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-ABSTRACT 

This dissertation work describe WLS state estimation algorithm, 

decomposition approach of state estimation, Bad data detection and topological 

error identification. The algorithm is tested on IEEE-14 bus system. The power 

Network is decomposed into number of blocks by identifying boundary buses and 

branches. The boundary buses are modelled as slack, 	bus for decomposition 

approach. 
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CHAPTER 1 

INTRODUCTION 

Attempts of precise control of Engineering system proved the validity of 

paradox "What it appears is not as it is". The crude information obtained by 

various measurements is insufficient to explain the state of operation of the 

system due to its inherent errors. This has led to the evolution of statistical 

estimation theory as a concept of approximate the state variables of a system 

from its erroneous measurement. 

Estimation theory has been extensively gsed for navigation of air craft and 

space craft. as well as post experimental analysis. In the field of power system, 

the objective is to provide a reliable and consistent data base for security 

monitoring. Contingency analysis and system control . To meet the objective SE 

is required to 

* provide a "Best estimate of the bus voltage and angles 

* Detect identify and suppress gross measurement errors. 

* produced on estimate of non-metered or lost data points. 

State estimation was first applied to power system by scheweppe et al. 

[1,2,3] in 1970 followed, by a series of papers [4,11] in the same year. In the 

early seventies foundation for the computer solution of state estimation were 

firmly 	established 	[1-4]. 	Short coming 	of the 	classical weighted 	least square 

formation have been practically overcome during these two decades with •the 

introduction of fast decoupled estimator [5-6] as well as more robust techniques 

which 	are 	less sensitive 	to numerical 	ill 	conditioning [2-91 	or 	had 	data. 

Attempts have been made to make 	state 	estimation 	solution 	algorithm 	fast; 
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numerically stable in early eighties. Several algorithm were reported such as 

normal equation, orthogonal transformation, hybrid method, normal education with 

constrains ('NE/C) and Hachtel's augumented matrix method (HACHTEL) to increase 

the computational speed of the state estimation [,15,20]. 

Van ,custetn et al [44] and Tripathy et al [45] have suggested two level HSE 

in which a network if divided into K sub network K+1 solution are obtained. One 

solution for each area and K+ 1 tli solution for interconnecting - area formed by 

boundary nodes and the lines. The first level state estimation provides estimate 

of local area utilizing its own measurement. The second level state estimator 

uses the states of boundary buses as pseudo measurements and the measurement of 

the line flow for state estimation. 

Seidu et al 	[46] had stretched the logic further, to develop coupling 

equations in respect of the interconnection so that overall effect of the system 

is reflected on boundary parameters. 

In 1993 Iwamato et al [47] had developed HSE mainly based on second order 

load flow method. Recently a decomposition approach for load flow solution of 

large system has teen reported. 

H. SINGH and Liu had developed another method called constrained LAV state 

estimation using penalty functions. He introduces a simple technique that allows 

enforcement of inequality constrains in 1 norm problem without any modification 

in existing program [41]. 

K.A. elements and P.W. Davis developed an accelerated interior point 

methods for the least absolute value state estimation in power system [42]. C-N. 

Lu, R.C. 	Leoa, K.C. 	L.U. developed .a fuzzy based approach to solve . state 

estimation problem [43]. 

In 1997 Ali Abur - proposed a method to Detect multiple solutions in state 

0 
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estimation in the presence of -current magnitude measurements. He analyzed the 

method by the use of branch current magnitude measurements which leads to extend 

the observability of a given network [ 13]. 

The method of normalized lagrange multipliers to detect topology error was 

developed by Kevin A. elements. The method is an extension of the normalized 

residual method. Calculation of normalized lagrange multipliers enables 

detection of errors in constrains as well as in measurement errors [20]. 

Load dispatcher in power system control centres is required to know at all 

times the value of voltages, currents and power throughout the network. Some of 

the values such as bus voltage magnitude and power line flows-  can be , measured 

within a certain degree of variance. Difficulties are further encountered when 

some of data is missing either due to meter being out of order or missing 

transmission. Moreover, the size of the present day power system is prohibitive 

to manual calculations or even on a small computer to generate on line missing 

information state estimation utilizes the available redundancy for systematic 

cross checking of the measurements, to approximate the states as well as 

generate information in respect of missing observation or gross measurement 

errors, called. Bad data. The prerequisite for state estimation is that the 

system must be observable with the -available measurements. The states of power 

system can also be computed with the load flow calculation based on equal number 

of measurements, assuming them to be accurate. However, the implicit error will 

lead to imperfect data base and prejudice the security monitoring whereas, the 

state estimator is a data processing algorithm for use on a digital computer to 

transform meter reading (measurement vector) an estimate of the system's state 

(state vector which is not accurate but the best reliable estimate. A comparison 

between load flow calculation and state estimation has been shown in fig. 1.1. 
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The state 	estimator, apart 	from . 	security 	monitoring, 	bad data 	and 

topological error 	detection and 	identification 	has 	wider 	applications in 	central 

control of power system as shown in fig. 	1.2. The state estimate is an essential 

tool 	of load 	dispatchers. the 	state. 	estimators 	are 	classified into 	'three 

categories. 

(i) Static state estimator: 	It converts observation vector into state 

vector without regard to past information [151. Here system changes are 

considered enough to be assumed static. 

(ii) Tracking state 	estimator 	: It 	is a discrete feedback loop which uses 

real 	time measurements to track the static state as 	it varies during the 

daily 	load cycle 	1201. The comparison of 	static 	and tracking 	state 

estimator 	is shown in fig. 1.3. 	In 	real sense tracking state estimator 

extends techniques developed for static state estimation to the time . 

varying case without explict definition of the dynamic models. 

(iii) Dynamic state estimator. It is based on time behaviour of the state 

vector and requires knowledge of past states alongwith the present 

.measurement vector [18]. Power system under normal operating conditions 

since . behave in 	quasi 	static 	manner the 	state 	trajectory 	is discretised 

in small time intervals, the dynamics state estimation approach is based 

on Kalman filtering technique, . using simplified model of the dynamic 

behaviour of the power system [1.91 . This dynamic state estimator in 

real sense is a tracking estimator with memory, because model is not 

s►i,fticiently accurate under rapidly changing conditions [13]. A true 

dynamic models, using magnetic flux linkages in all the synchronous 

generators in the Network as state vector. 
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The use of static state estimator in real time operation, security and 

monitoring has received such a wide acceptance that, unless dynamic or tracking 

state estimation is specified, state estimation is synonym to static state 

estimation. The estimator with its functional constituents is illustrated in 

fig. 1.4. 

The state estimator, has since to cater the needs of on line application, 

computational speed plays a vital role specially when systems are large Newer 

methods of state estimation are being reported to optimize on (i) Numerical 

stability, (ii) computation efficiency . and (iii) implementation complexity. 

