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ABSTRACT 

In present study an attempt has been made to classify the craters to check the possibility of 

finding planetary water-ice deposits For this purpose, three different approaches (i.e., 

polarimetric, pattern analysis and fractal) have been applied for understanding the scattering 

behaviour of lunar surface. The polarimetric approach, m-S decomposition is used to identify 

craters having high probability of planetary water-ice deposits and then based on pattern 

analysis of CPR pixels a method is described to classify craters into two categories type-I and 

type-II. Type-I craters are those craters which have high probability of having planetary 

water-ice deposits and type-II craters are those craters which have low probability of 
having planetary water-ice deposits. This classification is based on degree of polarization 

and relative phase between LH-LV receptions. Different polarimetric parameters (child 

parameters) are calculated and statistics of these parameters are calculated for different 

craters. 

Further in this study unsupervised classification of mini-SAR images based on the surface 

texture is carried out. Texture parameter is measured with the help of fractal dimension (D), 

which lies in the range 2.0 and 3.0. Based on fractal values, i.e., `D', various regions of lunar 

surface is clustered in different classes. Using moving window approach, the local fractal 

dimension `D' is estimated with Triangular Prism Surface Area Method (TPSAM) and 

Differential Box Counting (DBC) method for different window sizes and corresponding 

fractal maps from TPSAM method are used for classification purpose. Different window. 

sizes may give different results thus the window size is very important for classification and 

hence effect of window size on fractal dimension and on Moran'sl is discussed. The K-means 

classifier has been used for classification which clusters the pixels according to `D' values. 

Although fractal dimension is able to provide the texture information very efficiently but it 

cannot uniquely identify all the classes. In order to remove this discrepancy, analysis based 

on spatial autocorrelation has been performed. For this purpose local value of Moran's I is 

calculated by varying window sizes, Moran's I gives spatial autocorrelation of pixels. Spatial 

autocorrelation measures the correlation of a variable with itself through space. Spatial 

autocorrelation can be positive or negative. Positive spatial autocorrelation occurs when 

similar values occur near one another. Negative value of spatial autocorrelation occurs when 

dissimilar values occur near one another thus classification based on Moran's I and fractal 
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dimension `D' can give classification results with enhanced accuracy. Classification results 

are studied to draw conclusions, further the classification results are compared against images 

generated by m-S decomposition of mini-SAR images. 
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Chapter 1 

Introduction 

In recent years advancement of rocket science and remote sensing technology has lead 

humans to explore its near space for the search of life and essential components needed to 

support life. In space science Moon holds a very important place as it is closest terrestrial 

object from Earth. Moon can be very good prototype for studying other terrestrial objects. In 

past there have been many missions to Moon for collecting data of lunar surface to study its 

properties and to analyze the possibilities of finding planetary water-ice deposits on lunar 

surface. 

Chandrayan-I was one such attempt to study and collect data on lunar surface by Indian 

Space and Research Organization (ISRO) [1, 2]. Mini-SAR was a microwave imaging sensor 

onboard Chandrayan-I. A Miniature Synthetic Aperture Radar (mini-SAR) system 

illuminates a scene with microwaves and records both the amplitude and the phase of the 

back-scattered radiation, making it a coherent imaging process at centre frequency 2.38 GHZ. 

Mini-SAR is hybrid polarimetric Radar and it stores data in four channels from which 

complete scattering matrix can be calculated, Spudis et.al [2, 3, 4]. The received signal is 

sampled and converted into a digital image and sent to ground stations. This image is further 

analyzed on ground stations for acquiring different information about lunar surface using 

combination of image processing techniques, microwave and remote sensing concepts. It was 

first attempt of microwave imaging of lunar surface all earlier attempts were based on optical 

imaging technique; data recorded by mini-SAR provides unique opportunity to study the dark 

areas of the lunar craters on Moon [3, 4].. Since the temperature on the Moon varies from - 

387 Fahrenheit (-233 Celsius), at night, to 253 Fahrenheit (123 Celsius) during the day time 

[5]. Regions where sunlight reach in day time become very hot thus there is no possibility of 

finding planetary water-ice in any form i.e. frozen or liquid form, in such regions hence study 

of permanently shadowed regions is necessary where temperature remains very low. As 

microwaves can penetrate in the surface and are independent of solar illumination, it would 

be possible to reach the permanently shadowed regions of the lunar craters especially polar 
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region craters and to arrive at further conclusive evidence on the possibility of planetary 

water-ice in the permanently shadowed zones of lunar craters. 

1.1 Motivation 

Among the various studies, it has been shown that polar region of lunar surface may contain 

planetary water-ice deposits [3, 5-8]. Though, . detailed, conclusive and extensive evidences 

are still needed for the claim. As it is possible to find planetary water-ice in polar region 

craters, so an extensive and detailed study of polar craters is needed to identify possible 

regions where possibility of finding planetary water-ice is higher. Further classification is an 

important step towards the retrieval of geophysical parameters. Classification scheme, based 

on textural and polarimetric property of mini-SAR data can prove useful for understanding 

the 'characteristics of the lunar surface and crater regions, particularly for the physical 

assessment for the type of scatterers and different scattering phenomenon associated with 

them. Thus classification can be an important step towards understanding the lunar surface 

characteristics. Previous analysis of mini-SAR images has revealed presence of mixed 

planetary water-ice on permanently shadowed regions of polar craters based on the 

assumption that CPR>1 occur for those regions where lunar surface contain planetary water-

ice deposits but further studies revealed that CR>l can also occur due to high roughness of 

lunar surface[2-4] (Fig.1.1). The two regions where CPR>l is due to dielectric mixing i.e. 

due to presence of planetary water-ice or because of surface roughness, can be differentiated 

by scattering mechanism associated with them. Dominant volume scattering behaviour is 

expected for dielectric mixing and dihedral or double bounce scattering behaviour is expected 

for surface roughness. 

High CPR caused by surface roughness 	High CPR caused by ice/volume scattering 
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Thus the objective of this study is to determine the different scattering mechanism associated 

with lunar surface. Further a textural analysis on mini-SAR, image is performed to classify 

lunar surface using fractal and spatial correlation coefficients. Polarimetric SAR images are 

widely used for terrain classification for Earth as they can extract geometrical properties 

(size, shape, orientation distribution and spatial arrangement of objects) and physical 

information about the target like symmetry, non symmetry and irregularity of the target [9] 

but classification of lunar surface based on texture properties of mini-SAR images is not 

performed so far, so motivation behind taking up the task of terrain classification of Moon 

surface using mini-SAR data is to explore different terrain types of lunar surface along with 

learning different approaches to classify satellite images. Before textural analysis, a statistical 

analysis is performed to identify and develop a method based n pattern analysis to identify 

craters having higher probability of finding planetary water-ice deposits with the aid of `m-S' 

decomposition technique results. 

1.2. Aim and objective of the thesis 

Aim of this dissertation work is to _generate `m-S' maps for studying different scattering 

mechanism associated with lunar surface. Analyzing different scattering mechanism 

associated with craters of polar regions to classify them in two categories, one having 

dominant volume scattering phenomenon and another having dominant double bounce and 

surface scattering phenomenon, in this thesis these two types of craters are called type-I and 

type-II respectively, since type-I craters have dominant volume scatterers so they have 

higher probability of finding planetary water-ice. To perform a statistical analysis of lunar 

craters and to develop a method based on pattern analysis to identify type-I and type-II of 

craters, to generate a land cover classification map of lunar surface using textural properties, 

The objectives of this thesis are: 

The main objective of thesis is to understand the scattering behaviour of lunar surface with 

polarimetric as well as other methods to understand the possibility of planetary water-ice 

deposits on Moon surface. For this purpose, several sub tasks are formulated which are as 

following 

• Calculation stokes matrix from raw mini-SAR data 
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• Calculation and study of various child parameters which describes scattering 

phenomenon 

• Study-of `m-S' decomposed images to understand scattering phenomenon. 

• Study of various statistical models to fit data points to a distribution function for 

understanding the distribution nature of mini-SAR data. 

• Develop a method based on density functions/pattern analysis to differentiate craters 

• Study of various methods for extracting textural information for terrain .classification. 

• Perform unsupervised classification on textured images 

• Study the role of window size on classification. 

1.3. Organization of the thesis 

This thesis consists 5 chapters. 

