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ABSTRACT

The advent of digital computers has seen the emergence of analytical tools in
~analysis and design of Civil Engineering systems, which earlier seemed too complex or
rigorous. At this stage Artificial Intelligence techniques - especially Artificial Neural Nets,
or Neural Nets, are beginning to dominate most of the analytical and design aspects. The
basic advantage in the use of Neural Nets being the capability of handling imprecise,
imperfect and incomplete data while yet producing acceptable solutions.
In the present study the application of Neural Nets has been examined with specific
reference to the analysis of slope of a typical Earth Dam for the following cases:
1. Determination of minimum factor of safety when conventional inputs are provided
for a specific problem.
2. The inverse problem of determination of the critical failure surface when the
minimum factor of safety and conventional parameters are provided as inputs.
3. Determination of minimum factor of safety and critical failure surface when
conventional parameters are provided as inputs.
The Neural Nets were formed to perform satisfactorily and a subsequent parametric

‘study with regard to

a. Relation between horizontal seismic coefficient and minimum factor of safety.
b. Relation between pore water pressure and minimum factor of safety.
C. Relation between angle of internal friction of the soil in shell portion of earth

dam section and minimum factor of safety.
d. Relation between angle of internal friction of the soil in core portion of earth
dam section and minimum factor of safety. .
indicates that the resﬁlts are consistent with the underlying Physics of the problem.
The potential of application of Neural Nets to augment/replace analytical procedures

is amply demonstrated and scope for further studies has been indicated.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

The stability analysis of slopes plays an important role in Civil Engineering.
Stability analysis is used in the construction of high,wziys, railroads, runways, canals and
development of natural resources such as earthdams as well as many other human activities
Vinvolving building construction and excavations. The cost of earthwork would be minimum
if the slopes are made steepest. However, very steep slopes may not be stable. A
compromise has to be made between economy and safety and the slopes provided are
neither too steep nor too flat. In other words, the steepest slopes which are stable and safe
should be provided. The failure of a slope may lead to considerable loss of life and
property. It is, therefore, essential to check the stability of proposed slopes, in any
construction environment. With the development of modern methods of testing of soils and
stability analysis, a séfe and economical design of a slope is possible.

Often, though the slope is stable in static condition it may fail due to the sudden
occurrence of vibrations caused by an earthquake. Failure results from increased stresses
within a soil mass, or loss of strength during dynamic loading conditions imposed by an
earthquake. If the existing soil beneath the slope is loose saturated fine sands and non
plastic silty sands liquefaction of soil may occur due to éarthquake loads this also leads to
major failures of slopes. Many land slides tr.iggered by earthquakes have resulted in major
disasters. Hence there is a need to analyse the slope by considering seismic loads if the
slope of the earthwork is located in seismically active zone. Hence, in any case the stability

analysis of slopes is very much necessary to ensure safety.



1.2 OBJECTIVE OF THE PRESENT STUDY
Different methods of slope stability ahalysis based on different approaches are
available each of which involve different simplifying assumptions ‘yet leading to complex
calculation and are time consuming. These methods requires complete inputs witli regard
to geometry of the slope and strength properties of the soil, and environmental features such
as moisture content, pore water pressure, seismicity etc.
In this present study an attempt has been made to develop Neural Network models

based on a typical configuration of an earth dam [11] as shown in Fig. 3.2, for

1) Determination of minimum factor of safety based on the following inputs:
a) Soil properties,
b)  Pore water pressure,
c) Seismic coefficients and

d) Critical failure surface.

2) Determination of critical failure surface based on the following inputs:
a) Soil properties,
b) Pore water pressure,
c) Seismic coefficients and

d) Minimum factor of safety.
3) Determination of minimum factor of safety and criticallfailure surface based on the
followihg inputs:
a) Soil properties,
b) Pore water pressure and
C) Seismic coefficients.
The Neural-Networks have been developed and tested using the data obtained from a

computer program for pseudostatic analysis using method of slices [4].
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CHAPTER 2

REVIEW OF LITERATURE

2.1 .GENERAL

The failure of a mass of soil located beneath a slope is called a slide. It involves a
downward and outward movement of the entire mass of soil that participates in the failure,
Usually, slides are due to excavation or undercutting the foot of an existing slope.
However, in some instances, they are caused by a gradual disintegration of the structure
of the soil, stzirting at hair cracks which subdivide the soil into angular fragments. In
others, they are caused by an increase of the pore water pressure in a few exceptionally

permeable layers, or by a shock that liquefies the soil beneath the slope.

2.2 TYPES OF SLOPE FAILURES

A slope may have any one of the following type of failures.

221 .Rotational Failure

This type.of failure occurs in finite slopes by rotation along a slip surface by
downward and §utward movement of the soil mass as shown in Fig. 2.1. Rotational slips
are further divided into three types.
(@)  Slope failure or face failure :

This failure occurs along a surface that intersects the slope above the toe. This can
occur when the slope angle « is very high and the soil in the upper part of the slope is

relatively weak as shown in Fig. 2.1a.



(b)  Toe failure :

The failure occurs along the surface that passes through the toe. Toe failure occurs
in steep slopes when the soil mass above the base and below the base is homogeneous. This
is the most common mode. of failure as shown in Fig. 2.1b.

(©) Base failure :

If the failure surface passes beiow the‘ toe then toe then it is called base failure. This

- can occur when the soil below the toe is relatively weak and soft and the slope is flat as

shown in Fig. 2.1c.

