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ABSTRACT 

In the last decade, the application of adaptive antennas to mobile communications has 

attracted considerable interest. Adaptive antennas, in a broad sense, implement spatial 

filtering by means of beamforming, using an antenna array with a small number of. 

antenna elements at the base station. In uplink, the received signals of all antenna 

elements are complexly, and adaptively weighted in accordance to some performance 

criterion, to either enhance the carrier-to-interference ratio for the reception of a single 

mobile's signal, or ultimately, serve many mobiles, transmitting atthe same time, and at 

the same frequency, but spatially separated by utilizing the spatial filter to separate the 

mobiles' signals, thus implementing 'spatial-domain-multiple-access, SDMA. To 

establish the performance criterion, adaption algorithms need a known reference for 

operation, either a training sequence embedded in the received signals (temporal 

reference), or the direction-of-arrival of the impinging signals (spatial reference), no 

explicit reference, except some knowledge of the impinging signal's properties (blind 

algorithms), or combinations thereof. 

Algorithm research for adaptive antennas is a vivid and ongoing discipline, as new 

mobile communication applications, and requirements emerge. Performance evaluation 

of these algorithms is possible by computer simulations to a certain extent which is 

carried out in this dissertation. 
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Chapter 1 

Introduction 

The growth of telecommunications, from the wired phone to PCSs, is resulting 

in the accessibility of wireless services that were not formerly considered 

realistic. In providing different types of wireless services, capacity and 

reliability are limited by some major impairments such as multipath fading, co-channel 

interference etc. In mobile communications, the fast increasing number of cellular 

phones demands an ever rising capacity for future mobile communications systems. In 

order to meet the needs of an ever increasing demand for mobile communications, the 

spread spectrum communication scheme (CDMA) was introduced which is an 

interference limited multiple access technique and incorporates frequency reuse and 

cell sectorization to enhance its cell capacity. 

None of the proposals that include improved air interface and modulation schemes fully 

exploited the multiplicity of spatial channels that arises because each mobile user 

occupies a unique spatial location. Space is truly one of the final -frontiers when it 

comes to new generation wireless communication systems. Spatially selective 

transmission and reception of RF energy promises substantial increases in wireless 

system capacity, coverage and quality. Filtering in the space domain can separate 

spectrally and temporally overlapping signals from multiple mobile units. Thus, the 

spatial dimension can be exploited as a hybrid multiple access technique 

complementing FDMA, TDMA, and CDMA. 
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SDMA is the technique that aims to improve the capacity and quality of wireless 

systems by utilizing the spatial dimension as a resource. It is based on the use of 

steerable antennas; incorporating electronically controllable Beamforming Networks 

(BFNs) thus enabling multiple users within the same radio cell to be accommodated on 

the same frequency and time slot, as illustrated in figure 1.1. 

User 2 
V 1~ t1) 

User 1 

a -0 

Rx/Tx Antenna 

Figure 1.1: SDMA Concept 

Realization of this filtering technique is accomplished using smart antennas, which are 

effectively antenna systems capable of modifying its time, frequency and spatial 

response. By exploiting the spatial domain via smart antenna systems, the operational 

benefits to the network operator can be summarized as follows: 

• Capacity enhancement 

• Coverage extension 

• Ability to support high data rates 

• Increased immunity to "near-far" problems 

• Ability to support hierarchical cell structures 
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1.1 Motivation and Scope 

Smart antenna is recognized as promising technologies for higher user capacity in 

wireless communication system. The core of smart antenna is the adaptive beam-

forming algorithms in antenna array. Adaptive Beamforming technique achieves 

maximum reception in a specified direction by estimating the signal arrival from a 

desired direction (in the presence of noise) while signals of the same frequency from 

other directions are rejected. There are several adaptive beamforming algorithms as 

LMS, SMI, RLS, CMA varying in complexity based on different criteria for updating 

and computing the optimum weights. Adaptive beamforming is known to have 

resolution and interference rejection capability when the array steering vector is 

precisely known, however the performance of adaptive beamforming techniques may 

degrade severely in the presence of mismatches between assumed array response and 

true array response. 

This problem can be overcome by neural network approach. In this dissertation, the 

development of a neural-network based robust adaptive beamforming algorithm, which 

treats the problem of computing the weights of an adaptive array antenna as a mapping 

problem. Using MATLAB, we investigated a novel approach to robust adaptive 

beamforming and show clearly how efficiently we compute the weight vector by using 

the neural network method. This algorithm provides excellent robustness to signal 

steering vector mismatches, enhances the array system performance under non ideal 

conditions and makes the mean output array SINR consistently close to the optimal 

one. 

1.2 Objective of the Study 

The objective of this work is to analyze and compare the performances of various 

conventional as well as NN based DBF techniques in terms of robustness, improved 

SINR. The underlying objectives can be summarized as follows: 

1. Literature survey of various beam forming algorithms. 
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2. Implementation of conventional algorithms (LMS, CMA, SMI, LSMI) 

3. Study of role of neural network in beamforming. 

4. Use of ANN (in place of conventional algorithms) for beamforming to achieve 

sufficient reduction in time to implement. in real-time. 

1.4 Organization of the Dissertation 

The dissertation is organized into five chapters including this introductory chapter 

which outlines the evolution path of various mobile communication schemes and the 

need of the DBF techniques to achieve special diversity. Literature survey of the work 

is also provided. Following the introduction, Chapter two presents the fundamentals of 

digital beamforming, its various types, and then evolution of the adaptive beamforming 

techniques with their mathematical analysis, associated requirements, assumptions, and 

specifications. Chapter three presents the simulation results of the two conventional 

beamforming techniques, LMS, CMA together with a critical analysis and comparison 

of the performance of the two with variations in antenna design parameters 

specifications. Chapter four presents the neural network based adaptive beamforming 

algorithm using RBFNN architecture, its mathematical model, network topology, its 

learning strategies and then the simulation is performed to justify the performance of 

the SMI, LSMI and robust adaptive beamforming. Then Chapter five concludes the 

dissertation with the concluding remarks and outline direction for future scope. 

1.5 Literature Survey 

Carl B. Dietrich has reported that Smart antennas can improve system performance, and 

found increasing use of it. He experimentally reported that smart handled terminals 

demonstrated over 20 dB of interference rejection witli single- and multi-polarized 

arrays and shows that Adaptive beamforming improved reliability, range, talk time, and 

capacity in both peer-to-peer and cellular systems [1]. 
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Brennan L. E reported the ability of AMTI (airborn moving target indication) radar to 

reject clutter is often seriously degraded by the motion of the radar. An adaptive 

receiving array can compensate for platform motion and provide excellent AMTI 

performance. Scattering from aircraft structure can also distort antenna patterns and 

reduce AMTI capability. He produced a technique that can adapt the element weights to 

compensate for near-field scatterers and element excitation errors [2]. 

Syed Shah Irfan Hussain developed a mobile tracking algorithm that has been devised 

for adapting the weights of the transmit antenna to attain optimal weights for a 

particular wireless static channel configuration. This algorithm was based on the sign 

gradient feedback algorithm (SGF), which was a coarse form of least mean square 

algorithm (LMS). This algorithm does not require knowledge of the transmit antenna 

configuration. It has been shown that this algorithm converges to optimum weights of 

the transmit beamformer as well as reduces their un-necessary perturbations around the 

point of convergence [3]. 

Mohammad Tariqul Islam developed a Matrix Inversion Normalized Least Mean 

Square (MI-NLMS) adaptive beam forming algorithm for smart antenna application 

which combined the individual good aspects of Sample Matrix Inversion (SMI) and the 

Normalized Least Mean Square (NLMS) algorithms and he is describe to improve the 

convergence speed with small BER . MI-NLMS computes the optimal weight vector 

based on the SMI algorithm and updates the weight vector by NLMS algorithm [4]. 

Ahmed H. El Zooghby used RBFNN for the direction of Arrival (DOA). He was found 

that networks implementing these functions were indeed successful in performing the 

required task and yielded good performance in the sense that the network produced 

actual output very close to the desired DOA. Also it was demonstrated that these 

networks are able to generalize, by training and testing using data sets derived from 

different signal conditions mainly with the effect of noise added to the data used for 

testing. The main advantage of the RBFNN is the substantial reduction in the CPU time 

needed to estimate the DOA [5]. 

Xin Song proposed the robust Capon beamformer (RCB) based on some types of 

mismatches and shows that the proposed robust Capon beamformer is much less 
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sensitive to some types of mismatches and the small training sample size than the 

standard Capon beamformer (CB). Moreover, the mean output SINR of RCB is better 

than that of CB in a wide range of SNR and N [6]. 

Michael Chryssomallis has given the overview of smart antenna and provided a basic 

model for determining the angle of arrival for incoming signals, the appropriate antenna 

beamforming and the adaptive algorithms that are used for array processing. Moreover 

he shows how smart antennas, with spatial processing, can provide substantial 

additional improvement when used with TDMA and CDMA digital-communication 

systems [7]. 
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Chapter 2 

Digital Beamforming and Antenna 
Array Processing Techniques 

eamforming is a classical method of processing temporal sensor array 

measurements for signal estimation, interference cancellation, estimating 

source direction, and spectrum estimation. Beamforming is a technique that 

utilizes an array of sensor elements to focus a receiver channel on a specific Sol or to 

transmit signal in a specified direction. It is a spatial filtering used to distinguish the 

spatial properties between a Sol and the noise and interference signals. Digital 

beamforming consists of the spatial filtering of a signal where the phase shifting, 

amplitude scaling, and summer circuit implemented to obtain the desired signal. 

Beamforming has been extensively used in wireless systems that utilize a fixed set of 

antenna elements in an array [8]. Allowing for receive beamforming in uplink 

transmissions, the signals from these antenna elements are combined to form a movable 

beam pattern that can be steered to a desired direction that tracks MSs as they move. 

This allows the antenna system to focus RF resources on a particular mobile station and 

minimize the interference [9]. When beamforming is used at the mobile station, the 

transmit beam pattern can be adjusted to reduce the interference to unintended 

receivers. At a base station, receive beamforming for each desired user could be 

implemented separately without affecting the performance of other links. 
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2.1 Fundamentals of Digital Beamforming 

Digital beamforming is based on capturing the RF signals and converting them into two 

streams of binary baseband I and Q signals which jointly represent the amplitudes and 

phases of signals received at the elements of the array as discussed in chapter one 

above. In DBF the direction of beam can be realized by forming an array with a number 

of elemental radiators. As the directivity of the antenna increases, the gain also 

increases. The increase in directivity means that the antenna receives less interference 

from signals that are not along its path of maximum gain or directivity. 

