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Abstract 

Wireless sensor network (WSN) is an emerging technology with unprecedented opportunities for 
wide variety of applications in the present world. The essential task in many applications of 

sensor networks is to extract relevant information about the sensed data and deliver it with a 
desired fidelity to a central collection point or sink. WSNs, or more specifically each sensor 
node, are resource constrained. They have limited power supply, bandwidth for communication, 
processing speed, and memory space which make the reduction of communication critical to 
increase the network's performance and lifetime. Data compression is one effective method to 
utilize limited resources of WSNs. Compressive Sensing (CS) is a novel data compression 
technique that exploits the inherent correlation in the input data to compress it by means of 
quasi-random matrices. Distributed Compressed Sensing (DCS) is an extension of CS to 
multiple-signal case. Since sensors presumably observe related phenomena, the ensemble of 
signals they acquire may be expected to possess some joint structure, or inter-signal correlation, 
in addition to the intra-signal correlation in each individual sensor's measurements. DCS enables 
new distributed coding algorithms that exploit both intra- and inter-signal correlation structures. 

Also, nodes close to the sink transmit more data and consume more energy than those at the 
peripheral of the network. The unbalanced energy consumption has a major impact on network 

lifetime. Compressive data gathering (CDG) leverages compressive sensing (CS) principle to 
efficiently reduce communication cost and prolong network lifetime for large scale monitoring 

sensor networks by balancing the energy consumption and reducing the transmissions. With the 
recent developments in DCS reducing the communication costs in sensor networks, we propose 

Distributed Compressive Data Gathering (DCDG) to further reduce the communication costs in 
data gathering and number of measurements in WSNs. 
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1 Introduction 

Wireless sensor network (WSN) is an emerging technology with wide variety of applications in 
the present world. It is composed of a large number of sensor nodes spatially distributed over a 
region of interest that can sense the environment in various modalities, such as acoustic, seismic, 
thermal and infra-red. Cheap, smart devices with multiple onboard sensors, networked through 

wireless links and the Internet are deployed in large numbers. It provides unprecedented 
opportunities for instrumenting and controlling homes, cities, and the environment, disaster 
relief; border monitoring, and surveillance in battlefield scenarios. A sensor is generally 
equipped with at least a power supply, sensing unit, processing unit to process the sensed data, 

and transmitter-receiver unit. All nodes are connected by radio frequency, infrared, or other 
wireless medium. The data collected by nodes traverse among the nodes in wireless medium. In 
order to realize WSNs, peer-to-peer network techniques are widely used so that it allows direct 
communication between any two nodes. If two devices cannot communicate directly, other 
intermediate nodes relay data packets from the source node to the destination node. This is called 
multi-hop routing. The sensors coordinate among themselves to form a communication network 
such as a single multi-hop network or a hierarchical organization with several clusters and cluster 
heads. Because of their peer-to-peer communication style, no centralized point, which controls a 
network formation like a base station for a cellular system, is required for the network. Since no 

fixed infrastructure is necessary for WSNs, a network is constructed inexpensively. Also, nodes 
may be added to and removed from the network easily. On the other hand, the network topology 
in a WSN may change drastically since nodes can be added and removed easily. The sensors 
periodically sense the data, process it and transmit it to (usually) distant destination, termed as 

the fusion centre (PC) or sink. The sink may be connected to the outside world through Internet 
or satellite. 
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The essential task in many applications of sensor networks is to extract relevant information 
about the sensed data and deliver it with a desired fidelity to the sink. A large number of sensor 
nodes are often deployed to the locations where it is hard to access. It is not practical to perform 
maintenance operations, such as changing batteries, on deployed sensor nodes. Because of the 
above reasons, WSNs, or more specifically the sensor nodes, are resource constrained. They 
have limited power supply, bandwidth for communication, processing speed, and memory space. 
In many sensor networks, and in particular battery-powered ones, these factors make the 
reduction of communication critical. to . increase the network's performance and lifetime. Data 
compression is one effective method to utilize limited resources of WSNs. Compressing the 
sensed data will reduce the power consumption due to processing and transmitting data in each 
node, and thus extend the life time of sensor network. Also, by reducing data size less bandwidth 
is required for sending and receiving data. Our objective is to measure large data sets with high 
accuracy through the collection of a small number of readings. However, most existing data 
compression algorithms are not feasible for WSNs due to the size of the algorithms and 
processing speed of the nodes. 

It is possible to avoid the transmission of any "redundant" information if the sensors could 
communicate with one another. A number of distributed coding algorithms have been developed 
that involve collaboration amongst the sensors. However, this increases communication 
overhead. Slepian-Wolf coding has the distinct advantage that the sensors need not collaborate 
while encoding their measurements thereby saving valuable communication overhead. In the 
Slepian-Wolf framework for lossless distributed coding [1, 2], the availability of correlated side 
information at the collection point / decoder enables each sensor node to communicate losslessly 
at its conditional entropy rate rather than at its individual entropy: rate. Unfortunately, however, 
most existing coding algorithms [2] exploit only inter-signal correlations and not intra-signal 
correlations. To date there has been only limited progress on distributed coding of so-called 
"sources with memory." The direct implementation for such sources would require huge lookup 
tables. Furthermore, approaches combining pre- or post-processing of the data to remove intra-
signal correlations combined with Slepian-Wolf coding for the inter-signal correlations appear to 
have limited applicability. This entails the design of distributed algorithms for the joint gathering 
and compression of data and the exploitation, at the sink, of signal processing techniques for the 
approximation of the signal in space and time. The area of communication and protocol design 



for Wireless Sensor Networks (WSNs) has been widely researched in the past few years. An 
important research topic which needs further investigation is in-network aggregation and data 

management to increase the efficiency of data gathering solutions (in terms of energy cost) while 

being able to measure large amount of data with high accuracy. Before going into these details, 
first let us understand the concept of Compressive Sensing (CS) [3]—[5] which is a novel data 
compression technique that exploits the inherent correlation in the input data to compress it by 

means of quasi-random matrices. 

1.1 Compressive Sensing 

A new framework for single-signal sensing and compression has developed recently under the 
rubric of Compressive Sensing (CS). CS builds on the ground-breaking work of Candes, 
Romberg, and Tao [3] and Donoho [4], who showed that if a signal has a sparse representation in 

one basis then it can be recovered from a small number of projections onto a second basis that is 

incoherent with the first. A sparse signal is a signal with a very°few non-zero coefficients/values 
in its representation. A large number of real and generated signals are either sparse in their 

original form or may be represented as a sparse signal in transform domain. Sparse signals are 
present everywhere. The dogma of signal processing maintains that a signal must be sampled at 

the Nyquist rate at least twice its bandwidth in order to be represented without error. However, in 
practice, we often compress the data soon after sensing, trading off signal representation 
complexity (bits) for some error (consider JPEG image compression in digital cameras, for 
example). Clearly, this is wasteful of valuable sensing/sampling resources. In compressive 
sensing, the signal is sampled (and simultaneously compressed) at a greatly reduced rate. 

Compressive Sensing problem [3]-[6] may be stated as recovery of vector x e RN from the 

measurement vector y e RM such that M << N and x is a K-sparse vector (K out of N 

coefficients of x are nonzero in some basis iii, K < M) such that y = fix where is a M x N 

measurement matrix. The M rows of 4 may be considered as basis vector. To ensure the 

recoverability of any such x, the measurement matrix should satisfy the conditions of 

incoherence and restricted isometry property (RIP) [7]. It is also proved that the measurement 

matrix whose coefficients are chosen randomly can satisfy these conditions with high 
probability. Using such a matrix it is possible, with high probability, to recover any signal that is 
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K-sparse in the basis i/i from its image under /, where i/i' and çb are incoherent. For signals that 
are not K-sparse but compressible, meaning that their coefficient magnitudes decay 
exponentially, there are tractable algorithms that reconstruct signals, with error not more than a 
multiple of the error of the best K-term approximation of the signal. 

Many reconstruction algorithms have been developed based on minimizing the error coupled 
with the sparse constraint. The algorithms mainly fall in two categories: convex relaxation and 
greedy pursuits. Examples of convex relaxation include interior point methods like Ii 

minimization, Primal-Dual interior methods for convex objectives (PDCO) using conjugate 
gradients and Iteratively Reweighted Least Square (IRLS). Examples of Greedy pursuits include 
Orthogonal Matching Pursuit (OMP), Stagewise OMP (StOMP), and Iterative hard thresholding 
method (IHT). Since CS is comparatively a new field, a lot of research till date is directed at 
theoretical aspects of CS and at improving CS recovery algorithms to operate faster with 
minimum possible number of measurements. Techniques from other fields are being invoked for 
finding newer and better methods for CS Recovery. A large number of CS recovery algorithms 
taking advantage of structure present in sparse signals were developed in the last few years to 
achieve the twin objectives of speed and minimizing the number of measurements required [8]. 
Carin et al. [9] extended Bayesian framework to solve for CS problem to obtain maximum 
aposteriori (MAP) estimate for the sparse signal based on the measurements/observations. 

