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Abstract

Wireless sensor network (WSN) is an emerging technology with unprecedented opportunities for
wide variety of applications in the present world. The essential task in many applications of
sensor networks is to extract relevant information about the sensed data and deliver it with a
desired fidelity to a central collection point or sink. WSNs, or more specifically each sensor
node, are resource constrained. They have limited power supply, bandwidth for communication,
processing speed, and memory space which make the reduction of communication critical to
increase the network’s perfortnancc,and lifetime. Data compression is one effective method to
utilize limited resources of WSNis. Compi‘essive Sensing (CS) is a novel data compression
technique that exploits the inherent correlation in the input data to compress it by means of
quasi-random matrices. Distributed Compressed Sensing (DCS) is an extension of CS to
multiple-signal case. Since sensors presumably observe related phenomena, the ensemble of
signals they acquire may be expected to possess some joint structure, or inter-signal correlation,
in addition to the intra-signal correlation in each individual sensor’s measurements. DCS enables

new distributed coding algorithms that exploit both intra- and inter-signal correlation structures.

Also, nodes close to the sink transmit more data and consume more energy than those at the
peripherail of the network. The unbalanced energy consumption has a major impact on network
lifetime. Compressive data gathering (CDG) leverages compressive sensing (CS) principle to
efficiently reduce communication cost and prolong network lifetime for large scale monitoring
sensor netwofks by balancing the energy consumption and reducing the transmissions. With the
recent developments in DCS reducing the communication costs in sensor networks, we propose
Distributed Compressive Data Gathering (DCDG) to further reduce the communication costs in

data gathering and number of measurements in WSNs.
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1 Introduction

Wireless sensor network (WSN) is an emerging technology with wide variety of applications in
the present world. It is composed of a large number of sensor nodes spatially distributed over a
region of interest that can sense the environment in various modalities, such as acoustic, seismic, -
thermal and infra-red. Cheap, smart devices with multiple onboard sensors, networked through
wireless links and the Internet are deployed in large numbers. It provides ﬁnprecedented
opportunities for instrumenting and controlling homes, cities, and the environment, disaster
relief, border monitoring, and surveillance in battlefield scenarios. A sensor is generally
equipped with at least a power supply, sensing unit, processing unit to process the sensed data,
and transmitter-receiver unit. All nodes are connected by radio frequency, infrared, or other
wireless medium. The data collected by nodes traverse among the nodes in wireless medium. In
order to realize WSNs, peer-to-peer network techniques are widely used so that it all’bWs-direct
communication between any two nodes. If two deviceé cannot communicate directly, other
intermediate nodes relay data packets from the source node to the destination node. This is called
multi-hop routing. The sensors coordinate among themselves to form a communication network
such as a single multi-hop network or a hierarchical organization with several clusters and cluster
heads. Because of their peer-'to-ﬁe?r ‘communication style, no cehtraliz.ed: point, which controls a
network formation like a base station for a cellular system, is required for the network. Since no
fixed infrastructure is necessary for WSNs, a network is constructed inexpensively. Also, nodes
may be added to and removed from the network easily. On the other hand, the network topology
in a WSN may chaﬁge drastically since nodes can be added and removed easily. The sensors
periodically sense the data, process it and transmit it to (usually) distant destination, termed as
the fusion centre (FC) or sink. The sink may be connected to the outside world through Internet

or satellite.



The essential task in many applications of sensor networks is to extract relevant information
~ about the sensed data and deliver it with a desired fidelity to the sink. A large number of sensor
nodes are often deployed to the locations where it is hard to access. It is not practical to perform
‘maintenanee operations, such as changing batteries, on deplo_yed sensor nodes. Because of the
above reasons, WSNs, or more specifically the sensor nodes, are resource constrained. They
have limited power supply, bandwidth for communication, processing speed, and memory space.
In many sensor networks, and in particular battery-powered ones, these factors make the
'reductlon of communication critical to increase the network’s performance and lifetime. Data
compression is one effective method to utilize limited resources of WSNs. Compressing the
sensed data w1ll reduce the power consumption due to processing and transmitting data in each
node, and thus extend the life time of sensor network. Also, by reducing data size less bandwidth
is required for sending and receiving data. Our objective is fo measure large data sets with high
accuracy through the collection of a small number of readings. Howerer most existing data
compression algonthms are not fea51ble for WSNs due to the size of the algorithms and

processmg speed of the nodes.

It is possible to avoid the transmission of any “redundant” information if the sensors could
communicate with one another. A rlumb.er of distributed coding ‘algorit,hms have been developed
that involve collaboration amongst the sensors. HoWever; this increases communication
overhead. Slepian-Wolf coding has.the distinct advantage that the sensors need not collaborate

while encoding their measurements thereby saving valuable communication overhead. In the |

Sleplan-Wolf framework for lossless distributed coding [1, 2], the ava11ab111ty of correlated side

information at the colleenon point / decoder enables each sensor node to communicate losslessly
at its condltlonal en_trepy rate rayth,erf than at its md1v1dual entropy rate. Unfortunately, however,
most existing coding algorithms '[2] exploit only inter-sigﬁ correlations and not intra-signal
correlations. To date there has“ been only limited progress on distributed coding of so-called
“sourccsewithmemory."’ The direct irnp/l)ementaﬁon for such sources would require huge lookup
tables. Furthermore, approaches combining pre- or post-processing of the data to remove intra-
signal correlations combined with Slepian-Wolf coding for the inter-signal correlations appear to
have limited applicability. This entails the design of distributed aléorithms for the joint gathering
and compression of data and the exploitation, at the sink, of signal processing techniques for the

approximation of the signal in space and time. The area of communication and protocol design
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for Wireless Sensor Networks (WSNs) has been widely researched in the past few years. An
important research topic which heeds further investigation is in-network aggregation and data
' management to increase the efficiency of data gathering solutions (in terms of enefgy cost) while
being able to measure large amount of data with high accuracy. Before going into these details,
first let us understand the concept of Compressive Sensing (CS) [3]-{5] which is a novel data
compression technique that exploits the inherent correlation in the input data to compress it by

‘means of quasi-random matrices.

1.1 Compressive Sensing

A new framework for single-signal sensing and compression has developed recently under the
rubric of Compressive Sensing (CS). CS builds on the ground-breaking work of Candes,
Romberg, and Tao [3] and Donoho [4], who showed that if a signal has a sparse representation in
one basis then it can be recovered from a small number of projections onto a second basis that is
incoherent with the first. A sparse signal is a signal with a very-few non-zero coefficients/values
in its representation. A large number of real and generated signals are either sparse in their
original form or may be represented as a sparse signal in transform domain. Sparse signals are
present everywhere. The dogma of signal processing maintains that a signal must be éampled at
the Nyquist rate at least twice its bandwidth in order to be represented without error. However, in
practice, we often compress the data soon after sensing, trading off signal representation
complexity (bits) for some error (consider JPEG image compression in digital cameras, for
example). Clearly, this is wasteful of valuable sensing/sampling resources. In compressive

sensing, the signal is sampled (and simultaneously compressed) at a greatly reduced rate.

Compreséive Sensing problem [3]-[6] may be stated as recovery of vector x € RN from ‘the
measurement vector y € RM such that M <« N and x is a K-sparse vector (K out of N
coefficients of x are nonzero in some basis P, K < M) such that y = ¢px where ¢ isa M x N
, measufément matrix. The M rows of ¢ may be considered as basis vector. To ensure the
recox?erability of any such x, the measurement matrix should satisfy the conditions of
incoherence and restricted isometry property (RIP) [7]. It is also proved that the measurement
matrix whose coefficients are chosen randomly can satisfy these conditions with high

probability. Using such a matrix it is possible, with high probability, to recover any signal that is



K-sparse in the basis ¥ from its image under ¢, where ¥ andi¢~’are incoherent. For signals that
are not K-sparse but compres51ble, meamng that their coefficient magnitudes decay
,exponentlally, there are tractable algorlthms that reconstruct signals with error not more than a

multiple of the error of the best K-term approxnnanon of the signal.

Many reconstruction algorithms have been developed based on minimizing the error coupled
with the sparse constraint. The algozrithms mainly fall in two categories:b convex relaxation and
greedy pursuits. Examples of convex relaxation include interior point methods like /;
minimization, Primal-Dual interior ﬁlethods ‘for convex objectives (PDCO) using conjugate
gradients and Iteratively Reweighted Least Square (IRLS). Examples of Greedy pursuits include
Orthogonal Matching Pursuit (OMP), Stagewise OMP (StOMP), and Iterative hard thresholding
method (IHT). Since CS is comparatively a new field, a lot of research till date is directed at
theoretical aspects of CS and at improving CS recovery algorithms to operate faster with
minimum possible number of measurements. Techniques from other fields are being invoked for
finding newer and better methods for CS Recovery. A large number of CS recovery algorithms
taking advantage of struoture present in sperse signals were developed in the last few years to
achieve the twin ob_]ecttves of speed and minimizing the number of measurements requlred [8].

