
PLAN GENERATION IN A MODIFIED BLOCKS WORLD
DOMAIN

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of

INTEGRATED DUAL DEGREE
in

COMPUTER SCIENCE AND ENGINEERING
(With Specialization in Information Technology)

By

SWETHA JAIN KOTHARI

x

ACC INo f

o ROOV.~

Zr

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE Of TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

MAY, 2012

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "Plan
Generation in a Modified Blocks World Domain" towards the partial fulfillment of the
requirement for the award of the degree of Integrated Dual Degree in Computer Science
submitted in the Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee, Roorkee, India is an authentic record of my own work carried out
during the period from July 2011 to May 2012, under the joint guidance of Dr. Rajdeep
Niyogi, Assistant Professor, Department of Electronics and Computer Engineering, IIT
Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of any
other degree of this or any other Institute.

Date: 12 — -1-O f v

Place: f? v,-L- 	 (SWETHA JAIN KOTHARI)

CERTIFICATE

This is to certify that the above statement made by-the candidate is correct to the best of my
knowledge and belief.

Date:

Place: Roorkee 	 (Dr. RAJDEEP 	OGI)
Assistant Professor,

Department of Electronics and Computer Engineering,

IIT Roorkee

1

ACKNOWLEDGEMENT

First of all, I would like to extend my sincere gratitude to my guide and mentor Dr. Rajdeep

Niyogi, Assistant Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, for his valuable advices, guidance and suggestions: I would

like to thank him for his support and encouragement throughout the dissertation. It was a

learning process with an opportunity to discover new things thereby increasing my

knowledge.

I am greatly indebted to all my friends, who have helped me with moral support and valuable

suggestions.

Last but not the least; I would like to thank my parents and my family for supporting me in

every endeavor. I extend out this thanks note to everyone else who have knowingly or

unknowingly helped me carry out this work.

SWETHA JAIN KOTHARI

11

ABSTRACT

Planning is a sub discipline of artificial intelligence that aims at generating plans so that its
execution leads to a desirable state from some initial state. When uncertainty is involved in a
planning domain, the planning problem is no longer limited to finding a sequence of actions,
but to find a plan, also composed of actions, that might include conditional, iterative and/or
recursive_ constructs, i.e. the planning problem now also includes program synthesis.
Generating programs automatically is a challenging task. Even for simple planning domains,
like the blocks .world domain involving recursion and if-then-else, the problem of generating
programs needs human intervention. In the dissertation, a modified blocks world domain is
considered and planners are developed for the domain. Also, some results for the plans
generated by the planners are presented.

Try actions are the trials of physical actions. As another part of the dissertation, the concept
of try actions has been extended to joint trials, trials involving more than one agent. Other
concepts relating to trials, repeated trials and learning about the capabilities of agents have
also been introduced.

111

TABLE OF CONTENTS
ABSTRACT iii
LIST OF TABLES AND FIGURES vi
CHAPTER 1. 	INTRODUCTION ...1
1.1. 	Background ...1
1.2. 	Motivation ... 2
1.3. 	Problem Statement ... 2
1.4. 	Organization of the Report ... 3
CHAPTER 2. 	LITERATURE REVIEW ... 4
2.1. 	Planning in the presence of sensing .. 4
2.2. 	Iterative planning ... 6
2.3. 	Reactive planning systems ... 7
2.4. 	Try actions ... 7

2.4.1. 	Modified B W domain .. 8
2.4.2. 	PDL 	try ...:............... 8
2.4.3. 	Plans in PDL 	try for the MBW domain ... 9

CHAPTER 3. 	PLANNING IN A MODIFIED BLOCKS WORLD DOMAIN 10
3.1. 	Model of the Modified Blocks World Domain ... 10
3.2. 	Logic for specification of the plans .. 12
3.3. 	Plan Generation ... 13
3.4. 	Plans for default Initial State .. 14

3.4.1. 	Information Gathering ... 14
3.4.2. 	Planner for Information Gathering ... 16
3.4.3. 	Tower Construction ... 17
3.4.4. 	Planner for Tower Construction ... 19

3.5. 	Plans from any Initial State ...:...........................:................ 20
3.5.1. 	Domain of initial states .. 20
3.5.2. 	Single Tower construction ... 22
3.5.3. 	Planner for single tower construction ... 22
3.5.4. 	Example Plans ... 23

CHAPTER 4. 	RESULTS .. 28
4.1. 	Screenshots 28

iv

4.2. 	Analysis of the plans .. 29
CHAPTER 5. 	INTRODUCTION TO JOINT TRIALS ... 33
5.1. 	Multi-agent Planning ... 33

5.1.1. Planning with multiple simultaneous actions .. 33
5.1..2. Planning with multiple agents: cooperation and coordination 34

5.2. 	Joint trials .. 3 5
5.3. 	Other concepts of trials .. 38
CHAPTER 6. 	CONCLUSION AND FUTURE WORK .. 40
REFERENCES... 41
PUBLICATIONS.. 43

v

LIST OF TABLES AND FIGURES

Table 4.1: Computed parameter values for different number of blocks 30

Figure 3.1: Plan graphs when (a) a deterministic action b is chosen from a state s, (b) a try
action Try_a is chosen from a state s .. 13

Figure 3.2: Plan graph for information gathering from the default initial state 15
Figure 3.3: Plan graph for stacking of heavy blocks alongside information gathering 18
Figure 3.4: (a) Heavy tower; (b) Unknown tower; (c) Light tower 21
Figure 3.5: Sample configurations of initial state of MBW domain where there are unequal

size towers (a) there are heavy towers with unequal number of heavy blocks; (b) there
are no heavy and unknown towers but more than one light towers of unequal size 24

Figure 3.6: Sample configurations of initial state of MBW domain where a block is in robot
arm: (a) there are more than one non-light towers; (b) there is only one non-light tower
.. 24

Figure 3.7: Sample configurations of initial state of MBW domain where there are light.
blocks in heavy towers: (a) there are more than one heavy towers; (b) there is only one
heavy tower and no unknown towers; (c) there is one heavy tower with unknown towers.
..:... 25

Figure 3.8: Sample configuration of initial state of MBW domain where there are unknown
towers and no heavy towers ... 26

Figure 4.1: Screenshot for and while running the planner for information gathering from
default initial state with input number of blocks as three .. 28

Figure 4.2: Screenshot for and while running the planner for tower construction from default
initial state with input number of blocks as three .. 29

Figure 4.3: Average number of actions vs. Number of blocks .. 31
Figure 4.4: Height of the plan graph vs. Number of blocks ... 31
Figure 4.5: Number of nodes vs. Number of blocks .. 32
Figure 4.6: Average plan generating time vs. Number of blocks .. 32

vi

CHAPTER 1. INTRODUCTION

1.1. Background

Artificial intelligence is a branch of computer science that aims at making machines better at
things that humans are presently better at [1]. Automated planning is a sub discipline of

artificial intelligence that aims at generating plans so that its execution leads to a desirable
state from some initial state. Plans are made up of actions available to the executors of plans.
For planning, explicit propositional or relational representations of states (initial, goal) and
actions are required. States are represented as sets of sentences and actions are represented by
logical descriptions of preconditions and effects [2]. The representations are studied often, for
e.g. [3], in the planning literature in the context of operator representations that ensure trade-
off between the range of planning tasks that can be represented and the efficiency with which
the planning task can be solved.

STRIPS is a formal language used for representation of inputs (initial state, goal, and the
actions) in the STRIPS . planner developed . in 1971: STRIPS language cannot represent
partially known initial states. This language is the base for most of the languages used in
present-day planners. The extensions of STRIPS language incorporate representation of

partially known initial states too. ADL (Action Description Language) is one of the
extensions of STRIPS which also allows conditional effects of operators (or actions). The
PDDL (Planning Domain Definition Language) is an attempt to standardize Al planning
languages.

The simplest planning domains are those where there is no incomplete or uncertain
knowledge, where actions cause known effects and where there is none. but yourself (the
executor of plans) to change the state of the domain. These are called the classical planning
domains. In these domains, plans can always be represented as a sequence of actions.

Optimal planning (in these domains). has costs associated with actions, or with goals. The
goal of planning is to find a plan with minimum overall cost. Classical planners cannot
handle scenarios involving uncertainty. Many .a times, there are domains that involve
uncertainty. The uncertainty may be about the state of the world and/or about the effects of
actions.

1

When the uncertainty is about the effects of actions, the reasoning about actions can be based
on qualitative models or quantitative models [4]. In qualitative models, all possible
alternatives are equally considered (nondeterministic uncertainty), while in quantitative
models, there is a probability distribution on the set of possible alternatives.

In planning, there are three different types of actions known — the physical actions, the
sensing actions and the try actions. Physical actions are actions that change the state of the
world. Sensing actions help to obtain some information about the state of the world. Try
actions are the most recently introduced actions [5] that are trials of physical actions. When it
is not known whether some precondition of a physical action is satisfied or not, the physical
action can be tried. The success (change the world. just as the physical action would) or
failure (the physical action not being possible in that state) of a trial results in learning.

Multi-agent planning is more complex than when there is a single agent in the domain due to
various effects the other agents may cause to the world. In cooperative multi-agent systems, it
is assumed that each agent makes its own plan and shares it with other agents [6]. When the
agents are not cooperative, protocols may be used so that the agents can all reach their goals
[7], [8]. Different methods have been proposed, for example in [9], so as to reduce the cost of
communication in multi-agent planning.

