (m) (m) (KN-m)
(1) 2) () ) ) (6)
1 2.77 -1.41 20 -3.41 -9.45
2 5.54 7.55 20 5.55 30.75
3 4.15 1.17 10 0.17 0.705
4 5.54 0.99 10 -0.010 -0.055
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Now the shears in columns of Frame A due to lateral force F); and floor torques

15@. are calculated from both the analyses. This analysis was carried out by using Staad-III

package. The forces acting at the centres of rigidity are assumed to be distributed in

proportion to their distances at the nodes of that floor. Similarly, for applying the floor

torques at the floor CRs similar assumption is made that the floor torques are distributed

in proportion to their distances at the nodes of that floor.

4.4.1 First analysis

Apply the lateral forces at the floor CRs. as shown in column (2) of Table 4.4 and

in Fig. 4.3. The loads applied at each floor are distributed in proportion to its distance at

the nodes.

The joint loads are shown in Table 4.6.

Table 4.6 : Distribution of Lateral Force at Floor Ce_ntres of Rigidity

Joint Force-X (KN) Force-Y (KN) Force-Z (KN)
13 .00 .00 1.110
14 .00 .00 1.660
28 .00 .00 1.110
29 .00 .00 1.660
10 .00 .00 0.790
11 .00 .00 1.285
25 .00 .00 0.790
26 .00 .00 1.285
7 .00 .00 0.340
9 .00 .00 2.430
22 .00 .00 0.340
24 .00 .00 2.430
4 .00 .00 0.790
6 .00 .00 0.595
19 .00 .00 0.790
21 .00 .00 0.595
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The forces obtained for this loading are shown in Table 4.7

Table 4.7 : Shears in Columns of Frame A for Lateral Forces

Member | Load | JT Axial | Shear-Y | Shear-Z | Torsion | Mom-Y | Mom-Z
Tomd| (KN) | (KN) | (KN) | (KN-M) | (KN-M) | (KN-M)

1 3 | 1 | 1349 | 0411 | -4369 | -0.133 | 9.191 | 0.833
4 | <1349 | -0.411 | 4369 | 0.133 | 8285 | 0813

6 3 | 4 | 761 | 0351 | -3.883 | -0.002 | 7.783 | 0.655
7 | -7.61 | -0351 | 3.883 | 0002 | 7752 | 0.752

11 3 | 7 | 2849 | 0182 | -2.349 | -0.009 | 4.590 | 0.349
10 | -2.849 | -0.182 | 2349 | 0009 | 4806 | 0378

16 3 | 10 | 0.662 | 0166 | -1262 | -0.0a1 | 2.449 | 0315
13 | -0.662 | -0.166 | 1262 | 0.041 | 2598 | 0.351

2. Apply the floor torques at the floor CRs obtained from first analysis as shown in

column (6) of Table 4.4 and Fig. 4.4,

The forces obtained for these floor torques are shown in Table 4.8.

Table 4.8 : Shears in Columns of Frame A for Floor Torques

Member | Load | JT Axial | Shear-Y | Shear-Z | Torsion | Mom-Y | Mom-Z
| Towr | (KN) | (KN) | (KN) |(KN-M) | (KN-M) | (KN-M)

1 2 1 -3.392 0.034 -0.045 0.010 | 0.131 0.086

4 3.392 -0.034 0.045 -0.010 0.052 0.053

6 2 4 -3.303 | -0.023 | -0.047 0.012 0.205 -0.033

7 3.303 0.023 0.047 -0.012 | -0.017 | -0.061

11 2 7 -1.720 0.020 -0.049 0.021 0.072 0.028 A

10 1.720 -0.020 0.049 -0.021 0.125 0.052

16 2 10 -0.920 0.021 -0.012 0.007 0.041 0.042

i 13 0.920 -0.021 0.012 -0.007 0.009 0.043
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Add the two forces to obtain the shear in columns of frame A by first analysis. It

1s shown in Table 4.9.

