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ABSTRACT 

The advent of digital computers has seen the emergence of analytical tools in 

analysis and design of Civil Engineering systems, which earlier seemed too complex or 

rigorous. At this stage Artificial Intelligence techniques - especially Artificial Neural Nets, 

or Neural Nets, are beginning to dominate most of the analytical and design aspects. The 

basic advantage in the use of Neural Nets being the capability of handling imprecise, 

imperfect and incomplete data while yet producing acceptable solutions. 

In the present study the application of Neural Nets has been examined with specific 

reference to the analysis of slope of a typical Earth Dam for the following cases: 

1. Determination of minimum factor of safety when conventional inputs are provided 

for a specific problem. 

2. The inverse problem of determination of the critical failure surface when the 

minimum factor of safety and conventional parameters are provided as inputs. 

3. Determination of minimum factor of safety and critical failure surface when 

conventional parameters are provided as inputs. 

The Neural Nets were formed to perform satisfactorily and a subsequent parametric 

study with regard to 

a. Relation between horizontal seismic coefficient and minimum factor of safety. 

b. Relation between pore water pressure and minimum factor of safety. 

c. Relation between angle of internal friction of the soil in shell portion of earth 

dam section and minimum factor of safety. 

d. Relation between angle of internal friction of the soil in core portion of earth 

dam section and minimum factor of safety. . 

indicates that the results are consistent with the underlying Physics of the problem. 

The potential of application of Neural Nets to augment/replace analytical procedures 

is amply demonstrated and scope for further studies has been indicated. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

The stability analysis of slopes plays an important role in Civil Engineering. 

Stability analysis is used in the construction of highways, railroads, runways, canals and 

development of natural resources such as earthdams as well as many other human activities 

involving building construction and excavations. The cost of earthwork would be minimum 

if the slopes are made steepest. However, very steep slopes may not be stable. A 

compromise has to be made between economy and safety and the slopes provided are 

neither too steep nor too flat. In other words, the steepest slopes which are stable and safe 

should be provided. The failure of a slope may lead to considerable loss of life and 

property. It is, therefore, essential to check the stability of proposed slopes, in any 

construction environment. With the development of modern methods of testing of soils and 

stability analysis, a safe and economical design of a slope is possible. 

Often, though the slope is stable in static condition it may fail due to the sudden 

occurrence of vibrations caused by an earthquake. Failure results from increased stresses 

within a soil mass, or loss of strength during dynamic loading conditions imposed by an 

earthquake. If the existing soil beneath the slope is loose saturated fine sands and non 

plastic silty sands liquefaction of soil may occur due to earthquake loads this also leads to 

major failures of slopes. Many land slides triggered by earthquakes have resulted in major 

disasters. Hence there is a need to analyse the slope by considering seismic loads if the 

slope of the earthwork is located in seismically active zone. Hence, in any case the stability 

analysis of slopes is very much necessary to ensure safety. 
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1.2 OBJECTIVE OF THE PRESENT STUDY 

Different methods of slope stability analysis based on different approaches are 

available each of which involve different simplifying assumptions yet leading to complex 

calculation and are time consuming. These methods requires complete inputs with regard 

to geometry of the slope and strength properties of the soil, and environmental features such 

as moisture content, pore water pressure, seismicity etc. 

In this present study an attempt has been made to develop Neural Network models 

based on a typical configuration of an earth dam [11] as shown in Fig. 3.2, for 

1) 	Determination of minimum factor of safety based on the following inputs: 

a)  Soil properties, 

b)  Pore water pressure, 

c)  Seismic coefficients and 

d)  Critical failure surface. 

2) 
	

Determination of critical failure surface based on the following inputs: 

a) Soil properties, 

b) Pore water pressure, 

c) Seismic coefficients and 

d) Minimum factor of safety. 

3) 
	

Determination of minimum factor of safety and critical failure surface based on the 

following inputs: 

a) Soil properties, 

b) Pore water pressure and 

c) Seismic coefficients. 

The Neural-Networks have been developed and tested using the data obtained from a 

computer program for pseudostatic analysis using method of slices [4] . 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 - GENERAL 

The failure of a mass of soil located beneath a slope is called a slide. It involves a 

downward and outward movement of the entire mass of soil that participates in the failure. 

Usually, slides are due to excavation or undercutting the foot of an existing slope. 

However, in some instances, they are caused by a gradual disintegration of the structure 

of the soil, starting at hair cracks which subdivide the soil into angular fragments. In 

others, they are caused by an increase of the pore water pressure in a few exceptionally 

permeable layers, or by a shock that liquefies the soil beneath the slope. 

2.2 TYPES OF SLOPE FAILURES 

A slope may have any one of the following type of failures. 

2.2.1 Rotational Failure 

This type of failure occurs in finite slopes by rotation along a slip surface by 

downward and outward movement of the soil mass as shown in Fig. 2.1. Rotational slips 

are further divided into three types. 

(a) 	Slope failure or face failure 

This failure occurs along a surface that intersects the slope above the toe. This can 

occur when the slope angle a is very high and the soil in the upper part of the slope is 

relatively weak as shown in Fig. 2.1a. 
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(b) Toe failure : 

The failure occurs along the surface that passes through the toe. Toe failure occurs 

in steep slopes when the soil mass above the base and below the base is homogeneous. This 

is the most common mode. of failure as shown in Fig. 2. 1b. 

(c) Base failure : 

If the failure surface passes below the toe then toe then it is called base failure. This 

can occur when the soil below the toe is relatively weak and soft and the slope is flat as 

shown in Fig. 2.1c. 