[151. Due to large number of interconnections and ever growing demand, the size 

and complexity of the present day power system have increased tremendously. 

Therefore it is becoming difficult and time consuming to solve the large and 

complex power networks. 

To solve the large size, interconnection power network. There is need for 

an efficient decomposition technique. 

The aim of the present thesis is to develop an efficient decomposition 

method for state estimation and to compare the result with weighted least square 

method. Further Bad data has been analyzed and topological error identification 

algorithm has been also proposed. 7Z€-  

The contents of thesis in remaining chapter are briefly as under. 

CHAPTER H The state of art of state estimation has been brought out. The 

weighted least square technique for solving state estimation problem has been 

used Jacobian has been formulated, the result for IEEE-14 bus is also featured. 

CHAPTER III It deals with Network decomposition approaclhfor the solution of 

state estimation problem. The result is tabulated (or IEEE 14 bus system using 

decomposition approach Crib , 
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CHAPTER IV The chapter, briefly summarizes bad data problem, its detection and 

observability analysis. For IEEE-14 bus bad data is detected from available 

measurement data. 

CHAPTER V Topological error concept has been discussed. Algorithm for detection 

of topological error is explained. The result is tested on IEEE-14 bus system 

for two types of topological errors. 

CHAPTER VI It deals with conclusions. 

r 
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CHAPTER 2 

STATE ESTIMATION PROBLEM FORMULATION 
- AND SOLUTION ALGORITHM 

2.1 INTRODUCTION 

Power system state estimation is closely related to the regression 

methods used by statisticians., The non linear equation relating the measurement 

vector z(m x 1) and state vector x (iix 1) are 

Z=h(x)+e 

where c is an (mx I) random noise vector with zero mean Gausion 

distribution. Traditionally the state estimation is formulated as a WLS Problem 

and solved by iterative scheme [5]. In this scheme objective is to minimize the 

sum of thtt square of the weighted deviation of the estimated measurement Z from 

the actual measurement Z. 

Thus if we are estimating a single parameter x using Nnl Measurements, we 

would write the expression 

Nm 
Min J(x) = 	C f ZiMeas  fi (x)]2 	 (2.1)  

2 
x 	 i=1 	6i 

where 

= function that is used to calculate the value being measured by the ith 

measure lllclit 

0'2  = Variance of ith measurement 

J(x) = Measurement residuals 



Nm = Number of independent Measurements- 

z' 	= ith measured quantity. 

If we were to try to estimate Ns unknown Parameters using Nm Measurements, 

we would write. 
Nm 

 

 -  2 
[Zi - fi (XL? x2 -) --xN~ Min 	J(xi, X2,, x3-..xN )̀ _ 	 2 	 (2.2) 

x I , x2... XN, 	 i = 1 	~i 

MATRIX FORMULATION: 

If the functions fi (x1 ,x2, 	XNs) are linear' _functions, eg11. (2.2) has a 

closed form solution. Let us. write the function fi (x1, x2 XNC) as 

fi (x1 , x,, XNS) = fi (X) = hi p x, + hi' x2•.:+ hiN4 XNS Then if we place 

all the fi functions in a vector, we may write. 

f(x) 
f(x) = f2 (x) _ [H] x 

t 
fNm(x) 

where 	 - 

[1-H] 	an Nm by NS Matrix Containing Coefficients of linear functions f1(x) 

N,11 = No of Measurements 	 - 

N~ = No of state variables., 

placing the measurements in vector. 

= Z   - 

Z 

I11 

ZNni 

Now Eq° (2.2) Can be written in a • compact form as 
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Min J(x) _ [Z311 - f (x) JT [R]-' [Z'' - f(x)] 
x 

2 01 
where. R = 	~. 

2 

o'NS2 

[R] is called the Co-variance matrix of Measurement errors For minimum of 

J(x). It is essential that. 

_ 0 for i = 1.. Ns 
a xl 

Now J(x) = [Z-[H]x]TR-1[Z-[H]x] 

= ZT Z - xT [HIT Z - ZT [H] x + X [H] r[H]x. 

= ZT Z - 2zT[HI x + xT[H]r[H]x. 

Now VJ(x) = 0 gives 
est 

X = [HT .R-1 HT' [HT] [R-'] [Z'
11] 	 (2.3) 

Eq (2.3) holds true for NS < Nm 

when NS = Nm then 
xest = [H]-' Zm 	 (2.4) 

When NS > Nm, then still there exist a closed form sol" but in this case 

one is not estimating x to maximize a likelihood function since NS > Nm usually 

implies that many different values for zest can be found that cause fi (x"') to 

equal ztl' for all i = 1 Nm, exactly. Rather the objective is to find 'es̀  such 

that the sum of -squares of x,cyt can be minimized i.e. 
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Ns 2  
Mill Z X i  = XT.X. 

x i=1 
subject to condition that Z"' = [H] x the closed form sol" for this case is 

[HIT. [H.HT]-I Z«t 
	

(2.5) 

In power system state estimation the under determined problem (i.e. Ns > 

Nm) are not solved by eq" (2.5). Rather 	"pseudo measurements" are added to the 

measurement set to give a completely determined or overdetermined problem. 

Case 	Description 

Ns < Nm 	overdetermined 

Ns = Nm 	Completely determined 

Ns > -Nm 	Under determined 

Closed form solution 
XeSt = [H". R-l .  H]-1 [HT1[R-i].Zin  

est X  ` [H-11 Z'' 

X«l = 111T1 ['H. HTI 

if the relationship between the states 'and power flow is not linear then we 

have to resort to 	an 	iterative 	technique to 	minimize J(x). 	A commonly used 

technique 	is 	to calculate gradient of J(x) and force it to zero using newton's 

method. 
Nm 

if Min J(x) _ 	[Zi - fi (x)]2  
x 	 (ri2 

i = 1 

Then gradient of .1(x) is given by 

14 



aft c 
c8X2 8X3 

aft af3 

3X2 ax3 	.. . 

vx J(x) = 

L2

Z1 - fl(x) 

1 	Z2 -f2(x)  
II 	I 

o'2 

or v J(x) = -2[H] [R]-i (~2Z i_t~2( (XX) 

Faf1 aft af3 

of{x) 	ax aX~ 

	

where H = ax = of of at 	
= JaCobian of f(x). 