Table 4.9 : Total Shear in Columns of frame A by first analysis

Floor Shear in columns of Shear in columns of | Total Shear in columns
() frame A due to lateral frame A due to floor | of frame A from first
force Fy; applied at CRs | torques applied at CRs | analysis

(KN) (KN) (KN)

1 4.369 0.045 4.41

2 3.883 0.047 3.93

3 2.349 0.049 2.398

4 1.262 0.012 1.27

4.4.2 Second analysis

1. Apply the lateral forces at the floor CRs as shown in column (2) of Table 4.5.

The values obtained of shear forces in columns of frame A are same as obtained in

first step of first analysis and are shown in Table 4.7.

2. Apply the floor toques obtained from second analysis as shown in column (6) of Table

4.5 and in Fig. 4.5.

The forces obtained for these applied floor torques at the CRs are shown in Table

4.10. Add both the forces to obtain the shear in columns of frame A by second analysis.

The shears in columns of frame A are given in Table 4.11. The greater of the forces
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obtained from the two analysis will be the design shear for the frame A of the building. It

is shown in Table 4.12.

Table 4.10 : Shears in Columns of Frame A for Floor Torques of Second Analysis

Member | Load | JT | Axial | Shear-Y | Shear-Z | Torsion | Mom-Y | Mom-Z
Jomt | (KN) | (KN) | (KN) | (KN-M) | (KN-M) | (KN-M)

1. 2 1 0.089 0.023 | -0.027 | 0.005 0.014 0.050

4 -0.089 | -0.023 0.027 -0.005 0.096 0.043

6 2 4 -0.693 | -0.002 | -0.025 0.005 ' 0.133 0.001

7 0.693 0.002 0.025 -0.005 | -0.029 0.011

11 2 7 -0.044 | 0.012 | -0.023 0.007 0.015 0.019
10 | 0.044 | -0.012 0.023 | -0.007 | 0.079 0.030

16 2 10 | -0.0009 | 0.011 | -0.006 | 0.001 | 0.011 | 0.023
13 | 0.0009 | -0.011 0.006 | -0.001 0.014 0.023

Second analysis

Table 4.11 : Total Shears in Columns of frame A by Second Analysis

Floor | Shear i columns of | Shear in columns of | Total Shear in columns
G) frame A due to lateral | frame A due to floor | of frame A from second
force Fy;applied at CRs | torques applied at CRs | analysis
(KN) (KN) (KN)
1 4,369 0.027 4.39
2 3.883 0.025 3.90
3 2.349 0.023 2.37
4 1.262 0.0065 1.26
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Table 4.12 : Value of Design Shear in Columns of frame A of Building

Floor | Total Shear in columns of | Total Shear in columns of | Design Shear
() | frame A from first analysis | frame A fiom second analysis
(KN) (KN) (KN)
1 4.41 4.39 4.41
2 3.93 3.90 3.93
3 2.398 2.37 2.398
4 1.27 1.26 1.27

4.5  Analysis Without using Centre of Rigidity
In the new approach to implement the code procedure the forces are applied at the

floor CMs, {mplying that the locations of CRs are not needed. This approach consists of

following steps : |

(1) In the first step, apply the lateral forces F,; given by column (2) of Table 4.4 at the
floor CMs. The building was restricted to deform in the y-direction. It is shown in
Fig. 4.6. The joint loads are shown in Table 4.13. The forces obtained for this loading
are shown in Table 4.14

(2) In the second step, the asymmetric-plan building was analysed as a three-dimensional
system for the lateral forces £, at floor CMs as shown in Fig, 4.7. The joint loads are
shown in Table 4.13. The forces obtained for this loading are shown in Table 4.15.

(3) In the third step, the building was analysed for floor torques = fb; F,;. The value of

floor torques is shown in Table 4.16 and Fig. 4.8. The value of shear forces obtained

are shown in Table 4.17.
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(4) The responses are calculated in accordance with eq. (3.19) and eq. (3.20). All these
calculations are shown in Table 4.17. The values of shear forces obtained in the first
three steps are shown in columns (2), (3) and (4) of Table 4.18 as V,-(I), Vj("‘) and V,-(”.

(5) The design value of the desired shear is the greater of the two values ¥} and V¥ [2].

