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ABSTRACT 

Automated Theorem Proving (ATP) or Automated Deduction, currently the most well-

developed subfield of Automated Reasoning (AR), is the proving of mathematical theorems by a 

computer program. Depending on the underlying logic, the problem of deciding the validity 

of a formula varies from trivial to impossible. A simpler, but related, problem is proof 

verification, where an existing proof for a theorem is certified valid. For this, it is generally 

required that each individual proof step can be verified by a primitive recursive function or 

program, and hence the problem is always decidable. Interactive Theorem Prover requires a 

human user to give hints to the system. Depending on the degree of automation, the prover can 

essentially be reduced to a proof checker, with the user providing the proof in a formal way, or 

significant proof tasks can be performed automatically. Interactive prover's are used for a variety 

of tasks, but even fully automatic systems have proven a number of interesting and hard 

theorems. There are several types of theorem prover like Coq, which have its own specification 

languages, in which we can specify a system in a logical form with the help of predicates and 

write the theorem related to the properties of the system. These can be verified with the help of 

proof assistant. 

iii 



LIST OF FIGURES 

Figure 2.1 	Theorem Proving as a Search ...............................................................6 

Figure 2.2 	Backwards Proof ......................................................................................................8 

Figure4.1 	Predicates in Coq ...................................................................................................22 

Figure 4.2 	Two Block World System .....................................................................................24 

Figure 4.3 	Outline of SwapAB Proof .................................................................25 

Figure 4.4 	Coq script for Theorem SwapAB ........................................................26 

Figure 5.1 	Working of Coq as Proof Assistant in cmd prompt ....................................28 

Figure 5.2 	Two Block System Coq Specification ...................................................29 

LIST OF TABLES 

Table 4.1 	Coq syntax for ILL Operators ..........................................................20 

ry 



CONTENTS 

ABSTRACT ..........................................................................................in 

LISTOF FIGURES .........................................................................................iv 

LIST OF TABLES ..........................................................................................iv 

CHAPTER 1: INTRODUCTION .................................................................................................1 

	

1.1 	Theorem Proving .................................................................................................................1 

	

1.2 	Problem Statement ...............................................................................................................2 

	

1.2.1 	Problem Description ................................................................................................2 

	

1.3 	Organization of Dissertation ................................................................................................2 

CHAPTER 2: LITERATURE REVIEW ............................................:.......................................4 

	

2.1 	Types of ATP Systems .........................................................................................................4 

	

2.2 	Architecture .................... ....................................................................................................5 

2.2.1 A Subsumption Architecture for Theorem Proving .......................................5 

2.2.2 	Constructive Proof ..............................................................................7 

	

2.3 	Interactive Theorem Prover —Coq ........................................................................................9 

	

2.3.1 	Coq ...............................................:.............................................................................9 

	

2.3.2 	An Overview of specification language of coq GALLINA .....................................10 

	

2.3.3 	Introduction to the Proof Engine ............................................................13 



CHAPTER 3: LANGUAGE DEFINITION AND PROPOSED SCHEME ............................15 

3.1 	Linear Logic ..................................................................................... 	 ....15 .............................. 

3.2 	The Blocks World ..................................... .........................................................................17 

	

3.2.1 	Relationship Predicates over Blocks ....................................................................17 

	

3.2.2 	Status Predicates of Robot Arm:............................................................................18 

CHAPTER 4: IMPLEMENTATION DETAILS ......................................................................19 

4.1 	Codify Intutionistic Linear Logic (ILL) ............................................................................10 

4.2 	The Linear consequence Operator :............................................................... 	..20 

4.3 Block world codify 

4.3.1 Predicates ...........................................................................................22 

4.3.2 Basic Actions ................................................................... 	................22 

4.2.3 Special Cases ......................................................................................23 

4.4 Two Block World Domain ..................................................................... 	....24 

CHAPTER 5: RESULT AND DISCUSSION......... ..................................................27 

CHAPTER 6: CONCLUSION ...........................................................................30 

REFERENCES .............................................................................................31 



CHAPTER 1 
INTRODUCTION 

1.1 Theorem Proving 
Theorem Proving (TP) deals with the development of computer programs that show that 

some statement (the conjecture) is a logical consequence of a set of statements (the axioms 

and hypotheses). It is concerned with the development and use of systems that automate 

sound reasoning: the derivation of conclusions that follow inevitably from facts. These 

systems are capable of solving the non-trivial problems. However the search complexity 

of most interesting problems is enormous, and many problems cannot currently be 

solved within realistic resource -limits. TP systems are used in wide variety Of problems. 