2.1.1 Beamforming Weight Vector 

As discussed before, a beamformer is a spatial signal processor, which produces an 

output with an emphasized desired signal compared to the input, which is the received 

signal at the array elements. It accomplishes this by applying a complex beamforming 

weight vector w = [w1  w2  w3  ... W N ]T  to the input signal vector: 

N 

y(k) _ 	wixi(k) 	 (2.1) 

where i is array element index, and k is the time index of the received signal sample 

being considered [10]. 

2.2 Antenna Array Processing 

An antenna array system is composed of a collection of spatially separated antenna 

elements. The antenna array system has the ability to dynamically adjust the combining 

mechanism in order to improve system performance as presented in the following 

subsections. 
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2.2.1 Uniform Linear Antenna Array 

In uniform linear array the spacing between the elements are equal. We consider a K 

element uniform linear array (ULA). The inter-element spacing between the arrays is d 

and a plane wave arrives at the array from a direction 0 with respect to the array normal 

and the wave front impinging on the first element travels an additional (d sin 0) 

distance to arrive at the second element. By setting the phase of the signal at the origin, 

the phase lead of the signal at element k relative to that at element 0 is xkd sin 0 where 

x = 	is propagation constant in free space and Z is wave length. Adding the entire 

component outputs together gives [10] array factor F: 

K-1 
F(0) = VO + V1ejKdsin0  + ... + VK_1ej(K-1)rcdsin0 — 1 VkejkKdsin0 	(2 2) 

k=0 
in terms of vector inner product: F(9) = VT  v 

where V = [V0  V1  ... VK _1 ]T  the weight vector and v = [1 e'Kd sin a e1(K-1)xd sin B]T  

is the array propagation vector that contains the information on the angle of arrival of 

the signal. 

2.2.2 Circular Antenna Array 

A circular array consisting of L identical isotropic elements evenly spaced in a circle of 

radius (R). Each element is weighted with complex weight Vi  for l = 0, 1, ... L — 1. 

Since the L elements are equally spaced around the circle of radius R, the azimuth angle 

of the 11h  element is given as cpi  _ . If a plane wave impinges upon the array in the 

direction of (0, ip) in the coordinate system, the relative phase at the 1 h̀  element with 

respect to the center of the array is given as [11] 

#1  = — KR cos(cp — q) sin 0 	 (2.3) 



2.2.3 Planar Antenna Array 

In addition to placing elements along a line to form a linear array, one can position 

them on a plane to form a planar array. Planar arrays provide additional variables which 

can be used to control and shape the array's beam pattern. The main beam of the array 

can be steered towards any point in its half space [10, 11]. One of the common 

configurations of planar arrays is the rectangular array, where the elements are placed 

along a rectangular grid. 

2.3 Digital Beamforming (I3BF) 

An antenna can be considered to be a device that converts spatiotemporal signals into 

temporal signals, thereby making them available to a wide variety of signal processing 

techniques. In this way all of the desired information that is being carried by these 

signals can be extracted. 

A major advantage of digital beamforming lies in the fact that once the RF information 

is captured in the form of a digital stream, the conversion of the RF signal at each 

antenna elements into two streams of binary baseband signals representing I and Q 

channels. The digital baseband signals then represent the amplitudes and phases of 

signal received at each element of the array. The process of beamforming involves 

weighting these digital signals, thereby adjusting their amplitudes and phases such that 

when added together they form the desired beam. It is possible to take a weighted sum 

of the antenna element out puts which maximize power in a given direction by 

implementing a multi-element antenna array at receiving end. 

2.4 Narrowband Beamforming 

A signal is considered to be narrowband if all the frequency components of the signal 

as they travel across the array undergo only a phase shift and not a change in the 

magnitude. In other words, the signal bandwidth is very small compared to the carrier 

frequency. If the signal bandwidth is very small compared to the carrier frequency then 
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the phase shifts undergone by the frequency components at the two edges of the band 

are almost equal. For a narrowband signal, narrowband array processing is the 

appropriate choice [12]. A narrowband array has one weight per element followed by a 

linear combiner. 

y(t) = wH(t)u(t) 
	

(2.4) 

Where superscript H denotes the Hermitian (complex conjugate) transpose and, w(t) is 

known as the beamformer weight vector. 

W = [Wp Wl W2 ... WM-1]T 	 (2.5) 

2.5 Wideband Beamforming 
0 

A signal is considered to be wideband if all the frequency components of the signal as 

they travel across the array undergo a phase shift with a change in the magnitude. In 

other words, the signal bandwidth is not very small compared to the carrier frequency. 

If the signal bandwidth is not very small compared to the carrier frequency then the 

phase shifts undergone by the frequency components at the two edges of the band are 

not equal. Therefore the phase shift line appears not to be flat across the bandwidth. For 

a wideband signal, wideband array processing is the appropriate choice [13]. 

Then, the output for a wideband adaptive beamformer may be expressed as, 

y(t) = ►V'" (t)uCt) 
	

(2.6) 

which is identical in form to the array output of the narrowband array. The wideband 

beamformer is more complex than the narrowband beamformer. 

2.6 Switched Beamforming 

Switched beamforming provides non-uniform coverage when the MS is moving from 

one beam to another [13], there might be a call drop due to no coverage zone in 

between two beams. In addition when the MS moves from one beam to another 
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intra-cell handover takes place, the frequency of which directly depends on the beam 

width. Adaptive beamforming overcome these two problems, as the beam follows the 

MSs to where ever they move. It is the simpler approach where the direction of arrival 

(DOA) of signal is detected in that direction by multiplying pre-computed complex 

vector. These algorithms such as: MUSIC and ESPRIT algorithms. These algorithms 

restrict their applicability in a wireless mobile communications because they cannot 

perform steer nulls and suppressing [14] strong interference. 

2.7 Adaptive Beamforming 

Adaptive Beamforming is a technique in which an array of antennas is exploited to 

achieve maximum reception in a specified direction by estimating the signal arrival 

from a desired direction while signals of the same frequency from other directions are 

rejected [10]. This is achieved by varying the weights of each of the sensors (antennas) 

used in the array. It basically uses the idea that, though the signals emanating from 

different transmitters occupy the same frequency channel, they still arrive from 

different directions. This spatial separation is exploited to separate the desired signal 

from the interfering signals. In adaptive beamforming the optimum weights are 

iteratively computed using complex algorithms based upon different criteria. Most of 

the algorithms are concerned with the maximization of the signal to noise ratio (SNR). 

2.7.1 Adaptation Criteria 

The optimum weights using different criteria are all given by the solution of the Wiener 

equation. These optimum criteria are as valid as in communications as in other 

applications. Though different forms of criteria appear in the [10], it can be shown that 

they all stem from the Wiener-Hopf equation. This is because the wiener solution 

provides the upper limit on the theoretical adaptive beamforming steady-state 

performance. Some of the most frequently used performance criteria are the Mean 

Square Error (MSE), the Maximum Likelihood (ML), Maximum Signal to Noise Ratio 

(MSNR) and Maximum Signal to Interference Noise Ratio (SINR) [13]. These 

performance criteria are usually expressed as cost functions and the weights are adapted 
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iteratively until the cost functions converge to a minimum value. Once the cost function 

is minimized we can be assured that the performance criterion is met and the algorithm 

is said to have converged. There are several factors that are to be considered while 

choosing an adaptive algorithm like the convergence rate of the algorithm, complexity 

and robustness. The convergence rate is the number of iterations required for the 

convergence of the algorithm. In mobile environments, convergence rate is important to 

converge to optimum before the channel conditions change [ 15]. 

2.8 Adaptive Beamforming Algorithms 

The basic adaptive algorithms that have been investigated for beamforming in mobile 

communications include the trained and blind adaptive beamforming algorithms as 

classified in figure 2.1 under adaptive array (beamforming) algorithms [10, 15]. 

Adaptive beamformer have additional capability to steer nulls in the direction of 

interfering signals. An adaptive beamformer comprised of N antenna elements can 

effectively reject N — 1 interfering signals [13]. 	 a 

Figure 2.1: Classification of adaptive array algorithms 
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Non-blind adaptive algorithms need statistical knowledge of the transmitted signal in 

order to converge to a weight solution. This is typically accomplished through the use 

of a pilot training sequence sent over the channel to the receiver to identify the desired 

user. On the other hand, blind adaptive algorithms do not need any training [10]. They 

attempt to restore some type of characteristic of the transmitted signal in order to 

separate it from other users in the surrounding environment. 

A basic adaptive beamformer is shown in figure 2.2. The weight vector w is calculated 

using the statistics of signal xN(k) arriving at the antenna array. 

xi (k) 	,.— Li/'1 

x,(k) 	
KIiI. 

~~ ~H + d(() 

Adaptive Processor 	 ± 

Figure 2.2: Adaptive beamforming configuration 

Through a feedback loop the weights, w1, ... , wN are updated by the time sampled error 

signal: 

e (k) = d (k) — y(k) 	 (2.7) 

where the training sequence, d(k), is the desired signal and y(k) is the output of the 

adaptive array, 

y(k) = wH x(k) 	 (2.8) 

The feedback system attempts. to direct the weights at each element to their optimal 

weights, wopt . The adaptive processor adjusts the weight vector to minimize the mean 

square error (MSE) of the error signal e(k) given by 

E[I e(k)I2] = E[I d(k) — y(k)I ] 	 (2.9) 

The output of the array y(k) with variable element weights is the weighted sum of the 

received signals at the array elements and the noise at the receivers connected to each 
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element. The weights are iteratively computed based on the array output, a reference 

signal that approximates the desired signal, and previous weights. The reference signal 

d(k) is approximated to the desired signal using a training sequence or a spreading 

code, which is known at the receiver. The format of the reference signal varies and 

depends upon the. system where adaptive beamforming is implemented. The reference 

signal usually has a good correlation with the desired signal and the degree of 

correlation influences the accuracy and the convergence of the algorithm [ 16, 17]. 

2.8.1 Trained Adaptive Algorithms 

Trained adaptive beamforming algorithms use a finite set of training symbols to adapt 

the weights of the array and maximize the SINR. First, a training signal, which is 

known to both the transmitter and receiver, is transmitted by the transmitter. The 

beamformer in the receiver uses the information of the training signal to compute the 

optimal weight vector. After the training period, data is sent and the beamformer uses 

the weight vector computed previously to process the receiver signal. The trained 

adaptive algorithms drawback is the excessive utilization of transmission time and 

wastage of bandwidth. The trained adaptive algorithms are categorized based on their 

adaptation criteria and they are the LMS, SMI and RLS methods [ 10, 13, 16]., For 

simulation study we use LMS from the trained adaptive algorithm. 

