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ABSTRACT 

The most building codes state that the lateral earthquake force at each story level 

of an asymmetric-plan building should be applied eccentrically from their centres of 

rigidity [6]. So to implement such procedures, it is necessary to determine the locations of 

centres of rigidity of each floor level in case of asymmetric-plan building. The location of 

centres of rigidity of an asymmetric-plan building in itself is a very difficult and time 

consuming process. In this dissertation, an evaluation test of the approach given by 

Chopra and Goel for lateral force analysis of an asymmetric-plan building without locating 

the centre of rigidity of its floors is given. The shear forces in the asymmetric-plan 

building are determined with the help of.~taad-III package. 

In one approach,the lateral forces and torques are applied on the centre of rigidity 

of the floor and in the second approach,the lateral forces and torques are applied at the 

centre of mass of the floor. The evaluation test of approach given by Chopra and Goel 

presented in this thesis dispels the long held view that locations of centres of rigidity must 

be determined for the implementation of the code procedure, and therefore, it removes a 

major difficulty in the analysis of buildings. 

In 
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CHAPTER -1 

INTRODUCTION 
Buildings subjected to earthquake force simultaneously undergo lateral as well as 

torsional motions if their structural plans do not have two axes of mass and stiffness 

symmetry. So the lateral forces experienced by the various resisting elements such as 

frames, shear walls, etc., of an unsymmetrical building would differ from those 

experienced by the same elements if the building had symmetric plan [3]. The lateral force 

analysis of most building codes requires that earthquake force at each floor level of an 

asymmetric-plan building should. be applied eccentrically from the centre of rigidity at a 

distance equal to the design eccentricity. The design eccentricity ed; to be used at the j" 

floor level is specified in most seismic codes as 

edf = a eS~ + ,Qb) 	 (1.1) 

and 	edf = 8e 1 - /JbJ 	 (1.2) 

where, 

esj 	= 	eccentricity for the ja' floor 

b; 	= 	floor -plan dimension of the building perpendicular to the direction of 

ground motion. 

a, Q and 8 = specified coefficients of 1987 Mexico Federal District code 

For each structural frame or wall of a building, eavalue leading to the larger design 

force is to be used. The term es; is intended to account for the coupled lateral torsional 

response of the building arising from the lack of symmetry in plan. The other term, often 

called the accidental eccentricity, is specified as a fl-action of the plan dimension bb, and is 

included to consider torsional effects due to other factors, such as rotational component of 

ground motion about a vertical axis, yield strengths and unfavourable distribution of live-

load masses [2]. 
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Several codes, such as Uniform Building Code (1991) and New Zealand Standard 

NZS 4230 (1984), specify that the lateral force be applied at a distance equal to ,8 b1  

from the centre of mass, which is equivalent to a = 6 = 1 in eq. (1.1). In implementing the 

lateral force analysis procedures of such building codes, it is not necessary to determine 

the locations of the CRs at the various floor levels. However, in building codes where the 

design eccentricity formula uses a or 8 different than 1, e.g., National Building Code of 

Canada (1990) and the 1987 Mexico Federal District Code, it seems necessary to 

determine the locations of the CRs. 

Unlike one-story buildings, there are several difficulties in establishing locations of 

the centre of rigidity at various floor levels of a multistory building unless it belongs to a 

special class known as proportional buildings. For a proportional building, the lateral 

stiffness matrix of all its resisting elements along one direction are proportional to each 

other. For non-proportional buildings, it is cumbersome to determine the centres of 

rigidity because of the tedious calculations involved. 

In 1993, Chopra and Goel [2] presented an approach that did not require the 

determination of the centres of rigidity. This motivated this study. In their study, Chopra 

and Goel [2] enumerated the different definitions of the centres of rigidity as given by 

earlier researchers, as well as restated their own definition [3]. 

Using their definition of centres of rigidity [3], as a starting point, Chopra and Goel 

[2] presented an approach to apply the building code provisions for lateral load analysis of 

asymmetric-plan multistory buildings. This approach did not require the explicit 

determination of the centres of rigidity. 
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This study shows that by using the definition of the centres of rigidity as given by 

Chopra and Goel [2], the following difficulties arise : 

1. The location of the centres of rigidity for a asymmetric-plan multistory building 

becomes dependent on the height-wise distribution of the lateral loads. This implies 

the following: 

(i) The centres of rigidity of Chopra and Goel [2] are not the intrinsic property of the 

building alone. 

(ii) The centres of rigidity of Chopra and Goel [2] are not unique, as they are a function of 

the height-wise distribution of lateral loads, i.e., the lateral load pattern. 

(iii) For certain lateral load patterns, it can be shown that the location of these centres of 

rigidity cannot be determined, i.e., they do not exist. 

(iv) If the location of the centres of rigidity cannot be determined, then the eccentricities 

(eq ) required for implementing the code procedures can also not be determined. 

2. The lateral load pattern specified by building codes is largely based on an assumed first - 

mode shape. If higher mode effects were also desired to be considered, then the 

centres of rigidity determined for the fundamental mode shape cannot he used for 

other modes. 

3. During an earthquake, the displaced shape of the structure at any instant of time 

contains the contributions from all mode shapes, and the lateral load pattern varies 

from instant to instant. This would imply that the location of centres of rigidity of 

Chopra and Goel [2] would also vary from instant to instant, even for assumed linear 

behaviour of the structure. 

3 



the inelastic domain of response is known as ductility. It includes the ability to sustain 

large deformations and a capacity to absorb energy by hysteretic behaviour. Therefore 

it is the most important property sought by the designer of buildings located in regions 

of significant seismicity. In general, the term ductility defines the ability of a structure 

and selected structural components to deform beyond elastic limits without excessive 

strength or stiffness degradation. 

Ductility is also defined as the ratio of the total imposed displacements d at any 

instant to that at the onset of yield Ay. 

Ductility, ,u = Li/4> 1 

The displacements 4 and d may represent strain, curvature, rotation or deflection. 

Ductility in structural members can be developed easily if the constituent material 

itself is ductile. Thus, it is relatively easy to achieve the desired ductility if resistance is to 

be provided by steel in tension. However, _, precautions need to be taken when steel is 

subjected to compression. To ensure that premature buckling does not interfere with the 

development of the desired large inelastic strains in compression [5]. 

2.2 Definitions 

1. Centre of Mass : During an earthquake, the acceleration-induced inertia forces will be 

generated at each floor level where the mass of an entire story may be assumed to be 

concentrated. Hence, the location of a force at a particular level will be determined by the 

centre of the accelerated mass at that level. This point where the mass of an entire story is 

assumed to be concentrated is known as centre of mass [5]. 
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This study shows that by using the definition of the centres of rigidity as given by 

Chopra and Goel [2], the following difficulties arise: 
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CHAPTER-2 

STRUCTURAL PROPERTIES OF BUII.,DINGS 

2.1 Structural Properties 

There are basically three structural properties of a seismic building. 