Theorem proving is mainly of two types. i.e. 

1. Automated Theorem Proving 

2. Interactive Theorem Proving . . 

The Automated Theorem Proving is also called Automated Deduction is the most well developed 

subfield of automated reasoning, is the proving of mathematical theorem by a computer program. 

In this proving depending on the type of underlying logic the problem of deciding the validity of 

formula varies from trivial to impossible.. Since the proofs generated by Automated Theorem 

Prover's are typically very large, the problem of proof compression is crucial and various 

techniques aiming at making the prover's output smaller, and consequently more easily 

understandable and checkable, have been developed. 

Interactive Theorem Proving is that which require a human user to- give hints to the system. The 

focus of Interactive Theorem Proving is to present in a fully formalized way, all the 

axioms, -definitions, computations and proofs within any mathematical subject: While the 

proofs themselves come from humans, the formalizations are meant to be done in such a 'way 

that a computer can verify the correctness of the claims. At present there are two major areas 

of applications of Interactive Theorem Proving. One of them is formalization of 

mathematics and its proofs, while the other is formal verification of computer systems. 
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Chapter 3 provides a detailed description of the language definition and mathematical definition 

of block world. 

Chapter 4 gives the brief description of the implementation of the proposed scheme. 

Chapter 5 discusses the results and in Chapter 6 concludes the work. 
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Soundness: Sound ATP systems return only correct solutions to problems. Soundness 

can be assumed for extensively tested' systems, at least if a large number . of the 

solutions produced have been verified. Unsound systems are useless, and soundness 

is therefore required. 

Completeness: Complete systems always return a solution if one exists. An ATP 

system may be known- to be incomplete from a. theoretical perspective, due to 

- known weaknesses in the calculus or search strategy, due to bugs in the 

implementation. 

Solutions: There are various responses that an ATP system may make when given a 

problem. A solution (a proof or a model) may be returned, or the system may 

give , only an assurance that a solution exists. There are some ATP systems that 

conserve resources by not building a solution during their search, e.g., completion 

based systems do 	not 	build 	a 	proof. 	Such systems retain only enough 

information to build-a solution later if required. 

Resource Limit: There are three resources used by ATP systems that are of 

interest, and whose' usage should be evaluated. They are CPU time, Wall clock time, 

and memory. 

From a user perspective, if there is limited CPU time available, it is of interest to know 

whether or not an ATP system on average finds its solutions within that- CPU time 

limit. Average CPU. time over problems solved is therefore an interesting measure for 

evaluation. 

2.2 ARCHITECTURE 

1. A Subsumption Architecture for Theorem- Proving: Work on Automatic Theorem 

Proving goes back to the earliest days of Artificial Intelligence. A theorem prover for 

propositional logic was one of the first Al programs The roots of the. field are in 

mathematical logic. Most early work was based on a theorem of the logician Herbrand, 

which implicitly defined a procedure for exhaustively searching for a proof[2]. 

Both resolution theorem proving and many of the alternative' mechanisms can be seen as 

manipulating an initial conjecture by the application of rules of inference. Each rule. 

breaks the conjecture into one or more subgoals. Rules can then be applied to each of these 



Search is represented as exploration of a tree with the root at the top and the leaves at the 

bottom.. The root is labeled with the original conjecture. Each rule applying to this conjecture 

is represented as a circle connected to the conjecture node. Each of these rules gives, rise 

to a (possibly empty) set - of subgoals. Each subgoal is represented as a square connected to 

the rule. Further rules apply to each sub. goal, creating further subgoals, etc. 

Most work in automatic theorem proving has been directed to controlling 

. the combinatorial explosion. 

(a) Resolution-based systems have been refined so that fewer rules apply to each goal or 

so that each rule application makes more progress. 

(b) Alternatives to resolution, -requiring fewer searches, have been invented, e.g.. term rewriting. 

