ERROR IDENTIFICATION AND STATE ESTIMATION IN
POWER SYSTEM

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of the degree
of
MASTER OF ENGINEERING
» in
ELECTRICAL ENGINEERING
(With Specialization in Power System Engineering)

o ..‘.-a-n-.... -

~ HORKER :;é"'.'-‘.,

(3
o R

) *.O -?’43&306, .z:'o.,'
-'§ Ace. ™, .. 'ﬁ."‘“
1% Date.3: 3.7%9. E}

By .7, &
4, o/

1 <
BRAJENDRA KUMA'R';.;_“’OQRKSE)”/

pL L PO

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247 667 (INDIA)

JANUARY, 1999 -



CANDIDATE’S DECLARATION

I hereby declare that the work presented in this dissertation titled “ERROR
IDENTIFICATION AND STATE ESTIMATION IN POWER SYSTEM” in
partial fulfilment of the requireme_nts for the award of the degree of MASTER OF
ENGINEERING in POWER SYSTEM ENGINERING, submitted in the
Department of Electrical Engineering, University of Roorkee, Roorkee is an authentic
record of my own work carried out during the period Sept. 1998 to January 1999 under
the guidance of Dr. H.O. Gupta, Professor, Department of Electrical Engg., and Dr.
S.N. Singh, Assistant Professor, Department of Electrical Engg., University of
Roorkee, Roorkee. The mattér embodied in this dissertation has not been submitted by

me for the award of any other degree or dipldm&

Date: 36-1-99 | Brafendra W ar '
Place: Roorkee x (BRAJENDRA KUMAR)

A CERTIFICATE _
M_j:[his is to certify that the above statement made by the candidate is correct to

the best of our knowledge and belief.

e

. GUPTA)

(Dr. S.N. SINGH) ' (Dr.

Assistant Professor
Deptt. of Elect. Engg.,
University of Roorkee
Roorkee - 247 667

Date:
Place: Roorkee

H

Professor,

Deptt. of Elect. Engg.,.
University of Roorkee
Roorkee - 247 667

Date: 2°/1[99
Place : Roorkee



ACKNOWLEDGEMENT

. 1 feel extremly happy to express my profound gratitude to Dr. H.O. GUPTA,
Professor, Department of Electrical Engineering and Dr. S.N. Singh, Assistant
Professor, Department of Electrical Engineering, University of Roorkee, for
_their congent arguments and <adr.oit criticism that let the consummation of the

present work.

At this moment 1 also express my heartiest intense gratitude to Dr. G.K.
Singh, Assistnt Professor, Dpett. of Electrical Engg., for excellent advice and

‘ knowledge.

At last 1 also thanks to all of my classmates for their leep during this

Remind.

Date : 20-1-99

Byafen d?ﬂ&m oY
Place: Roorkee (BRAJENDRA KUMAR)

(i1)



ABSTRACT

This dissertation work describe WLS state estimation algorithm,
decomposition approach of state estimation, Bad data detection and topological
error identification. The algorithm is -testc:d on IEEE-14 bus system. The power
Network is decomposed into number of blocks by identifying boundary buses and

branches. The boundary buses are modelled as slack, bus for decofnpositiop

approach.
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CHAPTER 1

INTRODUCTION

Attempts of precise control of Eﬁgineering system pi‘oved the validity of
pafadox "What it appears is not as it is". The crude information obtained by
various measurements is insufficient to explain the state of operation of the
system due to its inherent errors. This has led to the evolution of statistical
estimation theory as a concept of approximate the state variables of a system
from its erroneous measurement.

Estimation theory has been extensively used for navigation of air craft and
space craft as well as post experimental analysis. In the field of power system,
the objective is to provide a reliable and consistent data base for security
monitoring. Contingency analysis and system control . To meet the objective SE
is required to | | |

“* provide a "Best estimate of the bus voltage ana angles

* Detect identify and suppress gross measurement errors.

* produced on estimate of non-metered or lost data points.

State estimation was first aﬁplied to power system by scheweppe et al.
[1,2,3] in 1970 followed by a series of papers [4,11] in the same year. In the
early seventies foundation for the computer solution of state estimation were
firmly established [1-4]. Short coming of the classical weighted least square
formation have been practically overcéme during these two decades with the
introduction of fast decoupled éstimator [5-6] as well as more robust techniques
which are less sensitive to mnumerical ill conditioning [2-9] or bad data.

Attempts have been made to make state estimation solution algorithm fast,



numerically stal)le in early eighitles.l Several ‘algorithm were reported such as

‘normal equation, orthogonal t.ransfo»rluat’iou,“ hybrid method, normal education with-
conslrains (NE/C) and Hachtel’s augumented matrbl method '(HACHTEL) to increase
the computat]onal speed of the state estlmatlon [15 20] |

Van custem et al [44] and Trlpathy et al [45] have suggested two level HSE
in which a network if divided into K sub network K+1 solution are obtained. One
solution for each area and K+ ltll solution for interconnecting area formed by
boundary nodes and the lines. The first level state estimation provides estimate
of local area utilizing its own measurement. The second level state estimator
uses the states of boundary buses as pseudo measurements and the measurement of
the line ﬂow for state estlmatlon

Seldu et al [46] had stretched the logic further to develop coupling
equatlons in- respect of the mterconnectlon so that overall effect of the system
is reﬂected on boundary parameters.

In 1993 Iwamato et al [47] had developed HSE mamly based on second order
load flow method. Recently a decomposition approach for load tlow solution of
large syslcm has been reported.

H. SIN GH and Liu had developed another method called constrained LAYV state
estimation using penalty tuncuons He mtroduces a simple technique that allows
enforcement of inequality constrains in 1; norm problem without any modification
iu existing program [41].. | |

K.A. elements and P.W. Davis developed an accelerated interior point
methods for the least absolute value state estimation in power system [42]. C-N.
Lu, R.C. Leoa K.C. L U developed a fuzzy based approach to solve.state
estimation problem [43]?

In 1997 'Ali Abur -proposed a method to Detect multiple solutions in state



estimation in the presence of -current magnitude measurements. He analyzed the
method by the use >of branch current magnitude measurements which leads to extend
the observability of a given network [13].

The method of normalized lagrange multipiiers to detect topology error was
developed by Kevin A. clements. The method is an extension of the normalized
residual method. Calculation of normalized lagrange multipliers enables
detection of errors in constrains as well as in measurement errors [20].