2.2.2 Translation Failure

This type of failure occurs in an infinite slope along a long failure surface
parallel to the slope as shown in Fig. 2.2. The shape of the failure surface is influenced by
the presence of any hard stratum at a shallow depth below the slope surface. Translational

failures may also occur along slopes of layered materials.

2.2.3 Wedge Failure

A failure along an inclined plane is known as plane failure or block failure as shown
in Fig. 2.3. It occurs when distinct blocks and wedges of the soil mass become separated.
A plane failure is similar to translational failure in many respects. However, unlike
translational failure which occurs in an infinite slope, a plane failure may occur even in a
finite slope, consisting of two different materials or ina homogeneous slope having cracks,

fissures, joints or any other specific plane of weakness.

2.3 MECHANISM OF SLOPE FAILURE

Rupture surface or failure plane is the line joining points of weakness. Here points

4



of weakness mean the points at which the shear strength of the soil is less than the forces
causing sliding. After rupture, the overlying mass of soil can move by gravity; until rupture
occurs motion is opposed by the shear resistance of the soil. When this is overcome,
resistance is diminished and the soil mass slides down. The stability of any slope depends
upon the shear strength of the soil. Shear strength depends upon the cohesion, angle of
internal friction of the soil and the effective normal stress on the rupture surface at the
~ instant of failure. Shear stresses (forces causing sliding) are developed due to the gravity.

forces, seepage forces and earthquake forces.

2.4 FORCES CAUSING SLIDING

The most important forces which cause instability are the force of gravity and the
force of seepage. In areas of seisfnic activity, earthquake forces may also be an important
factor causing instability. In earlier days, earth dams were not designed to withstand
earthquake forces. It was thoughf that earth dams had an inherent ability to withstand ;he
effect of earthquakes, a reasoning based on the observation that vefy few earth dams,
designed rationally, suffered any damage during earthquakes. However, it is now well
understood that ignoring seismic forces is to invite disaster.

Cyclic loads induced by earthquakes decrease the stability of a slope by inducing
shear stresses, increasing pore pressures and decreasing the soil strength. Indeed,
liquefaction is an external manifestation of the decrease in shear strength. Cohesionless soil
deposits of clean fine sands and non-plastic silty sands containing less than 5% fines passing

the No. 200 sieve and the permeability in the range of 10° to 10® m/sec. are most

susceptible to liquefaction.



2.5 'FACTORS CONTRIBUTING TO SLOPE FAILURE

(@)  The type of soil of which or in which the slope is made;

(b) Thé geometry of the cross section of the slope;

(c) Weight and loads, and weight and load distribution (gravity is one of the principal
causes of all slides);

(d)  Increase in moisture content of the soil material, water is the principal factor in
promoting slides because it adds wight to the unit weight of soil; water decreases
the magnitude of cohesion in soil, thus decreasing its shear strength. Water from
atmospheric precipitation and the melt-waters of snow, upon entering into the soil,
decrease the factor of safety, of the slopes in question. Water is the most aggressive

~ factor contributing to many slides, particularly in ﬁnconsolidated soils;A

(e) Vibrations and Earthquakes.

2.6 C-¢ Analysis-Method of Slices (Swedish Circle Method)

This method was first introduced by Fellenius (1926) and is also known as the

Swedish circle method. Fig. 2.4 shows the section of a slope with AB as the trial slip
surface. For a soil having C-¢ strength parameters, the shear strength at different points

on the slip surface varies according to the value of effective normal stress at those points.
In this method, the soil mass above the assumed slip circle is divided into a number of
vertical slices of equal width, as shown in Fig. 2.4. The number of slices may vary from
6 to 12, when hand computations are to be used.

In the conventional method, the forces between the slices are neglected and each

slice is considered to be an independent column of soil of unit thickness. If slice no. § is

taken as a typical slice, the weight of the slice W is calculated from.

W=+ hb



Where y is the bulk unit weight of the soil, h is the average height of the slice and

b its width. The line of action which can be taken to pass through the mid-width point of
the slice, rﬁeets the base of the slice of length 1 at A. The weight W is plotted as a vector
AB and then resolved into its normal and tangential components N énd T respectively at
A. Since the norm'al component N passes through A and the centre of rotation O, it does
not have a driving moment, but mobilises frictional resistance along the slip surface. The
tangential component, T, causes the rotating moment. In the end slice such as lice no. 1 in
| Fig.2.4, the tangential component may act in an opposite direction, causing a restoring
moment. T is taken as positive when causing a driving moment and negative when causing
a resisting moment. The algebraic sum of T will always be positive and contribute to the
driving moment. |

Considering the whole slip surface AB of length L, the total driving and resisting

forces are:
Driving forces = YT
Resiting force = Yc/l + XN tan ¢/ = ¢/L + XN tan ¢’
Driving moment . = RXT
Resisting moment = R ¢/L + R XN tan ¢’

The factor of safety against sliding, F is written as:

cL+IN tand

F = ST (2.1)

Since N =Wcos o andT =Wsin & , Eq. 2.1 can also be written in the form

cL+LW cose tand
LW sinao

F= (2.2)

The method of slices can be used for homogeneous or stratified soils and can also

be used where seepage is taking place and pore pressures are present in the soil. Inter-slice



forces are ignored in this method. This method underestimates factor of safety hence this

method is conservative. Strictly, only applicable to circular failure surfaces.