2.8.1.1 	LMS Algorithm 

The LMS algorithm can be considered as the most common adaptive algorithm for 

continuous adaptation. It uses the steepest-descent method and recursively computes 

and updates the weight vector. Due to the steepest-descent the updated vector will 

propagate to the vector which causes the least mean square error (MSE) between the 

beamformer output and the reference signal. The LMS algorithm is simple- to 

implement. But the dynamic range over which it operates is quite limited. Since the 

received signals in a mobile radio system vary by more than 20dB [18], power control 

is required if the LMS algorithm is to be used. The normalized LMS algorithm can be 

used to overcome the dynamic range limitation. The following derivation for the LMS 

algorithm is found in [17]. The MSE is defined by: 

E 2(k) = Id*(k) — wH x(k)12 	 (2.10) 
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d*(k) is the complex conjugate of the desired signal. The signal x(k) is the received 

signal from the antenna elements, and wHx(k) is the output of the beamformer antenna 

and H is the Hermitian transposition operator. The expected value of both sides leads to 

[17, 18] 

E[s2(k)] = E[d2(k)] — 2wH r + wH Rw 	 (2.11) 

In this relation, r and R are defined as [26, 27] 

r = E[d*(k)x(k)]  (2.12) 

R = E[x(k)x"(k)]  (2.13) 

R is referred to as the covariance matrix and r is the cross-correlation. If the gradient of 

the weight vector w is zero, the MSE is at its minimum [17]. This leads to 

Vw(E[E 2(k)]) = —2r + 2Rw = 0  (2.14) 

The solution of (2.14) is called the Wiener-Hopf equation for the optimum Wiener 

solution 

wopt  = R-lr  (2.15) 

The LMS algorithm converges to this optimum Wiener solution. The basic iteration is 

based on the following simple recursive relation [ 17, 18] 

w(k + 1) = w(k) + 2 µ(—VE[E Z (k)]) 	 (2.16) 

Combining (2.14) with (2.16) gives: 

w(k + 1) = w(k) + µ(r — Rw(k))  (2.17) 

The measurement of the gradient vector is not possible, and therefore the instantaneous. 

estimate is used as defined by (2.18) and (2.19) 

R(k) = x(k)xH(k)  (2.18) 

I (k) = d * (k)x(k)  (2.19) 

By rewriting (2.17) using the instantaneous estimates, the LMS algorithm can be 

written in its final form (2.20) 

0(k + 1) = iv(k) + px(k)(d*(k) — 
 

w(k + 1) = w(k) + µx(k)E*(k) 
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One of the issues on the use of the instantaneous error is concerned with the gradient 

vector, which is not the true error gradient. The gradient is stochastic and therefore the 

estimated vector will never be the optimum solution. The LMS cannot filter the system 

noise, as it is not correlated for all given antennas. The interferers are cancelled by 

placing nulls in the direction of the interferers. The LMS algorithm can be the best 

choice for systems with a relatively small number of antenna elements. 

w (k) 

x(k) 

w(k+l ) 

Figure 2.3: LMS algorithm Signal-flow graph 

2.8.1.2 	Recursive Least Square Algorithm 

RLS is a recursive version of the LS approach, where the inversion of the matrix is 

carried out using a recursion. An important feature of RLS algorithm is that the 

inversion of the covariance matrix is replaced at each step by a simple scalar division. 

This feature reduces the computational complexity while maintaining a similar 

performance. For a fast fading channel, a value slightly below unity should be chosen. 

A value of 0.95 was reported to be reasonable [19]. 

RLS requires computations of the order of M2  where M is the number of antenna array 

elements. RLS operates on a sample-by-sample basis and hence to process N samples, 

RLS requires computations on the order of MZN operations. In contrast to the LMS 

algorithm, a RLS adaptive algorithm approximates the Wiener solution directly [16]. 

The RLS algorithm uses weighted sums for estimating Rxx  and rxd  using the following 

equations, 
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N 

Rxx - 	 (2.21) 
i=1 
N 

fXd = N  yn-1d*(i)x(i) 	 (2.22) 
i=1 

The matrix inversion obtained recursively and the weight update equation is given 

in[l O] 

w(n) = w(n - 1) + q(n)[d*(n) - wH(n — 1)x(n)] 	(2.23) 
where 

Y-1Rxx(n - 1)x(n) 
9(n) - 1 + y-ixH(n)R;Z (n - 1)x(n) 	 (2.24) 

where 

R-  (n) = y-1[R-  (n - 1) - q(n)x(n)R-  (n - 1)] 	(2.25) 

Recalling that the statistically optimum Wiener solution is 

wopt = 

 

D-1  rxd 
	 (2.26) 

The RLS algorithm converges faster than the LMS algorithm but at the expense of 

computational complexity. RLS requires an initial estimate of RXx matrix and a 

reference signal. 
w(n-1) 

x(n) 

q(n) w(n). 

Figure 2.4: Signal-flow graph of the RLS algorithm 
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2.8.2 Blind Adaptive Algorithms 
Adding a known training sequence prior to data transmission leads to additional 

overhead, which limits the channel bandwidth available for data. The techniques 

generally referred to as blind adaptive algorithms adapt by attempting to restore some 

known property of the received signal. It uses statistical information of the signal. BIind 

algorithms can be classified as property restoral algorithms, channel estimation 

algorithms and de-spreads and re-spread algorithms. The algorithms have been studied 

by a number of authors [10]. 

2.8.2.1 	Constant Modulus Algorithm (CMA) 

The CMA gives a single beamformer vector. This is sufficient for blind equalization 

applications, where the received signal consists of several temporal shifts of the same 

CM signal, and we do not have to recover all of them [20]. The CM algorithm. is 

applicable to constant modulus signals and adjusts the weight vector of the adaptive 

array to minimize the variation of the envelope at the output of the array. After the 

algorithm converges, the array can steer a beam in the direction of the signal of interest 

(SOI), and nulls in the directions of the interference. The only disadvantage of CM 

algorithm is that it converges to the strongest user in the channel. Godard was the first 

to make use of constant modulus algorithm (CMA) property to carry out blind 

equalization in two-dimensional digital communications systems [21]. The output of a 

DBF array is given as: 

y(k) = W H x(k) 	 (2.27) 

Assuming that the transmitted signal S(k) has a constant envelope, the array output 

y(k) should have a constant envelope as well. This can be accomplished by adjusting 

the array weight vector w in such a way as to minimize the cost function, which 

measures the signal modulus variation and is given in a general sense by 

Z = D(f [S(k)], f [y(k)]} 	 (2.28) 

Where D and f are some defined specific distance metrics. In particular, the updated 

value of the weight vector at time k + 1 is computed by using the simple recursive 

relation 

w(k + 1) = w(k) + 1 p(—VE[e(k)]) 	 (2.29) 
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Where the gradient VE [E(k)] can be found as: 

	

VE[E(k)] = —E{[rp(k) — IY(k)I Z ]y(k)x(k)) 	 (2.30) 

In reality, an exact measurement of the gradient vector is not possible, since this would 

require a prior knowledge of E[IS(k)IP]. The strategy is to scale S(k) to unity and to 

use the instantaneous estimate, 

V(E[£(k)]) = — [1  — Iy(k)I 21y(k)x(k) 	 (2.31) 

The weight vector can then updated as 

	

w(k + 1) = w(k) + p[1  — l y(k)12 ]y(k)x(k) 	 (2.32) 

The error is different and defined by [10] as 

E(k) = [1 - I y(k) I 2 ]y`(k) 	 (2.33) 

The CM algorithm can be found in many derived forms. The error function for a 

derived version is given as 

E(k) = y(k)  
ly(k)I 

 - y(k) 	 (2.34) 

We can express the updating equation as 

	

w(k + 1) = w(k) + yx(k)E*(k) 	 (2.35) 

The advantage of the CM algorithm is the fact that it only needs the instantaneous 

amplitude of the array output l y(k) I and therefore no synchronization is required. Due 

to this property, the CM algorithm is relatively simple to implement. 

2.8.2.2 	Decision-Directed Algorithm (DDA) 

In the decision- directed algorithm, the tab weights of the adaptive equalizer are 

adjusted for an adaptive process and widely used for adaptive equalization to combat 

inter-symbol interference (ISI) in digital communications. Although the decision-

directed algorithm widely used in adaptive equalization, it is only applied to diversity 

combining and beamforming [10]. The decision-directed beamforming for wireless 

communications has been studied by a number of authors [22]. 

20 



Chapter 3 

Analysis and Simulation 

3.1 Digital Beamforming Algorithms 

n mobile cellular communication frequency reuse and cell sectorization are widely 

implemented in order to increase cell capacity and coverage. But due to signal 

power radiated in directions and throughout the cell area further increment in 

capacity and coverage is not practically reliable [13]. Thus, Beamforming is one to 

minimize these constraints. There are mainly two approaches to Beamforming: 

switched and adaptive beamforming based on their complexity and efficiency. 

The simpler one is switched BF where the direction of arrival (DoA) of the signal is 

detected and corresponding beam is formed in that direction by multiplying complex 

array factor (AF). The DOA in the switched beamforming can be computed• using 

algorithms such as MUSIC and ESPRIT but these algorithms do not suppress strong 

interfering signals [13]. 

Adaptive beamforming is more complex, but highly efficient where the radiation 

pattern is constructed dynamically in which interferers are blocked by placing nulls and 

the beam is formed in the direction of users. Beam steering implemented in the 

direction of the user as it moves using fully adaptive antenna array. The complex 

weights are computed by using adaptive algorithms: LMS, RLS, SMI, CMA, and DDA 

which are discussed under chapter 2 above. Thus, the required pattern is formed by 

multiplying the computed weights with the signal from the antenna array. In this work, 
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we try to emphasize on LMS and CMA of the discussed beamforming algorithms, in 

the simulation study for the performance measurement. The adaptive algorithms LMS 

& CMA are less complex and simple to implement relative to the others. 

N 

y(k) ~ 	wixi(k) 
i=1 

I 	Initialization (k, d, it ...) 