1.2. Motivation

Real world manifests uncertainty in some form or the other. When there is uncertainty
involved in a planning domain, the plans are not sequence of actions but they include if-then-
else, looping and/or recursive constructs. Program synthesis techniques have been adopted
for planning problems involving uncertainty. But, program synthesis is a challenging task.
The problem of generating programs (plans), even for the simple blocks world domain,
involving recursion and if-then-else requires human intervention. In this dissertation,, plans
are generated for a modified blocks world domain that has uncertainty in the form of

incomplete information in the initial state.

1.3. Problem Statement

The aim of_the dissertation is to see the generation of plans in an uncertain domain that uses
try actions for learning information. The domain considered is an adaptation of the popular
blocks world domain which is called as "modified blocks world" domain.

2

A small part of the dissertation also aims to looking at how the concept of try actions can be

extended.

1.4. Organization of the Report

In chapter 2, few works done with respect to planning in domains where uncertainty is
involved have been outlined. Chapter 3 contains the major part of the dissertation, where

algorithms for planning in the modified blocks world domain are discussed. Chapter 4 has
some screenshots when the planners are run and it also contains analysis of the plans
generated by the planner. Chapter 5 contains another minor part of the dissertation where the
concept of joint trials, a trial action done by two agents together, is introduced. Chapter 6
concludes the report and mentions what can be done as future work.

3

CHAPTER 2. LITERATURE REVIEW

Classical plans can be written as a sequence of actions. However, the plans for domains
involving uncertainty cannot always be written as a sequence of actions. The uncertainty in a
planning domain may be due to incomplete initial state information, non-deterministic and/,or
probabilistic effects [4] of actions and/or presence of exogenous actions. Following is a
review of some of the works on planning under uncertainty.

2.1. 'Planning in the presence of sensing

In [10], a specification within the situation calculus of conditional and iterative plans over
domains that include binary sensing actions has been developed. Sensing actions affect the
knowledge of the robot carrying out the sensing action. All the following discussion in this
section is from [10]. The plans are programs written in a simple robot program language. The
robot programming language includes both ordinary and sensing actions and is executable by
an agent that understands the language. Sensing may be required in the world because of
incomplete knowledge of the initial state, exogenous actions, uncertain effects of actions.
Some examples of problems are handled by the specification in [10] are:
1. The Airport Example: The local airport has only two boarding gates, Gate A and Gate B.

Every plane will be parked at either of the two gates. In the initial state, the robot is at
home. The robot can go from home to airport, and from airport to either gate. At the
airport it can also check the departures screen to find out if the flight is using Gate A or
not (assume that the flight looked for is present at either of the two gates and none of the

gates is not possible). At a gate, the robot can board the plane that is parked there. The
goal for the robot is to be on the plane for Flight123.

2. The Omelet Example: There is a supply of eggs in the initial state. Some of them may be
bad, but at least 3 of them are good. There is a bowl and saucer, and they can be emptied

at any time. An egg always be broken into the bowl, while can be broken into the saucer
only if it is empty: The robot can smell a container and tell if it contains a bad egg. The
contents of the saucer can be transferred to the bowl. The goal is for the robot to get 3
good eggs and no bad ones in the bowl.

3. The Odd Good Eggs Example: There is an additional sensing action, compared to that in
the Omelet example, which tells the robot when there are no more 'eggs left. The goal is to

have a single good egg in the bowl if the supply contains an odd number of good eggs and

otherwise there should be no eggs in the bowl.
4. The More Good Eggs Example: The domain is the same as that in the above example.

The goal is to have a single good egg in the bowl if the supply contains more good eggs

than bad and none otherwise.

The robot programming language is defined as:
1. nil and exit are programs.

2.. If a is an ordinary action and r is a program, then s (a, r) is a program.

3. If a is a binary sensing action and rl and r2 are programs; then branch(a, r1, r2) is a

program
4. If r, and r2 are programs, then loov(r j, r2) is a program.
The execution of these programs by an agent (who understands the language) means follows
respectively:
1. nil: The agent does nothing; exit: can be executed only if it is executing a loon and what it

does is given in the execution of loop.
2. yQ(a, r) executes primitive action a and then r.
3. branch(a, rl, r2) executes a which is supposed to tell whether some condition °pa holds or

not. If yes, it executes rl, else it executes r2.
4. loo 	r2) executes Ti and if ends with nil, repeats rl, and continues in the similar way

until it ends with exit, and then executes r2.

The following are some example robot programs using the above language:
1. The Airport Example:

sRq(go(airport), branch(check departures(Flight123), s (go(gateA), s (board plane,

(go(gateB), sec (board_plane, nil)))
2. The Omelet Example:

loop(body, s (transfer(saucer, bowl), loop(body, s (transfer(saucer, bowl), j j (body,
s (transfer(saucer, bowl), nil)))))), where body stands for the program

s (break new egg(saucer), branch(smell(saucer), s (dump(sauceir), nil), exit))'

The representation in the specification can handle problems involving only binary sensing
actions, though it can be extended to handle sensing actions that return a small set of values

and those that return a large or infinite set of values which can be ordered in a natural way.

5

But if the sensing involves reading from a noisy sensor, it cannot be handled by the
specification.

A transition based approach for formalizing sensing actions is given in [11]. In [11], the
authors distinguish between the state of the world, and the state of the agent's knowledge
about the. world that arise due to incomplete information about the world. Sensing actions
change the state of knowledge about the world and not the state of the world. The authors
develop a high-level description language that allows specification of sensing actions and
their effects in its domain. description. They also provide translations of domain description in
this language to axioms in first-order logic.

2.2. Iterative planning

Most of the works on iterative planning have been based on theorem-proving. In [12], an
approach, to solve planning problems where some unknown quantity must be dealt with,
where generating plans is decoupled from verifying them has been proposed; and an
implementation of an iterative planner, the KPLANNER which is written in Prolog and based
on the situation calculus, has been described.

The plans in KPLANNER [12] are generated as robot programs with little variation in the
programming language from that in [10]. The programs and their execution are defined as:
1. nil is a robot program doing nothing.
2. for any primitive action A and robot program P, s(A, P) is a robot program executed by

performing A and then P
3. for any primitive- action A with possible sensing results RI to Rk, and for any robot

programs PI to Pk, case(A, [R j, P,), ..., fRk, Pk)]) is a robot performed by executing A
and then on obtaining the sensing result R;, executing P,

4. if P and Q are robot programs and B is the result of replacing in P some of the
occurrences of nil by exit and the remaining by next, then loon(B, Q) is a robot program,
executed by repeatedly executing B until the execution terminates with exit (rather than
next), and then executing Q.

Example:
Tree Chop (TC) Example: Goal is to chop down a tree and pitting away the axe. Actions
available are chop, which hits the tree once with axe if the tree is up and the axe is in hand; -
store, which puts away the axe in hand; and a sensing action look, which tells whether the

6

tree is up or down. Initially the tree is up and the axe is in hand. The plan can now be written

in the robot program as:
loo (case(look, [down, exit), pup, , (chop, next))]), store)

The approach followed by the KPLANNER [12] is as what follows. There is one fluent in the
domain whose value is not known and if it was known or bounded at plan time, loops would
not have been required. This fluent is called the planning parameter. The application domain

and planning parameter F with generating bound N1 and testing bound N2 (> Nl) are given.

The plan is generated that is provably correct for F <N1 and the plan is tested if it is provably
correct for F < N2.

The main steps involved in KPLANNER-are generating plans without any loops so that they
are provably correct for F < N1, generating loops, from the plan generated, by determining if
the plan is the unwinding of a plan with loops, so as to obtain a plan with loops and the
testing the plan (with loops) for F < N2, with a specification of the problem (the domain, the
planning parameter and the bounds) in Prolog as input to the planner.

KPLANNER is practical only for small plans (however difficult they may be) but not for
large, however easy, ones.

2.3. _Reactive planning systems

Reactive planning systems are the systems able to plan and control execution of plans in a
partially known and unpredictable environment. In [13], a theory for reactive planning
systems is developed. The theory takes into account the facts that (1) actions may fail, since
they are complex programs controlling sensors and actuators working in an unpredictable
environment, (2) actions need to acquire information from the real world by activating
sensors and actuators, (3) actions need to generate and execute plans of actions, since the
planner needs to activate different special purpose planners and to execute the resulting plans.

2.4. Try actions

In [5], planning problems in uncertain environments but with no sensing actions have been
addressed by introducing the concept of try actions. A logic PDL try, an extension to PDL
has also been developed and planning with the logic in an example domain has been
illustrated. Hereafter, all the discussion in the section is from [5], unless specified otherwise

7

The example domain considered is adapted from the Blocks World (BW) domain. The fluents
in BW domain are OnTable(x), Clear(x), ArmEmpty, On(x, y). The operators are PickUp(x),
PutDown(x), Stack(x, y), UnStack(x, y). (An action is a ground instance of an operator.)

