SPECIFICATION AND VERIFICATION OF
BLOCK WORLD DGMAIN IN COQ

A DISSERTATION

Submitted in partial fulfillment of the
requirements for ithe award of the degree
of

lNTEGEATED DUAL DEGREE
(Bachelor of Technology & Master of Technology)
e in
COMPUTER SCIENCE AND ENGINEERING
(With Specializaiion in Information Technology)

By
GAJRAJ SINGH TANWAR

eNT AL & B

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
| INDIAN INSTITUTE OF TECHNOLOGY ROCRKEE
ROORKEE - 247 667 (INDIA) |
MAY, 2012

CANDIDATE’S DECLARATION

I hereby declare that the work being presented in the dissertation work entitled “Specification
and Verification of Block World Domain in Coq” towards the partial fulfillment of the
requirement for the award of the degree of Integrated Dual Degree in Computer Science and
Engineering (with specialization in Information Technology) and submitted to the
Department of Electronics and Computer Engineering, Indian Institute of Technology
Roorkee, India is an authentic record of my own work carried out during the period from May,
2011 to May, 2012 under thé guidance and provision of Dr. Rajdeep Niyogi, Assistant

Professor, Department of Electronics and Computer Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation work for the award of any other

degree and diploma.

Date :Way, 2012

Place: Roorkee | Llo"iya'\ &V)’L\

(GAJRAJ SINGH TANWAR)

CERTIFICATE

This to certifj that the declaration made by the candidate above is correct to the best of my
knowledge and belief.

Date:*May, 2012

Place: Roorkee _ W
' Dr. Rajdeep N@

Assistant Professor
E&CE Department
; IIT Roorkee, India

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide and mentor Dr.
Rajdeep Niyogi, Assistant Professor, Department of Electronics and Computer Engineering,
Indian Institute of Technology Roorkee, for his trust in my work, his able guidance, regular
source of encouragement and assistance throughout this dissertation work. I would state that the
dissertation work would not have been in the present shape without his inspirational support and

I consider myself fortunate to have done my dissertation under him.

I also extend my sincere thanks to Dr. Padam Kumar, Professor and Head of the Department of

Electronics and Computer Engineering for providing facilities for the work.
I would like to thank all my friends who supported and encouraged me to finish this work.

Finally, I would like to say that I am indebted to my parents for everything that they have given
to me. I thank them for sacrifices they made so that I could grow up in a learning environment.
They have always stood by me in everything I have done, providing constant support,

encouragement, and love.

. N\
e VA ’Wj"
GAJRAJ SINGH TANWAR

ii

ABSTRACT

Automated Theorem Proving (ATP) or Automated Deduction, currently the most well-
developed subfield of Automated Reasoning (AR), is the proving of mathematical theorems by a
computer program. Depending on the underlying logic, the problem of deciding the validity
of a formula varies from trivial to impossible. A simpler, but related, problem is proof
verification, where an existing proof for a theorem is certified valid. For this, it is generally
required that each individual proof step can be verified by a primitive recursive function or
program, and hence the problem is always decidable. Interactive Theorem Prover requires a
human user to give hints to the system. Depending on the degree of automation, the prover can
essentially be reduced to a proof checker, with the user providing the proof in a formal way, or
significant proof tasks can be performed automatically. Interactive prover’s are used for a variety
of tasks, but even fully automatic systems have proven a number of interesting and hard
theorems. There are several types of theorem prover like Coq, which have its own specification
languages, in which we can specify a system in a logical form with the help of predicates and
write the theorem related to the properties of the system. These can be verified with the help of

proof assistant.