2.2.2 Translation Failure 

This type of failure occurs in an infinite slope along a long failure surface 

parallel to the slope as shown in Fig. 2.2. The shape of the failure surface is influenced by 

the presence of any hard stratum at a shallow depth below the slope surface. Translational 

failures may also occur along slopes of layered materials. 

2.2.3 Wedge Failure 

A failure along an inclined plane is known as plane failure or block failure as shown 

in Fig. 2.3. It occurs when distinct blocks and wedges of the soil mass become separated. 

A plane failure is similar to translational failure in many respects. However, unlike 

translational failure which occurs in an infinite slope, a plane failure may occur even in a 

finite slope, consisting of two different materials or in a homogeneous slope having cracks, 

fissures, joints or any other specific plane of weakness. 

2.3 MECHANISM OF SLOPE FAILURE 

Rupture surface or failure plane is the line joining points of weakness. Here points 

El 



of weakness mean the points at which the shear strength of the soil is less than the forces 

causing sliding. After rupture, the overlying mass of soil can move by gravity; until rupture 

occurs motion is opposed by the shear resistance of the soil. When this is overcome, 

resistance is diminished and the soil mass slides down. The stability of any slope depends 

upon the shear strength of the soil. Shear strength depends upon the cohesion, angle of 

internal friction of the soil and the effective normal stress on the rupture surface at the 

instant of failure. Shear stresses (forces causing sliding) are developed due to the gravity-

forces, seepage forces and earthquake forces. 

2.4 FORCES CAUSING SLIDING 

The most important forces which cause instability are the force of gravity and the 

force of seepage. In areas of seismic activity, earthquake forces may also be an important 

factor causing instability. In earlier days, earth dams were not designed to withstand 

earthquake forces. It was thought that earth dams had an inherent ability to withstand the 

effect of earthquakes, a reasoning based on the observation that very few earth dams, 

designed rationally, suffered any damage during earthquakes. However, it is now well 

understood that ignoring seismic forces is to invite disaster. 

Cyclic loads induced by earthquakes decrease the stability of a slope by inducing 

shear stresses, increasing pore pressures and decreasing the soil strength. Indeed, 

liquefaction is an external manifestation of the decrease in shear strength. Cohesionless soil 

deposits of clean fine sands and non-plastic silty sands containing less than 5 % fines passing 

the No. 200 sieve and the permeability in the range of 10-5  to i0'3  m/sec. are most 

susceptible to liquefaction. 
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2.5 FACTORS CONTRIBUTING TO SLOPE FAILURE 

(a) The type of soil of which or in which the slope is made; 

(b) The geometry of the cross section of the slope; 

(c) Weight and loads, and weight and load distribution (gravity is one of the principal 

causes of all slides); 

(d) Increase in moisture content of the soil material, water is the principal factor in 

promoting slides because it adds wight to the unit weight of soil; water decreases 

the magnitude of cohesion in soil, thus decreasing its shear strength. Water from 

atmospheric precipitation and the melt-waters of snow, upon entering into the soil, 

decrease the factor of safety, of the slopes in question. Water is the most aggressive 

factor contributing to many slides, particularly in unconsolidated soils; 

(e) Vibrations and Earthquakes. 

2.6 	C-4 Analysis-Method of Slices (Swedish Circle Method) 

This method was first introduced by Fellenius (1926) and is also known as the 

Swedish circle method. Fig. 2.4 shows the section of a slope with AB as the trial slip 

surface. For a soil having C-4 strength parameters, the shear strength at different points 

on the slip surface varies according to the value of effective normal stress at those points. 

In this method, the soil mass above the assumed slip circle is divided into a number of 

vertical slices of equal width, as shown in Fig. 2.4. The number of slices may vary from 

6 to 12, when hand computations are to be used. 

In the conventional method, the forces between the slices are neglected and each 

slice is considered to be an independent column of soil of unit thickness. If slice no. 5 is 

taken as a typical slice, the weight of the slice W is calculated from. 

W=yhb 

r 



Where y is the bulk unit weight of the soil, h is the average height of the slice and 

b its width. The line of action which can be taken to pass through the mid-width point of 

the slice, meets the base of the slice of length 1 at A. The weight W is plotted as a vector 

ABA  and then resolved into its normal and tangential components N and T respectively at 

A. Since the normal component N passes through A and the centre of rotation 0, it does 

not have a driving moment, but mobilises frictional resistance along the slip surface. The 

tangential component, T, causes the rotating moment. In the end slice such as lice no. 1 in 

Fig.2.4, the tangential component may act in an opposite direction, causing a restoring 

moment. T is taken as positive when causing a driving moment and negative when causing 

a resisting moment. The algebraic sum of T will always be positive and contribute to the 

driving moment. 

Considering the whole slip surface AB of length L, the total driving and resisting 

forces are: 

Driving forces 	= ET 

Resiting force 	= Ec'1 + EN tan 4)" = c'L + EN tan 4' 

Driving moment 	= R ET 

Resisting moment = R c'L + R EN tan 4)' 

The factor of safety against sliding, F is written as: 

F= cL+EN tan4) 	 (2.1) T 

Since N = W cos a and T = W sin a , Eq. 2.1 can also be written in the form 

F  _ cL+EW cosa tano 
W sina (2.2) 

The method of slices can be used for homogeneous or stratified soils and can also 

be used where seepage is taking place and pore pressures are present in the soil. Inter-slice 
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forces are ignored in this method. This method underestimates factor of safety hence this 

method is conservative. Strictly, only applicable to circular failure surfaces. 