Load dispatcher in power system control centres is required‘ to know at all
times the value Aof voltages, currents and power throughout the network. Some of
the values such as bus voltage magnitude and power line flows can be ‘measured
within a certain degree of variance. Difficulties are further encountered when
some of data is missing either due to meter being out of order or missing
transmission. Moreover, the siie of the present day power system is prohibitive
to manual calculz_ltions or even on a small computer to generz;te on line missing
information state estimation utilizes the available redundancy for systematic
Cross checking of the measurements, to approximate the states as well as
generate information in respect of missing observation or gross .measurement
errors, called. Bzid data. The prereq’uis‘ite for state estimation is that the
system must be observable with the available measurements. The states of pbwer
system can also be computed with the load flow calculation based on equal number
of measurements, assuming them to be accurate. However, the -implicit error will
lead to imperfect data base and prejudice the security monitoring whereas, the’
state estimator is a data processing algorithm for use on a digital computer to
transform meter reading (measurement vector) an estimate of the system’s state
(state vector which is not accurate but the best reliable estimate. A comparisbn

between load flow calculation and state estimation has been shown in fig. 1.1.



The state estimator, apart from. security 1ndnitoring|, bad data and

topological error detection and identification has wider applications in central

control of power system as shown in fig. 1.2. The state estimate is an essential

tool of load dispatchers. the state estimators are classified into three

categories.

(i)

(i)

(i)

Static state estimator: It converts ohsérvation vector into state
vector without regard to past infon-nation [15]. Here system c11a|1ges are
considered enough to be assumed static.

Tracking state estimator : It is a discrete feedback loop which uses
real time measurements to track the static state as it varies during the
daily load cycle [20]. The - comparison of static and t-racking state
estimator is shown in fig. 1.3. | In real sense tracking state estimator

extends techniques developed for static state estimation to the time .

varying case without explict definition of the dynamic models.

Dynamic state estimator. It is based on time behaviour of the state

vector and requires knowledge of past states alongwith the present

measurement vector [18]. Power system under normal operating conditions

since behave in quasi static manner the state trajectory is discretised
in small time intervals. the dynamics state estimation approach is based
on Kalman filtering technique, using simplified model of the dynamic
behaviour of the power system [19] . This dynamic state estimator in
real sense is a tracking estimator with memory. because model is not
syfficiently accurate under ‘rapidly changing conditions [13]. A true
dynamic models, using magnetic flux linkages in all the synchronous

generators in the Network as state vector.



The use of static state estimator in real time operation, security and
monitoring has received such a wide acéeptance that, unless dynamic or tracking
state estimation is specified, state estimation is synonym to static  state
estimation. The estimator with its functional constituents is illustrated in
fig. 1.4.

The state estimator, has since to_ cater the needs of on line application,
computational speed plays a vital role épecially when systems are large Newer
methods of state estimation are being reported to optimize on (i) Numerical
stability, (ii) computation efficiency. and (iil) implementation complexity.
[15]. Due to large number of interconnections and ever growing demand, the size
and complexity of the present day power system have increased tremendously.
Therefore it is Becoming difficult and time consuming 10 solve the large and
complex power networks.

To solve the large size, interconnection power network. There is need for
an efficient decomposition technique.

The aim of the present thesis is to develop an efficient decompos-ition
method for‘ state estimation and to compare the result with weighted least square

method. Further Bad data has been analyzed and topological error identification

algorithm has been also proposed. 7<e ﬁféCcm%o)sm‘;&n methbed LT hey been
i :
The contents of thesis in remaining chapter are briefly as under.

CHAPTER 1II The state of art of state estimation has been brought out. The
weighted least square technique for solving state estimation problem has been
used Jacobian has been formulated. the result for IEEE-14 bus is also featured.

.. 74 . .
CHAPTER III It deals with Network decomposition approach for the solution of

state estimation problem. The result is tabulated for 1EEE 14 bus system using

decomposition approach[s77 .



CHAPTER IV The chapter briefly sunmarizes bad data problem, its detection and
observability> analysis. For IEEE-14 bus bad data is detected from available
measurement data. |
CHAPTER V Topological error éoncept has been discussed. Algorithm for detection
of topological error is explained. The result is tested on IEEE-14 bus system
for two types of topological errors.

CHAPTER VI It deals with conclusions.
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CHAPTER 2

STATE ESTIMATION PROBLEM FORMULATION
- AND SOLUTION ALGORITHM

2.1 INTRODUCTION
Power system state estimation is closely related to the regression
methods used by statisticians. The non linear equation reléting the measurement
vector z(m X 1) and state vectdr X (nx1) are
= h(x) + ¢
where £ is an (mxl) random noise vector with zero mean Gausion
distribution. Traditionally the state estimation is formulated as a WLS Problem
and solved by iterative scheme |S]. In this scheme objective is to minimize the
sum of the square of the weighted deviation of the estimated measurement Z from
the actual measurement Z. |
Thus if we are estimating a single parameter x using Nm Measurements, we

would write the expression

Nm
Meas . 2
MinJe = § A 0] @.1)
X 0‘2
1=1 i
where
f = function that is used to calculate the value being measured by the ith

1

measurciment

o2 = Variance of ith measurement

I

J(x) = Measurement residuals

i1



Nm = Number of independent Measurements-

Z™" = ith measured quantity.

If we were to try to estimate Ns unknown Parameters using Nm Measurements,

we would write.

Nm o,
: | Zi - fi (x}, X, .Xpo]

Min J(xp, X Xg...X ) = Z [ 1.:2 2 NS

X 1 ’XZ‘.“X‘NS - ] — 1 O‘i .

2.2)

MATRIX FORMULATION: 4
If the functions fi (x,X5, XNQ) are lineér’iftifﬁc:tions, eq”. (2.2) has a
closed form solution. Let us write the function fi (x;, X, XN;) as

fi (x‘,. X, XNS) = fi (X) = hi; x; + hi, X;.+ hiy, Xy, Then if we place

all the fi functions in a vector, we may write.

. |
i) = |2 00 = [Hlx

an;(x)

where 4
[H] = an Nm by NS Matrix Containing Coefficients of linear functions f(x)
N,, = No of Measurements | |
NS = No of state variables ..

placing the measurements in vector.

Zl]l —

m
sz
L

Now Eq" (2.2) Can be written in a_compact form as

e

12



M)i(n I = [Z™ - £ x) 1N [R]. [Z2™ - ()]

where. R = o,

[R] is called the Co-variance matrix of Measurement errors For minimum of

J(x). It is essential that.