Generating Signal and Interference with known power 

I Signals received by antenna array I 

Initialized weighting 

Multiply received signal with weight vector 

N 

	

Combined signal y(k) _ 	w•x•(k) ~t 
i=1 

refernce signal d(k) 	y(k) 

I 	e(k)=d(k) y(k) 	I 

Yes R No 
Weight control 	 Error? 	 End 

Figure 3.1: Adaptive Beamforming Algorithm Flow chart 

In CDMA, although there is no hard limit on the number of mobile users served, there 

is a practical limit on the number of simultaneous users in a cell to control the 

interference among users having the same pilot signal. The system capacity bound with 

acceptable QoS of CDMA systems supporting voice and data traffic in the reverse link 

is given in many literatures [15]. We assume that antenna array is used at the base 

station only, and at the mobile station we have a single antenna, which results a channel 
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configuration of multiple input single output as shown in figure 5.1. The service area of 

a mobile cellular network is assumed to be covered by many identical regular 

hexagonal cells and mobile stations are uniformly distributed in each cell with a 

random speed v which has a probability density function (pdf) fy(v). Mobile stations 

move randomly in any direction with equal probability over [0, 27r) angle of arrival. In 

mobile cellular system implementing beamforming algorithm, it is assumed that the 

bandwidth separation is Bb , which is further assumed as the minimum separation angle 

between two consecutive mobile stations using the same physical channel [15]. The 

inter-antenna elements spacing (d) is in terms of signal wavelength (X) and we use few 

number of array antenna elements: 4 and 6 to emphasize on some of the beamforming 

algorithm effective with few number of antenna elements. 

3.2 Simulation Model and. Parameters 

The simulation has been performed using MATLAB codes. From the Beamforming 

algorithm discussed above we choose for the simulation study only two of them from 

adaptive algorithm: LMS and CMA. The simulating codes have loops to update the 

weight vectors that are used to estimate the desired signal. The parameters used in this 

simulation study are: antenna noise figure (base station system noise), the step size (p.), 

antenna spacing (d), and antenna array element. The efficiency of these algorithms is 

dependent on the selected values for the above parameters. In addition to these 

parameters there are other parameters which are considered to be fixed with constant 

values. Mainly the simulation model for these two algorithms looks for specific system 

model and analysis model as discussed in the next sub sections. The error is a result of 

the extra `system' noise that is added to all antennas. The interference signals are 

Gaussian white noise, zero mean with a standard deviation of 1. 

The following assumption is considered to simplify the simulation environment: 

• Perfect power control. 

• A beam formed by the array can be steered in any direction in the azimuth 

plane. 
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Table 3.1: Simulation parameters 

Inter-antenna element spacing (d) 0.25X, 0.5%, and X 
Step size (µ) 0.1,0.01 and 0.001 
Number of antenna array elements 4 and 6 
System noise (antenna) 0.1 and 0.01 
No of interference in the system. 2, 3,4 and 5 
Desired signal AOA 20 degree 
.Steering angles for null interferences -82 -40 -19, -10, 0, and 40, (degree) 
Bit rate 

1Noofsampi(1tatbont1me)~~~ 
100 
210 

System band width (W) 1.25 MHz 
Bit-error rate (BER) 10-3 

3.3 Simulation Results and Discussion 

3.3.1 LMS Adaptive Beamforming Algorithm 

The LMS is discussed in subsection 2.8.1.1; an adaptive array is simulated in 

MATLAB by using the LMS algorithm explained above. When an array of 6 element 

antennas are used, there is a maximum of 5 nulls that can eliminate the interferer and 

when 4 element antennas are used, there is maximum of 3 nulls that can reject 

interferers. Synchronization of the LMS algorithm usually involves the use of 

correlators in the digital beamformer to align the desired vector with the incoming 

signal. The interferers are cancelled by placing nulls in the direction of the interferers. 

Figure 3.2 below is the simulation result obtained using 6 antenna elements and 

assuming five interfering signals. The inter-antenna spacing is equal to half 

wavelength. From this figure one can observe that, LMS adaptive beamforming 

weighted signal II starts from zero and estimate the normalized desire signal 

magnitude. The error amplitude also is minimized as the number of iteration (samples) 

becomes greater. It means LMS error rapidly decreases up to 60 samples and then very 

slowly. The reason why the LMS error start from one and weighted signal from zero is 

that, trained adaptive algorithm uses reference signals and initialized the weight vector 

to zero. 
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Desired signal 20 degrees with five interferers 
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Figure 3.2: LMS algorithm for an adaptive array with 6-element antenna and 5 

interferers for antenna noise figure equal to 0.1, p = 0.01, and d=0.5?, Amplitude 

versus time of iteration. 

Figure 3.3 is similar to figure 3.2 but their difference lies on the simulation parameter 

value. Comparing them, we can observe that Figure 3.3 is more efficient in estion4_ 
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Figure 3.3: LMS algorithm for an adaptive array with 6-element antenna and 5 

interferers for antenna noise figure equal to 0.01, t = 0.01, and d = 0.5?, Amplitude 

versus time of iteration. 
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of the desired signal after some samples and it highly minimizes LMS error. In this 

simulation study we use the system (antenna) noise figure smaller than in case of 

Figure 3.2. This shows it has a direct effect on the performance of beamforming 

algorithms and that is discussed under Table 3.1 why we chose it as a simulation 

parameter. 

Figure 3.4 below is the array factor versus angle. From this figure we see that the 

desired signal is steered at 20 degree and we have five nulls where strong interfering 

signals steered to be rejected. As shown by the simulation result, the desired signal 

properly received with array factor of OdB. The simulation performed assuming one 

desired signal and 5 interfering signals, this 6 antenna arrays can reject 5 strong 

interfering signals. This simulation result shows that the LMS algorithm is 'able to 
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Figure 3.4: Array factor for LMS algorithm for an adaptive array with 6-element 

antenna and 5 interferers for antenna noise figure equal to 0.01, 4 = 0.01, and d = 0.5X. 
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iteratively update the weights to force deep nulls at the direction of the interferers and 

achieve maximum beam in the direction of the desired signal. The nulls can be seen 

deep at below -45dB level from the maximum observed at 20 degree. 

The simulation result given below under figure 3.5(a) and 3.5(b) is using the same 

simulating parameter with the result discussed above in figure 3.2 and 3.3, but they are 

differing in number of antenna used. Here we use 4-element antenna to maximally 

reject three interfering signals. The weighted signal estimates the desired signal 

efficiently after 60 samples as given by figure 3.3; whereas the estimation is attained 

best result after 120 samples when 4 antenna elements are used as shown in 

figure 3.5(a) below. 

Thus, from these two simulation results as the number of antenna element at base 

station increase, the LMS algorithm for digital beamforming performance increases. In 

other words, adaptation of the LMS algorithm is very high and converges rapidly. As 

the number of antenna array element increases the width of the main lobe decreases, the 

number of the side lobe increases and the number of nulls in the pattern increases. 

Therefore, using more antenna .at base station maximize the performance of digital 

beamforming by rejecting more interferences which maximize the SINR. 
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(b) Array factor (dB) versus theta (degrees) 

Figure 3.5: LMS algorithm for an adaptive array with 4-element antenna and 3 

interferers for antenna noise figure equal to 0.01, g = 0.01, d = 0.5A.. 

From figure 3.6 below, we can see how the inter antenna element spacing affects the 

performance of the adaptive beamforming algorithms. In this simulation study we 

assume that the inter-antenna element spacing distance is full wavelength. The LMS 

algorithm for CDMA system capacity improvement is strongly affected by the antenna 

array arrangement, from this simulation result the normalized weighted signal 

magnitude is about 0.5 or half of the desired signal and the overall LMS error obtained 

averages to over 0.5 or it results in over 50% error. Thus, using this value deteriorate 

the performance of LMS algorithm as we can see from figure 3.6, this result cannot be 

accepted. Increasing inter antenna element spacing causes the main lobe in undesired 

direction, which causes grating lobe. 
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Figure 3.6: LMS algorithm for an adaptive array with 6-element antenna and 5 

interferers for antenna noise figure equal to 0.1 and ? = d and g = 0.01 
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From figure 3.7 below the inter antenna element spacing distance is one fourth 

wavelength (0.251,). From this simulation result the normalized weighted signal 

magnitude is very slowly adapt to the desired signal and the LMS error obtained is also 

deceases slowly. But comparing with the case where inter-antenna element spacing 

distance is full wavelength (d = X), the result obtained by this simulation study is more 

practical and acceptable. Also from the simulation result obtained for the array factor, 

only two interfering signals would be rejected even though from figure 3.4 using the 

same numbers of antenna element five strong interfering signals are rejected. As seen 

from figure 3.7(b) the inter-element spacing decreases the number of rejected 

interferences is limited so, the system capacities and coverage becomes reduced. Thus 

using such\ value deteriorates the performance of beamforming algorithm used to 

enhance the system performance. 
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Figure 3.7: LMS algorithm for an adaptive array with 6-element antenna and 4 

interferers for antenna noise figure equal to 0.1 and d = 0.25A. and µ = 0.01. 

The simulating parameters implemented for the results given by figure 3.8 below is the 

same with parameters that result figure 3.3, only differ by the step size µ. Here µ = 

0.001, using this value and keeping other parameters the same, we get the results shown 

in figure 3.8 below. From this simulation result the normalized weighted signal 

magnitude is very slow to adapt toward the desired signal and the LMS error obtained 

also very slowly decreases. As one can see over the considered sample the normalized 

weighted signal magnitude is under 0.6 and the LMS error is above 0.4. 

When number of samples (at number of iterating time) is 120 the weighted signal 

normalized amplitude is 0.5 and LMS error is also 0.5. Based on the simulation result 

given by figure 3.8 to implement small step size the LMS adaptive beamforming 

algorithm must require very large number of reference signal, which need more 

bandwidth. Since the wireless bandwidth is highly limited, it is not economical to use 

more reference signals as it wastes more scarce resources. Thus using such value 

deteriorates the performance of beamforming algorithm used to enhance the system 

performance. 
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Desired Signal 20 Degrees with Five Interfering signals 
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Figure 3.8: LMS algorithm for an adaptive array with 6-element antenna and 5 

interferers for antenna noise figure equal to 0.01 and 0.5 ? = d and µ = 0.001. 
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The simulation result given by figure 3.9 below uses the same simulation parameters as 
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Figure 3.9: LMS algorithm for an adaptive array with 4-element antenna and 2 

interferers for antenna noise figure equal to 0.01, µ = 0.01, d = 0.5X. 
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in figure 3.3, but they only differ in the number of antenna elements and assumed 

number of interfering signals. In this simulation study, 4-element antenna arrays and 2 

interfering signals are considered. The maximum interference that can be rejected using 

4 antenna elements is 3. From the results obtained, we can see that the normalized 

weighted amplitude is slow to adapt to the desire signal and the LMS error is 

decreasing slowly. The result obtained from this simulation for 140 samples are 

relatively the same as the result obtained from figure 3.3 after 60 samples. 

3.3.2 CMA for Adaptive Beamforming 

In reality, an exact measurement of the gradient vector is not possible, since this would 

require a prior knowledge of E[I S(k) I P]. The strategy is to scale I S(k) I to unity and to 

use the instantaneous estimate discussed in sub-section 2.8.2.1. The algorithm is 

simulated in MATLAB and the result of the simulation can be found in figure 3.10 and 

3.1 l below. The algorithm converges slower than the LMS algorithm, as we can 

observe from figure 3.3 and figure 3.10 and figure 3.2 and figure 3.11. The simulation 

was done with a relatively low system noise. The interferers are the same as in the LMS 

experiment with the same angle of arrival of the signals. 