2 	l 

ax2 8X2 8x2 

(2.6) 

and HT = 

aft aft af3 
axI ax2 8x-1 

aft aft aft 
7x1 7x2 aX2 

a#.3 af; af1 
8x1 8x2 8x3 

According to newton's method eq° (2.6) becomes 

o x = a 	[-VX.J(X)l 
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- 
ax 

 
[VxJ(x)] = ax -2H . R- . Z2 _ f2 (x) 

_ - 2H i . R-' [-H] 

Z f x 
Ax = [2HTR-' . H]-' 2HT R-i 	' 

or ox = [A]-'. [b] 	 (2.7) 

andfb] = HT. 	1 . ~Zl"' R- 	- fi (x)] for i = J 	Nm 

[A] = H' R-1. H 

Eq" (2.7) is a set of linear equations, if higher order termsof the Taylor 

series were really negligible. The solution would yield correct x . A Jacobian H. 

is itself a function of x. We must view egt1 (2.7) as a prescription for an 

iterative procedure which in a finite number of steps will compute x to a 

certain degree of accuracy vector x should therefore be changed accordingly 

[49]. 

xi+ l = x + (HIT W H,) ' * HIT * (Z-f,) 

= x('} + A x(I). (I = iteration count) 	 (2.8) 

Until convergence is reached. This is weighted least squares minimization. 

2.2 JACOBIAN FORMULATION 

No of state variables = 2 * total no of bus - 1 

= 2 * n-1 

total No of Measurements = m 

these measurement may include quantities as 

16 



[p1,q1, Pc5. q,j- etc] 

Pi, qi - Real and imaginary part of injected power respectively 

PiJ, qiJ- Real and imaginary part of line respectively 

Dimension of Jacobian matrix = m * (2n-1) 

in - rows 

2n-1 column 

 

measured  calculated 
Z=Z 	-z 

So in general 

AN 

	

H, 	H2 
AQi 	H3 	H4 A6i 

(2.9) 
APiJ 	J-I~ 	H6 pVi  

	

H7 	Hs 
oQIJ 

injected real power P; = PG; - P1)1 

injected imaginary power Q; = QG; - QI)i 

where subscripts G and D denotes Generation and demand respectively. 

S. = P. + J Qi = V. I i 

= Pi - JQi = V1 *.I1 	 (2.10) 

(Si, Vi & Ii are complex quantities) 

XiJ is the element from- admittance matrix 
N 

P. _ 	I V, I V; I I Y1 J I cos  
J=1 

(2.11) 

17 



N 
Qi = 	l V i I I Vi I Y,j I sin (a,-a J - eiJ) 

J = 1  
(2.12) 

aP, 
aa, 

aci 

H,(;i) diagonal terns is by differentiating eqt' (2.11) with respect to 

delta (a) we get. 
N 

H,(ii) _ - 	I Vi I I V; l . l Y;~ l . Sin (ai --ei~) 	 (1.12) 
J=1 

- 1V1 1 2.  I Yii I sill eii - 	I Vi 	' V; I IYI sin (6-6 -°) -e) 
J=1 

_ - 1 Vi I 2. B;; - Q;c' 	 (2.13) 

-aP. 
H, J) = aaj = I Vi I I Vj I I Y;; I sin (6-6-e 1). 	 (2.14) 

aQ 
Similarly H3 

differentiating Eq. (1.12) and solving as above. 

H3() (diagonal elements) = Pi Ca1-G11 I Vi 1 2 = aQ' 	(2.15) 

Bii = Yii sin oil, Gii = Yii cos 9i1 

H3(1J) _ - I Vi I I Vl I . I Yij I cos (6i-a~-eu) 	 (2.16) 



H2 = aP I ; by differentiating. Eq. (2.11) with respect to vi and 

simplifying will yield. 

diagonal, Hz(..) = (Plea' + Gii I Vi 12)/ I Vi I = a— 	 (2.17) 

H2(..) = I Vi I I Yu I cos (ai - 	 (2.18) 

Similarly for H41 differentiating Eq. (2.12). 

8Q1 
diagonal H4(ii) = (Qi~'- Bii.. I Vi { 2)/I Vi I = a i Vi   

H4(iJ) = I Vi I I Yid I sin (3; - 15J - eil) - (2.19) 

JACOBIAN FOR LINE FLOW 

Yij Primitive element admittance between ith and Jth bus. 

YJo and Yio 	Shunt admittance from corresponding bus to ground 

respectively 

Complex line flow from ith to Jth bus (Si1) is, 

Si, = Vi li* 

= Vi [ (V - V1'k). Yi, + Vi'k. Yio*] 

Vi = I V; I L 6i , VJ = I. VJ I. LSJ5 Yi, = I YUJ I L eiiI Yi0 = I Yi0 I L ai0 

Si1 = I Vi I L -3i [(I Vi I L-8i I V, I L-a1) I Yii I L -eij + I Vi I L--3;. I Yi0 I L-3i0] 

= 1 Vi2 I I Yi1 I L-eij- I Vi I I V.► I I Yij I L 8i 3J-OiJ+ I Vie' I I Yio I L-ai0 

= I Vi 1 Z I Y11 I cos (ei7) - I Vi I I Vj I I YiJ I cos (si-.5J - eij) 	(2.20) 

Qi1 = (Vi 1 2 I Yij I sin (-e11) - I Vi I -I V1 I I Yij I sin (6i-6J - e13 ) 	(2.21) 

Jacobian H5 (Real power flow) 
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HS = aPi' = Vi I Vf I I ViJ I sin ( o;-8J -en) in column (i) 	(2.22) 

= pi — - I V1 ( VJ I I ViJ I sin (.B;-SJ -ef,) in column (J) 	(2.23) 

Jacobian H (, (Real power flow) 

Differentiating eq" (2.20) with respect I V; I and I Vi 

H6 — 2 	I Vi I I YiJ I 	cos e;J - I I 	I 	cos ( 	-s 	- o;J) in column (i) (2.24) 

- 	IVI I V, I 	cos (ss -aJ - 	e;j) in column (J) (2.25) 

Reactive power flow Jacobian 

H7 _• - 1 V; I I VJ I I Y;J I cos (S; - a~ - e;J). in column (i) 	 (2.26) 

= I V; I I VJ I I Y;J I cos (c - 	- e,u) in column (J) 	 (2.27) 

I I x = 2 I V; I I Y;J I sill (-c°;J ) - I V1 1 I Y;~ I sin (6; -c3J - ei~) in eoluu»n (i) 

(2.28) 

_ - I V; I I Y;, I sin (8; -8., - o;J) in column (J) 	 (2.29) 

For line flow Jacobian, each Jacobian (J5- J8) has only two entries, one is 

at ith column and other is at Jth columii. 
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STATE ESTIMATION SOLUTION ALGORITHM 

T. 