2.7  PSEUDO-STATIC ANALYSIS

A pseudostatic analyéis is one in which the dynamic effect of the earthquake is
replaced by a static force. If the maximum acceleration due to an earthquake is known, the
inertial force on an element of soil is obtained by multipljzing the mass of the element with
the acceleration. In considering the equilibrium of the sliding mass, this force ié included
and a factor of safety of more than one is allowed, thus ensuring that no movement of the
sliding mass occurs. The inertial force acts only for a brief period in a cycle and lasts for
only a few cycles. But the pseudo static analysis makes no distinction between this transient

inertial force and other static forces acting for a much longer duration.

If (ag) isthe earthquake acceleration and W is the weight of the slice, the inertial

force on it is taken as «W . The inertial force should be taken at the centroid of the slice,

but to simplify the calculations, it is moved down to the base of the slice like the other

forces acting on the slice. Fig. 2.5 shows the forces acting on a typical slice. It can be seen

that the effect of the inertial force is to add the force ( «w cos © ) or (aN) in the

tangential direction, while a force ( aw sin 0 )or (aT) - isdecreased from the normal
direction. Thus the expression for the factor safety now changes to

_ CL+X (N-U-aT) tan¢

F 2 (T+aN)

(2.3)

A minimum factor of safety of just over one is considered acceptable when
considering the effect of earthquake forces. The seismic coefficients commonly used in

Japan range from 0.12 to 0.25, depending on the location of the dam, type of foundation



and the failure potential downstream of the dam.

2.8 INDIAN STANDARD CODE OF. PRACTICE IS: 1893 - 1984

As per the Indian Standard Code IS: 1893 - 1984 the procedure for finding out the
.seismic coefficient, which depends upon the height of the dam and the lowest point of the
rupture surface, shall be as follows: '

(@)  The fundamental period of the structure can be determined from

T=2.9H,/p/G (2.4)

where,

T = fundamental period of the earth dam in sec,

'H, = height of thé dam above toe of the slope,

mass density of the shell material, and

p
G = modulus of rigidity of the shell material
| (b)  Using the computed value of T and 10% damping, S,/g can be determined from

average acceleration spectrum curves as shown in Fig. 2.6.

(c) The design seismic coefficient o, can be determined from the Response Spectrum

Method using the expression
S ' '
ap=BIF, 2 2.5)

where,

B = a coefficient depending upon the soil-foundation system as shown in

Table 2.1



I = a factor dependant upon the importance of the structure as shown in

Table 2.2

F, = seismic zone factor for average acceleration spectra as shown in
Table 2.3

S/g = average acceleration coefficient as read from Fig. 2.6 for appropriate

natural period and damping of the structure.
For checking slope failure with the lowest point of the rupture surface at any depth

y below top of dam, the value of equivalent uniform seismic coefficient shall be taken as:

ay=<2.5—1.5-§)ah 2.6)

where,

H = total height of the dam

The stability of the upstream slope of an earth or rockfall dam shall be tested v;;ith
full reservoir level, with horizontal forces due to earthquake acting in upstream direc.ion
and vertical forces due to earthquake (taken as one half of horizontal) acting upwards.

For preliminary design, a factor of safety of unity shall be accepted as being
adequate for ensuring stability of upstream slope. The factor of safety need be tested only
for failure surface §vhich passes through the lower half of the dam.

The stability of the downstream slope shall also ‘be tested as in the upstream slope

case except that the horizontal force due to earthquake should be considered acting in the

downstream direction.

2.9 SELECTION OF SEISMIC COEFFICIENT

A major difficulty in the pseudo-static approach arises from the fact that there is no

10



simple method for determining an appropriate value for the seismic co-efficient o« . In the
past empirical values based on judgement and experience have been used, « = 0.1 to
0.15 as typical US practice, & = 0.15 to 0.25 as typical Japanese practice; higher values
have been used in exceptional cases. Empirical values may lead to safe designs, in many

cases but it is necessary to develop a logical approach for assessing their validity and

selection, an arbitrary value for « is no longer considered adequate.

The adoption of static inertia force equal to the maximum acceleration during an
earthquake (rigid-body response) has been suggested as an alternative to the use ‘of
empirical values. However, this procedure is likely to be very conservative for two reasons:
| Only low stiff embankments or embankments in narrow canyons may respond

essentially as rigid structures. There is ample field evidence to prove that most earth

dams do not behave as rigid structures and that each has its own individual response
different from that of others.

2. An e‘arthquake inertia force is applied only for a very short period. Replacing a
transient force of such short duration by a pseudo-static force representing the
maximum acceleration is unrealistic. Therefore, a value of a equal to the maximum
~ground acceleration is likely to be overconservative even for a’ rigid embankment.

In this present study the horizontal seismic coefficients are considered based

on seismic coefficient method as per IS: 1893-1984 using the relation
ap=pIla, (2.7)
where,

®, = Basic horizontal seismic coefficient as shown in Table 2.3.

The vertical seismic coefficients are considered as half of the horizontal seismic

- coefficients. -

11



2.10 PORE WATER PRESSURE

For purposes of design it is convenient to distinguish three critical stages of pore
pressure development in an earth dam.
2.10.1 Pore Pressure During Construction

When an earth dam is built of soil of low permeability, excess pore pressures
develop in the air and water voids due to compaction carried out during construction or due
to its own weight. The pore pressures developed depend upon the placement water content,
method of compaction, weight of the overlying layers and the rate of dissipation of pore
pressure during construction.
2.10.2 Pore Pressure Under Steady Seepage Condition

When the reservoir on the upstream of the dam is filled, water starts seeping through
the dam. After sometime, the steady seepage condition is. established and é well-defined
phreatic line is formed. The soil below the phreatic line is saturated and subjected to pore
water pressure. On the upstream slope, the seepage forces are directed inwards and hence
tend to increase the stability. However, on the downstream slope, the direction of the
seepage forces is such that they decrease the stability. The steady seepage condition i,
therefore, critical for the downstream slope of an earth dam.
2.10.3 Pore Pressure Under Sudden Drawdown Condition

The critical condition for the stability of the upstream slope of an earth dam is when
there is a sudden drawdown in the reservoir upstream. If the soil is of low permeability,
no appreciable change in the {vater level inside the slope takes place when the reservoir
level goes down. The weight of water which is still present in the soil tends to cauée
-sliding of the wedge, as the water pressuré which was acting on the upstream slope to

balance this weight has been suddenly removed.