Table 4.13 : Distribution of Lateral Force at Floor Centres of Mass

Joint | Force-X (KN) Force-Y (KN) Force-Z (KN)
13 .00 , .00 1.3850
14 .00 .00 1.3850
28 .00 .00 1.3850
29 .00 .00 1.3850
10 .00 .00 1.0375
11 .00 .00 1.0375
25 .00 .00 1.0375
26 | .00 .00 1.0375
7 .00 , .00 - 1.3850
9 .00 .00 1.3850
22 | .00 .00 1.3850
24 , .00 .00 1.3850
4 .00 .00 0.6925
6 .00 .00 0.6925
19 .00 .00 0.6925
21 .00 .00 0.6925
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Table 4.14 : Shears in Columns of Frame A for Lateral Forces

Member | Load | JT Axial | Shear-Y | Shear-Z | Torsion | Mom-Y | Mom-Z
Jowt | (KN) (KN) (KN) | (KN-M) | (KN-M) | (KN-M)

1 3 1 -12.94 -0.40 -4.120 -0.123 8.931 -0.743

4 12.94 0.40 4.120 0.123 7.880 -0.713

6 3 4 -7.468 -0.332 -3.644 | -0.0016 6.970 -0.4455
7 7.468 0.332 3.644 | -0.0016 | 6.738 | -0.55752

11 3 | 7 | 2684 | -0.162 | -1.868 | -0.0089 [ 4.400 | -0.329

10 2.684 0.162 -1.868 :0.0089 4.725 -0.356

16 3 10 -0.550 -0.156 -1.08 -0.034 2.382 -0.275

13 0.550 0.156 1.08 -0.034 2.437 -0.291

Table 4.15 : Shears in Columns of Frame A for Lateral Forces

Member | Load |JT | Axial Shear-Y | Shear- | Torsion | Mom-Y | Mom-Z
oot | (KN) (KN) Z (KN) [ (KN-M) | (KN-M) | (KN-M)

1 3 1 -13.494 | -0411 -4.370 -0.134 9.193 -0.833
4 | 13494 | 0411 | 44370 | 0.134 8.288 -0.813

6 3 4 -7.608 -0.351 -3.877 | -0.0018 7.770 -0.655
7 7.608 0.351 3.877 | 0.0018 7.738 -0.752

11 3 7 -2.849 | -0.182 | -2.354 | -0.00965| 4.600 -0.349
10 | 2.849 0.182 2.354 | 0.00965 | 4.815 -0.378

16 3 10 | -0.662 | -0.166 | -1.261 [ -0.041 2.448 -0.315

13 0.662 0.166 1.261 0.041 2.597 -0.351
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Table 4.16 : Calculation of Flcor Torque = 5 b; F,; for Building

Floor | Lateral Force, F; | Floor-Plan Dimension | Constant 8 | Floor Torques =
o of Building 4, B b Fy
(KN) (m) (KN-m)
1 2.77 20 0.1 5.54
2 5.54 20 0.1 11.08
3 4.15 10 0.1 4.15
4 5.54 10 0.1 5.54

Table 4.17 : Value of Shear Forces in Columns of Framerfor Floor Torques

Member | Load | JT | Axial | Shear-Y | Shear-Z | Torsion | Mom-Y | Mom-Z
Tomt| (KN) | (KN) | (KN) | (KN-M) | (KN-M) | (KN-M)

1 2 1 | -1373 | -0.009- | 0.0054 | -0.0005 | 0.014 20.016

4 1.373 0.009 | -0.0054 | 0.0005 | -0.035 | -0.021

6 2 4 | -1.165 | -0.013 | 0.0072 | -0.0004 | 0,008 | -0.024

| 7 1.165 0.013 | -0.0072 | 0.0004 | -0.037 | -0.030

11 2 7 | -0.743 | -0.014 0.0096 -0.0004 | -0.017 | -0.027

10 | 0.743 0.014 | -0.0096 | 0.0004 | -0.021 -0.029

16 2 10 | -0.431 | -0.012 | 0.0084 | -0.0002 | -0.006 | -0.022
13 | 0.431 0.012 | -0.0084 | 0.0002 | -0.027 | -0.026
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Table 4.18 : Shears in Columns of frame A of Building by New Approach