il

LIST OF FIGURES

Figure 2.1

Theorem Proving as @ SEarch............ocvvuoieiiniuiniiiie e eeeene e en e 6
: Figure 2.2 Backwards Proof.............coo........ ettt et et et st et e b e b e se e e st sane et et sae e e enes 8
..Figure 4.1 Predicates in Coq e et e e e et ee ettt s st eeeee e ss e eseee 22
Figure 42 Tw0 BIoCk WOII SYSLEIMoourveeernrerriesesissesssssssessassssssssssesssessssseesesesssssseenes 24
Figure 4.3 Outline of SWapAB Proof........ccooviiiiiiiiiiiiiiiiiiiiiand erereneererienneeans 25
Figure 4.4 Coq script for Theorem SwapAB..................... 026
Figure 5.1 Working of Coq as Proof Assistant in cmd prompt...............coeeueeineeuneennnn, 28
Figure 5.2 Two Block System Coq Specification......... TP PPOPP 29
LIST OF TABLES
Table 4.1 Coq syntax for ILL Operators...... P T PRI e 20

iv

CONTENTS

ABSTRACT....... teeeeeteeseiteiietteasestonretetensttentitateatanasntatenens Leerereneteirarineeeiaeas . dii
LIST OF FIGURES....cttttttiitiitiuiriititesiariasencsrsrrasiosisssssssasiosssesessosssnsssossasansses iv
LIST OF TABLES.....uciiiiiiiiiiiieiiiiitcieiereaerercanesensenes eetrereeriseieesteteiieeaeinantes iv
CHAPTER 1: INTRODUCTION....................; .. 1
1.1 Theorem Proving 1
1.2 Prob'lem SEATEIMEINIEeceeiieieee it et e et ee e e et ee e e s et e st e e e e s me s rane e m e s bee st e e smseeaneeenneesn 2
1.2.1 Problem DESCIIPLIONuveverieieerineeieiiienisieeessranessreesesneesssnnesssieesesssassssessssnessesassss 2

1.3 Organization of Dissertation...................... tee et ba e e 2
CHAPTER 2: LITERATURE REVIEW ..o ettt et 4
2.1 Types Of ATP SySIEMIS. ..ceieiiiiiiiiiieeete ettt sttt e ae e e e s sene e s sannns 4
AN (o] 111 2) (= ST 5
2.2.1 A Subsumption Architecture for Theorem Proving....................ocl. 5
2.2.2 Constructive Proof........................ 7

2.3 Interactive Theorem Prover —Coq......couiieruriieniiieiirieecies it csiee e seeee s ece s sasesseenesenne 9
2.3.1 COq e et sereee e eeeeee e s e eeee e e er e et ettt et e eeere 9
2.3.2 An Overview of specification lz_mguage 0f coq GALLINA ..c.ccoviiiiiiireceeeeeee. 10

CHAPTER 3: LANGUAGE DEFINITION AND PROPOSED SCHEME............ccccuuveeeeennn. 15

3.1 Linear LOZIC...ccccceeriiiieeeieireeseeeeeaeeaeneen ettt et e e ettt et s e eeese e e 15
3.2 The BIOCKS WOTIAioniiiticeceeeeee et te ettt et a e st e e s s e ene 17
3.2.1 Relationship Predicates over Blocksccueeiiciiiniiiiiiiciiiiicceee 17
3.2.2 Status Predicates of RODOt Arm:.......coveiiviemrciniienni e 18
CHAPTER 4: IMPLEMENTATION DETAILScocoiniiiiiinenienc e nc e 19
4.1 Codify Intuti(—)nistic Linear Logic (ILL) .evivvveeiiieceinienie st scveee e st ss e s s 10
4.2 The Linear consequence OPerator:cccoeerieiiiiiienr e ieeeeeiisite s et ssise s s ssbs e sas 20

4.3 Block world codify

43.1 Predicates.............................; ... 22

Vi BTN S F: T (o204 (o) 1 1< PR e reeereeeeena, 22
R BN 1T -1 W O T O PR 23-
4.4 Two Block World Domain..................... Y2
CHAPTER 5: RESULT AND DISCUSSION........ et eretteereeioeeetataetattraan s entnreeneaes 27
CHAPTER 6: CONCLUSION.veeveeeeeeeeeeeeeseeeaesaeeasseseanssesasessessssaessssessnsn 30