In chapter 2 brief review is presented, this chapter explains basics of radar polarimetry i.e. 

wave and scattering concepts. It includes mathematical formulations and theory about 

different scattering matrices to represent radar scattering, general concepts of fractals and 

spatial correlation and their previous application, description of different classification 

strategies. In this chapter different scattering phenomenon is also explained. 

In chapter 3 details about the methodology adopted for this thesis is presented. It presents 

description of test site, along with the description of used mini-SAR data and software. Data 

processing techniques which are used for this thesis is described. Methods to determine child 

parameters are explained in detail. Then steps used for differentiating two crater types based 

on `m-6' value and then RGB decomposition using `m-S' is explained. This chapter also 

includes the methodology used for statistical and texture analysis. Methods to calculate 

fractal dimension (D) and Moran'sI are discussed in detail then methodology to generate 

fractal map and Moran'sI map is discussed. Classification steps adopted using these texture 

images is presented. 

In chapter 4, .implementation, results and discussion are presented. Implementation and 

results of all the methods discussed in methodology (chapter-3) are explained. Child 

parameters are calculated and their statistics and significance are discussed. Then 

implementation of `m-S' technique is presented along with its results, some of the craters 

which are identified as type-I and type-II are shown. Results of GoF tests are shown and best 

fit distribution function to represent CPR data is determined. Then range of position and 

shape parameters of density functions representing type-I and type-Il craters are determined. 
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Implementation of textural analysis is presented; Fractal and spatial auto correlation maps are 

shown, classified images for a specific region is shown. Effect of window size on texture 

property is discussed. 

Finally concluding remarks are.presented in chapter 5 
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Chapter 2 

Brief Review 

2.1. Basics of Radar Polarimetry 

- In these sections basics of radar polarimetry concepts, hybrid architecture of radar is 

discussed along with classification techniques. There are two main conceptual formalisms in 

polarimetry. The first one is a real space formalisms based on the Stokes Vector for the 

description of the polarimetric properties of waves for the polarimetric description of the 

scatterers. The second one is a complex space formalism based on the Jones vector for the 

analysis of wave polarization for the description of the scattering phenomenon. Both 

formalisms are equivalent and can be changed unambiguously into one another. Since most 

of the child parameters derived are real in nature and don't have any phase associated with 

them, so in this study real domain formalism is chosen. In following sections Stokes vector 

and Jones vector are discussed along with polarization concept, which is the basis of radar 

polarimetry. 

2.1.1 Polarization 

For an EM monochromatic plane wave, the polarization can be described in terms of the 

orientation of the electric field vector w.r.t. the plane perpendicular to the direction of 

propagation, as a function of time. The electric field component can be resolved into two 

orthogonal sinusoidal waves namely 'x' and 'y' component having different amplitudes as 

given in Eq. (2.1) A plane electromagnetic wave is fully characterized by the parameters• 

(magnitude, phase, and direction) of its electric vector E(r, t) given by 

E(r,t) = E x z+ E,.$' = (ax .exp(J 8x )z+a,,.exp(j5,.)5).exp(.j(wt —kz) 	(2.1) 

Polarization of microwaves can be explained easily with the help of polarization ellipse. 

Polarization ellipse is defined as locus of the tip of electric field vector as shown in Fig.2.1 

The shape and orientation of the ellipse together with the rotation sense of the field vector, 
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x 

Figure: 2.1 Polarization Ellipse [10[ 

When looked along the direction of propagation can describe the polarization state [10]. To 

completely able to describe the polarization state we need orientation angle b and tilt angle i. 

They are described as follows: 

• The orientation angle cb is defined as the angle between the major axis of the ellipse 

and the x- axis, expresses the inclination of the ellipse and is limited between 00  and 

180° 

• The tilt angle i, defined as the ratio between two minor semi-axes of the ellipse (a, b) 

describes the shape of the ellipse. 

tanr=±b 
a 	 (2.2) 

The polarisation sense; given by the sign of r (the positive value applies for right-

handed polarizations) 

There are three types of polarizations : linear , circular and elliptical depending on the values 

of above parameters. They are summerized in table-2. 1: 

Table-2.1 
Polarization descriptors for characteristic polarization states 1101 

Horizontal Vertical 	Linear 45° - Linear 	Left 	Right 

135° 	circular 	circular 

• Orientation 	90 "" x 	 0 	45 	,` • 135`r 	0 to 180 	0 to 180' 
Tilt angle ti 	 0 	0 	0 	0 	45 	-45

• 
 

Complex ratio p 	{ Q x 	 op 	 l 	t s: i 1, 	5 	I 
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2.1.2 Jones vector 

Jones vector E,,, may be defined as [11] 

E  _ Ex = J exp(JSx) = E  11 
Ey 	Ey exp(j8y) 	X[PJ 	

(2.3) 
 

Where p is called polarization ratio, defined by [11] 

	

p = Ey  = I  E`,I I  exP(i{S„ —8}) 	 (2.4) 
x 	xl 

2.1.3 Stokes vector 

For a quasi monochromatic wave the Stokes vector formulation is used, which is defined by 

go eZ  
g1 	e2  sin 20 cos 2r 	

(2.5) 
g

_ _ 

 gZ Ie2 cos2øsin2rl  
[g3] L  e2  sin2r 

go  is the total intensity, g, is the difference of the intensities in both polarizations, while g2  

and g, contain the phase information [12]. These four parameters are not independent for a 

fully polarized wave, since in that case the following identity holds: 

g0 =g1 +g22  +g32 
 ( 2.6 ) 

2.2. Hybrid Polarimetry and mini-SAR 

To date all conventional dual-polarized radars (and also all quad pol radars for that matter) 

are designed such that the polarization of receiver antenna agrees with the transmitted signal. 

It follows that there always must be a "like-polarized" and a "cross-polarized" channel in the 

receiver, i.e. for transmitted H-polarized wave receiver antenna should be H-polarized for 

"like-polarized" reception and V-polarized for "cross-polarized reception". A hybrid-polarity 



synthetic aperture radar (SAR) is a dual polarized system that transmits circular polarization, 

either left (LC) or right (RC) and receives coherently in orthogonal linear polarizations, 

horizontal (H) and vertical (V). 

A generic diagram of the hybrid polarity architecture is shown in Fig.2.2. One simple 

approach to this type of mixed mode radar is based on a dual-linearly-polarized antenna, 

which will radiate circular polarization, if the H and V feeds are driven simultaneously at 900  

out of phase [4]. Mini-SAR a microwave imaging sensor on-board Chandrayan-I mission of 

ISRO was designed to gather data on the scattering properties of polar region of the Moon 

and it had this hybrid polarimetry architecture [2, 4]. 

Mini-SAR was a single frequency (2.38 GHz), hybrid polarimetry imaging radar designed to 

collect information about the scattering properties of the permanently dark areas near the 

lunar poles at optimum viewing geometry[1, 2, 4]. Additionally, mini-SAR was designed to 

map the terrain of these areas, invisible to optical imaging sensors through a side looking 

SAR mode and nadir looking scatterometer mode. The specific instrument parameters and 

data collection modes are shown in Appendix-I [2]. Mini-SAR mapped both Polar Regions 

systematically with a resolution of 75 m/pixel which is of sufficient quality.  to identify areas 

of unusual scattering properties. Thus, mini-SAR measurements are expected to provide RF 

data of better resolution to classify lunar surface and more conclusive evidence of presence of 

deposits of planetary water-ice deposits in permanently shadowed regions. 

900 	Transmitter & 
waveform 

Timing and 
V H 	 control 

Antenna 
IHI 

	

H Receive 	H Processor 	
HV, 

X 
J- 	

V Receive 	V Processor 	IVi 

Figure: 2.2 Generic hybrid polarimetry architecture 141 
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2.3 Different scattering mechanism 

N 	 -' 

Canopy layer 	 Double bounce 	 Rough surface 

Figure: 2.3 Model of different scattering mechanism 

Different scattering phenomenon can be described by a three-component scattering model 

suited for classification and inversion of air-borne and space-borne polarimetric SAR image 

data this model can be also applied too mini-SAR data. This scattering model presents the 

scattering phenomenon as the contribution of three scattering mechanisms (Fig.2.3) [ 13] 

• Volume scattering: Modelled by a set of randomly oriented dipoles. 

• Double-bounce scattering: Modelled by scattering from a dihedral corner reflector. 

• Single-bounce scattering: Modelled by a first-order Bragg surface scatterers. 