Carin et al. [9] extended Bayesian framework to solve for CS problem to obtam maximum

aposteriori (MAP) estimate for the sparse signal based on the measurements/observations.

In [10], Principal Component Analysis (PCA) was used to find transformations () that sparsify
- the signal, which are required for CS to retrieve, with good approximation, the original signal

- from a small number of samples.

1.2 Dlstrlbuted Compressed Sensing

Dlstrlbutedeompressed Sensing (DCS) [11] is an extension of CS to multlple sngnal case. Smce ’
Sensors presﬁmably observe related phenomena, the ensemble of signals they acquire may be B
expected to possess some joint structure, or inter;signal correlation, in addition to the intra-sigoalf' '
~ correlation in each individual sensor’s measurements. For example, imagine a microphone
network recording a sound field at several points in space. The time-series acquired by a given
sensor generally have considerable intra-signal (temporal) correlation and might be sparsely

represented in a local Fourier basis. In addition, since all microphones listen to the same sources
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the ensemble of time-series acquired at all sensors might have considerable inter-signal (spatial)

correlation.

Distributed compressed sensing (DCS) enables new distributed coding algorithms that exploit
both intra- and inter-signal correlation structures. The DCS theory rests on a concept termed as
joint sparsity of a signal ensemble. Each sensor independently encodes its signal by projecting it
onto another incoherent basis (such as a random one) and then transmits just a few of the
resulting coefficients to a collection point. Under the right conditions, a decoder at the collection
point can jointly recdnstruct all the signals precisely. This allows WSNs to save on the
communication costs involved in exporting the ensemble of signals to the collection point. This
entails the design of distributed algorithms for the joint gathering and compression of data and
the exploitation of signal processing techniques at the sink for the approximation of the signal in
space and time. Baron et al. [12] have studied three joint sparsity models (JSMs) and proposed
tractable algorithms, namely One step greedy algorithm (OSGA), DCS-SOMP (Simultaneous
Orthogonal Matching Pursuit) and Alternating Common and Innovation Estimation (ACIE), for
joint recovery of signal ensembles from incoherent projectiéns, and characterized theoretically

and empirically the number of measurements per sensor required for accurate reconstruction.

In [13], Cotter et al. addressed the problem of finding sparse solutions to an underdetermined
system of equations when there are multiple measurement vectors having the same, but
unknown, sparsity structure. It extends two classes of algorithms, Orthogonal Matching Pursuit
(OMP) and FOCal Underdetermined System Solver (FOCUSS), to the multiple measurement
vectors (MMYV) case —M-OMP and M-FOCUSS, so that they may be used in applications such as
neuromagnetic imaging, where multiple measurement vectors are available, and solutions with a

common sparsity structure must be computed.

1.3 Compressive Sensing in Communication Networks

In 2004, CS was first proposed for efficient storage and compression of digital images, which
show high space correlation. In the following few years, CS has expressed many advantages and
its application has prevailed in these fields, with the development of plenteous novel techniques, -
such as developing simpler, smaller, and cheaper digital cameras, novel analog-to-digital (A/D)

converter architectures and so on. Recently, CS has been earning more and more interests in the



area of wireless communication networks and a plenty of researches focused on how to utilize

© C8 efﬁc1ent1y in this area have been carried out.

We mention the researches in -the four layers according to the OSI (Open Systems

) @ajﬁﬂcﬁe& withW

' @@ /

Channel
Estimation

Figure 1.1 Applicétions of CSin commu.ﬁicatiOn ‘rictwo:ks'according to OSI network model [14].

Interconnection) network model, respectively [14]..

In the physical laycrl,' ECS has been used 1n dutu detection and channel estimation, especially in
ultra-wideband (UWB) commuhications, underwater acoust{c (UWA) ‘communications and
Cognitive Radlo (CR) In partlcular, CS can be used in the Jidentifjcation of Frequency Hopping
signals, detection in On-Off Random Access Channcls Spectrum Sensmg in Cognltlve Radio,
and Sparse Event Detection in WSNs. However, in case the number of channels is not large
enough in signal detection and - channel estimation, the ;fequlrcment of sparsity cannot be

guaranteed.

In MAC layer, CS can be used in WSNs to reduce measurement cost by mmunlzmg the number
of measurements. The studies are focused on addressing the problem of high costs caused by
dense measurement when CS is utilized. Using CS in multi-hop networks is a serious problem as

each méasurément in CS is.a linear combination of many (or all) samples of the signal to be
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reconstructed, which may result in significant transport costs even though the number of
measurements has been minimized. Cluster-based technique is used in WSN to solve this
problem. However, design of efficient clusters is still an open problem as it influences the

efficiency of reconstruction of data in CS.

In network layer, CS is very promising for jointly acquiring and aggregating data from
distributed data sources in a multi-hop WSN. The fact that the number of senéing nodes in WSNs
is very huge, while the information generated by the nodes is almost the same indicates that the
information of the whole network is compressible. Based on this, CS shows its great potential in
joint data compression and transmission without the knowledge of correlation properties of the
input signal over the entire network. Also, CS makes the reconstructibn of all sensor readings of
the network possible, using much fewer transmissions than traditional rbuting or aggregation

schemes, thereby increasing the efficiency of data gathering solutions.

CS is utilized in data fusion and network monitoring in the application layer. It is valuable to
apply CS to network monitoring, addressing the problem of efficient end-to-end network
monitoring of the path metrics in large-scale wireless communication networks. Also, CS shows
great advantages in data fusion. Different from the other decentralized compression strategies,
such as Slepian-Wolf coding, which need a prior knowledge of the correlations between data at
different nodes, CS needs no prior knowledge, which has been of increasing interests recently
[11], [15], and CS offers two highly desirable advantages for networked data analysis: one is
decentralized, meaning that distributed data can be encoded without a central controller; the
other is universal, in the sense that sampling does not require a priori knowledge or aSsumptions
about the data. Several approaches [15]-[17] in ‘the action of networked data compression are
presented in the recent résearches. However, a lot of computing is required at the fusion center

for the reconstruction of the data.

1.4 Statement of the Problem

Most of the existing studies conducted so far focuses on how to achieve the maximum utilization
of limited sensor resources. One field of resource utilization studies for sensor networks is data
compression. Researchers seek the optimal way to compress the sensing data. In this dissertation

weE



- 1) Implement M-FOCUSS and DCS-SOMP on the real world signals gathered from WSNs

to reduce the number of measurements. |

2) Recover real signal data through joint Distributed Compressed Sensing (DCS) and
Principal Component Analy31s (PCA).

- 3) Propose Distributed Compress1ve Data Gathermg scheme based on Compressive Data
Gathermg and Dlstrlbuted Compressed Sensing for eﬂ1c1ent data aggregation, hence

| reduclng numbet of measurements and commumcatlon cost in WSN.

4) Implement the above scheme on the real world data gathered from WSNs

1 5 O;rganization»of th"ez iisfserftation

In the next chapter theory behmd CS is discussed. The concept of sparsity on which CS is based
| upon, problem formulation to ﬁnd sparse representatton and various algorithms to solve the
under-determmed system of equations to ﬁnd sparse representatlon are mentioned. Also,
motivation behind CS and the exact CcS problem is presented. The detailed theory includes
conditions required to be satisfied by measurement matrix to ensure recoverability of any K-
sparse signal. Principal Component Analysis (PCA) used to dynamlcally find transformatlon

matrix for signals Wlth time varymg correlation is also discussed.

In Chapter 3, we discuss the concept of Distributed Compressed Sensing which uses the
temporal and spatlal correlatlon to reduce the number of measurements for joint recovery of
signals in sensor networks and its apphcatlons Different joint spar51ty models and their recovery
algorithms have been d1scussed Also, M-FOCUSS used for recovery from multiple
measurement vectors has been used for JSM-2 model. Snnulatron_ results of the implementation
of M-FOCUSS and JSM-2 recovery algorithms OSGA and DCS-SOMP are shown, Also, M-
FOCUSS and DCS-SOMP are compared. Sinlulation results of recovery of sig_nals using joint
DCS and PCA are also shown.