Floor |  Shears Shears Shears | V@ =-0.5|V” =V | Design
) | calculatedin | calculated in | calculatedin | V¥ + 1.5 -vP Shear
step 1 step 2 step 3 VP +y?
PN P EN) PN | KN | KN | (KN)
(1) (2) €) (4) (3) (6) (7)
1 4.120 4.370 0.0054 4,50 4,36 4.50
2 3.644 3.877 0.0072 3.99 3.87 3.99
3 1.868 2354 0.0096 2.60 2.34 2.60
4 1.08 1.261 0.0084 1.36 1.25 1.36
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CHA¥TER - 5

EQUIVALENCE OF TWO APPROACHES

5.1 Mathematical Proof

The equivalence of two approaches, which uses centres of rigidity and the new
approach without using the centres of rigidity for the seismic code analysis of asymmetric-
plan building with orthogonal lateral resisting elements and rigid diaphragm, is established
mathematically in this chapter. It is achieved here by demonstrating that the deformations
at the floor centre of rigidity of the building obtained by the two approaches are identical.

The mathematical proof for equivalence of two approaches is as follows.

5.2 The equation of equilibrium with respect to the CMs are

Kw Kw uy Fy |
£ ) e

where,

u, and up = vectors of lateral and torsional displacementé, respectively
at the CMs.

Fy and Fy = vectors of lateral forces and floor torques respectively,
applied at the CMs.
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Similarly, equation of equilibrium with respect to CRs is
Ko Kool Jurk _ 355 5.2)
K & Koo Ug Fo

u, and u, =vectors of lateral and torsional displacements, respectively, at the CRs.

where

F yand F o = vectors of lateral forces and floor torques, respectively, applied at the CRs

For buildings with rigid diaphragms and orthogonal arrangement of the lateral-load
resisting elements various submatrices in the stiffness matrix of eq. (5.2) are related to

those of eq. (5.1) as

k)y = Ky (5.3a)

Ky = Kyo-Kypes (5.3b)
I~<Qv =Ky -€,K, (5.3¢)
i(ee =K99+ esK)y es'esKyO'K® € | (53(1)
where,
e = diagonal matrix with diagonal terms ey

If only lateral force F » (=F,) is applied at the CRs, i.e. F 9= 0, then system would

undergo pure translation with us= 0.

Thus eq. (5.2) becomes

K, u = 1~7y =F
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u, = ky 'F, | (5.4)

—

and Ko ty = 0 | (5.5)
Substituting value of z;y from eq. (5.4) in eq. (5.5), we get

Ko K 'F, =0 (5.6)
Now using eq. (5.3a) and eq. (5.3¢),we get

(Ko -e,Kp) Ky'F, = 0 (5.7)

K@KW.IF); = e.s'Fy (58)

5.3 Deformation at CRs by the Procedure Using CRs

The load condition in this approach is to apply the lateral forces %), at the floor
CRs and floor torques, Fg= - (ye, Fyy B b F,) ;
-ve sign is used for the floor torques to be compatible with the direction of rotational
degrees of freedom.

Hence, eq. (5.2) becomes

k)’)’ [~<y9 l;y Fy
{kev ke@] {;la} ) {_ (}’ e, Fy +pb Fy)} (5.9)

where,

b = diagonal matrix with diagonal elements equal to &;
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Now solving the first eq. of (5.9), we get

-~

K, u, + K, us = F,
w, = K, "F,-K, " Ky up’ (5.10)
Now solving the second eq. of (5.9), we get
(5.11)

Ko u, +Kwus = -(re,F, 1BbF)

Substituting value of ;y from eq. (5.10) in above equation and solving for 1;9 gives

uo = - (Kw-Ko K " Ky)' (ye.Fy, + bR+ Ko K ')  (5.12)

For the equivalence of the two approaches, it is useful to write the submatrices K, , Ko

Ko and K defined at the CR in terms of submatrices X, K,q Ko and Ko defined at

CM.
This is achieved by utilising eq. (5.3). Now

(i(ge-kg, K, ! Kyo) =Kpp + e, Ky e.-e, K 9- Ko e
-Ko-eKy) Kyy.] (Kyo- K,y €)
= KwpteK,e-e,Kyp-Kyes