12



CHAPTER 3

- NEURAL NETWORK APPROACH

31  INTRODUCTION TO NEURAL NETWORKS

Neural networks provide a unique éomputing architecture whose potential has only
begun to be tapped. Used to address problems that are intractable or cumbersome witﬁ
traditional methods, these new computing architectures inspired by the structure of the brain
are radically different from the computers that are widely used today. Neural networks are
massively parallel systemé that rely on dense arrangements of interconnections and
surprisingly simple prbcessors.

Artificial neural networks take their name from the networks of nerve cells in the
brain. Althougﬁ a gréat deal of biological detail is eliminated in these computing models,
the artificial neural networks retain enough of the structure observed in the brain to provide
insight into how biological neural processing may work. .Thus these models contribute to

a paramount scientific challenge the brain understanding itself.

3.2 ARTIFICIAL NEURAL NETWORKS THE BASIC STRUCTURE

Neural networks are responsible for making significant advances in the traditional
Al fields of speech and visual recognition. Investment managers are creating investment
models to better manage money and improve profits. Marketing professionals are employing
neural networks to accurately target products to potential customers. Geologists can increase
their probability of finding oil. Lenders use neural netWorks to 'detem‘line the credit risk of

loan applicants. Scientists and engineers use them to model and predict complex

13



phenomena, such as prediction of critical slip surface and minimum factor of safety of a |
complex slope at a site. The variety of problems that can be solved effectively by neural
networks is virtually endless.

A human brain continually receives input signals from many sources and processes
them to create the appropriate output response. Our bfains have billions of neurons that
intérconnect to create elaborate neural networks. These networks execute the millions of
necessary functions needed to sustain normal life. For some years now, researchers have
been developing models, t;oth in hardware and software, that mimic a brain’s cerebral
activity in an effort to produce an ultimate form of artificial intelligence.

The back propagation model, however, is largely responsible for changing this
trend. It is an extremely e.fective learning tool that can be applied to a wide variety of
problems. Back propagaticn related models require supervised training. This means they
must be trained using a set of training data where known solutions are supplied.

Therefore, training of the neural network is essentially carried out through the
presentation of a series of example patterns of associated input and output values. The most
commonly used learning system, and the one adopted in this present study, is the back
propagation model.

Back propagation type neural networks process information in interconnecting
processing elements, knqu as neurons or neurodes or nodes. These nodes are organized

into groups, known as layers. There are three distinct types of layers in a back propagatioh

neural network:
i. The input layer,
ii. The hidden layer or layers, and

iii.  The output layer.

A network consists of one input layer, one or more hidden layers and one output

14



layer. Connections exist between the nodes of adjacent layers to relay the outf)ut signals
from one layer to the next. Fully connected networks occur when all nodes in each layer
receive connections from all nodes in each preceding layer. Information enters a network
through the nodes of the input layer. The input layer nodes are unique in that their sole
purpose is to distribute the input information to the next processing layer, i.e. the first
hidden layer. The hidden and output layer nodes process all incoming signals by applying
factors to them, known as weights. Fig. 3.1 shows the architecture of a typical neural
network consisting of three layers of interconnected neurodes. All inputs to a node are
weighted, combined and then processed through a transfer function that controls the
strength of the signal relayed through the node’s output connections. The transfer function
serves to normalize a node’s output signal strength between O and 1. There are generally
two types of transfer functions, the sigmoid function and the Gaussian function. Network
processing continues through each node and layer until the network’s response is obtained
at the output layer.

When a petwork is used in the interrogating mode, processing ends at the output
layer. During training, the network’s response at the output layer is compared to.a supplied
set of known answers, known as training targets. The errors are determined and back
propagated through thé network in an attempt to improve the network’s response. The nodal
weight factors are adjusted by amounts determined by the training algorithm. The iterative
procedure of processing inputs through the network, determining the errors and back
propagating the errors through the network to adjust the weights constitutes the learning
process. One training iteration is complete when all supplied training cases have been
processed through the network. The training algorithms adjust the weights in an attempt to
drive the network’s response error to a minimum.

Two factors are used to control the training algorithm’s adjustment of the weights.

15



They are the learning rate coefficient 1 , and the momentum factor «. The learning rate

determines the amount that each weight will change during each learning cycle, and the
momentum factor determines the amount that each weight will change relative to the change
in the previous learning cycle. If the learning. rate is too fast, i.e. 7 is too large, network

training can become unstable. If n is too small, the network will learn at a very slow

pace. The momentum factor «. has a smaller influence on learning speeds, but it can
influence training’stability and promote faster learning for most networks. In this present
study the learning rate is considered as 0.5 and the momentum factor is considered as 0.8
for all the networks.

On the satisfactory completion of the training phase, verification of the performance
of the neural network is then carried out using patterns that were not included in the
training set. This determines the quality of the pfedictions in comparison to the desired

outputs. This is often called as testing phase. No additional learning occurs during this

phase.