Chapter 4 mentions different data gathering schemes in WSN. Compressive Data Gathering
(CDG) proposedvby Luo et al. [16] ‘is' diScussed in detail. It leverages compressive sampling (CS)
principle to efficiently reduce commumcatlon cost and prolong network lifetime. IR-CDG is
another scheme for data gathering with even 1ess number of meas ements in WSN. Simulation
results of CDG and IR-CDG are shown. ' g



We propose Distributed Compressive Data Gathering (DCDG) to further reduce the

communication cost and measurements in WSN. This is detailed in chapter 4. Simulation results

for DCDG are shown for real world signals.

Chapter 5 concludes the dissertation thesis mentioning the results and area of further studies.



2 Compressive Sensing

According to Nyquist/Shannon sampling theory, signals, images, videos, and other data can be
‘exactly recovered from a set of uniformly spaced samples taken at the so-called Nyquist rate of
twice the highest frequency present in the signal of interest. Capitalizing .on this discovery, much
of signal processing has moved from the analog to the digital domain. Digitizatiori has enabled
the creation of sensing and procéssing systems that are more robust, flexible, and cheaper and,
consequently, more widely used than their analog counterparts. As a result, in recent years, the
amount of data generated by the sensing systems has grown drastically. For some of the
important and emerging applications, the required Nyquist rate is so high that a iarge number of
samples are generéted and stored for efficient representation of the generated data. Along with
the large amount of data generated, it may be either costly or physically impossible to achieve
such high acquisition rates in some fields like imaging, video, medical imaging, remote

surveillance, and spectroscopy.

To deal with the first challenge of large amount of data generated, we depend on compression.
Also, data often need to be trahs'mitted through a channel or a network such as in wireless sensor
networks. Prior to transmlssmn, it is desirable to compress the data for efficient usage of storage
resources and/or bandwidth of the communication channels. Compressmn is basically finding the
most concise representation of a signal within level of acceptab,le distortion. One of the most
popular compressing techniques is Ti'ansform coding which relies on finding some basis which
makes the signal sparse or compressible. By a sparse representation, we mean that for a signal of

length N, we can represent it with K <« N nonzero coefficients; by a compressible representation,
we mean that the signal is well-approximated by a signal with only K nonzero coefficients. This
is attained by preserving only the largest coefficients of the transformed signal, which contain

most of the information, without much numerical or perceptual loss. This process is the basis
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behind many. e;o_pr;efisisfien@schemes like JPEG, JPEG2000, MPEG and MP3 standards. Since in
tran.sform”’ codmg _ most .of the low information carrymg small coefficients are dlscarded,
acquisition of so many samples and then calculating their equivalent repfesentaﬁon in transform
‘domain seems to be a big loss. This raises the question: “Why go to so much effort to acquire all |
the data when most of what we get Will* be thrown away? Can we not just directly measure the
part that will not end up being thrown away?” This became the central idea behind CS: rather
'tha;n samplmg the signal at a h1gh rate and then compressmg it, we would like to find ways to
dlrectly sense the signal in compressed form The term CS Was coined in the separate works of
Candes, Romberg and Tao [3] and Donoho [4], who showed that a finite-dimensional signal
havmg a sparse representation can be recovered from a set of lmear, nonadaptive measurements.

Moreover, the- acqu1smon does not requlre knowledge of the s1gnal/1mage to be acqulred in
advance—other ‘than knowledge that the data will be compress1ble The desxgn of these

measurement schemes and the1r extensmn to pract1cal data models and acquisition systems are |

central challenges in the field of CS

/ ';5’ Comg.ressipn | Encryption —DI _ ,Channel ] Decryption

Key

Figure 2.1 Flow.diagram of a conventional sampling, compression and encryption scheme.

o ‘Compressive
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FET | Reconstruction/
Channel | -]

= S

Key
' Figur'e 2.2 Flow diagram of co_mp,r.essivé sensing for unified sampling, compression and encryption.
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Compressive Sensing differs from classical sampling theory in three major aspects [18]:

1. Sampling theory typically considers infinite length, continuous-time signals. In contraét, CSis

a mathematical theory focused on measuring finite-dimensional vectors in RN,

2. Rather than sampling the signals at specific points in time, CS systems typically acquire

measurements in the form of inner products between the signal and more general test functions.

3. The two differ in the manner in which they deal with signal recovery. In the Nyquist- Shannon
framework, signal recovery is achieved through sinc interpolation, In CS, signal recovery is

achieved using highly nonlinear methods.

2.1 Sparsity

Before moving to the theory of CS, let us first understand the concept of sparsity and how to find

sparse representations. Few definitions should be understood first.

Definition 1. 7, norm: In the case of a discrete, finite domain, signals can be viewed as vectors

in an N-dimensional Euclidean space, denoted by R". Ip norms for such signals are defined for

p €[1,00] as
P
[ = { QPP pE L)
_ pll ™) i=1
Jnax [xi, p =

Definition 2. Support: Support of a vector & is defined as the locations of nonzero entries in the

vector 6. Mathematically,
i8llo = |supp(6)I, where supp(8) = {i : 6; # 0}

Definition 3. Bases and Frames: A set {3);}), is called a basis for R" if the vectors span R™ and
are linearly independent. It implies that if we let 1 denote the NXN matrix with columns given
by 1; and let € denote the length-N vector with entries 6;, then we can represent this relation

more compactly as
x =1 2.1
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It is often more useful to generalize the concept of a basis to allow sets of possibly linearly

dependent vectors, resultlng in what is known as a frame. A frame is a set of vectors

W), €eR%, d<N correspondmg to a matrix 1/) € R? XN , such that for all vectors x € R?,
Allxli < |}t[2TxII2 < BlIxll3 with0 <A <B < .

Frames can provide richer representation of data due to their redundancy. For a given signal x,

there ex1st infinitely many coefﬁc1ent vectors @ such that x = 1/)9 In order to obtain a set of

o feasfble coefﬁc1ents we exploit the dual frame . Spemﬁoally, any frame satisfying

YT =y =1

s called an alternate frame. The particular choice ¥ = (¥") 14 is referred to as the canonical
dual frame. It is also common for a basis or frame to be referred to as a dictionary or

overcomplete dlctlonary respectively, with the dlctlonary elements being called atoms.

Deﬁnitibn 4. K-sparse signal: A signal is K-sparse when it has at most K nonzero coefficients
i.ellx|lo < K. And let ‘

g ={x: |Ixllp <K}

denote the set of all K-sparse signals. We say a signal x is K-sparse in the basis or frame ¢ if
there exists a vector 8 € RN with only K « N nonzero entries such that x = 8. We call the set
of indices corresponding to the nonzero entries the support of  and denote it by supp(6).

Definition 5. Compressible Signals: Compressible signals are those which can be well
approximated by a sparse signal. This well-approximation can be quantified by calculating the

error incnrred by approximating a signal x by X € Zx as

O'K(x)p = J!c,telglzﬂx - f"p

Another way to think about compressible signals is to consider the rate of decay of their
coefficients. For many important classes of signals tnere exist bases such that the coefficients
obey a power law decay, in which case the signals are highly compressible. Specifically, if
x = 1@ and we sort the coefficients 6; such that 16| = |92|2 > |6y , then we say that the
coefficients obey a power law decay if there exist constants C v],,j q > 0 such that
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16, < Cyi 1.

2.1.1 Finding Sparse Representations

It is useful to determine whether a signal has a sparse representation in a given basis or frame. If
an orthonormal basis 1 is used, then a signal x has a unique representation 8 = ~1x and we
can learn whether x is K-sparse in 6 simpiy by inspecting this vector. When Y is a frame,
however, there are infinitely many solutions to the _uﬁderdetéi'fﬁihed problem x = 18 and hence

infinitely many representations 0 for x, making it more difficult to answer this question.

'Thus, this underdetermined system needs additional constraints or condiiz’ions to find an exact
solution that meets a given set of requirements. These conditions might be thé minimization or
maximization of certain parameters associated with the system. The problem of finding an
extreme value of a function subject to some given constraints is quite a popular one and can be

put as
min f(x) such that x = Y0 (2.2)

As is expected the function f(x) can take any form, it might be the distance of the given vector
from a point, its length or the number of nonzero elements in it. At this point the following

question arises, how can sparse solutions to underdetermined systems of equations be obtained?

1p~-norm Minimization

To find the sparsest representation of the signal, we need to find a vector with minimum number of

nonzero elements. So the problem may now be stated as

minlIBIIO such that x = Y8 (2.3)
with
N
lello = > 16:1° @4
i=1

- where, -

15



19i|0={0' l:f6!1=0
1, if0;#0
It can thus be said that the sparse solution of a system of ecjuations is the one that has the
minimum J norm. ‘While this algorrthm will - by construction - find the sparsest representation
of the signal x in the frame ¥, its computational complex1ty is combinatorial; it must search
whether the signal x is in the span of any of the columns of ¥ then whether it is in the span of

any pair of columms of 3, then repea_. for any set of three columns etc., until a combination of

columns for which x is in their span is found But this as 't~ does not deter people from

apprommatmg and this task has been ach1eved with mueh suc s uring the past many years of
research This has led to consrderable effort bemg put mto the development of many sub-optimal

schemes.