- Ko Ky Ko+ Ko K" Kppe,

+ e, Kyp- e, Ky e,
After simplifying, we get

i(ge-]%gy 1%,, N kyﬁ =Kg -K g KW'IKyg (5.13)
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and I-'gy N I_( yo = Kyy-l (Kyo- Ky ey
= Kyy"' Kyo- KW'I K, e

k,w ! i(y& =K' Kyo- ¢,

Using eq. (5.6), eq. (5.13) and eq. (5.14) in eq. (5.12) gives
uo = - (Ko-Ko Ky Ky e, Fy- (Koo -K g, Ky K9 BOF,

Substituting value of ;a from above in eq. (5.10), we get

~

uy = Ky ' Fy-Ky (Kyo-Kpye) {- Koo- KoK,y Kyg)! BOF,

- (Koo -Ko K" Ky ye, F)

After solving, we get

uy, = Ky Fy+ Ky Ky (Keo-Koy Ky K" ye, F,
+ Kyy-l Kyt‘? (Koo - Kf?y Kyy-I Kyﬂ).l po Fy
- e, (Koo-Ko Ky K9 ve, F,

- & (Kop- Ky Kyy.l Kye).} BbE,

5.4 Deformation at CRs by New Approach

The deformations at the CMs and CRs from step 1 would be equal to
;ﬁv o= }()y N ﬁy = Kw'le
Since the torsional deformations are zero,

=
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(5.17)



Deformations at the CMs in step 2 are computed from

Ky Kyo | Ju,™ | _ !Fy} | (5.18)
Kgy Koo ug(z) ' L 0

On solving

u® =K, F,-K," Koud” (5.19)
and

us” = - (Koo- Koy K, K9 Ko K, F, (5.20)

Gubstituting eq. (5.8) in eq. (5.20), we get

ugd? =- (Koo- Koy K, K9 ¢, F, (5.21)
Substituting value of us® in eq. (5.19), we get

@ - -1 -1 -1 -1 .

uy” = Ky Fy-Ky" Kyo f- (Koo- Koy Ky~ K™ e Fy)

u® = K, F,+ Ky Ky {(Koo- Koy Ky Ky9)! €, F) (5.22)
Having determined the deformations at the CMs, the deformations at the CRs are
obtained as

w,? =u® + e ud? (5.23a)

and ug”) = ug(z) (523b)

Substituting value of us? from eq. (5.21) and u,” from eq. (5.22) in eq. (5.23) we get

uy(2) = K}f)’.l Fy + K}’)"I Kyo (Koo~ Ky KW'I Kyﬁ)-l es by

-e, (Koo- Ko K, K9 e F, | (5.24)
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~

and ug(z) =- (Kgo-K@ KW'I Kyg).l e, Fy (5,25)
Similarly, the deformations in step 3 due to floor torques, Fy = -pb F, at CMs are

calculated from

Ky Ky u,v(j.) _{ 0 }
Ko Koo | (us®] PP

@n solving the above equation, we get

u? = - K, Kyoud? (5.26)
and ud” = - (Koo- Ko, K" K9 b F, (5.27)
Substituting value of us™ from eq. (5.27) in eq. (5.26), we get

w” = K, Ko (Koo - Koy K" Kyg)” B F, (5.28)
and the deformations at the CRs are giyen by using eq. (5.23)
u? = Ky Ko (Koo~ Koy K" Ko B0 F,

-e, Kw-Ko K, K9 PBF, (5.29)

and us™ = - (Koo~ Ko Ky Ko™ Pb 5, (5.30)

Combining the deformation obtained in the steps 1, 2 and 3 according to the combination
rule

F=r 4y 6@ ) 419 we get

T _ T T2 o e
u, =u CV+y @y V) +y
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w =K, F+ K, F,+ Ky, Koo~ Ko by Ko x ye, Fy -
- & (Koo~ Kb}’ Kyy-l Ky/i"-l Y Es F y 'Kyy-] F.v + Ky,v.l K vo
x (Koo~ Koy Ky Koo)' BOF, - e, (Kog- Ko, K" Ky B F,
w =K' F,+K, KoKou-Ko K, K" ye,F,+
K, Ko (Keo- Ko Ky' Ko B F,
- e (Koo- Koy Ky K9 v, F -
e; Keo-Ko K, K, ' fbF, ° (5.31)
and g = o @ + y(ue® - ue™) + uy®
o =0+ y (Koo~ Koy Ky Ky e F,) - (Koo - Koy Ky Ko BB F,

o =- (Koo-Koy Ky’ K" ye. Fy - (Koo~ Koy Ky Ky BB F, (5.32)
Bq. (5.31) and eq. (5.32) are identical to eq. (5.16) and eq. (5.16), indicating that the

response obtained by the new approach is identical to that obtained by the procedure using

centres of Rigidity.
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CHAPTER - 6