1. Stiffness : If deformations under the action of lateral forces are to be reliably 

quantified and subsequently controlled, then the designers must make a realistic 

estimate of the relevant property called stiffness. This quantity relates loads or forces 

to the ensuing structural deformations [5]. 

2. Strength : If a concrete or masonry structure is to be protected against damage or the 

damage which is repairable during a selected or specified seismic event, an inelastic 

excursions during its dynamic response should be prevented. This means that the 

structure must have adequate strength to resist internal actions generated during the 

elastic dynamic response of the structure. Therefore, the appropriate technique for the 

evaluation of earthquake-induced actions is an elastic analysis based on the stiffness 

properties of the structure. The term strength in fact is the resistance of a structure or 

a member or a particular section to the internal forces. 

3. Ductility: To minimise major damage and to ensure the survival of buildings with 

moderate resistance with respect to lateral forces, the structures must be capable of 

sustaining a high proportion of their initial strength when a major earthquake imposes 

large deformations. These deformations may be well beyond the elastic limit. This 

ability of the structure or its components, or of the materials used to offer resistance in 
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the inelastic domain of response is known as ductility. It includes the ability to sustain 

large deformations and a capacity to absorb energy by hysteretic behaviour. Therefore 

it is the most important property sought by the designer of buildings located in regions 

of significant seismicity. In general, the term ductility defines the ability of a structure 

and selected structural components to deform beyond elastic limits without excessive 

strength or stiffness degradation. 

Ductility is also defined as the ratio of the total imposed displacements d at any 
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2. Centre of Rigidity : There are several definitions of the centre of rigidity. The 

various definitions given by various scientists are as follows : 

(i) Poole in 1977 defined the centre of rigidity of a story as the location of the resultant of 

shear forces of various resisting elements in that story when the building is subjected 

to a static lateral loading that causes no rotation in any of the stories. 

(ii) Humar in 1984 defined the centre of rigidity at any floor as the point such that 

application of a lateral load through this point would not cause rotation of that floor, 

other floors may rotate. 

(iii) Cheung and Tso in 1986 defined the centres of rigidity as the set of points located on 

the building floors through which application of lateral forces would cause no rotation 

of any of the floors. 

(iv) Hejal and Chopra in 1987 defined the centres of rigidity of the building as the points in 

the plane of the floors through which any set of static horizontal forces must be 

applied in order that it may cause all floors to translate without torsion [2]. 

3. Floor Eccentricity : It is defined as the distance between the floor centre of mass and 

the floor centre of rigidity. When the eccentricities of all floors of building are zero, 

lateral motions of the building are independent of its torsional motions and the building is 

said to be uncoupled [3]. 

2.3 Influence of Building Configuration on Seismic Response 

The building configuration greatly effects the seismic response of a building. By 

adopting the following fundamental principles relevant to seismic response, more suitable 

structural system can be adopted. 
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1. Simple and regular plans are preferable. Buildings with articulated plans such as T and 

L shapes should be avoided or they should be subdivided into simpler forms. 

2. Symmetry in plan should be provided where possible. Lack of symmetry may lead to 

significant torsional response. Much greater damage due to earthquakes has been 

observed in buildings situated at street comers, where structural symmetry is more 

difficult to achieve than in those along streets, where a more simple rectangular and 

often symmetrical structural plan could be utilised. 

3. An integrated foundation system should tie together all vertical structural elements in 

both principal directions. Foundations resting partly on rock and on soils should 

preferably be avoided. 

4. Lateral force resisting systems within one building, with significantly different 

stiffnesses such as structural walls and frames should be arranged in such a way that at 

every level symmetry in lateral stiffness is not grossly violated. Thereby undesirable 

torsional effects will be minimized. 

5. Regularity should prevail in elevation, in both the geometry and the variation of story 

stiffnesses. 

6. Avoid concentration of mass especially near the top of high rise buildings because it 

helps in exciting the higher modes of vibration [5]. 
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CHAPTER-3 

METHOD OF SEISMIC CODE ANALYSIS 

3.1 Analysis Using Centres of Rigidity 

The first step in this approach is to determine the locations of the centres of 

rigidity for all floor levels of the asymmetric-plan building by the matrix approach or by 

the plane frame analysis approach. 

3.2 Computation of Centres of Rigidity 

3.2.1 Matrix approach 

Consider an n-story building with orthogonal arrangement of lateral-load resisting 

elements connected by rigid floor diaphragms as shown in Fig. 3.1. For lateral force 

analysis in the y-direction, building plan is considered as symmetric about the x-axis. The 

equilibrium equations for such systems are: 

K yy  K ye  uy   
K K99  1uoJFB  (3.1) 

where, 

uyT  = < uyl, uy2, uy3, ....., .., .. uyj. ......... uy„ > 

and ueT   = <u, uB2, u63. ........... uqy. ......... ug?, > 

are displacement vectors. 
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and u,;  = 	lateral displacement in y-direction at a selected reference point on the j h  

floor, where j. = 1, 2, ..., n 

and uoj = 	torsional displacement on the jth  floor 

FT = < Fy,, F 2. .......... Fyn„ ......... Fy„ > 

and 	Fs = <F01, Fez........... Fq  .......... F,, > 

are vectors of floor forces. 

Fy; 	= 	lateral force in y-direction at the selected point on the j h̀  floor 

and 	Fo 	= 	floor torque applied on the jth  floor 

Various submatrices of stiffness matrix given by eq. (3.1) can be expressed in 

terms of lateral stiffness matrices of individual resisting elements as follows [2]. 

n 

K"' 	k.0 	 (3.2a) 

n 

Kye  = K = xf  kO 	
(3.2b) 

n 	 n 

Koo = 
	X2 kyr + jY12  kX1 	 (3.2c) 

where 

x, 	= 	distance from the reference point to the i' frame oriented in the y-direction 

with lateral stiffness matrix k, 

Y; 	= 	distance from the reference point to the ith  frame oriented in the x-direction 

with lateral stiffness matrix k 1  

Now equilibrium equations w.r.t. the degrees of freedom 
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Zl = < u yT T> at the CRs is 

KY , 	 Ky©  — Kyy  X R 	 u y 	Fy  
K,—X R K K + K X X K. K X 	- 	- (3.3) 

Oy 	 yy BB R yy R R yB By R 
Lug 	IF9  

where, 

XR 	= 	diagonal matrix with its diagonal elements = xgi  

xR; 	= 	x-coordinate of the CR of the ith  floor 

and 

F y  = Fy  and FB  = FO  - XRFy  

where, 

FE, = vector of floor torques at the CR 

If the lateral forces are applied at the CRs then FB  = 0 and the system would 

undergo pure translation, i.e. ue  = 0 

Thus eq. (3.3) becomes 

Kyy  u, = F y = Fy  

uy = KYJ 1 FY 	 (3.4) 

and 	(K-XR Ky,) uy  =0 
	

(3.5) 

substituting value of uy  from eq. (3.4) in eq. (3.5) we get 
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(K y XR Kyy) Kyy' Fy = 0 	 (3,6) 