I READ MEASUREMENTS DATA 

READ NETWORK INFORMATION 

PICK STARTING 
VALUEFORX=X0 

SOLVE FOR [Zi - fi(X)] 
FOR i = 1 Nm 

CALCULATE H MATRIX,  
AS FUNCTION OR X 

CALCULATE HT RH MATRIX 

CALCULATE [HTR-'H]'' 

SOLVE FOR AX 	Z, - F, (X) 
AX = [HT R-1  H]-' HT R-' 	Z, - F, (X) 

CAL MAX (IAXYI) 
I=1...NS 	i 

YES 
MAX (JAX,I<E _ :=:= 	 DONE 

UPDATE 
X=X+AX 
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2.4 RESULT 

TABLE 2.1 

BUS NUM  ESTIMATED CASE  BASECASE 
VOLTAGE( ?.U))  ANGLE (o e.9  VOLTAGE(LO ANGLE tde¢reei "' 

1 1.057 0.000 1.0600 0.000 
2 1.043 -4.495 1.0450 -4.5158 
3 1.075 -11.535 1.0700 -11.6712 
4 1.007 -11.839 1.0100 -11.9482 
5 1.103 -4.272 1.0900 -12.0492 
6 1.077 -11.836 1.0638 -12.0491 
7 1.067 -13.168 1.0568 -13.4228 
8 1.029 -7.812 1.0296 -7.9038 
9 1.024 -9.265 1.0248 -9.4149 
10 1.061 -13.152 1.0514 -13.4012 
11• 1.065 -12.464 1.0569 -12.6759 
12 1.061 -12.423 1.0554 -12.5973 
13 1.057 -12.574 1.0503 -12.7529 
14 1.038 .-13.969 1.0359 -14.1332 
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ACTIVE POWER INJECTION ESTIMATION 

BUS NUM. MEASURED ESTIMATED 
VALUE ( P!'U)' ") VALUE . (p.'(!) 

1 2.115 	S  2.111 
2 0183 0.173 
3 -0.942 -0.938 
4 -0.478 -0.468 
5. -0.076 -0.083 
6 -0.091 0.078 
7 -0.295 -0.289 
8 -0.090 -0.096 
9 -0.035 -0.031 
10 -0.060 -0.062 
11 -0.135 -0.125 
12 -0.149 -0.153 

REACTIVE POWER INJECTION ESTIMATION 

1 -0.171 -0.173 
2 0.180 -  0.181 
3 0.000 0.007 
4 0.039 0.036 
5 0.162 0.162 
6 -0.016 -0.012 
7 0.114 0.119 
8 -0.166 -0.167 
9 -0.058 -0.057 
10 -0.017 -0.020 
11 -0.016 -0.014 
12 -0.058 -0.064 

ACTIVE POWER FLOW ESTIMATION 

1  2 1.427 1.431 
2  1 -1.393 -1.395 
1  8 0.680 0.680 
8  1 -0.657 -0.657 
2  4 0.705 0.701 
4  2 -0.684 -0.679 
2.  9 0.510 0.507 
9  2 -0.497 -0.494 
2  8 0.361 0.360 
8  2 -0.355 

5 	
-0.353 

4  9 -0.259 -0.258 
9  4 0.265 0.263 
9  8  - -0.610 -0.623 
8  9 0.615 0.628 
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9 6 0.245 0.245 
6 9 -0.245 -0.245 
9 7 0.145 0.141 
7 9 -0.145 -0.141 
8 3 0.289 0.300 

3 8 -0.289 -0.300 
3 11 0.109 0.106 
11 3 -0.108 -0.105 
3 12 0.078 0.081 
12 3 -0.078 -0.081 
3 13 0.195 0.189 
13 3 -0.194 -0.187 
6 7 0.245 0.245 
7 6 -  -0.245 -0.245 
7 10 0.018 0.022 
10 7 -0.019 -0.022 
7 14 0.073 0.075 
14 7 -0.073 -0.074 
10 11 -0.073 -0.074 
11 10 0.072 0.075 
12 13 0.020 0.010 
13 12 '-0.020 -0.018 
13 14 0.078 0.081 
14 13 -0.078 -0.003 

REACTIVE POWER FLOW ESTIMATION 

1 2 -0.171 -0.,171 
2 1 0.220 0.222 
1 8 -0.,001 -0.001 

8 1 0.039 0.039 
2 4 0.004 0.039 
4 2 0.001 0.005 
2- 9 -0.046 -0.046 
9 2 0.048 0.048 
2 8 -0.033 -0.033 
8 2 0.017 0.017 

4 9 0.003 0.002 

9 4 -0.003 -0.027 

9 8 0.086 0.082 
8 9 -0.083 -0.080 

9 6 -0.074 0.074 

6 9 0.087 -0.087 

9 7 -0.006 -0.006 

7 9 0.003 -0.003 

8 3 0.011 -0.011 

3 8 0.010 -0.009 

3 11 0.019 0.020 

11 3 -0.017 -0.018 

3 12 0.022 0.023 

12 3  ' -0.021 -0.021 

3 13 0.064 0.067 
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13 3 -0.059 -0.062 
6 5 -0.158 -0.158 
5 6 0.162 0.162 
6 7 0.071 0.071 
7 6 -0.065 -0.064 
7 .10 0.060 0.059 
10 7 -0.060 -0.059 
7 14 0.048 0.047 
14 7 -0.046 -0.045 
10 11 0.002 0.002 
11 10 -0.001 -0.001 
12 13 0.006-  0.007 
13 12 -0.006 0.0-06 
13 14 0.060 0.050 

Maximum error 
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CHAPTER -3 

DECOMPOSITION APPROACH FOR STATE ESTIMATION 

Due to large number of interconnection and ever growing demand, the size and 

complexity of the present day power system, have increased Tremendously. Therefore 

it becomes difficult and.time consuming to solve the large and complex power networks. 
To solve the large size inter-connected power network, there is need for an efficient 

deomposition technique [48],[51]. 
The existing methods decompose the large network into small sub network and 

these sub networks solved'independently.' The 'solution of different sub networks are coordinated 

to get the solution of complete network, the decompostion method used by Subhas, 3oshi 

[51] is implemented for the method descirbed in chapter No. 3. 

3.1 DECOMPOSITION METHOD FOR POWER NETWORK [51] 
Assume that a large power network N° is decomposed into sub networks N', N? 

as shown in Fig. 3.1. These sub networks are called block. 

A boundary bus of the block under consideration, through its boundary lines is 

known as external boundary bus, to the block under consideration. As shown in Fig. 

3.1 block N1  is connected to buses Nmz,,Nmz_, of Block N2. These buses are the external 

boundary buses,of block N1. 	 _ 	 . I 	 . 

Nm;  N N 	
Nm2 

 Nm +, 	 • Nm ' 2 



In this method with the pre-estirnated states of external boundary buses 

state estimation is carried out for an area. This provides sub optimal states of 

internal boundary buses of the area under interaction . These sub optimal 

estimates serve as pre estimated states of external boundary buses of the 

connected area. One complete cycle of inter area changes from one co-ordinating 

cycle or global solution. 