2.7 PSEUDO-STATIC ANALYSIS 

A pseudostatic analysis is one in which the dynamic effect of the earthquake is 

replaced by a static force. if the maximum acceleration due to an earthquake is known, the 

inertial force on an element of soil is obtained by multiplying the mass of the element with 

the acceleration. In considering the equilibrium of the sliding mass, this force is included 

and a factor of safety of more than one is allowed, thus ensuring that no movement of the 

sliding mass occurs. The inertial force acts only for a brief period in a cycle and lasts for 

only a few cycles. But the pseudo static analysis makes no distinction between this transient 

inertial force and other static forces acting for a much longer duration. 

If (ag) is the earthquake acceleration and W is the weight of the slice, the inertial 

force on it is taken as a W . The inertial force should be taken at the centroid of the slice, 

but to simplify the calculations, it is moved down to the base of the slice like the other 

forces acting on the slice. Fig. 2.5 shows the forces acting on a typical slice. It can be seen 

that the effect of the inertial force is to add the force ( a W cos 0 ) or (aN) in the 

tangential direction, while a force ( a W sin 0 ) or (a T) is decreased from the normal 

direction. Thus the expression for the factor safety now changes to 

F_ cL+-y (N-U-aT) tan4 
(T+aN) (2.3) 

A minimum factor of safety of just over one is considered acceptable when 

considering the effect of earthquake forces. The seismic coefficients commonly used in 

Japan range from 0.12 to 0.25, depending on the location of the dam, type of foundation 



and the failure potential downstream of the dam. 

2.8 INDIAN STANDARD CODE OF PRACTICE IS: 1893 - 1984 

As per the Indian Standard Code IS: 1893 - 1984 the procedure for finding out the 

seismic coefficient, which depends upon the height of the dam and the lowest point of the 

rupture surface, shall be as follows: 

(a) The fundamental period of the structure can be determined from 

T=2.9Ht 	 (2.4) 

where, 

T = fundamental period of the earth dam in sec, 

Ht = height of the dam above toe of the slope, 

p = mass density of the shell material, and 

G = modulus of rigidity of the shell material 

(b) Using the computed value of T and 10% damping, Sa/g can be determined from 

average acceleration spectrum curves as shown in Fig. 2.6. 

(c) The design seismic coefficient ah can be determined from the Response Spectrum 

Method using the expression 

S 
ah=~3IFo ̀ ' 

9 
(2.5) 

where, 

= 	a coefficient depending upon the soil-foundation system as shown in 

Table 2.1 
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I 	= . a factor dependant upon the importance of the structure as shown in 

Table 2.2 

F0 	= 	seismic zone factor for average acceleration spectra as shown in 

Table 2.3 

Sa/g 	= 	average acceleration coefficient as read from Fig. 2.6 for appropriate 

natural period and damping of the structure. 

For checking slope failure with the lowest point of the rupture surface at any depth 

y below top of dam, the value of equivalent uniform seismic coefficient shall be taken as: 

ay=(2 .5-1.5 H)ah 	 (2.6) 

where, 

H 	— 	total height of the dam 

The stability of the upstream slope of an earth or rockfall dam shall be tested with 

full reservoir level, with horizontal forces due to earthquake acting in upstream direr _ion 

and vertical forces due to earthquake (taken as one half of horizontal) acting upwards. 

For preliminary design, a factor of safety of unity shall be accepted as being 

adequate for ensuring stability of upstream slope. The factor of safety need be tested only 

for failure surface which passes through the lower half of the dam. 

The stability of the downstream slope shall also be tested as in the upstream slope 

case except that the horizontal force due to earthquake ,should be considered acting in the 

downstream direction. 

2.9 SELECTION OF SEISMIC COEFFICIENT 

A major difficulty in the pseudo-static approach arises from the fact that there is no 
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simple method for determining an appropriate value for the seismic co-efficient a . In the 

past empirical values based on judgement and experience have been used, a = 0.1 to 

0.15 as typical US practice, a = 0.15 to 0.25 as typical Japanese practice; higher values 

have been used in exceptional cases. Empirical values may lead to safe designs, in many 

cases but it is necessary to develop a logical approach for assessing their validity and 

selection, an arbitrary value for a is no longer considered adequate. 

The adoption of static inertia force equal to the maximum acceleration during an 

earthquake (rigid-body response) has been suggested as an alternative to the use of 

empirical values. However, this procedure is likely to be very conservative for two reasons: 

1 

	

	Only low stiff embankments or embankments in narrow canyons may respond 

essentially as rigid structures. There is ample field evidence to prove that most earth 

dams do not behave as rigid structures and that each has its own individual response 

different from that of others. 

2. 

	

	An earthquake inertia force is applied only for a very short period. Replacing a 

transient force of such short duration by a pseudo-static force representing the 

maximum acceleration is unrealistic. Therefore, a value of a equal to the maximum 

ground acceleration is likely to be overconservative even for a rigid embankment. 

In this present study the horizontal seismic coefficients are considered based 

on seismic coefficient method as per IS: 1893-1984 using the relation 

ah=132a o 	 (2.7) 

where, 

a o  = Basic horizontal seismic coefficient as shown in Table 2.3. 

The vertical seismic coefficients are considered as half of the horizontal seismic 

coefficients. 
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2.10 PORE WATER PRESSURE 

For purposes of design it is convenient to distinguish three critical stages of pore 

pressure development in an earth dam. 