REFERENCES ...ttt iitietetieteettetsanetitastesacisssenseisssssonnassnses 31

'CHAPTER 1
INTRODUCTION

1.1 Theorem Proving .
Theorem Proving (TP) deals with the development of corﬁputef px;ograms that show tﬁat
some statement (the conjecture) is a logical consequence of a set of statements (the axioms
and hypotheses). It is concerned with the dévelopment and ‘use of systelhs that"autdmate
sound reasoning: the derivation of conclusions that follow inevitabiy frdm’ facts. Thesg
systems are capable of solving the non-trivial problems. However the: search complexity
of most interesting problems is " enormous, and many prbblems cannot currently be
solved within ' realistic resource _limits; TP systems are used in wide variety of problems.
Theorem proving is mainly of two types. i.e. |
1. Automated Theorem Proving

2. Interactive Theorem Proving . .

The Automated Theorem Proviﬁg is also called Automated Deduction is the most well developed
subfield of autor’naté_d reasoning, is the proving of mathematical theorem by a computer program.
* In this proviri’g 'dcpending on the type of underlying logic the probleﬁl of deciding the validity of
formula varies from trivial to impossible. Since the proofs generated by Automated Theorem
Prover’s are typically véry large, the problem of proof comp'r'es‘sio'ﬁ'is crucial and various
techniques aﬁning at niakin‘g the prover's ohtput émaller, and qor;sez]uently: more easily

understandable and checkalile, have been developed.

Interactive Theorem Proving is that which require a human user to-give hints to the system. The
focus of Interactive Theorem Proving is to present in a fully formalized way, all the
axioms, ‘definitions,” computations and proofs within any mathematical subject. While the
proofs themselves come from humans, the formalizations are meant to be done in such a way
that a computer can verify the correctness of the claims. At present there are two major areas
of applications of Interactive Theorem Proving; One of them is formalization of

mathematics and its proofs, while the other is formal vetification of computer systems. .

Chapter 3 provides a detailed description of the language definition and mathematical definition

of block world.
Chapter 4 gives the brief description of the implementation of the proposed scheme.

Chapter 5 discusses the results and in Chapter 6 concludes the work.

Soundness: Sour;d ATP systems return only correct solutions to problems. Soundness
.can be assumed for extensively tested systems, at least if a large number of the-
-solutions- produced have been verified. Unsound systems are useless, and soundness
is therefore required. | '
.‘ Completeness: Complete systems always return a solution if one exists. An ATP
system may be -kn_c'>wn‘» to be incomplete from a. theoretical .p.erspective, dué_ to
'knoWh' weaknesses in‘- -'th-e'.' calculus or search strategy, due to bugs in the
implementation . ‘ |
Solutions: There are various responses that an ATP system may make when given a
problem. A solution (aproof or a model) may be returned, or the system may
give only an assurance that a solution exists. There are some ATP systems that
conserve resources by not building a solutién - during their search, ¢.g., completion
based systems do not build a proof. Such systems retain only enough
information to build-a solution later if required.. ‘
Resource Limit: There are three resources uéed by ATP systems that are of
interest, and whose usage should be evaluated. They are CPU time, wall clock time,
and memory.
From a user pers:pective, if there is limited CPU time available, it is of interest to know
whether or not an ATP system on average finds its solutions within that CPU time
limit. Average CPU time over problems solved is therefore an interesting measure for _
o evaluation. ' |
2.2 ARCHITECTURE
.- 1. A Subsumption Architecture for Theorém Proving: Work on Aﬁtomatic Theorem
| Proving‘. goes back to ‘the earliest days of Artificial Intelligence. A theorem prover for
propos'itional' logic was one of the first Al programs .The roots of the field are in‘
mathematical logic. Most early work was based o'n a theorem of the logician Herbrand,

which implicitly defined a.-procedure for exhaustively seardhirig for a prooftZ].

Both resolution theorem proving and many of the alternative” mechanisms can be seen as
manipulating an initial conjecture by the application of rules of inference. Each rule.

breaks the conjecture into one or more subgoals. Rules can then be applied to each of these

Search is represented as exploration of a tree with the root at the top and the leaves at the
bottom. The root is labeled with the original conjecthre. Each rule applying to this conjecture
is represenied as a circle connected to the conjecture node. Each of these rules gives. rise
to a '(possibly' empty) set’ of subgoals. Each subgozil is represented as a square connected -to
_the rule. Further rules apply to each sub.goal, creating further subgoals, étc.