The set of buses used in local state estimation of Ith area comprise of the 

internal buses of the ith area and external boundary buses of the connected area 

and is expressed as 

BI = B'. u BULI . . 	. u B~I`I. I u BbI+1 . . . . u B11 	(3.1) 

Similarly set of lines used in local state estimation of ith area are the 

internal dies of the Ith area and lies lines connected to the Ith area - 

LI = L u L 1I . . . . u LI-i 	v LI+ ! 	.... u Ltl 	(3.2) 

Likewise measurements are the internal measurements of the area, 

measurements on the lines connected to the Kth area and prestimate states of the 

external boundary buses as .pseudo measurements. 

MI = M1 u'IMi1I . . . . u Mtl-2,II,I U MI I +I,I 	v M?n,1 

Li (xb'I u xbI- I u xbl+I 	u xb  I! 	I+I' 	❑.I 
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The algorithm has been shown in fig. 3.1 

Step wise solution procedure of this method is r S►] 

(i) 	Read system data and decomposed the network into N blocks prepare block 

data and boundary data. 

(2) Read boundary data, internal and external boundary buses of each area and 

the tie lines. 

(3) Set Maxn'' iteration count for global solution 

(4) SetKE— 1 

(5) Initialize convergence tolerance E for global solution. 

(6) Read measurement data and sort them blockwise 

(7) Read data of ith block 

(8) Update V and .3 of external boundary buses of ith block from boundary data 

table. 

(9)  Perform state estimation of ith block using solution step given in (2.2) 

(10)  Uptdate boundary bus data V and. .3 corresponding to the internal boundary 

bus of ith block 

(11) IFI*NthenIE— I + I go to Step I. 

(12) Increment global iteration count K — K + 1 

(13) If Maxi Ixb 	< E thin transfer states to database. initialize global 

iteration count K — goto step 6. 

(19) IF K > Ki„ax modify convergence tolerance. Goto step 7. 



START 

READ SYSTEM DATA 

DECOMPOSE NETWORK IN N BLOCKS 
AND PRPARE BOUNDARY DATA 

I READ BOUNDARY DATA 

I READ MEASUREMENTS I 

IMTIALZE E TOLERANCE LIMIT 
AND MAXIMUM ITERATION COUNT 

KMAX FOR GLOBAL SOLUTION 

I K— II  

14-1 

READ Ith BLOCK DATA 

UPDATE DATA OF EXTERNAL 
BOUNDARY USES FOR Ith BLOCK 

FROM BOUNDARY BUS. DATA TABLE 

PERFORM STATE ESTIMATION 
FOR Ith BLOCK 

UPDATE BOUNDARY BUS 
DATA TABLE 

IF-I+1 	
NO 	I 

 
	...... 	

.. 

NO 	 - YES 

> KMAX..:::::= 	K E- K+1 	,MAXI I Xbi > E 
 NO 

? 

MODIFY c 	 TRANSFER STATE TO 
DATA BASE 

STOP 

FIG. 3.1 ALGORITHM OF STATE ESTIMATION BY DECOMPOSITION L'3 
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3.2 DISCUSSION OF RESULT 
The decomposition method [51] is tested on IEEE 14 bus system. The Fig. 3.2 

shows IEEE 14 bus systrem. ;Line x-xx shows the decomposition of Network into two 
blocks. Block- 1 contains 5 buses and Block 2 contains 9 buses. Bus numbers 5 and 10 

are external boundary buses for the Block 1. and Bus number 6, 11 and 14 arethe external 

boundary buses for the block 2. The external boundary buses are medelled as slack buses 

in solving the blocks. 
Table 3.1 and 3.2 the estimated result fo the IEEE 14 bus. Table 3.3 gives the 

comparison of CPU time when solved as decomposed Network and intact system for 
the state estimation solution. As Block 1 contains 5 buses in which 3 buses are modelled 
as swing bus so size of .Jacobian will be (2x5-3) x ml  where ml  = no of measurements 

vectors. Similarly for Block 2 out of 9 buses two are modelled as .swing bus' so size of 
Jacobian will be (2x 9-2) x m2  where m2  '= no of measurements vector. 

3.3 CONCLUSION 

The decomposition method [51] leads to large saving in computational time and 
• memory. The method enables to solve the large size power Network with a smaller computer. 

The method described in chapter 3 is used to demostrate the suitability of the state estimation 

method with the decomposition method [51]. 



FIG. C.3 	14 - BUS (IEEE) SYSTEM 
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TABLE 3.1 

BUS NUM 	 VOLTAGE (P U.) 	 ANGLE (de9na 

1 1.067 4.345 
2 1.053 -4.785 
3 1.095 -11.545 
4 1.017 -12.959 
5 1.113 -5.272 
6 1.066 0.000 
7 1.067 -13.168 
8 1.029 -9.912 
9 1.024 -9.265 
10 1.063 -16.152 
11 .1.005 0.000 
12 1.061 -15.673 
13 1.098 -15.674 
14 1.068 0.000 

TABLE 3.2 

1 1.076 -4.543 
2 1.078 -5.678 
3 1.089 -12.897 
4 1.043 -13.987 
5 1.053 0.000 
6 1.078 -8.986 
7 1.098 -12.345 
8 1.076 -13.435 
9 1.067 -8.543 
10 1.065 0.000 
11 1.096 -15.543 
12 1.098 -14.897 
13 1.078 -13.789 
14 1.069 -15.678 

Maximum Error = 0.007 

TABLE 3.3 

COMPARISION OF C.P.0 TIME 

TEST SYSTEM NUMBER OF 	C.P.0 TIME 	METHOD OF 
ITERATION 	IN. SECOND 	SOLUTION 

IEEE 14 	6 	 48.1 	 WLS 
IEEE 14 	3 	 4.5 	 DECOMPESED (For 91ogc.t 
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CHAPTER - .4 

BAD DATA PROCESSING AND OBSERVABILITY 

4.1 BAD DATA PROCESSING 

A data which is more inaccurate than assumed by mathematical model is 

called Bad data (BD). The presence of B.D can be due to number of reasons. viz. 

failure of communication link, intermittent fault in meters, change of system 

states far off from that assumed for pseudo measurements. The presence of BD 

causes very poor estimates. The latter effort on development of state estimation 

for practical application has deserving share on bad data processing. The bad 

data processing is a three tier exercise. 

(i) Defection (ii) identification (iii) Estimate correction. 

4.1.1 Defection 

The state estimation equation can be written as 

Z = f(x) + r 

or r = Z - f(x) 
 

(4.1) 

Where r is the estimation Residual. The deviation in r can be expressed as 

ar 	L9r Dr = z ~z - x ox 

= Ioz - HAx 

Since aZ = I and ar = F'(x) = H 
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The sensitivity of the residual to the measurements is called the residual 

sensitivity matrix and is expressed as ar/az, expression for which can be 

developed from (4.1) as under [27] 

az I -Haz 

= I - H (HT  WH)-' HTW = R 	 (4.3) 

The residual sensitivity matrix is of vital importance in bad data 

processing. the properties of this matrix - are shown in Appendix A [28]. 