For the special class of buildings, the locations of CRs are independent of the distribution 

of lateral force. Hence, eq. (3.6) becomes 

(Koy - XRK ,)K» ' = 0 

XR =K6 ,Kyy' 	 (3.7) 

where, 

XR 	= 	Vector ofXRj 

For buildings not belonging to the special class, location of CRs depends upon the 

distribution of lateral force. Hence, eq. (3.6) becomes 

KKyy'1 Fy -xRFy =0 

XR = [Fxr' Key Kyy' Fy 	 (3.8) 

where 

XR 	= 	Vector of x4 

[FyJ = 	Diagonal matrix of Fy; 

Fy 	= 	Vector of ] yj 

-~vherej=1,2,...,n 

3.3 Plane Frame Analysis Approach 

The location of the CRs at each floor level can be .determined from equilibrium 

analysis of the free body diagram of that floor when the lateral forces Fyn are applied at 

those floor levels. 

Free body diagrams of each story are shown in Fig. 3.2. 

11 



Let VJA, Va and Vc be the j 1̀' story shears in frames A, B and C, respectively. 

Equilibrium of the forces in the y-direction at each floor level gives : 

(J' - V+1A) + (r jB - Vj+1,B) + (I jc - Vj+1,c) = F'vl 	 (3.9) 

where, 

Fyn = lateral force at jth floor 

Equilibrium of the moments about the vertical axis gives the location of the CR at 

the floor level j as 

X = (ViA ^ V J+1,A) X A + (VJB — V j+1,B) xB + (V jc — V f+1,C) xC 
R~ 	 F 	 (3.1~ ) 

where xA, xB and xc = x-distances of frames A, B and C from the reference point, 

respectively. 

3.4 Implementation of Code Procedure 

After determining the locations of the CRs at various floor levels, the code 

procedure can be implemented by applying the lateral forces F yn at a distance equal to edJ 

from the centre of rigidity at each floor as shown in Fig. 3.3. This implies the need for 

two analysis. 

For first analysis. 

ed~ = aesi+ibi 
	

(3.11) 

and for second analysis 
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ed f = 6e1-/3bb 	 (3,12) 

These two conditions can be combined together as 

ed3 = e±/3b~ 	 (3.13) 

e4. 
where,y= a and + /3 b; to arrive at(3.11). 

and y= Band- /3b1 to arrive at~i.12). 

For buildings with rigid diaphragms, the load condition of Fig. 3.3 is equivalent to 

the superposition of three load cases. 

1. Lateral force F yj at the floor CRs. 

2. Floor torques = ye jF yj at the floor CRs 

3. Floor torques = /3 b; F yj at the floor CRs 

The floor torques of second and third load cases can be combined and need not be 

considered separately and is equal to edJF,;. 

where, 

ed~ = yes + 6 bj 	 (3.14) 

For the building considered in chapter 4, the floor torques are computed in accordance 

with the 1987 Mexico Federal District Code which specifies the value of coefficients, as 

a= 1.5, 8= 1.0and/3=0.1, 

substituting these values in eq. (3. 11) and (3.12) we get, 

For first analysis 

edj = 1.5 esj + 0.1 bj 	 (3.15) 

For second analysis 

edJ =e# -0.1 b~ 	 (3.16) 
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3.5 Analysis Without Using Centres of Rigidity 

This new approach to implement the code procedure for asymmetric-plan buildings 

combines the results of three sets of analysis. In these sets of analysis, the forces are 

applied at the floor CMs, implying that the locations of CRs are not needed. The steps 

involved in this approach are given below; 

1. The first step in the analysis is to apply the lateral forces Fyj at the floor CMs and 

building was restricted to deform only in the y-direction. For the example building, 

this analysis was done by Staad-ffl package. The forces applied at the CMs were 

assumed to be distributed equally at the nodes or in proportion to its distance from the 

nodes. The resulting value of the force or deformation obtained is rr'' [2]. 

2. In the second step, the lateral forces were applied at the floor CMs and the 

asymmetric-plan building was analysed as a three dimensional system to obtain the 

value r'2  of the desired response,i.e.,force or deformation. For this analysis by Staad-

III package, the forces were assumed to be distributed equally or in proportion to their 

distances from the nodes. 

3. In the third step, the asymmetric-plan building was analysed for floor torques = /3b;Fy;  

to obtain the value rr3  of the desired response, i.e., force or deformation. In this 

analysis, the moments were assumed to be distributed in proportion to their distances 

from the nodes. This analysis was also done by Staad-III package. 

4. In the fourth step the responses r(a)  and r@)  associated with design eccentricities of eq. 

(3.11) and eq. (3.12) are obtained by combining r(l), r(2) , and rr33  as follows: 

r 	rr' + a (rr2)  - r') + rr3  
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r = r(1 + 5 (r(l) - r~'') - r(3 

r(°) = r~' (1 - a) + ar'22 + r(33 	 (3.17) 

and 	r = r(' (1 - b) + 8r(2~ - r(3~ 	 (3.18) 

Here, a = 1.5 and 8= 1.0 

r(°) = -0.5 r('1 + 1.5r /2) +r 3 	 (3.19) 

and 	r(b) = r(2) - r(3) 	 (3.20) 

5. The design value of the desired response is the larger of the two values r(G) and r@) 

For the example building the design value of shear is the larger of fr/& and V;h, [2]. 
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CHAPTER-4 

ANALYSIS OF ASYMMETRIC PLAN BUILDING 

4.1 Dimensions of Building 

The building considered in the analysis of code procedure is a four story 

asymmetric plan building having three frames A, B and C as shown in Fig. 4.1. 

The building is symmetric in the x-direction. The building possesses stiffness only 

in the y-direction. The building has following properties. 

Height of building 	 = 	16 m (4 m each story) 

No. of Bays 	 = 	2 of 10 m each 

Moment of inertia for all beams, M.I.= 	0.3 m4  

Moment of inertia of columns 	= 	0.05 m4  

of frames A and C 

Moment of inertia of 	 = 	0.1 m4  

columns of frame B 

Floor weights, W 	 = 	20 KN for each of two bottom floors and 

10 KN for each of two top floors 

The four story asymmetric plan building as shown in Fig. 4.1 has been designed as 

per the seismic provisions of the 1987 Mexico Federal District Code in which: 

Seismic coefficient, C 	 = 	0.6 

Yield reduction factor, Q 	— 	2.0 

Total floorweight,W 	 = 	20x2+ 10x2 
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W 	 = 	60 KN 

Base shear, VB 	 = 	C.W/Q 

(0.6x60)/2 

= 18KN 

4.2 Determination of Centres of Rigidity 

4.2.1 Matrix Approach 

The building possesses stiffness only in the y-direction. Most buildings, however, 

possesses stiffness in the x-direction also. For such buildings the stiffness is given by eq. 