Most " work” in automatic theorem proving has been directed to- controlling

- the combinatorial explosmn
(a) Resolutlon-based systems have been refined so that fewer rules apply to each goal or
so that each rule apphcatlon makes more progress.
(b) A~lternat'i‘ves to resolution, requiring fewer see;ches, have been invented, e.g. terhq rewriting.
©) Heuristics have been devise‘d to select"'the most promising rule applications 'ﬁr"st or to decide
that some rule. apphcatlons should not be tried at all _
(d) More efﬁment means ‘of -storing and “applying rules have been dev1sed so that the
effect of the combinatorial explos1on is reduced. _
(e) Interactive -Systems have been developed in which a human user helps to direct the
search.)
Proving theorems in most areas of mathématics is a semi-decidable problem. This’ means thatl" if
the _conjecture is a theorem then a complete theorem prover will eventually ﬁnd a proof
(though this could take a very long time); if the: conjeeture ds not a theorem

then.a complete theorem prover might never terminate in its fruitless search for a proof. -

2, Constructive Proof: A task is a “structured set of activities in which actions are undertaken
] in some sequence" in order to achieve the user’s goals. We decide the user's- goal to be

'lformally proving some theorem, by some method of constructive proof. [3]

A constructive proof can be thought of as a tree of statements. At the. root node is the
" subject of ,the proof: a statement of the theorem. Leaf nodes contain either axioms, or
previously proven theorems. Internal nodes (nodes that aren't leaf nodee) are the result
of appl)ﬁng inference rules to axiofns. and theorems, and are theorems themselves. The

conjunction of child nodes implies the parent node.

- 2.3 Initeractive Theorem Prover ~Coq

In this work we have used theorem prover coq which is a formal proof management system. So-

a brief description of it required.

1.

Coq: Coq is a formal proof assistant in higher order logic, allowing the development of
the computer program in consistent with their specification. It has three main aspects:
the logical language in which on can write axiomatizations and specific’a‘rion the proof
a551stant which allows the development of verified mathematical proofs, and the
program extractor wh1ch synthesizes computer programs obeying their formal
specrﬁcanons, wntten as logical assertions in the language. It provides a formal
language to write mathematical definitions, executable ~algorithms and theorems
together with an environment for semi-interactive development of machine-checked
proofs The COQ system is designed to develop mathematical proofs, and especially to
write formal specifications, programs and to verify that programs are correct with
respect‘ to their specification. It provides a specification lahguage named GALLINA It
also provides an interactive proof assistant to build proofs using specific programs called
tactics [4]

An Overview of specification language of cog GALLINA

GALLINA is the speciﬁcation language of the proof assistant Coq. It allows to develop

' mathématical theories and to prove specifications of programs. The theories are built

from axioms, hypotheses, parameters, lemmas, theorems and definitions of constants,

functions predicates and sets.[5]

a) Lex1ca1 Conventions in GALLINA

Blanks Space newline.and horizontal tabulation are considered as blanks Blanks are-

ignored but they separate tokens.

Comments: Comments in COQ are enclosed between (* and *), and can be nested. They
can contain any character. However, string literals must be correctly closed. Comments
are treated as blanks. »

Identifiers and access identifiers: Identifiers, written ident, are sequences of letters,
digits, and’, that do not start with a digit or ’. '

Natural numbers_and integers: Numerals are sequences of digits. Integers are numerals

optionally preceded by a minus sign.

b)

Pos_n is assumed _

Here gt is a function expecting two arguments of type _nat‘ in order to build a
logical proposition ‘ '

Definitions)

The initial prelude contains a few arithmetic definitions: nat is defined as a
mathematical collection (type Set), constants O, S, plus, are defined as objects of
types respectively nat, nat—nat, and nat—>nat—>nat. You may introduce new
definitions, Which link a2 name to a well-typed value. For instance, we may
introduce the constant one as being defined to be equal to the successor of zero:
Coq < Definition One: = (S O).