3.3 SOIL SLOPE DATA FOR NEURAL NETWORK MODELLING

Statistical methods are commonly used to model complex relationships involving a
number of variables. This is often complex and cumbersome, also to formulate the
statistical model, the important parameters must be known. By comparison, the modelling
process in neural networks in more direct, és there is no necessity to specify a rﬁathematical
relationship between the input and output variables. The neural network is capable of
capturing complex nonlinear interactiohs between input and output variables in a system.
In addition, it can generalize correct responses that only broadly resemble the da£a in the

training set. In this present study the data for training, testing and interrogating the neural
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networks are generated using a cbmputer program for pseudostatic analysis using method
of slices [4], using the program one can get critical slip surface corresponding to minimum
factor of safety for a given soil slope. The input parameters used to generate data are as
shown in Table 3.1. Using this data 120 different combinations of problems were
generated. The geometry of the slope is constant for all the 120 problems. The geometry
| of the slope used in this study is as shown in F1g 3.2.

34 FORMULATION, TRAINING AND TESTING OF THE NEURAL
NETWORKS FOR SLOPE STABILITY ANALYSIS

For this study of slope stability analysis for a typical earth dam as shown in Fig.
3.2, three different models containing different number of input variables and different
number of output variables were investigated. The input variables and output variables used
in three different models are as follows ;
i. Total number of input variables used in this model are 15.
Wy @yt WP, ¥y bs0 Cu¥ys by Cyr¥ardys G, XC, YC and R. Output from this

model is FOS as shown in Fig. 3.3.
ii. Total number of input variables used in this model are 13.

Cps Oy WP, ¥y, 0y, CruYai by, Cou¥srdy, G and FOS. Outputs from this model

are XC, YC and R as shown in Fig. 3.4.
iii.  Total number of input variables used in this model are 12.

Cps 0y WP, Yy, &y Cri¥aidy. Cyrvs, §, and G, Outputs from this model are

XC, YC, R and FOS as shown in Fig. 3.5.

Where
o, = Horizontal seismic coefficient
«, = Vertical seismic coefficient
WP = Pore water pressure parameter
Y = Dry density of the soil
b6 = Angle of internal friction of the soil
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C = Cohesion

XC = Horizontal coordinate of centre of the critical slip circle
YC = Vertical coordinate of centre of the critical slip circle
R = Radius of critical slip circle and

FOS = Minimum factor of safety

The following information is required when designing a network:
i. Thé number of 'input‘ node,
ii. The number of hidden layers,
iii.  The number of nodes in each of the hidden layers, and

iv. The number of output nodes.

3.4.1 The Input Layer

The input layer of a neural network has the sole purpose of distributing input data
values to the first hidden layer. The number of nodes in the input layer will be equal to thé
number of input data values in the model. The total number of input neurons considered
for training, testing and interrogating the neural network model 1 are 15, the total number
of input neurons considered for training, testing and interrogating the neural network model

2 are 13 and the total number of input neurons considered for training, testing and

interrogating the neural network model 3 are 12. The soil properties such as vy, ¢, C are

considered as vy, ,¢,, ¢, for shell portion of a typical earth dam section, ¥y,,¢,, C, for

core portion of a typical earth dam section and v,,¢,, C; for foundation soil as shown
in Fig. 3.6, in the input layer for training, testing and interrogation of all the three models.
The geometry of the slope is not considered as input for training, testing and interrogation
of the three models, because the geometry is constant for all the 120 problems. The input

data used for training, testing and interrogating the neural network are shown in Table 3.2,

18



Table 3.3 and Table 3.4 respectively.

3.4.2 The Hidden Processing Structure

Choosing the number of hidden layers and the number of hidden nodes in each layer
is not an easy task. Currently there is no thumb rule for determining the optimal number
of neurodes in the hidden layer or the number of hidden layers, except through
experimentation. Many factors play a part in determining what the optimal configuration
sﬁould be. These factors include the quantity of training patterns, the number of input and
output nodes and the relationships between the input and output data. When a network’s
hidden processing structure is too large and complex for the model being developed, the
network may tend toi memorize input and output sets rather than learn relationships between
them. Such a network may train well but test poorly when presented with inputs outside the
training set. Also, network training time will significantly increase when a network is
unnecessafily large and complex. In this present study single hidden layer is considered for
each model the number of hidden neurons in model 1 are 15, in model 2‘are 13 and in

" model 3 are 12.

3.4.3 The Output Layer

In this present study three models with different set of outputs were considered. In
the first model the output layer consisted of only one neurode, representing the minimum
factor of safety of the slope. In the second model the output layer consisted of three
neurodes, representing the centre (XC, YC) and radius (R) of a critical slip surface. In the
third model the output layer consisted of four neurodes, representing the minimum factor
of safety (FOS), centre (XC, YC) and radius (R) of slip surface. The output data used for

training and testing of the neural networks are shown in Table 3.5 and Table 3.6
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3.4.4 The Transfer Function

A node’s t‘ransfer functions serves the purpose of controlling the output signal
strength for the node, except for the input layer which uses the inputs themselves. These
functions set the output signal strength between 0 and 1. The input to the transfer function
is the dot pfoduct of all the node’s input signals and the node’s weight vector. The sigmoid
transfer function is the most widely .used function for back propagation neural networks,
which is also used in this study. The sigmoid function acts like an output gate that can be
opéned (1) or closed (0). Since the function is continuous, it is also possible for the gate
to be partially opened, i.e. somewhere between 0 and 1. Models incorporating sigmoid
transfer functions usually exhibit better generalization in the learning process and often

yield more accurate models, but may also require longer training times.