(3.2c). 

The lateral stiffness matrices of frames A, B and C as determined from matrix 

structural analysis program are given as : 

3.57 -1.87 0.18 - 0.01 

E 

100 

-1.87 

0.18 

3.40 

-1.86 

-1.86 

3.37 

0.16 

-1.67 

- 0.01 0.16 -1.67 1.52 

6.93 - 3.75 0.57 - 0.05 

E 

ky$ 	100 

-3.75 

0.57 

6.37 

- 3.68 

-3.68 

6.23 

0.50 

- 3.06 

- 0.05 0.50 - 3.06 2.61 
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3.55 -1.69 0 0 

E -1.69 1.53 0 0 

kYC 	100 0 0 0 0 

0 0 00 

Putting these values in eq. (3.2a) and (3.2b) the values of K,1, and Kye can be 

determined as : 

c 
Kyy  = k, = k, = kyA  +kya  + 

A 

14.05 - 7.31 0.75 - 0.06 

E -7.31 11.30 -5.54 0.66 
Kam,_ 

100 0.75 - 5.54 9.60 - 4.73 

-0.06 0.66 -4.73 4.13 

Now Kye = K,,, _ 	x, k,,1  

Taking frame A as the reference frame, we get xA  = 0,, xB = 10 m and xc =20 m 

c 
K,,© = Y, x, k y,, = 0 +xBB+xcc 

A 

140.30 - 71.30 5.70 -.05 

E -71.30 94.30 -36.80 5.00 

K'
8 
	100 5.70 -36.80 62.30 -30.60 

- 0.50 5.00 - 30.60 26.10 

(4.1) 

(4.2) 

is 



4.2.2 Storywise Distribution of Lateral Force 

Lateral force at each floor level is calculated as shown in Table 4.1. 

Table 4.1 : Storywise Distribution of Lateral Force 

Story j Height, hh Weight, W Wjhj Lateral force (KN) 

(m) (KN) (KN)  Wjhj 
-- LWjhj V11 

(1) (2) (3) (4) (5) 

1 4.0 20.0 80 2.77 

2 8.0 20.0 160 5.54 

3 12.0 10.0 120 4.15 

4 16.0 10.0 160 5.54 

=520 

Lateral force vector is given as 

FT = < 2.77 5.54 4.15 5.54 > 

4.2.3 Calculation of Centres of Rigidity 

Hence from eq. (3.8) location of centre of rigidity is 

XR = [Ff' K~, K' Fy 	 (4.3) 

A computer program was made for calculating the inverse with the help of book 

"A numerical library in C for Scientists and Engineers [4]. 
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15 18 18 17 

1 18 37 40 40 

K ) 1 	E 18 40 67 70 

17 40 70 99 

0.3610 0 0 0 

1  
0 

[ 

0.1805 0 0 

IFy !Y  0 0 0.2410 0 

0 0 0 0.1805 

Hence, after substituting these values in eq. (4.3) we get 

0.3610 0 0 0 140.3 - 71.3 5.7 - 0.5 

1 	E 0 0.1805 0 0 -71.3 94.3 - 36.8 5 

xa 
_ 
 E X  100 0 0 0.2410 0 5.7 - 36.8 62.3 - 30.6 

0 0 0 0.1805 -0.5 5 - 30.6 26.10 

15 18 18 17 2.77 

18 37 40 40 5.54 

X  18 40 67 70 4.15 

17 40 70 99 5.54 

8.55 

17.57 

XR 	6.14 

5.99 
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4.3 Plane Frame Analysis Approach 

From eq. (3.10) the location of centre of rigidity of each floor level j is given as: 

X  = (V, - V j+I,A) 'XA + (Vi.  - VJ+I,B) 'X B + (vi, - VJ+I,C) xC 	 (4.4)  

Free body diagram of each floor is shown in Fig. 3.2. 

4.3.1 The story shears in various frames at each floor level are given in Table 4.2. These 

are obtained by making the two dimensional model of frames A, B and C as shown in 

Fig. 4.2. 

Table 4.2 : Story Shears in Various Frames of Building 

Floorj Story Shear in Frame A 

(KN) 

Story Shear in Frame B 

(1(N) 

Story Shear in Frame C 

(KN) 

1 4.80 8.42 4.78 

2 4.26 6.32 4.64 

3 3.82 5.88 - 

4 2.22 3.32 - 

4.3.2 Determination of Centre of Rigidity 

To determine the location of centres of rigidity at each floor level, take frame A as 

the reference frame and making use of eq. (4.4), we get 
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xA =O,xB  =10mandxc=20m 

Location of centre of rigidity at first floor 

4.80-4.26)x0 + (8.42 — 6.32 x 10 + 4.78-4.64 x 20 
Xa' — 	 2.77 

Xrt , = 8.59m 

Similarly 

4.26-3.82 x0 + 6.32-5.88 x 10 + 4.64 — 0) x 20 
XR2 	 5.54 

Xru  = 17.55 m 

(3.82 — 2.22) x 0 + (5.88 — 3.32) x 10 +0 
X  R3 	 4.15 

XR3 =6.17m 

2.22-0) x0+3.32-0) x10+0 
XR4  — 	 5.54 

XR4  = 5.99 m 
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Hence, the eccentricity of the various CRs of the floors from the CMs are given as 

CRI = 8.59-10 = -1.41m 

CR2 = 17.55-10 = 7.55m 

CR3 = 6.17-5 = 1.17m 

CR4 = 5.99-5 =0.99m 

Table 4.3 shows the location of the CRs and the floor eccentricity of the 4-story 

asymmetric-plan building. 

Table 4.3 : Location of Centres of Rigidity and Floor eccentricities of Building 

Floor (j) Location of CRs (m) Floor eccentricity 	es; (m) 

1 8.59 -1.41 

2 17.55 7.55 

3 6.17 1.17 

4 5.99 0.99 

4.4 Implementation of Code Procedure 

In this section, the values of floor torques are calculated in accordance with the 

1987 Mexico Federal District Code Provisions for two values of ed~ given by eq. (3.15) 

and eq. (3.16) as 

For first analysis eat = 1.5 e.,3 + 0.1 b~ 	 (4.5) 

For second analysis ed~ = eq - 0.1 bj 	 (4.6) 

The values of floor torques calculated for both the analysis are given in Tables 4.4 

and 4.5. 
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Clockwise torque is considered positive and anticlockwise torque is negative. 