The signals of the interferers arrive at an angle of —10, —40 and 58 degrees. The signal 

to be received arrives at an angle of 20 degrees as shown in figure 3.12 below. Figure 

3.12 shows the amplitude response of the adaptive array factor, where three interferers 

are rejected. The results demonstrate the concept of the CM algorithm. From the 

comparison of these two algorithms we observe a difference in initialization of 

weighting vectors. During the efforts to simulate the CM algorithm it was clear that the 

algorithm is less stable than the LMS algorithm. Simulations of the algorithm using the 

error defined in (2.33) have not resulted in stable results. The advantage of the CM 

algorithm is the fact that it only needs the instantaneous amplitude of the array output 

y(k) I and therefore no synchronization is required whereas LMS requires 

synchronization as discussed in the previous section. Due to this property, the CM 

algorithm is relatively simple to implement. 
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Figure 3.10: CMA algorithm for an adaptive array with 6-element antenna and 5 

interferers for antenna noise figure equal to 0.01, p = 0.01, d = 0.5X. Amplitude versus 

time of iteration 
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Figure 3.11 CMA algorithm for an adaptive array with 6-element antenna and 5 

interferers for antenna noise figure equal to 0.1, p. = 0.01, d = 0.5% Amplitude versus 

time of iteration 

Figure 3.13(a) below is the simulation result obtained for CMA algorithm using the 

same parameters as the parameters used for simulating the figure 3.10 only differing in 

the inter-antenna spacing distance. Comparing the error magnitude for the two cases, 

we can realize that the change in inter-antenna element spacing affects the performance 
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Figure 3.12: CMA algorithm for an adaptive array with 4-element antennas and 3 

interferers for antenna noise figure equal to 0.01, t. = 0.01, d = 0.57. Array factor (dB) 

versus theta (degrees) 

of the CMA algorithm for digital beamforming to enhance system capacity. As 

explained above the inter element antenna spacing d = 0.25, is not suitable distance to 

implement this algorithm and it cannot properly reject the interferences. 
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Figure 3.13: CMA algorithms for an adaptive array with 4-element antenna and 2 

interferers for antenna noise figure equal to 0.01 and d = 0.25? and µ = 0.01 

From figure 3.14(a) and (b) shown below, we see that the CMA for digital 

beamforming is affected by the magnitude of inter-antenna element spacing comparing 
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with figure 3.10 give above. Using d = a. to enhance the system performance by 

implementing digital beamforming concepts as observed from figure 3.6, 3.7 for LMS 

algorithm and figure 3.10 for CMA algorithms. The CMA error magnitude is highly 

fluctuating randomly and averaged to around 0.75 or 75% and the weighted signal is 

highly oscillating and become unstable. Therefore, the result obtained using such 

parameter is not practical as it shifts the desired signal arrival angle and mismatch the 

nulls with interfering signals as we can see from figure 3.14(b) below. 
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Figure 3.14: CMA algorithm for an adaptive array with 4-element antenna and 2 

interferers for antenna noise figure equal to 0.01 and A, = d and µ = 0.01. 

As discussed above in figure 3.8 using very small adaptation step size affects the 

beamforming algorithms performance. From these two simulation result for different 

adaptive algorithm we observe that in order to adapt to the desired signal the adaptation 

step size should be reasonable. But comparing to the result obtained from figure 3.8 the 

result obtained from simulation result given by figure 3.15 are highly unstable and it 

cannot show any improvement in error amplitude and estimation of desired signal. 

These indicate that the LMS algorithm converges as the number of sample increases 

while CMA cannot do this. 
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Figure 3.15: CMA algorithm for an adaptive array with 4 antennas and 3 interferers for 

antenna noise figure equal to 0.01 and 0.5 ? = d and t = 0.001. 
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Chapter 4 

Neural Network based Robust 
Adaptive Beamforming Algorithm 

Neural networks have found numerous applications in the field of signal processing 

[5, 23], mainly because of their general purpose nature, fast convergence rates, and new 

VLSI implementations. The aspect of antenna array signal processing focuses on 

adaptive beamforming. Adaptive beamforming is used for enhancing a desired signal 

while suppressing noise and interference at the output of an array of sensors. When 

adaptive arrays are applied to practical problems, the performance degradation of 

adaptive beamforming techniques may become even more pronounced than in the ideal 

case because some of underlying assumptions on the environment, sources, or sensor 

array can be violated and this may cause a mismatch between the presumed and actual 

signal steering vectors. To account for the signal steering vector mismatches, additional 

linear constraints (point and derivative constraints) can be imposed to improve the 

robustness of adaptive beamforming. But, the beamformers lose degrees of freedom for 

interference suppression. Diagonal loading has been a popular approach to improve the 

robustness of adaptive beamforming algorithms. However, a serious drawback of the 

approach is that there is no reliable way to choose the diagonal loading factor. 

Neural network methods possess such advantages as general purpose nature, nonlinear 

property, passive parallelism, adaptive learning capability, generalization capability and 

fast convergence rates. Neural network method is typically used in two steps: training 

phase and performance phase. Neural network is first trained with known input/output 

41 



pattern pairs. It can be implemented off-line, although a large training pattern set is 

required for network training. After the training phase, it can be used directly to replace 

the complex system dynamics. By these inherent advantages of the neural network, this 

thesis presents the development of a neural network-based robust adaptive 

beamforming algorithm, which treats the problem of computing the weights of an 

adaptive array antenna as a mapping problem. 

4.1 Mathematical Model 

Consider a uniform linear array (ULA) with M omni-directional sensors spaced by the 

distance d and D narrow-band incoherent plane waves, impinging from directions 

{e,, B2.... 

The observation vector is given by 

X(k) = s(k) + i(k) + n(k) 

	

= so(k)a + i(k) + n(k) 	
(4.1) 

where X(k) is the complex vector of array observations and it expressed as 

	

X (k) = [ x1(k), x2 (k), ...... xM  (k)]T 	 (4.2) 

so(k) = the signal waveform, 	 a is the signal steering vector, 

i(k) is the interference component, 	 n(k) is the noise component. 

The output of a narrowband beamformer is 

y(k) = w 11  X (k) 	 (4.3) 

where w is the complex vector of beamformer weight and it expressed as 

w = [w1 , wZ , ..... , WM]T 	 (4.4) 

The signal to interference plus noise ratio (SINR) has the following form 

SJNR = w  R 	
(4.5) 

wH  Ri+nw 

where RS  is Mx X signal matrix that is statistical expectation of signal vector and it is 

R$  = .E{s(k)sH  (k)} 
	

(4.6) 
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and R;+.,, is signal plus noise covariance matrix as 

R1 	E{(i(k) + n(k))(i(k) + n(k))H } 	 (4.7) 

The adaptive beamformer weight vector is computed in order to optimize the 

performance in terms of a certain criterion. Although several criteria can be used, we 

limit our consideration by the output SINR criterion, which is rewritten as 

2 
SINR 	SW 

Ra 	 (4.8) 
w Ra+nw 

where a.2  is the signal power. 

The problem of finding the maximum of (4.8) is equivalent to the following 

optimization problem 

minwH Rt+nw subjecttowHa = 1 	 (4.9) 

From (4.9), the following solution can be found for the optimal weight vector 

Ri+na _ 
wopt 	aHR-' a  

Inserting (4.10) into (4.8), we obtain that the optimal S1NR is given as 

(4.10) 

SINR,pt  = as ORi+na 	 (4.11) 

where equation (4.11) gives an upper bound on the output SINR (4.8). 

4.1.1 Sample Matrix Inversion (SMI) Algorithm 

The sample matrix is a time average estimate of array correlation matrix using N-time 

samples. If random process is ergodic in the correlation, the time average estimate will 

equal the actual correlation matrix. In this method we use N—length block of data. In 

practical applications, the exact interference-plus-noise covariance matrix R;+/z  is 

unavailable. Therefore, the sample covariance matrix is used instead of R;+ . 

= IZ 1 X(i)X' (i) 	 (4.12) 

where N is the number of snapshots available. 
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Thus weight of SMI algorithm is 

WsMJ = aR-1Q 
	

(4.13) 

where a = a R-1 a is the normalization constant that does not affect the output SINK. 

The SMI algorithm is very sensitive to the mismatch between the presumed and actual 

spatial signature vectors. 

4.1.2 Loaded Sample Matrix Inversion (LSMI) 

Algorithm 

One of the most popular robust approaches is the loaded SMI (LSMI) algorithm, which 

attempts to improve the robustness of the SMI technique against an arbitrary spatial 

signature mismatch by means of diagonal loading of the sample covariance matrix [20]. 

The essence of LSMI algorithm is to replace the conventional sample covariance matrix 

R by the so-called diagonally loaded covariance matrix. 

Rdj =R+fJ 	 (4.14) 

where is a diagonal loading factor. So that, we can write the LSMI weight vector in 

the following form 

WLSMI = Rd(1Q = (R + f I)-1a 	 (4.15) 

So the LSMI algorithm can improve the performance of SMI algorithm in scenarios 

with an arbitrary steering vector mismatch, this improvement is not significant because 

LSMI algorithm exploits the presumed steering vector and, therefore, its performance 

degrades when the norm of the error vector is large. Furthermore, the proper choice of ~ 

represents a serious problem in practical applications because 	depends on the 

unknown signal and interference parameters. 

4.1.3 Robust Adaptive Beamforming 

We assume that the norm of the steering vector distortion ae can be bounded by some 

known constant sZ 

IIaeII2 <E2 	 (4.16) 

44 



Then, the actual signal steering vector 

a = ae  + a 	 (4.17) 

where a is the assumed steering vector. 

Cost function of robust adaptive beamforming algorithm minimizes the mean output 

power subject to the inequality constraint. Thereby, the optimization problem can be 

formulated as 

min(ae  + a)H R-1(ae  + a) subject to Ilae 11 2  < E Z  (4.18) 

The solution to (18) can be obtained using Lagrange multiplier method by minimizing 

the function 

H = (ae  + a)'R-1(ae  + a) + A(ae ae  — E 2 ) 	(4.19) 

where A is Lagrange multiplier.  

For finding the norm of steering vector computing this gradient of (4.19) and equating 

it to zero yields 

ae  = —( -1  + A I)
1 R-1 a 	 (4 20) 

So by equations (4.18) and (4.20), we get 

aH R —1  (T— ' + A I)-2  T —1  a = E2 	 (4.21) 

The covariance matrix decompose into Eigen value and eigenvector form as 

R = UIIU H 	 (4.22) 

Where columns of U are the eigenvectors and diagonal elements of A are known values 

of R. 