For the case of Earth volume scattering occurs for diffused targets such as trees, forests, 

double bounce also known as dihedral scattering takes place where two walls are inclined to 

each other e.g. building walls. Surface scattering takes place at large plane fields, roads etc. 

These scattering mechanisms can be resolved using `m-S' decomposition technique for mini-

SAR images; it is discussed in section-3.4. 

2.4 Statistical modelling of satellite data 

Pixel values of any satellite image can be assumed of an outcome of a random process [14, 

15]. When the resolution of images are fairly low (i.e. larger area/pixel) and surface contains 

variety of terrains and objects then from central limit theorem this random process can be 

assumed Gaussian without any harm but when resolution increases (i.e. lower area/pixel) and 

surface doesn't show much variety then Gaussian assumption is most likely to fail as in the 

case of mini-SAR images. Thus the need of modelling the distribution behaviour of data is 

an important step for analysis purpose. Since, lunar surface doesn't vary much compared to 

mini-SAR image resolution, 75mx75m/per pixel [2]. 
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Statistical modelling of radar data in terms of probability density functions (PDFs) is an 

important exercise which forms the basis- of many radar image analysis techniques. 

Experience with single-polarization radar data has shown that they are well suited for 

parametric modelling, and a number of distribution families have been proposed for the 

purpose. Some models are based on the simplistic complex Gaussian assumption of the 

scattering coefficient distribution, such as the Rayleigh distribution for single-look amplitude 

data, the exponential distribution for single-look intensity data, and the gamma distribution 

for multilook intensity data [14]. Other distribution models, such as the Weibull and the log-

normal, Beta etc. provide added flexibility and the ability to model data with non-Gaussian 

characteristics [15, 16]. The goodness of fit of a statistical model describes how well a 

statistical model fits to a set of observations. Measures of goodness of fit typically summarize 

the discrepancy between observed values and the values expected under the model in 

question [17, 18]. Such measures can be used in statistical hypothesis testing. In this 

dissertation goodness of fit test is used to determine nature of distribution of pixels in an 

image or in a local region of interest. 

Goodness of Fit (GoF) test 

There exist a number of GoF tests but the following three tests were studied for the purpose: 

i) Kolmogorov—Smirnov test [19, 20] 
ii) Anderson—Darling test [20, 21] 
iii) Chi Square test [20, 22] 

Among these Chi-square test is most popular and efficient test for unbinned data. 

Performance of GoF test for small data size reduces significantly because for small data 

samples, asymptotic approximations do not hold [17, 18]. Thus care must be taken to ensure 

there are sufficient data points are in sample. Detailed description of these tests are given in 

section-3.5 

2.5 Classification schemes 

Classification of satellite images mean clustering of like pixels based on their SAR, textural 

or any other property. There are two types of classification techniques: supervised and 

unsupervised. Supervised methods require the user to collect samples to "train" or teach the 

classifier to determine the decision boundaries in feature space, and such decision boundaries 

are -significantly affected by the properties and the size of the samples used to train the 
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classifier. On the other hand, unsupervised classifiers "learn" the characteristics of each class 

directly from the input data. Since for lunar surface we don't have any training data so for the 

classification purpose of lunar surface unsupervised classification technique is used. So in 

following section supervised classification technique is discussed in brief. 

2.5.1. Supervised classification 

Supervised classification involves using a priori knowledge of data to "train" computer 

software to identify classes in an image [23]. The supervised approach to pixel labelling 

requires the user to select representative training data for each of a predefined number of 

classes [24]. It- is assumed that the classification (the definition of the groups and their 

characteristics) has been defined before any previously unknown objects were identified. 

Steps for supervised classification: 

i. Decide the set of ground cover types into which image is to be segmented. These are 

called information class. The information classes are determined by ground truth 

survey, maps or personal experience, 

ii. Chose representative pixels on image from each of the desired set of classes. These 

pixels are called training samples. 

iii. Estimate the statistical parameters for each required class using training samples. 

iv. Select proper decision rule for classification. 

v. Select the classifier, which classify every pixel in the image into one of the desired 

ground cover types (information class). 

2.5.2 Unsupervised classification 

Unsupervised classification is the process in which clusters are generated automatically based 

on natural grouping found in data. Due to this nature the technique is commonly referred to 

as clustering. Unlike supervised classifier, it does not require the selection of training data in 

order to train the classifier. This classifier operates independently and does not require 

interverition of user. Therefore sometimes it may happen that results are unaccepted on the 

basis of failure of user's expectations. 

Steps for unsupervised classification are [25]: 

i. Classify image into number of clusters or group. 

ii. Indentify clusters and assign name to each group. 
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iii. Merge classes (if required). 

iv. Post classification and accuracy assessment. 

Unsupervised classification is of two types: i) K-mean and ii) ISO-data. 

i. K-mean 

K-means unsupervised classification algorithm (Fig.2.4) first assigns arbitrarily initial K-

cluster vectors. The input cluster vectors are then iteratively assigned to closest cluster 

according to the square of the Euclidean distance from the clusters. This is illustrated in (Fig-

2.5), where data pixel `a' is closest to class 3, hence is put in class 3. Each iteration 

recalculates mean (centroid) of each cluster and reclassifies pixels with respect to the new 

means. All pixels are classified to the nearest class unless a standard deviation or distance 

threshold is specified, in which case some pixels may be unclassified if they do not meet the 

selected criteria. This process is repeated until no more "change" in the value of the means or 

the maximum.  number of iterations is reached. The "change" can be defined either by 

measuring the distances the mean cluster vector have changed from one iteration to another 

or by the percentage of pixels that have changed between iterations [26]. 

(start 

Number of clusters K 

Cluster centroid 
calculation 	I 

	

Distance from unknown 	Reassign No 	ti 
pixel to centriod 	I 	clusters 	End 

uroupmg basea on 
minimum distance 

 

Feature I 

Figure: 2.4 K-means algorithm 1261 	Figure: 2.5 Minimum distance classification example 1241 

Merits: 
a. With a large number of variables, K-Means may be computationally faster than 

hierarchical clustering (if K is small). 

b. K-Means may produce tighter clusters than hierarchical clustering, especially if the 

clusters are globular. 
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Demerits [27]: 
a. - K-means is very sensitive to initial starting value of cluster centre. 	- 

b. K-means assumes that the number of clusters is known a priori, which is not true' for 

real world situation. 

c. Does not work well with non-globular clusters. 

ii. ISO-data 

The iterative self organizing data (ISO-data) algorithm represents a comprehensive set of 

heuristic (rule of thumb) procedures that have been incorporated into an iterative 

classification algorithm. ISO-data is a nearest-centroid, non-hierarchical,, clustering 

algorithm.. It performs in the same manner as K-mean but with further refinements by 

splitting and merging of clusters [28]. Iterative class splitting, merging, and deleting are done 

based on input threshold parameters. Clusters are merged if either the number of members 

(pixel) in a cluster is less than a certain threshold or if the centres of two clusters are closer 

than a certain threshold. Clusters are split into two different clusters if the cluster standard 

deviation exceeds a predefined value and the number of members (pixels) is twice the 

threshold for the minimum number of members. Using accuracy of classification result some 

parameters need to be optimized but ground truth data for lunar surface is not available to 

estimate accuracy of classification and its very time consuming when compared to K-means 

algorithm, so K-means classifier is preferred over iso-data classifier. 

Merits: 
a. More robust. 

b. User specific. 

c. ISODATA is self-organizing because it requires relatively little human input. 

d. Clustering is not geographically biased to the top or bottom pixels, since it is iterative. 

Demerits: 
a. The clustering process is time-consuming, because it can repeat many times. 

