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ABSTRACT 

A cognitive radio by virtue of its ability to sense and adapt to the dynamic spectrum scenario, 

can increase the spectral efficiency. In order to be non-invasive, a cognitive radio must 

adhere to strict benchmarks in the quality of spectrum sensing for primary users of a band. 

Thus, spectrum sensing has a major role to play in cognitive radio. IEEE 802.22, the first 

standard for cognitive radio devices, imposes strict requirements for the detection and false 

alarm probability on all spectrum sensing devices at SNR up to -20 dB. 

Energy detection is the simplest and near optimum technique that is widely used for spectrum 

sensing. However, its performance is drastically affected by uncertainty in noise variance due 

to SNR wall [1]. Energy detection works well in Gaussian noise scenarios, which, however, 

is not appropriate to be directly utilized in wireless fading environments. To that end, 

cooperative sensing strategies have been studied to combat the wireless fading in [2], where 

multiple secondary users (SU) independently detect the licensed primary channel using an 

energy detector and report their initial detection results to a fusion center (FC). In the past, 

most of research in cooperative spectrum sensing has focused on single channel systems 

where all SUs sense the same channel together. However, with the popularity of multi-

channel systems, such as the orthogonal frequency division multiplexing (OFDM) systems, 

improving sensing performance of one channel is not sufficient. It is important to find more 

channels satisfying the required sensing performance by cooperative spectrum sensing. Thus, 

the study of multi-channel cooperative spectrum sensing is necessary for cognitive radio (CR) 

networks. 

Multi-band joint detection using a set of narrowband energy detectors using cooperative 

spectrum sensing is evaluated. This thesis also presents a comparative analysis of multi-

channel cooperative spectrum sensing in Rayleigh fading and Gaussian noise environment. 

Both hard combining and soft combining of data at the fusion centre is considered. 

Algorithms to determine the optimal sensing time durations have been developed and 

analysed. The throughput deterioration while going from soft combining to hard combining 

and from AWGN to Rayleigh Fading environment has been studied. 
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Chapter 1 

Introduction 

The usable electromagnetic radio spectrum - a precious natural resource is of limited physical 

extent. However, wireless devices and applications are increasing daily. It is therefore not 

surprising that we are facing a difficult situation in wireless communications. Moreover, 

given the reality that, currently, the licensed part of the radio spectrum is poorly utilized, this 

situation will only get worse unless we find new practical means for improved utilization of 

the spectrum. Cognitive radio (CR), a new and novel way of thinking about wireless 

communications, has the potential to become the solution to the spectrum underutilization 

problem [3]. Cognitive radio is a paradigm for wireless communication in which either a 

network or a wireless node changes its transmission or reception parameters to communicate 

efficiently avoiding interference with licensed or unlicensed users. This alteration of 

parameters is based on the active monitoring of several factors in the external and internal 

radio environment, such as radio frequency spectrum, user behaviour and network state. 

1.1 Cognitive Radio 

Joseph Mitola coined the term `Software Defined Radio', while pursuing his doctoral 

dissertation work at KTH Sweden in 1992 [4]. He called these radios up to 80% 

programmable beyond the antenna output terminals and thus capable of doing RF, IF, 

baseband and bitstream operations using high speed Analog to Digital to Analog (A/D/A) 

converters and microprocessors. Subsequently he extended the concept of a Software Radio 

to `Cognitive Radio' [3], [5] as follows, 

"(A cognitive radio is) a radio frequency transceiver designed to intelligently detect whether 

a particular segment of the radio spectrum is in use, and to jump into (and out o) the 

temporarily unused spectrum very rapidly, without interfering with the transmission of other 

authorized users ". 
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Such an intelligent radio would be able to learn about the network condition and structure. It 

could detect unused frequency bands and allow unlicensed users to opportunistically access 

licensed bands without causing any interference to the primary user. This would intuitively 

improve the spectrum utilization. In the terminology of cognitive radio, users who have not 

obtained prior permission for accessing a band are referred to as secondary users while the 

authorized users of a band are called primary users. Studies have suggested that while most 

frequency bands are licensed to primary users, many of these like military, marine 

communication, amateur radio etc. remain highly underutilized giving rise to a virtual 

scarcity in spectrum [6]. Fuelled by such revelations along with exponentially increasing 

number of wireless devices in the market like cordless telephones, remote surveillance 

cameras, the interest in cognitive radios has been growing at an amazing pace. Cognitive 

radios require unlicensed users who want to use the licensed bands opportunistically, to be 

highly adaptive in their parameters like frequency of operation, modulation technique, power 

allocation etc. 

Haykin [7] states that a Cognitive Radio has to perform three basic tasks as listed below. 

(1) 	Radio-scene analysis: This consists of two main tasks, namely, 

• Estimation of interference temperature of the radio environment; 

• Detection of spectrum holes. 

The interference temperature in a band is a measure of the total RF interference 

present at the receiver with no primary signal present. This helps define a limit on the 

maximum interference power a band can accommodate without adversely affecting 

the primary transmission. Following the measurement of interference temperature, the 

RF spectrum is categorized as either white or black depending on whether it is 

occupied by high power signals or contains only ambient noise signals. This 

categorization may be performed through many methods such as the MTM-SVD 

(Multi Taper Method Singular Value Decomposition) [8], energy detection [9], and 

cyclostationary detection [ 10]. A white spectrum signifies a spectrum opportunity. 

This task of detecting spectrum holes or vacant spaces in the spectrum is called 

Spectrum Sensing. 

(2) 	Channel identification: This consists of the following two tasks, namely, 

• Estimation of channel-state information(CSI) 
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• Prediction of channel capacity for use by the transmitter. 

Channel state information can be estimated at the receiver by using pilot transmission 

or semi-blind approaches. Subsequently the channel coefficients must be tracked at 

the receiver through a mathematical model such as Kalman or particle filter [11]. The 

estimate of CSI must be fed back to the transmitter to enable adaptive modulation. 

(3) Transmit power control and dynamic spectrum management: Once the spectrum holes 

have been identified and their CSI estimates are available, a cognitive radio 

transmitter must choose its transmission bands accordingly and dynamically adjust 

them as and when the RF scenario changes. It also needs to optimise the transmit 

power in each band, in sync with the interference temperature limit for that band. 

While the first two tasks are performed by the cognitive receiver, the third is performed at 

the transmitter. Figure 1.1 shows the different stages of cognitive cycle emphasizing the 

role of a feedback channel from the receiver to transmitter for conveying various channel 

parameters.  

Radio 
environment 

(Outside world) 

Action: RF 
transmitted stimuli 
signal 	Spectrum holes 

Noise-floor statistics 
Traffic statistics Radio- 

control, and 	 Interference 
spectrum 	 temperature 

Channel-state 
estimation, an Quantized predictive channel capacity 	modeling i  

Transmitter 	 Receiver 

Figure 1.0.1: The cognition cycle [7] 

A cognitive radio must be adaptive, reconfigurable, intelligent and flexible enough to detect 

different kinds of primary transmissions like BPSK, QPSK, and QAM and also switch 

between them as the channel conditions demand. Because the location of spectral holes in 

frequency and time is continuously changing a cognitive radio must have the ability to 
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selectively transmit on any given set of frequency bands from a wideband range as the 

primary transmission requires. In this context, OFDM (Orthogonal Frequency Division 

Multiplexing) is a multi-carrier modulation technique that lends itself naturally to such 

adaptive modulation. OFDM offers the ability to selectively modulate those subcarriers with 

data where a spectral hole is currently available while leaving other subcarriers untouched. It 

is also possible to use bit-loading in OFDM by which the bit-rate for a specific subcarrier can 

be optimised according to its SNR [7]. OFDM has already been adopted as the PHY layer for 

many kinds of standards eg.DVB, DAB, IEEE 802.1 la/g/n WLAN standards and the 802.16 

Wi-MAX standard. 

Efficient detection of spectrum holes, or spectrum sensing, is currently a major challenge for 

cognitive radios because of its overarching need in implementing a secondary system without 

interfering with primary system. Spectrum sensing by far is the most important component 

for the establishment of cognitive. radio. 

Spectrum Sensing 

Spectrum sensing is thus the task of obtaining awareness about the spectrum usage and 

existence of primary users in a geographical area. Also parameters related to the radio 

channel characteristics, availability of spectrum and power, interference and noise 

temperature, radio's operating environment, user requirements, and applications are 

important [12]. In CR, the PUs are referred to as those users who have higher priority or 

legacy rights on the usage of a part of the spectrum. Spectrum sensing is a key element in CR 

communications, as it enables the CR to adapt to its environment by detecting spectrum 

holes. The most effective way to detect the availability of some portions of the spectrum is to 

detect the PUs that are receiving data within the range of a CR. However, it is difficult for the 

CR to have a direct'measurement of a channel between a primary transmitter and receiver. 

Therefore, most existing spectrum sensing algorithms focus on the detection of the primary 

transmitted signal based on the local observations of the CR. 

Transmissions in licensed bands are normally subjected to interference from adjacent bands, 

other secondary devices and ultra wideband devices etc. [13]. Additionally, the primary 

signal may be subjected to fading or shadowing [1] causing its SNR to drop below OdB. 

Hence, reliable spectrum sensing at low SNR regimes becomes a necessity. In terms of 

hardware, this means that a substantial dynamic power detection range of the sensing device 
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should be present to detect both low and high power primary users. There must be a 

continuous monitoring of the spectrum and fast adaptive capability. This requires wideband 

and high sampling rate (few Gsps) ADC/DAC's [14] and computationally fast DSP/FPGA's. 

Some of the commercially available hardware and software platforms for the cognitive radio 

are the GNU Radio [ 15], Universal Software Radio Peripheral (USRP) [16] and Shared 

Spectrum's XG Radio [17]. 

1.2 SPECTRUM SENSING TECHNIQUES 

Energy detection and cyclostationary detection are mainly used for narrowband sensing 

,while for wideband sensing compressed sensing [18] is used. Other techniques include 

Matched-filtering [19] when the transmitted signal is known and Radio Identification Based 

Sensing in which spectrum characteristics can be obtained by identifying the transmission 

technologies used by primary users. Such identification enables cognitive radio with a higher 

dimensional knowledge as well as providing higher accuracy [ 13]. Waveform-Based Sensing 

is used when preambles, midambles, regularly transmitted pilot patterns, spreading sequences 

etc, which are the known patterns to assist synchronization are utilized for sensing. 

Energy Detection 

Energy detection based approach, also known as radiometry or periodogram, is the most 

common way of spectrum sensing because of its low computational and implementation 

complexity. It calculates the energy of the signal in the band of interest and compares it with 

a threshold to determine the presence or absence of the PU. In addition, it is more widely 

applicable as receivers do not need any knowledge on the primary users' signal. It is 

discussed in detail in later Chapter. 

Cyclostationary Detection 

Most man-made signals show periodic patterns related to symbol rate, chip rate, channel code 

or cyclic prefix, that can be appropriately modelled as a cyclostationary random process. A 

discrete-time zero-mean stochastic process x(t) is said to be second-order cyclostationary if 

with a period T (T being a positive integer) if it's mean is periodic, 

E{x(t+IT)} = E{x(t)}, Vt,1 E I 	 (1.1) 
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where I denotes the set of integers and its autocorrelation 

R (t, z) = E {x(t + z / 2)x* (t — z / 2)) is periodic such that t . 