2.4.1. Modified BW domain

There are a number of blocks, all of same size, and an infinite long table. Therefore, there can
be any number of blocks on the table, while every block can have only one block exactly on
top of it. The blocks are of two different weights, light or .heavy. The robot arm can hold a
Light- block, but not a heavy block, alternately a heavy block cannot be picked up or unstacked
by the operators PickUp(x) and UnStack(x, y) respectively, and also neither do PutDown(x),
Stack(x, y) operators work on heavy blocks. Instead there are new operators ApplyLever(x, y)
to move from block x on block y.- [l4] includes another operator RevLever(x, y) that moves
block x from top of block y to table. The robot may not know the weights of one or more
blocks, initially, and it can find whether block x is light or heavy by trying to pick up the
block by using the operator Try PickUp(x) (because - there • are no sensing actions in the
domain that can weigh the block and tell whether it is light or heavy). Also, when there are
towers of blocks, in every tower, there is no heavy block on a light block.

2.4.2. PDL try

It is the enhancement of PDL to include try actions and a knowledge operator. The logic
consists of two sets of symbols: P — the set of atomic propositions and A — the set of primitive
actions (try actions included). For some a c A, a (trya) rand z(try_a) are included in P and
they .indicate that the try action has succeeded or failed respectively. Success of a try action
means that the postcondition of the action tried has been achieved, while failure means that
the postcondition has not been achieved.

Syntax:
rp — set of propositions; 7c — set of plans are defined as follows:

(p=p cPI notV I(PV (PI [;'](PI K(v
z= a, try_a c A k; it 17r union r I ,r* I (p?

The semantics of the logic are not discussed here in the report as the aim is to just show the
sample plans written in PDL try logic, which are quite readable themselves.

8

2.4.3. Plans in PDL try for the MBW domain

Let A, B, C be three- blocks in the modified blocks world (MBW) domain. -In the initial state,
all the blocks are on table and weights of none of the blocks are known. The goal is to form a
tower out of these blocks.

The plan P (in PDL try) when the blocks' weights are found in the order A, B and C is:

P = Try_PickUp(A);
If a(Try_PickUp(A)) then P1

Else { Try_PickUp(B);
If a(Try PickUp(B)) then P3
Else { Try PickUp(C);

If 6(Try_PickUp(C)) then P4
Else { ApplyLever(C, B); ApplyLever(A, B) } }

P1 = PutDown(A);
Try PickUp(B);
If a(Try_PickUp(B)) then Q1
Else { Try_PickUp(C);

If a(Try_PickUp(C)) then Q2
Else Q3 }

P3 = PutDown(B);
Try_PickUp(C);
If a(Try_PickUp(C)) then Q4
Else Q5

P4= PutDown(C); ApplyLever(A, B); PickUp(C); Stack(C, A)
Q1 = Stack(B, C); PickUp(A); Stack(A, B)
Q2 = Stack(C, B); PickUp(A); Stack(A, C)
Q3 = ApplyLever(C, B); PickUp(A); Stack(A, B)
Q4 = Stack(C, A); PickUp(B); Stack(B, C)
Q5 = ApplyLever(A, C); PickUp(B); Stack(B, A)

In [14], a complete axiomatization of the valid formulas of an epistemic logic for try actions
has been proposed and the completeness of the axiomatization and the decidability and
PSpace-completeness of the satisfiability problem for the logic have been proven.

0

CHAPTER 3. PLANNING IN A MODIFIED BLOCKS WORLD

The modified blocks world domain has been discussed in section 2.4.1. This chapter first
specifies a model for the domain, then moves onto specify the logic that has been used in the
dissertation for the specification of the plans in the domain, and last but not least presents the
generation of plans in the domain.

3.1. Model of the Modified Blocks World Domain

The world state [11] of a modified blocks world domain at any instant is specified by the
weights of the blocks and their respective positions at that instant. On the other hand, the
knowledge state [11] of the domain at that instant is specified by the positions and knowledge
about the weights of the blocks at the instant. In the dissertation, a state of the domain refers
to its knowledge state, unless explicitly mentioned. Following are the fluents, specifying the
state of the domain, and ,operators (along with preconditions and effects) available to the
robot.

Fluents (x, y are distinct blocks) —
1. Relational:

• ArmEmpty: true if robot arm is empty, false otherwise.

• OnTable(x): True if x is on table, false otherwise.

• On(x, y): True if x is on y, false otherwise.

• Clear(x): True if there's no block on x, false otherwise.

• Holding(x): True if the robot arm has x, false otherwise.

2. Knowledge:

• K(Light(x)): True if known that x is light, false otherwise.

• K(Heavy(x)): True if known that x is heavy, false otherwise.

Note: The above list of fluents is redundant and can be made more compact.

Operators (x, y are distinct blocks) -

• PickUp(x)
o Preconditions: ArmEmpty A OnTable(x) A Clear(x) A K(Light(x))
o Effects:

■ Delete: ArmEmpty A OnTable(x)
10

■ Add: Holding(x)

• PutDown(x)

o Preconditions: Holding(x) A K(Light(x))
o Effects:

■ Delete: Holding(x) .
■ Add: ArmEmpty A OnTable(x)

• Stack(x, y)
o Preconditions: Clear(y) A Holding(x) A K(Light(x))
o Effects:

• Delete: Clear(y) A Holding(x)
• Add: ArmEmpty A On(x, y)

• UnStack(x, y)

o Preconditions: ArmEmpty A On(x, y) A Clear(x) A K(Light(x))
o Effects:

■ Delete: ArmEmpty A On(x, y)
■ Add: Clear(y) A Holding(x)

• Try_PickUp(x)
o Preconditions: ArmEmpty A OnTable(x) A Clear(x) A not K(Light(x)) A not

K(Heavy(x)) V
o Effects: i v ii

i. 	(Success of trial)
■ Delete: ArmEmpty A OnTable(x)
■ Add: Holding(x) A K(Light(x)) 	 -

ii. 	(Failure of trial)
■ Delete: None
■ Add: K(Heavy(x))

• ApplyLever(x, y)
o Preconditions: ArmEmpty A Clear(x) A Clear(y) A K(Heavy(x)) n K(Heavy(y))
o Effects: 	 V

• Delete: Clear(y)
• Add: On(x, y)

• RevLever(x, y)

11

o Preconditions: ArmEmpty A On(x, y) A Clear(x) A K(Heavy(x)) A K(Heavy(y))
o Effects:

• Delete: On(x, y)

• Add: OnTable(x) A Clear(y)

Note:
i. In the operators, PutDown(x) and Stack(x, y), the precondition K(Light(x)) is redundant,

because K(Light(x)) is implied by Holding(x).

ii. Similarly, in RevLever(x, y), the precondition K(Heavy(y)) is redundant, because
K(Heavy(y)) is implied by On(x, y) A K(Heavy(x))

3.2. Logic for specification of the plans

A try action Try_a gets its name from the fact that it is trial of action a. This makes try•
actions non-deterministic, provided the preconditions for a are not known to be either
satisfied or not satisfied, because action a may succeed or fail when it is tried. In the MBW
domain, there is only one non-deterministic operator, the try operator Try PickUp(x), while
all the other operators are deterministic. This section explains the logic that is used in the
dissertation for the specification of the plans for the MBW domain.

If s be a goal state, then the plan from state s is written in this logic as:
Nil
The execution of this plan refers to doing nothing.

If (1) s is a state from which a deterministic action b is possible, (2) a planner decides the

next action from state s as b, (3) s' is the state reached by executing b from state s, and (4) vi
is the plan from state s' to reach goal, then the plan from state s is written by the planner,

when using this logic, as:

The execution of this plan is read as execute action b and then execute plan iI. The

corresponding plan graph is shown in Figure 3.1(a). (In Figure 3.1, a solid rectangular box
represents a state, a solid edge_ represents an action that causes transition from one state to
another, a dashed rectangular box represents a set of states, and a dashed edge represents a

plan.)

12

Now, let s be a state from which Try_a is possible (a is not possible). If a planner decides the

next action from state s as Try_a, ands , where it is known that a is true (and fi is false), is the

state reached on success of the trial from state s, and s", where it is known that Q is true (and

a is false), is the state reached on failure of the trial from state s, and 0, rp are the plans from

state s , s" respectively to reach goal, then the plan from state s, in this logic, is written as:'

~Ti'_a> ((K(a) _> 0) 1 (K(13) _> (P))
The execution of this plan is read as execute action Try_a, now if it is known that a is true,

execute plan 0, otherwise, if it is known that fi is true, execute plan (p. The corresponding plan

graph is shown in Figure 3.1(b).

Also, if 2T is a plan in this logic then, "sr Nil" and "Nil n" can both be written as "7e'.

s

Try_ Try_a

sI 	 s"

K(a) 	 KQi)

I w

 j goal

(a)

I

	

I 	 I

e l I (P

	

I 	 I

	

I 	 I

	

I 	 I

-----+--------------------f----.
I 	 ,

goal

(b)

Figure 3.1: Plan graphs when (a) a deterministic action b is chosen from a state s, (b) a try
action Try_a is chosen from a state s.

3.3. Plan Generation

Unlike classical plans, plans in non-classical domains cannotalways be written as a sequence
of actions. They have one or more of if-then-else, looping and recursive constructs.
Automatic generation of programs (program synthesis) is a non-trivial job. Thus the difficulty

of generating plans in non-classical domains. In this chapter, generation ofplans in the MBW
domain, a non-classical domain due to incomplete state information, is discussed. The plans

13

generated are in the logic discussed in section 3.2. Initially, (optimal) plans for much simpler
problems are generated and then the difficulty of the problems, with respect to the number of
problem instances, which the planner can solve, has been increased.