Sub-op timal Algorithms

~ Instead of attempting to solve the problem exactly by brute force, approximate solutions have

been developed that tend to approach the exact solution. The first relaxation is given in terms of

- the error in solving the system of equations. Instead of exactly solving the system, certain error is

allowed so that a sparse -solutjoh may be achieved with some arbitrarily small error, represented

in the following equation by €.
min [|61]o such that [[p8 — x|l <e (2.5)

Various approximation algorithms have been put forward for the recovery of an approximate
solution to the above ;equ-at'i,ons. ‘Some of these recovery methods may broadly be classified into q

different groups listed as follows.

Greedy pursuit: Iteratively refine a sparse solution by successively identifying one or more
components that yield the greatest improvement in quality. These start from an all zero solution
and add components to x one at a time based on selecting the best out of the available options.
Some . of such approaches are Matching ‘pursuit [19], Orthogonal Matching Pursuit [20],
StageWi:se Orthogonal Matching Pursuit (StOMP) [21] etc. These have been shown to converge
_ ‘__,;by Tropp in [22]. Matching Pursuit decomposes any signal into a linear expansion of waveforms

that are selected from a redundant dictionary of functions. These waveforms are chosen in order ‘
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to best match the signal structures. Matching pursuits are general procedures to compute adaptive

signal representations.

Convex Optimization: The above is an optimization problem but the /, norm is not a convex
function so it may be replaced by some equivalent convex function and the problem may be
solved by convex optimization. The methods developed from this point of view are Basis Pursuit
[23], FOCal Underdetermined System Solver (FOCUSS) [24] and Iteratively Reweighted Least
s Square (IRLS) [25]. As these methods are based upon standard optimization techniques so they
are guara'iltleed to converge, the only thing that is needed to be proven in such cases. is that the
convex function chosen to replace the /p norm is adequate. Basis pursuit (BP) is a princiﬁlc for
decomposing a signal into an “optimal” superposition of dictionary elements, where optjthal
- means having the smallest /; norm of coefficients among all such decompositions. FOCUSS has
two integral parts: a low-resolution initial estimate of the real signal and the iteration process that
refines the initial estimate to the final localized energy solution. The iterations are based on
weighted norm minimization of the dependent variable with the weights being a function of the

preceding iterative solutions.

Statistical approaches: As the least squares solution provides the ML (Maximum Likelihood)
estimate of the system equations so in a probabilistic approximation of the sparsest solution aﬁ
appropriate prior distribution of the elements of x is chosen and then a MAP [26] or an MMSE
[27] estimate of x is found. The success of these methods depends mainly upon the

appropriateness of the chosen apriori distribution.

Algorithmic Performance

" To provide a guarantee for the performance of these algorithms, we define a metric of the frame

Y known as coherence.

Definition 6. Coherence: The coherence of a matrix 1, p(y), is the largest absolute inner

product between any two columns 3;, ; of 3 :

[, )|

MO = B T T
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It can be shown that the coherence of a matrix lies in the range u(y») € /Mlgi) , 1] where the

lower bound is known as Welch bound.

The coherence then dictates the maximum sparsity |8l for which the BP and OMP algorithms
obtain the sparse reprcsentation of x = Y8 [3). The BP and OMP algorithms can obtain the

» sparse representation of any K-sparse signal in 1f K<<= ( + 1).

(?IJ)

o ;sHowever another question arises here, that pertains to the unlqueness of this sparse solution. It is

known that the infinite solutlons ex15t for the system of equatlons S0 the umqueness ofa solutlon

of thlS problem becomes dublous Umqueness can be guaranteed by deﬁnmg a relevant metrlc

Deﬁnition 7. Spark: The spark of a given matrix ) is the smallest number of columns of 1 that

are linearly dependent.
'i)eﬁnition 8. Null Space: Null space of a matrix y is deﬁncd,as N@) ={z: ¢z = 0}.
Theorem 1. Ifa signal xhasa snarsé representation x = 6 with ||8]l = K and
K< sparkﬁb) /2
then 0.is the unique sparsest represéntation ofx in .

Proof. Let there exist another vector 8’ such that 8 = x and |;|6’||0k < spark(y)/2 so now
P(6—86") =0 and lies in V' (). Using the definition of the spark

6llo + 1161l = 16 — &'llp > spark(y)

as any vector must have at least spark(i) non-zero components to lie in the null space of 1. Also
as the number of nonzero terms in & — 8’ can not exceed the sum of the number of non zero
terms in 6 and 8’ separately. And as ||0]lq < spark(y)/2 hence such a 8 does not exist. So a

- vector @ with the above mentioned properties is indeed unique.

2.2 Compressive Sensing

Consider the general problem of. reconstructmg a vector x € RN from linear measurements

y € RM of x of the form
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Vi =< X, Pm >, m=12,..,M, or y=¢x

where ¢ is a M X N transform matrix with M « N, That is, we acqufre information about the
unknown signal by sensing x against M vectors @, € RN. We are intevrested ~in -the
“underdetermined” case M << N, where we have many fewer measurements than unknown signal'
values. At first glance, solving the underdetermined system of equations appears hopeless. But if
~ the signal x is sparse or compressible in basis 1, meaning that it essentially depends on a number
of degfees of freedom which is smaller than N, that is, it can be written eithef exactly or

accurately as a superposition of a small number of vectors in some fixed basis, i.e.
x =06
where, Y is N X N matrix and 8 is N X 1 column vector and hence,

y = ¢yo
Then this radically changes the problem, making the search for solutions feasible. In fact,
accurate and sometimes exact recovery is possible by solving a simple convex optimization
problem. In other words, instead of sensing’an N dimensional signal x with sparsity K, we can
measure M random linear functionals of x where M « N and find x by solving the under-

determined system of equations as above with the extra condition that x is K sparse in basis 1.

To recover the signal representation 8 from its measurements y, we can exploit the fact that y will
be sparse in the frame ¢1p. However, a distinguishing feature of CS is that we do not want to find
just a sparse representation of y, but rather we aim for the correct representation 6 that yields our
signal x = 8. Therefore, the requirements, guarantees, and algorithms relevant to CS signal
recovery are slightly different from, although based on, the sparse representation and
approximation algorithms mentioned earlier. For brevity, we define the matrix product A = ¢y

so that y = Af8.

A major question arises out of this problem statement, i.e., how should the measurement/sensing
matrix ¢ be designed so that it preserves the information in the signal x? Following section -

attempts to answer this question.
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2.3 How to construct Measurement Matrix?

The measurefﬁent mattix ¢ represents a dimensionality reduction, i.e., it maps R, where N is.

| generally“ arge, into R™, where M is- typ1ca11y much smaller than N. Here, we assume that the
measuretents are non-adaptlve meaning that the rows of ¢ are fixed in advance and do not

depend on the prev1ously acqu1red measurements.

The CS theory states "that it is poss1b1e to eonstruct an M x N ‘measurement matrix ¢, where
M<<N yet the measurements y = qu preserve the essentlal mformatlon about x, if it satisfies
some propertles to be discussed below ‘For example, let <;b be a cK xN random matrix with i.i.d.
Gaus51an entries, ‘where ¢ = c(N,K) is an oversamphng factor. Usmg such a matrix it is possible,
with high probability, to recover any signal that is K-sparse in the basis i from its image under
¢. For signals that are not K-sparse but compressible, meaning that their coefficient magnitudes
decay exponentially, there are tractable algorithnis that reconstruct signals with error not more

than a multiple ofthe error of the best K—termk' approximation. of the signal.
Some conditions/attributes that ¢ should satisfy for preserving the information and helping

recovery are given below ’[ 18].

2.3.1 Restricted Isometry Property

. In [3], Candes and Tao mtroduced the followmg 1sometry condition on matrix A and established

its important role i in CS

Definition 9. Restricted I:sometryfrffl’?roperty (RIP): A matrix ¢ satisfies the restricted isometry
property (RIP) of order K if there exists a 0 € (0,1) such that

1= 68lxI3 < ligpxli3 < (1 + 8)lIxl3 . (2.6)

This property essentially requires that every ’"set of columns with cardinality less than K
: approxnnately behaves like an orthonormal system An 1mportant result is that if the columns of
the measurement matrix are approxmlately orthogonal, then the exact recovery phenomenon
occurs [3].Ifa matrix ¢ satisfies the RIP of order 2K, then w oan mterpret (2 l) as saying that

b approxnnately preserves the dlstanoe between any pair of K—sparse vectors ‘Also, if ¢ satisfies
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the RIP of order K with constant §, then for any K’ < K we automatiéally have that ¢ satisfies
the RIP of order 6+ with constant 6 < 6.