ZTJS(:% =0 fori=1.. Ns\

Now J(x) = [Z-[H]xJ'R'[Z-[H]x]
=ZTZ-xT[H[ Z-Z" [H] x + x"HTHx.
= ZT-Z - 27"[H] x + x'[H] [H]x.

Now VI(x) = 0 gives

X™ = [H' R H. [H'.[R] [Z7] (2.3)
~ Eq" (2.3) holds true for NS <Nm

‘when NS = Nm then

xS = [H]J. zm . ‘ (2.4)

When NS > Nm, then still there exist a closed form sol'n but in this case
one is not estimating x to maximize a likelihood function since NS > Nm usually

implies that many- different values for x™ can be found that cause fi (x**) to

mn St

equal z" for all i = 1 Nm, exactly. Rather the objective is to find x*™ such

that the sum of squares of x,* can be minimized i.e.

13



Ns ,
Min Z x, = xT.x.
X i=1"-

m

subject to condition that Z" = [H] x the closed form sol" for this case is

= [H]". [H.HTY . Z° | | 2.5)

In power system state estimation the under determined -problem (i.e. Ns >
Nm) are not solved by eq" (2.5). Rather "pseudo measurements” are added to the

measurement set to give a completely determined or overdetermined problem.

Case Description Closed form solution

Ns < Nm  overdetermined X™ = M. R H'.[HTR'.Z"
Ns = Nm  Completely determined ~ X™ = [H'] Z*

Ns > Nm  Under determined X = [H7] ‘['H.HTIJ.Z’“

If the relationship between the states and power flow is not linear then we
have to resort to an iterative technique to minimize J(x). A commonly used
technique is to calculate gradient of J(x) and force it to zero using newton’s

méthod.
Nm ' ‘ 5
it Min J(x) = z [Zi - fi (V]
X ;

2
ol

=1

Then gradient of I(x) is given by

14



aJ(x)
v, J(x) = !
al(x)
3%,
3 7
af, of,  of,
6)(1 8X2 8X3 ) rl
| 02
= .7 (af, &f, af,
aXI aXZ ax3 Tt
|
! i
v (@£, ]
v = |-2(H]" [R]" .
or v J(x) [H]" [R] (22 'tz (x)
af; of, of;
. OX| 0%, 0X3
where H = ) | . .
9%, JOX, 0OX,
!
of, of, of, |
OX; 0%y 90X,
af2 3f2 8f2
T 8X, 38X, 0X,
and H = . . .
afy oty ofy
X 00X, 0X4

Zl = fl (X)

| Z, -t)(x)

= JaCobian of f(x).

According to newton’s method eq” (2.6) becomes

— |avx.j(x)
o foy

] [x.00]

15
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Z, -1
5o ] = a2

= - 20", R? [-H]
_ ] ] q |4y -t (%)
ax = [2HTR'. HJ'|2HT R’ [z; _f; (x)}
or AX = [A];'. [b] . - 2.7

and [b] = H. R [Z™-fi®)] fori =J  Nm
[A] = H" R1. H "

Eq" (2.7) is a set of linear equations, if highér order terms of the Taylor
series were really negligible. The solution would yield correct x . A Jacobian H-
1s itself a function of’ x. We must \;iéw eq" (2.7) as a prescription for an
iterative procedure which in a finite number of steps will compufe_ x to a
certain degree of accuracy vector x should therefore be. changed' accordingly
[49]. | |
o = @ Wy | (21

= x" 4+ » x?. (I > iteration county | (2.8)

Until convergence is reached. This is weighted least squares minimization.

2.2 JACOBIAN FORMULATION
No of state' variables = 2 * total 116 of bus - 1
= 2 * -l
total No of Measurements = m |

these measurement may include quantities as

16



[P1.Gi» Py, qy- etc]

Pi, gi - Real and imaginary part of injected power respectively

PiJ, qiJ- Real and imaginary part of line respectively

Dimension of Jacobian matrix = m * (2n-1)
m - TOWS
2n-1 column

measured calculated

AZ =7 ]

So in general

[ APj | )
H, H|
AQi H, H,|[Asi
~ [Hs H6 | (2.9)
APiJ AVi
AQiJ - -
injected real power P; = PG, - Py,
injected imaginary power Q; = QG; - Qyy
where subscripts G and D denotes Generation and demand respectively.
S, =P +1Q =V.I
= Pi - JQi = V/*] (2.10)
(Si, Vi & [i are complex quantities)
Xil is the element from- admittance matrix
N B
P.= ) IVilV;lIYll cos (5-8;6;) (2.11)
I=1 |

17



N
Qi = z [Vll IVJI Ylll sin (5{'6‘, - BiJ) (2.12)

j=1
fad o |
33, 3sn-1 3P,
H = = ——
: (") Pn-| a E’l\* 1 HSJ

H,; diagonal terms is by differentiating eq” (2.11) with respect to

delta (8) .we get.

N
Hig = - ) IViHV1Yl. Sin (3 -6 (1.12)
I=1
N
= - IViI% 1Yyl singg - ) IV Vil | Y0 sin (5,85 -0y
I=1
Hg = - IVil’. By - Qical_ _ (2.13)
-8P; : _
Hl(i]) = —8_3— = val IVJI lYl.ll sm (31'6_i'eij)' (2.14)
J .

aQ.
Similarly H, = 6—%
. . j

differmmtiating Eq. (1.12) and solving as above.

2 _ 0Q

Hag (diagonal elements) = ‘Pi ml—Gii Vil" = 55 (2.15)
Bll - Yii Sin eii’ Gii = Yii COS Bii
Hyg = - IVil 1Vjl. 1Y;1 cos (31318 : (2.16)

18



ap,

H, = W; by differentiating Eq. (2.11) with respect to v; and

simplifying will yield.

' 2 aP,
diagonal, Hy, = (P + Gy Vil )/ IVil = W{—, (2.17)

Hyy = IVillY, [ cos (3 - 5-0y) (2.18)

Similarly for H41 differentiating Eq. (2.12).

diagonal Hyg = (Q- By 1V;i®)/1V;] = 3TV, ]

1

H4(ij) = IVII lYijl sin (6'. - 9y - eil) B (219)

JACOBIAN FOR LINE FLOW

Y; Primitive element admittance between ith and Jth bus.