3.4. -Plans for default Initial State

The state in which all the blocks are on table and weights of none of the blocks are known is
considered as the default initial state of the MB W domain. The problem now is to generate
plans for constructing a' tower of all the blocks from this default initial state.

3.4.L Information Gathering

As per the operators available, no 'block can be moved without obtaining its weight
information. Therefore, only a block that is not required to be moved can be of unknown
weight. Since the final goal to achieve is a single tower of the blocks and since all the blocks
are initially on the table, it implies that all except one of the N blocks are required to be
moved. Therefore, the weights of at least N-1 blocks should be obtained before being able to
construct the tower.

Also, if there is a block whose weight is not known, only light blocks can be stacked on top
of it as per the operators available (also because the block can be light which requires all the
blocks above it to be .light). Therefore, it befits that if there are blocks that are known to be
heavy then one the blocks, known to be heavy has to be the base of the tower of all the blocks,
which implies that all the other blocks are to be moved on the heavy block that's decided to

be as the base, and therefore, the weights of' all the other blocks should be known, which
results in knowing the weights of all the blocks in the domain.

In short, to construct a tower of blocks, the minimum information that requires to be
gathered about the weights of the blocks is to either known all except one of the blocks to be
light or know the weights of all the blocks. Once the information required is gathered, the
problem reduces to a classical planning problem of constructing a tower of blocks from an
initial configuration of blocks (i.e., the tower can be constructed without any more

requirement of the non-deterministic operator Try_PickUp(x)). In the rest of the dissertation,

information gathering means to gather the minimum required information, if not mentioned
how much information to gather, for the goal of tower construction, if it is not mentioned

14

otherwise. After information gathering for a particular goal, the required goal can be achieved
without any more use of try actions (trials) i.e. as a simple sequence of actions.

To gather information about the weight of a block, a try pick up operator is to be used on the
block. If the block gets picked up, then it is known that the block is light, otherwise it is
known that the block is heavy.

To gather the minimum required information, a block is selected from the set of blocks whose
weight is not known and it is tried to be picked up. If the minimum required information is
gathered, the process is stopped; otherwise the same process is repeated, after putting down
the block in the robot arm if the trial succeeds and doing nothing if the trial fails.

Example 3.1:

Figure 3.2: Plan graph for information gathering from the default initial state

Consider the 3-blocks MBW domain with A, B and C as the blocks. The plan for gathering
minimum required information for tower construction from default initial state is:
<Try_PickUp(A)> ((K(Light(A)) >P1) I (K(Heavy(A)) => P6))

P1 = <PutDown(A)> <Try PickUp(B)> (K(Light(B)) => P2) I (K(Heavy(B)) => P3))
P2 = Nil

15

P3= <Try_PickUp(C)> (K(Light(C)) => P4) I (K(Heavy(C) => P5))
P4 = Nil
P5 = Nil

P6 = <Try_PickUp(B)> (K(Light(B)) => P7) (K(Heavy(B)) => P 10))
P7 = <PutDown(B)> <Try_PickUp(C)> (K(Light(C)) => P8) I (K(Heavy(C) => P9))
P8 = Nil
P9 = Nil
P10 = Try_PickUp(C)> (K(Light(C)) =>•P11)1 (K(Heavy(C) => P12))
P11 = Nil
P12 = Nil

The plan graph corresponding to the above plan is shown in Figure 3.2. In the figure, the
states are named as PQR-XYZ. P, Q and R represent the positions of C, B and A respectively,
i.e. whether they lie on table (T) or are in the arm (H) of the robot, or they lie on a particular
block and X, Y and Z represent the knowledge about the weights of the blocks C, B and A
respectively, i.e. whether the blocks are known to be light (L) or heavy (H) or it is not known
(N) whether they are light or heavy. The edges are labeled with actions. T PU(x) represents
the Try—PickUp(x) operator, and PD(x) represents the PutDown(x) operator. The leaf nodes
correspond to the valid set of goal states from the state achieved so far.

• Leaf 1: (TAC-NLL) I (TAC-LLL) I (TAC. — HLL) I (TCB-NLL) I (TCB-LLL) I (TCB-
HLL)

• Leaf 2: (ATB-LHL) I (BTC-LHL)

• Leaf 3: (BTC-HHL) (TCB-HHL)

• Leaf 4: (BAT-LLH) I (ACT-LLH)

• Leaf 5: (ACT-BLH) I (TAC-HLH)

• Leaf 6: (BAT-LHH) I (ATB-LHH)

• Leaf 7: (BAT-HHH) I (ACT-IZIH)
HHH)

(ATB-HHH) I (BTC-HHH) I (TCB-HHHH) J (TAC-

3.4.2. Planner for Information Gathering

Let 0, 1, 2... N-1 be the N blocks. Then procedure planDIG returns the plan for gathering the
minimum information required for constructing a tower of the blocks from the default initial

state.

16

Procedure planDIG {
Plan F plannerDlG(0, 0, false)
Return Plan }

Procedure plannerDIG(weightKnownBlocksCount, lightBlocksCount, isArmEmpty) {
If lightBlocksCount = N-1 or weightKnownBlocksCount = N {

Return Nil }
Plan F empty string
If not isArmEmpty {

i - weightKnownBlocksCount-1
Append <PutDown(i)> to the end of Plan }

j E- weightKnownBlocksCount.
Append <Try_PickUp(j)> ((K(Light(j)) => plannerDlG(j+1, lightBlocksCount+l,

false)) I (K(Heavy(j)) _> plannerDlG(j+l, lightBlocksCount, true))) to the end of Plan
Return Plan }

3.4.3. Tower Construction

After gathering the required information, construction of tower is trivial. All the heavy blocks
can be stacked into a tower,. followed by the light blocks. If there is a block whose weight is
not known, then all the light blocks can be stacked on the former block. (Remember, after the
information gathering, if there remains a block whose weight is not known, then all the other
blocks are known to be light.)

Starting to stack the blocks only after gathering all the required information is not the most
optimum way for constructing tower from the default initial state. If there remains a (light)
block in robot arm at the end of information gathering, the light block is required to be put
down on the table if the heavy blocks are not already stacked. Alternatively, if the heavy
blocks are already stacked, the block in arm can be directly placed on top of the heavy
blocks, and thus, operation of additional PutDown(x) and PickUp(x) are avoided.

Example 3.2:

Consider Figure 3.2 (Example 3.1).

At state HTT-LHH (the node before .leaf 6), the plan to achieve the goal of leaf 6 is:
<PutDown(C)> <ApplyLever(B, A)> <PickUp(C)> <Stack(C, B)>

17

Instead, if during information gathering, the plan graph is as in Figure 3.3 (AL(x, y)
represents the operator ApplyLever (x, y), the plan to achieve the goal at 6 from the state

HAT-LHH is:

<Stack(C, B)>
thus avoiding one PutDown(C) and one PickUp(C) in this path of the plan.

Figure 3.3: Plan graph for stacking of heavy blocks alongside information gathering

The (optimum) plan for tower construction in this 3-blocks MBW domain is:
<Try_PickUp(A)> ((K(Light(A)) _> P1) I (K(Heavy(A)) => P6))
P1 = <PutDown(A)> <Try_PickUp(B)> (K(Light(B)) => P2) I (K(Heavy(B)) => P3))

P2 = <Stack(B, C)> <PickUp(A)> <Stack(A, B)>
P3 = <fry PickUp(C)> (K(Light(C)) => P4) I (K(Heavy(C) => P5))

P4 = <Stack(C, B)> <PickUp(A)> <Stack(A, C)>
P5 = <ApplyLever(C, B)> <PickUp(A)> <Stack(A, C)>
P6 = <Try_PickUp(B)> (K(Light(B)) => P7) I (K(Heavy(B)) => P10))

P7 = <PutDown(B)> <Try_PickUp(C)> (K(Light(C)) => P8) I (K(Heavy(C) => P9))

P8 = <Stack(C, A)> <PickUp(B)> <Stack(B, C)>
P9 = <ApplyLever(C, A)> <PickUp(B)> <Stack(B, C)>

18

P10 = <ApplyLever(B, A)> <Try_PickUp(C)> (K(Light(C)) => P11) 1 (K(Heavy(C) =>

P12))
P11 = <Stack(C, B)>
P12 = <ApplyLever(C, B)>

3.4.4. Planner for Tower Construction

Let 0, 1, 2:.. N-1 be the N blocks. Let lightBlocksArray[1...NJ be the array that contain the
blocks that are known to be light. Then procedure planDTC returns the plan for constructing
a tower of the blocks from the default initial state.