In absence of BD the measurement Residual vector is distributed N(O, 

RW-' R 1 ) or N(O,WR). The presence of BD is currently detected through one of the 

variables below [28-29]. 

(i) Weightage residual vector rW = W. r 
(ii) Normalized residual vector rN = T'.  r 
Where D = diag (RW-') . 

• The detection of BD is based on a hypothesis testing with two hypothesis. 

Ha  and 1-I t .  

where 

H0  No bad data are present 

H I  HO  is not true i.e. there are bad data. 

Denoting by Pe the probability of rejecting Ho when Ho is actually true and 

Pd the probability of accepting H, when H I  is true. The hypothesis consists of 

testing J(x), I  rN 	or r,,J with a detection Threshold a- which depends on Pe. 

For example, considering the normalized residuals one is led to : 
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- accept Ho if I rN+l I < 	i = 

- reject HO otherwise 

The rN has some interesting properties for acceptance as detection test 

i.e. the RN test [29]. 

(i) For a same detection threshold the a'N test is more sensitive since IrNJ ~ 

> Irwil 

(ii) rN provides a more powerful test than rw 

(iii) Within linearlized approximation and provided e=0, the largest normalized 

residual I r1 I max corresponds to the erroreous measurements in the 

presence of single bad data. 

(iv) in the presence of multiple BD the property (iii) above does not hold 

true. 

4.1.2 Identification 

A set of BD being known, it is interesting to determine whether measurement 

configuration is rich enough to allow their proper identification. A set of BD 

is said to be topologically identifiable if their suppression does not cause 

- Systems unobservability 

- Creation of basic or critical measurements. 

i.e. those measurements whose errors are undetectable. It is desired that 

if f 	is BD then f< 	rn-n. 	It is necessary condition but not sufficient, as it must 

satisfy the observability criteria discussed in 4.2. 
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4.1.2.1 Identification by Estimation 

Conceptually it is the continuation of BD detection step implying residual 

vector rN• or (rw). In the event of positive detection test, a first list of BD 

is drawn up on the basis of on rN  test. Then successive cycles of elimination, 

reestimation redetection are performed until the test become positive. 

The Bad data is detected for IEEE-14 bus data and successive elimination 

reestimation- redetection are performed. The result for BD detection is given in 

Table 4.1. 

4.2 OBSERVABILITY 

A system is said to be observable if with available set of measurements it 

is possible to determine the states of the system. It requires the measurements 

to be well distributed geographically. Sufficient redundancy in measurements 

will allow processing of BD as discussed in section 4.1. Thus at the 'stage of 

design of a state estimator following questions must be positively replied. 

(i) Are there sufficient measurements to make state estimation possible. 

(ii) If not, where additional meters should be placed so that state estimation 

is possible. 

Temporary unobservability may still occur due to unanticipated network 

topology changes or failure of communication link. However, a system is designed 

to be observable for most operating conditions. Therefore the observability test 

algorithm must, satisfy following requirements. - 

(i) Test whether there are enough real time measurements to make state 

estimation possible. 

(ii) If •requirement (i) 	is 	not 	met, 	it should provide information in respect 

to the part of the network whose states can still 	be estimated with 
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available measurements i.e. ovservable islands. 

(iii)  It should assist in estimation of the states of observalbe islands. 

(iv)  Selection of pseudo-measurements to be included in the measurement set to 

make the state estimation possible. 

(v) It should guarantee that inclusion of additional pseudo measurements will 

not contaminate the results of the state estimation. 

These considerations lead to redefinition as under [33]. 

A network is said to be observable if for all 0 such that H- = 0, ATO=O. 

Any state 0* for which H-O4  = 0, A'(Py  = 0 is called unobservable state. For an 

unobservable 0, let S = AT  0"' if .3 i = 0 then the corresponding branch is an 

unobservable branch. 

Here H is the B' matrix of the fast decoupled load flow. A is the incidence 

matrix and 0 is the angle vector. 

Mathematically network observability is related to the rank of the Jacobian 

matrix. The rank of matrix is very sensitive to the numerical values of its 

elements, whereas the oibservability should not. Therefore most of the methods 

proposed on network observability are combinational in nature and use no 

flatting point calculation. Clements and Wollenberg [34] proposed a beuristic 

procedure to process measurements for observability. Allemong et al. [35] 

proposed a modified version of the Clement's method as it was conservative in 

the sense that it may label an. observable systems as. unobservable. Handschin et 

al. [36] proposed a method which tests connectivity of the Jacobian matrix. 

Krumpholz et al. [37, 38, 39] utilized concept of graph theory to develop 

theoretic topological basis of a algorithm for network observability. These 

combinatoric methods were since very complex and computationally expensive 

Monticelli et al. [33, 40] developed. 

36 



4.3 DISCUSSION OF RESULT 

The bad data is detected for IEEE-14 bus system from given measurement data 

by rN  test. ' Table 4.1 shows the BD detection result from Table the highlighted 

lines highest residual. So their exist bad data in the measurement data for line 
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TABLE 4.1 

BAD DATA.IDENTIFICATION TABLE 

BUS NUM MEASURED ESTIMATED RESIDUAL 
(REALA'IF Cr,VF.Ao( 	) 

1 0 2°."115  2.109 0.0060 
2 0 0.183 0.169 0.0140 
3 0 -0.942 -0.940 -0.0017 
4 0 -0.478 -0.464 --0.0136 
5 0 -0.076 -0.094 0.0180 
6 0 0.091 0.084 0.0066 
7 0 0.000 -0.003 0.0026 
8 0 0.000 -0.002 0.0017 
9 0 -0.295 -0.301 0.0060 
10 0 -0.090 -0.078 -0.0123 
11 .0 -0.035 -0.016 -0.0186 
12 .0 -0.060 -0.060 -0.0003 
13 0 -0.135 -0.122 -0.0134 
14 0 -0.149 -0.167 0.0177 
1 0 -0.171 .-0.174 0.0026 
2. 0 0.180 0.179 0.0005 
3 0 0.000 0.005 -0.0050 
4 0 0.039 0.038. 0.0006 
5 0 0.162 0.162 -0.0002 
6 0 -0.016 -0.024 0.0084 
7 0 0.114 0.121 -0.0069 
8 0 -0.166 -0.200 0.0339 
9 0 -0.058 -0.009 -0.0493 
10 0 -0.017 -_0.013 -0.0041 
11 0 -0.016 -0.016 0.0004 
12 0 -0.058 -0.045 -0.0127 
13 0 -0.050 -0.063 0.0126 