RIP & the stability:

Definition 10. Let ¢ : RN — RM denote a measurement matrix and A: RM — RN denote a
recovery algorithm. We say that the pair (¢; A) is C -stable if for any x € ¢ and any e € RM,

we have that

lA(¢x + ) — x|l < Cllell>

This definition simply says that if we add a small amount of noise to the measurements, then the

impact of this on the recovered signal should not be arbitrarily large.

Practical recovery algorithms typically require that ¢ have a slightly stronger 2K-RIP, 3K-RIP;
or higher-order RIP [3]. In fact, the uniqueness requirement is implied when the matrix has the
2K-RIP with &,k > 0 as this implies that all sets of 2K columns be linearly independent, putting
spark(¢p) > 2K. |

2.3.2 Mutual Coherence

In particular cases, the choice of measurements that can be taken from the signal are limited to a
transformation, such as the Fourier/Radon transform performed in magnetic resonant imaging.
Thus, we can assume that a basis ¢ € RN*N is provided for measurement purposes, and we can
choose a subset of the signal's coefficients in this transform as measurements. That is, let ¢ be an
N x M submatrix of ¢ that preserves the basis vectors with indices I" and y = @7 x. Under this

setup, a different metric arises to evaluate the performance of CS.

Definition 11. Mutual Coherence: The mutual coherence of the N-dimensional orthonormal
bases ¢ and Y is the maximum absolute value for the inner product between elements of the
two bases:

1<i,j<N

M(¢t¢) = max I(¢il¢1)l
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2.3.3 Random Matrices

Fortunately, these conditions can be achieved by randomizing the matrix construction. It can be
shown that random matrices will satisfy the RIP with high probability if the entries are chosen

according to-a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution [3].

Using random matrices to construct ¢ has a number of additional benefits. To illustrate these, the
focus will be on the RIP.

1. For random constructions the measurements are democratic, meaning that it is possible to
recover a signal using any sufficiently large subset of the measurements. Thus, by using random

¢ one can be robust to the loss or corruption of a small fraction of the measurements.

2. In practice, we are often more interested in the seiting where x is sparse with respect to some
¢ ba},,saié . In this case what we actually require is that the product A = ¢ satisfies the RIP. If we
 were to use a deterministic construction then we would need to explicitly take 1 into account in
our construction of qb, but when ¢ is chosen randomly we can avoid this consideration, For
example; if qb’ is Q)l'i;o.sejl‘gaccording to a Gaussian distribution and ¥ is an orthonorﬁaql basis fhen
one can éasily show 't:hé-t 4 will also have a Gaussian distribution, and so provided that M is
sufﬁcicntyly high 4 will satisfy the RTP with high probability, just as before.

2.3.4 Measurement bou»-n_ds :

A K-sparse signal can be reconstructed from M measurements if M satisfies the following

conditions:
M = c.;?(p, ). K.logN

where, ¢ is a positivé constant. The smaller the coherence between ¢ & is, the lesser
- measurements are required to reconstruct the signal. A random basis has been shown to be
largely incoherent with any fixed basis, and M = 3K~4Kis usually sufficient to reconstruct the

signal.
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2.4 Principal Component Analysis (PCA)

- Transformation domain that make the signal sparse (1)) needs to be known for the reconstruction -
of the signals using CS. Using a fixed basis with a time varying correlation structure as in WSNs
may not provide the expected results. Transformation domain should adapt to the signals. PCA
allows to dynamically learn the optimal transformation to be used by CS recovery, effectively

accounting for the time varying correlation affecting real signals as in the case of WSNs [10].

Let ™ & R’ be the vector of measurements from our WSN at a given time instant n, where the
network consists of J nodes. We collect measurements according to a fixed sampling rate at
discrete times n = 1, 2,...,N. From a geometrical point of view, we consider x™ as a point in
R and look for the K-dimensional plane (with K <« ) which best matches the points in x™ in
terms of minimum Euclidean distance. The sample mean vector ¥ and the sample covariance

matrix £ of x™ are given as:

N N

1 « 1 T

x NZx”, px NE(x" %) (x™ — x)
n=1 n=1

Given the above equations, we consider the orthonormal matrix U whose columns are the
eigenvectors of the covariance matrix £ placed in decreasing order with respect to the

corresponding eigenvalues. If we define the vector s™) as:
s = YT (x® — %)

Assuming that the instances x®,x@, ..., x™ of the process x are correlated, as is often the case
in WSN monitoring applications, there exists an K < | such that all the component s!.(") with

i=K+1,..,] are negligible with respect to the average energy, where the actual value of K

depends on the spatial correlation of the signal. We can write:
x® = x + st

where, we have defined the sparsifying matrix 1 = U [28]. The J-dimensional vector s
obtained through PCA turns out to be K-sparse, so it can be efficiently recovered with CS.
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We extend the uSe" of PCA for multiple measurement vectors and recover signals using joint
Distributed Compressed Sensing (DCS) and PCA. But, before that, let us understand the theory
: behmd DCS and various recovery algorithms used for DCS in chapter 3. ) '

ZSSummary

In this chapter, theory behind CS is discussed. The concept of sparsity on which CS is based
upon, problem formulation to find sparse representation ’and various ,algorithmé to solve the
under-détermined system of equations to find sparse representation are. mentioned. Also,
motivation behind CS and the exact cs problem is presented. The detailed theory includes
cconditions required to be satisfied by measurement matrix to ensure recoverability of any K-
‘ spa;“se signal. Principal Component Analysis (PCA) used to dynamically find transformation

~matrix for signals with thné» varying c¢rrelation is also discussed.
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3 Dlstrlbuted Compressed Sensmg

While the theory and practice of compression have been well developed for individual signals, |
there has been less progress for multiple signals. One such application involving multiple signals
is sensor network in which a potentially large number of distributed sensor nodes are
programmed to perform a variety of data acquisition tasks as well as to network themselves to
communicate their results to a central collection point. In many sensor networks, and in
particular battery-powered ones, communication energy and bandwidth are scarce resources
which necessitate the reduction of amount of data to be transmitted. Fortunately, since the
sensors presumably observe related phenomena, the ensemble of signals they acquire are
expected to possess some joint structure resulting in inter-signal correlation, in addition to the

intra-signal correlation in each individual sensor’s measurements.

Duarte et al. [11] introduced a new theory for distributed compressed‘ sensing (DCS) that enables
new distributed coding algorithms that exploit both intra- and inter-signal correlation structures.
In a typical DCS scenario, a number of sensors measure signals (of any dimension) that are each
individually sparse in some basis and are also correlated amongst themselves. Each sensor
independently encodes its signal by projecting it onto anOther fincoherent basis (such as a random
one) and then transmits the resultmg coefficients to a smgle collection point. Under the right
condltlons a decoder at the collectlon point is able to reconstruct each of the 51gnals precisely.

The DCS theory rests on a concept termed as the joint sparsity of a 51gna1 ensemble

3.1 Advantages of DCS

In addition to offering substantially reduced measurement rates in multi-signal applications, DCS
| employ random projections at the sensors. As in single-signal CS, random measurement bases
are universal in the sense that they may be paired with any sparsifying basis. This allows exacﬂy

the same encoding strategy to be applied in a variety of different sensing environments;
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knowledge of the nuances of the env1ronment is needed only at the decoder Moreover, random
Tmeasurements are a]so future-proof 1f a better sparsity-inducing ba515 is. found for the signals, -
" ‘then the same random measurements may be used to reconstruct an even more accurate view of
the environment. A pseudorandon ba81s as measurement basis may be generated using a srmple
algorithm accordmg to-a random -seed. Such encoding effectively mplemcnts a form of
’ encryptlon the randomized measurements will themselves resemble noise and are meaningless
to an observer who does not know the measurement basis. Random coding is also robust: the
- randomized measurements coming from each sensor have equal,prio,rlty, unlike the Fourier or
wavelet coefficients in current coders; ‘Thus, they allow a progressively better reconstruction of
the data as more measurements are obtained; one or more measurements may also be lost

without corrupting the entire reconstruction.

Two additional properties of DCS make it well-matched to distributed applications such as
sensor networks and arrays [12]. First each sensor encodes its measurements independently,
which reduces mter—sensor commumcation overhead to zero. Second, DCS distributes its
computational complexrty asymmetrlcally, placing most of 1t in the joint decoder, which oﬂen'
has more substantlal-computatlonal resources than any individual sensor node. The encoders are

very simp1e§ they ,mer;ely compute incoherent projections with their signals and make no |

decisions.