Procedure planDTC {
Plan E- plannerDTC(O, 0, false, -1)
If Plan is empty string {

Return Nil }

Return Plan }

Procedure plannerDTC(weightKnownBlocksCount, lightBlocksCount, isArmEmpty, top) { -
Plan F empty string
i f- weightKnownBlocksCount-1
If isArmEmpty {

If top 0 -1 {
Append <ApplyLever(i, top) to the end of Plan }

topE-i}
If weightKnownBlocksCount = N {

Append stackLightBlocks(lightBlocksCount, isAnnEmpty, top) to the, end of
Plan

Return Plan }
If lightBlocksCount = N 1 {

Append stackLightBlocks(lightBlocksCount, isArmEmpty, lightBlocksCount)
to the end of Plan

Return Plan }
If not isArmEmpty {

Append <PutDown(i)> to the end of Plan
lightBlocksArray[lightBlocksCount] f- i }

19

j F weightKnownBlocksCount
Append <Try_PickUp(j)> ((K(Light(j)) _> plannerDTC(/+l, lightBlocksCount±l,

false, top)) I (K(Heavy(f)) _> plannerDTC(j+1; lightBlocksCount, true, top))) to the end, of
Plan

Return Plan }

Procedure stackLightBlocks(count, isArmEmpty, top) { .
Plan E- empty string
If not isArmEmpty {

If top=N-1.{.
Append <Stack(N-2, top)> to the end of Plan.
top F N-2 }

Else {
Append <Stack(N-1, top)> to the end of Plan
top 6N-1}

count F count-1 }
While count ~ 0 {

i E- lightBlocksArray[count]
Append <PickUp(i)> to the end of Plan
Append <Stack(i, top)> to the end of Plan
top
count F count-1

Return Plan } -

3.5. Plans from any Initial State

So far, the initial state was fixed to the default initial state of all the blocks being on the table
and weights of none of the blocks known. Now, the concepts used for default initial state
would be generalized to having any initial state. In this section the concepts are generalized
for constructing a tower from any initial state of the blocks.

3.5.1. Domain of initial states

Having any initial state means•that there may be towers of blocks in the initial state and that
the weights of some or all of the blocks may be known. The domain is considered to consist
of only those states where every block in the domain can be moved. When the weights of all

20

the blocks are known, the problem (or when all except one of the blocks are known to be

light) is reduced to a classical planning problem.

From the operators available, an unknown weight block can be moved (or tried to be moved,
and consequently know its weight) only from the table. Since there are no operators to move
or even gain information about an unknown weight block if the block is anywhere but on the
table, all the blocks whose weights are not known must lay on the table. In an MBW domain,
no light block can lie on op a heavy block. Therefore, in a tower, on the top of a block that is

known to be light, there can be only light blocks and a block known to be heavy, cannot be
on a block that is known to be light or whose weight is not known.

LJ

' L ' 1 	 ,

FLI
(a)
	

(b)
	

(c)
Figure 3.4: (a) Heavy tower; (b) Unknown tower; (c) Light tower

Therefore, there are three possibilities for towers.

i. Heavy Tower: There is at least one block known to be heavy in the bottom part of the
tower and zero or more blocks known to be light in the top part of the tower.

ii. Unknown Tower: There is a block whose weight is not known at the bottom of the tower
and a stack of zero or more towers, which are known to be light, on the unknown weight
block.

iii. Light Tower: The tower contains blocks that are all known to be light.
The three above possibilities of towers are shown in Figures 3.4(a), 3.4(b), 3.4(c)
respectively. The knowledge about the weights is presented in each block (L is for light, H is
for heavy, and N is for unknown). The dotted blocks in the figure represent that that they are
optional.

21

The initial state in the MBW domain can thus be a set of zero or more towers of each of the
above kind with an empty robot armor with the robot arm holding a light block.

3.5.2 Single Tower construction

To construct a single tower from any initial state of the MBW domain, the minimum
information to be known about the blocks is same as discussed in section 3.4.1.
i. If any block in the domain is known to be heavy, then the information regarding the

weights of all the blocks must be known or gathered.

ii. The weight of at most one block may not be known if all the other blocks are known to be

light.

3.5.3. Planner for single tower construction

This section though does not contain the complete algorithm mentions some points that are
useful in developing the planner that generates plans for constructing a tower from a given
initial state. The next section illustrates the points with examples. The following are the
points that are been talked about.

1. To cause the movement of minimum number of blocks in the construction of a single
tower, one of those existing towers is chosen as the destination block where maximum
number of .blocks are in their right place, and stack all the other blocks (the blocks in
other towers and those misplaced in the chosen tower) on the correctly placed blocks in
the chosen tower. Thus, the destination tower from the existing towers is chosen in one of

the following ways.
i. If there are one or more heavy towers in the initial state, the heavy tower with

maximum number of heavy blocks in it is chosen as the destination tower.

ii. If there are only light towers in the initial state, then the tower with maximum number
of blocks is chosen as the destination tower.

iii. If there are unknown towers but no heavy towers in the initial state, then one of the
unknown towers is chosen as the destination tower after gathering the required

information about the weights of unknown blocks in the unknown towers.

2. A block in hand should be placed on table and not on the destination tower only if is
known that there are no misplaced heavy blocks. This condition requires consideration of
two cases to decide whether a block should be placed on.the destination tower or not, one

22

when there are more than one towers that are not light towers in the current state, and

other when this is not true.

3. Light blocks should be moved from above heavy blocks only if there are misplaced heavy
blocks. This condition requires two cases to be considered while deciding whether the
light blocks from heavy towers are to be move from above them, one when there is only
one tower and other when there is more than one heavy tower. In case when there is only
one heavy tower, the light blocks from the tower are required to be moved only when an
unknown weight block is found to be heavy.

4. Light blocks should be moved from the unknown towers only when the weights of the
unknown weight blocks are to be found. The weight of an unknown weight block is to be
found only if there are heavy towers or there are other unknown weight blocks. So to
allow the movement of only minimum number of blocks, when there are no heavy towers,
the information about weight of that unknown block which has maximum number of
blocks over it is chosen to be found last. This helps when there are no unknown weight
blocks that are newly found to be heavy. This results to consider cases when there are
heavy towers in the initial state, when there are no heavy towers in the initial state but one
of the blocks whose information is newly gained has been found to be heavy, and the last
when there are no heavy towers in the initial state but there is only one unknown weight
block in the current state.

5. Light blocks are moved to the destination tower only when there are no heavy towers and
unknown towers except the destination tower in the current state. To be able to remove all
the heavy towers and the unknown towers with minimum possible moves, the light blocks
from above the heavy towers and unknown towers should be moved to table or another
light tower in the current state.

3.5.4. Example Plans

In all the figures in this sub-section, inside each block its name (denoted by a number) and
the knowledge about their weights (L, H, or N) is written. A block in air represents that the
block in robot arm.

Example 3.3:

This example illustrates point 1 in section 3.5.3.

23

The plan for the initial configuration as in Figure 3.5(a) is <ApplyLever(2,1)>. Note that
block 2 is moved to block 1 and not blocks 1 and 0 or the tower with block 2.

Similarly, the The plan for the initial configuration as in Figure 3.5(b) is <PickUp(1)>

<Stack(1,0)>.

1(H) 	 0(L)

0 (H) 	 2 (H) 	 1 (L) 	 2 (L)

(a) 	 (b)
Figure 3.5: Sample configurations of initial state ofMBW domain where there are unequal

size towers (a) there are heavy towers with unequal number of heavy blocks; (b) there are no
heavy and unknown towers but more than one light towers of unequal size

Example 3.4:

J0(L)

1(N) 	 2 (H) 1

(a)
	

(b)
Figure 3.6: Sample configurations of initial state of MBW domain where a block is in robot

arm: (a) there are more than one non-light towers; (b) there is only one non-light tower

This example illustrates point 2 in section 3.5.3.

The plan for the initial configuration as in Figure 3.6(a) is:
<PutDown(0)> <Try_PickUp(1)> ((K(light(1)) _> P1) I (K(heavy(1)) => P2))

P1 = <Stack(1,2)> <PickUp(0)> <Stack(0,1)>
P2 = <ApplyLever(1,2)> <PickUp(0)> <Stack(0,1)>
The first line in the above plan shows that the block in robot arm is kept down on the table.

The plan for the initial configuration as in Figure 3.6(b) is <Stack(0,1)>. The block in robot

arm is not placed on table but directly placed on the destination block.

24

Example 3.5:

The example illustrates point 3 in section 3.5.3.

The plan for the initial configuration as in Figure 3.7(a) is:
<UnStack(0,2)> <PutDown(0)> <UnStack(1,3)> <PutDown(1)> <ApplyLever(3,2)>
<PickUp(0)> <Stack(0,3)> <PickUp(1)> <Stack(1,0)>
The light blocks 0 and 1 are to be should be moved from above 2 and 3 respectively.

The plan for the initial configuration as in Figure 3.7(b) is:

<PickUp(1)> <Stack(1,0)>
Here the light block 0 need not be moved from above blo 1. ®ate. 23.1 ml~ti,w~: f

1(L) 	 0(L)
	

0 (L)

3(H) 	 2(H)
	

1(L)
	

2 (H)

(a)
	

E

0(L)

1 (N) 	 2(H)

(c)

Figure 3.7: Sample configurations of initial state of MBW domain where there are light blocks
in heavy towers: (a) there are more than one heavy towers; (b) there is only one heavy tower

and no unknown towers; (c) there is one heavy tower with unknown towers.