3.4.5 Training of the Neural Network

All the neural network analysis for the stability analysis were carried out by using
the Neural Planner program. Neural Planner is a neural network system for Micro-soft
Windows. It allows to produce multilayered neural networks using a simple graphical editor
or create standard three layer networks from training files. There are also facilities for
producing training, testing and interrogating files in the Neural Planner. The Neural Planner
can learn from training files, self test using testing fields and be interrogated by

 interrogating files.

3.4.6 The Training Data
A total of 120 cases of data with different seismic coefficients, Pore water pressures
and soil parameters were generated using a computer program for pseudostatic analysis

using method of slices [4]. Among the 120 cases of data 72 cases of data were used for
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training, 24 cases for testing and 24 cases for interrogation.

Some preprocessing of the data are usualiy required before presenting the input
patterns to the neural network. This usually involves scaling or normalization of the input
patterns to values in the range 0-1. This is necessary because the sigmoid transfer function
modulates the output to values between 0 and 1. Normalization of the data can be as simple
as either dividing the values by the maximum value or by subtracting the minimum value
and then dividing the values by the range, which is the maximum value minus the minimum
value. The input patterns for both the training and testing phase were prepared, and the
normalization was done automatically by the neural network program.

All the neural network analyses, for this study, were carried out with the learning .
rate 1=0.5 , and the momentum factor &«=0.8 . These optimal values of learning rate

and momentum factor were determined through trail and error. Training of the neural

network was carried out until the average sum squared errors over all the training patterns

were minimized.
Once the neural network has been trained, the seismic stability analysis of any slope
can be easily obtained by putting the required input data of that slope in the interrogating

file section, and interrogating the trained neural network for that data.
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CHAPTER 4

- NUMERICAL STUDIES

4.1 COMPARISON OF THE RESULTS

After training and testing of the Neural Networks, model 1, model 2 and model 3.
The networks has been interrogated for about 24 sets of input data and the results obtained
from all the thr;ee Networks are compared with the results obtained from ﬁoriventional

method and the results are shown in Table 4.1, 4.2 and 4.3 respectively.

4.2 PARAMETRIC STUDY

The results used in this parametric study to plot graphs are shown in Table 4.4. In
this present study the analysis is carried out for different horizontal seismic coefficients
bésed on seismic zoning factors as per IS: 1893-1984. A graph is plotted between the
minimum factors of safety obtained from neural network and different horizontal setsmic
coefficients, keeping all the remaining parameters constant as shown in Fig. 4.1. It is
observed from the graph that as the horizontal seismic coefficient increases the factor of
safety decreases which is consistent with both theory and practice.

A graph is plotted between the minimum factors of safety obtained from neural
network and different pore water pressure parameters, keeping all the remaining parameters
constant as shown in Fig. 4.2, It is observed from the graph that as the pore water pressure
increases the factor of safety decreases which is consistent with both theory and practice.

A graph is plotted between the minimum factors of safety obtained from neural

network and different ¢ values keeping all the remaining parameters constant as shown
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in Fig. 4.3 and Fig. 4.4. It is observed from the graph that as the ¢ value increases the
factor of safety also increases, which is also consistent because the major strength of the
soil depénds on angle of internal friction, therefore, strength of the soil is more if ¢ value

is more and hence factor of safety increases.

4.3 OBSERVATIONS
In this present study the problem is analysed for a particular slope i.e. the geometry
of the slope is same for all sets of problems as shown in Fig. 3.2 [11], with different

horizontal seismic coefficients, different pore water pressure parameters and for different
sets of soil parameters such as y, ¢, C as shown in Table 3.1. It is observed that the

neural networks performed successfully. All the three models were interrogated for no
testing (O cycles per test), 100 cycles per test, 200 cycles per test and 300 cycles per test.
It is observed that the model at 200 cycles per test was performed well and in is also
observed that the neural network of modell performed successfully, therefore, it clearly

implies that more the number of input data greater the accuracy of the results.

4.4  DISCUSSIONS

In the present study the analysis is conducted for a particular slope, even though the
geometry of the slope is not considered as input for training, testing and interrogating the
neural network, the results obtained are very good so that the neural network does not
réquir_e the complete data to analyse the problem. The performance of a neural network
depends on how a network has been trained, i.e. the number of inputs and combination of
inputs. The present study for the performance of neural networks in stability analysis of

slopes, leads to the observation that neural networks perform successfully.
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CHAPTER §

CONCLUSIONS

On the basis of numerical studievs conducted and results obtained from Neural

Networks, as discussed in the foregoing chapters, it can be concluded as follows :

1. The results obtained from all the three Neural Networks are very much in agreement
with the results as obtained from conventional method of analysis, hence it can be
concluded as Artificial Neural Networks can augment/replace conventional method
of analysis. )

2. Using Neural Networks, which give the failure surface as output when the factor of
safety is considered as input, indicates that there is a possibility of solving inverse
problems using Neural Nets.

3. All the three Neural Network models are trained without using the geometry of the
slope as input even though, the results obtained from all the three Neural Network
models are very much close to the results obtained from conventional method of
analysis, hence it can be concluded that there is a poésibility of solving problems
with incorripiete data using Neural Nets.