In [10], Principal Component Analysis (PCA) was used to find transformations (it) that sparsify 
the signal, which are required for CS to retrieve, with good approximation, the original signal 
from a small number of samples. 

1.2 Distributed Compressed Sensing 

Distributed Compressed Sensing (DCS) [11] is an extension of CS to multiple-signal case. Since 
sensors presumably observe related phenomena, the ensemble of signals they acquire may be 
expected to possess some joint structure, or inter-signal correlation, in addition to the intra-signal 
correlation in each individual sensor's measurements. For example, imagine a microphone 
network recording a sound field at several points in space. The time-series acquired by a given 
sensor generally have considerable intra-signal (temporal) correlation and might be sparsely 
represented in a local Fourier basis. In addition, since all microphones listen to the same sources 
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the ensemble of time-series acquired at all sensors might have considerable inter-signal (spatial) 
correlation. 

Distributed compressed sensing (DCS) enables new distributed coding algorithms that exploit 
both intra- and inter-signal correlation structures. The DCS theory rests on a concept termed as 

joint sparsity of a signal ensemble. Each sensor independently encodes its signal by projecting it 
onto another incoherent basis (such as a random one) and then transmits just a few of the 

resulting coefficients to a collection point. Under the right conditions, a decoder at the collection 
point can jointly reconstruct all the signals precisely. This allows WSNs to save on the 

communication costs involved in exporting the ensemble of signals to the collection point. This 
entails the design of distributed algorithms for the joint gathering and compression of data and 
the exploitation of signal processing techniques at the sink for the approximation of the signal in 

space and time. Baron et al. [12] have studied three joint sparsity models (JSMs) and proposed 

tractable algorithms, namely One step greedy algorithm (OSGA), DCS-SOMP (Simultaneous 
Orthogonal Matching Pursuit) and Alternating Common and Innovation Estimation °(ACIE), for 
joint recovery of signal ensembles from incoherent projections, and characterized theoretically 
and empirically the number of measurements per sensor required for accurate reconstruction. 

In [13], Cotter et al. addressed the problem of finding sparse solutions to an underdetermined 
system of equations when there are multiple measurement vectors having the same, but 
unknown, sparsity structure. It extends two classes of algorithms, Orthogonal Matching Pursuit 
(OMP) and FOCal Underdetermined System Solver (FOCUSS), to the multiple measurement 
vectors (MMV) case —M-OMP  and M-FOCUSS, so that they may be used in applications such as 
neuromagnetic imaging, where multiple measurement vectors are available, and solutions with a 
common sparsity structure must be computed. 

1.3 Compressive Sensing in Communication Networks 

In 2004, CS was first proposed for efficient storage and compression of digital images, which 

show high space correlation. In the following few years, CS has expressed many advantages and 
its application has prevailed in these fields, with the development of plenteous novel techniques, 

such as developing simpler, smaller, and cheaper digital cameras, novel analog-to-digital (A/D) 
converter architectures and so on. Recently, CS has been earning more and more interests in the 

5 



area of wireless communication networks and a plenty of researches focused on how to utilize 
CS efficiently in this area have been carried out. 

We mention the researches in the four layers according to the OSI (Open Systems 
Interconnection) network model, respectively [14]. 
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J 	
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iot 	 tlTlt Ett4iS!' 

Figure 1.1 Applications of CS in communication networks according to 051 network model [14]. 

In the physical layer, CS has been used in data detection and channel estimation, especially in 
ultra-wideband (UWB) communications, underwater acoustic (UWA)  communications and 
Cognitive Radio (CR). In particular, CS can be used in the, identification of Frequency Hopping 
signals, detection in On-Off Random Access Channels, Spectrum Sensing in Cognitive Radio, 
and Sparse Event Detection in WSNs. However, in case the number of channels is not large 
enough in signal detection and channel estimation, the requirement of sparsity cannot be 
guaranteed. 

In MAC layer, CS can be used in WSNs to reduce measurement cost by minimizing the number 
of measurements. The studies are focused on addressing the problem of high costs caused by 
dense measurement when CS is utilized. Using CS in multi-hop networks is a serious problem as 
each measurement in CS is a linear combination of many (or all) samples of the signal to be 

6 



reconstructed, which may result in significant transport costs even though the number of 
measurements has been minimized. Cluster-based technique is used in WSN to solve this 

problem. However, design of efficient clusters is still an open problem as it influences the 

efficiency of reconstruction of data in CS. 	 - 

In network layer, CS is very promising for jointly acquiring and aggregating data from 
distributed data sources in a multi-hop WSN. The fact that the number of sensing nodes in WSNs 
is very huge, while the information generated by the nodes is almost the same indicates that the 
information of the whole network is compressible. Based on this, CS shows its great potential in 

joint data compression and transmission without the knowledge of correlation properties of the 
input signal over the entire network. Also, CS makes the reconstruction of all sensor readings of 
the network possible, using much fewer transmissions than traditional routing or aggregation 
schemes, thereby increasing the efficiency of data gathering solutions. 

CS is utilized in data fusion and network monitoring in the application layer. It is valuable to 
apply CS to network monitoring, addressing the problem of efficient end-to-end network 
monitoring of the path metrics in large-scale wireless communication networks. Also, CS .shows 
great advantages in data fusion. Different from the other decentralized compression strategies, 
such as Slepian-Wolf coding, which need a prior knowledge of the correlations between data at 
different nodes, CS needs no prior knowledge, which has been of increasing interests recently 
[11], [15], and CS offers two highly desirable advantages for networked data analysis: one is 
decentralized, meaning that distributed data can be encoded without a central controller; the 

other is universal, in the sense that sampling does not require a priori knowledge or assumptions 
about the data. Several approaches [15]-[17] in the action of networked data compression are 

presented in the recent researches. However, a lot of computing is required at the fusion center 
for the reconstruction of the data. 

1.4 Statement of the Problem 

Most of the existing studies conducted so far focuses on how to achieve the maximum utilization 

of limited sensor resources. One field of resource utilization studies for sensor networks is data 
compression. Researchers seek the optimal way to compress the sensing data. In this dissertation 
we 

7 



1) Implement M-FOCUSS and DCS-SOMP on the real world signals gathered from WSNs 
to reduce the number of measurements. 

2) Recover real signal data through joint Distributed Compressed Sensing (DCS) and 
Principal Component Analysis (PCA). 

3) Propose Distributed Compressive Data Gathering scheme based on Compressive Data 
Gathering and Distributed Compressed Sensing for efficient data aggregation, hence 
reducing number of measurements and communication cost in WSN. 

4) Implement the above scheme on the real world data gathered from WSNs. 

1.5 Organization of the Dissertation 

In the next chapter, theory behind CS is discussed. The concept of sparsity on which CS is based 
upon, problem 'formulation to find sparse representation and various algorithms to solve the 
under-determined system of equations to find sparse representation are mentioned. Also, 
motivation behind CS and the exact CS problem is presented. The detailed theory includes 
conditions required to be satisfied by measurement matrix to ensure recoverability of any K-
sparse signal. Principal Component Analysis (PCA) used to dynamically find transformation 
matrix for signals with time varying correlation is also discussed. 

In Chapter 3, we discuss the concept of Distributed Compressed Sensing which uses the 
temporal and spatial correlation to reduce the number of measurements for joint recovery of 
signals in sensor networks and its applications. Different joint sparsity models and their recovery 
algorithms have been discussed. Also, M-FOCUSS used for recovery from multiple 
measurement vectors has been used for JSM-2 model. Simulation results of the implementation 

of M-FOCUSS and JSM-2 recovery algorithms OSGA and DCS-SOMP are shown. Also, M-
FOCUSS and DCS-SOMP are compared. Simulation results of recovery of signals using joint 
DCS and PCA are also shown. 

Chapter 4 mentions different data gathering schemes in WSN. Compressive Data Gathering 
(CDG) proposed by Luo et al. [16] is discussed in detail. It leverages compressive sampling (CS) 
principle to efficiently reduce communication_ cost and prolong network lifetime. IR-CDG is 

another scheme for data gathering with even less number of measurements in WSN. Simulation 
results of CDG and IR-CDG are shown. 
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We propose Distributed Compressive Data Gathering (DCDG) to further reduce the 
communication cost and measurements in WSN. This is detailed in chapter 4. Simulation results 

for DCDG are shown for real world signals. 