Then inserting (4.22) into (4.21), we can obtain 

ãF U 11—' (l1-1  + A 1)-2  j1' u'' a = E2 	 (4.23) 

Let F = U H  a and above equation can be simplified as 

f(A) = r1 Flt = (1+ Ay,)2 	E2 	 ( 4.24) 
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Left side of (4.24) is a monotonically decreasing function of A, and we can obtain a 

unique solution A > 0. And hence. can be obtained efficiently by Newton's method [7]. 

From (4.24), we have 

	

M 	IFil2 	2 	M 	1£il2 
~i=1 (1+AY,)2 = £ < ~i=1 (AY1)2 	

(4.25) 

This gives the upper bound on A 

1 

	

<£ ( 't'~ IF,. 1 212 	 (4.26) 
_ ~i=1 yi2 ) 

By replacing the y, in (4.24) with yl and yM respectively, we get 

IIaII-E ~ A < 11Qll-E 
(4.27) 

YIE 	 YME 

We can combine (4.26) and (4.27) to give the following upper and lower bounds on the 

solution of A 

1 

	

Ilall-£ c 	< mint Ila1~1=E i (~n~ 1 FI212 	 (4.28) 
Yi E 	 YM E ' 	J 

Solving (4.22) for 12 by a Newton's method using that the solution is unique and it 

follows the above condition. Thus the weight vector for RAB written as 

((A+1)-1-1)a 
WRAB — d H p-t ((A)+1)-1_J)2 - 	 (4.29) 

U A.-1((AA+I)-1_I)U x a 	
(4.30) 

aH UA-1((AA±1)-1-1)2UHa 

4.2 Radial Basis Function Neural Network 

(RBFNN) 

The weight vector of the above algorithm is a nonlinear function of the sample 

covariance matrix, and is not suitable for real-time implementation. Therefore, it can be 

approximated using a suitable architecture such as RBFNN in this dissertation. The 

array outputs are preprocessed, and then applied to the RBFNN. The sample covariance 

46 



matrix R is presented to the input layer of the RBFNN, and the vector WRAB  is produced 

at the output layer. As it is the case, with most neural network, the RBFNN is designed 

to perform an input-output mapping, trained with examples (R; wp,p,a), 1= 1, 2, ..., NT, 
where NT  stands for the number of examples contained in the training set. 

4.2.1 Radial Basis Function 

Radial Basis Functions emerged as a variant of artificial neural network in late 80s. 

However, their roots are entrenched in much older pattern recognition techniques as for 

example potential functions, clustering, functional approximation, and spline 

interpolation and mixture models. The RBF originated in the study for the interpolation 

problems of multi-variable and is still a main research area in numeric analysis. From 

other standpoint, the design of a neural network can also be viewed as a surface fitting 

(reconstruction) problem in a hyperspace where the RBF method is a nature choice. As 

one of the most popular neural network models, RBF network has attracted lots of 

attentions on the improvement of its approximation as well as the construction of its 

architecture. RBF's are embedded into a two-layer feed forward neural network. Such a 

network is characterized by a set of inputs and a set of outputs. In between the inputs 

and outputs there is a layer of processing units called hidden units. Each of them 

implements a radial basis function. The output units implement a weighted sum of 

hidden units outputs. The input into a RBF network is non-linear while the output is 

linear. Due to their nonlinear approximation properties, RBF networks are able to 

model complex mapping, while perceptron neural networks can only model by means 

of multiple intermediary layers. 

In order to use a radial Basis function Network we need to specify the hidden unit 

activation function, the number of processing units, a criterion for modeling a given 

task and a training algorithm for finding the parameters of the network. Finding the 

RBF weights is called network training. If we have at hand a set of input-output pairs, 

called training set, we optimize the network parameters in order to fit the network 

outputs to the given inputs. The fit is evaluated by means of a cost function, usually 

assumed to be the mean square error. After training, the RBF network can be used with 

data whose underlying statistics is similar to that of training set. 
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Figure 4.1: Structure of RBF Neural Network 

4.2.1.1 	Network Topology 

Basic principle of the RBF method is detailed in the remarkable literature of I-laykin 

[23J. The construction of a RBF network, in its most basic form, involves three layers 

with entirely different roles. The input layer is made up of source nodes (sensory units) 

that connect the network to its environment. The second layer, the only hidden layer in 

the network, applies a nonlinear transformation from the input space to the hidden 

space; in most applications the hidden space is of high dimensionality. The output layer 

is linear, supplying the response of the network to the activation pattern (signal) applied 

to the input layer. The way in which the network is used for data modeling is different 

when approximating time-series and in pattern classification. In the first case, the 

network inputs represent data samples at certain past time-laps, while the network has 

only one output representing a signal value. In the pattern classification applications the 

inputs represent feature entries, while each output corresponds to a class. Generally, for 

given set of different points x, RBF technique uses a function F*(x) of the following 

form 

F*  (x) = Xtn wL pi (x) 	 (4.31) 

where, cp,(xII = 1, 2, ..., ml) is a new set of basis functions that we assume to be 

linearly independent without loss of generality, G(x, t;) is a Green function centered at 



t,, w; constitute a new set of weights, and ml is the number of centers (or the size of the 

hidden layer). Typically, the number of basis functions is less than the number of data 

points (i.e., m l  < N). A commonly used Green function is the multivariate Gaussian 

function. 

G(x, t i ) = exp-`t'—  Z 	Iix — t1I12) 	 (4.32) 

where 11.11 denotes a norm that is usually Euclidean. 

4.2.1.2 	Learning Strategies 

There are different strategies that are used in the design of an RBF network, depending 

on how the centers of the redial basis functions of the network are specified. These 

design strategies pertain to an RBF network whose formulation is based on 

interpolation theory. Here we used Supervised Selection of Centers as a learning 

strategy. 

In this approach, the centers of the radial basis functions and all other free parameters 

of the network undergo a supervised learning process; in other words, the RBF network 

takes on its most generalized form. A natural candidate for such a process is error-

correlation learning, which is most conveniently implemented using a gradient descent 

procedure that represents a generalization of the LMS algorithm. 	 I  

The first step in the development of such a learning procedure is to define the 

instantaneous value of the cost function 

= l N 1  2 	 (4.33) 

where N is the size of the training sample used to do the learning, and e1  is the error 

signal defined by 

ej = d1  — F * (xf  ) 
	

(4.34) 

= d1  - 	1 G(Ilx1 — ti.+2)C, 	 (4.35) 

The requirement is to find the free parameters w;, t j  and Et 1O the latter being related to 

the norm-weighting matrix C1 ) so as to minimize . The results of this minimization are 

summarized below: 

1. Linear weights (output layer) 
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(n) = N e (n) G x 
awi(n) 	~~ ~1 j 	) ~~ I — t i o ) ~~)cE 	 (4.36) 

w j (n + 1) = w(  n) — i7i a (n) 	1, 2, ... , ml 	(4.37) aw i (n) 

2. Positions of Centers (hidden layer) 

5t1 (n) = 2 wi (n) Zjv 1 ej (n) G' (IIxj — ti(n) lI)ciZ[1 [xj — t1(n)] 	(4.38) 

t1 (n + 1) = t (n) -  nz aati (n ) 	i=1, 2, ... , m 1 	(4.39) 

3. Spreads of centers (hidden layer) 

1'(n) - - wL(n) E5'=1 ei (n) G (JIxj - tt(n)II) Q1 (n) 	(4.40) 

Q11 (n.) _ [xf - tl(n)] [x_j - t_i (n)]T 	 (4.41) 

E 1(n + 1) = El 1(n) - 173 	i(n) 	 (4.42) 

where the term e1(n) is the error signal of output unit j at time n. The term G'(.) is the 

first derivative of the Green's function G(.) with respect to its argument. The update 

equation for w;, t; and Et 1O are assigned different learning-rate parameters ?71, 	and 

17 3 , respectively. The covariance matrix determines the receptive field of the Gaussian 

radial-basis function G(jix-t j c) given in the equation 

	

G(Itx - tt lIc = exp [- Z (X - t1)T-1 (x- t,)j 	(4.43) 

Here the required training input/output pairs of the training set, that is {R, wpjj }. In the 

application, desired sources are located at elevation angels 0 ranging from -90° to +90° 

to span the field of view of the antenna. Once the RBFNN is trained with a 

representative set of training input/output pairs, it is ready to function in the 

performance phase. In the performance phase, the RBFNN produces estimation of the 

weight vector W B. 

4.2.1.3 Performance Phase of the RBFNN 

After the training phase is complete, the RBFNN has established an approximation of 

the desired input-output mapping. In the performance phase, the neural network is 

expected to generalize, that is, respond to inputs that has never seen before, but drawn 

from the same distribution as the inputs used in the training set. In the performance 
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phase, the RBFNN produces outputs to previously unseen inputs by interpolating 

between the inputs used in the training phase. 

1. Generate the rearranged covariance matrix; 

2. Present the array output vector at the input layer of the trained RBFNN. The 

output layer of the trained RBFNN will produce the estimation of the weight 

vector for the array output. 

Unlike the SMI, the least mean-square, or recursive least squares algorithms, where the 

optimization is carried out whenever the directions of the desired or interfering signals 

change, in our algorithm, the weight vector of the trained network can be used to 

produce the optimum weight vector needed to steer the narrow beams of the adaptive 

array to the directions of the desired signal in real time: 

4.2.2 Simulation and Results 

We present here some simulations to justify the performance of the SMI, LSMI and 

robust adaptive beamforming. 

4.2.2.1 	Array Factor Plots with variation of number of array 

elements with different element spacing: 

We determined that the element spacing must be d < a, / 2 to prevent spatial aliasing. 

Here we relax this restriction and look at various element spacing with different 

element linear array and resulting array characteristics, namely, their beam-pattern. 

Here we show the beam-pattern plots for different algorithm when the angle of arrival 

of desired user is at 300  and interferer at —600  for different element spacing ?J2, a/4 and 

a/8. We note that from simulation the algorithm places adaptively the maxima in the 

direction of desired user and nulls at the AoA of the interferer for various values of N. 