(c) Heuristics have been devised to select:  the most promising rule applications first or to decide 

that some rule applications should not be tried at all. 

(d) More efficient means '-of --storing and - applying rules have been devised so that the 

effect of the combinatorial explosion is reduced. 

(e) Interactive "Systems have been developed in which a human user helps to direct the 

search. 

Proving theorems in most'areas of mathematics is a semi-decidable problem. This means that: if 

the, conjecture is a theorem then a complete theorem prover will eventually find a proof 

(though' this could" take a very long time); if the = conjecture is not. a theorem 

then. a 'complete theorem prover might never terminate in its fruitless search fora proof. 

2. Constructive Proof: A task is a "structured set of activities in which actions are undertaken 

in some sequence", in order to achieve the user's goals. We decide the user's. goal to be 

formally proving some theorem, by some method of constructive proof. [3] 

A constructive proof can be thought of as a tree of statements. At the root node is the 

subject of the proof: a statement of the theorem. Leaf nodes contain either axioms, or 

previously proven theorems. Internal nodes (nodes that aren't leaf nodes) -are the result 

of applying inference rules to axioms and theorems, and are theorems themselves. The 

conjunction of childnodes implies the parent node. 



2.3 Interactive Theorem Prover —Coq 
In this work we have used theorem prover coq which is a formal proof management system. So 

a brief description of it required. 

1. Coq: Coq is a formal proof assistant in higher order logic, allowing the development of 

the computer program in consistent with their specification. It has three main .aspects: 

the logical language in which on can write axiomatizations and specification, the proof 

assistant which allows the development of verified mathematical proofs, and the 

program extractor " which synthesizes computer programs obeying their formal 

specifications, written as Iogical assertions in the language. It provides a formal 

language to write mathematical definitions, executable algorithms and theorems 

together with an environment for semi-interactive development of machine-checked 

proofs. The COQ system is designed to develop mathematical, proofs, and especially to 

write formal specifications, programs and to verify that programs are correct with 

respect,  to their specification. It provides a specification language named GALLINA. It 

also provides an interactive proof assistant to build proofs using specific programs called 

tactics [4]. 

2. An Overview of specification language of coq GALLINA 
GALLINA is the specification language of the proof assistant Coq. It allows to develop 

mathematical theories and to prove specifications of programs. The theories are built 

from axioms, hypotheses, parameters, lemmas, theorems and definitions of constants, 

functions, predicates and sets. [5] 

a) Lexical Conventions in GALLINA 

Blanks Space: newline. and horizontal tabulation are considered as blanks. Blanks are- 

ignored but they separate tokens. 	 - 

Comments: Comments in COQ are enclosed between (* and *), and can be nested. They 

can contain any character. However, string literals must be correctly closed. Comments 

are treated as blanks. 

Identifiers and access identifiers: Identifiers, written ident, are sequences of letters, 

digits, _and', that do not start with a digit or'. 

Natural numbers, and integers: Numerals are sequences of digits. Integers are numerals 

optionally preceded by a minus sign. 
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Pos n is assumed 

Here gt is a function expecting two arguments of type —nat` in order to build a 

logical proposition 

b) Definitions 

The initial prelude contains a few arithmetic definitions: nat is defined as a 

mathematical collection (type Set), constants 0, S, plus, are defined as objects of 

types respectively nat, nat >nat, and nat >nat >nat. You may introduce new 

definitions, which link a name to a well-typed value. For instance, we may 

introduce the constant one as being defined to be equal to the successor of zero: 

Coq < Definition One: _ (S 0). 

One is defined 

Here is a way to define the doubling function, which expects an argument m of 

type nat in order to build 

Its result as (plus m m). 

Coq < Definition double (m: nat):= plus m m. 

double is defined. 

c) Tactics 

Tactics [5]-[6] are the specific programs using which Coq interactive proof 

assistant build proofs. A basic set of tactics was predefined, which the user could 

extend by his own specific tactics. 

A deduction rule is a link between some (unique) formula, that we call 

the conclusion and (several) formulas that we call the premises. Indeed, a 

deduction rule can be read in two ,ways. The first one has the shape: —if I know 

this and this then I can deduce thisll. For instance, if I have a proof of A and a 

proof of B then I have a proof of A ^B. This is forward reasoning from 

premises to conclusion. The other way says: —to prove this I have to prove this 

and this. For instance, to prove A '' B, I have to prove A and I have to prove B. 