Chapter 5 concludes the dissertation thesis mentioning the results and area of further studies. 
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2 Compressive Sensing 

According to Nyquist/Shannon sampling theory, signals, images, videos, and other data can be 
exactly recovered from a set of uniformly spaced samples taken at the so-called Nyquist rate of 
twice the highest frequency present in the signal of interest. Capitalizing on this discovery, much 
of signal processing has moved from the analog to the digital domain. Digitization has enabled 

the creation of sensing and processing systems that are more robust, flexible, and cheaper and, 
consequently, more widely used than their analog counterparts. As a result, in recent years, the 
amount of data generated by the sensing systems has grown drastically. For some of the 
important and emerging applications, the required Nyquist rate is so high that a large number of 

samples are generated and stored for efficient representation of the generated data. Along with 
the large amount of data generated, it may be either costly or physically impossible to achieve 
such high acquisition rates in some fields like imaging, video, medical imaging, remote 
surveillance, and spectroscopy. 

To deal with the first challenge of large amount of data generated, we depend on compression. 
Also, data often need to be transmitted through a channel or a network such as in wireless sensor 

networks. Prior to transmission, it is desirable to compress the data for efficient usage of storage 
resources and/or bandwidth of the communication channels. Compression is basically finding the 
most concise representation of a signal within level of acceptable distortion. One of the most 
popular compressing techniques is Transform coding which relies on finding some basis which 

makes the signal sparse or compressible. By a sparse representation, we mean that for a signal of 

length N, we can represent it with K << N nonzero coefficients; by a compressible representation, 

we mean that the signal is well-approximated by a signal with only K nonzero coefficients. This 

is attained by preserving only the largest coefficients of the transformed signal, which contain 
most of the information, without much numerical or perceptual loss. This process is the basis 
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behind many compression, schemes like JPEG, JPEG2000, MPEG and MP3 standards. Since in 
transform coding most of the low information carrying small coefficients are discarded, 
acquisition of so many samples and then calculating their equivalent representation in transform 
domain seems to be a big loss. This raises the question: "Why go to so much effort to acquire all 
the data when most of what we get will be thrown away? Can we not just directly measure the 
part that will not end up being thrown away?" This became the central idea behind CS: rather 
than sampling the signal at a high rate and then compressing it, we would like to find ways to 
directly sense the signal in compressed form. The term CS was coined in the separate works of 
Candes, Romberg and Tao [3] and Donoho [4], who showed that a finite-dimensional signal 
having a sparse representation can be recovered from a set of linear, nonadaptive measurements. 
Moreover, the; acquisition does not require knowledge of the signal/image to be acquired in 
advance-other than knowledge that the data will be compressible. The design of these 
measurement schemes and their extension to practical data models and acquisition systems are 
central challenges in the field of CS. 

Nyquist. 	Compression 	f sampling 

Figure 2.2 Flow diagram of compressive sensing for unified sampling, compression and encryption. 

12 



Compressive Sensing differs from classical sampling theory in three major aspects [18]: 

1. Sampling theory typically considers infinite length, continuous-time signals. In contrast, CS is 
a mathematical theory focused on measuring finite-dimensional vectors in RN. 

2. Rather than sampling the signals at specific points in time, CS systems typically acquire 
measurements in the form of inner products between the signal and more general test functions. 

3. The two differ in the manner in which they deal with signal recovery. In the Nyquist- Shannon 
framework, signal recovery is achieved through sine interpolation, In CS, signal recovery is 

achieved using highly nonlinear methods. 

2.1 Sparsity 

Before moving to the theory of CS, let us first understand the concept of sparsity and how to find 
sparse representations. Few definitions should be understood first. 

Definition 1. 1p  norm: In the case of a discrete, finite domain, signals can be viewed as vectors 

in an N-dimensional Euclidean space, denoted by RN. 1p norms for such signals are defined for 

p E [1,00] as. 

P 

II II - (Y I  xi 
IP)11P, 	p E [1,  00) 

Xp   

•_maxn lxil, 	p = CO 

Definition 2. Support: Support of a vector 0 is defined as the locations of nonzero entries in the 
vector 6. Mathematically, 

II0IIo  = Isupp(0)I, 	where supp(e) = (i : @i  # 0} 

Definition 3. Bases and Frames: A set f & is called a basis for RN  if the vectors span RN  and 

are linearly independent. It implies that if we let h denote the NxN matrix with columns given 

by iJii  and let 0 denote the length-N vector with entries 8, then we can represent this relation 

more compactly as 

x=00 
	

(2.1) 
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It is often more useful to generalize the concept of a basis to allow sets of possibly linearly 
dependent vectors, resulting in what is known as a frame. A frame is a set of vectors 
{ip }N_..1 E Rd, d < N corresponding to a matrix c/J E Rd "N, such that for all vectors x E Rd, 

AIIxII2 <_ II TxII <_ BIIx1Iz with 0 <A <B < co. 

Frames can provide richer representation of data due to their redundancy. For a given signal x, 
there exist, infinitely many coefficient vectors 0 such that x = ii9. In order to obtain a set of 
feasible coefficients we exploit the dual frame -iii. Specifically, any frame satisfying 

is called an alternate frame. The particular choice i%i = (i T )~1ili is referred to as the canonical 
dual frame. It is also common for a basis or frame to be referred to as a dictionary or 
overcomplete dictionary respectively, with the dictionary elements being called atoms. 

Definition 4. K-sparse signal: A signal is K-sparse when it has at most K nonzero coefficients 

i.e.IlxIIo 	K. And let 

EK = [x = IIxD oO 	K} 

denote the set of all K-sparse signals. We say a signal x is K-sparse in the basis or frame i if 

there exists a vector 0 E RN with only K << N nonzero entries such that x = i9. We call the set 
of indices corresponding to the nonzero entries the support of 0 and denote it by supp(0). 

Definition 5. Compressible Signals: Compressible signals are those which can be well 
approximated by a sparse signal. This well-approximation can be quantified by calculating the 
error incurred by approximating a signal x by x E EK as 

rK(x)p = m llx - xllp 

Another way to think about compressible signals is to consider the rate of decay of their 
coefficients. For many important classes of signals there exist bases such that the coefficients 
obey a power law decay, in which case the signals are highly compressible. Specifically, if 
x = ip0 and we sort the coefficients O such that (01 I >_ 102] ? • • >_ I eN I , then we say that the 
coefficients obey a power law decay if there exist constants C1, q> 0 such that 
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181 	Cii-q. 

2.1.1 Finding Sparse Representations 

It is useful to determine whether a signal has a sparse representation in a given basis or frame. If 
an orthonormal basis i is used, then a signal x has a unique representation e = i/i-lx and we 
can learn whether x is K-sparse in B simply by inspecting this vector. When i is a frame, 

however, there are infinitely many solutions to the underdetermined problem x = ij 9 and hence 
infinitely many representations B for, x, making it more difficult to answer this question. 

Thus, this underdetermined system needs additional constraints or conditions to find an exact 
solution that meets a given set of requirements. These conditions might be the minimization or 

maximization of certain parameters associated with the system. The problem of finding an 
extreme value of a function subject to some given constraints is quite a popular one and can be 
put as 

min f (x) such that x = 09 	 (2.2) 

As is expected the function f (x) can take any form, it might be the distance of the given vector 

from a point, its length or the number of nonzero elements in it. At this point the following 
question arises, how can sparse solutions to underdetermined systems of equations be obtained? 

to-norm Minimization 

To find the sparsest representation of the signal, we need to find a vector with minimum number of 
nonzero elements. So the problem may now be stated as 

min II B II 0  such that x = i/9 	 (2.3) 

with 

N 

118110= .led, 
	

(2.4) 
i=1 

where, 
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~9 
90 _ 10, 	if81 =0 

 

1,  if 8i ~ 0 

It can thus be said that the sparse solution of a system of equations is the one that has the 
minimum to norm. While this algorithm will - by construction - find the sparsest representation 
of the signal x in the frame 0, its computational complexity is combinatorial; it must search 
whether the signal x is in the span of any of the columns of i then whether it is in the span of 
any pair of columns of 0, then repeat for any set of three columns, etc., until a combination of 
columns for which x is in their span is found. But this aspect does not deter people from 
approximating and this task has been achieved with much ,success during the past many years of 
research. This has led to considerable effort being put into the development of many sub-optimal 
schemes. 