R.(t+IT,z)=R (t,z) 	dt,z,l eI 	 (1.2) 

Since the autocorrelation function R,, (t, z) is periodic in the variable t, its discrete Fourier 

series coefficient can be expressed as 

R"(r)=(x(t+z/2)x'(t—z/2)e J2sa'> 	 (1.3) 

z 
where the (•) operation denotes time averaging as (y) = lim 1 	y(l) . The Fourier series z->oo 2 1=-Z 

coefficient R" (z) is called the Cyclic Autocorrelation Function (CAF) and a is the cycle 

frequency. In case of a discrete signal, the R(z) can be written as 

1 N+r-1 

	

R (r) =— 	x(l)x(l —z)e'2,ra'2 
N ~_z 

(1.4) 

Where Ts is the sampling time and N is the total number of samples of x(n) . The process x(t) 

is said to be cyclostationary if there exists an a such that R (T) >0. 

The cyclic spectrum of the signal x(t) is the Fourier coefficient 

	

Sx (a, c) = 
	

(1.5) 
T 

The cyclic spectrum is the density of correlation for cyclic frequency a . Knowing these 

cyclic characteristics of a signal, Gardner in [20] proposed detectors that exploit the 

cyclostationarity of the signal. 

Cyclostationary feature detection is robust to noise uncertainties and performs better than 

energy detection in low SNR regions. Although it requires a priori knowledge of the signal 

characteristics, cyclostationary feature detection is capable of distinguishing the CR 

transmissions from various types of PU signals [9]. This eliminates the synchronization 

requirement of energy detection in cooperative sensing. Moreover, CR users may not be 
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required to keep silent during cooperative sensing and thus improving the overall CR 

throughput. This method has its own shortcomings owing to its high computational 

complexity and long sensing time. Due to these issues, this detection method is less common 

than energy detection in cooperative sensing. 

1.3 Cooperative Spectrum Sensing: 

The critical challenging issue in spectrum sensing is the hidden terminal problem, which 

occurs when the CR is shadowed or in severe multipath fading or is faced with receiver 

uncertainty problem. Fig. 1.2 shows that CR 3 is shadowed by a high building over the 

sensing channel. In this case, the CR cannot sense the presence of the primary user, and thus 

it is allowed to access the channel while the PU is still in operation. To address this issue, 

multiple CRs can be designed to collaborate in spectrum sensing [12]. In a heavily 

shadowed/fading environment collaborative spectrum sensing can be used to greatly enhance 

the performance [1]. 

CR1 

OW Transrr 
;e Station 

Figure 1.2 : Cooperative spectrum sensing CR 3 is shadowed over the reporting channel and 
CR 2 is shadowed over the sensing channel. 

The main idea of cooperative sensing is to enhance the sensing performance by exploiting the 

spatial diversity in the observations of spatially. located CR users. By cooperation, CR users 

can share their sensing information for making a combined decision more accurate than the 

individual decisions The performance improvement due to spatial diversity is called 

cooperative gain. The cooperative gain can be also viewed from the perspective of sensing 

hardware. Owing to multipath fading and shadowing, the signal-to-noise ratio (SNR) of the 

received primary signal can be extremely small and the detection of which becomes a 
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difficult task. To have capability of detecting weak signals, strict sensitivity requirement will 

be imposed on the receiver thus greatly increasing the implementation complexity and the 

associated hardware cost. Fortunately, the sensitivity requirement and the hardware limitation 

issues can be considerably relieved by cooperative sensing. 

Cooperative spectrum sensing is of three types based on how cooperating CR users share the 

sensing data in the network: centralized, distributed and relay based external sensing [21]. 

These three types of cooperative sensing are illustrated in Figure. 1.3 

CR1 

a 	 b 	 C 

	

Pr 	. 	 Pt 

CR1 	 CR1 

4. 
CR4 	

,/CR3 	 CR3 
CR4 
	

CR4 	 CR4 	(FC) 

A 	A 	A 
CR2 	 CR2 	 CR2 

Figure 1.3 Classification of cooperative sensing: (a) centralized, (b) distributed, and (c) relay- 

assisted. 

In centralized cooperative sensing, a central identity called fusion centre (FC) selects a 

channel or a frequency band of interest for sensing and instructs all cooperating CR users to 

individually perform local sensing. Second, all cooperating CR users report their sensing 

results via the control channel. Then the FC combines the received local sensing information, 

determines the presence of PUs, and diffuses the decision back to cooperating CR users. 

Distributed cooperative sensing does not rely on a FC for making the cooperative decision. In 

this case, CR users communicate among themselves and converge to a unified decision on the 

presence or absence of PUs by iterations. With Relay-assisted cooperative sensing when both 

sensing channel and report channel are not perfect, a CR user observing a weak sensing 

channel and a strong report channel and a CR user with a strong sensing channel and a weak 
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report channel, for example, can complement and cooperate with each other to improve the 

performance of cooperative sensing. 

Elements of cooperative spectrum sensing 

Conventional cooperative sensing is generally considered as a three-step process: local 

sensing, reporting, and data fusion. We call these fundamental and yet essential components 

as the elements of cooperative sensing. The process of cooperative sensing is presented and 

analysed by four key elements: (i) cooperation models, (ii) sensing techniques, (ii) hypothesis 

testing (iii) control channel and reporting, (iv) data fusion. Cooperation models concerns how 

CR users cooperate to perform spectrum sensing and achieve the optimal detection 

performance. The most popular approach originated from the parallel fusion (PF) model in 

distributed detection and data fusion [22]. Statistical hypothesis testing is typically performed 

to test the sensing results for the binary decision on the presence of Primary users (PU). A 

common control channel (CCC) is commonly used by CR users to report local sensing data to 

the FC or share the sensing results with neighboring nodes. Finally data fusion is a process of 

combining local sensing data for hypothesis testing. 

1.4 Multi-Channel Cooperative Spectrum Sensing 

Most of the works in Cooperative Spectrum Sensing use either one or multiple SUs to 

perform sensing on a single channel in one sensing period. During each sensing period, only 

one channel could be detected, and the detection of other channels is not allowed. The 

cooperation among several SUs is expected to improve the sensing accuracy of the sensed 

single channel. However, the strategy on sensing a single channel by one SU or several SUs 

simultaneously may largely limit the sensing efficiency. Xie in [23] proposed parallel 

cooperative spectrum sensing in which every SU scans a different channel. To improve the 

sensing performance, multi-channel spectrum sensing done with Cooperation was proposed 

by [24]. 

Fan and Jiang in [24] considers an optimization problem which maximizes the throughput of 

secondary users while keeping detection probability for each channel above a pre-defined 

threshold. He determined the total sensing time and how to distribute the total sensing time to 

different channels in cooperative soft-decision spectrum sensing. Two sensing modes were 

analyzed: slotted time sensing mode and continuous time sensing method. In each time slot, 
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the first portion is used for spectrum sensing, and the second portion is used for packet 

transmission (if the channel is detected idle). 

Fan and Jiang in their other work [25] formulated and addressed jointly the sensing duration 

timing and resource allocation problem. Unlike in previous work [24] here the secondary user 

has a variable transmission power and rate for every PU. After determination of spectral 

holes, each secondary user is allocated portion of the channel with the power level assigned 

for the SU-PU pair. Maintaining the average transmission power, maximal instantaneous 

power of the secondary transmitter and the interference on every channel under constraint, 

the throughput is maximized solving the non-convex problem using hi-level optimization and 

monotonic programming method. For energy constrained CRN, optimal multi-channel 

strategy was suggested by Yu [26]. The sensing time was determined to maximize the 

throughput keeping the energy consumption within constraints. 

Wang et al. in [27] proposed the channel assignment in Cooperative Spectrum Sensing (CSS) 

by heuristic centralized scheme to increase the number of available channels satisfying the 

sensing performance requirement. In one scheme signal to noise ratio (SNRs) over all 

channels from each SU are reported to the Fusion Centre (FC). The FC then applies the 

heuristic scheme to form coalitions for every SU. FC will broadcast the assignment results to 

all SUs. Also, to reduce the communication overhead (information from each secondary user, 

e.g. primary signal-to-noise ratios), a greedy centralized scheme was proposed by allowing 

each SU report SNRs of a few system channels. The idea is to assign the channel to the SU 

having the higher SNR. 

In [28], each secondary user chooses an Ideal-Soliton-Distributed number of channels to 

sense, and then do energy detection and partial detection results are then passed to a fusion 

centre. FC generates a tanner graph with the sensing information received and judges whether 

the number of sensing results is not smaller than the number of channels. The fusion center 

compute the log-likelihood ratio of the activity of each channel according to the belief 

propagation algorithm and compares them with the defined threshold .A heuristic method to 

release the detected channels from the whole spectrum bands was also proposed to reduce the 

sensing complexity. 
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In [29], secondary users sense one channel at a time and send data to the FC. SU keeps the 

history of previous channel sensing in a vector form. Every channel sensing that finds an 
empty channel increases the corresponding probability for that channel and every channel 

sensing that finds a busy channel decreases that probability. After FC receives vectors, it 

determines the best channel that each SU should sense. He used bipartite matching from the 

graph theory for this optimal channel allocation. 

In [30], the secondary users sense different channels, and some of these may also sense the 

same channel cooperatively. The Iterative Hungarian Algorithm based strategy aiming at the 

optimization of the sensing performance by minimizing the overall probability of 

misdetection for fixed probability of false alarm is used. 

For non-infrastructure based cognitive radio networks coalitional game theory was proposed 

by [31], for cooperative multi-channel spectrum sensing for the. Each SU can only sense 

some primary channels (PCs), due to the hardware and energy consumption constraints. In 

the scheme, a multi-channel coalition game is played among SUs so that multiple coalitions 

are formed for each channel. Then, the coalition with the highest coalition value is selected Ito 

sense the corresponding channel. 	 . 

For multiband joint detection, Quan et al. [32] proposes a framework for wideband sensing in 

a single CR using a bank of narrowband detectors. Given constrained interference to the 

primary communication system, Paysarvi et al. [33], formulated the sensing problem as a 

joint optimization of the sensing slot duration and individual narrowband detectors. the 

optimization problem has been proved to be convex in certain practical constraints. 

1.5 Problem Statement 

Robust spectrum sensing at low SNR is a necessity that the signal energy detector cannot 

achieve due to fading and noise uncertainty. Cooperative detection must be done to overcome 

the limitations of energy detection over multiple channels. This dissertation work aims to 

consider the following. 

• Channel assignment for secondary users and determination of sensing time in Multi-

channel cooperative spectrum sensing in Rayleigh fading channels. Both Hard 

combining as well as Soft combining of data sent to the Fusion Centre are considered. 
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• Comparison of throughput of Multi-channel cooperative spectrum sensing in Rayleigh 

and additive white Gaussian noise channels. 

• Joint optimal detection of multi-band using cooperating narrowband energy detectors 

1.6 Organisation of the report 

In Chapter 2, joint optimal detection of multi-band by cooperating narrowband energy 

detectors is investigated. Given the total interference on a wideband channel, throughput is 

maximized by using many narrowband energy detectors. 

Chapter 3 provides the problem formulation of multi-channel cooperative spectrum sensing 

in Rayleigh fading channels. It presents the iterative algorithm to achieve sub optimal 

throughput for the given interference constraint. The results are compared in Rayleigh fading 

channels and additive white Gaussian noise environment. 