The plan (line numbers are included for explanation below) for the initial configuration as in
Figure 3.7(c) is:

	

1 	<Try_PickUp(1)> ((K(light(1)) _> P1) I (K(heavy(1)) _> P2))

	

1 2 	P1 = <Stack(1,0)>

	

3 	P2 = <UnStack(0,2)> <PutDown(0)> <ApplyLever(1,2)> <PickUp(0)> <Stack(0,1)>
In this plan, note that initially the light block 0 is not removed from top of the heavy block 2
(line 1). 0 is removed from top of 2 only when block 1 is found to be heavy (line 3) and not
otherwise (line 2).

Example 3.6:
The example illustrates point 4 in section 3.5.3.

25

Figure 3.8: Sample configuration of initial state of MBW domain where there are unknown
towers. and no heavy towers.

The plan for the initial configuration as in Figure 3.8 is:
<I'ry_PickUp(5)> ((K(light(5)) => P1) I (K(heavy(5)) => P6))
P1 = <PutDown(5)> <UnStack(0,2)> <PutDown(0)> <Try_PickUp(2)> ((K(light(2)) => P2)

(K(heavy(2)) => P3))
P2 = <Stack(2,4)> <PickUp(5)> <Stack(5,2)> <PickUp(0)> <Stack(0,5)>
P3 = <UnStack(4,1)> <PutDown(4)>_ <UnStack(1,3)> <PutDown(1)> <Try_PickUp(3)>

((K(light(3)) => P4) I (K(heavy(3)) => P5))
P4 = <Stack(3,2)> <PickUp(5)> <Stack(5,3)> <PickUp(0)> <Stack(0,5)> <PickUp(4)>

<Stack(4,0)> <PickUp(1)> <Stack(1,4)>
P5 = <ApplyLever(3,2)> <PickUp(5)> <Stack(5,3)> - <PickUp(0)> <Stack(0,5)>

<PickUp(4)> <Stack(4,0)> <PickUp(1)> <Stack(1,4)>
P6 = <UnStack(0,2)> <PutDown(0)> <Try_PickUp(2)> ((K(light(2)) => P7) I (K(heavy(2))

=> P10))
P7 = <PutDown(2)> <UnStack(4,1)> <PutDown(4)> <UnStack(1,3)> <PutDown(1)>

<Try_PickUp(3)> ((K(light(3)) _> P8) I (K(heavy(3)) => P9))
P8 = <Stack(3,5)> <PickUp(0)> <Stack(0,3)> <PickUp(2)> <Stack(2,0)> <PickUp(4)>

<Stack(4,2)> <PickUp(1)> <Stack(1,4)>
P9 = <ApplyLever(3,5)> <PickUp(0)> <Stack(0,3)> <PickUp(2)> <Stack(2,0)>

<PickUp(4)> <Stack(4,2)> <PickUp(1)> <Stack(1,4)>
P10 = <ApplyLever(2,5)> <UnStack(4,1)> <PutDown(4)> <UnStack(1,3)> <PutDown(1)>

<Try_PickUp(3)> ((K(light(3)) => P11) 1 (K(heavy(3)) => P12))
P11 = <Stack(3,2)> <PickUp(0)> <Stack(0,3)> <PickUp(4)> <Stack(4,0)> <PickUp(1)>

<Stack(1,4)>
P12 = <ApplyLever(3,2)> <PickUp(0)> <Stack(0,3)> <PickUp(4)> <Stack(4,0)>

<P ickUp (1)> <Stack(1 ,4)>

•Few notes from the plan that explain point 4 from section 3.5.3:

Try_PickUp(3) action is suggested at P3 (5 is known to be light and 2 is known to be heavy),
or P7 (5 is known to be heavy and 2 is known to be light) or P 10 (both 5 and 2 are known to
be heavy).
1. First thing is that it is always the last one whose weight information is tried to be gained.
2. Second, its weight is not tried to be known when both 5 and 2 are known to be light since

there are no heavy blocks known in the initial state and after gaining the information
about the two other unknown weight blocks as them being light, there remain only one
unknown weight block and all other light blocks.

3. Third, when both 5 and 2 are known to be light and there remains only 3 whose weight is
not known (and there are no heavy blocks), the blocks 1, 4 from above 3 are not required
to be moved unlike in all the other cases.

For illustrating point 5 in section 3.5.3, note that in the plans in all the four examples above,
whenever light blocks are moved from heavy or unknown towers they are placed on table.
They could also be placed on other light towers, but not on another heavy or unknown tower.

27

s vetha@f1lbunt(106sktoPj1AssertationjGeneratized"v

File EdLt View Terminal Kelp:§$
:wetha@ubuntu':'/Desktop/Dissertation/Gene.ralized$ java RunPlannerl$ 3
}i.an generation successful
:h©ose one or'more of the following (Enter 0 to exit).

1. Display plan
2. Average actions count

3. Maximum actions count (Height of the plan graph:)

4. Nodes count (in the plan graph)
:2340
-nter the file `name 'to where the plan is to be displayed (-1 if to be displayed to standard output)

-1`
Plan: .

` 	p o n) 	{y k
) ->

P t ='}
=> P5))

PI <putdwn) <trY picku(1)>((Kligh(1)) => P2) j ('K(heavy(l.)) => P3))
P2 = nil

P3 = <try .pickup(2) > ((K(light(2)) => P4) I (K(teavy(2)) => Ps)°)
Pik=nit 	 .
P5 = nil ..
P5 = <try_pickup(i.)> ((K(li.g}t{1}} => P7) I (K(heavy(1)) => P18))
P7 = <put.dov.~n(lj> <try_'pi.ckup(2)> ((K(light(2)) => PS) I (K(heavy(2)) _> .P9)),
PO=nil
P9 = nil
P18 = <try_pickup(2)? ((K,(tight(-2)) => P11) ((K.(heavy(2)> _> P12))

P31=nil
P12 = nil
Average number of actions to be executed by the robot '= 3.5
maximum number of actions to be executed by the robot = 4
Number of nodes in the plan graph = 15
swetha@ubtunt.u:-/Desktop/aisserfation/Generalized$ I

a@ubuntu< /Desktop/DissertatiQnJGenerahzed
File Edit View Terminal Help
;wetha@ubuntu:—/Desktop/Dissertation/Generalized$ java RunPlannerDTC 3
Ilan generation successful

:hoose one or more of the following (Enter 0 to exit):
I. Display plan
2. Average actions count

3. Maximum actions count (Height of thb plan graph)
4. Nodes count (in the plan graph)

.2340
inter the file name to where the plan is to be displayed (-i if to be displayed to standard output;
-1
Plan:

<try_pickup(0)> ((K(light(ti)) => Pi) j (! (heavy(0)) => P6))
Pi = <putdokrn(8)> <try_pickup(1)> ((K(l.ight(l)) => P2) I (K(heavy(1)) => P3))
P2 = <stack(1,2)> <pickup(0)> <stack(0,1 >
P3 = <try_pickup(2)> ((K(iight(2)) => P4) I (K(heavy(2)) => P5))
P4 = <stack(2,1)> <pickup(O}> <stack(0,2)>
P5 = <apply,lever(2,I)> <p.ckup(G)> <stack(0,2)>

P6 = <try_pickup(1)> ((K(light(1)) => P7) I (K(heavy(1)) => Pie))
?7 = <putdown(1)> <try_pickup(2)> ({K(light(2)) => P8) I (K(heavy(2)) => P9))
.'8 = <stack(2,0)> <pickup(1)> <stack(1,2)>
?9 = <apply_tever(2,0)> <pickup(1)> <stack(1,2)>
X10 _ <apply_lever(l,0)> <try_p ckup(2)> ((K(light(2)) => P11) I (K(heavy(2)) => P12))
P11 <stack(2,1)>

P12 = <apply_lever(2,l)>
Overage number of actions to be executed by the robot = 6.25
Maximum number of actions to be executed by the robot = 7
lumber of nodes in the plan graph = 33
>we t ha@aubun to : °-/Des ktop/ D:isse rtati on/General i.zedS

0

from the default initial state. The robot executing the plan for information gathering has to try
to pick up each block and putdown a block every time it gets lifted. With increase in number
of blocks, the average as well as the maximum (represented by the height of the plan graph)
number of trials and number of putdowns increases linearly. Thus, the graphs in Figure 4.3
and Figure 4.4 show the linear variation of average number of actions and height of the plan
graph respectively with variation in number of blocks, in case of information gathering.
Similarly, for tower construction from the default initial state, the blocks are tried to be lifted,
the heavy blocks stacked and the light blocks placed back on the table, then the light blocks
are stacked.. These are all linear operations. Thus, the graphs are linear for tower construction
also, but with more slope than that in information gathering because of increase in average
and maximum number of operations.