2.6 Fractals 

2.6.1 Definition and its application' 

The term fractal, given by Mandelbrot[29]. Self-similarity and fractal dimensions are two 

basic characteristics which define fractal. Fractals are widely being used for natural surface 

modelling and analysis purpose [29-35]. Due to complex nature of natural objects and 
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surfaces traditional geometrical objects, viz., lines, circles, cones etc. can not represent them 

[29, 36, 37]. With the introduction of fractal geometry, more flexibility got introduced in 

modelling of natural surfaces with fractal approach. In analysis of satellite images, fractal 

approach is getting more and more attention and it is helpful in various applications [33, 34, 

37]. In order to apply fractal geometry to natural image analysis, Pentland [37] had proposed 

that natural surfaces can be modelled with fractional Brownian motion (fBm) function [35, 

38]. The image intensity I(x, y) follows the fBm process, given by (2:7) 

	

Pr  I(x+Ax,y)—I(x,y) <z = F(z) 	 (2.7) IAxIH 

Where, F(z) is the c.d.f and 0 < H < 1, H E R is the Hurst parameter. In fact the height 

difference, i.e., I(x+h, y+k)--I(x, y) follows the normal distribution with zero mean and 

variance (h2+k2)H  and hence the fractional Brownian surfaces are defined as [39] 

_ z 
P(I(x+h,y+k)—I(x,y) S z)= 	1 	jexp 	z  r  z N  dr 

2- 	(h2  +k Z )" 	 2(h +k) 	(2.8) 

The most important property of fractals, i.e., self-similarity, also called scale independence 

means by magnification or reduction any part of the image can be formed from any part of 

that image [29, 35, 39]. An example of self similarity is shown in Fig.2.6. Though, natural 

scenes are similar to another at some extent but they are not exactly same. So self-similarity 

of natural scenes is limited i.e. they are not truly self-similar rather they are statistically self-

similar. The second property of fractals, i.e., fractal dimension (D) is the measure of 

complexity of the fractals [35, 39, 40]. Though there exists multiple definition of fractal 

dimension but most versatile definition is self-similarity dimension is considered as the 

fractal dimension [29], which is defined as 

 

(2.9) 

Where, 

Nr  represents the number of similar parts of an object scaled down by the ratio r. 
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Figure: 2.6 Illustration of self similarity [411 

2.6.2. Significance of Fractals 

Fractal dimension is more important for image analysis in terms of estimating irregularities or 

roughness. The basic thing is that fractal dimension `D' gives an idea of irregularity or 

roughness and using local fractal dimension, we can get an index ('D') value of roughness at 

local level. As it is very common to say rough, very rough, highly rough and so on for 

various land classes; this terminology ends with `D' values which map these terms into a 

range between 2.0 and 3.0 depending on terrain properties [35, 37, 40]. Local variations 

computed in `D' values can be used as texture measure for clustering of images. The basic 

idea is that various land cover types may have their characteristic texture and their roughness 

could be described by `D' values. `D' could be.  considered as the fractal signature of the land 

cover types if there were a one to one relation between the land cover texture and a unique 

`D' value [34, 35]. However, this assumption is only hypothetical because fractal dimension 

is not a unique feature, i.e. it cannot identify all the different textures uniquely [30, 40, 42]. 

Methods to calculate Fractal Dimension 

In order to estimate the fractal dimension of surfaces a number of methods exist and are listed 
below: 

• Differential Box counting (DBC) method [42, 43] 

0 Triangular Prism Surface Area Method (TPSAM)[44-46] 
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• Isarithm method [35] 

• Fourier spectrum method [35], 

• Two Dimensional variation method (2DVM) [47]. 

Among these methods, the most famous and widely used method is TPSAM besides this 

DBC method is also studied for analysis in present thesis. The advantages of the chosen 

methods for present study over other methods are their feasibility and simplicity to 

implement. Since, these methods are easy to implement hence they are preferred over other 

methods both of these methods are discussed in section-3.4.1. 

2.7. Spatial autocorrelation (Moran'sI) 

However fractal dimension provides a good tool for classification of surface but using fractal 

dimension alone for clustering of land cover classes, it is very difficult to identify different 

classes uniquely i.e., it cannot identify all the different textures uniquely [30, 42,40]. 

Therefore spatial autocorrelation or Moran'sI is introduced to aid fractal dimension to 

classify mini-SAR images. Spatial autocorrelation index maps the pixel clustering properties 

in a fixed range and based on that range, the association can be explained. Moran'sI provides 

an index for determining association of a data point with . its neighbourhood. Spatial 

autocorrelation measures the correlation of a variable with itself through space. Moran'sI can 

be estimated either globally or locally according to the application requirement [48]. The 

global value of 7' represents mutual association of all the pixels in image, which is not of 

much interest for classification purposes. As the image size grows, global `I' become less 

important. On the other hand, local 'I' gives the information about the association of pixels in 

smaller neighbourhood which is important for image classification. Again, local `I' depends 

on the size of neighbourhood as well as on the selection of neighbouring pixels, e.g., m-

neighbourhood. In order to decide the neighbourhood type different cases are to be 

considered, e.g., Rook's case, Bishop's case and Queen's case which implement 4-

neighborhood, diagonal neighbourhood (d-neighbourhood) and 8-neighborhood respectively. 

It is obvious that selection of neighbourhood and hence the connectivity case is important and 

affects the value of ̀ I'. The value of `I' lies between —land +1 such that the positive value 

shows higher association of neighbouring pixels and negative value shows opposite 

association of the pixels. The value 0 indicates no association, i.e., a random sequence of 

pixels [36, 48, 49]. Method for calculating Moran'sI is described in section-3.4. 1. 
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Chapter 3 

Methodology 

In this chapter methodology adopted for data processing and to calculate child parameters are 

presented. Methodology for determining type of craters is presented then a statistical method 

is developed for identification of two craters types. Goodness of fit (GoF) tests are described 

then steps to determine best fit distribution function for CPR pixels are explained. Finally 

methodology for classification of lunar surface using texture properties of mini-SAR image is 

discussed. In this dissertation following software were used: 

ENVI 4.3- Environment for Visualizing Images (ENVI) was for processing mini-SAR 

images. MATLAB 2010b- It is used to write algorithms to calculate fractal images and 

Moran'sl map from mini-SAR images. 

3.1. Material used and study area 

In this dissertation four channel mini-SAR images of Polar Regions (North Pole) is taken. For 

current study four scenes are selected as identified by strip no. FSR CDR LV2 01625_OR, 

FSR CR LV2_01628_OR, FSR CDR_LV2_0163 i_OR, FSR CDR LV2_01633_OR, 

taken on 22/03/2009, 22/03/2009, 23/03/2009, 23/03/2009 respectively. Fig.3.1 is a Google 

Earth image of North Pole of Moon, in Moon explorer view of Google earth to view location 

of these four scenes on Moon. 

Figure: 3.1 North Pole image of Moon (Google Earth in Moon explorer) 
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3.2. Data Processing 

Mini-SAR data was formatted and stored in a Planetary Data System (PDS) compliant 

standard where each pixel in an image strip consisted of 16 bytes data in four channels of 4 
bytes each as 1L1112, ILVI2, Real (LH LV*) and Imaginary (LH LVr)[2-4]. Meaning of the 

notation LH means left handed transmission (L) and horizontal reception (H). The first two 

channels represent the intensity images for `horizontal' and `vertical' receive, respectively. 

The last two channels represent the real and imaginary components, respectively of the 

complex value for the cross power intensity image between the `horizontal' and `vertical' 

receive. These four channel raw data is used in this dissertation to analyze and classify lunar 

surface. 

3.2.1. Stokes Vector 

Four channel raw data ILHI2, ILVI2, Real-  (LH LV*) and Imaginary (LH LV*) are directly 

received data by mini-SAR sensor data without any processing. These data were used for 

deriving stokes vector for each pixel [2-4]. Stokes vector contains four parameters. These 

parameters can be described as: 

• First parameter (SO): Total received power i.e. Sum of total power in inphase channel 

and in quadrature phase channel 

. • Second parameter(SI): Difference of power in inphase channel and in quadrature 

phase channel 

• Third parameter (S2): Real part of cross channel received signal. It is important for 

retrieval of contained phase information. 

• Fourth parameter (S3): Imaginary part of cross channel received signal. It is also 

important for retrieval of contained phase information. 

Several useful parameters follows from stokes vector. Some of the important parameters are: 

degree of polarization (DoP or m), circular polarization ratio (CPR), LH-LV relative phase 

(b) etc. Where, DoP gives information associated with polarized and diffuse scattering 

phenomenon, CPR represents scattering associated with volume scattering phenomenon and 

dihedral reflection (volume scattering is largely due to planetary ice and multiple reflection). 

Stokes vector can be derived using Eq. (3.1) for each pixel [2-4] 
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SO =(I ELKI 2+ IELVr 2 ) 

S"1 = (I ELH 2-IELVI 2 ) 

 

S2  = 25R(ELHELV) 

S3  = —2 (ELH ELV) 	 (3.1) 

Where the 'ELH' represents complex voltage received by the channel with left-circular 
transmit and horizontal polarization receive, ̀ EL y' represents complex voltage received by the 
channel with left-circular transmit and vertical polarization receive, * indicates complex 
conjugate, <> represents the ensemble average. 