4. The parametric study results obtained from Neural Networks are in keeping with the
Physics of the problem, hence it can be conciuded that the solutions follow trends
consistent with theory/practice. |

5. Onthe basis of the performance of Neural Networks in seismic soil slope stability

analysis finally it can be concluded as the Neural Networks offer immense

possibilities in future.
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CHAPTER 6

- SCOPE FOR FURTHER STUDIES

In this present study all analysis is carried out for a typical earth dam with constant
geometry and limited sets of combinations of soil parameters. Once the Neural Network
18 trained considering differing geometry of the slope, Soil parameters, pore water pressure
and seismic coefficients, one can develop a generalised Neural Network model, which
can be used to analyse any type of slopé in any condition.

Since the Neural Nets are capable of solving inverse problem, Neural Nets can be
used to get optimal slopes and failure surfaces for given factor of safety and other -
conditions.

In this study tﬁeoretically generated data is used for the analysis, but it is suggested
that laboratory/field data for training the Neural Network should be used to provide more

realistic training patterns and hence more realistic solutions.
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TABLE 2.3 Values of Basic Seismic Coefficients and Seismic Zone Factors in different Zones
(IS: 1893-1884, Clauses 3.4.2.1, 3.4.2.3 and 3.4.5)

Sl. | Zone Method

No.. | No. Seismic Coefficient Method Response Spectrum Method
Basic horizontal seismic Seismic zone factor for average acceleration
coefficient, «, spectra, F,

1. \'% 0.08 0.40

2. 1AY 0.05 0.25

3. g 0.04 0.20

4, o 0.02 0.10

s o0 005
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TABLE 3.2 Input Parametres Used for Training the Neural Networks

w.... ap o, wp Y1 ¢S C; Y, ¢S C, Y3 d3 G
t/m? t/m? t/m> t/m? t/m* t/m?

1. 0 0 0 2.1 40 0 1.9 30 1 2.2 45 1
2. 0 0 0 1.9 30 0 1.7 20 1 2 35 3
3. 0 0 0 1.7 20 0 1.5 10 2 1.8 25 5
4. 0 0 .25 2.1 40 0 1.9 30 .1 2.2 45 1
5. 0 0 .25 1.9 30 0 1.7 20 1 2 35 3
6. 0 0 25 1.7 20 0 1.5 10 2 1.8 25 5
7. 0 0 5 2.1 40 0 1.9 30 1 2.2 45 1
8. 0 0 ) 1.8 25 0 1.6 15 1.5 1.9 30 A.
9. 0 0 5 1.7 20 0 1.5 10 2 1.8 25 5
10. 0 0 1 2.1 40 0 i.9 30 1 22 45 1.
11. 0 Q 1 1.9 30 0 1.7 20 1 2 35 3
_N. 0 0 1 1.7 20 0 1.5 10 2 1.8 25 5
13. .03 015 0 2.1 40 0 1.9 30 1 22 45 1
14, .03 .015 0 1.9 30 0 1.7 20 1 2 35 3
15. .03 015 0 1.7 20 0 1.5 10 2 1.8 25 5
16. .03 015 25 2.1 40 0 1.9 30 A 22 45 1
17. .03 .015 25 2 35 | 0 1.8 25 .5 2.1 40 2
18. .03 .015 .25 1.7 20 0 1.5 10 2 1.8. 25 5
19. .03 015 5 2.1 40 0 1.9 30 1 22 45 1
20. .03 .015 5 1.8 25 0 1.6 15 1.5 1.9 30 4
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TABLE 2.1

Values of B for different Soil-Foundation Systems
(IS: 1893-1884, Clause 3.4.3) )

SL Type of Soil :
No. Mainly Values of ﬁ for
Constituting
the Piles Passing { Piles not Raft Combined | Isolated RCC Well
Foundation through any covered Foundations | Isolated Footings without | Foundations
Soil, but under Col 3 RCC Tie Beams or
Resting on Footings Unreinforced
Soil Type I with Tie Strip
Beams Foundations
L. Type I Rock or 1.0 - : 1.0 1.0 1.0 1.0
hard Soils
2. Type Il 1.0 1.0 1.0 1.0 1.2 1.2
Medium Soils
3. Type III Soft 1.0 12 1.0 1.2 1.5 1.5
Soils

Note : The value of {3 for dams shall be taken as 1.0

TABLE 2.2 Values of Importance Factor, I
(IS: 1893-1984, Clauses 3.4.2.3 and 3.4.4)
S1.No. Structure Value of Importance
Factor, I

1. Dams (all types) 3.0
2. containers of inflammable or poisonous gases of liquids 2.0
3. Important service and éommunity structures, such as hospitals; water 1.5

towers and tanks; schools;important bridges; important power houses;

monumental structures; emergency buildings like telephone exchange and

fire bridge; large assembly structures like cinemas, assembly halls and

subway stations.
4, All others 1.0
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TABLE 2.3 Values of Basic Seismic Coefficients and Seismic Zone Factors in different Zones
(IS: 1893-1884, Clauses 3.4.2.1, 3.4.2.3 and 3.4.5)

SI. | Zone Method

No. | No. Seismic Coefficient Method Response Spectrum Method
Basic horizontal seismic Seismic zone factor for average acceleration
coefficient, «, spectra, F,

1. \ 0.08 0.40

2. v : 0.05 _ 0.25

3. a1 0.04 0.20

4. 11 | 0.02 - 0.10

5. 1 0.01 0.0S
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TABLE 3.5 Output Parameters Used for Training the Neural Networks