Table 4.1: Computed parameter values for different number of blocks

Numbe
r of

blocks

Average number of
actions over all

permutations of blocks'
weights

Height of the plan graph Number of nodes in the
plan graph

Informatio
n gathering

Tower
constructio

n

Informatio
n gathering

Tower
constructio

n

Informatio
n gathering

Tower
constructio

n-
1 0. 0 0 0 1 1
2 1.5 2.5 2 3 5 8
3. 3.5 6.25 4 7 15 33
4 5.25 9.625 6 11 35 94
5 6.875 12.8125 8 15 75 235
6 8.4375 15.90625 10 19 155 552
7 9.96875 18.95313 12 23 315 1253
8 11.48438 21.97656 14 27 635 2786
9 12.99219 24.98828 16 31 1275. 6111

10 14.49609 27.99414 18 35 2555. 13276
11 15.99805 30.99707 20 39 5115 28633
12 17.49902 33.99854 22 43 10235 61398
13 18.99951 36.99927 24 47 20475 131027
14 20.49976 39.99963 26 51 40955 278480
15 21.99988 42.99982 28 55 81915 589773
16. 23.49994 45.99991 30 59 163835 1245130
17 24.99997 48.99995 32 63 327675 2621383
18 26.49998 51.99998 34 67 655355 5504964

30

The third graph, in Figure 4.5, is for the number of nodes in the plan graph. The plan
generated is for all the possible permutations of the weights of the blocks. Since there are 2N
possible permutations, the plan size is also of the same order for information gathering. For

tower construction, the task after all the information is gathered is to stack all the light blocks.
Since, the plan is generated for all possible permutations and the average number of light
blocks over all possible permutations is of linear order, the number of nodes in the plan graph
of tower construction are of the order of N*2N.

60

 50
o "a

40

.bo 30 °Tower construction

20 Information

10 	 gathering

0
0 	10 	20

Number of blocks

Figure 4.3: Average number of actions vs. Number of blocks

80

Q 70
60

50

40 	 Tower construction
`030

s~o 20 	 —Information
~, 	 gathering
~ 10

0

0 5 10 15 20

Number of blocks

Figure 4.4: Height of the plan graph vs. Number of blocks

31

The graphs for times taken for generation of plans for information gathering and tower
construction are shown in Figure 4.6. The times increase similarly as the number of nodes in
the plan graph because for each of these states (nodes) choosing the next action takes more or

less constant time.

6

5
SE

•~ ti

3 	 —Tower construction

2 	 Information
1 	 gathering

0 0
 10 20

Number of blocks

Figure 4.5: Number of nodes vs. Number of blocks

Average Plan Generating Time
80
70
60
50

	

40 	 —Tower construction
30

	

20 	 Information

	

10 	 gathering

	

0 	 -

0 	5 	10 	15 	20.
Number of blocks

Figure 4.6: Average plan generating time vs. Number of blocks

32

CHAPTER 5. INTRODUCTION TO JOINT TRIALS

So far, the try actions considered have been trials by single agents. This chapter has been
added as a minor part of the dissertation to introduce the concept of joint trials, try actions by
multiple agents. This chapter begins with brief discussion about what planning in a multi-
agent domain is. It then moves towards extension of the notion of try actions to multi-agent
domains introducing joint trials, and finally goes on to introduce a couple more concepts
related to trials which are . valid for both single-agent trials and multi-agent trials but
explaining them through joint try action examples

5.1. Multi-agent Planning

When there are multiple agents in an environment, it is a multi-agent planning problem for
each agent in the environment. An agent in a multi-agent domain tries to achieve it own goals
with the help or hindrance from other agents in the domain. The following discussion in this

section is from [2].

The issues involved in multi-agent planning are:
i. Representation and planning for multiple simultaneous actions

ii. Cooperation, coordination and competition

5.1.1. Planning with multiple simultaneous actions

In the multi-agent setting, a single action a is replaced by a joint action gal..., a,,>, where a,
is the action taken by the it' agent. (For simplicity perfect synchronization is assumed). As a
planning problem, a transition model for different joint actions remains to be described. Also
it is a planning problem with the branching factor of exponential order in the number of

agents. With such high branching factor, the principal focus of research in the multi-agent
planning is to decouple the agents to an extent, so that the complexity becomes of a linear
order rather than the exponential order.

The standard approach to loosely coupled problems is to pretend that problem is completely
decoupled. This now requires the action schemas to be written as if the agents act
independently.

33

Example 5.1:
A and B are two players of a double tennis' team. Initially, A is at the left baseline and B is at
the right net. The goal of the team (at some point in the game)' is to return the ball that has
been hit to them and is coming towards the right baseline, ensuring that at least one of them is
covering the net. A joint plan that works for this goal is:
PLAN 1: 	A: [Go(A, RightBaseline), Hit(A, Ball)]

B: [NoOp(B), NoOp(B)]

In an action schema, the preconditions of an action restrict the states from which the action
can be executed successfully, and then there are effects that are caused by the successful
completion of action. In a multi-agent domain, executing an action from a state that satisfies
the preconditions does not ensure success of the action. There might be a case that at the
same time, there is another agent executing an action that is in conflict with its own action. In
Example 5.1, if both A and B hit the ball at the same time (for both the agents, the
preconditions for execution of the action are satisfied), the execution of the action fails
instead of being successful. Thus, the action schemas in loosely coupled multi-agent domains
need to incorporate this idea of an action executed by an agent being messed up (not
successful) due to the simultaneous execution of some action by another agent in the domain.
This can be solved by augmenting action schemas with a new feature: a concurrent action list
that states which actions should not be executed simultaneously with the action for which the
action schema is. For other actions, it might be that an action is successful only when another
agent(s) executes some action simultaneously. For example, it may be that the action of
moving a cooler from one position to another is successful only if another agent is also
executing the action of moving the cooler to the same position.

5.1.2; Planning with multiple agents: cooperation and coordination

Consider a multi-agent domain where each agent makes it own plan. Initially, it is assumed
that the goals and knowledge base are shared. In this situation each agent could execute the
joint solution and execute its own part of the solution. But, the problem here is that there may
exist more than one joint solution that achieve the goal, and each agent may choose different

joint solutions.

34

Example 5.2:
Consider the same problem as in Example 5.2. Another joint plan that exists here is the

PLAN 2.

PLAN 2: 	A: [Go(A, LeftNet), NoOp(A)]
B: [Go(B, RightBaseline), Hit(B, Ball)]

The agreement of a joint plan by both the agents would help achieve the goal. But if.A
chooses plan 2 and B chooses plan 1, then nobody'11 return the ball. Conversely, if A chooses
1 and B chooses 2, they'll both try to hit the ball. The agents may both realize this, but how

do they coordinate to make sure both agree on the same plan.

An option in such cases where the agents in the domain have to all agree on a common joint
plan is to set some conventions (or protocols). A convention like "stick to your side of the

court" would serve the purpose for example.

When there are no conventions, agents can use communication to decide on the common
plan. In the Example 5.2, a tennis player could should "Mine" or "Yours" or the other player
to indicate the common plan to the other player.

The most difficult problems are those that involve both cooperation with member of one's
own team and cooperation against members of opposing teams, and that without any
centralized control.

5.2. Joint trials

Trials in multi-agent domains have been discussed in [5], [14], but with trials being carried
out by each agent independently and if required the agent carrying out the trial communicates
whatever it learns to other agents. In this section, joint trials, trials carried out by multiple
agents'11 be discussed.

Joint trials are trials of joint actions. The joint actions are to be executed simultaneously by
all the agents involved in the joint action simultaneously, .i.e. as discussed in the earlier
section, apart from the satisfying of preconditions in the current state, a joint trial requires-the
simultaneous execution of the trial by the agents involved in the trial. Like trials, joint trials
can be used when there is uncertainty in state information. In [5], where the notion of try
actions has been introduced, it was motivated from the fact that sensing actions are not
available, and that another way of gaining information about the state of the world is by using

35

trials. Some domains where joint trials are possible are mentioned below. These domains are
all adaptations of domains that are already present in literature.

1. The blocks world domain. Modified form of the domain is already discussed in section
2.4.1 where try actions were included into the domain. Now suppose it is known that a
block cannot be lifted by a single agent, but it might be possible if two agents try to lift
the block together. If the lifting of the block by two agents together is a joint action, then
both of them trying together to lift the block is a joint trial. Once the block gets lifted, the
two agents can perform several joint actions like moving the block to another position, or
placing the block back on the table. The failure to lift the block, would suggest that the
block is much heavier than the capacity of the two agents together to lift the block, and
that some other technique is to be used to lift the block.

2. Consider the example domain from [15] where there is a heavy door and it opens only
when there are two agents pushing together or pulling together the door. Now, that it is
known that the door opens only when both the agents push the door together or pull it
together. Let Joint PushDoor and Joint PuilDoor be the respective actions. An additional
condition may be added that the door opens only if it is not locked, and whether the door
is locked or not is not known. The joint trials Try_Joint_PushDoor and
Try_Joint_PuliDoor can now be used as trials for pushing or pulling, respectively, the
door open. When the door does not open, it is known (or learnt) that the door is locked
and that the door should be unlocked first so as to be opened.

3. The grid world domain is a popular multi-agent planning domain where there are agents
and obstacles in some of the blocks of the grid world. Each grid can have either an agent
or an obstacle or may be free at any instant oftime.-The obstacles in this domain, as far as

used in the literature, have fixed positions. Now an adaptation ofthe grid world domain is
considered where some obstacles can be moved by two agents who are in positions
adjacent to that of the obstacles. Therefore, if moving an obstacle is a joint action, then
trial of this action is a joint trial. The success or failure of the trial gives whether the

obstacle is loose or fixed respectively at its position.

The notation ar" j}'11 be used to denote a collective joint action a by agents i and j. To

represent the trial of this joint action, Try _a' 11 be used.

Now, consider the modified blocks world domain as discussed in section 2.4.1 but with all

the blocks as such that at least two agents are required to be able to lift or move the blocks.
36

•

Let A, B, and C be 3 blocks in the domain. The fluents and operators (along with
preconditions and effects) can now be modified from that in section 3.1 to be written as.