Chapter 4 discusses the case in which hard combining of the statistics are done at the fusion 

centre. Channel assignment and sensing time are determined for the same. The throughput 

obtained with this algorithm is compared with the results obtained by soft combining and 

using algorithm proposed in Chapter 3. A Channel selection strategy is also proposed which 

selects the channels based on their throughput. 

Chapter 5 presents the conclusion of the thesis. 
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Chapter 2 

Multiband Joint Detection 

Joint optimal detection framework for multiband sensing using cooperating narrowband 

energy detectors is considered in this Chapter. The spectrum sensing problem is formulated 

as a class of optimization problem, which maximize the aggregated opportunistic throughput 

of a cognitive radio system under some constraints on the interference to the wideband 

channel of a primary communication system. We propose to do cooperative spectrum sensing 

in a parallel way on multi-band such that sensing is done with sufficient accuracy on every 

channel .Enough secondary user scan a channel cooperatively to give probability of detection 

high and of false alarm low . Since we have many SU available out of which only some of 

the SUs scan one channel, many channels can now be scanned simultaneously which is 

termed as parallel spectrum sensing [23]. Section 2.1 discusses the system model followed.by 

energy detection technique. The multiband joint detection framework is then formulated and 

simulation results are presented to show the performance of the proposed scheme. 

Multiband joint detection (MJD) framework for wideband sensing was proposed in [32] 

where the decisions are jointly made over multiple frequency bands. In the MJD framework, 

a set of individual secondary detectors are optimized so as to enhance the cognitive radio 

performance while protecting the primary network from harmful interference. The sensing is 

done over all detectors simultaneously in a single CR. The situation, in which individual 

cognitive radios might not be able to reliably detect weak primary signals due to channel 

fading/shadowing is also considered. Exploiting the spatial diversity, a cooperative wideband 

spectrum sensing scheme spatial-spectral joint detection was proposed, which did linear 

combination of the local statistics from multiple spatially distributed cognitive radios [32]. 

Paysarvi in his thesis [34] extended the above work by adding periodic sensing to the system 

model. In a case in which the amount of time used for sensing is a design parameter, unlike in 

[32], the sensing problem was formulated as ajoint optimization of the sensing slot duration 

and individual narrowband detectors, in which he optimized the secondary network sensing 

performance in an interference limited primary network. For the cases in which cost/priority 
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coefficient of different bands are difficult to determine, a decoupled sequential multi-channel 

joint detection framework has been proposed. In this the probability of interference on each 

channel is limited independently for this case, making the individual channels partially 

decoupled. A low-complexity algorithm which quickly and efficiently solves the formulated 

optimization problem has been designed. The complexity of the algorithm will be of 

particular interest when implementing a practical wideband spectrum sensing system. 

2.1 System Model 

A group of secondary users is assumed to form a single-hop wireless sensor network (WSN) 

within the transmission range of which there are no other secondary network (SN) interfering 

or cooperating with that SN. These WSN consist of SUs which are typically constrained in 

size and cost which, in turn, leads to a severe limitation of the available energy resources and 

computational power. The tasks of the SU include periodic or event triggered transmission of 

sampled and pre-processed sensor data to a central node where the data is collected and 

further processed. In WSNs longer distances between a sensor node and the receiving central 

processing node are normally spanned by using multi hop routing. In our case, the distances 

are shorter; hence it is a single hop WSN. Every secondary user in the secondary network is 

assumed to be equipped with a single antenna. Each secondary user works as a transceiver, as 

well as a sensor in its secondary network. The secondary user uses energy detection for 

spectrum sensing. 

Consider a primary communication system (e.g., multicarrier modulation based) operating 

over a wideband channel that is divided into N non overlapping narrowband subbands. This 

can be done using the Orthogonal Frequency Division Multiplexing (OFDM) technique with 

adaptive and selective allocation of OFDM subcarriers to utilize any subset of N licensed 

channels at the same time. In a particular geographical region and within a particular time 

interval, some of the subbands might not be used by the primary users and are available for 

opportunistic spectrum access. OFDM modems employ a set of subcarriers in order to 

transmit information symbols in parallel in so-called sub channels over the channel. Since the 

system's data throughput is the sum of all the parallel channels' throughputs, the data rate per 

sub channel is only a fraction of the data rate of a conventional single-carrier system having 

the same throughput. This allows us to design a system supporting high data rates while 

maintaining symbol durations much longer than the channel's memory, thus circumventing 

the need for channel equalization. 
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We model the detection problem on sub band as one of choosing between a hypothesis ("0"), 

which represents the absence of primary signals, and an alternate hypothesis ("1"), which 

represents the presence of primary signals. An example where primary users have occupied 

only some of the bands is depicted in Figure 2.1. The underlying hypothesis vector is a binary 

representation of the subbands that are allowed for or prohibited from opportunistic spectrum 

access. 

Occupied Subbands. 	 Spectrum Hole 

1 	0 	 1 	0 	1 	0 	0 	1 

Figure 2.1: Schematic illustration of the occupancy of a multiband channel 

The crucial task of spectrum sensing is to sense the subbands and identify spectral holes for 

opportunistic use. For simplicity, we assume that the upper-layer protocols, e.g., the medium 

access control (MAC) layer, can guarantee that all cognitive radios do not transmit during the 

detection interval such that the only spectral power remaining in the air is radiated out by the 

primary users. In this chapter, we propose to use a multiband joint detection technique, which 

jointly takes into account the detection of primary users across multiple frequency bands. 

Multiple band joint detection starts at energy detection at individual SU. Following section 

discusses in detail this sensing method. 

2.2 Energy Detection 

Energy detection is the simplest technique in terms of implementation complexity. It detects 

the presence of a signal by measuring the total incumbent energy in the band of interest and 

comparing it to a predefined threshold. This threshold must be decided in a manner, so as to 

limit the false alarm rate, and it can be set independent of the transmitted signal energy. Once 
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the noise and signal variance are known, the problem of spectrum sensing can be formulated 

as a binary hypothesis -testing problem. Using the complex baseband model of bandpass 

signal transmission, the received and transmitted signals are represented by their complex 

low-pass equivalents. The two hypotheses may be formulated as follows: 

Ho:Y[i]=w[i] 
	

(2.1) 

H1 : y[i] = s[i] + w[i] 

where y[i] is the received sample, w[i] is an AWGN sample with variance o and s[i] is the 

transmitted signal value. At the receiver the test statistic used is defined as the energy of P 

received samples. 

P 

E _ 	 IY[i]I2 

P 

YIYRUI  I2 + IY! [~] I2 	 (2.2) 
1 

where P is the number of complex observation samples and yR [i] & y, [i] denote the real and 

imaginary parts of y[i] each having a variance ofcr /2.Under both the hypotheses, the test 

statistic E is a sum of squares of 2P real Gaussian random variables with the equal variance. 

Hence the distribution of the random variable E is the chi-square distribution with a non-

centrality parameter=O under Ho and 2y under H, . 

z 
E = 2v 	,Ho 	 (2.3) z 

X2N (2y) ,H 1 

where y is the average SNR given by y = S/ r 2 &S = 1/P ~P l Is[i] I z • The probability of 

detection and false alarm are defined as, 

Pf =Pr{E>eIHo } 

	

Pd =Pr{E>eI H,} 	 (2.4) 
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There are two ways of obtaining closed form expressions for these probabilities. The first, 

which is through direct integration of the chi-square distribution over the tail of the 

distribution function giving us the following results [35], 

_ F(P, /./2) 
Pf 	F(P, 0)  

Pd = Q, ( 2_  , FA) 	 (2.5) 

Q(.) is defined as 

1 	z 2 
J exp (— 2)dz 
X 

(2.6) 

Another way of computing the probabilities in (2.4) is through application of the Central 

Limit theorem assuming that the number of samples in question (P) is high, in which case the 

resultant distribution becomes normal and hence expressions for Pd  and Pf  can be obtained 

by finding the area under the Gaussian tail for which standard expression are available in 

terms of Q-function [36]. 

A—p 2  
Pf = Q( T  -WP  ) 

A-2P(+S) 
Pd — Q( 2 2 	 (2.7) 

(Z + S)f4P 

Energy detector can be implemented by first passing the signal through band-pass filter and 

calculating the energy as shown in Figure 2.2. The input band-pass filter selects the centre 

frequency, fs, and bandwidth of interest. This filter is followed by a squaring device to 

measure the received energy and an integrator which determines the observation interval, T. 

Finally, output of the integrator, Y,is compared with a threshold, A, to decide whether signal is 

present or absent as shown by Figure 2.2. 
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x(t) 	BPF 	
(•)

2 ~ I 	
H 	

) Decide HQ Or Hi 

Figure 2.2: Block Diagram of an Energy Detector 

Some of the challenges with energy detector based sensing include selection of this threshold 

which varies highly with noise, inability to differentiate interference from primary users and 

noise and poor performance under low signal-to-noise ratio (SNR) values and in 

shadowing/fading environments [2]. 

The threshold used in energy detector based sensing algorithms depends on the noise 

variance. Consequently, a small noise power estimation error causes significant performance 

loss. A nominal value of noise power uncertainty is f 1dB [1]. This uncertainty leads to 

drastic drop in detection performance of the radiometer and renders it incapable of reliably 

detecting the signal below a SNR threshold called the SNR wall. Below the SNR wall, no 

matter how large the sensing time, the detection probability does not improve. This nature of 

energy detector can be characterized theoretically, as under noise uncertainty of x dB where 

x =10log,o p the detection and false alarm probabilities of equation (2.7) can be modified as 

follows [1] 

z 
Pf = m

ax 
~wEQ",QwP 	fPcW v 

=
Q(s—Ppa,2 

p2Pa4 

s-2P(o 12+S) 
P~, =maxQWE~w rw 	

(a /2+S) 4P ) 
P 

2p ) 

{ 2p S) 4P 	 (2.8) 
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2.3 Signal Detection on Individual Sensor 

To decide whether the nrh  subband is occupied or not, we test the following binary 

hypotheses at every individual sensor. 

H2O, : yn (i) = wn (i) 

Hn • yn (i) = s ( i) + wn (i) 
	

(2.9) 

where y„ is the secondary received signal , s„ is the primary transmitted signal and w„ is the 

noise . For a subband n , we compute the summary statistic as the sum of received signal 

energy over an interval of P samples, 

P 	2  
Yn = 11 I.Yn (1 )I 

i=1 	 (2.10) 

The overall test statistic is compared with a threshold eR  The primary user in band n is 

estimated to be idle if all Y <s„ , or busy otherwise. Here e, is the decision threshold of 

subband. 

Using the central limit theorem for large P, the statistics are approximately normally 

distributed [36] with statistics 

H° :E[Yn ]=PQ 2  

Hn :E[Y„]=P(c 2 +Is»12 ) 
	

(2.11) 

H° :Var(Y,)=2Po 4  

	

Var()'„) = 2P(6 2  +2Is„I 2 )6 2 	 (2.12) 

Thus, we can write these approximate statistics compactly as Y„ - N(E(Y„ ), Var(Y„ )) . Using 

the decision rule, the probabilities of false alarm and detection in the nthsubband can be 

approximately expressed as 

_ z 

	

(sn) = Pr(Y. > £n Hn) = Q( 6z  2P ) 	 (2.13) 
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2  2 

pd(s) = Pr(Y„ > s,, H.,) = 	n —P( ~ +Isnl ) ) 	(2.14 ) 
62 2P(6

2 
+2ISn f ) 

The signal to noise ratio of such an energy detector is defined as SNR = (S„ (1)12 / cr 2 , which 

plays an important role in determining the detection performance. The choice of the threshold 

e leads to a tradeoff between the probability of false alarm and the probability of missed 

detection, P"' (s„) =1— P" (s,,). Specifically, a higher threshold will result in a smaller 

probability of false alarm, but a larger probability of miss detection, and vice versa. 