Y, and Y,, = Shunt admittancé from corresponding bus to ground
respectiVe]y |

Complex line flow from ith to Jth bus (S;) is,

'SiJ = V; Ii*
=V, [ (Vi - V). Yy + Vi'. Yyl
Vi = IVl &, Vy = 1 Vil fa, Yy = 1Yyl L6y, Yo = 1Yol /e
Sy = IVil £ & [AVil/-8-1Vy1/-8) 1Yyl [ -8y + | Vil /8010l /-]
= IV 1Yyl Lo ViV Yyl [ saret IV LYl Joa
~ Py o= IV,I2 1Y,0 cos (8y) - IV;IIV,11Y,l cos (3-8 - 8y) (2.20)

Qi] = lViIZIYi]l sin (—eil) - IVlII VJl [Yill sin (Si-SJ - 9”) (2.21)

Jacobian H (Real power flow)

19



H; = 55 = IViIV1 IVl sin ( §-8; -8y) in column (i) . 2.22)
* 8P. | |
= E‘gﬂ = - VIVl 1Vl sin ( 8;-8; -0;) in  column (J) (2.23)
I . - _

Jacobian H, (Real power flow)

Differentiating eq" (2.20) with respect {V;| and |V,]

Hy = 2 IVi11Y;! cos 65 - [Vl 1Yyl cos (Si -8y - 8,) in column ) (2.29)

= - [Vl V] cos (3 -3y - 8y) in column (J) (2.25)
Reactive power flow Jacobian

Hy = - [VilIVyl 1Yyl cos (& - 8 - 6y) in column (i) ‘ (2.26)
= IViI IVyl 1Y,1 cos (s; - 3 - 8,) in column (f) 2.27)
Hy = 2 VLYl sin (-ay) - IV 1Y,] sin (5; -3) - 8;) in column (i)
(2.28)
= - [Vil1Yy! sin (6} -8; - 8,) in column (J)‘ ' (2.29)

For line flow Jacobian, each Jacobian (J5- J) has only two entries, one is

"~ at 1th column and -other is at Jth columii.

e

£

20



STATE ESTIMATION SOLUTION ALGORITHM

READ MEASUREMENTS DATA

READ NETWORK INFORMATION

PICK STARTING
VALUEFOR X=X 0

SOLVE FOR [Zi - fi(X)]
FORi=1Nm

CALCULATE H MATRIX
AS FUNCTION OR X

CALCULATE H' R'H MATRIX

CALCULATE [H™RH]?

SOLVE FOR AX Z -F
AX=[HTRTH}I"H' R' |Z -F

!
CAL MAX (JAX])
I=1..NS

MAX (JAX |<e = DONE




2.4 RESULT

TABLE 2.1
BUS NUM . ESTIMATED CASE BASECASE ,
VOLTAGE( PU).) ANGLE(depree) VOLTAGE(RY) ANGLE (degrees

1 1.057 0.000 1.0600 0.000

2 1.043 | -4.495 1.0450 -4.5158
3 1.075 -11.535 1.0700 -11.6712
4 1.007 ~11.839 1.0100 -11.9482
5 1.103 -4.272 1.0900 -12.0492
6 1.077 -11.836 1.0638 -12.0491
7 1.067 ~-13.168 1.0568 -13.4228
8 1.029 -7.812 1.0296 -7.9038
9 1.024 -9.265 1.0248 -9.4149
10 ' 1.061 -13.152 1.0514 -13.4012
11 - 1.065 -12.464 1.0569 ' -12.6759
12 1.061 -12.423 1.0554 -12.5973
13 1.057 -12.574 1.0503 -12.7529
14 | 1.038 . -13.969 1.0359 -14.1332

22



ACTIVE POWER INJECTION ESTIMATION

BUS NUM. MEASURED ESTIMATED :
VALUE ( PJ) ' VALUE = (P.U)
1 2.115 2.111
2 0:183 0.173
3 -0.942 -0.938
4 -0.478 -0.468
5 -0.076 -0.083
6 -0.091 0.078
7 -0.295 -0.289
8 -0.090 : -0.096
9 ‘ -0.035 . -0.031
10 -0.060 -0.062
11 - -0.135 -0.125
12 -0.149 -0.153

REACTIVE POWER INJECTION ESTIMATION

1 -0.171 _ : -0.173
2 0.180 - 0.181
3 0.000 " 0.007
4 0.039 0.036
5 0.162 - 0.162
6 -0.016 -0.012
7 0.114 _ 0.119
8 -0.166 -0.167
9 -0.058 : -0.057
10 -0.017 -0.020
11 -0.016 ' -0.014
12 -0.058 -0.064

ACTIVE POWER FLOW ESTIMATION

1 2 1.427 . 1.431
2 1 -1.393 _ -1.395
1 8 0.680 : 0.680
8 1 -0.657 -0.657
2 4 0.705 0.701
4 2 -0.684 -0.679
2 9 0.510 0.507
9 2 -0.497 -0.494
2 8 0.361 0.360
8 2 -0.355 ' -0.353
4 9 -0.259 -0.258
9 4 0.265 0.263
9 8 -0.610 -0.623
8 9 0.615 0.628



9 6 0.245 0.245
6 9 -0.245 -0.245
9 7 0.145 ' 0.141
7 9 -0.145 -0.141
8 3 0.289 0.300
3 8 -0.289 -0.300
3 11 0.109 0.106
11 3 -0.108 -0.105
3 12 0.078 0.081
12 3 -0.078 -0.081
313 0.195 0.189
13 3 -0.194 -0.187
6 7 0.245 0.245
7 6 -0.245 -0.245
7 10 0.018 0.022
10 7 -0:019 -0.022
7 14 0.073 0.075
14 7 -0.073 - -0.074

" 10 11 -0.073 -0.074
11 10 0.072 : 0.075
12 13 0.020 ' 0.010
13 12 -0.020 -0.018
13 14 0.078 0.081
14 13 -0.078 _ -0.003

REACTIVE POWER FLOW ESTIMATION

1 2 -0.171 -0.171
2 1 0.220 0.222
1 8 -0.001 -0.001
8 1 0.039 0.039
2 4 0.004 0.039
4 2 0.001 0.005
2 9 -0.046 -0.0456
9 2 0.048 0.048
2 8 -0.033 -0.033
8 2 0.017 o 0.017

4 9 0.003 0.002
9 4 -0.003 -0.027
9 8 0.086 . .0.082
8 9 -0.083 -0.080
9 6 -0.074 0.074
6 9 0.087 -0.087
9 7 -0.006 -0.006
7 9 0.003 -0.003
8 3 0.011 -0.011
3 8 0.010 -0.009
3 11 0.019 0.020
11 3 -0.017 -0.018
3 12 0.022 0.023
12 3 -0.021 -0.021
3 i3 0.064 0.067
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11
10
13
12
14

P
NhJdJooaadaoaunw

.059
.158
.162
.071
.065
.060
.060
.048
. 046
.002
.001
.006
.006
.060

0

.062
.158
.162
.071
.064
.059
.059
.047
.045
.002
.001
.007
. 006
. .050
Maximum error

0.008
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" CHAPTER -3

" DECOMPOSITION APPROACH FOR STATE ESTIMATION

Due to large number of interconnection and ever growing demand, the size and
complexity of the present 'day power s‘yétem,'heve increased Tremendously. Therefore
it becomes difficult and time consuming to solve the large and complex power networks.
To solve the large size inter-connected power network, there is need for an efficient
deomposmon techmque [48] [5 1] - -

The ex1stmg methods decompose the large network into small sub network and
these sub networks solved independently. The 'solution of different sub networks are coordinated
to get the solution of complete network. the decompostion method used by Subhas Joshi

[51] is implemented for the method descirbed:in chapter No. 3.