	

2.10.1 	Pore Pressure During Construction 

When an earth dam is built of soil of low permeability, excess pore pressures 

develop in the air and water voids due to compaction carried out during construction or due 

to its own weight. The pore pressures developed depend upon the placement water content, 

method of compaction, weight of the overlying layers and the rate of dissipation of pore 

pressure during construction. 

	

2.10.2 	Pore Pressure Under Steady Seepage Condition 

When the reservoir on the upstream of the dam is filled, water starts seeping through 

the dam. After sometime, the steady seepage condition is. established and a well-defined 

phreatic line is formed. The soil below the phreatic line is saturated and subjected to pore 

water pressure. On the upstream slope, the seepage forces are directed inwards and hence 

tend to increase the stability. However, on the downstream slope, the direction of the 

seepage forces is such that they decrease the stability. The steady seepage condition is, 

therefore, critical for the downstream slope of an earth dam. 

	

2.10.3 	Pore Pressure Under Sudden Drawdown Condition 

The critical condition for the stability of the upstream slope of an earth dam is when 

there is a sudden drawdown in the reservoir upstream. If the soil is of low permeability, 

no appreciable change in the water level inside the slope takes place when the reservoir 

level goes down. The weight of water which is still present in the soil tends to cause 

sliding of the wedge, as the water pressure which was acting on the upstream slope to 

balance this weight has been suddenly removed. 

12 



CHAPTER 3 

NEURAL NETWORK APPROACH 

3.1 INTRODUCTION TO NEURAL NETWORKS 

Neural networks provide a unique computing architecture whose potential has only 

begun to be tapped. Used to address problems that are intractable or cumbersome with 

traditional methods, these new computing architectures inspired by the structure of the brain 

are radically different from the computers that are widely used today. Neural networks are 

massively parallel systems that rely on dense arrangements of interconnections and 

surprisingly simple processors. 

Artificial neural networks take their name from the networks of nerve cells in the 

brain. Although a great deal of biological detail is eliminated in these computing models, 

the artificial neural networks retain enough of the structure observed in the brain to provide 

insight into how biological neural processing may work. Thus these models contribute to 

a paramount scientific challenge the brain understanding itself. 

3.2 ARTIFICIAL NEURAL NETWORKS THE BASIC STRUCTURE 

Neural networks are responsible for making significant advances in the traditional 

Al fields of speech and visual recognition. Investment managers are creating investment 

models to better manage money and improve profits. Marketing professionals are employing 

neural networks to accurately target products to potential customers. Geologists can increase 

their probability of finding oil. Lenders use neural networks to determine the credit risk of 

loan applicants. Scientists and engineers use them to model and predict complex 
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phenomena, such as prediction of critical slip surface and minimum factor of safety of a 

complex slope at a site. The variety of problems that can be solved effectively by neural 

networks is virtually endless. 

A human brain continually receives input signals from many sources and processes 

them to create the appropriate output response. Our brains have billions of neurons that 

interconnect to create elaborate neural networks. These networks execute the millions of 

necessary functions needed to sustain normal life. For some years now, researchers have 

been developing models, both in hardware and software, that mimic a brain's cerebral 

activity in an effort to produce an ultimate form of artificial intelligence. 

The back propagation model, however, is largely responsible for changing this 

trend. It is an extremely e fective learning tool that can be applied to a wide variety of 

problems. Back propagation related models require supervised training. This means they 

must be trained using a set of training data where known solutions are supplied. 

Therefore, training of the neural network is essentially carried out through the 

presentation of a series of example patterns of associated input and output values. The most 

commonly used learning system, and the one adopted in this present study, is the back 

propagation model. 

Back propagation type neural networks process information in interconnecting 

processing elements, known as neurons or neurodes or nodes. These nodes are organized 

into groups, known as layers. There are three distinct types of layers in a back propagation 

neural network: 

i. The input layer, 

ii. The hidden layer or layers, and 

iii. The output layer. 

A network consists of one input layer, one or more hidden layers and one output 

14 



layer. Connections exist between the nodes of adjacent layers to relay the output signals 

from one layer to the next. Fully connected networks occur when all nodes in each layer 

receive connections from all nodes in each preceding layer. Information enters a network 

through the nodes of the input layer. The input layer nodes are unique in that their sole 

purpose is to distribute the input information to the next processing layer, i.e. the first 

hidden layer. The hidden and output layer nodes process all incoming signals by applying 

factors to them, known as weights. Fig. 3.1 shows the architecture of a typical neural 

network consisting of three layers of interconnected neurodes. All inputs to a node are 

weighted, combined and then processed through a transfer function that controls the 

strength of the signal relayed through the node's output connections. The transfer function 

serves to normalize a node's output signal strength between 0 and 1. There are generally 

two types of transfer functions, the sigmoid function and the Gaussian function. Network 

processing continues through each node and layer until the network's response is obtained 

at the output layer. 

When a network is used in the interrogating mode, processing ends at the output 

layer. During training, the network's response at the output layer is compared to, a supplied 

set of known answers, known as training targets. The errors are determined and back 

propagated through the network in an attempt to improve the network's response. The nodal 

weight factors are adjusted by amounts determined by the training algorithm. The iterative 

procedure of processing inputs through the network, determining the errors and back 

propagating the errors through the network to adjust the weights constitutes the learning 

process. One training iteration is complete when all supplied training cases have been 

processed through the network. The training algorithms adjust the weights in an attempt to 

drive the network's response error to a minimum. 