For simplicity, we assume that the transmitted signal in each subband has unit power, i.e. 

E[Is„ (i)I 2 ] = 1. However, multiband joint detection algorithm does not rely on this assumption 

while only the knowledge of the received signal power and noise power is required. 

The probabilities of false alarm and miss detection have unique significance for CR networks. 

Low probabilities of false alarm are necessary to maintain high spectral usage in CR systems, 

since a false alarm would prevent the unused spectral parts from being accessed by secondary 

users. On the other hand, the probability of missed detection measures the interference of 

secondary users to the primary users, which should be limited in opportunistic spectrum 

access. These implications are based on an assumption that if primary signals are detected, 

the secondary users will not use the corresponding channel, and if no primary signals are 

detected, then the corresponding frequency band will be used by secondary users. 

2.4 Parallel Multiband detection 

In the proposed centralized parallel cooperative sensing, a central identity called the fusion 

centre controls the three-step process of parallel cooperative sensing. First, the FC selects a 

wideband channel which is divided into set of narrow non overlapping frequency bands of 

interest for sensing. It then determines the number of SUs and the decision threshold for 

every band and instructs all cooperating CR users (SU) to individually perform local sensing 

on a channel selected for that SU and also the probability of false alarm or decision threshold 

used for that channel. Second, all the SU performs local sensing and take local decisions 

according to the signal statistic and the decision threshold. Third, all cooperating CR users 
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report their sensing decisions via the control channel. Then the FC combines the received 

local sensing decision, applies the majority voting rule to determine the presence of PUs, and 

diffuses the decision back to cooperating CR users. 

The design objective is to find the optimal number of SUs on all the subbands represented as 

vector k =[k , k2  ......kN  ]T  and optimal threshold vectors = [s , 62 ......EN  ]T  , so that the 

cognitive radio system can make efficient use of the unused spectral segments without 

causing harmful interference to the primary users. Here N is the total number of subbands and 

kn, and c, number of SUs and the threshold for nth  subband respectively. For a given 

threshold vector and number of sensors vector, the probabilities of false alarm and detection 

can be compactly represented as 

Pt  (s,k) = [ Pi f  (c1,ki),Pj(£2,k2)......PN  (E,v,kN)]T 

Pd (s, k) _ [ pd (£> , k1),  P" (E2 , k2 )......PN (£N kN )]T 	 (2.15) 

Similarly, the probabilities of missed detection can be written in a vector form as  

Pm (s,k)= [Pm (£1,k1),Pz (s2,k2)......PN  (£N,kN)]T 	 (2.16) 

It is assumed that the primary user is sufficiently far away from both the secondary users and 

the FC [37]. Under this condition, the signal power received by every SU is approximately 

equal for a given band. Therefore, the received signal-to-noise ratio (SNR) is the same. for j£  
each narrow subband for all SU. Also the noise is assumed to be independent additive white 

Gaussian noise (AWGN). The noise power is constant for every SU. 

For every band, the majority voting rule is used at the FC to decide the presence of primary 

user. Both false alarm and detection would occur on n" subband having k,, SUs scanning it if 

number of SUs sending `1' as their decision is greater than or equal to [k /21. Accordingly 

we can write the probability of false alarm and detection for every band as 

k„ 
P f  (En , kn ) — 

 
r= k,121 	 (2.17) 
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k 
Pd  (En kn) = C7 (Pd  (En ))1  (1— P`'  (sn ))kn-i  

i=[ k/21 	 (2.18) 

Consider a CR device sensing the narrowband subbands to make use of the unused spectrum 

for opportunistic transmission. Let r,, denote the throughput achievable over the n`h  subband 

if used by secondary users, and r = [r,, r2  .....r,,, f'.  If the received power at the secondary 

users are known, r can be estimated using the Shannon capacity formula. Since 

(1— P,' (, k„)) measures the opportunistic spectral utilization of subband, the aggregate 

opportunistic throughput of the CR system can be defined as in [32] as 

R(c, k) = rT  [1— P (s, k)] 	 (2.19) 

which is a function of the threshold vector a and number of sensors vector k. Due to the 

inherent trade-off between Pf (en , k„) and P,' (s , k„), maximizing the sum rate R(e, k) will 

result in large P,' (s, k„), hence causing harmful interference to primary users. 

However, the interference to primary users should be confined in a CR network.. For a 

wideband primary communication system, the effect of interference induced by CR devices 

can be characterized by a relative priority factor for each primary user transmitting over the 

corresponding subbands, i.e., c = [c„ c......CN 
]T,  where c, indicates the cost incurred if the 

primary user in subband n is interfered with. Alternatively c,, can be defined as a function of 

the bandwidth of n subband since in some applications each particular subband does not 

have to occupy an equal amount of bandwidth as in Figure 2.1. 

The aggregate interference to primary user can be written as 

N 

1  cnpm(En'k++) 
n=1 
	 (2.20) 

Our objective is to find the optimal thresholds {s„ }n , and optimal number of ED's {k„ }n , for 

N subbands in order to collectively maximize the aggregate opportunistic throughput subject 

to total interference constraints for all narrow bands. Also there should be constraint which 
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limits the interference in each subband with a = [a„ a2 ...aN ]T and the constraint which 

dictates that each subband should be able to achieve a minimum opportunistic spectral 

utilization given by [I— fl1 ,1—X32 ...1—iN ]T 

The opportunistic rate optimization problem can be formulated as [32] 

max R(£, k) 

N 
S.t 	CIPn'(£n,kn)<£ 

n=1 

(2.21) 

The optimization problem (2.21) assumes the form of minimizing a convex function subject 

to a convex constraint, and thus the local optimum is also the global optimum. 

A function is said to be convex if for any two points x, y E tR , if 

f (Bx + (1— B) y) <_ Bf (x) + (1— O) f (y), V O E [0,1] 	 (2.22) 

Geometrically, this means that, when restricted over the line segment joining and, the linear 

function joining x and y, the linear function joining (x, f (x)) and (y, f (y)) always 

dominates the function f. 

It can be easily shown that the function P{ (£n , kn ) in (2.15) is convex in £n 	if 

Differentiating Pf (£n ,kn ) twice we get, 

d2Pf ( £n ,k, _ d 2 Pf (£n~ kn) x ( dPf ( £n))2 + dPf ( £n ,kn) x d2Pf ( £n) 

d£n 	dP'j2 (£n) 	d£n• dPf (£n) 	de 
(2.23) 

Differentiating (2.13) twice we get, 
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d 21[ (e) 	-1 X€ d e?Cp[—((£n
—P62

)2)]} 
d£„ 262 , d£n 	4P0-4 

En —Pcr2 
exp[—((En —P62)Z )] 

8P6 6 J 	4P6 4 
(2.24) 

If P f (En , k) 5 )/2 , it can be proved from (2.17) that Pf (£n ) < 1 / 2 . 

Suppose I/()>-1/2. 

k„ 

(1— Pf (En ))k -' = 1 which can be written as 
i=E 

lkJ 	 k~ 

Cin(Pf (En))'(1
—F,/())k  + 	C7(I {(£n))e(1—Pf 	=1 	 (2.25) 

i=l  i= f 721 

C1'1 (P,{(£n))'(1—F,'( E))k—F ~ Cn—i(1 /(£))k—i( l—F' (£n))' 

Since C," = C', , and J[() >-1/2, second term in the above equation will be greater than 

equal to the first term for i = [kn /21 to k,, . 

From this, we can imply that the second summation will be greater than or equal to first 

summation in (2.25) which can be stated as 

k„ 

X1/2.  
I=1 21 k„l21 

From (2.17) and above relation, P[ (£,,, k„) >— 1/2  which is not true. Hence Pf (E, kn ) S Y 

implies thatP'(E) <1/2 . 

This implies that sn >— P6 2 

than or equal to zero 

Therefore d 2Pnf (En ) 

dcn 
, the second derivative of Pj (£n ) s greater 
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Differentiating (2.17) with respect to //(e), 

d 1 (e, k„) = k" Ci (Pf (£ ))'-1 (1— Pf (s ))k~-~-1 (i — k.,Pf (ca )) 
dPf (sn ) 	;- k„ X21 

(2.26) 

i—kPf(s)>0 since ic[k,rk„/21J and Pf(u,,,k„)—<1/2.  

Date. ..a~~~, 
All the terms on the right hand side will be positive then.  

Using (2.23), (2.24) and (2.26), we conclude that second derivative of Pf (e, k„) is non-

negative which implies that Pf (s„ , k„) is convex ins,, . 

Similarly it can be shown that the function F"(,k„) in (2.16) is convex in E,, if 

By taking the second derivative ofP,d (s„) , we can show that it is concave, and hence 

P”' (e,,, k) =1— P" (s, k) is a convex function. 

The nonnegative weighted sum of a set of convex functions is also convex [38]. The problem 

(2.21) then becomes a convex program if we introduce the following conditions: 

0<a„<_1/2and 0<l„<_1/2,n=1,2.....N  

These probability values of false alarm and missed detection are of practical interest for 

achieving reasonable opportunistic throughput and interference levels in CR networks. 

Alternatively, we can formulate the multiband joint detection problem into another 

optimization problem that minimizes the interference from CRs to the primary 

communication system subject to some constraints on the aggregate opportunistic throughput, 

i.e. 

min CT P"' (s, k) 
Y 

f4•7 



N 
s.t Lci Pn'(skn ) < s 

n=1 

P"'(s,k)<_a 

Pf(s,k)<_/3 
(2.26) 

where o is the minimum required aggregate opportunistic throughput. 

Interior-point methods solve the problem of convex optimization which includes inequality 

constraints. Interior-point method is used to solve the problem (2.21) by applying Newton's 

method to a sequence of inequality constrained problems. The barrier method a particular 

interior-point algorithm for which proof of convergence and a complexity analysis can be 

found in [38], is used because of its reliability and low complexity. 

2.5 Simulation Results 

Consider a 24-MHz primary system where the wideband channel is equally divided into four 

subbands. For each subband n (1 < n <_ 4) , we assume an achievable throughput rate rn  if 

used by CRs and a cost coefficient cn  indicating the penalty if the primary signal is interfered 

with by secondary users. It is expected that the opportunistic spectrum utilization is at least 

50%, i.e., /3n  = 0.5 and the probability that the primary user is interfered with is at most 

an  = 0.2. For simplicity it is assumed that the noise power level is a 2  =1, and the length of 

each detection interval is P = 100. These parameters have also been taken in [32]. 

Table 2.1: Rate and Cost coefficients 

r(kbps) 612 524 623 139 
c 1.91 8.17 4.23 3.86 

Figure 2.3 plots the maximum aggregate opportunistic rate against the aggregate interference 

to the primary communication system for 4 secondary users. Each subband is assigned 1 

secondary user. In first case the threshold matrix, s is determined optimally according to 

(2.21) while in other case uniform threshold is kept for each band which is determined from 

given aggregate interference. 
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Figure 2.4 compares the throughput for different number of SUs, S. 6 and 4 to the case with 2 

SUs and uniform threshold allocated to each band. The optimization for threshold matrix a is 

done with all the possible values of k matrix. The e,k pair which gives maximum 

throughput is selected. We can clearly state that the same throughput can be achieved with 

less number of cooperating SUs. 