SMI algorithm 

a) The array factor plots of SMI algorithm for different element spacing as X12, ?14 

and a/8 with N = 5, 8, 10 are as follows: 
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Figure 4.4: Array Factor plots for SMI algorithm (for d=0.125A) 

b) The array factor plots of LSMI algorithm for different element spacing as ?/2, 

714 and 2/8 with N = 5, 8, 10 are as follows: 
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c) The array factor plots of Robust Adaptive Beam forming algorithm for different 

element spacing as 112, 214 and ?\/8 with N = 5, 8, 10 are as follows: 
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From figures with different element spacing it is evident that the optimum spacing 

between elements is half wavelength and as number of element spacing increases width 

of main lobe decreases, this is crucial for the application of smart antennas when single 

narrower beam is required to track the mobile, and number of side lobes increases these 

represents power radiated or received in potentially unwanted directions. So in a 

wireless communication system side lobes will contribute to the level of interferences 

spreads in the cell or sector by a transmitter as well as level of interference seen by a 

receiver when antenna arrays are used. It is evident that more elements an array has or 

alternatively the larger the array gets, the better the characteristics of radiation pattern 

as for as its shape and degree of freedom. 

From these figures we get that array factor with different element spacing ?12, A/4 and 

X/8 for Robust Adaptive beamforming algorithm is better than the SMI and LSMI 

algorithms. 

4.2.2.2 	Comparison of Array Beampatterns of Algorithms 

We assume a uniform linear array with M = 10 omnidirectional sensors spaced half a 

wavelength apart. For each scenario, 100 simulation runs are used to obtain each 

56 



U 

-10 

-20 

e.: 

CL

-30 
Cc 

-40 
L 

c 

-50 

-70  
-1 

t 

j 

t 

Z 

9 

j 

F 

i 

r i 	/:•' 

s 

{\\ 7

1 

~ 

? i i 

I 
S 
k . 

1 ° 
1  p 

i [ s 
1 i 	 t 

i ! 

-•--~ L.SMI algorithm 
--~ RAB algorithm 

i •••-•-' SMI algorithm 

)0 	-80 	-60 -40 	-20 0 20 40 	60 	80 	1C 7 

simulated point. In the training phase, desired sources are located at elevation angles 0 

ranging from —90° to +900. In all examples, two interfering sources are assumed to 

impinge on the array from the directions of arrival (DoAs) 300 and 500, respectively. 
The diagonal loading factor 	10 o 2 is taken in the L,SMI algorithm, where ant the 
noise power. 

We assume that both the presumed and actual signal spatial signatures are plane waves 

impinging from the DoAs 00 and 2°, respectively. Figure 4.11 displays the 

beampatterns of the methods tested for the fixed SNR =I OdB for the no-mismatch case. 

degree 

Figure 4.11: Comparison of beampatterns (for no mismatch) 
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Figure 4.12: Comparison of beampatterns (for 2° mismatch) 

From figure 4.11, we note that the robust adaptive beamforming algorithm based on 

RBFNN can adapt the radiation pattern of the antenna to direct narrow beam to the 

desired signal and nulls interfering sources. Figure 4.12 displays the beampatterns of 

the methods tested for the fixed SNR =10dB for a 2° mismatch. From figure 4.12, we 

note that although the beampatterns of the robust adaptive beamforming algorithm 

based on RBFNN do not have nulls at the DoAs of the interferences as deep as those of 

the SMI algorithm, the interferences are sufficiently suppressed by our algorithm. 
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Chapter 5 

Conclusions and Future Scope 

5.1 Conclusions 

In the first part of the report, we studied the performance of the conventional 

algorithms, LMS and CMA and found out some key observations regarding their 

performance. 

The inter-element spacing between the antenna elements is an important factor in the 

design of an antenna array: a distance of more than A/2 between the elements (where is 

the wave length of the incoming or outgoing signals) produces grating lobes. If the inter 

element spacing between the antenna elements is less than 2/2 the mutual coupling 

between the elements cannot be neglected any more. That's why the optimum element 

spacing for beamforming application distance, d = 2/2. In the LMS, we need a 

reference signal d(k) to which we want to have the output converge. In CMA, however, 

the reference signal is not necessary, we use the a priori information that jyj = 1 in the 

absence of interfering signals. 

In the second part of the report, the NN based DBF is presented with a detailed 

mathematical analysis and then afterwards its simulation is performed using MATLAB. 

In order to highlight the robustness of the technique, its results are compared with the 

results of conventional beamforming methods, SMI and LSMI. The robust adaptive 

beamforming algorithm is based on explicit modeling of uncertainty in the desired 

signal array response and three layer radial basis function neural network which treats 
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the problem of computing weights of an adaptive array antenna as a mapping problem. 

We have seen that SMI, LSMI and neural network based robust adaptive beamforming 

algorithm to track the desired signal while simultaneously nulling the interference 

sources. 

• These algorithms have optimum spacing between array elements is d = 0.5? and 

it is found that more elements an array has or alternatively the larger the array 

gets, the better the characteristics of radiation pattern as for as its shape and 

degree of freedom. 

• Robust adaptive beamforming algorithm based on RBFNN is much less 

sensitive to signal steering vector mismatch but the SMI algorithm is very 

sensitive even to slight mismatches. The robust adaptive beamforming 

algorithm based on RBFNN adapted the radiation pattern of antenna to direct 

narrow beam to desired signals and nulls the interference sources. 

• The robust adaptive beamforming algorithm based on RBFNN consistently 

enjoys excellent performance because it achieves the values of SINR that are 

close to the optimal one in a wide range of the SNR and N but values of SMI 

and LSMI algorithm did not achieve to the optimal one. 

So, it is concluded that the robust adaptive beamforming algorithm based on neural 

network consistently enjoys a significantly improved performance as compared with 

other existing algorithms. 

5.2 Scope of future work 

• Neural network like Recurrent Neural Network (RNN) with reduced structural 

complexity can be incorporated for adaptive beamforming. 

• Adaptive Neuro-Fuzzy Inference System (ANFIS) may be considered better 

robustness to the beamforming algorithms. 
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Appendix 

[1] MATLAB code for the adaptive array demonstrator for DBF using LMS 
algorithm 

 

1 
 

close all; 

 

2 
 

clear al.-; 

 

3 
 

cic; 

	

4 
	

d.=i ,i i,c arc ay cic::ri::r:,st. a.to; 
5 

	

6 
	

sigSourceTheta = 25; 	%;degrees, direction of signal x 

 

7 
 

sigSourceTheta = (2*pi/360)*sigSourceTheta; 

 

8 
 

nSourcelTheta = 0; 	%d.egr.ees, direction of noise source 1 

 

9 
 

nSourcelTheta = (2*pi/360)*nSourcelTheta; 

 

10 
 

nSource2Theta = -40; 	Idegrees, direction of noise source 2 

 

11 
 

nSource2Theta = (2*pi/360)*nSource2Theta; 
12 

 

13 
 

theta = pi*(-1:0.005:1); 

 

14 
 

arrLen = 4; 	Inc of antennas 

 

15 
 

bitRate = 100; 

 

16 
 simFreq = 4*bitRate; 	%sim.ilation frequency 

 

17 
 

TSim = 1/simFreq; 	--lsi-nulation sample period 
18 

 

19 
 messageBits = [ 1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 .1 1 

 

20 
 

1 1 1 -1 1 ... 

 

21 
 -1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 

 

22 
 

11]; 

 

23 
 

messageBits = upsample(messageBits, simFreq/bitRate);%iipsample message 

 

24 
 

t = TSim:TSim:(length(messageBits)/simFreq); 	stimeline 

25 
26 
27 

 

28 
 

Igenerate a complex-,SK, signal 

 

29  .. ,, 	~ 	:•c,-;:-totc.i '•%, 	s.~ ~r 	c'i~oe ocbi r.'c, a c coz c .o c . .r. ~~. La c r. 

 

30 
 

messageInt=(cumsum(messageBits))/8; ,.1-xl.engtll(t) vector. 

 

31 
 

Q = cos(pi*messageInt); 

 

32 
 

I = sin(pi*messageInt); 

 

33 
 

sourceSig = I+j*Q; 	;the signal to be received, lxlength(t) vector 

34 

 

35 
 the undesired complex noise s? ngals-i uniform phase, gaussian 

 

36 
 amplitude distribution 

 

37 
 

noiseSigl = normrnd(0,1,1,length(t)).*exp (j*(unifrnd(- 

 

38 
 

pi,pi,l,length(t)))); 	r-:lxlength(t_) vector 

 

39 
 

noiseSig2 = normrnd(0,l,l,length(t)).*exp (j*(unifrnd(- 

 

40 
 pi, pi, l,length (t)))) ; 	%lx1.enigth (t) vector 

41 

 

42 
 systemNoise =zeros(arrLen, length(t));% system noise for every antenna 

 

43 
 

for i = l:arrLen 

 

44 
 systemNoise(i,:) = normrnd(0,0.1,1,length(t)).*exp (j*(unifrnd(- 

 

45 
 

pi,pi,l,iength(t)))); 
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46 	end; 
47 
48 

	

49 
	

Kd = pi; 	%distance between antenna elements = lambda / 2 
50 
51 

	

52 	array responses for the desired signal x and noise (unwanted 

	

53 	signals) ni and n2 

	

54 	steerVecSource = zeros(l,arrLen); 

	

55 	steerVecNl = zeros(1,arrLen); 

	

56 	steerVecN2 = zeros(1,arrLen) 
57 

	

58 
	

for k = 1:arrLen 

	

59 	steerVecSource(k) = expj*(k_1)*Kd*sin(sigSourceTheta)) ;  

	

60 	steerVecNl(k) = exp(j*(k_1)*Kd*sin(nSourcelTheta )) ;  

	

61 	steerVecN2(k) = exp(j*(k_Il)*Kd*sin(nSource2Theta )) ;  

	

62 	end; 
63 

	

64 	recdSource = zeros(arrLen, length(t)); 

	

65 	recdNl = zeros(arrLen, length(t)); 

	

66 	recdN2 = zeros(arrLen, length(t)); 
67 

	

68 
	

for i = 1:arrLen 

	

69 	recdSource(i,:) = sourceSig . steerVecSource(i); 

	

70 
	

I received sional from signal source x 

	

71 	recdNl(i,:) = noiseSigl •k  steerVecNl(i); 

	

72 	r:ec:.:i. ved s::i.g:riaJ i:ccrr nc:d.se scua.ce ni 

	

73 	recdN2(i,:) = noiseSig2 . steerVecN2(i); 

	

74 	 Ce ;_ved signal .From noise source nI 

	

75 	end; 
76 

	

77 
	

%total received signal is the 
78 

	

79 	signal received at: ant: enina 1 

	

80 	signal received at antenna 2 
81 

	

82 	signal received at anitenna.  n 
83 

	

84 
	totalRecdSig = (systemNoise + recdNl + recdN2 + recdSource); 

85 
86 

	

87 
	

I defrne weight vector 

	

88 	w = zeros(1,arrLen); 

	

89 	mu = 0.05; 

	

90 	y = zeros(l,length(t)); 	loutput 

	

91 	e = zeros(l,length(t)); 	%erro.r 
92 
93 
94 

	