Two factors are used to control the training algorithm's adjustment of the weights. 
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They are the learning rate coefficient r , and the momentum factor c. The learning rate 

determines the amount that each weight will change during each learning cycle, and the 

momentum factor determines the amount that each weight will change relative to the change 

in the previous learning cycle. If the learning, rate is too fast, i.e. ii is too large, network 

training can become unstable. If q is too small, the network will learn at a very slow 

pace. The momentum factor c. has a smaller influence on learning speeds, but it can 

influence training: stability and promote faster learning for most networks. In this present 

study the learning rate is considered as 0.5 and the momentum factor is considered as 0.8 

for all the networks. 

On the satisfactory completion of the training phase, verification of the performance 

of the neural network is then carried out using patterns that were not included in the 

training set. This determines the quality of the predictions in comparison to the desired 

outputs. This is often called as testing phase. No additional learning occurs during this 

phase. 

3.3 SOIL SLOPE DATA FOR NEURAL NETWORK MODELLING 

Statistical methods are commonly used to model complex relationships involving a 

number of variables. This is often complex and cumbersome, also to formulate the 

statistical model, the important parameters must be known. By comparison, the modelling 

process in neural networks in more direct, as there is no necessity to specify a mathematical 

relationship between the input and output variables. The neural network is capable of 

capturing complex nonlinear interactions between input and output variables in a system. 

In addition, it can generalize correct responses that only broadly resemble the data in the 

training set. In this present study the data for training, testing and interrogating the neural 
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networks are generated using a computer program for pseudostatic analysis using method 

of slices [4], using the program one can get critical slip surface corresponding to minimum 

factor of safety for a given soil slope. The input parameters used to generate data are as 

shown in Table 3.1. Using this data 120 different combinations of problems were 

generated. The geometry of the slope is constant for all the 120 problems. The geometry 

of the slope used in this study is as shown in Fig. 3.2. 

3.4 FORMULATION, TRAINING AND TESTING OF THE NEURAL 
NETWORKS FOR SLOPE STABILITY ANALYSIS 

For this study of slope stability analysis for a typical earth dam as shown in Fig. 

3.2, three different models containing different number of input variables and different 

number of output variables were investigated. The input variables and output variables used 

in three different models are as follows ; 

i. Total number of input variables used in this model are 15. 

ah , a,,, WP, y , ~1, C1 , Y2'42' C2 , y3 ,4), C3 , XC, YC and R. Output from this 

model is FOS as shown in Fig. 3.3. 
ii. Total number of input variables used in this model are 13. 

ahl a v' WP1 YlI 41, C1, Yz 14)2' C2 , Y3 , 43' C3 and FOS. Outputs from this model 

are XC, YC and R as shown in Fig. 3.4. 

iii. Total number of input variables used in this model are 12. 

h' v' WP, y1, 4 , C1, y 2 , 4)2 , C2 , Y3 , 4)3 and C3. Outputs from this model are 

XC, YC, R and FOS as shown in Fig. 3.5. 
Where 

ah 	= Horizontal seismic coefficient 

a v = Vertical seismic coefficient 

WP = Pore water pressure parameter 

y 	= Dry density of the soil 

= Angle of internal friction of the soil 
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C 	= Cohesion 

XC 	= Horizontal coordinate of centre of the critical slip circle 

YC 	= Vertical coordinate of centre of the critical slip circle 

R 	= Radius of critical slip circle and 

FOS = Minimum factor of safety 

The following information is required when designing a network: 

i. The number of input node, 

ii. The number of hidden layers, 

iii. The number of nodes in each of the hidden layers, and 

iv. The number of output nodes. 

3.4.1 The Input Layer 

The input layer of a neural network has the sole purpose of distributing input data 

values to the first hidden layer. The number of nodes in the input layer will be equal to the 

number of input data values in the model. The total number of input neurons considered 

for training, testing and interrogating the neural network model 1 are 15, the total number 

of input neurons considered for training, testing and interrogating the neural network model 

2 are 13 and the total number of input neurons considered for training, testing and 

interrogating the neural network model 3 are 12. The soil properties such as y , 4), C are 

considered as y1 , 41,  C1  for shell portion of a typical earth dam section, y2 , 42'  C2  for 

core portion of a typical earth dam section and Y3  , 43 , C3  for foundation soil as shown 

in Fig. 3.6, in the input layer for training, testing and interrogation of all the three models. 

The geometry of the slope is not considered as input for training, testing and interrogation 

of the three models, because the geometry is constant for all the 120 problems. The input 

data used for training, testing and interrogating the neural network are shown in Table 3.2, 



Table 3.3 and Table 3.4 respectively. 

3.4.2 The Hidden Processing Structure 

Choosing the number of hidden layers and the number of hidden nodes in each layer 

is not an easy task. Currently there is no thumb rule for determining the optimal number 

of neurodes in the hidden layer or the number of hidden layers, except through 

experimentation. Many factors play a part in determining what the optimal configuration 

should be. These factors include the quantity of training patterns, the number of input and 

output nodes and the relationships between the input and output data. When a network's 

hidden processing structure is too large and complex for the model being developed, the 

network may tend to memorize input and output sets rather than learn relationships between 

them. Such a network may train well but test poorly when presented with inputs outside the 

training set. Also, network training time will significantly increase when a network is 

unnecessarily large and complex. In this present study single hidden layer is considered for 

each model the number of hidden neurons in model 1 are 15, in model 2 are 13 and in 

model 3 are 12. 