For first Analysis: 

Table 4.4: Calculation of Floor Torques for Building by first analysis 

Floor Lateral Floor Floor-plan Design eccentricity Floor 
j force F1 eccentricity Dimension of edj = 1.5 esj + 0.1 b Torques 

es; Building bj Fq = edj F yi 
(KN) (m) (m) . (m) (KN-m) 

(1) (2) (3) (4) (5) (6)  
1 '2.77 -1.41 20 -0.115 -0.32 

2 5.54 7.55 20 13.325 73.82 

3 4.15 1.17 10 2.755 11.43 

4 5.54 0.99 10 2.485 13.77 

For second analysis: 

Table 4.5 : Calculation of floor Torques for building 

Floor Lateral Floor Floor-plan Design Floor Torques 
j force Fyn eccentricity Dimension of eccentricity Fq = edf Fyl 

eSj building b~ edj = e- 0.I b, 
(KN) (m) (m) (m) (KN-m) 

(1) (2) (3) (4) (5) 6 

1 2.77 -1.41 20 -3,41 -9.45 

2 5.54 7.55 20 5.55 30.75 

3 4.15 1.17 10 0.17 0,705 

4 5.54 0.99 10 -0.010 -0.055 
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Now the shears in columns of Frame A due to lateral force F,~ and floor torques 

F.. are calculated from both the analysts. This analysis was carried out by using Staad-III 

package. The forces acting at the centres of rigidity are assumed to be distributed in 

proportion to their distances at the nodes of that floor. Similarly, for applying the floor 

torques at the floor CRs similar assumption is made that the floor torques are distributed 

in proportion to their distances at the nodes of that floor. 

4.4.1 First analysis 

Apply the lateral forces at the floor CRs. as shown in column (2) of Table 4,4 and 

in Fig. 4.3. The loads applied at each floor are distributed in proportion to its distance at 

the nodes. 

The joint loads are shown in Table 4.6. 

Table 4.6 : Distribution of Lateral Force at Floor Centres of Rigidity 

Joint Force-X (KN) Force-Y (KN) Force-Z (KN)  
13 .00 .00 1.110 
14 .00 .00 1.660 
28 .00 .00 1.110 
29 .00 .00 1.660 
10 .00 .00 0.790 
11 .00 .00 1.285 
25 .00 .00 0.790 
26 .00 .00 1.285 
7 .00 .00 0.340 
9 .00 .00 2.430 
22 .00 .00 0.340 
24 .00 .00 2.430 
4 .00 .00 0.790 
6 .00 .00 0.595 
19 .00 .00 0.790 
21 .00 .00 0.595 
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The forces obtained for this loading are shown in Table 4.7 

Table 4.7 : Shears in Columns of Frame A for Lateral Forces 

Member Load JT 

} 

Axial 

(KN) 

Shear-Y 

(KN) 

Shear-Z 

(KN) 

Torsion 

(KN-M) 

Mom-Y 

(KN-M) 

Mom-Z 

(KN-M) 

1 3 1 13.49 0.411 -4.369 -0.133 9.191 0.833 

4 -13.49 -0.411 4.369 0.133 8.285 0.813 

6 3 4 7.61 0.351 -3.883 -0.002 7.783 0.655 

7 -7.61 -0.351 3.883 0.002 7.752 0.752 

11 3 7 2.849 0.182 -2.349 -0.009 4.590 0.349 

10 -2.849 -0.182 2.349 0.009 4.806 0.378 

16 3 10 0.662 0.166 -1.262 -0.041 2.449 0.315 

13 -0.662 -0.166 1.262 0.041 2.598 0.351 

2. 	Apply the floor torques at the floor CRs obtained from first analysis as shown in 

column (6) of Table 4.4 and Fig. 4.4. 

The forces obtained for these floor torques are shown in Table 4.8. 

Table 4.8 : Shears in Columns of Frame A for Floor Torques 

Member Load JT 

7a nt 

Axial 

(KN) . 

Shear-Y 

(KN) 

Shear-Z 

(KN) 

Torsion 

(KN-M) 

Mom-Y 

(KN-M) 

Mom-Z 

(KN-M) 

1 2 1 -3.392 0.034 -0,045 0.010 0.131 0.086 

4 3.392 -0.034 0.045 -0.010 0.052 0.053 

6 2 4 -3.303 -0.023 -0.047 0.012 0.205 -0.033 

7 3.303 0.023 0.047 -0.012 -0.017 -0.061 

11 2 7 -1.720 0.020 -0.049 0.021 0.072 0.028 

10 1.720 -0.020 0.049 -0.021 0.125 0.052 

16 2 10 -0.920 0.021 -0.012 0.007 0.041 0.042 

13 0.920 -0.021 0.012 -0.007 0.009 0.043 
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Add the two forces to obtain the shear in columns of frame A by first analysis. It 

is shown in Table 4.9. 

Table 4.9 : Total Shear in Columns of frame A by first analysis 

Floor 

(j) 

Shear in columns of 

frame A due to lateral 

force F,,; applied at CRs 

(KN) 

Shear in columns of 

frame A due to floor 

torques applied at CRs 

(KN) 

Total Shear in columns 

of frame A from first 

analysis 

(KN) 

1 4.369 0.045 4.41 

2 3.883 0.047 3.93 

3 2.349 0.049 2.398 

4 1.262 0.012 1.27 

4.4.2 Second analysis 

1. Apply the lateral forces at the floor CRs as shown in column (2) of Table 4.5. 

The values obtained of shear forces in columns of frame A are same as obtained in 

first step of first analysis and are shown in Table 4.7. 

2. Apply the floor toques obtained from second analysis as shown in column (6) of Table 

4.5 and in Fig. 4.5. 

The forces obtained for these applied floor torques at the CRs are shown in Table 

4.10. Add both the forces to obtain the shear in columns of frame A by second analysis. 

The shears in columns of frame A are given in Table 4.11. The greater of the forces 
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obtained from the two analysis will be the design shear for the frame A of the building. It 

is shown in Table 4.12. 

Table 4.10 : Shears in Columns of Frame A for Floor Torques of Second Analysis 

Member Load JT 
5avm 

Axial 
(RN) 

Shear-Y 
(KN) 

Shear-Z 
(KN) 

Torsion 
(KN-M) 

Mom-Y 
K.N-M) 

Mom-Z 
(KN-M 

1 2 1 0.089 0,023 -0.027 0.005 0.014 0.050 

4 -0.089 -0.023 0.027 -0.005 0.096 0.043 

6 2 4 -0.693 -0.002 -0.025 0.005 0.133 0.001 

7 0.693 0.002 0.025 -0.005 -0,029 0.011 

11 2 7 -0.044 0.012 -0.023 0.007 0.015 0.019 

10 0.044 -0.012 0.023 -0.007 0.079 0.030 

16 2 10 -0.0009 0.011 -0.006 0.001 0.011 0.023 

13 0.0009 -0.011 0.006 -0.001 0.014 0.023 

Second analysis 

Table 4.11 : Total Shears in Columns * frame A bySecond Analysis 

Floor 
(j) 

Shear 	in 	columns 	of 
frame A due to lateral 
force Fy; applied at CRs 

(RN) 