One is defined

Here is a way to define the doubling function, which expects an argument m of
type nat in order to build

Its result as (plus m m).

Coq < Definition double (m: nat):= plus m m.

double is defined.

Tactics

Tactics [5]-[6] are the specific programs using which Coq interactive proof
assistant build proofs. A basic set of tactics was predefined, which the user could
extend by his own specific tactics.

A deduction rule is a link between some (unique) formula, that we call
the conclusion and (several) formulas that we call the premises. Indeed, a
deduction rule can be read in two ways. The first one has the shape: —if I know
this and this then T can deduce thisl. For instance, if I have a proof of A and a
proof of B then I have a proof of A ~B. This is forward reasoning from

premises to conclusion. The other way says: —to prove this I have to prove this

- and this. For instance, to prove A ~ B, I have to prove A and I have to prove B.

This is backward reasoning which proceeds from conclusion to premises. We
say that the conclusion is the goal to prove and premises are the subgoals.

The tactics implement backward reasoning. When applied to a goal, a tactic

11

If the goal is neither a product nor starting with a let definition, the tactic intro
applies the tactic red until the tactic intro can be applied or the goal is not
reducible. |

4. apply term

This tactic applies to any goal. The argument term is a term well-formed in the
‘local context. The tactic applies tries to match the current goal against the
conclusion of the type of term. If it succeeds, then the tactic returns as many
‘subgoals as the number of non dependent premises of the type of term. If
the conclusion of the type of term does not match the goal and the
conclusion is an inductive type isomorphic to a tuple type, then each
component of the tuple is recursively matched to the goal in the lefi-to-
right order. -

5. assert (ident: form) _

This tactic applies to any goal. assert (H: U} adds a new hypothesis of name H
asserting U to the current goal and opens a new subgoal U. The subgoal U comes

first in the list of subgoals remaining to prove.

" 3. Introduction to the Proof Engine
In the following, we are going to consider various propositions, built from atomic
propositions A; B; C. This may be done easily, by introducing these atoms as global
variables declared of type Prop. It is easy to declare several names with the sameA
specification. [7]
Coq < Variables A B C : Prop.
We shall consider simple implications, such as A —B, read as A implies B . Let us now
embark on a simple proof. We want to prove the easy tautology (A —> (B —>C))
—> (A —B) —(A—'>'C } . We enter the proof engine by the command
Goal, followed by the conjecture we want to verify:
Coq<Goal(A—~B—>C)—>(A—=>B)—>A—>C.
1 subgbal

(A->B—>C)—>(A—>B)->A—>C.

13

CHAPTER 3
Language Deflnltlon and Proposed
Scheme

This chapter gives the details about the logic systein we have used. And the mathematical

__'deﬁnition of blocks word.

3.1 Linear Logic

Linear Logic is often described as a_‘resource-conscious’ logic.'In the context of rnathemati(:al
~ logic, we can co‘nsi'der a -proposition to represent a resource of some kind [8]. The logical
formulations provide us structural rules to manipulate assurnptions: .tl;,e weakening and
contraction. _ | w o

: :Weakening: this rule says that if from d'collection of assumptions I" we can conclude B, and then
certainly from the assumptions I' and A, we can conclude B.

Contractlon The Contraction rule says that if we need an assumption A twice to conclude B,

' ‘then we can simplify this to A, as A and A is morally the same as A.

Now if we take a resource view of these two rules with a different way. The Weakening rules
amounts to saying that we might not need a resource after all an“d' the Contraction rule tells usd»
that we might need a resource any number of times. '

" So Linear logic is a sub-structural logic [9] in that jt rejects the use of two of the stru‘ctnral rules
of '\th»e ,élas'siCal logic, specifically weakening and contraction. Basically Weakening ,allovsf_ us to--
have unused hypothesis, while contraction allows us to disregard the number of "timeé a

hypothesis is used.

-Thus when we write a deduction in linear logic of the form I' A we are stating that all the
assumptlons in T are used exactly used in once in the deduction of A. For this reason the linear -
loglc is also said resource sensmve [6] We can also say that I —| A represents a process that -

consumes the resources of I" in the productlon of A.