3.4.3 The Output Layer 

In this present study three models with different set of outputs were considered. In 

the first model the output layer consisted of only one neurode, representing the minimum 

factor of safety of the slope. In the second model the output layer consisted of three 

neurodes, representing the centre (XC, YC) and radius (R) of a critical slip surface. In the 

third model the output layer consisted of four neurodes, representing the minimum factor 

of safety (FOS), centre (XC, YC) and radius (R) of slip surface. The output data used for 

training and testing of the neural networks are shown in Table 3.5 and Table 3.6 

19 



3.4.4 The Transfer Function 

A node's transfer functions serves the purpose of controlling the output signal 

strength for the node, except for the input layer which uses the inputs themselves. These 

functions set the output signal strength between 0 and 1. The input to the transfer function 

is the dot product of all the node's input signals and the node's weight vector. The sigmoid 

transfer function is the most widely used function for back propagation neural networks, 

which is also used in this study. The sigmoid function acts like an output gate that can be 

opened (1) or closed (0). Since the function is continuous, it is also possible for the gate 

to be partially opened, i.e. somewhere between 0 and 1. Models incorporating sigmoid 

transfer functions usually exhibit better generalization in the learning process and often 

yield more accurate models, but may also require longer training times. 

3.4.5 Training of the Neural Network 

All the neural network analysis for the stability analysis were carried out by using 

the Neural Planner program. Neural Planner is a neural network system for Micro-soft 

Windows. It allows to produce multilayered neural networks using a simple graphical editor 

or create standard three layer networks from training files. There are also facilities for 

producing training, testing and interrogating files in the Neural Planner. The Neural Planner 

can learn from training files, self test using testing fields and be interrogated by 

interrogating files. 

3.4.6 The Training Data 

A total of 120 cases of data with different seismic coefficients, Pore water pressures 

and soil parameters were generated using a computer program for pseudostatic analysis 

using method of slices [4] . Among the 120 cases of data 72 cases of data were used for 
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training, 24 cases for testing and 24 cases for interrogation. 

Some preprocessing of the data are usually required before presenting the input 

patterns to the neural network. This usually involves scaling or normalization of the input 

patterns to values in the range 0-1. This is necessary because the sigmoid transfer function 

modulates the output to values between 0 and 1. Normalization of the data can be as simple 

as either dividing the values by the maximum value or by subtracting the minimum value 

and then dividing the values by the range, which is the maximum value minus the minimum 

value. The input patterns for both the training and testing phase were prepared, and the 

normalization was done automatically by the neural network program. 

All the neural network analyses, for this study, were carried out with the learning. 

rate Ti =0. 5 , and the momentum factor a =0. 8 . These optimal values of learning rate 

and momentum factor were determined through trail and error. Training of the neural 

network was carried out until the average sum squared errors over all the training patterns 

were minimized. 

Once the neural network has been trained, the seismic stability analysis of any slope 

can be easily obtained by putting the required input data of that slope in the interrogating 

file section, and interrogating the trained neural network for that data. 
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CHAPTER 4 

NUMERICAL STUDIES 

4.1 COMPARISON OF THE RESULTS 

After training and testing of the Neural Networks, model 1, model 2 and model 3. 

The networks has been interrogated for about 24 sets of input data and the results obtained 

from all the three Networks are compared with the results obtained from conventional 

method and the results are shown in Table 4.1, 4.2 and 4.3 respectively. 

4.2 PARAMETRIC STUDY 

The results used in this parametric study to plot graphs are shown in Table 4.4. In 

this present study the analysis is carried out for different horizontal seismic coefficients 

based on seismic zoning factors as per IS: 1893-1984. A graph is plotted between the 

minimum factors of safety obtained from neural network and different horizontal seismic 

coefficients, keeping all the remaining parameters constant as shown in Fig. 4.1. It is 

observed from the graph that as the horizontal seismic coefficient increases the factor of 

safety decreases which is consistent with both theory and practice. 

A graph is plotted between the minimum factors of safety obtained from neural 

network and different pore water pressure parameters, keeping all the remaining parameters 

constant as shown in Fig. 4.2. It is observed from the graph that as the pore water pressure 

increases the factor of safety decreases which is consistent with both theory and practice. 

A graph is plotted between the minimum factors of safety obtained from neural 

network and different 4  values keeping all the remaining parameters constant as shown 
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in Fig. 4.3 and Fig. 4.4. It is observed from the graph that as the 4) value increases the 

factor of safety also increases, which is also consistent because the major strength of the 

soil depends on angle of internal friction, therefore, strength of the soil is more if 4) value 

is more and hence factor of safety increases. 

4.3 OBSERVATIONS 

In this present study the problem is analysed for a particular slope i.e. the geometry 

of the slope is same for all sets of problems as shown in Fig. 3.2 [11], with different 

horizontal seismic coefficients, different pore water pressure parameters and for different 

sets of soil parameters such as y , 4), C as shown in Table 3.1. It is observed that the 

neural networks performed successfully. All the three models were interrogated for no 

testing (0 cycles per test), 100 cycles per test, 200 cycles per test and 300 cycles per test. 

It is observed that the model at 200 cycles per test was performed well and it is also 

observed that the neural network of modell performed successfully, therefore, it clearly 

implies that more the number of input data greater the accuracy of the results. 