Sub-optimal Algorithms 

Instead of attempting to solve the problem exactly by brute force, approximate solutions have 
been developed that tend to approach the exact solution. The first relaxation is given in terms of 
the error in solving the system of equations. Instead of exactly solving the system, certain error is 
allowed so that a sparse solution may be achieved with some arbitrarily small error, represented 
in the following equation by e. 

min I I 0 I I o such that 1100 — X112< e 	 (2.5) 

Various approximation algorithms have been put forward for the recovery of an approximate 
solution to the above equations.. Some of these recovery methods may broadly be classified into 
different groups listed as follows. 

Greedy pursuit: Iteratively refine a sparse solution by successively identifying one or more 
components that yield the greatest improvement in quality. These start from an all zero solution 
and add components to x one at a time based on selecting the best out of the available options. 
Some of such approaches are Matching pursuit [19], Orthogonal Matching Pursuit [20], 
Stagewise Orthogonal Matching Pursuit (StOMP) [21] etc. These have been shown to converge 
by Tropp in [22]. Matching Pursuit decomposes any signal into a linear expansion of waveforms 
that are selected from a redundant dictionary of functions. These waveforms are chosen in order. 
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to best match the signal structures. Matching pursuits are general procedures to compute adaptive 
signal representations. 

Convex Optimization: The above is an optimization problem but the to norm is not a convex 
function so it may be replaced by some equivalent convex function and the problem may be 
solved by convex optimization. The methods developed from this point of view are Basis Pursuit 
[23], FOCal Underdetermined System Solver (FOCUSS) [24] and Iteratively Reweighted Least 
Square (IRLS) [25]. As these methods are based upon standard optimization techniques so they 
are guaranteed to converge, the only thing that is needed to be proven in such cases is that the 

convex function chosen to replace the to norm is adequate. Basis pursuit (BP) is a principle for 
decomposing a signal into an "optimal" superposition of dictionary elements, where optimal 
means having the smallest ll norm of coefficients among all such decompositions. FOCUSS has 
two integral parts: a low-resolution initial estimate of the real signal and the iteration process that 

refines the initial estimate to the final localized energy solution. The iterations are based on 
weighted norm minimization of the dependent variable with the weights being a function of the 
preceding iterative solutions. 

Statistical approaches: As the least squares solution provides the ML (Maximum Likelihood) 
estimate of the system equations so in a probabilistic approximation of the sparsest solution an 
appropriate prior distribution of the elements of x is chosen and then a MAP [26] or an MMSE 

[27] estimate of x is found. The success of these methods depends mainly upon the 
appropriateness of the chosen apriori distribution. 

Algorithmic Performance 

To provide a guarantee for the performance of these algorithms, we define a metric of the frame 
t/ known as coherence. 

Definition 6. Coherence: The coherence of a matrix 0, µ(Vi), is the largest absolute inner 
product between any two columns 0 j , ii j  off,: 

IIi111211 11J2  
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It can be shown that the coherence of a matrix lies in the range /1(4')  E [ 
M{N 

-M1)' 1] where the 

lower bound is known as Welch bound. 

The coherence then dictates the maximum sparsity 119110  for which the BP and OMP algorithms 
obtain the sparse representation of x = 1PØ [3). The BP and ONIP algorithms can obtain the 

sparse representation of any K-sparse signal in 4' if K < 1(  1  + 1). 

However another question arises here, that pertains to the uniqueness of this sparse solution. It is 
known that the infinite solutions exist for the system of equations so the uniqueness of a solution 
of this problem becomes dubious. Uniqueness can be guaranteed by defining a relevant metric. 

Definition 7. Spark: The spark of a given matrix 4'  is the smallest number of columns of 4' that 
are linearly dependent. 

Definition 8. Null Space: Null space of a matrix 0 is defined as .W(4') = {z : 4'z = 0}. 

Theorem 1. If a signal x has a sparse representation x = 4'9 with 119110 = K and 

K < spark(4)/2 

then B is the unique sparsest representation ofx in 0. 

Proof. Let there exist another vector 0' such that 00' = x and 119'II 0  < spark(i)/2 so now 
- B') = 0 and lies in .N' (4Ji) . Using the definition of the spark 

110110 + 1I0'IIo ? 118 —0'IIo > spark(*) 

as any vector must have at least spark(*) non-zero components to lie in the null space of 4'.  Also 
as the number of nonzero terms in 0 — 0' can not exceed the sum of the number of non zero 
terms in 0 and 0' separately. And as 110II o < sp ark(4')/2 hence such a 0' does not exist. So a 
vector 0 with the above mentioned properties is indeed unique. 

2.2 Compressive Sensing 

Consider the general problem of reconstructing a vector x E RN from linear measurements 

y E RM ofx of the form 
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Ym =<X,cpm >, 	m = 1,2,...,M, 	or y = çbx 

where 1,  is a M X N transform matrix with M << N. That is, we acquire information about the 

unknown signal by sensing x against M vectors corn  E RN . We are interested in the 

"underdetermined" case M << N, where we have many fewer measurements than unknown signal 
values. At first glance, solving the underdetermined system of equations appears hopeless. But if 

the signal x is sparse or compressible in basis ii,, meaning that it essentially depends on a number 

of degrees of freedom which is smaller than N, that is, it can be written either exactly or 
accurately as a superposition of a small number of vectors in some fixed basis, i.e. 

X1/)9 

where, iii is N x N matrix and 9 is N x 1 column vector and hence, 

Y=q09 
Then this radically changes the problem, making the search for solutions feasible. In fact, 
accurate and sometimes exact recovery is possible by solving a simple convex optimization 
problem. In other words, instead of sensing ° an N dimensional signal x with sparsity K, we can 

measure M random linear functionals of x where M << N and find x by solving the under-

determined system of equations as above with the extra condition that x is K sparse in basis Vii. 

To recover the signal representation 0 from its measurements y, we can exploit the fact that y will 
be sparse in the frame cIn/i. However, a distinguishing feature of CS is that we do not want to find 
just a sparse representation ofy, but rather we aim for the correct representation 0 that yields our 
signal x = 00. Therefore, the requirements, guarantees, and algorithms relevant to CS signal 

recovery are slightly different from, although based on, the sparse representation and 
approximation algorithms mentioned earlier. For brevity, we define the matrix product A = OiP 
so that y = A9. 

A major question arises out of this problem statement, i.e., how should the measurement/sensing 

matrix ¢ be designed so that it preserves the information in the signal x? Following section 
attempts to answer this question. 
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2.3 How to construct Measurement Matrix? 

The measurement matrix 4) represents a dimensionality reduction, i.e., it maps RN, where N is 
generally large, into RM, where M is typically much smaller than N. Here, we assume that the 
measurements are non-adaptive, meaning that the rows of 4) are fixed in advance and do not 
depend on the previously acquired measurements. 

The CS theory states that it is possible to construct an M x N measurement matrix 4), where 
M<<N, yet the measurements y = 4x preserve the essential information about x, if it satisfies 
some properties to be discussed below. For example, let 4) be a cK xN random matrix with i.i.d. 
Gaussian entries, where c = c(N,K) is an oversampling factor. Using such a matrix it is possible, 
with high probability, to recover any signal that is K-sparse in the basis iJi from its image under 
4). For signals that are not K-sparse but compressible, meaning that their coefficient magnitudes 
decay exponentially, there are tractable algorithms that reconstruct signals with error not more 
than a multiple of error of the best K-term approximation of the signal. 

Some conditions/attributes that 0 should satisfy for preserving the information and helping 
recovery are given below [ 18]. 

2.3.1 Restricted Isometry Property 

In [3], Candes and Tao introduced the following isometry condition on matrix A and established 
its important role in CS. 

Definition 9. Restricted Isometry Property (RIP): A matrix 4) satisfies the restricted isometry 
property (RIP) of order K if there exists a 6K  E (0, 1) such that 

(1 -a )IIx112 -- II4)xI1 <_ (1+8x)IIxII2, 	 (2.6) 

This property essentially requires that every set of columns with cardinality less than K 
approximately behaves like an orthonormal system. An important result is that if the columns of 
the measurement matrix are approximately orthogonal, then the exact recovery phenomenon 
occurs [3]. If a matrix di satisfies the RIP of order 2K, then we can interpret (2.1) as saying that 
cb approximately preserves the distance between any pair of K-sparse vectors. Also, if % satisfies 
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the RIP of order K with constant SK, then for any K' <K we automatically have that 4) satisfies 

the RIP of order SK,  with constant SK' <_ SK . 