3.1 DECOMPOSITION METHOD FOR POWER NETWORK [51]
Assume that a large power network Ne is decomposed mto sub networks N*, N?
as shown in Fig. 3.1. These sub networks are called block. 4
A boundary bus of the block under consideration, through its boundary lines is
known-es external boundary bus, to the block under consideration. As shown in Fig.

3.1 block N' is connected to buses Nm? ,Nmj_, of Block N°. These buses are the external

boundary buses of block N,




In this method with the pre-estimated states of external boundary buses
state estimation is carried out for an area. This provides sub optimal states of
internal boundary buses of the area under interaction . These sub optimal
estimates serve as pre estimated states of external boundary buses of the
connected area. One complete cycle of inter area changes from one co-ordinating
cycle or global solution.

The set of buses used in local state ‘estimation of Ith area compﬁse of the
internal buses of the ith area and external boundary buses of the connected area

and is expressed as

_ ol L [-1 1+1 n
B = Bx' v Bb“ V. BbH. I v Bbx+x V) Bb,l 3.1
Similarly set of lines used in local state estimation of ith area are the

internal ines of the Ith area and lies lines connected to the Ith area -

I I - )

L'=LvL, ....0oL oLt oLl (3.2)
( 11 U SR tratd (I .

Likewise measurements are the internal measurements of the area,

measurements on the lines connected .to the Kth area and prestimate states of the

external boundary buses as pseudo measurements.

1
| 1 I-1 141 n
M =Mu{M .... uM v M ... uM
1 I 4-2,11,1 1 +11 tn,1
A A A
1 -1 I+
u |xb! U xb™ U b L L U xD®
i I-1 I+1 nl
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The algorithm has been shown in fig. 3.1 |
Step wise solution procedure of this method is [gj7

(1) ‘Read system data and decomposed the network into N blocks prepare block
data and boundary data.

2) Read bouﬁdary data, internal and external boundary buses of each area and
the tie lines. -

(3)  Set Max™ iteration count for global solution K_..

4) Set K1

(5) Initialize convergence tolerance e for global solution.

(6) Read measurement data and sort them blockwise

(7) Read data of ith block

(8) Update V and & of external boundary buses of ith block from boundary data
table.

9) Perform state estimation of ith block uSing solution step given in (2.2)

(10) - Uptdate boundary bus data V and & corresponding to the internal boundary

~ bus of ith block i

(11) iFI:ﬁNthenIe—I + 1 go to Step I.

(12)  Increment lglobal iteratioﬁ count K « K +1

(13) If Maxi |axb'| < e thin transfer states to database. initialize global
iteration count K « goto step 6.

(19)' IF K > K., modify convergence tolerance. Goto step 7.
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CETARD

/ READ SYSTEM DATA /
¥

{ DECOMPOSE NETWORK IN N BLOCKS
AND PRPARE BOUNDARY DATA

1
[ READ BOUNDARY DATA |
__r .

READ MEASUREMENTS

INITIALZE € TOLERANCE LIMIT
AND MAXIMUM ITERATION COUNT
KMAX FOR GLOBAL SOLUTION

N

[rei]
A >‘l’

READ Ith BLOCK DATA

UPDATE DATA OF EXTERNAL
BOUNDARY USES FOR Ith BLOCK
FROM BOUNDARY BUS.DATA TABLE

4 ‘
PERFORM STATE ESTIMATION
FOR Ith BLOCK
1}
UPDATE BOUNDARY BUS
DATA TABLE

Te11 \_‘\ (N / -

T T NO .= el
<k >KMAX ] KK+l |— " MAXi | Xbi | > 5

-,

9 e

[ Y

MODIFY ¢ \ TRANSFER STATE TO
DATA BASE

FIG. 3.1 ALGORITHM OF STATE ESTIMATION BY DECOMPOSITION LS7]
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3.2 DISCUSSION OF RESULT
~ The decompos1t10n method [51] is tested on IEEE 14 bus system. The Fig. 3.2
shoﬁ'/sv IEEE 14 bus systrem. Line x-xx shows the decomposition of Network into two
blocks. Block 1 contains 5 buses and Block 2 contains 9 buseé. Bus numbers 5 and 10
are external boundary buses for the Block 1 and Bus number 6, 11 and 14 are the external
boundary buses for thé b'Iock 2. The external boundary buses are medelled as slack buses
in solving the blocks. ' - |
Table 3.1 and 3.2 the estimated result fo the IEEE 14 bus. Table 3 3 gives the
comparison of CPU time when solved as decomposed Network and intact system for
the state estimation solution. As Block 1 contains 5 buses in which 3 buses are modelled
as swmg bus so size of Jacobian will be (2x5-3) x m, where m, = no of measurements

vectors. Similarly for Block 2 out of 9 buses two are modelled as. swmg bus so size of

Jacobian will be (2x 9-2) x m, where m, = no of measurements vector.