95 
	

lII'JS illgorittirn 

	

96 	C) 7) 	C) C) 7) C) ) C) C) C> C) 1)  C)  

	

97 
	

for repeat=1 : 1 	use repeat for more convergence on the same 

	

98 	message 

	

99 
	

for i=l:length(t) 

	

100 
	 y(i) = w 	totalRecdSig(:,i); 

	

101 	 e(i) = sourceSig(i)-y(i); 

	

102 	 w = w + mu *e(i)*(totalRecdSig(:,i))'; 



103 	end; 
104 end; 
105 
106 
107  
108 	r,,-Plot all figures 

110 figure; 
111 	subplot 211.; 
112 	plot (abs (sourceSig), ' V,  'LineWidth' , 2); 
113 	hold on; 
114 	plot(abs(y), 'r'); 
115 	legend( !Source  signal amplitude, 1W', 'lyi'); 
116 	ylabel ('amplitude' 
117 	Ixiabel ( sample (index) 
118 	hold off; 
119 
120 	subplot 212, plot(abs(e)); 
121 	legend 1 err or I • 
122 	ylabel 'amplitude'); 
123 	xlabel (l  sample (index) 
124 	axis([O 210 0 1J); 
125 arrayvec=zeros(arrLen,length(theta)); 
126 	for k = 0:arrLen-1 
127 	arrayvec(k+l,:) = exp(j*k*Kd*sin(theta)); 
128 end; 
129 
130 	%caicuiate response of array 
131 	F = w*arrayvec;  
132 figure; 
133 	plot(((theta/(2*pi))*360), 20*loglO(abs(F))); 
134 	title ( arn. I t::ude response an tenne pat tern ) ; 
135 	ylabel (' (dB) ); 
136 	xlabel (1  angle (degrees) 

[2] MATLAB code for adaptive array demonstrator for Digital 
Beam forming using CM algorithm 

1 close all; 
2 clear all; 
3 dc; 
4 typeofinterfererl='noise'; 
5 Iset 	to 	'noise' for guassian type of interferer 
6 Iset 	to 	'signl' for NISK type of interferer 
7 
8 sigSourceTheta = 10; 	--.degrees 
9 sigSourceTheta = 	(2*pi/360)*sigSourceTheta; 
10 nSourcelTheta = -10; 	Idegrees 
11 nSourcelTheta = (2*pi/360)*nSourcelTheta;  
12 nSource2Theta = -40; 	%degrees 
13 nSource2Theta = (2*pi/360)*nSource2Theta; 
14 
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15 	theta = pi*(-1:0.005:1); 
16 	arrLen = 4; 	%nr of antennas 
17 	bitrate = 200; 
18 	simFreq = 4*bitrate; 	%simulation frequency 
19 	TSim = 1/simFreq; 	%simulation sample period 
20 	messageBits = [1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 1 1 
21 	1 1 1 -1 1 
22 	 -1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 - 
23 	1 1 1 1]; 
24 	messageBits = upsample(messageBits, simFreq/bitrate);,upsarnpl.e message 
25 	t = TSim:TSim:(length(messageBits)/simFreq); 	%timeline 
26 
27 	:.., 

28 	44%  ;.. ;,> .., 	44 44%  :, . •>. • - 4% %%%%% 444%  -,•4-,4-,4..,44444 

29 	gene <~t;: :. complex MSC signal 
30  

	

i `;i `' 	. y, •.> „ n , o -; %~ s~ -s , ; 4i %~ „ ,> : f ., r> :.3 a > i ~s ~s %i 
31 	messageInt=(cumsum(messageBits))/8; 	%lxlength(t) vector 
32 	Q = cos(pi*messagelnt); 
33 	I = sin(pi*messageInt); 
34 	sourceSig = I+j*Q; 	%the signal to be received 
35 	referenceSig = sourceSig(l:end); 
36 
37 	>:>.. 	;:>, ;4 -> 4444444444% 44 4 444444444% 
38 	% genera to 2 interferers nil and n2 
39 	.,., `'.' ..............> ;..,,.,:moo 	0cc 0 	00<<, <. t,~.00<.<< 

40 	4 1_ toe interfere rll needs to be gauss -an noise -> uniform phase, 
41 	normal amplitude disstr_ ibut On 
42 	if (strcmpi(typeofinterfererl, 'noise')) 
43 	noiseSigl = normrnd(0,1,1,length(t)).*exp(j*(unifrnd(- 
44 	pi,pi,l,length(t)))); 
45 end; 
46 
47 	`r; 1.i test inc with an M;_i signal as interferer is required; noise 
48 	source rt"I w.:...7..1.. bey 1455 signal 
49 	if (strcmpi(typeofinterfererl, 's.ignl')) 
50 	messageBitsNl = [-1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 
51 	-1 1 -1 1 -1 1 -1 -1 ... 
52 	 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 
53 	-1 1 -1 1 -1 -1]; 
54 	messageBitsNl = upsample(messageBitsNl, simFreq/bitrate); 
55 	apsa np ie _r„e: ::fie 
56 	t = TSim:TSim:(length(messageBits)/simFreq); %tineline 
57 	messagelntNl=(cumsum(messageBitsNl) ) /8; 
58 	Qnl = cos(pi*messageIntNl); 
59 	Inl = sin(pi*messagelntNl); 
60 	noiseSigl = Inl+j*Qnl; %the signal- to be received 
61 end; 
62 
63 	%noise source 2 is gaussian 
64 	noiseSig2 = normrnd(0,1,1,length(t)).*exp(j*(unifrnd(- 
65 	pi,pi,l,length(t)))); 
66 

67 	systemNoise = zeros(arrLen,length(t));% system noise for every antenna 
68 	for i = 1:arrLen 
69 	systemNoise(i.,:) = normrnd(0,0.1,l,length(t)).*exp(j*(unifrnd(- 
70 	pi,pi,l,length(t)))); 
71 end; 
72 

m 



73 

	

74 
	

%lambda = syrn ( lambda 

	

75 
	

?EK = 2*pi/ lambda 

	

76 
	

Id = 05*1acdd a  

	

77 
	

Kd = pi; 	%distance between antenna elements == lambda / 2 

	

78 
	%alpna = _Kd*sin(tfleta nul) 

79 
80 

	

81 
	

larray responses for the desired signal x and noise nI and n2 

	

82 
	steerVecSource = zeros(1,arrLen); 

	

83 
	steerVecNl = zeros(1,arrLen); 

	

84 
	steerVecN2 = zeros(1,arrLen); 

85 

	

86 
	

for k = 1:arrLen 

	

87 
	steerVecSource(k) = exp(j*(k_1)*Kd*sin(sigSourceTheta)) 

	

88 
	steerVecNl(k) = exp(j*(k_1)*Kd*sin(nSourcelTheta)) ;  

	

89 
	steerVecN2(k) = exp(j*(k4)*Kd*sin(nSource2Theta)) ;  

	

90 	end; 
91 

	

92 
	recdSource = zeros(arrLen, length(t)); 

	

93 	recdNl = zeros(arrLen, length(t)); 

	

94 	recdN2 = zeros(arrLen, length(t)); 
95 

	

96 
	

for i = l:arrLen 

	

97 
	recdSource(i,:) = sourceSig .* steerVecSource(i) 

	

98 
	received signal from signal source x 

	

99 
	recdNl(i,:) = noiseSigl . steerVecNl(i); 

	

100 
	

I s eceived signal I rom 00:1.. so source of 

	

101 
	recdN2(i,:) = noiseSig2 . steerVecN2(i); 

	

102 
	

0001VOCI signal from noise source n2 

	

103 	end; 
104 

	

105 
	

Itotel received signal is the 
106 

	

107 	signs Iruc e.ived. at sri Leriria 1 

	

108 
	signal received at antenna 2 

109 

	

110 
	signa-1 received, at sri tones n 

111 

	

112 
	

totalRecdSig = (systemNoise + recdNl + recdN2 + recdSource); 
113 
114 

	

115 
	w = zeros(1,arrLen); 

	

116 
	

,start weight vector, may be in the direction of the desired signal: 

	

117 
	

for i=l:arrLen 

	

118 	w(i) = (1/4)*exp(_j*pi*(i1)*sin(sigSourceTheta)); 

	

119 
	end; 

	

120 
	

Istart vector may be any type: 

	

121 
	

1w = [0.f ().1 0.1 0.11 

	

122 	wstart = w; 

	

123 
	

Irrus = 0. D07; 

	

124 
	mu = 0.001; 

	

125 
	y = zeros(l,length(t)); 

	

126 
	e = zeros(l,length(t)); 

127 
128 

	

129 
	

I I I I I I I: I I 111111111111111111% iç  1111% III 111% 11% 



130 	tConstant modulus  Algorithm 
131  
132 	for repeat=1:1 
133 	for i=l:length(referenceSig) 
134 	y(i) = w * totalRecdSig(:,i); 
135 	%e(i) = 1 	y(i) 
136 	e(i) = y(i)/((abs(y(i))flA2_y(i);  
137 	SATO's principle for updating the error 
138 	w = w + hiu*e(i)*(totalRecdSig(:,i)) ;  
139 	end; 
140 end; 
141 
142 
143 
144 	PioL all figures 
145 
146 	subplot 211, plot(abs(sourceSig),' :');  
147 	hold on; 
148 	grid on; 
149 	axis([0 210 0 2]); 
150 	plot(abs(y),'r'); 
151 	legend( Source signal, Idl , 'Estimate of the source signal, 
152 	1 y 	Lccati..ori ' 	Boat: 
153 	ylabel ( ampli Lu do') 
154 	hold off; 
155 
156 	subplot 212, plot(abs(e)); 
157 	grid on; 
158 legendY(errorl', 'Location', 'Best'); 
159 	ylabel ( ' arnpi I Lode 
160 	xlabel ( ' sample  
161 	axis([0 210 0 1]); 
162 arrayvec=zeros(arrLen,length(theta)); 
163 	for k = 1:arrLen 
164 	arrayvec(k,:) = exp(j*(k-l)*Kd*sin(theta)); 
165 end; 
166 
167 	Icalculate response of array 
168 	F = w*arrayvec;  
169 	F2 = wstart*arrayvec;  
170 figure; 
171 plot(((theta/(2*pi))*360), 20*loglo(abs(F))); 
172 	hold on; 
173 	plot(((theta/(2*pi) )*360) , 20*loglO(abs(F2) (1 'r') 
174 	title ( 'amplitude response antenne pattern, desired signal: 10 degrees, 
175 	inLerferers : -10 an.d -40 deq;r'ees 
176 	ylabel (' (dE) '); 
177 	xlabel('angle(dcgrees) I ); 
178 	grid on; 
179 
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