In figure 2.5, comparison is done between the case in which 2 SUs scan each band i.e. 

k„ = 2, n =1..N and the threshold matrix e is optimally determined and the case in which 

both the number of SUs, k as well the threshold matrix, a is determined optimally. 

Figure 2.6 shows the case in which the alternate optimization problem is solved. The 

interference is minimized given the aggregate throughput for 4 secondary users. Each 

subband is assigned I secondary user. In optimal threshold case the threshold matrix, s is 

determined optimally according to (2.26) while in other uniform threshold is kept for each 

band so as to have the desired aggregate throughput. 

2.6 Conclusion  

In this chapter, we have considered joint multi-band detection using a set of narrowband 

energy detectors. The framework for same was proposed and the optimization problem was 

shown to be convex for practical constraints over false alarm and detection probability. It can 

be seen that the multiband joint detection algorithm with optimized thresholds and optimizing 

number of secondary users scanning each band can achieve a much higher opportunistic rate 

than that achieved by the uniform threshold method. It can be also concluded that the sar"ie  

aggregate throughput can be attained for a given aggregate interference with lower number of 

cooperating energy detectors using the proposed framework. Use of less number of 

cooperating sensors will lower the cooperation overhead. Also the proposed multiband joint 

detection makes better use of the wide frequency band by balancing the conflict between 

improving spectral utilization and reducing the interference. 
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Figure 2.6 : The aggregate opportunistic throughput versus constrained aggregate interference 
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Chapter 3 

Multi-Channel Cooperative Spectrum Sensing in Rayleigh 
Fading Channel 

Spectrum sensing is regarded as a mandatory feature in cognitive radio networks, for which 

two typical signal detection approaches are available: energy detection and cyclostationary 

detection. These detectors work well in Gaussian noise scenarios, which, however, are not 

appropriate to be directly utilized in wireless fading environments. Towards this, cooperative 

sensing strategies have been studied to combat the wireless fading in [2], where multiple 

cognitive users termed as secondary users independently detect the licensed primary channel 

using energy detector and report their initial detection results to a fusion center. In the past, 

most of research in cooperative spectrum sensing focused on single channel systems where 

all SUs sense the same channel together. However, with the popularity of multi-channel. 

systems, such as orthogonal frequency division multiplexing (OFDM) systems, improving 

sensing performance of one channel is not sufficient. It is more important to determine a 

number of channels satisfying the required sensing performance using Cooperative Spectrum 

Sensing. Thus, the study of multi-channel spectrum sensing is important for CR networks. In 

this chapter we consider cooperative sensing over multiple channels simultaneously in fading 

environment. Optimal strategies for the same are investigated. 

A cognitive radio network with multiple potential channels, is considered. Secondary users 

cooperatively sense the channels and send the sensing results to a coordinator, in which 

energy detection with a soft decision rule is employed to estimate whether there are primary 

activities in the channels. An optimization problem is formulated, which maximizes the 

throughput of secondary users while keeping detection probability for each channel above a 

pre-defined threshold. 

We present the system model in Section 3.1. The problem of optimal sensing time setting is 

formulated and mathematically solved in Section 3.2 when the sensing time for each channel 

is a number of mini-slots. Simulation results are presented in Section 3.3 
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3.1 System Model 

We consider a cognitive radio network with N frequency bands (or channels) and M 

secondary users (SU). In each channel, a primary user operates (which may not be active all 

the time). There is a fusion centre in the cognitive radio network, which collects sensing 

results from the secondary users, and takes the final decision about the presence of PU on 

each channel. The FC also assigns a secondary user to each channel for information 

transmission. If the coordinator estimates a channel, say channel n, to be idle, it apprises the 

secondary user assigned in the channel to transmit. The transmission power is P„ and the 

transmission rate is given as log(1 + SNRns) which depends on the signal-to-noise ratio 

(SNR) from the secondary user to its receiver for channel n. 

A -synchronous system is assumed, and time is divided into fixed-length slots. A slotted time 

frame structure has also been used for spectrum sensing in [39]. It is assumed that in each 

slot, the primary user in a channel is either active for the whole slot, or idle for the whole slot. 

Each slot is further partitioned into two phases: sensing phase and transmission phase. The 

duration of the sensing phase is a design parameter which has to be determined. 

There is a trade-off of the cognitive radio throughput which will be addressed by jointly 

considering the spectrum sensing and secondary transmissions. As discussed in [40], the two 

individual phases cannot be optimized separately, since they affect each other. A reliable 

cognitive, radio system with high data rates is achievable by using cooperative 

communications for both the spectrum sensing and secondary transmissions. However, the 

two individual designs of spectrum sensing and secondary transmissions cannot be optimized 

separately, since they affect each other. For example, when an available spectrum hole is not 

detected by spectrum sensing during a certain observation window, the spectrum hole 

utilization would decrease. To alleviate this issue, we may increase the observation time for 

the spectrum sensing phase, which, however, comes at the cost of degradation in secondary 

transmission performance since less time is now available for the secondary transmission 

phase. 

In the sensing phase, all secondary users can sense a number of channels sequentially by 

energy detection where the sampling rate of the received signal in a channel isu . The 

transmission phase is used by the secondary user assigned to the channel to transmit, if the 
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channel is estimated to be idle. It is assumed that the channel gain for each channel (from the 

primary user to secondary users or between secondary users) is constant within the duration 

of a time slot. 
0 

Let to denote the time duration that secondary user m spends in sampling channel n. Given 

the sampling rate ,u , the secondary user m has tit samples of channel n. For a secondary 

user m, the hypothesis mentioned in Chapter 2 can be restated as 

Hn ' yn (Y) = wn (i) 

Hn 'yn (i)=hns (i)fwn(l) 
(3.1) 

where H° and Hn mean that the primary user in channel n is idle and busy respectively, i is 

the sample index, yn (.) is the received signal of channel n at secondary user(SU) m . wn  (i) is. 

background noise in channel n, which is assumed to be circular symmetric complex 

Gaussian (CSCG) with mean being zero and variance being a'. It is assumed to be equal for 

all the SU and sn  (i) is the primary transmitted signal of channel n. h„ is the channel gain 

between the primary transmitter and the secondary receiver. Rayleigh fading channel is 

assumed. 

For a particular channel n, mean SNR is assumed to be constant for every SU given by y,,. 

This assumption is valid for a small-sized cognitive network (i.e., distance between the 

secondary users is much less than the distance from the primary user to the secondaryyusers). 

Then, the test statistic of secondary user's received signal energy in channel is calculated as 

stn 
Sn = Iyn(i)I 2  

i=1 
	 (3.2) 

The test statistic of secondary user m for channel n is sent to the FC, which collects all values 

of S„ 's from all the secondary users. Then the overall test statistic for channel is 

Sall  =I rm  
n 	iln 	 (3.3) m=1 
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The overall test statistic is compared with a threshold, en  . The primary user in channel n is 

estimated to be idle if Sn" < s„ , or busy otherwise. This process is referred to as soft 

decision cooperative spectrum sensing, and the detection probability and false alarm 

probability in the process are given [24] as 

M 

m=1 
H,) = Q(( Snr 

6211>t , 
m=1 

— 1)J1utn) 	(3.4) 
m=1 

M 

Pd  (Eto ,sn ) = Pr(Sn" > £ Hn) 
m=1 (3.5) 

For (3.5), simulation results are used to calculate s„ for a given Pd  and vice-versa. 

In a real system, the detection probability P`` should not be less than 0.5 and the false alarm 

probability Pf should be no larger than 0.5. 

For sensing the channel n, we have the following four scenarios: 

1) If channel n is not used and is reckoned by the fusion centre to be unused, then the 

secondary user assigned to channel n will transmit in the associated transmission 

Ihssl 2  ps 

phase of the slot, with the average transmission rate given by R°, = E(log(1 + "`  z  )) 
6 

where h;` is the channel coefficient from the secondary user assigned to channel n to 

its receiver, and E(.) means expectation. 

2) If channel n is not used and is reckoned by the fusion centre to be busy (i.e., a false 

alarm happens), the secondary user assigned to channel n will not transmit in the 

associated transmission phase of the slot. 

3) If channel n is busy and is reckoned by the fusion centre to be busy, the secondary 

user assigned to channel n will not transmit in the associated transmission phase of the 

slot. 

4) If channel n is busy and is reckoned by the fusion centre to be idle (i.e., a missed 

detection happens), then the secondary user assigned to channel n will transmit in the 

associated transmission phase of the slot. As the primary user's signal will serve as 
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interference to the secondary transmission, the average transmission rate of the 

Ihs 2pn  secondary user is given by R,, = E(log(1 + 	2  )) where Pp is the 
a2  +jh RI  pp  

transmission power of the primary user in channel n, and h,Ps is the channel 

coefficient from the primary user to the secondary receiver in channel n. It can be 

inferred that Rn >R, 

3.2. Optimal Sensing Time 

In the system, the sensing phase in a slot has K mini-slots each of duration ö. The value of K 

is a parameter to be optimized. Each mini-slot can be used by a secondary user to sense a 

channel. So there are totally KM mini-slots among the M secondary users to sense the N 

channels. 

The total cases of allotting slots in each SU to the channels are of the order of (KM)N  which 

increases very fast with increase in total number of slots, primary users and secondary users. 

Hence a sub optimal strategy has to be used. 

For a particular channel, the sensing performance would be optimum if all the slots are 

equally divided in all the SU, as this would maximize spatial diversity. This would be very 

near to the optimal solution in the Cognitive Radio Network having low number of SUs 

which is a very practical assumption. The assumption of equal slots for a channel in every SU 

hence is very close to the optimal solution in a practical CRN. 

Let k„> 0 denote the number of mini-slots (among the K mini-slots) in every secondary user 

N 
that are used for sensing channel n E { 1,2,...,N} . Then we have 	k„ = K. 

Let T denote the length of a time slot. Then the average throughput of channel n can be 

expressed [24] as 

C,, (K,k,s,,) = T  T S  (Pr(H, )(1— P f  (k,,,sn))R° + Pr(H )(1 — p
d  (kn,--,,))Rn) (3.6) 
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P„f (kn,£n)=rr(S”>c, H) =Q(( 	ns -1) ,ukn8) 	
(3.7) 

Pd(kn,E„)=Pr(S ' >£n I Hn) 

where Pr(H) > 0 is the available probability of channel, and Pr(H) =1— Pr(Hn° ) > 0 is the 

busy probability of channel n. 

Our aim is to maximize sum of the throughput of secondary users in all the channels which is 
N 

while keeping the detection probability of any channel, Pd (kn ,£n ), 
n=] 

above a pre-specified threshold P, (,h > 0.5) and the false alarm probability of any channel, 

no larger than 0.5. So the problem can be stated as follows. 

Problem P1: 

max C K {k 	l _ T — KS Pr H° Pf (k £ R° + Pr H' Pd (k E R' 
K,{k„},{s„} 	n~~ n)) — 

	T n) n \ n9 n) n 	( n) n \ n~ n) n) 
n=1 

s.t P`' > P j, > .5 and Pf <.5 

Pf (kn , £n ) = Pr(Sn 1! > en I Hn) = Q((
62 £r",.^ n —1) 	n ) 

Pnd (kn £) = Pr(S, ' > £n I Hn ) 

N 

Y.
kn =K, k,i >0,kn EI,n=1,2..N 

n=1 

Here I is the set of all positive integers. 