Shear 	in 	columns 	of 
frame A due to floor 
torques applied at CRs 

(RN) 

Total Shear in columns 
of frame A from second 
analysis 

KN 
1 4.369 0.027 4.39 

2 3.883 0.025 3.90 

3 2.349 0.023 2.37 

4 1.262 0.0065 1.26 
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Table 4.12 : Value of Design Shear in Columns of frame A of Building 

Floor 

(j) 

Total Shear in columns of 

frame A from first analysis 

(KN) 

Total Shear in 	columns 	of 

frame A from second analysis 

(KN) 

Design Shear 

(KN) 

1 4.41 4.39 4.41 

2 3.93 3.90 3.93 

3 2.398 2.37 2.398 

4 1.27 1.26 1.27 

4.5 Analysis Without using Centre of Rigidity 

In the new approach to implement the code procedure the forces are applied at the 

floor CMs, Implying that the locations of CKs are not needed. This approach consists of 

following steps: 

(1) In the first step, apply the lateral forces Fyj  given by column (2) of Table 4.4 at the 

floor CMs. The building was restricted to deform in the y-direction. It is shown in 

Fig. 4.6. The joint loads are shown in Table 4.13. The forces obtained for this loading 

are shown in Table 4.14 

(2) In the second step, the asymmetric-plan building was analysed as a three-dimensional 

system for the lateral forces F,j  at floor CMs as shown in Fig. 4.7. The joint loads are 

shown in Table 4.13. The forces obtained for this loading are shown in Table 4.15. 

(3) In the third step, the building was analysed for floor torques = 18bj  Fyn. The value of 

floor torques is shown in Table 4.16 and Fig. 4.8. The value of shear forces obtained 

are shown in Table 4.17. 
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(4) The responses are calculated in accordance with eq. (3.19) and eq. (3.20). All these 

calculations are shown in Table 4.17. The values of shear forces obtained in the first 

three steps are shown in columns (2), (3) and (4) of Table 4.18 as VJly, V(2) and V'3~ 

(5) The design value of the desired shear is the greater of the two values V.(') and Vf' [2]. 

Table 4.13 : Distribution of Lateral Force at Floor Centres of Mass 

Joint Force-X (KN) Force-Y (KN) Force-Z (KN) 

13 .00 .00 1.3850 

14 .00 .00 1.3850 

28 .00 .00 1.3850 

29 .00 .00 1.3850 

10 .00 .00 1.0375 

11 .00 .00 1.0375 

25 .00 .00 1.0375 

26 .00 .00 1.0375 

7 .00 .00 1.3850 

9 .00 .00 1.3850 

22 .00 .00 1.3850 

24 .00 .00 1.3850 

4 .00 .00 0.6925 

6 .00 .00 0.6925 

19 .00 .00 0.6925 

21 .00 .00 0.6925 
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Table 4.14: Shears in Columns of Frame A for Lateral Forces 

Member 

1  

Load JT 

7o 

Axial 

(KN) 

Shear-Y 

(KN) 

Shear-Z 

(KN) 

Torsion 

(KN-M) 

Mom-Y 

(KN-M) 

Mom Z 

(KN-M) 

1 3 1 -12.94 -0.40 -4.120 -0.123 8.931 -0.743 

4 12.94 0.40 4.120 0.123 7.880 -0.713 

6 3 4 -7.468 -0.332 -3.644 -0.0016 6.970 -0.4455 

7 7.468 0.332 3.644 -0.0016 6.738 -0.55752 

11 3 7 -2.684 -0.162 -1.868 -0,0089 4.400 -0.329 

10 2.684 0.162 • i.868 .0.0089 4.725 -0.356 

16 3 10 -0,550 -0.156 -1.08 -0.034 2.382 -0.275 

13 0.550 0.156 1.08 -0.034 2.437 -0.291 

Table 4.15: Shears in Columns of Frame A for Lateral Forces 

Member Load JT 

So+mt 

Axial 

(KN) 

Shear-Y 

(KN) 

Shear- 

Z (KN) 

Torsion 

(KN-M) 

Mom-Y 

(KN-M) 

Mom-Z 

(KN-M) 

1 3 1 -13.494 -0.411 -4.370 -0.134 9.193 -0.833 

4 13.494 •0.411 ;4.370 p0.134 8.288 -0.813 

6 3 4 -7.608 -0.351 -3.877 -0.0018 7.770 -0.655 

7 7.608 0.351 3.877 0.0018 7.738 -0.752 

11 3 7 -2.849 -0.182 -2.354 -0.00965 4.600 -0.349 

10 2.849 0.182 2.354 0.00965 4.815 -0.378 

16 3 10 -0.662 -0.166 -1.261 -0.041 2.448 -0.315 

13 0.662 0.166 1.261 0.041 2.597 -0.351 
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Table 4.16 : Calculation of Fle jr Torque = )6 b1 Fyj for Building 

Floor Lateral Force, Fy; 

(KN) 

Floor-Plan 	Dimension 

of Building b1 

(m) 

Constant Q Floor Torques = 

f3 b~ Fyi 

(KN-m) 

1 2.77 20 0.1 5.54 

2 5.54 20 0.1 11.08 

3 4.15 10 0.1 4.15 

4 5.54 10 0.1 5.54 

Table 4.17: Value of Shear Forces in Columns of Frame4or Floor Torques 

Member Load JT Axial 

(1(N) 

Shear-Y 

(1(N) 7o im fi 

 Shear-Z 

(1(N) 

Torsion 

(KN-M) 

Mom-Y 

(KN-M) 

Mom-Z 

(KN-M) 

1 2 1 -1.373 -0.009 0.0054 -0.0005 0.014 -0.016 

4 1.373 0.009 -0.0054 0.0005 -0.035 -0.021 

6 2 4 -1.165 -0.013 0.0072 -0.0004 0.008 -0.024 

7 1.165 0.013 -0.0072 0.0004 -0.037 -0.030 

11 2 7 -0.743 -0.014 0.0096 -0.0004 -0.017 -0.027 

10 0.743 0.014 -0.0096 0.0004 -0.021 -0.029 

16 2 10 -0.431 -0.012 0.0084 -0.0002 -0.006 -0.022 

13 0.431 0.012 -0.0084 0.0002 -0.027 -0.026 
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Table 4.18: Shears in Columns of frame A of Building by New Approach 

Floor Shears Shears Shears V'°) = -0.5 V(b) = Vj~2) Design 

(j) calculated in calculated in calculated in Vf l + 1.5 - V~3) Shear 

step 1 step 2 step 3 V,~Z, + 

V°I (KN) r'/ (KN) V j3' (KN) (KN) (KN) (KN) 

(1) (2) (3) (4) (5) (6) (7) 

1 4.120 4.370 0.0054 4.50 4.36 4.50 

2 3.644 3.877 0.0072 3.99 3.87 3.99 

3 1.868 2.354 0.0096 2.60 2.34 2.60 

4 1,08 1.261 0.0084 1.36 1.25 1.36 
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CELA TER -5 

EQUIVALENCE OF TWO APPROACHES 

5.1 Mathematical Proof 

The equivalence of two approaches, which uses centres of rigidity and the new 

approach without using the centres of rigidity for the seismic code analysis of asymmetric-

plan building with orthogonal lateral resisting elements and rigid diaphragm, is established 

mathematically in this chapter. It is achieved here by demonstrating that the deformations 

at the floor centre of rigidity of the building obtained by the two approaches are identical. 