RIP & the stability: 

Definition 10. Let 4): RN -+ RM denote a measurement matrix and A: RM RN denote a 

recovery algorithm. We say that the pair (4);  A) is C -stable if for any x E E K  and any e E R M , 

we have that 

IIi(4)x + e) — X112 < Cl1e112 

This definition simply says that if we add a small amount of noise to the measurements, then the 
impact of this on the recovered signal should not be arbitrarily large. 

Practical recovery algorithms typically require that 4)  have a slightly stronger 2K-RIP, 3K-RIP, 

or higher-order RIP [3]. In fact, the uniqueness requirement is implied when the matrix has the 
2K-RIP with 2K>  0 as this implies that all sets of 2K columns be linearly independent, putting 
spark(q5) > 2K. 

2.3.2 Mutual Coherence 

In particular cases, the choice of measurements that can be taken from the signal are limited to a 
transformation, such as the Fourier/Radon transform performed in magnetic resonant imaging. 

Thus, we can assume that a basis 4) E RN  "N  is provided for measurement purposes, and we can 

choose a subset of the signal's coefficients in this transform as measurements. That is, let t be an 

N x M submatrix of 0 that preserves the basis vectors with indices T and y = r Tx. Under this 
setup, a different metric arises to evaluate the performance of CS. 

Definition 11. Mutual Coherence: The mutual coherence of the N-dimensional orthonormal 

bases 4) and is the maximum absolute value for the inner product between elements of the 
two bases: 

= zmax I(4)i,*j)f 

21 



2.3.3 Random Matrices 

Fortunately, these conditions can be achieved by randomizing the matrix construction. It can be 
shown that random matrices will satisfy the RIP with high probability if the entries are chosen 
according to a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution [3]. 

Using random matrices to construct r) has a number of additional benefits. To illustrate these, the 
focus will be on the RIP. 

1. For random constructions the measurements, are democratic, meaning that it is possible to 
recover a signal using any sufficiently large subset of the measurements. Thus, by using random 

4) one can be robust to the loss or corruption of a small fraction of the measurements. 

2. In practice, we are often more interested in the setting where x is sparse with respect to some 

basis i/ . In this, case what we actually require is that the product A = 4)i satisfies the RIP. If we 
were to use a deterministic construction then we would need to explicitly take i/i into account in 

our construction of 0,; but when 4) is chosen randomly we can avoid this consideration. For 

example, if 4)  is chosen according to a Gaussian distribution and i' is an orthonormal basis then 
one can easily show that A will also have a Gaussian distribution, and so provided that M is 
sufficiently high A will satisfy the RIP with high probability, just as before. 

2.3.4 Measurement bounds 

A K-sparse signal can be reconstructed from M measurements if M satisfies the following 
conditions: 

M >_ C. t2  (0, ib). K. log N 

where, c is a positive constant. The smaller the coherence between 0 & IP is, the lesser 
measurements are required to reconstruct the signal. A random basis has been shown to be 
largely incoherent with any fixed basis, and M = 3K-4K is usually sufficient to reconstruct the 

signal. 
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2.4 Principal Component Analysis (PCA) 

Transformation domain that make the signal sparse (ill) needs to be known for the reconstruction 
of the signals using CS. Using a fixed basis with a time varying correlation structure as in WSNs 
may not provide the expected results. Transformation domain should adapt to the signals. PCA 

allows to dynamically learn the optimal transformation to be used by CS recovery, effectively 
accounting for the time varying correlation affecting real signals as in the case of WSNs [10]. 

Let 	be the vector of measurements from our WSN at a given time instant n, where the 

network consists of J nodes. We collect measurements according to a fixed sampling rate at 

discrete times n = 1,2,. . . ,N. From a geometrical point of view, we consider x (n ) as a point in 

RJ and look for the K-dimensional plane (with K << J) which best matches the points in x(n) in 
terms of minimum Euclidean distance. The sample mean vector x and the sample covariance 

matrix E of x(n) are given as: 

N 	 N 

I 	 N 	— x) (x(n) _ x)T 
n=1 	 n=1 

Given the above equations, we consider the orthonormal matrix U whose columns are' the 

eigenvectors of the , covariance matrix E placed in decreasing order with respect to the 

corresponding eigenvalues. If we define the vector s (n) as: 

S(n) = UT(X(n) — X) 

Assuming that the instances x (l), x (2 ), ... , x (N) of the process x are correlated, as is often the case 

in WSN monitoring applications, there exists an K <— J such that all the component s~ ") with 

i = K + 1, ..., J are negligible with respect to the average energy, where the actual value of K 
depends on the spatial correlation of the signal. We can write: 

x(n) = 1+ V)S(n) 

where, we have defined the sparsifying matrix 1/, = U [28]. The J-dimensional vector s('n) 
obtained through PCA turns out to be K-sparse, so it can be efficiently recovered with CS. 
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We extend the use of PCA for multiple measurement vectors and recover signals using joint 
Distributed Compressed Sensing (DCS) and PCA. But, before that, let us understand the theory 
behind DCS. and various recovery algorithms used for DCS in chapter 3. 

2.5 Summary 
In this chapter, theory behind CS is discussed. The concept of sparsity on which CS is based 
upon, problem formulation to find sparse representation and various algorithms to solve the 
under-determined system of equations to find sparse representation are mentioned. Also, 
motivation behind CS and the exact CS problem is presented. The detailed theory includes 
conditions required to be satisfied by measurement matrix to ensure recoverability of any K-
sparse signal. Principal Component Analysis (PCA) used to dynamically find transformation 
matrix for signals with time varying correlation is also discussed. 
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3 Distributed Compressed Sensing 

While the theory and practice of compression have been well developed for individual signals, 

there has been less progress for multiple signals. One such application involving multiple signals 
is sensor network in which a; potentially large number of distributed sensor nodes are 
programmed to perform a variety of data acquisition tasks as well as to network themselves to 
communicate their results to a central collection point. In many sensor networks, and " in 
particular battery-powered ones, communication energy and bandwidth are scarce resources 

which necessitate the reduction of amount of data to be transmitted. Fortunately, since the 
sensors presumably observe related phenomena, the ensemble of signals they acquire are 
expected to possess some joint structure resulting in inter-signal correlation, in addition to the 
intra-signal correlation in each individual sensor's measurements. 

Duarte et al. [11] introduced a new theory for distributed compressed sensing (DCS) that enables 
new distributed coding algorithms that exploit both intra- and inter-signal correlation structures. 

In a typical DCS scenario, a number of sensors measure signals (of any dimension) that are each 
individually sparse in some basis and are also correlated amongst themselves. Each sensor 
independently encodes its signal by projecting it onto another incoherent basis (such as a random 

one) and then transmits the resulting coefficients to a single collection point. Under the right 
conditions, a decoder at the collection point is able to reconstruct each of the signals precisely. 
The DCS theory rests on a concept termed as the joint sparsity of a signal ensemble. 

3.1 Advantages of DCS 

In addition to offering substantially reduced measurement rates in multi-signal applications, DCS 
employ random projections at the sensors. As in single-signal CS, random measurement bases 

are universal in the sense that they may be paired with any sparsifying basis. This allows exactly 

the same encoding strategy to be applied in a variety of different sensing environments; 
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knowledge of the nuances of the environment is needed only at the decoder. Moreover, random 
measurements are also future-proof: if a better sparsity-inducing basis is found for the signals, 
then the same random measurements may be used to reconstruct an even more accurate view of 
the environment. A pseudorandom basis as measurement basis may be generated using a simple 
algorithm according to a random seed. Such encoding effectively implements a form of 
encryption: the randomized measurements will themselves resemble noise and are meaningless 
to an observer who does not know the measurement basis. Random coding is also robust: the 
randomized measurements coming from each sensor have equal priority, unlike the Fourier or 
wavelet coefficients in current coders. Thus, they allow a progressively better reconstruction of 
the data as . more measurements are obtained; one or more measurements may also be lost 
without corrupting the entire reconstruction. 

Two additional properties of DCS make it well-matched to distributed applications such as 
sensor networks and arrays [ 12]. First, each sensor encodes its measurements independently, 
which reduces inter-sensor communication overhead to zero. Second, DCS distributes its 
computational complexity asymmetrically, placing most of it in the joint decoder, which often 
has more substantial computational resources than any individual sensor node. The encoders are 
very simple; they merely compute incoherent projections with their signals and . make no 
decisions. 