4.4 DISCUSSIONS 

In the present study the analysis is conducted for a particular slope, even though the 

geometry of the slope is not considered as input for training, testing and interrogating the 

neural network, the results obtained are very good so that the neural network does not 

require the complete data to analyse the problem. The performance of a neural network 

depends on how a network has been trained, i.e. the number of inputs and combination of 

inputs. The present study for the performance of neural networks in stability analysis of 

slopes, leads to the observation that neural networks perform successfully. 
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CHAPTER 5 

CONCLUSIONS 

On the basis of numerical studies conducted and results obtained from Neural 

Networks, as discussed in the foregoing chapters, it can be concluded as follows : 

1. The results obtained from all the three Neural Networks are very much in agreement 

with the results as obtained from conventional method of analysis, hence it can be 

concluded as Artificial Neural Networks can augment/replace conventional method 

of analysis. 

2. Using Neural Networks, which give the failure surface as output when the factor of 

safety is considered as input, indicates that there is a possibility of solving inverse 

problems using Neural Nets. 

3. All the three Neural Network models are trained without using the geometry of the 

slope as input even though, the results obtained from all the three Neural Network 

models are very much close to the results obtained from conventional method of 

analysis, hence it can be concluded that there is a possibility of solving problems 

with incomplete data using Neural Nets. 

4. The parametric study results obtained from Neural Networks are in keeping with the 

Physics of the problem, hence it can be concluded that the solutions follow trends 

consistent with theory/practice. 

5. On the basis of the performance of Neural Networks in seismic soil slope stability 

analysis finally it can be concluded as the Neural Networks offer immense 

possibilities in future. 



CHAPTER 6 

SCOPE FOR FURTHER STUDIES 

In this present study all analysis is carried out for a typical earth dam with constant 

geometry and limited sets of combinations of soil parameters. Once the Neural Network 

is trained considering differing geometry of the slope, Soil parameters, pore water pressure 

and seismic coefficients, one can develop a generalised Neural Network model, which 

can be used to analyse any type of slope in any condition. 

Since the Neural Nets are capable of solving inverse problem, Neural Nets can be 

used to get optimal slopes and failure surfaces for given factor of safety and other 

conditions. 

In this study theoretically generated data is used for the analysis, but it is suggested 

that laboratory/field data for training the Neural Network should be used to provide more 

realistic training patterns and hence more realistic solutions. 
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TABLE 2.3 Values of Basic Seismic Coefficients and Seismic Zone Factors in different Zones 
(IS: 1893-1884, Clauses 3.4.2.1, 3.4.2.3 and 3.4.5) 

Si. 
No. 

Zone 
No. 

Method 

Seismic Coefficient Method Response Spectrum Method 

Basic horizontal seismic 

coefficient, 	ao  

Seismic zone factor for average acceleration 

spectra, 	F. 

1.  V 0.08 0.40 

2.  IV 0.05 0.25 

3.  III 0.04 0.20 

4.  II 0.02 0.10 

5.  T 0.01 0.05 
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TABLE 2.1 Values of R for different Soil-Foundation Systems 

(IS: 1893-1884, Clause 3.4.3) 

Sl. Type of Soil 
No. Mainly Values of 	13 	for 

Constituting 
the Piles Passing Piles not Raft Combined Isolated RCC Well 
Foundation through any covered Foundations Isolated Footings without Foundations 

Soil, but under Col 3 RCC Tie Beams or 
Resting on Footings Unreinforced 
Soil Type I with Tie Strip 

Beams Foundations 

1.  Type I Rock or 1.0 - 1.0 1.0 1.0 1.0 
hard Soils 

2.  Type II 1.0 1.0 1.0 1.0 1.2 1.2 
Medium Soils 

3.  Type III Soft 1.0 1.2 1.0 1.2 1.5 1.5 
Soils 

Note : 	The value of 	R 	for dams shall be taken as 1.0 

TABLE 2.2 Values of Importance Factor, I 
(IS: 1893-1984, Clauses 3.4.2.3 and 3.4.4) 

SI.No. Structure Value of Importance 
Factor, I 

1.  Dams (all types) 3.0 

2.  containers of inflammable or poisonous gases of liquids 2.0 

3.  Important service and community structures, such as hospitals; water 1.5 
towers and tanks; schools; important bridges; important power houses; 
monumental structures; emergency buildings like telephone exchange and 
fire bridge; large assembly structures like cinemas, assembly halls and 
subway stations. 

4.  All others 1.0 



TABLE 2.3 Values of Basic Seismic Coefficients and Seismic Zone Factors in different Zones 
(IS: 1893-1884, Clauses 3.4.2.1, 3.4.2.3 and 3.4.5) 

SI. 
No. 

Zone 
No. 

Method 

Seismic Coefficient Method Response Spectrum Method 

Basic horizontal seismic 

coefficient, 	a o  

Seismic zone factor for average acceleration 

spectra, 	Fo  

1.  V 0.08 0.40 

2.  IV 0.05 0.25 

3.  III 0.04 0.20 

4.  lI 0.02 0.10 

5.  1 0.01 0.05 
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TABLE 3.5 Output Parameters Used for Training the Neural Networks 

Sl. No. Centre of Slip Circle Radius of 
Slip Circle 

FOS 
- 

XC (m) YC. (m) R (m) 

1. 80 0 100 1.81 

2. 80 0 100 1.25 

3. 80 0 100 .74 

4. 80 0 100 1.64 

5. 80 0 100 1.12 

6. 80 0 100 .66 

7. 80 0 100 1.47 

8. 80 0 100 .79 

9. 80 0 100 .59 

10. 80 0 100 1.13 

11. 80 0 100 .76 

12. 80 0 100 .45 

13. 80 0 100 1.68 

14. 80 0 100 1.16 

15. 60 0 100 .68 

16. 80 0 100 1.52 

17. 80 0 100 1.27 

18. 60 0 100 .61 

19. 80 0 100 .1.36 

20. 80 0 100 .74 

21. 60 0 100 .54 

22. 80 0 100 1.04 

23. 80 0 100 .86 

24. 60 0 . 100 .41. 