3.2 Joint SparSIty Models

A joint sparsity model d SM) encodes the correlation between the values and locations of the
coefficients for a group of sparse s1gn, s. Three dlfferent joint sparsity models (JSMs) have been
proposed in [12] that apply in different 51tuatlons In the ﬁrst two models, each signal itself is
sparse, and so the CS framework” may be used to encode and decode each one separately
(independently). In the th1rd model, no ‘signal is 1tse1f sparse, yet there still exists a joint sparsity

among the 81gnals that allows recovery from significantly fewer measurements per sensor.
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3.2.1 JSM-1: Sparse common component + innovations

In this model, each signal consists of a sum of two components: a common component that is -
present in all the signals and an innovation component that is unique to each signal. Both the

common and innovation components may be sparsely represented in some basis.

%=2+75, jE€{12..]}
with |
z¢ = Y0, 6¢llo = K
2=vo.  lol,=x

Thus, the signal z¢ is common to all the x; and has sparsity K in basis . The signals z are the

unique portions of the x; and have sparsity K; in the same basis [11].

Such signals may arise in settings where large-scale phenomena affect all sensors and local
phenomena affect individual sensors. A practical situation well-modelled by JSM-1 is a group of
sensors measuring temperatures at a number of outdoor locations throughout the day. The
temperature readings x; have both temporal (intra-signal) and spatial (inter-signal) correlations.
Global factors, such as the sun and prevailing winds, have an effect z. that is both common to all
sensors and structured enough to permit sparse representation. More local factors, such as shade, |
water, or animals, contribute localized innovations z; that are also structured (and hence sparse).
A similar scenario may be imagined for a network of sensors reCotding light intensities, air
pressure, or other phenomena. All these scenarios correspond to measuring properties of physical

processes that change smoothly4in time and in space and thus are highly correlated.

For JSM-1, there exists an analytical framework inspired by principles of information theory.

This allows characterizing the measurement rates M; required to jointly recover the signals x;.

The measurement rates relate directly to the signals' conditional sparsities. The recover
. P y

ique is based on a single execution of a weighted linear program that seeks the sparsest

¢Qihi)bnents [zc; Z1; o} z,] that account for the observed measurements. Theoretical analysis
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and numerical experiments confirm that the rates M; required for joint CS recovery are well

below those required for independentCS recovery of each signal x; [12].

3.2.2 ]§M—2 : Common sparse supports

In this model, all signals are coﬁ=struct:ed from ’thé ‘same sparse set of basis vectors, but with

different ’coefﬁcient values:
% =96,  jEL2.]}

where, each 6; is supported ’0n the samenc {1, 2, ,N}wﬂ:h ' IQI = K, K&«N. Hence, all
~ signals are K-sparse and are constructed from the same K elements of, but with arbitrarily
different coefficients [11]. This model'mﬁy be vi_ewed as a special case of JSM-1 (with K¢ = 0
and K;=K for all j) but features additional correlation structure that suggests distinct recovery

algorithms.

A practical situation well-modelled by JSM-2 is where multiple sensors acquire replicas of the
same Fourier-sparse signal but with different phase shifts and atfenuations caused by signal
propagation. In many cases it is critical to recover each of the sensed signals, such as in many
acoustic localization and array processing algorithms. Another useful application for JSM-2 is

MIMO communication [12].

For JSM-2, Duarte et al. [11] proposed two techniques based on iterative greedy pursuit for
signal ensemble reconstruction from independent, incoherent measurements inspired by
conventional greedy algorithms (such as OMP) that can substantially reduce the number of
measurements when compared with independent recovery. In the single-signal case, OMP
iteratively constructs the sparse support set Q; decisions are based on inner products between the
columns of ¢y (¢ is the measurement matrix) and a residual. In the multi-signal case, there are
moi'e clues available for de,tei‘mining the elements of Q. Fora large number of sensors J, joint
-recovery is possible with the number of measurements per signal close to K (that is,

: V'qversampl_ing factor c—1 as J— o0); see Figure 3.1 for an example of improving performance as.

% ¥ increases, On the contrary, with’ independent CS recovery, perfect recovery of all signals

requires inpréasing each M in order to maintain the same probability of recovery of the signal
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ensemble. This is due to the fact that each signal experiences an independent probability p < 1
_ of successful recovery; therefore the overall probability of complete success is p!. Consequently,

each sensor must compensate by making additional measurements.

It is noted that when the supports of the innovations of the signals are small, signals that are well
~ modelled by JSM-1 may also be modelled by JSM-2 by selecting a global support that contains
all of the individual supports. Such approximation allows for a simpler recovery algorithm, while

incurring a slight increase in the number of measurements required for recovery [29].

One-step Greedy Algorithm (0OSGA)
Given all of the measurementsy; = ¢x;, j = {1,2,...,]}, where xX; € RNcompute the test
statistics [11] '

1 g
fn =7 ;:1(}’1’: q)j,n)z,r n € {1;2)31-")N}

and estimate the elements of the. common coefficient support set by
0= {n having K largest &,,}.

DCS-SOMP (Simultaneous Orthogonal Matching Pursuit)

Simultaneous Orthogonal Matching Pursuit (SOMP), proposed by Tropp and Gilbert [30], is a
‘variant of OMP that seeks to identify one element at a time. It has been extended in [11] to DCS-
SOMP to adapt it to JSM-2. In each iteration, the column indexn € {1, 2,...,N} is selected that

accounts for the greatest amount of residual energy across all signals.

First, the iteration counter is set as | = 1. For each signal index j € {1,2,...,]}, the
orthogonalized coefficient vectors ﬁj =0, E’j ERM are initialized. The set of selected indices
i = 0 is also initialized. If 7;, denote the residual of the measurement y; remaining after the

first [ iterations, initializing r; o = ¥;, we have

T ;
n; = arg max Z I(ij,.l—lr d?,'m_)l
ny n==1,2,...,Nj=1 "q,] .nllz
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Q=[0n]

Next, the selected basis vector is orthogonalized against the orthogonalized set of previously

selected dictionary vectors

-1
\ (q)j,nﬂ Yj,t)

Yii= O — ' 7 Vit
' t=0 ||Yj.t_"2‘. .

The estimate of the coefficients are then updated for the selected vector and residual as

{rj1-1,7.1)

Ej(l)= ’ —

T vl
B A 01 /RLI
YAy (EL
L -l ¥

Iff|r.l , el |l , for allj, the iteration index / is incremented and next iteration is performed.
The parameter € determines the target error power level allowed for algorithm convergence. -
3.2.3 JSM-3: Nonsparse common component::-:l"-f sparse innovations

This model extends JSM-1 so that the common component needs no longer be sparse in any

basis, that is,
X =2Zc t %, je{12,..,]}
with
zc = ¥,
5=y, gl, =K
’ but z; is not necessarily spafse in the basis Y [12].
A practical situation wcll-modeﬂed by JSM-3 is where several sources are recorded by different

vsenso,rs, together with a background signal that is not sparse in any basis. Consider, for example,
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an idealized computer vision-based verification system in a device production plant that checks
for failures in the devices for quality control purposes. Cameras acquire snapshots of components
in the production line from different viewing points. While each image could be extremely
complicated, the ensemble of images is highly correlated, since each camera is observing the

same device with minor (sparse) variations.

‘For JSM-3, since the common component is not sparse, no individual signal contains enough
_structure to permit efficient compression for CS; in general N measurements would be required |
for each individual N-sample signal. However, it is demonstrated in [12] that the common
structure shared by the signals permits a drastic reduction in the required measurement rates.

This is the main concept behind the Alternating Common and Innovation Estimation (ACIE)

.. recovery algorithm [12], which alternates between two steps: (1) Estimate the common

component z; by combining all measurements and treating the innovations z; as noise that may

be averaged out; (2) Estimate the innovations z; from each sensor by subtracting the estimated
common component z; and then applying standard CS recovery techniques. In fact,
- asymptotically, the required measurement rates relate simply to the sparsity K of the innovation
components; as the number of sensors grows, each sensor may again reduce its oversampling
factor to ¢ = 1. Thus, for a large number of sensors J, the impact of the cbmmon nonsparse

component z, is eliminated.

3.3 M-FOCUSS

In [13], Cotter et al. addressed the problem of finding sparse solutions to an underdetermined
system of equations when there are multiple measurement vectors having the same, but
unknown, sparsity structure. It extends two classes of algorithms—Matching Pursuit (MP) and
FOCal Underdetermined System Solver (FOCUSS) - to the multiple measurement vectors
(MMYV) case so that they may be used in applications such as neuromagnetic imaging, where
multiple measurement vectors are available, and solutions with a common sparsity structure must

" be computed.