Problem P1 is a mixed-integer problem, which is usually NP-hard to be solved directly. In 

order to solve problem P1, we transform the problem into sub problems with low complexity, 

as follows. 

(3.8) 

max C(K) = T KJ D(K) 
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s.t. 0<K<—[
T] 

8 (3.9) 

where D(K) is the optimal objective value of the following problem with a specific K value. 

Now the problem can be written as 

Problem P2: 

N 
max D({kn } , {sn }) = I (Pr(Hn)(1— Pr (kn , Sn ))Rn + Pr(Hn )(1— Pn (kn £n ))Rn ) 

n=I 

s.t. P' >p >.5 and Pf <.5 

P f (kn,sn)= Pr(Snn >£.n I Hn)=Q(( 6z £f kn —1) 	k) 

P``(kn,£n ) =Pr(S"' > £n I ri n 

N 

X kn =1C, kn >0,kn E1,n=1,2..N 
n=l 

The objective function D({kn },{£n }) in problem P2 achieves the maximal value. when 

P '̀ (kn,£n ) = Ph , n =1,2....N. 

Denote Dn (kn , £n ) = Pr(Hn )(1 — Pf (kn , £n ))Rn + Pr(Hn )(1 — Pd (k n , E,, ))Rn 

N 

Then D({kn }, {£n }) = I Dn .It may be seen that both (1— P' (kn , £„ )) and (1— P[ (k, sn )) 
n=1 

grow with increase ins. On the other hand, the term (I-1 (kn , a )) should be bounded by 

1— 

 

I. . Therefore, D(  k, £n ) achieves its maximal value when (1— Pnd (k, £n )) reaches its 

upper bound (1— P ), which happens when P' (kn, £n) = Ph 

We define, 

N 
S({k }) = ~Pr(Hn)ll — P,r ( /Cre ,Pd = PIh))Rn 

n=1 
(3.10) 
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where s„ is calculated from the simulations such that P = 

Substituting P'(kn ,s„) with . in the objective function in problem P2, we haveh 

N 

n=1 

We define the following parameters: 

1. k`"`" = {k """k . ". k" } is a N x 1 vector where k""° is the minimum number of slots 1 	2 	N 	 n 

required for channel n for which P," = P,, and Pf <.5. 

2. s(k„) = Pr(H„°) x (I — P~ (kn , P' = P,,, ))Rn 

An incremental algorithm has been used to solve the above problem. The procedure for the 

incremental algorithm referred to as Algorithm 1 is on the lines of [24] and is given as 

follows. 

3.3 Algorithm 1 for soft combining in Rayleigh Fading Channels 

1. Find k" which gives the minimum number of mini-slots for satisfactory sensing 

performance that is P" = P, and Pf <.5. 
N 

2. For a given K, if 	k;"" <K,  set k = {k," ° } and proceed to 2 else problem is 

infeasible for the given K. Increase K and proceed from 2. 
N 

3. If Y k„ = K , proceed to 4 else for n=1, 2...N , find F(n) = s(kn + 1) — s(k,) . Find 
n=1 

n* = arg max F(n) 
15nSN 

4. k. = kn + 1, proceed to step 3. 

5. Output {k}. 

It can be shown that D(K) is an increasing function of K. 

Since increasing K in D(K) decreases Pf of a particular channel for the same probability 

of detection pd = 
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D(K) — D(K —1) >— D(K + 1) — D(K) 

While going from K-1 to K & K to K+l, the increased slot might be on same channel (n') or 

a different channel (n;). 

If it is on different channel i.e. the value n* is different in the two cases, 

> C(n)k+1 because n' = arg max F(n) 
15n5N 

If it is on same n, rate of decrement in Pr (k, P„ = Ph ) decreases with increasing value of 

k„ . This will be verified from the simulation result in the next section. 

In both the cases, the above property will hold. This completes the proof. 

Optimal Solution to Problem Pl 

Algorithm 1 solves problem P2, which is a sub problem of problem P1. Now, we next 

proceed to solve problem P1. With the solution of problemP2, denoted D(K) for a specific K, 

problem P1 is equivalent to 

max C(K) = T 
— K

S D(K) 

s.t. 0 < K << [ T] 
For the objective function of this problem, we have the following 

C(K)—C(K-1)> C(K+1)—C(K) 

[C(K) — C(K — 1)] — [C(K + 1) — C(K)] 

KI
(K + 1)Sl  	j 	KS 	( (K — 1)S J

=- T J D(K+1)—(1—:~T—O)D(K)]—  +l(1— T)D(K)— 1— T /JD(K-1) 

= (1 — f-) [(D(K + 1) — D(K)) — (D(K) — D(K — 1))] + T (D(K — 1) — D(K + 1)) 

From earlier result D(K) — D(K —1) >_ D(K + 1) — D(K) . We can imply that both the terms 
are negative. Thus we have (K) — C(K — 1) > C(K + 1) — C(K) . 



From this property, we see that as K grows the increment ofC(K), denoted by 

E(K) = C(K) — C(K —1) , become smaller. Then, the optimal value of K, denoted by K*, 

satisfies E(K) >— 0 >— E(K + 1) . 

To find K*,  for a given K value, the results obtained from previous iterations may be useful, 

in order to reduce the computation complexity in the current iteration. 

These properties were proposed and proved in [24] for framework proposed for AWGN 

channels. We have shown that these properties hold good for our framework for Rayleigh 

Channels. 

3.4. Simulation Results 

The system setup is as follows. The sampling rate is u =6 MHz, the slot duration is T = 100 

ms, the threshold of detection probability is P,,, = 0.9 and all secondary users are assumed to 

have a mean S.N.R. of 20 dB. SNR„''S  (SNR from the primary user to a secondary use on 

channel n) follows exponential distribution because of the Rayleigh channel while SNRns  

(SNR from the secondary user to its receiver at channel n) is assumed to be constant. The 

mini-slot duration is S = 0.1 ms. The simulations are done in Matlab and are averaged over 

1000 simulations for various number of mini-slots in Rayleigh fading channel. 

For Figure 3.1 and 3.3, there are N = 5 channels and for Figure 3.4, N= 10 channels 

respectively. Channel n (1 < n < N) has a free probability Pr(H°, )= 1-0.05*n, and the 

average channel gain from the primary user to a secondary user is y„ = —20 + n —1 dB. 

For Figure 3.2 N=2 channels, with the available probability as Pr(H)=0.8 and Pr(H2)=0.6, 

and mean SNR from primary user to both secondary users as yt  = —15 dB in channel 1 and 

72  = —20 dB in channel 2, there are M =2 secondary users. 

The values of SNR taken are very low because cooperative spectrum sensing is done only in 

the case where primary users are far from the cognitive radio network. The free probability of 

channels are taken are realistic in practical scenarios and same have also been taken in [24]. 
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Figure 3.1 plots the variation of false alarm probability for all channels n = 1,2,.. .5 with 

increasing number of sensing mini-slots for that channel. From this plot, it can be implied 

that rate of decrease of P? (k, P`` = P,h ) for a constant probability, of detection P' = 
decreases with increasing value of k„ . 

The simulations are done for Rayleigh and AWGN channels. The optimal time setting is 

derived for Rayleigh channels as described in algorithm 1. From the graphs we may calculate 

the optimal sensing time as the one maximising the throughput. While for AWGN channels, 

the algorithm proposed in [24] is used. 

The optimal sensing number of sensing slots in Rayleigh fading is 120 compared to 80 in 

AWGN while the throughput obtained in Rayleigh is 7.25 bits/sec/Hz while in AWGN it is 

8.7 bits/sec/Hz. We can see that the degradation in throughput at higher values of K is slower 

as compared to AWGN. This is because the sensing efficiency continues to improve at higher 

values of K for Rayleigh environment. 

In Figure 3.3, the optimal number of sensing slots in Rayleigh fading is 100 compared to 50 

in AWGN while the throughput obtained in Rayleigh is 21.0 bits/sec/Hz while in AWGN it is 

27.2 bits/sec/Hz. From Figure 3.3 and Figure 3.4 it may be seen that increasing the number of 

users is more dominating than increasing the number of channels in determining the optimal 

sensing time due to spatial diversity obtained. Increasing number of channels from 5 to 10 for 

maximum throughput the number of sensing slots to 200 slots as compared to 100 as may be 

seen from Figure 3.3 and 3.4. The rate of decrease of the throughput from the optimal sensing 

time has also decreased. The throughput deterioration from AWGN to Rayleigh is 18% in 

M=10, N=5 as compared to 22% in M=5, N=5. 

From the above results, it can be implied that the throughput rises with increase in K value 

initially. This is due to the decrease in false alarm probability on all the channels. Then it 

becomes steady because of the decrease in throughput due to increase in sensing time 

matches the increment caused by decrease in false alarm probability. After this the 

throughput begins to decrease as the increase in sensing time decreases the transmission time, 

which plays the dominant role than the increase in sensing efficiency. 

In this chapter, we have considered the sub-optimal multi-channel cooperative spectrum 

sensing strategies in cognitive radio networks in Rayleigh fading channels. We have 
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proposed strategies to determine the total sensing time and distribution of the total sensing 

time to different channels in cooperative soft-decision spectrum sensing. Considering the 

slotted-time sensing mode, we converted the initial non-convex mixed-integer problem into 

convex mixed-integer sub problems, and provided a low-complexity algorithm to achieve the 

sub optimal solution of the initial problem. We have evaluated the degradation of throughput 

and increase in optimal sensing time when the channels are assumed to be Rayleigh fading 

which is more realistic than the AWGN environment assumption for wireless channel. 
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Chapter 4 

Multi-Channel Cooperative Spectrum Sensing with Hard 

Combining 

In previous chapters multi-channel cooperative spectrum sensing was considered using soft 

combining at the fusion center. However in cognitive radio networks, the control channel 

bandwidth is often limited. For this reason, local decisions are usually sent from each 

secondary user. The fusion center then collects all the individual decisions and arrives at a 

unified decision about the presence of primary user. In this chapter, we consider cooperative 

sensing over multiple channels simultaneously in Rayleigh fading environment with hard 

decision transmitted by every participating secondary user. Sub optimal strategies for the 

same are investigated. 

In cooperative sensing, a common control channel [41] is commonly used by CR users to 

report local sensing data to the FC or share the sensing results with neighbouring nodes. As a 

result, a control channel is the major element of cooperative sensing. The control channel can 

be implemented as a dedicated channel in licensed or unlicensed bands, or an .underlay ultra-

wideband (UWB) channel [12]. The problem of cooperative sensing under control channel 

bandwidth constraints is addressed by transmitting only the local decisions. 

In addition to the bandwidth requirement, the reliability of the control channel has the great 

impact on cooperative sensing performance. Like data channels, the control channel is 

susceptible to multipath fading and shadowing. Hence, the channel impairments in turn 

increase the bandwidth requirement of the control channel in order to transmit data reliably. 

Hard combining requires much less control channel bandwidth with possibly degraded 

performance due to the loss of information from quantization. 