3.2.2 Phase Calibration 

Mini-SAR data was found to have a phase shift of 45° in the anti-clock-wise direction that 

resulted most of the lunar surface showing volume scattering characteristics which is not true. 

A phase correction for generating stokes vector's 3rd  and 4th  parameter is need to be done on 
Mini-SAR data to compensate for this phase shift before the data is processed for calculating 

any child parameters. Equations (3.2) and (3.3) show method for phase calibration for third 

and fourth Stokes' vectors. In Fig. 3.2(a and b), histogram for uncalibrated and calibrated S is 

plotted, we can see that histogram shifts by 45° in calibrated graph of S. 

Re (LH LV*)°ai;b = Re (LH LV*) cos 45° - Im (LH LV*) ; sin 45° 	(3.2) 

Im (LH LV*)°al;b = Re (LH LV*),,,, sin 45° + Im (LH LV*) un  cos 45° 	(3.3) 

Where subscript, un stand for uncalibrated data. 

a) Ullealibrated LH-LV relative 'phase 	 b) Calibrated LH-LV relative phase 

Figure: 3.2 Histogram of LH-LV relative phase (S) 
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3.3 Generation of child parameters 

After the phase calibration stokes vector can be, used to determine various parameters as 

discussed in previous section. Which give different polarimetric information regarding 

scattering nature of surface, these parameters are called child parameters. Following 

equations explain how child parameters can be calculated from stokes vector [2, 3, 4] 

• Degree of Polarization (m): It is fundamentally related to entropy (E). Degree of 

polarization (DoP) is a quantity used to describe the portion of an electromagnetic 

wave which is polarized. A perfectly polarized wave has a DoP of 1, whereas an 

unpolarized wave has a DoP of 0. A wave which is partially polarized, and therefore 

can be represented by a superposition of a polarized and unpolarized component, will 

have a DoP somewhere in between 0 and 100%. DoP is calculated as the fraction of 

the total power that is carried by the polarized component of the wave Eq. (3.4). 

mL _ (S; + SZ + S; 
)~ ' 2 /So 	 (3.4) 

• Degree of Linear Polarization (ml): This is indicator of volume vs 

subsurface/surface scattering. It gives a measure of power in linearly polarized 

component of electromagnetic wave. 

mL _ (S; + SZ )uz /So 	 (3.5) 

• Relative Phase: This is a sensitive indicator of scattering mechanism associated with 

surface. A distributed S occurs for dominant volume scatterers, clustered around +90° 

and around -90° reflects double bounce and surface scattering mechanism 

respectively. 

S =tan' S3/S2 	 (3.6) 

• Degree of circular polarization (me): me is positive for right-handed circular 

polarization and negative for left-handed circular polarization. Together with linear 

polarization ratio it gives nature of polarization in a completely polarized r partially 

polarized wave. It gives a measure of power in circularly polarized component of 

electromagnetic wave. 

mC = S3/So  (3.7) 
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• Circular Polarization Ratio (Pc): This is indicator of scattering associated volume 

scattering phenomenon along with dihedral scattering for µ,,>1 

PC = (S0 - S3 )A(SO + 53) 	 (3.8) 

• Linear Polarization ratio: It gives ratio of polarized power contained in horizontal 

component and in vertical component. 

Pc = (So - S1)i(S0 + Sr) 	 (3.9) 

3.4 Methodology for `m-S' decomposition 

`m-8' decomposition presents a method to determine type of scattering phenomenon 

associated with a region. Models of different scattering mechanism are discussed in section-

2.3, Fig.2.3. 

• Volume scattering: Modelled by a set of randomly oriented dipoles. 

• Double-bounce scattering: Modelled by scattering from a dihedral corner reflector. 

• Single-bounce scattering: Modelled by a first-order Bragg surface scatterer. 

Degree of polarization (m) can be calculated using Stokes parameters using Eq. (3.4). Degree 

of polarization of a scattered wave provides information on the randomness of the scattering 

phenomenon from natural targets [50, 51], because value of 'm' depends on the effect of 

multiple reflections. Hence, degree of polarization value could be used as an important factor 

for _classifying images. For example, the bare surface or buildings have high degree of 

polarization values because there are only simple reflections, while the forest or pastures have 

low values because it contains various multiple reflections. Scattering decomposition of 

polarimetric mini-SAR data is done to understand the predominant scattering type from a 

single or averaged resolution cell. It is known that buried water ice on lunar surface exhibits 

volume scattering phenomenon and only due to this reason they also have CPR> 1. Apart 

from CPR and degree of polarization relative LH-LV phase (b) are also important parameters 

to study the scattering mechanisms associated with lunar surface. The `m-8' together 

indicates the type of scattering mechanism associated with the target. For higher m value 

along with 'S' values close to -900  and +900  indicates `surface' and `double-bounce' 

scatterings respectively, where a distributed values of S in a region indicate `diffused' 

scattering mechanism. 
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If, we intersect the regions having CPR>1 with regions having volume scattering 

phenomenon we get regions having high probability of planetary water-ice particles. Because 

it is explained by Spudis et.al [2-4] that regions having possibility of planetary water-ice 

particles have CPR> 1 and such regions exhibits volume scattering phenomenon. Thus we can 

also say those regions which do not exhibit dominant volume scattering phenomenon cannot 

contain planetary water-ice particles. 

`m-S' decomposition gives fractions of power contained in different scattering phenomenon. 

Using Eq. 3.10-3.12 fraction of power in surface, double bounce and in volume scattering 

mechanism can be calculated. Further using these three values as source for three primary 

colours (RGB) we get a coloured image. 

.{' 	 S0xmx 1—sin(5) 
Jsurface(R) = 	2 	 (3.10) 

{~ 
	
= 

SOxmx l+sin(S) 
✓ double-bounce(B) 	 2 

	
(3.11) 

J voltnnc (G) = 	sox (1— in) 
	 (3.12) 

Where, So is the first element of Stokes vector and `m' and _`8' are child parameters derived 

from stokes vector and have their usual meanings. For possibilities of planetary water-ice 

particles i.e. dominant volume scattering 

,/volume > fdouhle-hunce+js•urface 
	 (3.13) 

Eq. (3.13) can be solved to get Eq. (3.14) 

1—sin(S) 1+sin(S) 
PIM71M 
	

3.14 
2 	2 	

+ ( 3.14 ) 

Eq. (3.14) satisfies for the value of m<0.33, however there isn't any damage done if m=0.35 

is taken as threshold value to determine dominant scattering mechanism. For diffused 

scattering phenomenon DoP should have value lesser then 0.35 and `S' should have 

distributed histogram for that region. So, if a pixel belongs to a ROIs which has distributed S 

and satisfies the conditions CPR>1 and' m<0.35 has higher possibility of having planetary 

water-ice particles. Thus applying the conditions stated above, a flow chart is developed for 
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identifying type of scattering behaviour of crater and thus to differentiate type-I craters and 

type-II craters. 

Determine Stokes Vector 

Generate DoP (m) and Delta 

maps 

Select ROIs from crater regions 

If for large no of pixels 

in a ROI m<0.3 5 & 
CPR>1 

cRAL 

Date..L 	L 

ROOPO ~ 

No 	It's a Type-II Crater 

Yes 

If histogram of delta for 	 No _ I It's a Type-II Crater 
that ROI is distributed 

Yes 

It's a Type-I Crater 

Figure: 3.3 Flow chart for differentiating type-I and type-II craters 
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3.5. Statistical analysis of mini-SAR data 

This section first explains methodology adopted for determining best fit density function and 
the steps followed for the pattern analysis techniques to differentiate two crater types based 

on distribution behaviour of CPR. Circular polarization ratio (CPR) is an important parameter 

in study of lunar surface. As introduced earlier in section-1.1 that initial conclusion of 
Chandrayan-I mission was that regions having CPR>1 will be regions having planetary 
water-ice particles mixed in lunar surface but further investigation and results proved that 

CPR>l can arises also in regions which are highly rough in nature and exhibits double 

bounce scattering phenomenon [2-4] So, it's not possible to say with conclusively that a 
region has CPR>1 is due to frozen ice or due to rough nature of surface, pixels having 

CPR>1 value are found primarily in craters regions, (Fig.3.4 is a cropped image for CPR of 
scene "FSR CDR LV2_01633 OR" showing abnormal behaviour of CPR pixels in crater 

regions, red pixels are masked for CPR>1), so first step for developing the pattern analysis 

technique to identify different crater types is determination of best fitted distribution function 

for CPR pixels in crater regions. Also, CPR is a very important parameter in study of lunar 

surface. So, it's important to study distribution behaviour of CPR pixels and to determine best 

fitted 'distribution function to represent it. Best fit density function can be determined using 

goodness of fit tests as discussed in section-2.4. In this section methodology to perform 
goodness of fit test is presented. 