This is backward reasoning which proceeds from conclusion to premises. We 

say that the conclusion is the goal to prove and premises are the subgoals. 

The tactics implement backward reasoning. When applied to a goal, a tactic 

11 



If the goal is neither a product nor starting with a let definition, the tactic intro 

applies the tactic red until the tactic intro can be applied or the goal is not 

reducible. 

4. apply term 

This tactic applies to any goal. The argument term is a term well-formed in the 

local context. The tactic applies tries to match the current goal against the 

conclusion of the type of term. If it succeeds, then the tactic returns as many 

subgoals as the number of non dependent premises of the type of term. If 

the conclusion of the type of term does not match the goal and the 

conclusion is an inductive type isomorphic to a tuple type, then each 

component of the tuple is recursively matched to the goal in the left-to-

right order. 

5. assert (ident: form) 

This tactic applies to any goal. assert (H: U) adds a new hypothesis of name H 

asserting U to the current goal and opens a new subgoal U. The subgoal U comes 

first in the list of subgoals remaining to prove. 

3. Introduction to the Proof Engine 
In the following, we are going to consider various propositions, built from atomic 

propositions A; B; C. This may be done easily, by introducing these atoms as global 

variables declared of type Prop. It is easy to declare several names with the same 

specification. [7] 

Coq < Variables A B C : Prop. 
We shall consider simple implications, such as A >B, read as A implies B . Let us now 

embark on a simple proof. We want to prove the easy tautology ((A —> (B —> C)) 

—> (A —> B) > ( A —> C) . We enter the proof engine by the command 

Goal, followed by the conjecture we want to verify: 

Coq<Goal(A>B–>C)–>(A>B)–>A–>C. 

1 subgoal 

(A–>B>C)>(A–>B)–>A–>C. 

13 



Language Definition and Proposed 
Scheme 
This "chapter gives the details about the logic system we have used. And the mathematical 

definition of blocks word. 

3.1 Linear Logic 
Linear Logic is often described as a 'resource-conscious' logic. In the context of mathematical 

logic, we can consider a •proposition to -represent a resource of some . kind [8]. The logical 

formulations provide us structural- rules to manipulate assumptions:. the weakening and 

contraction. 	 - 

Weakening: this rule says that if from a,  collection of assumptions IF we-can conclude B, and then 

certainly from the assumptions F and A, we can conclude B. 

Contraction:- The Contraction rule says that if we need an assumption A twice to - conclude B, 

then we can simplify this to A, as A and A is morally the same as A. 

Now if we take a resource view of these two rules with a different way. The weakening rules 

amounts to saying that we might not need a resource after all and the Contraction rule tells us 

• that we might need a resource any number of times. 

So Linear logic is a sub-structural logic [9] in that it.rejects the use of two of.the structural rules 

of the classical logic, specifically weakening and contraction. Basically weakening allow us to- 

have-  unused hypothesis, while contraction allows us to disregard the number of times a 

hypothesis is used. 

Thus when we write a deduction in linear logic of the form F —1 A we are stating that all the 

assumptions in F are used exactly used in once in the deduction of A. For this reason the linear 

logic is also said resource sensitive. [6] We can also say that F —1 A represents a process that 
consumes the resources of r' in the production of A. 
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With the same way in classical disjunction A V B can be established by proving either or both A-

and B. -So in linear logic we write 

• A (' B for the disjunction where just one-  of A or B has been proven... 

• A & B for the disjunction where both have been established. 

So 'the linear implication now internalizes the linear deduction and in this way' A —0 B 

represents a process whose use will consume a A and produce a B. 

3.2 The Blocks world 

Blocks world is .one of the famous domains in planning. The property of this domain is that it 

consist a set of blocks sitting on the table. The blocks can be stacked but condition is that only 

one block can fit directly on top of another.'In the system there is a robot arm which can pick up 

a block and move it another position. Block can be:placed on the table or on the top of another 

block [10]. 