3.3 CONCLUSION
The decomposition method [51] ‘lleads to large saving in computational time and
memory. The method énablesvto solve the large size power Network with a smaller computér.
The method described in chapter 3 is used to demostrate the suitability of the state estimation
method with the decomposition method [51].
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TABLE 3.1

BUS NUM - VOLTAGE (RU.) ANGLE (degreey ~~:

1 1.067 4.345

2 1.053 -4.785

3 1.095 -11.545

4 1.017 -12.959

5 1.113 -5.272

6 1.066 0.000

7 1.067 | -13.168

8 1.029 -9.912

9 1.024 - -9.265

10 1.063 | -16.152

11 .1.005 0.000

12 1.061 -15.673

13 1.098 -15.674

14 1.068 . 0.000
TABLE 3.2

1 1.076 -4.543

2 1.078 -5.678

3 $1.089 - -12.897

4 1.043 -13.987

5 1.053 0.000

6 1.078 -8.986

7 1.098 -12.345

8 1.076 ' -13.435

9 1.067 -8.543

10 1.065 0.000

11 1.096 . -15.543

12 1.098 -14.897

13 1.078 -13.789

14 1.069 -15.678
Maximum Erroxr = 0.007
TABLE 3.3

COMPARISION OF C.P.U TIME
TEST SYSTEM NUMBER OF C.P.U TIME METHOD OF
ITERATION IN. SECOND SOLUTION
IEEE_14 6 48.1 WLS .
IEEE_14 3 4.5 DECOMPESED ( for: Blocic:d,
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CHAPTER - 4

BAD DATA PROCESSING AND OBSERVABILITY |

4.1 BAD DATA PROCESSING

A data which is more inaccuratc'than assumed by mathematical model is
called Bad data (BD). The presence of B'.D can be due to number of reasons. viz.
failure of communication link, intermittent fault in meters, change of system
states far off from that assumed for pseudo measurements. The presence of BD
causes very poor estimates. The latter effort on development of state estimation
for practical applicatioﬁ has deserving share on bad data processing. The bad
data processing is a three tier exercise.

(i) Defection (ii) identification (iii) Estimate correction.

4.1.1 Defection

The state estimation equation can be written as

Z = fx) +r
orr = 7 - f(x) @.1)

Where t is the estimation Residual. The deviation in r can be expressed as

ar ar

AF=EAZ—ﬁAx

= [Az - HAx
. ar _ ar  _ . —
Since Ez—landﬁ = F’(X) H
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The sensitivity of the residual to the measurements is called the residual
sensitivity matrix and is expressed as dr/8z, expression for which can be

developed from (4.1) as under [27]

ar __ ax
BZ—I_HE

=1-HH"WH!'HW =R (4.3)

~ The residual sensitivity4 matrix is of vital importance in bad data
processing. the properties of this matrix are shown in Appendix A [28].

In absence of BD the measurement Residual vector is distributed N(O,

RW'RY) or N(O,WR). The presence of BD is currently detected through one of the

variables below [28-29].

(1) Weightage residual vector rW = IW. r

(i1) Normalized residual vector IN = JD’I. r
Where D = diag (RW™)

The detection of BD is based on a hypothesis testing with two hypothesis.
H, and H,. _ o
where

H, No bad data are present

H, Hy is not true i.e. there are bad data.

Denoting by Pe the probability of rejecting Ho when Ho is actually true and
Pd the probability of accepting H, when H; is true. The hypothesis consists of
testing J(x), |ry;| or |r,| with a detection Threshold ¥ which depends on Pe.

For example, considering the normalized residuals one is led to :
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- accept Hy it |ryyy] < 7, i = L2..m

- reject Hy otherwise

The ry has some interesting properties for acceptance as detection test

i.e. the Ry test [29].

(i) For a same detection threshold the ¥y test is more sensitive since |ry;]
> | Tw |

(i) ry provides a more powerful test than ry

(iii)  Within linearlized approximation and provided e=0, the largest normalized
residual [erl max corresponds to the erroreous measurements in the
presence of single bad data.

(iv)  in the presence of multiple BD the property (iii) “above does not hold

frue.

4.1.2 Identification

A set of BD being known, it is interesting to determine whether measurement
configuration is rich enough to allow their \proper identification. A set of BD
is said to be topologically identifiable if their suppression does not cause

- Systems unobservability

- Creation of basic or critical measurements.
i.e. those measurements whose errors are undetectable. 1t is desired that

if £ is BD then f< m-n. It is necessary condition but not sufficient, as it must

satisfy the observability criteria discussed in 4.2.
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4.1.2.1 Identification by Est_imation

Conceptually it is the continuation of BD detection step implying residual
vector ry or (ry). In thé event of positive dete_ction‘t.est, a first list of BD
Is drawn up on the basis of on ry test.. Then 'supcessive-cycles of elimination,
reestimation redetection are performed until the test become positive.

The Bad data ls detected for IEEE-14 bus data and successive elimination

reestimation-" redetection are performed. The result for BD detection is given in

Table 4.1.

4.2 OBSERVABILITY

A system is said to be observable if with available set 61" measurements it
1s possible to determine the states of the systein. It requires the measurements
to be well distributed geographically. - Sufficient redundancy in measurements
will allow processing of BD as discussed in section 4.1. Thus at the ‘stage of
design of a state es.timator following questions must be positively replied.
(i)ﬂ Are there sufficient measuremenfs to make state estimation possible.
(i1) If not, where additional meters should be piaced so‘ that state estimation

Is possible.

- Temporary unobservability may still occur due to unanticipated network
topology changes or failure of communication link. ﬁoweyer, a system is designed
to be observable for most operating conditions. Therefore the observability test
algorithm must, satisfy following requirements. -

(1) / Test whether there are enough real time measurements to make state
estimation possible.
(ii) If ‘requifement (i) is not met, ‘it should provide information in respect .

to the part of the network whose states can still be estimated with

35



available measurements i.e. ovservable islands.

~(1ii)) It should éssist in estimation of the states of observalbe islands.

(iv)  Selection of pseudo-measurements to be included in the measurement set to
make the state estimation possible.

(v) It should guarantee that inclusion of additional pseudo measurements will
not contaminate the results of the state estimation.

These considerations lead té redefinition as under [33].

A network is said to be observable if for all ¢ such that H¢ = 0, ATp=0.
Any state ¢* for which He = 0, A'¢" = 0 is called unobservéble state. For aﬁ
unobservable ¢*, let 8* = AT ¢* if 6': = ( then the corresponding branch is an
unobservable branch.

Here H is the B’ matrix of the fast decoupled load flow. A is the incidence
matrix and ¢ is the angle vector.