15

With the same way in classical disjunction A V B can be established by proving either or both A
and B. So in linear logic we write ' ‘

e A@B for the disjunction where just one of A or B has been proven..

"« A&B for the dlSjunCtl()n where both have been established. |
So ‘the linear 1mphcat10n now internalizes the hnear deduction and in this way A —0 B

represents a process whose use will constime a A and produce a B.

* '3.2 The Blocks world
‘Blocks W_or]d is one of the famous domains in planning. The property of this domain is that it
consist a set of blocks sitting on the table. The blocks can be stacked but condition is that dhly
- -one block can fit directly on top of another. In the system there is a robot arm which can pick up

a block and move it another position. Block can be»‘placed on the table or on the top of another
block [10]. |

The robot arm can plck up only one.block at a time that has nothing on top of it i.e. block’s top
must be clear so that robot arm can pick it. The robot arm can ’t pick up a block that has another
block on top of it, In this system goal will be’ build one or more stacks of blocks specified i in term
~of that what- blocks are on top of what other block. For example, a goal might be to get block A
on B and block Con D. . ; .
As we see the. block world ‘state at a partrcular time depends on the relative posmon of the
blocks. So it is a state based system whlch has goal and change in state can be represented asa
transrtlons
- As we see in block world we assume the existence' 6f some finite set of blocks as well asa robot
arm which can be used to move them. The actlons of the arm involve only stackmg and
: unstackmg of blocks. So we can say that with related to Robot Arm Blocks World is a two-
dimensional problem. _ ‘ |
‘We can represent the system in ILL. For that we first decide on the set of predicafes to represent
rhe state of the system.. The system can be represented in terms of five basic ‘predicates. These
‘predicates are of two types: | '
1. Relationship Predicates Over Blocks These describe the relat1onsh1p of the blocks

to each other. These are:

.17

CHAPTER 4
IMPLEMENTATION DETAILS

In our work we have used coq proof assistant which is based on the calculus of inductive
constructions. There are some normal benefits of proof assistant such as uniformity of notations
and verification of type correctness. There is some other enhancement of coq such as: |

» Coq implements a higher-order constructive logic, facilitating in particular, - the
description of object logic within the framework. ,

e Coq has two type hierarchies: Sef of constrictive type and Prop of classical logic. This
allows us to develop in classical logic and then verified in same framework against
program written within Set.

. Coq support Inductive definitions ,giving a natural logic extension of definition by class

style of programming such as in functional languages

4.1 Codify Intutionistic Linear Logic (ILL)
In order to codify ILL in coq we first have te introduce a type of linear predicate, provide
syntax for the linear connectives and define theit right and left rules of the sequent calculus
» presentation of these connectives. Because Coq provides a'éingle homogeneous system- with
é single built-in deduction. So our definition of ILL will has to exist as an ofdinary data type
within the system [11]. ‘
| Linear lc%gié is applied to a state based ‘system along with the (;lassical or Intutionistic logic.
State speciﬁc éssertion ‘can be phrased in ILL. So it is often useful to expreés globai
invariants in classical logic, so we can use them as often as possible.
For the sétup of an ILL proof system involve two main steps:

a) Defining a type of ILL predicate and their associated connectives. And

b) Then defining a consequence operator and the associated sequent rules.

19

Coq < LinCons.
LinCons
: (list [LinearProp) -> ILinearProp -> Prop.

to denote this relation.