The robot arm can pick up only one, block at a time that has nothing on top of it i.e. block's top 

must be clear so that robot arm can pick it. The robot arm can't pick up a block that has another 

block on top of it. In this system goal will be buildone or more stacks of blocks specified in term 

of that what, blocks are on top of what other block. For example,' a goal might be to get block A 

on B and block C on D. . 

As we see the block world state at a particular time depends on the relative position of the 

blocks. So it is a state -based system which has goal and change in state-can be represented as a 

transitions. 

As we see in block world we assume the existence of some finite set of blocks as well as a robot 

arm which can be used to move them. The actions of the arm involve only stacking and 

unstacking of blocks. So we can say that with related to Robot Arm Blocks World is a two-

dimensional problem. 

We can represent the system in ILL. For that we first decide on the 'set of predicates to represent 

the 'state of the system.. The system can be represented in terms of five basic predicates. These 

predicates are of two types: 

1. Relationship Predicates Over Blocks: These describe the relationship of the blocks 

to each other. These are: 

17 



CHAPTER 4 
IMPLEMENTATION DETAILS 
In our work we have used coq proof assistant which is based on the calculus of inductive 

constructions. There are some normal benefits of proof assistant such as uniformity of notations 

and verification of type correctness. There is some other enhancement of coq such as: 

• Coq implements a higher-order constructive logic, facilitating in particular, the 

description of object logic within the framework. 

• Coq has two type hierarchies:. Set of constructive type and Prop of classical logic. This 

allows us' to develop in classical logic and then verified in same framework against 

program written within Set. 

• Coq support Inductive definitions ,giving a natural logic extension of definition by class 

style of programming such as in functional languages 

• 4,1 Codify Intutionistic Linear Logic (ILL) 
In order to codify ILL in coq we first have to introduce a type of linear predicate, provide 

syntax for the linear connectives and define their right and left rules of the sequent calculus 

presentation of these connectives. Because Coq provides a'single homogeneous system with 

a single built-in deduction. So our definition of ILL will has to exist as an ordinary data type 

within the system [ii].  

Linear logic is applied to a state based system along with the classical or Intutionistic logic. 

State specific assertion can be phrased in ILL. So it is often useful to express global 

invariants in classical logic, so we can use them as often as possible. 

For the setup of an ILL proof system involve two main steps: 

a) Defining a type of ILL predicate and their associated connectives. And 

b) Then defining a consequence operator and the associated sequent rules. 

19 



Coq < LinCons. 

LinCons 

: (list ILinearProp) -> ILinearProp -> Prop. 

As for connectives w can define the infix operator "I-"to denote this relation. 

All the sequent rules [11] can be coded individually, using coq implication to represent 

deduction. 

For example impliesLeft rule can be coded as: 

Inductive LinCons: (list ILinearProp) -> ILinearProp -> Prop :_ 

ImpliesLeft: 

(A, B, C: ILinearProp)(D1,D2 : (list ILinearProp)) 

I -C)) 

In this formula variable A, B, C, Dl and D2 are universally quantified .list concatenation is 

denoted by infix `A' symbol and singleton list is containing B is written as `B. 

General format of ILL rules in coq can be shown by some sequent based rules [13]. 

(*here A, B: ILinearProp; G, D :( list ILinearProp); P: Prop *) 

Axiom: exampll: Empty I - A. 

Axiom exampl2: G I - A. 

Axiom exampl3 (G A) j- (D I- B). 

Axiom example4 P -> (G -A). 

An axiom in linear logic is represented as an axiom in coq, with an empty predicate-list 

(represented by constant Empty) to the left of the consequence relation. For example if we 

want to state that some predicate A is valid, we can simply assert that like exampll . 

The standard condition sequent is represented as a relation between a list of predicate and 

another predicate as in exampl2. 

A deduction such as one of the sequent rule may be represented by one linear sequent that is 

conditional on another. So a rule of the form of 

exampl3 (G I - A) 1- (D I - B). exampl3 

can be represented by coq's implication "—>" for the deduction as in exampl3. 