Description of GoF tests 

The three GoF test studied for determining the fitness of a distribution are: 
i) Kolmogorov—Smirnov test [19, 20] 
ii) Anderson—Darling test [20, 211 
iii) Chi Square test [20, 22] 

Figure: 3.4 CPR image of a small region from scene "FSR CDR LV2 01633 OR", red colour pixels 
shows pixels having CPR>1 
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i) Kolmogorov Smirnov test 

Kolmogorov-Smirnov (K-S) test can be described as it's based on the empirical cumulative 

distribution function (ECDF). Given N ordered data points YI, Y2, ..., YN, The ECDF is 

defined as (3.15) 

EN  =n(i)/N 	 (3.15) 

Where, n(i) is the number of points less than Y and the Y are ordered from smallest to largest 

value. This is a step function that increases by 1/N at the value of each ordered data point. 

Once an empirical density function is chosen for test, the K-S test calculates the maximum 

distance `D' between these two curves EN and empirical function, lesser the value of `D' 

better the distribution is represented by the statistical model in test. `D' for this test can be 

calculated using (3.16). 

D=maxi F(Y.)—' I ,N— F(Y,.)1 N  
) 	 (3.16) 

Where, `F' is the theoretical cumulative distribution function of the distribution being tested. 

Which must be a continuous distribution (i.e., no discrete distributions such as the binomial 

or Poisson), and it must be fully specified (i.e., the location, scale," and shape parameters 

cannot be estimated from the data). [ 19, 20]. 

ii) Anderson-Darling test 

The Anderson-Darling test is used to test if a sample of data came from a population with a 

specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and gives 

more weight to the tails than does the K-S test. The K-S test is distribution free in the sense 

that the critical values do not depend on the specific distribution being tested. The Anderson-

Darling test statistic is defined as 

A Z  = — N—S 	 (3.17) 

Where, 

S= N 
 (2i-1)[ F(Y,.)+ln(1—F(YN 1))] 

=.1•  N 	 (3.18) 

F is the cumulative distribution function of the specified distribution. Y; are the ordered data 
[20, 21]. 
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iii) Clzi-Squared test 

The chi-squared test is also known as Pearson's chi-square test. The chi-square goodness-of-

fit test is applied to binned data (i.e., data put into classes). However for non-binned data we 

can calculate a histogram or frequency table before applying the chi-square test. However, 

the values of the chi-square test are dependent on how the data is binned this dependency of 

binning has lesser effect if we have large number of data points. Another disadvantage of the 

chi-square test is that it requires a sufficient sample size in order for the chi-square 

approximation to be valid. The chi-square goodness-of-fit test can be applied to continuous as 

well as discrete distributions, such as the binomial and the Poisson. For the chi-square 

goodness-of-fit computations, the data are divided into k bins and the test statistic value ( 2 ) 

is defined in equation (3.19): 

k 

i=1 	 (3.19) 

Where, O;  is the observed frequency for bin i and E;  is the expected frequency for bin i. The 

expectation is calculated by equation (3.20). 

E;  = N(F(Y„) — F(Y )) 	 (3.20) 

Where, F is the cumulative distribution function for the statistical model being tested, Yu  is 

the upper limit for class i, Yl  is the lower limit for class i, and N is the sample size. Critical 

values of x2 for accepting or rejecting a hypothesis can be found in Appendix-II for different 

confirmation values [20, 22]. 

3.5.1. Steps to determine best fit density function 

Fig.3.5 is flow chart for the method followed to determine best density function which can 

be used to represent distribution of circular. polarization ratio (CPR) effectively. For the 

determination of best fitted distribution function a large number of homogeneous regions of 

interest (ROIs) are selected for different regions of craters. 
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Figure: 3.5 Steps to determine best fit distribution function 

Selection of homogeneous ROIs 
Craterregions can be divided into three regions as shown in Fig.3.6 

• Base of craters 
• Rim of craters 

• Outer rim (edge) of crater 
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Figure: 3.6 Different regions of a crater 131 
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a) Total intensity image 	 b) Selected homogeneous ROIs 
Figure: 3.7 Depicting the procedure of homogeneous ROI selection 

Homogeneous ROIs for rim and base regions are selected using. total intensity image which is 

SO of stokes vector, homogeneous region of interest means regions where pixel value does 

not vary too much. Outer rim (edge) is not considered in this analysis because it is not 

possible to identify homogeneous region of interest for the outer edge and as its size is too 

small when compared to inner rim or base regions so this region is excluded. Fig.3.7 (a, b) 

shows how homogeneous ROIs are selected. ROIs shown in yellow and green colour are a 

base region and in blue and red are inner rim regions. Then GoF tests are applied on CPR 
data for each and every ROI to test the fitness of different well known probability distribution 

functions (Beta, Kumarswamy, Johnson, Generalized Extreme Value, Log-Pearson, Weibull 

etc.) on these ROIs. Since, it is found that 99.95% CPR pixels are in the range of 0 to 2 so 

GoF tests are applied for bounded distributions. For every ROI five best fitted distribution 

functions are selected according to Chi-square test. Number of occurrence of each density 
function is calculated and a table is formed. From the table best fitted density function can be 
determined. 

3.5.2. Methodology for pattern analysis 

Probability density based classification technique also known as pattern analysis is primarily 

used for differentiating two targets; It has been used for target classification in through wall 

imaging [52]. It is based on the property that best fit probability density functions for similar 

type of targets have high correlation between them thus there shape and location parameters 

are closely related with each other. To be able to apply pattern analysis technique to identify 
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two different structures, it is important to determine best fitted distribution function and then 

to estimate parameters of best fitted density function for a large number of observations for 

known structure types. Then the range of shape and location parameter for the best fit density 

function is determined. In current study this technique is applied to CPR image of crater 

regions to identify two types of craters. As given in [2-4] that CPR>1 is necessary condition 

to have any probability of finding planetary water-ice particles apart from this condition, it is 

also necessary that such regions exhibit volume scattering behaviour and not double bounce. 

It is therefore informative to investigate the distribution of CPR value for both types of crater 

regions and to develop a method to differentiate two craters which satisfy the `m-S' 

decomposition criterion and which does not satisfy the `m-S' decomposition criterion based 

on distribution of CPR pixels. For this purpose sufficiently large number of craters is selected 

in order to detect and differentiate them more accurately. These craters were divided in two 

groups one which satisfies the `m-8' criterion and one which doesn't satisfy `m-S' criterion 

using `m-S' technique.Then the result is used as training data for pattern analysis. Once the 

best fit density function to represent distribution of CPR pixels is known this technique can 

be applied to identify crater types. In section-4.1.1 it will be shown that CPR is best 

represented by Generalized Extreme Value distribution function. 

Figure: 3.8 Graph of best fitted distribution for CPR for two types of crater 
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The parameters of Gen. Extreme Value functions i.e. shape, scale and position parameters (k, 
p, and u) for different crater regions are estimated using maximum likelihood estimator. It is 

observed that distribution graphs (an example is shown in Fig.3.8) of CPR pixels for type-I 

craters are shifted towards higher value compared to graphs for type-II craters. This shift in 

CPR distribution can be used to differentiate these curves and hence the craters can be 

labelled as type-I and type-II. [52]. 

Determination of range of parameters 

For determining range of position and scale parameter for different types of crater, position 

and scale parameter of those craters estimated whose type is already known are identified. 

Then mean and standard deviation of `p' is calculated for all the craters. Then upper and 

lower boundaries of both the parameters (`g' and `a') for each type of craters are calculated 

using Eq. (3.21) 

LowerBoundary = mean — std.dev.. 
UpperBoundary = mean + std.dev. 	