“l X3

As for connectives w can define the infix operator
All the sequent rﬁles [11] can be coded individually, using coq implication to represent
deduction.
For example impliesLeft rule can be coded as:
Inductive LinCons: (list ILinearProp) -> [LinearProp -> Prop :=
| ImpliesLeft: |
(A, B, C: ILinearProp)(D1,D2 : (list ILinearProp))
(D1]-A)>(D2~"B|-C)>D1~D2"" (A -0B) |-C))
In this formula variable A, B, C, D1 and D2 are universally quantified .list concatenation is
denoted by infix ‘A’ symbol and singleton list is containing B is written as ‘B.
General format of ILL rules in coq can be shown by some sequent based rules [13].
(*here A, B: ILinearProp; G, D :(list ILinearProp); P: Prop *)
Axiom: exampll: Empty |- A.
Axiom exampl2: G |- A. |
Axiom exampl3 (G |- 4) |- (D |- B).
Axiom example4 P -> (G |- A).
An axiom in linear logic is represented as an axiom in coq, with an empty predicate-list
(represented by constant Emptyj to the left of the consequence relation. For example if we
want to state that some predicate A is valid, we can simply assert that like exampl1.
The standard condition sequent is represented as a relation betweeﬁ a list of predicate and
another predicate as in exampl2. |
A deduction such as one of the sequent rule may be represented by one linear sequent that is
conditional on another. So a rule of the form of
exampl3 (G |- A) |- (D |- B).exampl3
can be represented by coq’s implication “—>” for the deduction as in exampl3.
The combination of linear and ordinary classical ‘assumptions can be represented as in
exampl4. Here the intuitionistic predicate P may share variable with other predicate and thus

can assert State-invariant properties of any of the data they might refer to.

21

4.3.3 Special Cases
Now we establish special cases of each action as lemma in coq. That is they can be derived from
the axioms get and put. For example it is more useful to have a version of get referring solely to
the case where block x was on some other block y. this lemma can be written as:
(* Get a block x which is currently on some block y®
Lemma getXonY :
(x,y:Block)
(“(empty ** (clear x) ** (onxy)) |- (holds x) ** (clear y)).
~ There are some other cases too. These are:
If we want to pick up a block which is currently on the table. This special case can be written as
lemmaas
(* Get block x which is currently on the table *)
Lemma getFromTable:
(x:Block)
(" (empty ** (clear x) ** (table x)) |- (holds x)).

Two special cases of put actions are:
Put a block x robot arm holding on the top of another block y.
(* Put block x (which the arm is holding) onto blocky *)
Lemma putXonY:

(x,y:Block)

(" ((holds x) ** (clear y)) |- empty ** (clear x) ** (onxy)).
Put a block x robot arm holding on the table.
(* Put block x (which the arm is holding) onto the table *)
Lemma putXonTable:

(x:Block) _

(" (holds x) |- empty ** (clear x) ** (table x))
All of these four special cases can be proved in coq script.
The statement and proof of lemma getoXnY in coq. This lemma established a spécial case of use

of predicate get, where the block x that is being picked up is on the top of another block y.

23

This is the two blocks world scenario. Here our goal is to prove that there is a sequence of
actions that will reverse the ordering of blocks a and b.
The precondition in this scenario is empty ® (on b a) @ (ontable a) ® (clear b) ® (ontable c)
& (clear c) »
The post condition is empty ® (on a b) @ (ontable b) ® (on a b) ® (clear a) Q(ontable ¢) ®
~ (clear c¢)
In this case the goal can be achieved with applying these four actions. Here the proof is the list of
states in which we can go through as the four actions are applied.
We can write this as a theorem in Coq as follow:
Theorem SwapAB :
(" (empty ** (clear b) ** (on b a) ** (table a) ** (table c) ** (clear
(on ab) ** Top).

Here we use T for the sink of unused predicates. Because we know that I'—| T forany I'.

The outline of the proof can be written as:

empty ® (on b a) ® (ontable a) ® (clear b) @ (ontable ¢) @ (clear c)
(Tw)
empty ® (onb a) ® (ontable a) @ (clearb) ® T
(getXonY b a)
(holds b) ® (clear a) ® (ontable 2) ® T
A (putXonTable b)
empty ® (ontable b) @ (clear b) @ (clear a) @ (table a) ® T
(getFromTable a)
(onTable b) @ (clear b) @ (holdsa) ® T
(putXonY ab)
(onTable b) @ empty @ (onab) Q (cleara) ® T
: Tx :
Onab)@T

Figure 4.3 An Outline of SwapAB Proof.