Multi-channel cooperative sensing with hard combining has been considered in [27] in which 

where authors propose the channel assignment in cooperative spectrum sensing (CSS) using 

heuristic centralized scheme to increase the number of available channels satisfying the 
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sensing performance requirement. Signal to noise ratio (SNR) over the channel from each SU 

is reported to the Fusion Centre (FC). It then applies the heuristic scheme to form coalitions 

for every SU and broadcast the assignment results to all SUs. In our work, we have 

maximized the throughput from the channels available, keeping spectrum sensing time 

variable. 

System model is described in Section 4.1 followed by signal detection on individual sensor in 

Section 4.2. Sensing time and allocation matrix determination is described in Section 4.3. 

Then selective channel sensing strategy for the same framework is proposed in Section 4.4. 

Section 4.5 shows simulation results of the performance of above algorithms and its 

comparison with the method used in chapter 2. 

4.1. System Model 

We consider a cognitive radio network with N frequency bands (or channels or primary 

users) and M secondary users (SU). In each channel, a primary user operates (which may not 

be active all the time). There is a fusion centre in the cognitive radio network, which collects 

sensing results from the secondary users, and takes the final decision about the presence of 

PU on each channel. The FC also assigns a secondary user to each channel for information 

transmission and also informs the secondary user about the probability of false alarm on the 

same. If the coordinator estimates a channel, say channel n, to be idle, it notifies the 

secondary user assigned for the channel to transmit. The transmission power is P„ and the 

transmission rate is given as log(1 + SNR,") which depends on the signal-to-noise ratio (SNR) 

from the secondary user to its receiver at channel n. 

A synchronous system is assumed, and time is divided into fixed-length slots. In each slot, it 

is assumed that the primary user in a channel is either active for the whole slot, or idle for the 

whole slot. Each slot is further partitioned into two phases: sensing phase and transmission 

phase. The duration of the sensing phase is a design parameter. In the sensing phase, a 

secondary user can sense a number of channels sequentially by energy detection, and the 

sampling rate of the received signal in a channel is p . The transmission phase is used for the 

secondary users assigned to the channels to transmit, if the channels are estimated to be idle. 

It is assumed that the channel gains in each channel (from the primary user to secondary users 

or between secondary users) are fixed within the duration of a time slot. 
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4.2 Signal Detection on Individual Sensor 

To decide whether the. n channel is occupied or not, we test the following binary hypothesis 

at every individual mtL sensor as mentioned in Equation (3.1). 

H : Yn (i) = w(i) 

H n : yn ( i )=hn Sn( i )+wn( i ) 
	

(4.1) 

Rayleigh fading channel is considered. Assuming the total number of samples is P, the test 

statistic of secondary user's received signal energy in channel n is calculated as . 

P 

Yn--IY 	
2 

1=1 
	 (4.2) 

Then, the test statistic of secondary user's received signal energy in channel is compared with 

the threshold for that channel, sn . The primary user in band n is estimated to be idle if Y" < 

£n , or busy otherwise. Here £n is the decision threshold of channel n.  

The average SNR of the received signal from channel n is yn . It is assumed that the distance 

between PU-SU is much greater than SU-SU. This implies that the average SNR of a channel 

is a same for every SU. 

The probabilities of false alarm and detection in the nth channel can be approximately, in the  

Rayleigh fading channel environment, expressed as the following [2] 

Pnf (£n )=Pr(Ym >£n Hn)=Q(( n —1)J) ~  

(4.3) 

Pd ( E ) =Pr(l nm > IHn) — e (—cn)~ 1( 
)P +(l+7n)P_1 

P-O p! n 	rn 

P-2 	 P 
xexp(-2(1+yn))—exp(— 

2)Ep!(2(1+yn)) 
(4.4) 
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4.3 Optimal Sensing Time 

In the system, the sensing phase in a slot has K mini-slots. The value of K is a parameter to be 

optimized. Each mini-slot can be used by a secondary user to sense a channel. Every channel 

is scanned by a SU for t mini slots which is also design parameter. t is always a factor of K 

which implies that all the mini slots are utilized for sensing. All the design parameters are 

calculated at the fusion centre. 

The primary user is assumed to be far from the cognitive radio network. The distance 

between the secondary users is very less compared to the distance between primary user and 

secondary user. In other words cognitive radio network lies in a very small distance. Hence 

the mean SNR for every primary user/channel is constant which is determined by the distance 

between them, path loss exponent and noise power. The fusion centre has the knowledge of 

mean SNR for every channel. 

Every secondary user scans L = K channels in a slot referred as L channel slots. The fusion 
t 

centre will determine the total number of sensing mini-slots K and number of sensing mini-

slots for every channel t. This information will be transmitted to the fusion centre. The 

secondary users will do the spectrum sensing as described above. It will send the localized 

decisions of all the channels scanned to the fusion centre. Fusion centre applies majority 

voting rule to determine the global decisions for all the channels. 

Gil 
YU L 

Cognitive Radio Network 

Figure 4.1 : System Model for Cooperative Spectrum Sensing 
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A is a Mx L matrix in which A~ f signifies the channel scanned by the i "' secondary users 

in the j`" channel slot. It is referred to as allocation matrix. 

Let T denote the length of a time slot. Then the average throughput of channel n can be 

expressed as in Chapter 2 as 

N 

C(A, K, t) = T T S J (Pr(H°,)(1- Pf (A, c,, ))R° + Pr(H`)(1- Pd (A, e,, ))R) ) 
n=1 

For a given A matrix, let the total number of SU sensing channel n is an . Then Zn-1 an = 
M x L . Overall probability of false alarm on a channel depends only on the total number of 

SUs sensing that channel and threshold represented as Pf (an , En ) . Since majority voting rule 

is used at the fusion centre, Pf (an , sn ) and P`' (an , cn ) is calculated as 

p,. 

Pf (amen)  
;= p,, 121 

Q" 

pd (an ,t ni 	% C (P:(£n))+(1—P~(En))k"- 

Pr(H° ) > 0 is the available probability of channel, and Pr(H,) =1-Pr(I„}`> 	busy 

probability of channel n. 

Our aim is to maximize sum of the throughput of secondary users in all the channels which is 
N 

while keeping the detection probability of any channel, Pa (an , sn ) , above 
n=1 

a pre-specified threshold P" (P"> 0.5) and the false alarm probability of any channel, 

Pf (an , sn ) is no larger than 0.5. So the problem can be stated as follows. 

Problem P1: 

N 

max C(A, K, t) = T - K8 
(Pr(H° )(1- Pf (a en ))R„ + Pr(Hn )(1 — F,," (a,,,en ))Rn ) 

A,K,r 	 7' 1 

s.t P">P,,, >0.5 and Pf <0.5 

(4.5) 
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a„ 

Pnf (an,£n) — 
i=j a„ / 21 

P' (a., g) — 
 

i= 	/21 

>e I H~) = Q((6 t8p —1) tSfc ) 

pd (s) = Pr(1 > £n I Hn ) 

L= 
 L

K J , EN ,a, =M xL , M>_an >O,an EI,n=1,2....N 
r 

We transform the problem into sub problems with low complexity, as was done in previous 

chapter and also in [24]. 

max C(K) = T 
— KS D(K) 

s.t.O<K<_
L
~

J 
	

(4.7) 

where D(K) is the optimal objective value of the following problem with a specific K value. 

Now the problem with a specific K value becomes 

Problem P2: 

N 

max D(A, t) _ (Pr(HO)(1— P,( (an , £n ))R° + Pr(H,)(1— pd (an , sn 
A.i 

n=1 

As mentioned earlier to utilize all the sensing slots, t should be a factor of K, i.e. K mod t = 
0. We can again transform this function into sub problem with a specific value of t for a 

specific K value. 

N 
max E(A,t)=1](Pr(Hn )(1— P f (a„,sn))R°+Pr(HIn)(l — P,d (a ,£n))R,) 	(4.8) A  n_1 
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The objective function E(A, t) in problem P2 achieves the maximal value when 

pd (an  , En) = Ph , n =1, 2 ....N 

Denote En  (an , E„) = Pr(H°)(1— Pf (A, En  ))R,°, + Pr(H„)(1— P" (A, i n  ))Rn 

N 

Then E( {a }, {En  }) _ 	En  .It can be seen that both (1— P" (an , sn  )) and (1— Pf (an , En )) 
n=1 

grow with increase in c,. On the other hand, the term (I — P" (an  , s,,)) should be bounded by 

1— 'h•  Therefore, En  (an , sn ) achieves its maximal value when (1— Pd  (a,,, e,, )) reaches its 

upper bound (1— P,h  ), which happens when P" (A, sn ) = 

The number of possible assignments of A matrix, which is given by (K x M)" grows , 

exponentially with the number of secondary users and channels. Hence we need to devise a 

heuristic algorithm to solve this problem.  

Define 

N 
S(A) _ > Pr(H°)(1— Pf (an , Pd  =Ph  ))R,° 

n=i 	 (4.9) 

where sn  is calculated from the simulations such that P" = P,h  

Substitute P`' (an , 8n ) with 1h  in the objective function in problem P2, and we have 

N 

E(A, {sn }) I Pd (a ,e,,)=Pa S(A) + Z Pr(Hn )(1— Ph  )Rn 
n=1 

Problem P3: With a given K and t 

N 
max S(A) _ Pr(H°)(1-- Pf (a, P = P h  ))R o  

n=1 

s.t. P„ = P,h  >.5 and Pf <.5 

L= K,  En=1a =MXL,M>—a,, >0,an E I,n=1,2....N 
t 
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We define the following and also give initial values for the variables. 

1. A is initialized to a zero matrix of dimension M x L. Zero at a particular place for 

A(m, i) signifies that channel slot i of secondary user m is not assigned for any 

channel. 

2. Occupancy vector U(m) is a M x 1 vector which contains number of channels 

assigned to each secondary user. U(m) = E 1 V(m, i) where V(m, i) = 1 if Am,i — 
0 else V(m, i) = 0. m =1,2...M 

3. Channel utility, s(an ) = Pr(H,°,)(1-- P, (an , P" = P,h ))R, for M >_ an > 0 

s(a)=s(M) for an > M 

An incremental algorithm has been used to determine heuristic solution of problem P3 as in 

Chapter 3 and [24]. 

4.4 Algorithm 2 for hard combining in Rayleigh Fading Channels 

1. For every channel n =1,2...N, find minimum number of secondary users required for 

satisfactory sensing performance denoted by an " that is Pa" = Ph and Pf <0.5. 

N 
2. For a given K and t, if an ° <L * M, then proceed to 3 else problem is infeasible 

n=1 

for the given pair of K and t. Increase t if possible. Else increase K. 

3. The order of preference of channels for the allocation of sensing users should be in 

the decreasing order of sensing requirements for the said channel i.e. the channel 

requiring the maximum number of secondary users must be allocated first, followed 

by the channel requiring second highest number of users and so on. For this 

allocation, an"" least allocated secondary users should be chosen. This should be 

chosen by sorting the occupancy vector U(m) and selecting the first an " secondary 

users. 

4. For the least allocated SU i.e. m* = arg minl~m<M U(m), find J(n) = sn (an + 1) — 

sn(an). Find n* = arg max J(n) such that A,,.,.,t ~ n for = 1,2, ..L . Allocate this 
15n<N 

channel n* in the allocation matrix A to secondary user m*. 