Fluents (x, y are distinct blocks) -
1. Relational:

• ArmEmpty{'}: true if agent i's arm is empty, false otherwise.

• ArmEmptyW'}: true if agent j's arm is empty, false otherwise.

• OnTable(x): True if x is on table, false otherwise.

• On(x, y): True if x is on y, false otherwise.

• Clear(x): True if there's no block on x, false otherwise.

• Holding{'°'}(x): True if the agent i and j are having x in their arms, false otherwise.
2. Knowledge:

• K{'''}(Light(x)): True if agents i and j know that x is. light with respect to both of
them, false otherwise.

• K{', j}(Heavy(x)): True if agents i and j know that x is heavy with respect to both of
them, false otherwise.

Operators (x, y are distinct blocks) —

• PickUp{"'}(x)
o Preconditions: ArmEmpty{')

'}(Light(x))
o Effects:

A ArmEmpty A OnTable(x) A Clear(x) A K{',

■ Delete: ArmEmpty{') A ArmEmptyW A OnTable(x)
■ Add: Holding{''j}(x)

PutDown{', j} (x)
o Preconditions:. Holding", j}(x) A K{', j}(Light(x))
o Effects:

■ Delete: Holding{'' j}(x)
■ . Add: ArmEmpty") A ArmEmptyfj} A OnTable(x)

Stack;'°'}(x, y)
o Preconditions: Clear(y):n Holding{',' }(x) n K{'°'}(Light(x))
o Effects:

■ Delete: Clear(y) A Holding{'°'}(x)
• Add: ArmEmpty{') A ArmEmptyfj} A On(x, y)

37

• UnStack{''j}(x, y)
o Preconditions: ArmEmpty{ }̀ A ArmEmptyU} A On(x, y) A Clear(x) A Kf"''}(Light(x))
o Effects:

■ Delete: ArmEmpty{ }̀ A ArmEmpty A On(x, y)
■ Add: Clear(y) A Holding{1'J}(x)

• TryPickUp{'''}(x)
o Preconditions: ArmEmpty{ }̀ A ArmEmptyt'} A OnTable(x) A Clear(x) A not K{"

j}(Light(x)) A not K'j}(Heavy(x))
o Effects: i V ii

i. (Success of trial)

• Delete: ArmEmpty{'} A ArmEmptyt} A OnTable(x)
• Add: Holding{"' }(x) A K{'°'}(Light(x))

ii. (Failure of trial)
R Delete: None
■ Add: K{'''}(Heavy(x))

• ApplyLever0'i}(x, y)
o Preconditions: ArmEmpty{'} A ArmEmptyU) A Clear(x) A Clear(y) A K{i, j}(Heavy(x))

A K[Lj}(Heavy(y))
o Effects:

• Delete: Clear(y)
• Add: On(x, y)

• RevLever{i' j}(x, y)

o Preconditions: ArmEmpty{'} A ArmEmptyf'} A On(x, y) A Clear(x) A K{'''}(Heavy(x))
A K{" j}(Heavy(y))

o Effects:
• Delete: On(x, y)

• Add: OnTable(x) A Clear(y)

5.3. Other concepts of trials

• Learning about capabilities of agents: Earlier, it was seen that a block is heavy or light
can be decided by an agent or the agents performing trial on the block. Note that a block
being heavy or light is relative to the agent and is not fixed for all agents. If there are a

38

number of agents, the capacities of the agents may be compared by making them perform
trials of some actions. For example, suppose there are two agents whose capacities are
known to be equal and they can lift a block together. Now if one of these agents is
replaced by another agent whose capacity is not known and the trial by them to lift the
same block fails, it is known that the latter agent has lifting capacity lower than the
replaced agent.

• Repetition of trials: So far, it has been assumed that a trial if one succeeds resp. fails

means the action which was tried would always succeed resp. fail. Now, suppose that an
action can succeed after being tried a number of times. The plans in case of repeated trials
are iterative. For example, consider again the grid world domain but with obstacles that
are not totally fixed or totally lose. The obstacles are such that the trial of moving them
can succeed after a number of trials by both the agents i and j in the domain. Let Mover"
i }(o, x2, y2) be the operator that moves an obstacle o to position (x2, y2) in the grid when
the obstacle is loose in its position and the agents are at required positions. Now, suppose
the obstacle 0 is to be moved from location (c, d) jointly by the agents. The -plan, when
the agents are at the required positions can then be written as:
While (not At(o, c, d))

<Try_Move{ili)(o, c, d)>

CHAPTER 6. CONCLUSION AND FUTURE WORK

The major part of the dissertation has been to develop planner(s) for the modified blocks
world domain. The algorithms for planners for information gathering and tower construction
from the default initial state of the order of 2' and N*2N respectively (N is the number of
blocks in the domain) have been given in the dissertation. The complexity orders are same as
that of the possible states that the robot can go through when trying to achieve the respective
goals in the optimal way. The plans generated by the planners are intuitively the most
optimal, although not in their size, but, in the average number of actions, over all the possible
permutations of weights of blocks, that'll be executed on execution of the plan.

The planner for tower construction from any initial state has also been developed. Although
the algorithm has not been given, various cases that are to be taken care of while writing the
planner have been explained with example plans generated by the planner developed. As a
part of future work, the planner can be generalized to generate plans for any goal
configurations, after developing the specification for representing goal states in the domain.

As another (minor) part of the dissertation, the concepts of joint trials — trial actions by
multiple agents —, repeated trials, and learning about capabilities of agents through trials have
been introduced. As a part of future work, these concepts are to be refined and the concept of
joint trials can also be extended to cases when the knowledge of the agents are different and

when there are agents with different abilities.

I'll

REFERENCES

[1] E. Rich and K. Knight, Artificial Intelligence, 2nd ed. New York: McGraw-Hill, Inc.,

1991.

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. New
Jersey: Pearson Educ., Inc., 2010.

[3] S. Koenig and Y. Liu, "Representations of Decision-Theoretic Planning Tasks," in Proc.

5th Int. Conf. Artificial Intelligence Planning Systems, Breckenridge, Colorado, 2000,
pp. 187-195.

[4] L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati, "Reasoning about Actions with
Sensing under Qualitative and Probabilistic Uncertainty," ACM Trans. Computational

Logic, vol. 10, no. 1, pp. 5:1-5:41, Jan. 2009.

[5] R. Niyogi, "Planning with Trial and Errors," in Proc. Int. Conf Intelligent Agent &
Multi Agent Systems 2009, Chennai, 2009.

[6] F. v. Martial, Coordinating Plans of Autonomous Agents. Germany: Springer-Verlag,

1992.

[7] J. S. Rosenchein and G. Zlotkin, "Designing Conventions for Automated Negotiation,"

AI Mag., vol. 15, no. 3, pp. 29-46, 1994.

[8] K. Matsubayashi and M. Tokoro, "A Collaboration Mechanism on Positive Interactions

in Multi-agent Environments," in Proc. 13th Int. Joint Conf Artifrcal Intelligence, vol. 1,
Chambery, 1993, pp. 346-351.

[9] W. S. Briggs and D. J. Cook, "Modularity and Communication in Multiagent Planning,"
Dept. Comput. Sci. and Eng., UTA, Arlington, 1996.

[10] H. J. Levesque, "What is planning in the presence of sensing?," in Proc. 13th Nat. Conf
Artificial Intelligence, vol. 2, Portland, 1996, pp. 1139-1146.

[l l] T.C. Son and C. Baral, "Formalizing sensing actions— A transition function based
approach," ArtificialIntell., vol. 125, no. 1-2, pp. 19-91, Jan. 2001.

[12] H. J. Levesque, "Planning with loops," in Proc. 19th Int. Joint Conf. Artificial

Intelligence, Edinburgh, 2005, pp. 509-515.

[13] L. Spalazzi and P. Traverso, "A Dynamic Logic for Acting, Sensing, and Planning," J
Logic and Computation, vol. 10, no. 6, pp. 787-821, Dec. 2000.

[14] R. Niyogi and R. Ramanujam, "An epistemic logic for planning with trials," in Logic,
Rationality, and Interaction: 'Second International Workshop, LORI 2009, Chongqing,
China, October 8-11, 2009, Proceedings, X. He, J. F. Horty, and E. Pacuit, Eds.
Germany: Springer-Verlag, 2009, pp. 238-250.

[15] A. Dovier, A. Formisano, and E. Pontelli, "An investigation of Multi-Agent Planning in
CLP," Fundamenta Informaticae, vol. 105, no. 1-2, pp. 79-103, Jan. 2010.

42

PUBLICATIONS

[1] Swetha Jain Kothari and Rajdeep Niyogi, "Generation of conditional plans for a modified

blocks world domain," in Proc. Int. Conf. Recent Advances in Engineering & Technology
(ICRAET 2012), Hyderabad, Apr. 29-30, 2012, pp. 28-31.

[2] Swetha Jain Kothari and Rajdeep Niyogi, "Generation of conditional plans for a modified

blocks world domain," Special Issue Int. J. Syst., Algorithms & Applicat. (I.ISAA), vol. 2,

no. ICRAET12, pp. 156-159, May 2012. ISSN Online: 2277-2677.

43

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