REAL. ANP 2EACVVF POWER FLOW 

1 	2 1.427 1.431 -0.0036 
2  1 -1.393 ..-1.395 0.0024 
1  8 0.680 0.678 0.0016 
8  l -0.657 -0.656 -0.0012 
2  4 0.705 0.701 0.0038 
4  2 -0.684 -0.679 -0.0043 
2  9 0.5.10 . 	0.505 0.0048 
9 	2 -0.497 -0.492 -0.0052 
2  8 0.361 0.358 0.0030 
8 	2 -0.355 -0.351 -0.0033 
4  9 -0.259 -0.261 0.0016 
9  4 0.265 0.265 -0.0008 
9  8 -0.610 -0.623 0.0133 
8  9 0.615 0.628. -0.0133 
9  6 0.245 0.245 -0.0001 



6 9 -0.245 -0.245 -0.0001 
9 7 0.145 0.140 0.0054 
7 9 -0.145 -0.140 -0.0054 
3 11 0.109 0.095 0.0137 
11 3 -0.108 -0.095 -0.0135 
3 12 0.078 0.081 -0.0023 
12 3 -0.078 -0.080 0.0024 
3 13 0.195 0.194 0.0015 
13 3 -0.194 -0.191 -0.0022 
6 7 0.245 0.241 0.0046 
7 6 -0.245 -0.241 -0.0047. 
7 10 0.018 0.000 0.0180 
10 7 -0.019 0.000. -0.0190 
7 14 0.073 0.079 -0.0061 
14 7 -0.073 -0.078 0.0052 
10 11 -0.073 -0.078 0.0045 
11 10 0.072 0.078 -0.0058 
12 13 0.020 0.020 -0.0002 
13 12 -0.020 -0.020 0.0001 	- 
13 14 0.078 0.090 -0.0119 
14 13 -0.078 -0.089 0.0106 
1 2 -0.171 -0.171 0.0006 
2 1 0.220 0.222 -0.0023 
1 8 -0.001 -0.002 0.0012 
8 1 0.039 0.040 -0.0014 
2 4 0.004 0.039 -0.0354 
4 2 0.001 0.005 -0.0041 
2 9 -0.046 -0.048 0.0019 
9 2 0.048 0.050 -0.0015 
2 8 -0.033 -0.034 0.0008 
8 2 0.017 0.018 -0.0010 
4 9 0.003 0.000 0.0025 
9 4 -0.003 -0.024 0.0217 
9 8 0.086 0.087 -0.0006 
8 9 -0.083 -0.084 0.0011 
9 7 -0.006 -0.003 -0.0032 
7 9 0.003 -0.007 0.0099 
9 6 -0.074 0.074 -0.1483 
6 9 0.087 -0.087 0.1783 
3 11 0.0,19 0.024 -0.0052 
11 3 -0.017 -0.023 0.0056 
3 12 0.022 0.021 0.0010 
12 3 -0.021 -0.019 -0.0016 
3 13 0.064 0.059 0.0054 
13 3 -0.059 -0.054 -0.0050 
6 5 -0.158 -0.158 0.0003 
5 6 0.162 0.162 -0.0001 
6 7 0.071 0.056 0.0147 
7 6 -0.065 -0.050 -0.0147 
7 10 0.060 0.000 0.0600 
10 7 -0.060 0.000 -0.0600 
7 14 0.048 0.056 -0.0078 
14 7 -0.046 -0.054 0.0075 
10 11 0.002 -0.009 0.0109 
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11 10 -0.001 0.010 -0.0108 

12 13 0.006 0.003 0.0028 

13 12 -0.006 -0.003 -0.0027 

13 14 0.060 0.000 0.0484 

14 13 -0.004 0.000 0.0051 

ALL VALVES A QE TN P•U., -. 



CHAPTER -5 

TOPOLOGICAL ERRORS : IDENTIFICATION 

This section considers the effect of topological errors on the estimation 

and bad data detection procedures. The following model errors are considered 

* 

	

	A line is not it included in the model when it is in service in the 

actual system. 

* 

	

	A line is included in the model when it is actually out of service in the 

system. 

The above inconsistencies can be detected 'if redundant information on the 

status 	of 	the 	line is 	available. 	That 	is, inconsistency 	of 	the 	status 	of the 

line can be detected by comparisons with the analog measurements of the line. 

This can be performed as a front end pre-processing of the estimation process. 

Extensive analysis of the effect of topological errors on the WLS estimator 

bring out the following observation which are pertinent to the topological error 

detection method [50] . 

1. The estimated state vector (Bus voltage and angles) is not affected by 

topological errors if the line in question and the injections at the end 

buses are either not measured on their measurements have been suppressed. 

This follows from the fact that the model of the line in question is not 

included in the WLS algorithm equations. 

2. The primarily effect of a wrong line status is to produce a wrong 

estimate of the injection of the end buses of the line. If sufficient 

41 



redundancy exists, the voltage magnitude and angles and the other line 

flows are affected at a muchlesser . degree than the injections. If the 

injections at the end buses in question are metered they are most likely 

to be identified and suppressed as "bad" data. Once suppressed, the state 

vector produced is independent of the topological error. 	 ' 

3. 	An important corollary to the above is that the practice of not allowing 

suppression of injection measurements at certain buses (zero injection or 

equality_ constraint buses) is not advisable from the point of view of 

topological errors. If the model inconsistencies exist in the direct 

vicinity of such a bus, the estimator is forced to fit the error into the 

estimate instead of suppressing the appropriate measurements to uncouple 

the questionable line from the estimator equations. 

5.1 TOPOLOGICAL ERROR DETECTION: 

Based on observation, the following condition are set as requirements for 

the topological error detection procedures. 

* 	The end buses of a line in question must have injection measurements 

* 	A good state vector is produced ; ie the injection measurements at the 

end buses of the questionable line have been suppressed and are 

observable. 

Given the estimation results and . a list of the suppressed measurements, 

post processing is performed to defect topological errors. The following 

hypothesis testing problem is based 

HO : A line is configured different from the one modeled. 

HI No conclusions can be obtained as to the line configuration. 

Accept HO if the tested line status results in the suppressed injection 



measurements at the end buses passing the residual test. Otherwise, either the 

line status is bad or injection measurements are bad. 

Specifically the method reduces to the post-process retesting of the 

suppressed bus injection taking-  into account the following. 

* 

	

	Outage a line which is not metered or whose measurements have been 

suppressed. 

* 

	

	Reconnect a line which is not included in the model given the state 

vector, the blows of the line being investigated are readily calculated 

and the bus injection estimates are modified correspondingly. 