5. If all the mini-slots in A are filled, output A else go back to 4. 

52 



4.5 Channel Selection for SU 

When the number of primary users is very large, it is impossible to scan all the channels due 

to hardware and energy constraints. In this scenario, we should select some channels such 

that the throughput attained is maximum with the given number of secondary users. In this 

unlike Algorithm 2, we choose channels selectively on the basis of its signal-to-noise ratio 

(SNR) from the secondary user to its receiver and the average transmission rate obtained on 

the channel. Previous work of channel selection was done by Wang et al. [27] in which they 

formed coalition of secondary users to scan the primary channels such that number of 

channels sensed could be maximized. 

Since the number of SUs in the network and the number of channels sensed by each SU are 

limited, it will be better to assign channels requiring less SUs so that after each assignment, 

there are sufficient number of SUs left to sense other channels. Thus, intuitively, the channel 

assignment should be performed starting from the channels which require small number of 

SUs. 

Channel utility is defined as 

s„ (a„) = Pr(Hn)(I — P„ (a„ , P" = P ))R° for M >_ a,~ > 0 . 

J„ =s(an +1)—s(a„),forM> a >0 and a 18  <M 

J„=0 for an = M oran`n > M. 

J,, = s(a") / a for a,, = 0 and a "` <M. 	(4.10) 

The second definition means that channel cannot be scanned by given SU to required sensing 

accuracy and hence is of no utility for a given values of K and t. Here an is minimum 

number of secondary users required for satisfactory sensing performance. In the following 

section we state the algorithm 3 based on [24] and [27]. 

4.6 Algorithm 3 with Channel Selection 

1. For every channel n = 1,2...N find minimum number of secondary users, an `n 

required for satisfactory sensing performance that is P' =' h and Pf <0.5. 
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2. For the least allocated SU i.e. m* = arg minl<m<M  U(m) find J = (J„ }n=I 2 N. Find 

n*  = arg max J„ such that Am,e  n for l = 1,2,..L. 
15n5N 

3. If M > an* > 0, proceed to 4 else this channel should be allocated the required 

minimum a'?' secondary users. For this allocation, an ° number of least allocated 

secondary users should be allocated this channel. This should be chosen by sorting the 

occupancy vector U(m) and selecting the first a," secondary users. Proceed to 5. 

4. Allocate n* channel in the allocation matrix A to secondary user m*. 

5. If all the slots in A are filled, output , else go back to 2. 

Repeat both of these algorithms for all possible values of t. t*  = argmax S(A,t) .This is 
15r5M,Mmodr=0 

also the solution for Problem P2. We have provided an optimal solution to problem P2, which 

is a sub problem of problem P1. Now, we can proceed to solve problem P1. With the solution 

of problem P2, denoted D(K) for a specific K, problem Pl is equivalent to 

max C(K, t) = T K 8  D(K, t) 

s.t. 0<K <[T]. 
J 

To solve Problem Pt, we have done simulations for various values of K and obtained the 

value for which the throughput is maximized. 

4.7 Simulation Results 

The system setup is same as in Chapter 2. The sampling rate is p = 6 MHz, the slot duration 

is T = 100 ms, the threshold of detection probability is Ph  =0.9 and secondary users are 

assumed to have a mean SNR of 20 dB between them. SNRns  (SNR from the primary user to 

secondary user on channel n) follows exponential distribution because of the Rayleigh 

channel SNRns while (SNR from the secondary user to its receiver at channel n) is assumed 

to be constant. The mini-slot duration is S = .1 ms. The simulations are done in Rayleigh 

fading channel and the optimal time settings are derived for Rayleigh channels as shown in 

the algorithm 2 unless stated otherwise. 
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For Figure 4.2, it is assumed that N=2, the available probability as Pr(H°)= 0.8 and Pr(H) 

= 0.6, and mean SNR from primary user to both secondary users as yl  = —15 dB in channel 1 

and y2  = —20 dB in channel 2. There are M = 2 secondary users. For Figure 4.3, it is assumed 

that N = 5. For all the other cases, channel n (1 <n :5 N) has a free probability Pr(Hn )= 

1-0.05*n and the average channel gain from the primary user to a secondary user is 

y„ = —20 + n —1 dB as in Chapter 3. The results are compared to soft combining of data using 

Algorithm 1 proposed in Chapter 3. 

When N = 2 and M = 2, from Figure 4.2 we may note that the throughput at the optimal 

sensing time in soft combining is 7.2 bits/sec/Hz as compared to 7 bits/sec/Hz in hard 

combining. The optimal sensing time is 100 in soft combining as compared to 120 in hard 

combining. 

For N = 5 and M = 5, from Figure 4.3 the optimal throughput deteriorates from 24 bits/sec/Hz 

in soft combining to 20.5 bits/sec/Hz in hard combining. In this case, the optimal sensing 

time has also increased from 120 slots in soft combining to 140 slots in hard combining. The 

throughput deterioration has increased in N = 5, M =5 case compared to N=2, M=2 case. It 

may be seen that the throughput is steady at the optimal value. The decrease is very slow at 

higher values of K. This is due to the fact that increasing K greatly increases the accuracy of 

individual decisions thus increasing overall accuracy and counteracting the effect of decrease 

in transmission time. 

The throughput deterioration comes at the gain of only a decision which is binary value being 

transmitted to the fusion centre by the secondary user. It can also be seen that the throughput 

rises with increase in K value initially. This is due to the decrease in false alarm probability. 

Later on, it becomes steady because of the decrease in throughput due to increase in sensing 

time matches the increment caused by decrease in false alarm probability. After this the 

throughput begins to decrease as the increase in sensing time plays the dominant role. This 

behaviour is same as in case of soft combining of data at the fusion center. The optimal 

sensing time is greater by approximately 16% in both figures when hard combining is used 

instead of soft combining. This is due to the fact that there is a loss of data and hence sensing 

performance in hard combining. To compensate for this, sensing time has to be increased. 
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Figure 4.4 plots the variation of throughput for different values of sensing time t for a given 

value of K = 140. From this plot, the optimal value oft can be selected as 35. The throughput 

is lower at low values oft because lower sensing time has decreased the sensing efficiency of 

individual sensor . While for higher values of t, for a given K, spatial diversity decreases 

which is responsible for lower throughput. 

Figure 4.5 and Figure 4.6 compares the throughput obtained by using Algorithm 2 and 

Algorithm 3 for N = 5, M=5 and N = 10, M=5 respectively. It can be inferred that Algorithm 

2 gives zero throughput for values of K < 50 and K < 80 respectively for two cases, while 

Algorithm 3 gives non-zero throughput for the same. Almost equal throughput of 20 

bits/sec/Hz is obtained for both the algorithms for higher values of K. The optimal sensing 

slots in both the cases are 140 . 

Figure 4.7 plots the number of channels scanned for various value of total sensing duration, 

K. It can be seen that as we increase the value of K , higher number of channels can be 

scanned. At lower values of K, channels having higher SNR and greater throughput are 

selected, while at higher values channels having lower SNR and comparatively lower 

throughput will also be selected and scanned by the cognitive radio network. The network 

scans 4 channels at K = 20 which increases to maximum value i.e. the total number of 

primary users which is 10 at K=110. 

In Figure 4.8, impact of number of secondary users on the throughput is shown for N=5 for 

hard combining as well as soft combining. It may be seen that when the number of secondary 

users increases, the optimal network throughput also increases. Interestingly, with a fixed 

value of N, when the value of M further increases beyond a certain value, the optimal 

network throughput seems to be constant. When M increases, the total sensing time for the 

channels also increases, which means that a smaller false alarm probability for each channel 

is expected. When M is large enough, the false alarm probability for each channel is almost 

zero. Using the objective function in P1 with constant probability of detection and near zero 

false alarm probability, it may be noted that throughput reaches to a saturation. 
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Chapter 5 

Conclusion and Future Work 

This thesis attempts to study the emerging topic of cooperative spectrum sensing in cognitive 

radio networks. Multi-band joint detection by a set of narrowband energy detectors is studied. 

It presents a comparative analysis of cooperative spectrum sensing techniques using energy 

detection in AWGN and Rayleigh fading environment. Both hard combining and soft 

combining of data at the fusion centre is considered. Algorithms to determine the optimal 

sensing time durations have been developed and analysed. The throughput deterioration while 

going from soft combining to hard combining and from AWGN to Rayleigh Fading 

environment has been studied. 

Chapter 1 presents an overview of the properties of cognitive radio such as adaptability and 

agility and various tasks a cognitive radio must perform. It explains the importance of 

spectrum sensing in a primary -user-secondary user context and introduces various techniques 

used for spectrum sensing such as energy detection and cyclostationary detection and 

highlights their advantages and deficiencies. The need and elements of cooperative spectrum 

sensing is also explained. 

In Chapter 2, we have considered joint multi-band detection by a set of narrowband energy 

detectors. The framework for the same was proposed and the optimization problem was 

proved to be convex in practical constraints over false alarm and detection probability. It has 

been concluded that the multiband joint detection algorithm with optimized thresholds and 

optimizing number of secondary users scanning each band can achieve a much higher 

opportunistic rate than that achieved by keeping uniform threshold and uniform number of 

secondary users for each band. With the proposed framework, the same aggregate throughput 

can be attained for a given aggregate interference with lower number of cooperating energy 

detectors. This in turn will lower the cooperation overhead. The proposed multiband joint 

detection makes better use of the wide frequency band by balancing the conflict between 

improving spectral utilization and reducing the interference. 
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In Chapter 3, the sub-optimal multi-channel cooperative spectrum sensing strategies in 

cognitive radio networks in Rayleigh fading environment is studied. We have given strategies 

to determine the total sensing time and distribution of the total sensing time to different 

channels in cooperative soft-decision spectrum sensing. Considering the slotted-time sensing 

mode, we converted the initial non-convex mixed-integer problem into convex mixed-integer 

sub problems, and provided a low-complexity algorithm to achieve the sub optimal solution 

of the initial problem. We have also seen the degradation of throughput and increases in 

optimal sensing time when the channels are assumed to be Rayleigh Fading which is more 

realistic than the AWGN assumption. 

Chapter 4 discusses the multi-channel cooperative spectrum sensing strategies with hard 

combining used at the fusion center in Rayleigh fading channels. Heuristic algorithm has 

been designed to determine the allocation matrix which determines for each secondary user 

the list of all the channels to be scanned and the optimal sensing time for a channel and 

duration of sensing slot time. An algorithm which does channel selection out of the large 

number of available channels for limited number of secondary users based on signal to noise 

ratio and the throughput is also proposed. The throughput of the algorithm is compared to the 

case of cooperative soft-decision spectrum sensing considered in Chapter 3. We conclude that 

optimal sensing time increases and the throughput decreases while going from soft combining 

to hard combining as well as from AWGN to Rayleigh fading environment. 

Optimal multi-channel strategy for energy constrained cognitive radio network [26] can be 

designed. The sensing time determination to maximize the throughput keeping the energy 

consumption and the interference constrained jointly should be addressed. .The problem can 

also be studied from a game theoretical point of view, in which each secondary user is 

assumed to be selfish but rational. This work is done for infrastructure based network in 

which each secondary user reports to the fusion centre which determines the presence or 

absence of primary user. This could be extended to cognitive radio networks not having a 

fusion centre too as done in [31]. In the case of hard combining, the data sent form secondary 

users transmitted to the fusion centre are binary unlike the complete data statistic sent in soft 

combining. The case in which quantized soft combining where the decision statistic is 

quantized in more than two levels as done in hard combining should be considered [42]. 
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