Mathematically network observability is related to the rank of the Jacobian
matrix. The rank of matrix is very sensitive to the numerical values of its
elements, whereas the oibservability should not. Therefore most of the methods
proposed on network observability are combinational in nature and use no
flatting ‘point calculation. Cléments and Wollenberg [34] proposed a beuristic
procedure to process measurements for obser\’/ability.v Allem‘ong et 'al. [35]
- proposed a modified version of the Clement’s method as it was conservative in
the sense that it may label an observable systems as unobservable. Handschin et
al. [36] proposed a method which tests connectivity of the Jacobian matrix.
Krumpholz et al. [37, 38, 39] utilized concept of graph theory to develop
theoretic topological basis of a algorithm for network observability. These
combinatoric methods were since very complex and computationally expensive

Monticelli et al. [33, 40] developed.
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4.3 DISCUSSION OF RESULT
The bad data is detected for IEEE-14 bus system from given measurement data
by ry test. Table 4.1 shows the BD detection result from Table the highlighted

lines highest residual. So their exist bad data in the measurement data for line

9-6.
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TABLE 4.1

BAD DATA IDENTIFICATION TABLE

BUS NUM _MEASUR ESTIMATED RESIDUAL
RdLbK&MﬂlJﬂ&QER)

1 0 2-115 Fen 2.109 0.0060
2 0 0.183 0.169 0.0140
3 0 -0.942 - -0.940 -0.0017
4 0 ~0.478 -0.464 ~-0.0136
5 0 -0.076 -0.094 0.0180
6 0 0.091 0.084 0.0066
7 0 0.000 -0.003 0.0026
8 0 0.000 -0.002 0.0017
9 0 -0.295 -0.301 0.0060
10 0 -0.090 -0.078 ~0.0123
11 .0 -0.035 -0.016 -0.0186
12 .0 -0.060 -0.060 -0.0003
13 0 -0.135 -0.122 ~-0.0134
14 0 -0.149 -0.167 1 0.0177
1 0 -0.171 . -0.174 0.0026
2 0 0.180 . 0.179 0.0005
3 0 0.000 0.005 - -0.0050
4 0 0.039 0.038 0.0006
5 0 0.162 0.162 -0.0002
6 0 -0.016 . -0.024 0.0084
7 0 0.114 0.121 -0.0069
8 0 -0.166 -0.200 0.0339
9 0 -0.058 . -0.009 -0.0493
10 0 -0.017 ~0.013 -0.0041
11 0 -0.016 -0.016 0.0004
12 0 -0.058 -0.045 -0.0127
13 0

-0.050 -0.063 0.0126

Lo

P

REAL AwD REACTIVE pPOWER FLOW

1 2 1.427 1.431 -0.0036
2 1 -1.393 . -1.395 0.0024
1 8 0.680 0.678 0.0016
8 1 -0.657 -0.656 ~0.0012
2 4 0.705 0.701 0.0038
4 2 -0.684 ~0.679 -0.0043
2 9 0.510 ~ 0.505 0.0048
9 2 -0.497 -0.492 -0.0052
2 8 0.361 0.358 0.0030
8 2 -0.355 -0.351 - -0.0033
4 9 -0.259 -0.261 0.0016
9 4 0.265 0.265 ~0.0008
9 8 -0.610 -0.623 0.0133
‘8 9 0.615 0.628 -0.0133
9 6

0.245 - 0.245 -0.0001
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.245
.145
.145
.109
.108
.078
.078
.195
.194
. 245
.245
.018
.019
.073
.073
.073
.072
.020
.020
.078
.078
171
.220
.001
.039
.004
.001
.046
.048
.033
.017
.003
.003
.086
.083
.006
.003

074
087

.019
.017
.022
.021
.064
.059
.158
.162
.071
.065
.060
.060
.048
.046
.002

0.

.245
.140
.140
.095
.095
.081
.080
.194
.191
.241
.241
.000
.000
.079
.078
.078
.078
.020
.020
.090
.089
.171
.222
.002
.040
.039
.005
.048
.050
.034
.018
.000
.024
.087
.084.
.003
.007

074
087

.024
.023
.021
.019
.059
.054
.158
.162
.056
.050
.000
.000
.056
.054
.009
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-0.

.0001
.0054
.0054
0137
.0135
.0023
.0024
.0015
.0022
.0046
.0047
.0180
.0190
.0061
.0052
.0045
.0058
.0002
.0001
.0119
.0106
.0006
.0023
.0012
.0014
.0354
.0041
.0019
.0015
.0008
.0010
.0025
.0217
.0006
.0011
.0032
.0099

1483
1783

.0052
.0056
.0010
.0016
.0054
.0050
.0003
.0001
.0147
.0147
.0600
.0600
.0078
.0075
.0109



11
12

13

13
14

10
13
12
14
13

.001
.006
.006
.060
.004

.01.0
.003
.003
.000
.000

.0108
.0028
.0027
.0484
.0051
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CHAPTER - 5

TOPOLOGICAL ERRORS : IDENTIFICATION

This section considers the effect of topological errors on the estimation

and bad data detection procedures. The following model errors are considered :

K

A line is not it included in the model when it is in service in the
actual system.
A line is included in the model when it is actually out of service in the

system.

The above inconsistencies can be detected if redundant information on the

status of the line is available. That is, inconsistency of the status of the

line can be detected by comparisons with the analog measurements of the line.

This can be performed as a front end pre-processing of the estimation process.

Extensive analysis of the effect of tbpological errors on the WLS estimator

bring out the following observation which are pertinent to the topological error

detection method [50].

L.

The estimated state vector (Bus voltage and angles) is not affected by
topological errors if the line in question and the injections at the end
buses are either not measured on their measurements have been suppressed.
This follows from the fact that the model of the line in question is not
included in the WLS algorithm equations.

The primarily effect of a wrong line status is to produce a wrong

estimate of the injection of the end buses of the line. If sufficient -
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redundancy exists, thevvolt'age magnitude and angles and the other line

flows are affected at a much lesser degree than the injections. If the

injections at the end buses in question are metered they are most likely

to be identified and suppressed as "bad" data. Once suppressed, the state

vector produced is independent of the topological erfor. g

3. An important corollary to the above is that the practice of not allowing
suppression of injection measurements at certain buses (zero injection or
equality 'constrai_nt buses) is not advisable from the point of view of
topolqgical errors. If fhe model inconsistencies exist in the dir_ect
vicinity of such a bus; the estimator is forced to fit' the error into the

estimate instead of suppressing the appropriate measurements to uncouple

the questionable line from the estimator equations.

5.1 TOPOLOGICAL ERROR DETECTION :

Based on observation, the following condition are set as requirements for
the topological error detection procedures. |
* The end buses of a line in question must have injection measurements :

* A good state vector is produced ; ie the injection measurements at the
end buses of the qﬁestionable line have been suppressed and are
observable.

Given the estimation results and a list of the suppressed measurements,
post processing is performed to defect topological efrors. The following
hypothesis testing problem is based : |

HO : A line is configured different from the one modeled.

HI : No conclusions can be obtained as to the l'ine 'configura‘tion.