S1. No. Centre of Slip Circle Radius of FOS
' Slip Circle -
XC (m) YC. (m) R (m)
1. 80 0 100 1.81
2. 80 0 100 1.25 4!
B 80 0 100 74
4. 80 0 100 1.64
s. 80 0 100 1.12
6. 80 0o 100 66
7. 80 0 100 1.47
8. 80 0 100 79
9. 80 0 100 59
10. 80 0 100 1.13
11. 80 0 100 | 76
12. 80 0 100 45
13. 80 0 100 1.68
| 14, 80 0 100 1.16
15. 60 0 100 .68
16. 80 0 100 1.52
17. 80 0 100 1.27
18. 60 0 100 61 “
19. 80 0 100 1.36
20. 80 0 100 74
21. 60 0 100 54
[ 22. 80 0 100 1.04 “
23. 80 0 100 .86 "
24. 60 0 100 S 41
25. 80 0 100 1.57
26. 80 0 100 1.31
27. 60 0 100 63
28. 80 0 100 1.42
29. 80 0 100 77
30. 60 0 100 56
31. 80 0 100 | 1.27
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(Lonunued)

- Sli. No. Centre of Slip Circle Radius of FOS '
o h : Slip Circle
1. XC (m) YC (m) R (m)
| 32. 80 0 100 68
33. 60 0 100 5 ]
34, 80 0 100 97
35. 80 0 100 79
36. 60 0 100 37
37. 80 0 100 1.38 u
38. 80 0 100 .95 "
39. 60 0 100 .54
40. 80 0 100 1.24
41. 60 0 100 .66
| 42. 60 0 100 48
43. 80 0 100 1.11
44, 80 0 100 92
45. 60 0 100 43 ‘
I 4s. 80 0 100 83
47. 60 0 100 43
48. 60 0 100 32
" 49. 80 0 100 1.29
50. 80 0 100 1.08 |
Fl. 60 0 100 5 tl
‘ 52. 80 0 100 1.16
53. 60 0 100 79
54. 60 0 100 45 {
55. 80 0 100 1.04
56. 60 0 100 55
57. 60 0 100 4
58. 80 0 100 78
|| 59. 80 0 100 .64 '
|| 60. 60 0 100 29
|| 61. 60 0 100 1.08
" 62. 60 0 100 .89
63. 60 0 100 41 I

AN



(Continued)

Sl. No. Centre of Slip Circlé Radius of FOS
Slip Circle
XC (m) YC (m) R (m)
64. 60 0 100 .97
Il 65. 60 0 100 51
66. 60 0 100 .37
67. 60 0 100 .85
68. 60 0 100 7
| 69. 60 0 100 33
70. 60 0 100 .63
71. 60 0 100 32
72. 60 0 100 24
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TABLE 3.6 Output Parameters Used for Testing the Neural Networks

Sl. Centre of Slip Circle Radius of FOS
No. Slip Circle jF
XC (m) YC (m) R (m)
F. 80 0 100 .99 L
2. 80 0 100 1.31
3. 80 0 100 1.22
4. 80 0 100 6 ]
| 5. 80 0 100 1.4
6. 80 0 100 .83
7. 80 0 100 93
l 8. 80 0 100 55
9. 80 0 100 .86
10. 80 0 100 1.18
11. 80 0 100 .86
12. 80 0 100 51
ll 13. 80 0 100 1.15 “
14. 80 0 100 1.03
15. 80 0 100 75
16. 80 0 100 .69
17. 60 0 100 .88 II
18. 60 0 100 62 ||
19. 80 0 100 .86 ||
20. 60 0 100 52 ﬂl
| 21. 60 0 100 57
Fz. 60 0 100 65 1|
23. 60 0 100 44
| 24, 60 0 100 41 “
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TABLE 4.1 Comparison of Results obtained from conventional method and Results obtained
from Neural Network Model 1

43

SL Results from Results from Neural Network Model 1
No. conventional .
method 0 Cycles/test 100 Cycles/test | 200 Cycles/test 300 Cycles/test

FOS FOS FOS FOS FOS
1. 1.51 1.55 1.56 1.57 1.57
2. .89 .9 .87 .89 .87
3. 1 1.01 .99 1.01 .99
4. 93 93 92 94 .93
S. .92 93 91 .93 91
6. 1.04 1.04 1.05 1.05 1.03
7. 1.13 1.13 1.15 1.14 1.13

7 ) 71 1 v

1.08 1.08 1.09 1.08 1.07
10. .97 .97 .99 .98 .97
11. 1.05 1.06 1.09 1.06 1.05
12. .65 .65 .66 .66 .65
13. .74 75 75 74 .74
14. .85 .85 .88 .86 .86
15. .59 .59 .61 .59 .59
16. .56 .57 .57 .56 .57
17. .69 7 7 7 .69
18. .97 .98 1.01 97 .97
19. 7 N 72 1 1
20. 4 4 41 .39 39
21. 73 72 74 72 p)
2. 8 79 8 78 79
23. 57 57 57 .57 57
24. Sl .52 S1 S1 .52
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Fig.2.1(a) Slope failure above foe

Toe _

Fig.2.1(b) Slope failure through toe

Soil Wedge

-

Firm base material

Fig.2.1(c) Base failure

Fig 2.1 Rotational failure



Fig.2.2 Translational failure

Wedge

Plane of
Weakness

Fig.2.3 Wedge failure




Fig. 2.4. C - ¢ analysis- method of slices
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aW 4

Fig.2.5 Inertial forces due to earthquake
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Output Layer

Hidden Layer

Input Layer

Fig. 3.1 Typical Neural-Network Architecture
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Fig.3.4 Neural Network model 2
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Fig.4.3 Relation between ®1 AND FOS
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