3.2 Joint Sparsity Models 

A joint sparsity model (JSM) encodes the correlation between the values and locations of the 
coefficients for a group of sparse signals. Three different joint sparsity models (JSMs) have been 
proposed in [ 12] that apply in different situations. In the first two, models, each signal itself is 
sparse, and so the CS framework may be used to encode and decode each one separately 
(independently). In the third model, no signal is itself sparse, yet there still exists a joint sparsity 
among the signals that allows recovery from significantly fewer measurements per sensor. 
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3.2.1 JSM-1: Sparse common component + innovations 

In this model, each signal consists of a sum of two components: a common component that is 

present in all the signals and an innovation component that is unique to each signal. Both the 

common and innovation components may be sparsely represented in some basis. 

	

xl =zc +ZJ , 	l E {1,2, •.,J} 

with 

	

Z c .= sec, 	JJOCJJ = K 

II PA I I O = Ki 

Thus, the signal zc is common to all the x3 and has sparsity K in basis 4.' The signals zj are the 

unique portions ofthe x1 and have sparsity KJ in the same basis [11]. 

Such signals may arise in settings where large-scale phenomena affect all sensors and local 
phenomena affect individual sensors. A practical situation well-modelled by JSM-1 is a group of 
sensors measuring temperatures at a number of outdoor locations throughout the day. The 
temperature readings x3 have both temporal (intra-signal) and spatial (inter-signal) correlations. 

Global factors, such as the sun and prevailing winds, have an effect zc that is both common to all 
sensors and structured enough to permit sparse representation. More local factors, such as shade, 
water, or animals, contribute localized innovations zj that are also structured (and hence sparse). 

A similar scenario may be imagined for a network of sensors recording light intensities, air 
pressure, or other phenomena. All these scenarios correspond to measuring properties of physical 
processes that. change smoothly in time and in space and thus are highly correlated. 

For JSM-1, there exists an analytical framework inspired by principles of information theory. 
This allows characterizing the measurement rates M~ required to jointly recover the signals x3 . 

The measurement rates relate directly to the signals' conditional sparsities. The recovery 
technique is based on a single execution of a weighted linear program that seeks the sparsest 

components [zc; zl; ... ; zj] that account for the observed measurements. Theoretical analysis 
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and numerical experiments confirm that the rates M required for joint CS recovery are well 

below those required for independent CS recovery of each signal Xj [12]. 

3.2.2 JSM-2: Common sparse supports 

In this model, all signals are constructed from the same sparse set of basis vectors, but with 
different coefficient values: 

Xj =40, 	jE.[1,2,...,J) 

where, each 9j  is supported on the same 12 c {l, 2, .., N) with JfJ = K, K<<N. Hence, all 

signals are K-sparse and are constructed from the same K elements ofV5, but with arbitrarily 

different coefficients [11].. This model may be viewed as a special case of JSM-1 (with Kc = 0 

and K j  = K for all j) but features additional correlation structure that suggests distinct recovery 

algorithms. 

A practical situation well-modelled by JSM-2 is where multiple sensors acquire replicas of the 
same Fourier-sparse signal but with different phase shifts and attenuations caused by signal 

propagation. In many cases it is critical to recover each of the sensed signals, such as in many 
acoustic localization and array processing algorithms. Another useful application for JSM-2 is 
MIMO communication [12]. 

For JSM-2, Duarte et al. [11] proposed two techniques based on iterative greedy pursuit for 

signal ensemble reconstruction from independent, incoherent measurements inspired by 
conventional greedy algorithms (such as OMP) that can substantially reduce the number of 

measurements when compared with independent recovery. In the single-signal case, OMP 
iteratively constructs the sparse support set ; decisions are based on inner products between the 

columns of /i/.' (t is the measurement matrix) and a residual. In the multi-signal case, there are 

more clues available for determining the elements of L. For a large number of sensors J, joint 

recovery is possible with the number of measurements per signal close to K (that is, 

oversampling factor c-1 as J— co);  see Figure 3.1 for an example of improving performance as 

J increases. On the contrary, with independent CS recovery, perfect recovery of all signals 
requires increasing each M in order to maintain the same probability of recovery of the signal 
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ensemble. This is due to the fact that each signal experiences an independent probability p < 1 
of successful recovery; therefore the overall probability of complete success is pJ, Consequently, 
each sensor must compensate by making additional measurements, 

It is noted that when the supports of the innovations of the signals are small, signals that are well 
modelled by JSM-1 may also be modelled by JSM-2 by selecting a global support that contains 
all of the individual supports. Such approximation allows for a simpler recovery algorithm, while 
incurring a slight increase in the number of measurements required for recovery [29]. 

One-step Greedy Algorithm (OSGA) 

Given all of the measurements yj = /x1, j = {1, 2, ... ,J), where xj E RN compute the test 

statistics [11] 

n = Eli ,(yj, 1j ,n )2, n E  

and estimate the elements of the common coefficient support set by 

11= {n having K largest Sn } . 

DCS-SOMP (Simultaneous Orthogonal Matching Pursuit) 

Simultaneous Orthogonal Matching Pursuit (SOMP), proposed by Tropp and Gilbert [30], is a 
variant of OMP that seeks to identify one element at a time. It has been extended in [11 ] to DCS-
SOMP to adapt it to JSM-2. In each iteration, the column index n E [1,2,. . , N) is selected that 
accounts for the greatest amount of residual energy across all signals. 

First, the iteration counter is set as 1 = 1. For each signal index j E [1, 2, ... , J}, the 

orthogonalized coefficient vectors ~3 j = 0, j E RM are initialized. The set of selected indices 

SZ = 0 is also initialized. If rj, j denote the residual of the measurement y j remaining after the 

first I iterations, initializing r o = yj , we have 

) nr = arg -max I (rj,1-1, 4j,n I 

n=1,2,...,N j=1 	II!I,f II2 
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[fl nth 

Next, the selected basis vector is orthogonalized against the orthogonalized set of previously 
selected dictionary vectors 

1-1 
~ p̀j.ni►Tj,t~ 

pl,t = 
Ln! — t=o IIYj,tII2 Y'~t 

The estimate of the coefficients are then updated for the selected vector and residual as 

	

I (1) 	( rj,t-1, ]'Z,t) 

	

l l 	IIYj,III Z 

(rj.ti y1,t) 
rj,t = r~.t-1- 	IIYj,t 

112 

Yj t 

I~IIri,t 112 > EII y1 112 for all ], the iteration index 1 is incremented and next iteration is performed. 

The parameter € determines the target error power level allowed for algorithm convergence. 

3.2.3 JSM-3: Nonsparse common component + sparse innovations 

This model extends JSM-1 so that the common component needs no longer be sparse in any 
basis, that is, 

with 

zc = 

zj =lP9j , 	II0j II 0 =K, 

but zc is not necessarily sparse in the basis ip [12]. 

A practical situation well-modelled by JSM-3 is where several sources are recorded by different 
sensors together with a background signal that is not sparse in any basis. Consider, for example, 
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an idealized computer vision-based verification system in a device production plant that checks 
for failures in the devices for quality control purposes. Cameras acquire snapshots of components 
in the production line from different viewing points. While each image could be extremely 
complicated, the ensemble of images is highly correlated, since each camera is observing the 
same device with minor (sparse) variations. 

For JSM-3, since the common component is not sparse, no individual signal contains enough 
structure to permit efficient compression for CS; in general N measurements would be required 
for each, individual N-sample signal. However, it is demonstrated in [1.2] that the common 
structure shared by the signals permits a drastic reduction in the required measurement rates. 
This is the main concept behind the Alternating Common and Innovation Estimation (ACIE) 
recovery algorithm [12], which alternates between two steps: (1) Estimate the common 
component zC  by combining all measurements and treating the innovations zl  as noise that may 

be averaged out; (2) Estimate the innovations z3  from each sensor by subtracting the estimated 

common component zC  and then applying standard CS recovery techniques. In fact, 
asymptotically, the required measurement rates relate simply to the sparsity K of the innovation 
components; as the number of sensors grows, each sensor may again reduce its oversampling 
factor to c = 1. Thus, for a large number of sensors J, the impact of the common nonsparse 
component zc  is eliminated. 

3.3 M-FOCUSS 

In [13], Cotter et al. addressed the problem of finding sparse solutions to an underdetermined 
system of equations when there are multiple measurement vectors having the same, but 
unknown, sparsity structure. It extends two classes of algorithms—Matching Pursuit (MP) and 
FOCal Underdetermined System Solver (FOCUSS) - to the multiple measurement vectors 
(MMV) case so that they may be used in applications such as neuromagnetic imaging, where 
multiple measurement vectors are available, and solutions with a common sparsity structure must 
be computed. 