3.3.1 Problem Formulation

MMYV problem may be stated as:solving the following L underdetermined systems of equations:
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A0 =y0, =12 ..L

where, A = ¢y € RMxN > M<N. L is the number of measurement vectors and it is usually
assumed that L<M. The quantities y(l) €ERM, 1=12,..L are the measurement vectors and

x® €RY, [ =1,2,...,L are the corresponding source vectors. We may also write it as:
AX =Y

where, -w[xm x@, .., xM] and Y= '[ym y@, .,y | is assumed that x0, 1 =
,(1 25, L are sparse and have the same sparsity profile so that the mdlces of the nonzero entries
are mdependent of I. The problem is to find the maximally sparse solutlon from among the

_infinite solutions.

'3.3.2 Algorithm

One of the sub-optimal algorithms for single measurement vector (SMV), FOCUSS [24], has
been extended for the case of multlple measurement Vectors [1 3] Itis referred as M-FOCUSS. It

is summarlzed as follows
Wiy1 = diag (Ck[i]l_f),-

where, -
ckm-nxk[:]n—(Z(x“’[l])zrﬂ, pel01]

where, x[i] = [x@ [i], @[], ..., xD [i]] is the i row of X.
Q41 = A£+1Y: where Agy; = AWy
X1 = Wis1Qp41

The algorithm is terminated once the convergence criterion has been satisfied, which is given as

"Xk+1 - Xk"F

<d
"Xk"F
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3.4 Simulation Results

With Synthetic Data

Algorithms for JSM-2 are sirnqiated in MATLAB and their results are shown below. OSGA and
DCS-SOMP are used to reconstruct the support set of synthetic signals. Probability of exact
reconstruction (Probability of recovering the support set) v/s Number of measurements per

sensor for different number of sensors is plotted as shown in Fig 3.1 and Fig 3.2, respectively.

As expected, the average number of measurements per sensor, M, required for perfect

reconstruction decreases if signals from more sensors are used for joint decoding.

Simulation results for M-FOCUSS are plotted in Fig. 3.3. It is a plot of Root Mean Square Error
(RMSE) defined as - /

"Xrec - X”Z
e X

where, X is the data generated and Xy is the data recovered, v/s Number of measurements, M.

Again, as number of sensors L increases, average number of measurements per sensor required

for perfect reconstruction decreases.

With Real Data

Fig 3.4 shows the comparison between DCS-SOMP and M-FOCUSS. This simulation is
performed using the real signals from EPFL WSN deployment LUCE (Available:
http://sensorscope.epil.ch/). Here, we use Haar wavelet transform for the sparse representation of

the signals.

It can be seen that DCS-SOMP requires lesser number of measurements per sensor than M-
FOCUSS for reconstruction of signals.
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Figure 3.2 Plot of probability of exact reconstruction via DCS-SOMP as a functmn of the number of
measurements persensorM and the number of sensors J. Signal length-N = 50, SparsityK 5.
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Figure 3.3 Plot of Root Mean square error via M-FOCUSS as a function of number of measurements per sensor M

: and the number of sensors L. Signal length N=50, Sparsigy K=7
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Figure 3.4 Plot of Root Mean square error via DCS-SOMP and M—FOCUSS as a function of number of
measurements M. Signal length N=64 and number of sensors J=16.
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Joint DCS and PCA
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Figure 3.5 Plot of Root Mean square error via SOMP and PCA as a function of number of measurements per -
sensor M for ambient temperature Slgna! length N=64, J=16.

We reconstruct the sensor readmgs of Ambient Temperature (Fig 3.5) ﬁom EPFL WSN
deployment LUCE usmg the sparsifying matrix learnt by Principal Component Analy51s (PCA).
We use DCS-SOMP for reconstruction as data follows JSM-2 model.

However, we have fo alternate between two phases:

1. atraining phase of N data collection rounds during which the smk collects the readings from
all J sensors and uses this mformatlon to compute ¥ and £, , '

2. a subsequent momtormg phase of ¢N rounds durmg Wth-h we can transmit M<N
measurements. The mput signal is thus‘ reconstructed using the statistics X and $ computed in
‘the previous phose. |

The ratio ¢ between the duretion_ of monitoring and training phases is chosen according to the

temporal correlation of the observed phenom’ena. '

We can see from Fig 3.5 that for M—lO N—64 we can. reconstruct data w1th less than 10%
* RMSE for ¢ = 6 rounds of momtormg phase aﬁer 1 trammg phase
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3.5 Summary

In this chapter, we discuss the motivation behind and the concept of Distributed Compressed
Sensing which uses the temporal and spatial correlation to reduce the number of measurements
for joint recovery of signals in sensor networks. Different joint sparsity models and their
recovery algorithms are also discussed. Also, M-FOCUSS used for recovery from multiple
measurement vectors has been used for JSM-2. Simulation results of M-FOCUSS and JSM-2
- recovery algorithms OSGA and DCS-SOMP are shown. Further, a comparison in terms of
number of measurements per sensor required for reconstruction of signals between M-FOCUSS
and DCS-SOMP has been done. Simulation results for signal recovery through joint DCS and

PCA are also shown.

37



4 Distributed  Compressive Data
Gathering in Wireless Sensor
Network

4.1 Data gathering using CS

In general, data transmissions are accomplished through multi-hop routing from individual
sensor nodes to the data sink as shown in Fig 4.1. Successful deployment of such large scale
sensor network faces two major challenges in effective global communication cost reduction and
in energy cdnsumption load balancing. In Fig. 4.1, Node s; transmits its reaciing dy to sz, and s;
transmits both its reading d» and the relayed reading d to ss;. At the end of the;rol-lte‘, sy transmits
all N readings to the sink. It may be observed that the closer a sensor is to the sink, the more
energy it consumes. Clearly, the sensor nodes closer to the data sink will soon run out of energy

~and consequently, lifetime of the sensor network will be significantly shortened.

Figure 4.1 Baseline data gathering [31]
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4.1.1 Randovmi_sed Gossip

Tn any general multl-hop netwerk eaeh of the sensors locally generates its information by
multlplylng 1ts data with the corr,,,;kspondmg element of the compressmg matrix. The local
mformatlon 1s smultaneously aggregated and dlstrlbuted across the network by randomized

gossip algorlthm [17] When randomlzed" goss1p termmates each node in the network knows all

“the data in the network and then M of the nodes are’ rand mly chosen to transmit their

mformatlon to the sink.

4.1.2 Compressive Wireless Sensing

In [15], Bajwa et al. introduced the concept ~of Compressive Wireless Sensing for single-hop
sensor networks in which a fusion centre retrieves signal field information from an ensemble of
spatially distributed sensor nodes based on a distributed matched source-channel communication
'archit‘eeture. It requires no prior knowledge about the sensed dat.a., Tt is shown to be able to
reduce .,the latency ,‘of data gathering by delivering linear projections of sensor readings through
synchronized amplithde—-modulated: 'vzanalogue transmissions.’ In this case, analog mode of
transmission is used, which corresponds to a completely decentralized way of delivering M
random projections of the sensed data to the fusion centre by employing M transmissions.

However, it requires*aéeurate synchronization of sensor nodes.
'4.1.3 Compressive Data Gathering

In baseline data gathering scheme, data transmissions are generally accomplished through multi-
hop yroluting from md1v1dua1 sensor nodes to the data sink as shown in Fig 4.1. Nodes close to the

sink will ttansmit‘ more “data and' consume more energy than those at the peripheral of the
: network The unbalanoed energy oonsumptlon has a major impact on the network hfetlme,
deﬁned as the time till the first node fa11s

For klarge scale monitoring sensor networks, Luo et al. have proposed Compresswe Data
_Gathermg (CDG) in [16] and IR-CDG in [31] that leverages vr,onrlpresswe sampling (CS)

prlnmple to efﬁc1ently reduce commumcatlon cost and prolong network lifetime. In a densely

deployed sensor networks Sensors have spatial correlations in their readings. Let J sensor‘
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readings form a vector d = [dy d; ... dj]”, which is a K-sparse signal in a particular domain .
Then, we have d = 8, where 6 is a sparse vector. As the sensor readings are compressible, CS
may be used for recovery of d from M < N incoherent measurements ¥y = ¢d using various

recovery algorithms, where ¢ is the measurement matrix.