25. 80 0 100 1.57 

26. 80 0 100 1.31 

27. 60 0 100 .63 

28. 80 0 100 1.42 

29. 80 0 100 .77 

30. 60 0 100 .56 

31. 80 0 100 1.27 

M 



(continuea) 

S1. No. Centre of Slip Circle Radius of 
Slip Circle 

FOS 

XC (m) YC (m) R (m) 

32. 80 0 100 .68 

33. 60 0 100 .5 

34. 80 0 100 .97 

35. 80 0 100 .79 

36. 60 0 100 .37 

37. 80 0 100 1.38 

38. 80 0 100 .95 

39. 60 0 100 .54 

40. 80 0 100 1.24 

41. 60 0 100 .66 

42. 60 0 100 .48 

43. 80 0 100 1.11 

44. 80 0 100 .92 

45. 60 0 100 .43 

46. 80 0 100 .83 

47. 60 0 100 .43 

48. 60 0 100 .32 

49. 80 0 100 1.29 

50. 80 0 100 1.08 

51. 60 0 100 .5 

52. 80 0 100 1.16 

53. 60 0 100 .79 

54. 60 0 100 .45 

55. 80 0 100 1.04 

56. 60 0 100 .55 

57. 60 0 100 .4 

58. 80 0 100 .78 

59. 80 0 100 .64 

60. 60 0 100 .29 

61. 60 0 100 1.08 

62. 60 0 100 .89 

63. 60 0 100 .41 

nn 



(Continued) 

Sl. No. Centre of Slip Circle Radius of 
Slip Circle 

FOS 

XC (m) YC (m) R (m) 

64.  60 0 100 .97 

65.  60 0 100 .51 

66.  60 0 100 .37 

67.  60 0 100 .85 

68.  60 0 100 .7. 

69.  60 0 100 .33 

70.  60 0 100 .63 

71.  60 0 100 .32 

72.  60 0 100 .24 

41 



TABLE 3.6 Output Parameters Used for Testing the Neural Networks 

Si. 
No. 

Centre of Slip Circle Radius of 
SIip Circle 

FOS 

XC (m) YC (m) R (m) 

1. 80 0 100 .99 

2. 80 0 100 1.31 

3. 80 0 100 1.22 

4. 80 0 100 .6 

5. 80 0 100 1.4 

6. 80 0 100 .83 

7. 80 0 100 .93 

8. 80 0 100 .55 

9. 80 0 100 .86 

10. 80 0 100 1.18 

11. 80 0 100 .86 

12. 80 0 100 .51 

13. 80 0 100 1.15 

14. 80 0 100 1.03 

15. 80 0 100 .75 

16. 80 0 100 .69 

17. 60 0 100 .88 

18. 60 0 100 .62 

19. 80 0 100 .86 

20. 60 0 100 .52 

21. 60 0 100 .57 

22. 60 0 100 .65 

23.' 60 0 100 .44 

24. 60 0 100 .41 

42 



TABLE 4.1 Comparison of Results obtained from conventional method and Results obtained 
from Neural Network Model 1 

Si. 
No. 

Results from 
conventional 
method 

Results from Neural Network Model 1 

0 Cycles/test 100 Cycles/test 200 Cycles/test 300 Cycles/test 

FOS FOS FOS FOS FOS 

1. 1.51 1.55 1.56 1.57 1.57 

2. .89 .9 .87 .89 .87 

3. 1 1.01 .99 1.01 .99 

4. .93 .93 .92 .94 .93 

5. .92 .93 .91 .93 .91 

6. 1.04 1.04 1.05 1.05 1.03 

7. 1.13 1.13 1.15 1.14 1.13 

8. .7 .7 .71 .71 .7 

9. 1.08 1,08 1.09 1.08 1.07 

10. .97 .97 .99 .98 .97 

11. 1.05 1.06 1.09 1.06 1.05 

12. .65 .65 .66 .66 .65 

13. .74 .75 .75 .74 .74 

14. .85 .85 .88 .86 .86 

15. .59 .59 .61 .59 .59 

16. .56 .57 .57 .56 .57 

17. .69 .7 .7 .7 .69 

18. .97 .98 1.01 .97 .97 

19. .7 .7 .72 .71 .71 

20. .4 .4 .41 .39 .39 

21. .73 .72 .74 .72 .72 

22. .8 .79 .8 .78 .79 

23. .57 .57 .57 .57 .57 

24. .51 .52 .51 .51 .52 
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Soil wedge 

be 

Fig. 2.1(a) Slope failure above toe 

Soil Wedge 

be 

Fig.2.1(b) Slope failure through toe 

it Wedge 

Firm base material 

Fig.2.1(c) Base failure 

Fig 2.1 Rotational failure 
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Fig.2.2 Translational failure 

Wedge 

Plane of 
Weakness 

Fig.2.3 Wedge failure 
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Fig. 2.4. C - 4 analysis- method of slices 
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Fig.2.5 Inertial forces due to earthquake 
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Fig. 3.1 Typical Neural-Network Architecture 
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Fig.3.4 Neural Network model 2 
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