3.3.1 Problem Formulation 

MMV problem may be stated as solving the following L underdetermined systems of equations: 
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Ax(1  = y(1), 

where, A = Dili E RM "N , M<N. L is the number of measurement vectors and it is usually 

assumed that L<M. The quantities y(l)  E RM, 1 = 1,2, ... L are the measurement vectors and 
x U)  E RN, 1 = 1, 2, ... , L are the corresponding source vectors. We may also write it as: 

AX =Y 

where, X = [x(1), x (2), ... , xtL)] and Y= [y (1), y(2),  ... , y(L)]. It is assumed that x (1), l = 

1,2, ... , L are sparse and have the same sparsity profile so that the indices of the nonzero entries 
are independent of I The problem is to find the maximally sparse solution'` from among the 
infinite solutions. 

3,.3.2 Algorithm 

One of the sub-optimal algorithms for single measurement vector (SMV), FOCUSS [24], has 
been extended for the case of multiple measurement vectors [13]. It is referred as M-FOCUSS. It 
is summarized as follows: 

p\ Wk+1 = diag (Ck [i]14 ) 1 ,. 

where, 

L 

Ck [L] = IIxk [ 1] II = 	[ j]) 2)1/2, 	p E [0,1] 

where, x[i] = [x(1) [ ],x(2) [1],,..,x0) [i]] is the ith  row ofX.. 

Qk+1 = 4+1w. where Ak+1 = AWk+1 

Xk+1 = Wk+1Qk+1 

The algorithm is terminated once the convergence criterion has been satisfied, which is given as 

114+1_411F  < s  

IIXk IIF' 



3.4 Simulation Results 

With Synthetic Data 

Algorithms for JSM-2 are simulated in MATLAB and their results are shown below. OSGA and 
DCS-SOMP are used to reconstruct the support set of synthetic signals. Probability of exact 

reconstruction (Probability of recovering the support set) v/s Number of measurements per 
sensor for different number of sensors is plotted as shown in Fig 3.1 and Fig 3.2, respectively. 

As expected, the average number of measurements per sensor, M, required for perfect 
reconstruction decreases if signals from more sensors are used for joint decoding. 

Simulation results for M-FOCUSS are plotted in Fig. 3.3. It is a plot of Root Mean Square Error 
(RMSE) defined as 

IIXrec - XII.2 RMSE 
II~IIz 

where, X is the data generated and Xre,. is the data recovered, v/s Number of measurements, M. 

Again, as number of sensors L increases, average number of measurements per sensor required 
for perfect reconstruction decreases. 

With Real Data 

Fig 3.4 shows the comparison between DCS-SOMP and M-FOCUSS. This simulation is 
performed using the real signals from EPFL WSN deployment LUCE (Available: 

http://sensorscope.epfl.ch/). Here, we use Haar wavelet transform for the sparse representation of 
the signals. 

It can be seen that DCS-SOMP requires lesser number of measurements per sensor than M-
FOCUSS for reconstruction of signals. 
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Figure 3.1 Plot of probability of exact reconstruction via OSGA as a function of the number of measurements per 
sensor M and the number of sensors J. Signal length N = 50, Sparsity K = 5. 
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Figure 3.2 Plot of probability of exact reconstruction via DCS-SOMP as a function of the number of 
measurements per sensor M and the number of sensors J. Signal lengthN = 50, Sparsity K = 5. 
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Figure 3.3 Plot of Root Mean square error via M-FOCUSS as a function of number of measurements per sensor M 
and the number of sensors L. Signal length N=50, Sparsity K-7. 
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Figure 3.4 Plot of Root Mean square error via DCS-SOMP and M-FOCUSS as a function of number of 
measurements M. Signal length N=64 and number of sensors J=16. 
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Joint DCS and PCA 
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Figure 3.5 Plot of Root Mean square error via SOMP and, PCA as a function of number of measurements per 
sensor M for ambient temperature. Signal length N=64, J=1.6. 

We reconstruct the sensor readings of Ambient Temperature (Fig 3.5) from EPFL WSN 
deployment LUCE using the sparsifying matrix learnt by Principal Component Analysis (PCA). 
We use DCS-SOMP for reconstruction as data follows JSM-2 model. 

However, we have to alternate between two phases: 

1. a training phase of N data collection rounds during which the sink collects the readings from 
all J sensors and uses this information to compute x and 2; 

2. a subsequent monitoring phase of cN rounds during which we can transmit M<N 
measurements. The input signal is thus reconstructed using the statistics x and 2 computed in 
the previous phase. 

The ratio c between the duration of monitoring and training phases is chosen according to the 
temporal correlation of the observed phenomena. 

We can see from Fig 3.5 that for M=-10, N=64, we can reconstruct data with less than 10% 
RMSE for S = 6 rounds of monitoring phase after I training phase. 
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3.5 Summary 

In this chapter, we discuss the motivation behind and the concept of Distributed Compressed 

Sensing which uses the temporal and spatial correlation to reduce the number of measurements 
for joint recovery of signals in sensor networks. Different joint sparsity models and their 
recovery algorithms are also discussed. Also, M-FOCUSS used for recovery from multiple 

measurement vectors has been used for JSM-2. Simulation results of M-FOCUSS and JSM-2 
recovery algorithms OSGA and DCS-SOMP are shown. Further, a comparison in terms of 

number of measurements per sensor required for reconstruction of signals between M-FOCUSS 
and DCS-SOMP has been done. Simulation results for signal recovery through joint DCS and 
PCA are also shown. 
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4 Distributed Compressive Data 
Gathering in Wireless Sensor 
Network. 

4.1 Data gathering using CS 

In general, data transmissions are accomplished through multi-hop routing from individual 
sensor nodes to the data sink as shown in Fig 4.1. Successful deployment of such large scale 
sensor network faces two major challenges in effective global communication cost reduction and 
in energy consumption load balancing. In Fig. 4.1, Node sl transmits its reading dl to s2, and s2 

transmits both its reading d2 and the relayed reading dl to S3. At the end of the route, SN transmits 
all N readings to the sink. It may be observed that the closer a sensor is to the sink, the more 
energy it consumes. Clearly, the sensor nodes closer to the data sink will soon run out of energy 
and consequently, lifetime of the sensor network will be significantly shortened. 

Figure 4.1 Baseline data gathering [31] 
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4.1.1 Randomised Gossip 

In any general multi-hop network, each of the sensors locally generates its information by 
multiplying its data with the corresponding element of the compressing matrix. The local 
information is simultaneously. aggregated and distributed across the network by randomized 
gossip algorithm [17]. When randomized gossip terminates, each node in the network knows all 
the data in the network, and then M of the nodes are randomly chosen to transmit their 
information to the sink. 

4.1.2 Compressive Wireless Sensing 

In [15], Bajwa et al. introduced the concept of Compressive Wireless Sensing for single-hop 
sensor networks in which a fusion centre retrieves signal field information from an ensemble of 
spatially distributed sensor nodes based on a distributed matched source-channel communication 
architecture. It requires no prior knowledge about the sensed data. It is shown to be able to 
reduce the latency of data gathering by delivering linear projections of sensor readings through 
synchronized amplitude-modulated analogue transmissions. In this case, analog mode of 
transmission is used, which corresponds to a completely decentralized way of delivering M 
random projections of the -sensed data to the fusion centre by employing M transmissions. 
However, it requires accurate synchronization of sensor nodes. 

4.1.3 Compressive Data Gathering 

In baseline data gathering scheme, data transmissions are generally accomplished through multi-
hop routing from individual sensor nodes to the data sink as shown in Fig 4.1. Nodes close to the 
sink will transmit more data and consume more energy than those at the peripheral of the 
network. The unbalanced energy consumption has a major impact on the network lifetime, 
defined as the time till the first node fails. 

For large scale monitoring sensor networks, Luo et al. have proposed Compressive Data 
Gathering (CDG) in [16] and IR-CDG in [31] that leverages compressive sampling (CS) 
principle to efficiently reduce communication cost and prolong network lifetime. In a densely 
deployed sensor networks, sensors have spatial correlations in their readings. Let J sensor 



readings form a vector d = [d l  d 2  ... d r ]T , which is a K-sparse signal in a particular domain 4. 
Then, we have d = 00, where 0 is a sparse vector. As the sensor readings are compressible, CS 

may be used for recovery of d from M <N incoherent measurements y = çbd using various 
recovery algorithms, where i is the measurement matrix. 

The data gathering process of CDG is depicted in Fig. 4.2 through a simple chain-type topology. 