Accept HO if the tested line status results in the suppressed injection
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measurements at the end buses passing the residual test. Otherwise, either the
line status is bad or injection measurements are bad.
Specifically the method reduces to the post-process retesting of the

suppressed bus injection taking-into account the following.

* Outage a line which is not metered or whose measurements have been
suppressed.
* Reconnect a line which is not included in the model given the state

vector, the blows of the line being investigated are readily calculated
and the bus injection estimates are modified correspondingly.

The procedure is shown in the block diagram.
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5.2 DISCUSSION OF RESULTS

Two types of the topological error are created on IEEE 14 bus systems and
they are defected by available algorithm :

1. One of the parallel lines between buses 2 and 4 simulates an unmetered
line included in the model that is actually out of service in real system.‘

2. The line between buses 1 and 8 is disconnected from the model whereas it
is actually in service in the real system.

All two types of topological error were detected by the program. The result
are shown in tables 5.1 and Table 5.2. The values under the true column
represent the systém state as obtained by a load flow solution. The column under
measured value consisrts of input measurements to the estimator. The remaining

columns represent the estimated values for the following case :

Case I : These are estimated result without topological errors. These ‘are' used
to compare the estimates produced with topological errors.
Case II : These are estimator results With the described topological errors. But
no error detection or correction is included.

The estimates for real vpower injection of the buses having topological
errors are found to be far from correct estimates. These are indication of
topological errors. Table52 shows the voltage and angle estimation of the buses.

It is found that estimates are correct with suppressed incorrect injections.
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TABLE 5.1
TOPOLOGICAL ERROR DETECTION

BUS TRUE.(P-V¥) °  MEASURED (A U.) CASE1 (P¥-) * CASE2 XPV) )
NUM MW MVAR MW MVAR MW MVAR MW MVAR
1 2.1061 -.1713 2.115 -.1710 2.111 -.1810 12.113 -.1809
2 0.1830 .1791 .184 .1891 .1730 L1792 5,175 .1812
3 0.0800 .1148 .030 - .1149 .090 .1242 . 0.086 .1397
4 -.9420 .0085 -.953 - .0100 -.938 .0200 9.938 .0199
5 0.0000 .1620 .008 .1720 .009 .1730 0.010 .1830
6 0.0000 0.000 .000 .0000 .006 .002 0.009 .0060
7 -.2950 -.1660 -.296  -.1770. -.296. -.1780 -.305 -.1797
8 -.0760 -.0160 -.067 -.0170 -.076 -.0170 =-9.017 -.0163
9 -.4780 - .0390 -.488 @ .0400 -.588 .0430  -.555 .0450
10 -.0900 -.0580 -.095 -.0590 -.096 -.0580 -.069 -.0575
11 -.0350 -.0180- -.036 -.0190 -.046 -.0187 -.045 -.0187
12  -.0610 -.0160 -.063 -.0170 -.064 -.0168 -.067 -.0167
13 -.1350 -.0580 -.145 -.0590 -.155 -.0587 -.156 -.0578
14 -.1490 -.0500 -.1510 ~-.060 ~-.1615 -.0670 -.1616 -.0650
TABLE 5.2

BUS NUM VOLTAGE ( PU.) ANGLE (degvee)

1 1.0567 0.0000

2 1.044 -4.,495

3 1.067 - -11.545

4 1.007 . -11.839

5 1.103 ' -4.272

6 1.076 -11.837

7 1.068 -12.689

8 1.028 -7.812

9 1.023 -9.265

10 1.062 -13.215

11 1.063 -12.464

12 1.061 -12.423

13 1.056 -12.564

14 1.037 -13.959
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CHAPTER 6

CONCLUSION AND SCOPE FOR FUTURE WORK

An approach based on decomposition of Network to solve state estimation
problem developed. Further a method has been presented for the detection of bad
data and erroneous status of lines and Transformers in the Network model used by

state estimator. The result obtained on test system reveals the followings :

* Large saving in computation time has been achieved using decomposition
method.&5*3 | |

* Decomposition methodce%ab]es to solve the large size power network With
smaller computers due to its reduce memory requirement. Therefore, this
method can be used with mini/micro computeré for state estimation. .

* WLS method is highly sensitive to Bad data.

* Proposed Ry test for bad data identification works satistactory for
single as well as non interacting bad data.

* The method for topological error detection is ‘a simple and fast post
processing of the results of currently available estimation techniques.

This makes it very suitable for real time application.

Detection and identification of bad data in measurements can be done by
decomposition technique. Further method of topological error detection can be
easily extended to consider various combinations of questionable line status

within a given neighborhood.
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APPENDIX - A

PROPERTIES OF RESIDUAL SENSITIVITY MATRIX - R

R is an idempotent matrix i.e.

R® = R .. (ALD)

The. eigen values of R matrix must be either 1 or 0, i.e. it IS semi-
positive definite.

Risa métrix with eigen values of K set of ones an n set of zeros. Where
K is the degree of freedom (m-n) and n is the number of state variables.
R is a singular matrix of rank K.

The weighted residual sensitivity matrix Ry is symmetrical.

R;rv = Ry

If there is no redundancy i.e. number of measurements m=n, then
R=20

If it is assumed that 'measuring points are evelﬂy distributed in a
network and m —  then

=]

lim
Utilizing above properties
r =Rr
and When m — m,'then r=e
The value of diagonal elements R; may have the range of
0 <R;<1
It has béen reported that performance of identification of bad data aré

better at measurement points where R;z0.5.



APPENDIX - B

Theorem-1

()
(i)

(iii)

Theorem-2

NETWORK OBSERVABILITY THEOREMS

Assume that there is no voltage measurement, then the following
statements are equivalent.

The network is observ;db]e.

Let H be obtained from H by deleting any column, then H is of full
rank.

The triangular factorisation reduces the gain matrix G = H™H in the

| following form.

In the triangular factorisation of the gain matrix G, if a zero
pivot is encountered, then the remaining elements of row and column

are all zeros, i.e., G is reduced to the form.




Theorem-3 ¢a is not an unobservable state for the subnetowrk « ~with

measurement Hea, SIMILARLY #B AND &R

J/H/K/ Pat.

L
Y 'ﬂ. e $8 _

Py

8

7
7

Theorem-4 Conside‘r_““state Estimation model
T =H¢ +r1
Suppose that the measurement _set consists of the ¢s pseudo
measurements and all other measurements equal to zero, then the

residual r = Q.

Theorem-5 If minimal set of additional non-redundant (pseudo) measurements is
so selected that they make the network barely observable, then the
estimated states of the already observable islands will not -be

- affected by these pseudo measurements.
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