The data gathering process of CDG is depicted in Fig. 4.2 through a simple chain-type topology.
Comparing this with the baseline data gathering scheme in Fig. 4.1, CDG delivers weighted
sums (or measurements) of sensor readings, instead of individual readings, to the data sink. To
transmit the /* measurement to the sink, s multiplies its reading d; with a random coefficient
¢;1 and sends the product to s». Then s, multiplies its reading d, with a random coefficient
¢iz and sends the sum ¢;; dy + i dy to s3. Similarly, each node sy contributes to the relayed
message by adding its own product. Finally, the sink receives Z}Ll ¢;;d;, a weighted sum of all
the readings. This process is repeated using M sets of different weights so that the sink receives
M measurements. With such design, all nodes transmit M messages and consume same amount
of energy. This is able to achieve substantial sensor data compression without introducing
excessive computation. With elegant design, this scheme is also able to disperse the
" communication costs to all sensor nodes along a given sensor data gathering route. This results in

a natural load balancing and extends the lifetime of the sensor network.

Sy-1

Figure 4.2 Basic CDG [31]

To further reduce the communication coSt, IR-CDG was proposed in [31] which uses [I R] as

measurement matrix ¢ where R is the original measurement matrix with its entries being i.i.d.

Gaussian random numbers drawn according to V' (0, ﬁ) and I is the identity matrix of size
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MxM. Matrix [I R] preserves the restricted isometry propetty and incurs the minimum
communication cost in multi-hop networks and thus is a favourable choice for data gathering. By
using [I R] as the measurement matrix, the first M sensor nodes simply transmit their original
sensor readings to node sy 1. Upon receiving the reading ﬁ_'om sensor Si, SM+1 computes the /7
4 produet and transmits d; + @;m4+1dm+1 to the next node. In IR-CDG, the first M nodes do not
have any computation load, and the rest of nodes have the same computatlon and communication

load as in the basic CDG scheme.

4.2 Proposed scheme for Distributed Compressive Data
Gathering in WSN |
By using Distributed Compressive Data Gathering for data aggregation in WSN, we mziy further
reduce the number of measurements required for the reconstruction of the data. Here, we use -
CDG for ngultiple linear projections (M) of the sensed data. That is, we first take M; projectio'ns

of the data and then, instead of collecting all M, readings from all the J sensers, we use the above

mentioned CDG scheme for its transmission to the sink. Let
d=gy,  J=(LZ.])

where x; is NX1 vector containing sensor readings at discrete times n=1, 2, ..., N for jth sensor,
by islexN measurement matrix and d; is M1 X1 measurements vector for 7™ sensor. Let each of
these M; lyreadings__ from J sensors form a vector v; = [dy; dp; ... dj;]7, i ={1,2,..M;}. We then

use CDG to collect M linear projections of these M v;’s as
vi=¢vi  i={L2..,M}

where, ¢ € RMXJ js the measurement basis and 1y, €RM, i={1,2, ..;,M_l}.

Y= [y1, V2, wes yMl] is the aggregated data from all the J sensors of size MxXM..

Subsequently, we recover x from y in two steps: first recover v from Y and then x from v using

the re;co\{ery algorithms'for DCS as discussed in Chapter 3.
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4.3 Simulation:Results

Compressive data gathering was simulated using FOCUSS and OMP. Plots of reconstruction
error (Root mean square errof) are shown for increasing number of measurements in Fig 4.3 and
Fig 4.4 using the real signal data (ambient temperature readings) from EPFL WSN deployment
LUCE (Available at: http:/sensorscope.epfl.ch/) gathered from 24 sensors.

We see that by using only M=7 linear projections for J=24, we are able to reconstruct the data
with less than 10% mean square error-in case of FOCUSS as reconstruction algorithm. With

OMP as recovery algorithm we can reconstruct the data with lesser error.
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Figure 4.3 Plot of RMSE vs. M for CDG using FOCUSS. No of sensors, J=24.
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Figure 4.4 Plot of RMSE vs. M for CDG using OMP. No of sensors, J=24.

We, also, simul‘aIed,I_R,-CDG using the set of CTD (Conductivity, Temperature, and Depth) data
from National Oceanfc and Atmospheric Administration’s (NOAA) National Data Buoy Center
(NDBC). Figure 4.5 shows the temperature data collected in the Pacific Sea at (7.0N, 180W) on
- March 29 2008 (Available at: http:/tac.moaa.gov/refreshed/ctd delivery.php). The data set

. contams 1000 readings obtained at different depth of sea, ranging from 4.579°C to 27.87°C. It is
clear that the readings are plece-W1se 'smooth, and should be sparse in wavelet domain. We use

'Haar wavelet for spar51fymg transform and FOCUSS for reconstruction.

We observe that:;/w.e’ ?have succ.es,:sﬁilly reconstructed data using IR-CDG and minimum
. ‘communication cost for multi-hop network (M=150 and M=200 for N=768).
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\ — CTD data
- Reconstructed data using M=150

Reconstructed data using M=200
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Figure 4.5 Figure showing actual and reconstructed temperature readings using IR-CDG.

We simulated the above proposed scheme (DCDG) using the real signal data from EPFL WSN
~ 'deployment LUCE of Ambient Temperature (Fig 4.6) and Relative Humidity (Fig 4.7).
Méasuremént matrices are generated with their entries being i.i.d. Gaussian random numbers
drawn according to NV (0, -13[-) and vV (O,Mil). We plot average root mean square error (RMSE) in
the reconstruction of a signal of length N=512 from sénsors J=24 for M=3 versus M as shown in

Fig. 4.6 and Fig 4.7. We use Haar wavelet transform for the sparse representation of the signals
and use DCS-SOMP for reconstruction.
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As we see from Fig. 4.6, reconstruction error (RMS error) for M; = 50 is around 10% for
temperature readings. Hence, instead of sending 512x24 values, we may transmit only 50x%3

values to the sink and reconstruct the data almost perfectly. A

- For relative humidity (Fig 4.7), with M; = 10 we can reconstruct data with approx. 15% error
which means a drastic reduction in number of measurements and transmissions required for

successful reconstruction.

4.4 Summary

This chapter mentions different data gathering schemes in WSN. Compressive Data Gathering
- (CDG) proposed by Luo et al. [16] has been discussed in detail. It leverages compressive
sampling (CS) principle to efficiently reduce communication cost and prolong network lifetime.
IR-CDG is another scheme for data gathering with even less number of measurements in WSN.
Simulation results of CDG and IR-CDG are shown.

Thereafter, we proposed to use Distributed Compressive Data Gathering to further reduce the
communication cost and observed that we are able to reconstruct a signal almost accurately with

very less number of measurements.
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5 Convc:lvu'si/r;n and Future >Work

This dissertation attempts to study the emerging topic of Compressive Sensing and Distributed
Compressed sensing and their application to Wireless Sensor Networks. With the increasing use
of WSNs, it becomes necessary to efficiently utilize the scarce resources of power and
bandwidth. DCS shows promising results for this by reducing the measurements to be acquired
and transmitted using the spatial and temporal correlation structure of the data being sensed, i.e.
inter- and intra-signal correlation. It shifts the processing from the sensors to the sink which
often has more substantial computational resources. As from the results in Chapter 3, we see that
a sparse or compressible signal may be reconstructed with only few linear projections of it on an
incoherent basis. DCS-SOMP requires fewer measurements than M-FOCUSS for the
reconstruction and provides better results. All the sensors may work independently and hence
reduce the in-network communication. In-network communication is required only to support

multi-hop networking to the data collection point.

This communication for data collection in multi-hop network may further be reduced if
Compressive data gathering (CDG) is combined with DCS. In CDG, we use CS while collecting
the data at a time instant from sensors and reduce the number of transmissions required; thereby,

- reducing the communication cest and prolonging the network lifetime.

From the results obtained in Chapter 4, we see that with Distributed Compressive Data
Gathering, we may reduce the number of measurements both for the inter- and intra-signals to a

large extent and still be able to reconstruct the signals with great accuracy.

~ We have also extended the use of Principal Component Analysis (PCA) for DCS. Sifnulat.ion
results show that we can reconstruct data successﬁllly using the transformation matrix learnt
N through PCA. For N=64, we are able to reconstruct data for 6 monitoring rounds after 1 training

phase.
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In future, we may extend other algorithms. hke Bas1s Pursuit,, Sparse Bayesian learning, StOMP
etc. for DCDG. Many algorithms can be first extended for m _ultlple measurement vectors and
then used for DCDG. MMV recovery algorithms in 1131 may also. be extended to JSM-1 and
JSM-3 models. DCDG may be combmed with PCA for dynamlcally learmng the transformat1on

matrix for WSN data with time varymg correlatlon Hence, SIgnals may be reconstructed through
joint DCDG and PCA. S
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