Comparing this with the baseline data gathering scheme in Fig. 4.1, CDG delivers weighted 

sums (or measurements) of sensor readings, instead of individual readings, to the data sink. To 
transmit the ith  measurement to the sink, sl multiplies its reading d1  with a random coefficient 
g5il  and sends the product to. sL. Then s2 multiplies its reading d2  with a random coefficient 
42 and sends the sum giil  dl  + %i2  d2  to s3. Similarly, each node sf contributes to the relayed 

message by adding its own product. Finally, the sink receives YN=1 4) d1 , a weighted sum of all 

the readings. This process is repeated using M sets of different weights so that the sink receives 
M measurements. With such design, all nodes transmit M messages and consume same amount 
of energy. This is able to achieve substantial sensor data compression without introducing 

excessive computation. With elegant design, this scheme is also able to disperse the 
communication costs to all sensor nodes along a given sensor data gathering route. This results in 
a natural load balancing and extends the lifetime of the sensor network. 

Si 	S2 	53 	 SN_I 	SN 	Sink 
Figure 4..2 Basic CDG [31] 

To further reduce the communication cost, IR-CDG was proposed in [31] which uses [I R] as 
measurement matrix 4 where R is the original measurement matrix with its entries being i.i.d. 

Gaussian random numbers drawn according to X11'(0, M) and I is the identity matrix of size 
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MxM. Matrix [I R] preserves the restricted isometry property and incurs the minimum 
communication cost in multi-hop networks and thus is a favourable choice for data gathering. By 
using [I R] as the measurement matrix, the first M sensor nodes simply transmit their original 
sensor readings to node sM+l.  Upon receiving the reading from sensor si , sM +1  computes the f 
product and transmits di + PiM+1dM+1 to the next node. In IR-CDG, the first M nodes do not 
have any computation load, and the rest of nodes have the same computation and communication 
load as, in the basic CDG scheme. 

4.2 Proposed scheme for Distributed Compressive Data 
Gathering in WSN 

By using Distributed Compressive Data Gathering for data aggregation in WSN, we may further 
reduce the number of measurements required for the reconstruction of the data. Here, we use 
CDG for multiple linear projections (Ml) of the sensed. data. That is, we first take Ml projections 
of the data and then, instead of collecting all Ml  readings from all the J sensors, we use the above 
mentioned CDG scheme for its transmission to the sink. Let 

dj = g1xj, 	j = (1,2, ... , J} 

where xj  is NX 1 vector containing sensor readings at discrete times n=1, 2, ..., N for jth  sensor, 

1 is Ml  xN measurement matrix and dj  is Ml  x 1 measurements vector for jth  sensor. Let each of 

these Ml readings from J sensors form a vector vi = [dsi d2i ... d11]T , I = {1, 2, ... M1}. We then 

use CDG to collect M linear projections of these Ml vz 's as 

Yi = q5vi, 	i = (1, 2, ... , M1) 

where, 	4' E RM"J is the 	measurement basis 	and 	yi E RM, i = (1, 2, ..., M1}. 

Y = [Yi' Y2' -•-, YM I  ] is the aggregated data from all the J sensors of size MxM1. 

Subsequently, we recover x from y in two steps: first recover v from Y and then x from v using 
the recovery algorithms`for DCS as discussed in Chapter 3. 
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4.3 Simulation Results 

Compressive data gathering was simulated using FOCUSS and OMP. Plots of reconstruction 

error (Root mean square error) are shown for increasing number of measurements in Fig 4.3 and 
Fig 4.4 using the real signal data (ambient temperature readings) from EPFL WSN deployment 
LUCE (Available at: http://sensorscope.epfl.ch/) gathered from 24 sensors. 

We see that by using only M=7 linear projections for J=24, we are able to reconstruct the data 
with less than 10% mean square error, in case of FOCUSS as reconstruction algorithm. With 
OMP as recovery algorithm we can reconstruct the data with lesser error. 
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Figure 4.3 Plot of RMSE vs. M for CDG using FOCUSS. No of sensors, J=24. 
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Figure 4.4 Plot of RMSE vs. M for CDG using OMP. No of sensors, J=24. 

We, also, simulated IR-CDG using the set of CTD (Conductivity, Temperature, and Depth) data 
from National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center 
(NDBC). Figure 4.5 shows the temperature data collected in the Pacific Sea at (7.0N, 180W) on 
March 29, 2008 (Available at: http://taonoaa.gov/refreshed/ctd delivery.php). The data set 

contains 1000 readings obtained at different depth of sea, ranging from 4.579°C to 27.87°C. It is 
clear that the readings are piece-wise smooth, and should be sparse in wavelet domain. We use 
Haar wavelet, for sparsifying transform and FOCUSS for reconstruction. 

We observe that we have successfully reconstructed data using IR-CDG and minimum 
communication cost for multi-hop network (M=150 and M=200 for N=768). 
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Figure 4,5 Figure showing actual and reconstructed temperature readings using IR-CDG. 

We simulated the above proposed scheme (DCDG) using the real signal data from EPFL WSN 
deployment LUCE of Ambient Temperature (Fig 4.6) and Relative Humidity (Fig 4.7). 
Measurement matrices are generated with their entries being i.i.d. Gaussian random numbers 

drawn according to N(0, M) and X11'(0, M1 ). We plot average root mean square error (RMSE) in 

the reconstruction of a signal of length N=512 from sensors J=24  for M=3 versus M1 as shown in 
Fig. 4.6 and Fig 4.7. We use Haar wavelet transform for the sparse representation of the signals 
and use DCS-SOMP for reconstruction. 
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Figure 4.7 Plot of Root Mean square error v/s M for DCDG for relative humidity. M=3, N=512, J=24. 
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As we see from Fig. 4.6, reconstruction error (RMS error) for M1  >_ 50 is around 10% for 

temperature readings. Hence, instead of sending 512x24 values, we may transmit only 50x3 

values to the sink and reconstruct the data almost perfectly. 

For relative humidity (Fig 4.7), with M1  ? 10 we can reconstruct data with approx. 15% error 

which means a drastic reduction in number of measurements and transmissions required for 
successful reconstruction. 

4.4 Summary 

This chapter mentions different data gathering schemes in WSN. Compressive Data Gathering 

(CDG) proposed by Luo et al. [ 16] has been discussed in detail. It leverages compressive 
sampling (CS) principle to efficiently reduce communication cost and prolong network lifetime. 
IR-CDG is another scheme for data gathering with even less number of measurements in WSN. 
Simulation results of CDG and IR-CDG are shown. 

Thereafter, we proposed to use Distributed Compressive Data Gathering to further reduce the 
communication cost and observed that we are able to reconstruct a signal almost accurately with 
very less number of measurements. 
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5 Conclusion and Future Work 

This dissertation attempts to study the emerging topic of Compressive Sensing and Distributed 

Compressed sensing and their application to Wireless Sensor Networks. With the increasing use 

of WSNs, it becomes necessary to efficiently utilize the scarce resources of power and 
bandwidth. DCS shows promising results for this by reducing the measurements to be acquired 
and transmitted using the spatial and temporal correlation structure of the data being sensed, i.e. 
inter- and intra-signal correlation. It shifts the processing from the sensors to the sink which 

often has more substantial computational resources. As from the results in Chapter 3, we see that 
a sparse or compressible signal may be reconstructed with only few linear projections of it on an 
incoherent basis. DCS-SOMP requires fewer measurements than M-FOCUSS for the 
reconstruction and provides better results. All the sensors may work independently and hence 
reduce the in-network communication. In-network communication is required only to support 
multi-hop networking to the data collection point. 

This communication for data collection in multi-hop network may further be reduced if 
Compressive data gathering (CDG) is combined with DCS. In CDG, we use CS while collecting 
the data at a time instant from sensors and reduce the number of transmissions required, thereby, 
reducing the communication cost and prolonging the network lifetime. 

From the results obtained in Chapter 4, we see that with Distributed Compressive Data 
Gathering, we may reduce the number of measurements both for the inter- and intra-signals to a 
large extent and still be able to reconstruct the signals with great accuracy. 

We have also extended the use of Principal Component Analysis (PCA) for DCS. Simulation 
results show that we can reconstruct data successfully using the transformation matrix learnt 

through PCA. For N=64, we are able to reconstruct data for 6 monitoring rounds after I training 
phase. 
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In future, we may extend other algorithms like Basis Pursuit,, Sparse Bayesian learning, StOMP 
etc. for DCDG. Many algorithms can be first extended for multiple measurement vectors and 
then used for DCDG. MMV recovery algorithms in [ 13] may also be extended to JSM- 1 and 
JSM-3 models. DCDG may be combined with PCA for dynamically learning the transformation 
matrix for WSN data with time varying correlation. Hence, signals may be reconstructed through 
joint DCDG and PCA. 
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