DISCUSSION AND CONCLUSIONS

In 1993, Chopra and Goel [2] presented an approach that did not require the
determination of the centres of rigidity. This motivated this study. In their study, Chopra
and Goel [2] enumerated the different definitions of the centres of rigidity as given by
earlierbresearchers, as well as restated their own definition [3].

Using their definition of centres of n'gidity [3] as a starting point, Chopra and Goel
[2] presented an ai)proach to apply the building code provisions for lateral load analysis of -
asymmetric-plan multistory buildings. This approach did not require the -explicit
determination of the centres o'f rigidity. |

This study shows that by using the definition of the centres of rigidity as given by
Chopra and Goel [2], the following difficulties arise :

1. The location of the centres of rigidity for a asymmetric-plan multistory building
becomes dependent on the height-wise distribution of the lateral loads. This implies
the following :

(i) The centres of rigidity of Chopra and Goel [2] are not the intrinsic property of the
building alone. |

(ii) The centres of rigidity of Chopra and Goel [2] are not unique, as they are a function of

the height-wise distribution of lateral loads, i.e., the lateral load pattern as given by

eq; (3.8).
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(i) For certain lateral load pattems, as if [F,] is singular in eq. (3.8), it can be shown that
the location of these centres of rigidity cannot be determined, i.e., they do not exist.
(iv) If the location. of the centres of rigidity cannot be determined, then the eccentricities

(ey) required for implementing the code procedures can also not be detemlined.

2. The lateral load pattern specified by building codes is largely based on an assumed first
mode shape. If higher mode effects were also desired to be considered, then the
ceﬁtres of rigidity determined for the fundamental mode shape cannot be used for
other modes.

3. During an earthquake, the displaced shape of the structure at any instant of time
contains the contributions from all mode shapes, and the lateral load pattern varies
from instant to instant. This would imply that the location of centres of rigidity of
Chopra and Goel [2] would also vary from instant to instant, even for assumed linear
behaviour of the structure.

4. In the paper presented by Goel and Chopra equations (33), (34), (39), (43) were

written incorrectly and they have been corrected in this dissertation.
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APPENDIX - A

FORMATION OF STIFFNESS MATRIX

It consists of following steps :

(1) Determine the lateral stiffness matrix for each frame. For the i*h frame it is determined
by defining the degree of freedom of the frame as lateral displacements at floor levels,
ul = <uy, z),-;, ey Uy u> and torsional displacement at nodes, Then obtain
the complete stiffness matrix for the i frame with reference to the frame degree of
freedom, Statically condense all the rotational and verticél degrees of freedom to
obtain the N x N lateral stiffness matrix of the i frame, denoted by &,; if the frame is
oriented in the x-direction, or by £, if the frame is oriented in the y-direction.

(2) Determine thg displacement transformation matrix relating the lateral degrees of
freedom u; for the i% frame to the global degree of freedom u for the building. This
N x 2N matrix is denoted by a,; if the frame is oriented in x-direction or g, if frame is
oriented in y-direction( 1] -

Thus,

u; = axy or u; = ayu
These transformation matrices are

a;i = [0 -yJ] or a, = [1 X} (A.1)
where,

0 = square matrix of order N with all elements equal to zero
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3. Transform the lateral stiffness matrix for the i frame to the building degree of

freedom u to obtain

k= al k, a or k=al k. a

xi Uxi xi

(A2)

The 2N x 2N matrix ; is the contribution of the i frame to the building stiffness
matrix.
4. Add the stiffness matrices for all frames to obtain the stiffness matrix for the building :

K = Dk,
i

Substituting the value of a,; and @), from eq. (A.1) in eq. (A.2) to obtain £;

|0 kI -5)

ki

b= [y

0 0
k,' = [ 2 :| (A3)
0 yi kxl

and

SRHIBIES
kL o]
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