The combination of linear and ordinary classical - assumptions can be represented as in 

exampl4. Here the intuitionistic predicate P may share variable with other predicate and thus 

can assert state-invariant properties of any of the data they might refer to. 
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4.3.3 Special Cases 
Now we establish special cases of each action as lemma in coq. That is they can be derived from 

the axioms get and put. For example it is more useful to have a version of get referring solely to 

the case where block x was on some other block y. this lemma can be written as: 

(* Get a block x which is currently on some blocky *) 

Lemma getXonY: 

(x,y:•Block) 

('(empty * * (clear x) * * (on x y)) I-  (holds x) * * (clear y)). 

There are some other cases too. These are: 

If we want to pick up a block which is currently on the table. This special case can be written as 

lemma as 

(* Get block x which is currently on the table *) 

Lemma getFromTable: 

(x: Block) 

(' (empty * * (clear x) * * (table x)) I-  (holds x)). 

Two special cases of put actions are: 

Put a block x robot arm holding on the top of another block y. 

(* Put block x (which the arm is holding) onto blocky *) 

Lemma putXonY.• 

(x,y:Block) 

(' ((holds x) ** (clear y)) I -empty ** (clear x) ** (on x y)). 

Put a block x robot arm holding on the table. 

(* Put blockx (which the arm is holding) onto the table *) 

Lemma putXonTable: 

(x: Block) 

(' (holds x) I- empty * * (clear x) * * (table x)). 

All of these four special cases can be proved in coq script. 

The statement and proof of lemma getoXnY in coq. This lemma established a special case of use 

of predicate get, where the block x that is being picked up is on the top of another block y. 
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This is the two blocks world scenario. Here our goal is to prove that there is a sequence of 

actions that will reverse the ordering of blocks a and b. 

The precondition in this scenario is empty ® (on b a) ® (ontable a) ® (clear b) ® (ontable c) 

® (clear c) 

The post condition is empty 0 (on a b) 0 (ontable b) ® (on a b) ® (clear a) ®(ontable c) 

(clear c) 
In this case the goal can be achieved with applying these four actions. Here the proof is the list of 

states in which we can go through as the four actions are applied. 

We can write this as a theorem in Coq as follow: 	

r:;~C>AMN

AL l,

Theorem SwapAB :

(empty ** (clear b) ** (on b a) ** (table a) ** (table c) ** (clear °°°° 

(on a b) **Top).  
Here we use T for the sink of unused predicates. Because we know that F —1 T for any F. 

The outline of the proof can be written as: 

empty ® (on b a) ® (ontable a) ® (clear b) ® (ontable c) ® (clear c) 
( TR) 

empty ® (on b a) ® (ontable a) 0 (clear b) ® T 

(getXonY b a) 

(holds b) ® (clear a) 0 (ontable a) ® T 

(putXonTable b) 

empty 0 (ontable b) ® (clear b) 0 (clear a) ® (table a) 0 T 

(getFromTable a) 

(onTable b) 0 (clear b) 0 (holds a) 0 T 

(putXonY a b) 

(onTable b) ® empty ® (on a b) 0 (clear a) ® T 

TR 

(On a b) 0 T 

Figure 4.3 An Outline of SwapAB Proof. 

25 



CHAPTER 5 
RESULTS AND DISCUSSION 
In this work we have given an brief overview of the linear logic and its encoding, in the Proof 
Assistant Coq: This encoding is basically based on the linear consequence operator as a two 
place predicate over linear logic terms. We have used a state based system i.e. Two Block world 
domain. We made its specification and verification of some of its properties in Coq.. Specifying 

the system with predicate and on the base of" these predicate, writing 'system properties and 

verifying is quite good in Coq.. Coq is a feasible proof assistant for a linear logic,,  with its particle 

advantage are being able to integrate the existing Coq's data types and classical assumptions into 

the system. 

Lets we want to prove a tautology ((A —> (B —> C) —> (A > B) —> (A > .C). For that we enter 

the Proof engine with the command Goal, followed by the conjecture we want to verify. Then we 

apply the tactic on the subgoals repeatedly until all the subgoals proved. The process is shown in 

figure 5.1. The proofs can be saved in file of type .v in Coq. 

We have written ' the 'specification of the Block World in GALLINA and its properties about 

state. These are saved in file type of .v and successfully compiled. As shown in figure 5.2. 
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Figure 5.2 Two Block System Coq Specification 
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