The mathematical proof for equivalence of two approaches is as follows. 

5.2 The equation of equilibrium with respect to the CMs are 

K yy  KY9  uY 	JFY  
Key,  K99 	ue 	F0 

(5.1) 

where, 

uy and ug 	= 	vectors of lateral and torsional displacements, respectively 

at the CMs. 

F. and F9 	= 	vectors of lateral forces and floor torques respectively, 

applied at the CMs. 
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Similarly, equation of equilibrium with respect to CRs is 

K yy K ya  uy 	F, 
_ 	 (5.2) 

K K66 uo j 	Fe 

where 

u,, and ua =vectors of lateral and torsional displacements, respectively, at the CRs. 

F y and F9 = vectors of lateral forces and floor torques, respectively, applied at the CRs 

For buildings with rigid diaphragms and orthogonal arrangement of the lateral-load 

resisting elements various submatrices in the stiffness matrix of eq. (5.2) are related to 

those of eq. (5.1) as 

KO  =Kri 	 (5.3a) 

Kye - Kyy  es 	 (5.3b) 

K1 =Ko,-e3 Kyy 	 (5.3c) 

Koo = Kes + es  K,, es  - e,. K0 - Ko, es. 	 ( 5.3d) 

where, 

es 	= 	diagonal matrix with diagonal terms es j 

If only lateral force F y (=Fy ) is applied at the CRs, i.e. F 8  = 0, then system would 

undergo pure translation with ue = 0. 

Thus eq. (5.2) becomes 

uy = Fy = Fy  
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uy = c -1 J 	 (5.4) 

and 	KO, uy = 0 	 (5.5) 

Substituting value of uy from eq. (5.4) in eq. (5.5), we get 

K e~ Ksy -1 Fy 	=0 	 (5.6) 

Now using eq. (5.3a) and eq. (5.3c),we get 

(K - e,. Kyy) Kyy' Fy = 0 	 (5.7) 

KeyK ' Fy = ecFy 	 (5.8) 

5.3 Deformation at CRs by the Procedure Using CRs 

The load condition in this approach is to apply the lateral forces Fy; at the floor 

CRs and floor torques, Fq _ - (ye; Fy; ±8 b3 Fy) ; 

-ve sign is used for the floor torques to be compatible with the direction of rotational 

degrees of freedom. 

Hence, eq. (5.2) becomes 

F 

	

K yy K ye uy 	 Y 

	

LK Koo uB 	— (y es Fy + f3 b Fy ) 
(5.9) 

where, 

b  = 
 diagonal matrix with diagonal elements equal to b; 
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Now solving the first eq. of (5.9), we get 

Kss uy + Kye u B = Fy 

u y  = 	
.J 	- 	1  Ky@ ua 	 (5.10) 

Now solving the second eq. of (5.9), we get 

Ke, uy + K09 ue = - (ye5Fy ±fibFy) 
	

(5.11) 

Substituting value of uy from eq. (5.10) in above equation and solving for ue  gives 

ue = -(Kee-K0, iç ' K,011  (Ye5Fy + fib F,+  Key 	4 Fy) 	(5.12) 

For the equivalence of the two approaches, it is useful to write the submatrices K,,,, , Kya  , 

K o, and K eo  defined at the CR in terms of submatrices K yy, K yo, Ko,, and K©B  defined at 

CM. 

This is achieved by utilising eq. (5.3). Now 

(Kea-K&Y  K, '' Ky9) =K99+e5Kyye5-e5Kyo-Ke.,e5 

- (K &, - es  Kn) K yy' (K0 - K yy  e,r) 

KB9  + es  K yy  es, - e., Kyo - Key e,, 

- K9, Kyy''  K,9 + K9,  Ky ' Kyye,  

+e3Ky0-e5Kyyes 

After simplifying, we get 

KBB - K q, K,, " Kye =K90 -K9,  Kyy '  Kye 	 (5.13) 
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and 	K,y "' Kye = Kyy' (K ye - Kyy e,;) 

= K Y ' Kye - Ky;'Kyyes 

Ky "' K yo = Kyy' K y0 - e,q 	 (5.14) 

Using eq. (5.6), eq. (5.13) and eq. (5.14) in eq. (5.12) gives 

ue = - (eo - Key K, ' Ky~-' Ye8Fy - (K& -Key K,' K' fibFy 	(5.15) 

substituting value of us from above in eq. (5.10), we get 

uy = Kyv'Fy -Kyyl .(K ye-Kyy e) {- (Koo - K~KiY'KY~' pbFy 

-(Koo-K Kyy'Ky~!'ye,.F) 

After solving, we get 

uy = Ky;' Fy + Kri' Ky0 (K00 - K K) ' K -' ye,, Fy 

+Kri'Kys (Koo-KoyKy~'Ky~ 1 /jbFy 

- es (K99 - KeyKyy' Kyai ' YesFy 

- e8(Ke0-K0Iri'KyI1 QbFy 	 (5.16) 

5.4 Deformation at CRs by New Approach 

The deformations at the CMs and CRs from step 1 would be equal to 

(1) = Ky -' Fy =Ky 'FF 	 (5.17) 

Since the torsional deformations are zero, 

U0 (l) = 
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Deformations at the CMs in step 2 are computed from 

K>Y K,9 
IUY121 _ 

~Fy 
K ey Koo 	ue( 2 ) 	l 0 

(5.18) 

On solving 

uy'2J = Kri' Fy - Kyy' Kye ue J 	 (5.19) 

ueV _-(Kee-Key Kra ' Kv~"' KeyKvr' Fy 

Substituting eq. (5.8) in eq. (5.20), we get 

uel) =- (K6 ,o - Key KK;' Ky&*l e.Fy 

Substituting value of u0~2 in eq. (5.19), we get 

uy~J = Kyy' Fy - Ky y-' Kye {- (Kee - Key KK;' Ky~' es Fv} 

(5.20) 

(5.21) 

u1P1 = Kri' F y + Kri' Kye {(KBe - Ke y KY ' K y i' es F y} (5.22) 

Having determined the deformations at the CMs, the deformations at the CRs are 

obtained as 

U 2 = u y(z) + es ue 2 	 (5.23a) 

and 	ue (`) = ue 2) 	 (5.23b) 