(3.21) 

For the calculation of range for type-I crater mean and std. dev. of type-I craters and for the 

calculation for range of type-II craters mean and std. dev. of type-II craters will be used. 

3.6. Classification of mini-SAR Images using Fractals and Moran's! 

The. classification of mini-SAR images has been done by using fractal images of mini-SAR 

data and analysis based on spatial correlation of images using Moran'sI values for different 

local windows sizes. 

3.6.1 Methods to calculate fractal dimension and Moran'sI 

Triangular Prism Surface Area Method (TPSAM) 

It is the most widely known method for estimating fractal dimension which was proposed by 

Clarke [44-46]. The image pixels are considered as columns having heights equal to their 

digital number value. The pixel columns are considered for generating the prism in 3D space 

with four pixels at four corners and their average as the central pixel. These five points 

generate four triangular prisms in 3D space, whose upper surface areas are estimated and 

added to obtain the whole surface area. The triangular prism generated from image pixels is 
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(i, j+e) 	 (i+p, j+0) 

Figure: 3.9 Triangular prism generation from image pixels [44] 

shown in Fig.3.9, four pixels are considered which are separated by a distance 0 which are at 

locations (i, j), (i+0, j), (i+0, j+Q) and (i, j+A). The pixel values are assumed to make the 

height columns named as a, b, c and d respectively at these four pixels. The average of these 

four corner pixel values is e which also generates the middle height column. By joining the 

top points of these five height columns and assuming thus obtained triangles four triangular 

prisms are generated whose top triangular areas are represented by A, B, C and D 

respectively. 

Thereafter, the surface area is estimated for different bases generated by corner pixels values, 

which keeps track with the resolution of base of triangular prism area. For different values of 

base resolution, total surface area is estimated and plotted against the base area in a log-log 

scale. The slope of the least square fit line is subtracted from two to calculate the fractal 

dimension, i.e. 

D = 2.0 — Slope. 	 (3.22) 

The total surface area decreases as the base resolution increases [35, 44], the slope comes to 

be negative in general and hence the value of `D' becomes greater than 2.0. The base 

resolution is increased in power of 2 in original method, i.e. 2, 4, 8, 16, and so on. The 

method is based on the variation of pixel values in 3D space in terms of the surface area 

showing the distribution of image points. The pixel values showing low variation correspond 

to smooth surface and thus give high value of slope and consequently low fractal dimension. 

Differential box counting method (DBC) 

The method, called differential box counting (DBC) method [35, 43] is described below. As 

fractal dimension `D' is given by Eq. (2.9). It is rewritten here for convenience 

D  _ log(N.  
log( r 
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Figure: 3.10 Determination of Nr by DBC method 1431 

In the DBC method, N,., is counted in the following manner. Consider that the image 

of size M x M pixels has been broken down to a grids of size s x s, where M/2>s >1 and s is 

an integer. Then we have an estimate of r= sJM. Consider the image as a 3-D space with (x, 

y) denoting 2-D position and the third coordinate (z) denoting the gray level i.e. image 

intensity. The (x, y) space is partitioned into grids of size s x s. Each grid is further 

partitioned into a column of s' boxes. So, entire image is partitioned into boxes of size s x s x 

s'. If number of gray level is G then LG / s' j = LM / s] . 

In figure Fig.3.10 where, s=s'=3 assumed. Boxes are numbered 1, 2, 3..... If the minimum 

and maximum gray level of the image in the (i, j)th grid* fall in the box numbered k and 1, 

respectively. Eq. (3.23) gives the contribution of Nr, for the (i, j)th grid. 

n(i, j) = l — k + 1 	 (3.23) 

For the example given in Fig.3.10, n(i, j)=3-1+1. Taking contributions from all grids, we 

have 

N, =Zn(i,J) 
(3.24) 

Nr, is counted for different values of r (i.e. different values of s). Then using Eq. (2.9) the 

fractal dimension `D' can be estimated from the least-squares linear fit of log( Nr) against 

log(l/r) [43-45]. 
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Method for the determination ofMoran'sI 

•Moran'sI (Moran 1950) tests for global spatial autocorrelation for continuous data [53]. It is 

based on cross-products of the deviations from the mean and is calculated for n observations 

on a variable x at locations (i, J) by Eq. (3.25): 

—x)(x~ —x) 

I=n ' J 
SO 

(3.25), 

Where, x is the mean of the x variable, w,, are the elements of the weight matrix, and So is 

the sum of the elements of the weight matrix: 

So = 	wiy . 	 (3.26) 
if 

Moran'sI is similar but not equivalent to a correlation coefficient. It varies from -1 to +1. In 

the absence of autocorrelation and regardless of the specified weight matrix, the expectation 

of Moran'sI statistic is —1/(n —1), which tends to zero as the sample size increases. 

Weight Matrix 

To assess spatial autocorrelation, one first needs to define what is meant by two observations 

being close together, i.e., a distance measure must be determined. . These distances are 

presented in weight matrix, which defines the relationships between locations where 

measurements were made. If data are collected at n locations, then the weight matrix will be 

n x n with zeroes on the diagonal [53]. 

• The weight matrix can be specified in many ways: 

• The weight for any two different locations is a constant. 

• All observations within a specified distance have a fixed weight. 

• K nearest neighbours have a fixed weight, and all others are zero. 

• Weight is proportional to inverse distance, inverse distance squared, or inverse 

distance up to a specified distance. 

Other weight matrices are possible. The weight matrix is often row-standardized, i.e., all the 

weights in a row sum to one but not necessarily. 
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Local Fractal Dimension 

.Local fractal dimension can be defined as the fractal dimension of a predefined pixel 

neighbourhood known as local window. In general, the window is odd sized square mask of 

pixels where a fixed central pixel exists and works as the representative of window. The role 

of such a window is obvious because the textural features of the window get changed as the 

size of window changes. Since the local windows are given sizes as 5x5, 7x7 and so on, the 

fractal dimension of the window changes with its size. Thus, it is important to highlight the 

. role of window size in such studies because it affects the ' final results. The local fractal 

dimension provides a fractal map when the local window is moved over the image 

sequentially. As the fractal map represents the values of fractal dimension only, it maps the 

actual image into a fractal domain. Thus, local fractal map provides a textured image of the 

original image which is dependent on the size of local window. Using various window sizes, 

different texture images are obtained. It is useful for our study in comparing different textures 

based on local window size. Some of the features are highlighted for a particular window 

size. It is interesting to find out such features and hence the appropriate window size. It is 

important to note that this event is not useful for overall classification but used for 

identification of some particular area or point in the image based on its neighbouring pixel 

arrangements. 

3.6.2. Methodology for classification 

In this section `D', `I' and `S' notations are used for fractal map, Moran'sI map and for 

original power intensity map respectively. 

The fractal based approach deals with the textural ('D' for fractal & `I' for Moran's]) maps 

generated by applying a moving window approach for different window sizes within which 

local fractal dimension and Moran'sI is estimated for whole image. The flowchart of the 

methodology adopted for classification purpose is shown in Fig.3.11 first step requires 

selection of local window size. We have chosen the local window to be of odd size, i.e., 5x5, 
7x7, and so on till 15x15. In second step local fractal dimension and local Moran'sl are 

estimated for these window sizes and corresponding D-maps and I-maps are generated. For 

each D-map, clustering is performed for five different classes using `D' values. The next step 

used as the sub step of previous one considers the I-map for clustering. 
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Selection of Local Window Size 5,7,...15 
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Generation of D-Map and ].Map 
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SAR Image + 1-Map 	SAR Image +D-Map + I-Map 

1 Clustering 

Classification Results 

Figure: 3.11 The Flowchart of the methodology used [35l 

Based on `I' values, the clusters are generated using K-means algorithm. In third step, the `D' 

values are added with the image pixel values and the combination of these two features, i.e., 

pixel values and `D' values are used for clustering before addition normalization of `D', `I' 

and image pixels(S) are done. For the compatibility of sizes, the original image is resized to 

be equal to that of fractal and Moran'sI map. The image comprising the pixel values and 

fractal dimension values highlight some features clearly. By addition of fractal dimension to 

the pixel values, both the original information and the textural information are available for 

land feature identification. Thus, the clustering based on pixel values combined with `D' 

values is better than that of individual `D' values. The next sub-step includes the combination 

of pixel values with `I' values. In this step the addition of pixel values with `I' values is 

considered and the combined image thus obtained again highlights some of the surface 

features more clearly. The land features, which are agglomerated, like crater region area, are 

easily identified in the combined images. Since Moran's `I' is sensitive for heaped structures 

(e.g. crater edges), the combination of pixel values with `I' values is able to identify such 

land features better than the pixel values or `I' values considered individually. The clustering 

is now performed on the combined image and the process is repeated for different selected 

windows. 
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Fourth step combines all the texture images, i.e., it includes the original image, fractal map 

and the I-map. As expected, this image is able to identify the features more clearly. Finally, 

the combined image is classified for five classes using the K-means algorithm. For different 

selected window sizes, the combined images are -generated and the clustering is performed. 