The procedure is shown in the block diagram. 
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Start 

Kim the main estimator to get estimation 
of the voltage, injection 

Consider a line 
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is the line tui=metered, '` 	No 
~—snot connected or. " Suppressed_-- "'F— 
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"Are there suppressed injection 	No 
measurements at the end buses .- I- 
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Postulate new line status and 
recalculate the bus injection 
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Do the injection mes. Satist 

the residual test 
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probably right. Correct the model 

and up date injection 
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r---: ` Any more lines to process? =-• 

1~(0 

stop ; 

Fig. 5.1 FUNCTIONAL FLOW CHART OF TOPOLOGICAL ERROR 
DETECTION PROCEDURE 
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5.2 DISCUSSION OF RESULTS 

Two types of the topological error are created on IEEE 14 bus systems and 

they are defected by available algorithm : 

1. One of the parallel lines between buses 2 and 4 simulates an unmetered 

line included in the model that is actually out of service in real system. 

2. The line between buses l and 8 is disconnected from the model whereas it 

is actually in service in the real system. 

All two types of topological error were detected by the program. The result 

are shown in tables 5.1 and Table 5.2. The values under the true column 

represent the system state as obtained by a load flow solution. The column under 

measured value consists of input measurements to the estimator. The remaining 

columns represent the estimated values for the following case : 

Case I.: These are estimated result without topological errors. These are used 

to compare the estimates produced with topological errors. 

Case II : These are estimator results with the described topological errors. But 

no error detection or correction is included. 

The estimates for real power injection of the buses having topological 

errors are found to be far from correct estimates. These are indication of 

topological errors. Tablet shows the voltage and angle estimation of the buses. 

It is found that estimates are correct with suppressed incorrect injections. 
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TABLE 5.1 
TOPOLOGICAL ERROR DETECTION 

BUS  TRUE( P•1'.) 	MEASURED CP v) 	CASE1 CP•ci•) 	CASE2 SCRV•) 
NUM MW MVAR MW MVAR MW MVAR MW MVAR 

1 2.1061 -.1713 2.115 -.1710 2.111 -.1810 12.113 -.1809 
2 0.1830 .1791 .184 .1891 .1730 .1792 5.175 .1812 
3 0.0800 .1148 .090 .1149 .090 .1242 0.086 .1397 
4 -.9420 .0085 -.953 .0100 -.938 .0200 9.938 .0199 
5 0.0000 .1620 .008 .1720 .009 .1730 0.010 .1830 
6 0.0000 0.000 .000 .0000 .006 .002 0.009 .00-60 
7 -.2950 -.1660 -.296 -.1770. -.296 -.1780 -.305 -.1797 
8 -.0760 -.0160 -.067 -.0170 -.076 -.0170 -9.017 -.0163 
9 -.4780 .0390 -.488 .0400 -.588 .0430 -.555 .0450 
10 -.0900 -.0580 -.095 -.0590 -.096 -.0580 -.069 -.0575 
11 -.0350 -.0180- -.036 -.0190 -.046 -.0187 -.045 -.0187 
12 -.0610 -.0160 -.063 -.0170 -.064 -.0168 -.067 -.0167 
13 -.1350 -.0580 -.145 -.0590 -.155 -.0587 -.156 -.0578 
14 -.1490 -.0500 -.1510 -.060 -.1615 -.0670 -.1616 -.0650 

TABLE 5.2 

BUS NUM VOLTAGE (P'1).) ANGLE (degreee 
1 1.0567 0.0000 
2 1-.044 -4.495 
3 1.067 -11.545 
4 1.007 . -11.839 
5 1.103 -4.272 
6 1.076 -11.837 
7 1.068 -12.689 
8 1.028 -7.812 
9 1.023 -9.265 
10 1.062 -13.215 
11 1.063 -12.464 
12 1.061 -12.423 
13 1.056 -12.564 
14 1.037 -13.959 



CHAPTER 6 

CONCLUSION AND SCOPE FOR FUTURE WORK 

An approach based on decomposition of Network to solve state estimation 

problem developed. Further - a 	method has been presented for the detection of bad 

data and erroneous status of lines and Transformers in the Network model used by 

state estimator. The result obtained on test system reveals the followings : 

Large saving in computation time has been achieved using decomposition 

method.4FV3 , 

Decomposition method enables to solve the large size power network with 

smaller computers due to its reduce memory requirement. Therefore, this 

method can be used with mini/micro computers for state estimation. . 

* 	WLS method is highly sensitive to Bad data. 

* 	Proposed RN  test for bad data identification works satisfactory for 

single as well as non interacting bad data. 

* 	The method for topological error detection is 'a simple and fast post 

processing of the results of currently available estimation techniques. 

This makes it very suitable for real time application. 

Detection and identification of bad data in measurements can be done by 

decomposition technique. Further method of topological _error detection can be 

easily extended to consider various combinations of questionable line status 

within a given neighborhood. 
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APPENDIX - A 

PROPERTIES OF RESIDUAL SENSITIVITY - MATRIX - R 

1. R is an idempotent matrix i.e. 

R2 =R 	 ...(A.1) 

2. The. eigen values of R matrix must be either 1 or 0, i.e. it is semi-

positive definite. 

3. R is a matrix with eigen values of K set of ones an n set of zeros. Where 

K is the degree of freedom (m-n) and n is the number of state variables. 

4. R is a singular matrix of rank K. 

5. The weighted residual sensitivity matrix Rw  is symmetrical. 
T Rw =Rw  

6. If there is no redundancy i.e. number of measurements m=n, then 
S  

7. If it is assumed that measuring points are evenly distributed in a 

network and m --j then 

Rlllll 	— I 

8. Utilizing above properties 

r = Rr 

and when m --p cc, then r = e 

9. The value of diagonal elements R11  may have the range of 

0 <Rt; <I 

It has been reported that performance of identification of bad data are 

better at measurement points where R;;>-0.5. 



APPENDIX - B 

NETWORK OBSERVABILITY THEOREMS 

Theorem-1 Assume that there is no voltage measurement, then the following 

statements are equivalent. 

(i) The network is observable. 

(ii) Let H be obtained from H by deleting any column, then H is of full 

rank. 

(iii) The triangular factorisation reduces the gain matrix G = HTH in the 

following form. 

r 

b 

Theorem-2 In the triangular factorisation of the gain matrix G, if a zero 

pivot is encountered, then the remaining elements of row and column 

are all zeros, i.e., G is reduced to the form. 



Theorem-3 	Oa 	is 	not an 	unobservable state 	for the 	subnetowrk 	a 	With 

measurement Ha, SIMILARLY B AND OR 

y 

Theorem-4 Consider state Estimation model 

-r=HO+r 

Suppose that the measurement set consists of the Os pseudo 

measurements and all other measurements equal to zero, then the 

residual r = 0. 

Theorem-5 If minimal set of additional non-redundant (pseudo) measurements is 

so selected that they make the network barely observable, then-  the 

estimated states of the already observable islands will not be 

affected by these pseudo measurements. 
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