Substituting value of ue) from eq. (5.21) and u y f2' from eq. (5.22) in eq. (5.23) we get 

uy(2) = Kyy' Fy+K);' Ky©(Kea - K&K)y' Ky0"' e,Fy 

es Fy 	 (5.24) 
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and u e (2) _ - (Keo - Ko KYY ' Kyi -' e3 FY 	 (5.25) 

Similarly, the deformations in step 3 due to floor torques, F0 = -fib Fy at CMs are 

calculated from 

3 K,~ KYB 	u,, ~) 

LK 
K99 u8( 3 ) 	— fibFj 

on solving the above equation, we get 

(3)- = - K
YY Y 

-' Kyou 3) 	
(5.26) 

and uF' _ - (Koe - Key, K 1 K' Pb Fy 	 (5.27) 

,Substituting value of uB33 from eq. (5.27) in eq. (5.26), we get 

uY r3) - KYY ' KY 9 (Ke© - Key K) ' Ky~ 8b FY 	 (5.28) 

and the deformations at the CRs are given by using eq. (5.23) 

U ) = K 1 K9 (Keg - Key Kj ' KY eI' fib FY 

- es (Kee - K01, K 1 KY~ 1 fib FY 	 (5.29) 

and u9(3) _-(Koo-K&Kn ' KyQ -' 8bFy 	 (5.30) 

Combining the deformation obtained in the steps 1, 2 and 3 according to the combination 

rule 

r = r 1 + y (r 2 - r0 ) + 	we get 

+ Y (uY (2) - uY 	+ 
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uy = KKy' Fy+Kyy'Fy+K,y1Kya(K88-Kokv;'KyeI'x yes Fy -

- es (K99- Key Kri' Ky~% -' 'Cs Fy -Ky,I' F + Ky~' Ky0 

x (Koo-K y Kyy"K)I -'QbFy -es (Koo- Krj K»T'KyI' /3bFY 

Z4 = Kyy' Fy + Kyy' Kys Kee - Ke, Kyy' K y e,. Fy + 

K» 'K9(K%-KoyKy;'KY&'3bFy 

-e5 (Keg - K~, Kyy' Ky~' yes Fy - 

es (Kea-KKyKyy'KyQy1 fibFy 	 (5.31) 

and ug = ug (') + Y (ug (Z) - ug (1)) + ug (3) 

ue = 0 +Y((Koe - K0 K.»;I Ky~ ' e, Fy) - (K00 - KorK 1 Ky~' fib Fy 

uo = - (Kss - Key Kyy' K -' Ye5 Fy - (KBe - Key Kyy' K
yçj -' /3 b Fy 	 (5.32) 

Eq. (5.31) and eq. (5.32) are identical to eq. (5.16) and eq. (5.16), indicating that the 

response obtained by the new approach is identical to that obtained by the procedure using 

centres of Rigidity. 
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DISCUSSION AND CONCLUSIONS 

In 1993, Chopra and Goel [2] presented an approach that did not require the 

determination of the centres of rigidity. This motivated this study. In their study, Chopra 

and Goel [2] enumerated the different definitions of the centres of rigidity as given by 

earlier researchers, as well as restated their own definition [3]. 

Using their definition of centres of rigidity [3] as a starting point, Chopra and Goel 

[2] presented an approach to apply the building code provisions for lateral load analysis of 

asymmetric-plan multistory buildings. This approach did not require the explicit 

determination of the centres of rigidity. 

This study shows that by using the definition of the centres of rigidity, as given by 

Chopra and Goel [2], the following difficulties arise: 

1. The location of the centres of rigidity for a asymmetric-plan multistory building 

becomes dependent on the height-wise distribution of the lateral loads. This implies 

the following : 

(i) The centres of rigidity of Chopra and Goel [2] are not the intrinsic property of the 

building alone. 

(ii) The centres of rigidity of Chopra and Goel [2] are not unique, as they are a function of 

the height-wise distribution of lateral loads, i.e., the lateral load pattern as given by 

eq. (3.8). 
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(iii) For certain lateral load patterns, as if [F,,] is singular in eq. (3.8), it can be shown that 

the location of these centres of rigidity cannot be determined, i.e., they do not exist. 

(iv) If the location of the centres of rigidity cannot be determined, then the eccentricities 

(es~) required for implementing the code procedures can also not be determined. 

2. The lateral load pattern specified by building codes is largely based on an assumed first 

mode shape. If higher mode effects were also desired to be considered, then the 

centres of rigidity determined for the fundamental mode shape cannot be used for 

other modes. 

3. During an earthquake, the displaced shape of the structure at any instant of time 

contains the contributions from all mode shapes, and the lateral load pattern varies 

from instant to instant. This would imply that the location of centres of rigidity of 

Chopra and Goel [2] would also vary from instant to instant, even for assumed linear 

behaviour of the structure. 

4. In the paper presented by Goel and Chopra equations (33), (34), (39), (43) were 

written incorrectly and they have been corrected in this dissertation. 
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(b) Frame C in Y-Z direction 
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APPENDIX - A 

FORMATION OF STIFFNESS MATRIX 

It consists of following steps : 

(1) Determine the lateral stiffness matrix for each frame. For the i frame it is determined 

by defining the degree of freedom of the frame as lateral displacements at floor levels, 

u;T = < uu, ui2, ......., u , ...... u;r,> and torsional displacement at nodes. Then obtain 

the complete stiffness  matrix for the i'. frame with reference to the frame degree of 

freedom. Statically condense all the rotational and vertical degrees of freedom to 

obtain the N x N lateral stiffness matrix of the i '. frame, denoted by k j if the frame is 

oriented in the x-direction, or by k,, if the frame is oriented in the y-direction. 

(2) Determine the displacement transformation matrix relating the lateral degrees of 

freedom u; for the i frame to the global degree of freedom u for the building. This 

N x 2N matrix is denoted by a ; if the frame is oriented in x-direction or ay; if frame is 

oriented in y-directiono3 

Thus, 

U, = ax;u 	or 	u; = ayiu 

These transformation matrices are 

ax; = [0 	yj or (A.1) 

where, 

❑~ 	= 	square matrix of order N with all elements equal to zero 
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3. Transform the lateral stiffness matrix for the ii frame to the building degree of 

freedom u to obtain 

k; = a ; kx, ax, 	or 	k; = a k ) a 	 (A. 2) 

The 2N x 2N matrix k; is the contribution of the ith frame to the building stiffness 

matrix. 

4. Add the stiffness matrices for all frames to obtain the stiffness matrix for the building: 

K=Yk, 
t 

Substituting the value of ax; and ay; from eq. (A. 1) in eq. (A.2) to obtain k; 

and 

k1 = 	 0 1kj [0 — Y1] LYi 

0 
k1_ 	[o -Yj 

- kx1Yi 

0 0 

k' 	0 Y~ k xt 

1 
k; = 	XiI  [k,j [I + x, 

k;= 
 [

k~, 

Xikyi
[1 +x,] 

(A.3) 
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