25

‘_ECHAPTER 5
RESULTS AND DISCUSSION

In this work we have given ‘an brief overview of the linear logiwcr and ‘its .enc-'::odﬂ}ng‘ m the.P_;roof :
Assistant Cog: This encoding is basically based on the linear conseq'uence‘ onerator as a two
place predicate over linear logic terms. We have used a state based system i.e. Two Block world
-domam We made its specification .and verification of some of its propertles in Cogq. Specifying -
the system with predicate and on the base of" these predicate, wrltmg system properties and -

verlfymg is quite good in Coq. Coq is a feasible proof assistant for a linear loglc, with its partlcle :
. advantage are bemg able to 1ntegrate the existing Coq s data types and classical assumptlons into

the system

Lets we want to prove a tautology (A = (B —> C)—> (A —>B) > (A—=> (). For that we enter
the Proof engine with the command Goal, followed by the conj jecture we want to verify. Then we
apply the tactic on the subgoals repeatedly until all the subgoals proved. The process is shown in

' ﬁgure'S.l. The proofs can be saved in file of type .v in Coq.

"We have written'the ‘specification of the Block World in GALLINA and its nroperties about

' state. These are saved in file type of .v and successfully compiled: As shown in figure 5.2.

27

tfr.wuowm f;v (
12 | avril 201y

#;Block:3ets
B et

B

oF «(A;mi;iéa’x?‘mp) '4»"-‘11.1%3‘29?9?*

i -:*‘ﬁléék?.iff?ﬁdcki‘->'iIIsiaeafP!'q'§‘;
ietable': Block -y:lkinearbrogi
te:cledry Bldok:<-Thinearfrop;
123heldg 1 Block - ThinearPreps
ety Tidearbrop. -

pu :'»l

:Blcc}g}
odgyl

e

Figure 5.2 Two Block System Coq Specification

29

REFERENCES

; [,1]- |

2

| _[3]:'

[4].

[5].
[61.
7).

[8].

o]
[10j.

[11].

[12].

Sutcllffe G. and Suttner C “Evaluating General Purpose Automated Theorem Proving

' Systems”. Department of Computer Science, University of Miami, P.O. Box 248154,

Coral Gables, FL 33124, USA Sept. 2001

Bundy A., Dennett D., Sharples M., Brady M, Partridge D. “Subsumption Architecture
for_ Theorem Proving?,” Philosophical Transactions: Physical Sciences and Engineering,
Vol. 349, No. 1689. (Oct. 15, 1994), pp. 71-85 |

Moore M.B., “Interactive Theofem Proving,” M.S.Thesis, Dept.Comp.Eng. Monash

- University, MonashrAustralia November 2003, pp 20-22.

Bertot Y. and Cast’eran P. “Interactive Theorem Proving and Program Development”

Coq’Art The Calculus of Inductive Constructions. Texts in Theoretical Computer

- Science. ,Sprmge_r Verlag, 2004

The Coq proof assistant. -Documentation, - System ' Downloads, Vers. 8.0, Coq
Development Team;201 1 |

Bertot Y and Cast’eran P.”Coq’s Art: Examples and Exerciseé”.

Internet: http://www.labri.fr/Perso/~casteran/CogArt.

 Gimenez E. and Casteran P.,” A Tutorial on Co-Inductive Types in qu”, May 1998 -

August 17, 2007

Ambrasky S.,” Computatlon 1nterpretatlons of linear logic,” Theoretical Computer
Science, 111:3-55,1997

Dosen K. and Schroder P.,” Substructural logic,” Studies in Logic and Computations,
Oxford University Press,1993 | ‘ '

Russel S.J and Norvig P. “Planning” in Artificial Intelligence A Modern Approach 2™ Ed.
New Jersey: Pearson Education, 2003, pp 410-416

Harland J ..and Pym D. “A Note on Implementation and Application of Linear Logic
Programming Language” In Gupta G., editors. procéeding, of the 17" Annual Computer-
Science Conference, Christchurch, January 1994

Blerman G.M., “On Intuitionistic Linear Logic,” Ph.D. dlssertatlon Dept Comp. Eng.,
Wolfson College, Cambridge. December 1993

31

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References