For the compatibility of size, the image resizing is performed for each selected window as 

previously done. Using moving window approach, the local fractal 'dimension is estimated 

with TPSAM and DBC method and corresponding fractal maps are used for classification 

purpose. One imperative issue in estimation of local fractal dimension is selection of local 

window. Generally, the local window is considered to be of odd size square window which 

gets the benefit of having a unique centre pixel. Though, accuracy of this classification 

cannot be calculated due to unavailability of ground reference points on Moon but a 

comparison is done for different classes and whatever available terrain map. The importance 

of window size lies in the fact that once the window size is changed;  textural information of 

the image gets changed which may change the class of a pixel. Since, - accuracy of 

classification depends on size of local window size but accuracy of classification cannot be 

determined due to unavailability of ground truth points. So, optimization of window size 

cannot be performed so results for different window sizes are presented here therefore in this 

chapter a thorough systematic analysis of classified maps has been carried out for varying 

window size. 
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Chapter 4 

Implementation, Results and Discussion 

4.1 Generation of stokes vectors 

After the pre-processing of mini-SAR data, parameters of. stokes vector are generated 

according to the formulae given in section-3.2. 1. Images of generated stokes vector for a part 

of region from scene "FSR CDR LV2_01633 OR" are shown in Fig.4.1. One side of crater 

walls are highly illuminated compared to other half, it's because one side of the wall was 

facing directly towards the mini-SAR sensor while other war hidden due to its slope. 

a)SO 	 b)S1 	 c)S2 	 d)S3 

Figure: 4.1 Elements of stokes vector 
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(a) Histogram of SO 	 (b) Histogram of Si 

(c) Histogram of S2 	 (d) Histogram of S3 
Figure: 4.2 Histogram of elements of stokes vector 

Pixel values for SO, Si, S2 and S3 are limited in the range of 0-0.4. However there are few 
pixels which have abnormally higher value and thus the histogram of these data have a long 

tail, shown in Fig.4.2 (a-d). `SO' do not contain negative value but `S 1', `S2', `S3' contain 

few pixels which have negative value and it can be confirmed from histograms of these data 

value that negative pixels are indeed very less in number. The reason for such discrepancy 

could be random instrumentation errors. Table-4.1 summarizes the statistics of stokes vector 
elements. 

Table-4.1 

Statistics of stoke vector 

Parameter Minimum Maximum Mean Std.Deviation % of Pixel 
(x<0.4) 

SO 0.000000 25.917572 0.079271 0.241871 98.8433 

S1 -0.283528 13.310391 0.025636 0.107413 99.6398 

S2 -0.889359 5.438548 0.009656 0.044372 99.8877 

S3 -0.363855 20.891930 0.038152 0.163703 99.6034 
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4.2. Implementation for polarimetric parameters 

(a) CPR 
	

(b) Degree of polarization (c) Degree of linear polarization (d) Delta 
. Figure: 4.3 Child parameters 

(c) Degree of linear polarization - 	(d) Delta 

Figure: 4.4 Histogram of child parameters 

41 



b) "FSR CDR LV2_01633_OR" 

Polarimetric parameters or child parameters from stokes vector are calculated using the 
procedure explained in section-3.3. Snapshot of child parameters for a part of mini-SAR 

image from scene "FSR CDR LV2_01633_OR" are shown in Fig.4.3. In Fig.4.4 histograms 
of various child parameters are plotted. 

From these images some general conclusions are drawn as listed below. 

• No. of pixels having CPR>1 is very high in crater regions compared to non-crater 
regions. Non-crater regions have much lesser no. of pixels having CPR>l. 

• Regions having low CPR have higher degree of polarization (m) and vice-versa. 

These two images are approximately complementary of each other. 

• CPR ranges between 0-1.6, though a small tail lasts up to CPR<2. 

• Degree of linear polarization follows the trend of DoP but with less clustering. 

• Crater regions have S value clustered around 1800. 

• Non-crater regions have very lesser no. of pixels around 180° 

• S value is clustered around -90° when entire image is considered. 

4.2.1 Statistics of child parameters in craters 

In this section statistics of child parameters for sixteen craters are shown. These craters were 

selected from scene "FSR CDR LV2_01628 OR" and "FSR CDR LV2 01633 OR In Fig. 
4.6 statistics for CPR, in Fig.4.7 statistic for DoP, in Fig. 4.8 statistics for 8 and in Fig. 4.9 

statistics for linear polarization ratio is shown for these sixteen craters. In these graphs on X-

axis crater number (crater identification number) and on Y-axis value of minimum, 

maximum, mean and standard deviation for each parameter is plotted. The location of these 

craters are shown in Fig.4.5 

a) "FSR CDR LV2 01633_OR90  

Figure: 4.5 Location of craters 
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Statistics of CPR 
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Figure 4.6 Statistical graph of CPR data for 16 craters 
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Figure 4.7 Statistical graph of degree of polarization (m) data for 16 craters 
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Statistics of Delta 
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Figure: 4.8 Statistical graph of relative phase(6) for 1.6 craters 

Statistics of Linear Polarization Ratio. 
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Figure: 4.9 Statistics graph of linear polarization ratio for 16 craters 
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Comparision of CPR & DoP(m) 
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Figure: 4.10 Comparison graph for CPR and DoP inside each crater 

From Fig. 4.10, we can conclude that in all cases higher value of CPR, DoP value decreases 

and vice-versa. CPR and DoP are closely related to surface property. For smooth surface low 

CPR and high DoP and vice-versa. 

4.3 Implementation of `m-S' decomposition 

4.3.1 Identification of type-I and type-II of craters 

As discussed in section-3.4 in `m-S' decomposition, for a crater to satisfy `m-S' condition, it 

must have a distributed histogram for S. In Fig.4.11 histogram of `S' for two ROIs are shown 

one for non-distributed and one for distributed W. By inspection of the bins of histogram it is 

determined whether the histogram is of distributed or non-distributed nature. 

	

x 	 x 

	

Q Hlstogram 
	

0 Histogram 

Figure: 4.11 Example of non-distributed and distributed ROls for S 
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Craters of scenes "FSR CDR LV2 01628_0R, FSR CDR LV2_01631 OR and FSR CDR 

LV2 01633 OR" are divided in two groups based on their CPR, -degree of polarizations and S 
value, the procedure is described in section-3.4. Here, implementation of the procedure is 

described for craters shown in Fig.4.5(a,b). Fig.4.12a shows pixels masked with CPR>1 and 

Fig.4.12b shows pixels masked with m<0.35 and in Fig.4.12c intersection of these masked 

pixels are shown. In Fig.4.12d some of the ROIs selected from different craters are shown. 

These ROIs have large number of pixels satisfying first two conditions simultaneously. Now 

histograms of S are plotted for each of these ROIs (Fig.4.13, 1 to 16) and nature of 

distribution of 8 is determined in each case by method of inspection. Based on these results 

each ROIs and hence crater to which those ROIs belong are differentiated and the result is 

presented in table-4.2. 

Table-4.2 
Result of `m-S' analysis for considered ROIs. 

##ROI 
No. 

% pixels m<0.35 Behaviour of `8' `m-S' 	condition 
satisfies 

Type, probability of having 
planetary water-ice deposits 

I. 24.98 Non Distributed No Type-II, Low ice probability 

2.  56.30 Distributed Yes Type-I, High ice probability 

3.  33.16 Non Distributed No Type-II, Low ice probability 

4.  59.87 Distributed Yes Type-I, High ice probability 

5.  69.26 Distributed Yes Type-I, High ice probability 

6.  49.84 Non Distributed No Type-II, Low ice probability 

7.  42.30. Non Distributed No Type-II, Low ice probability 

8.  17.01 Non Distributed No Type-II, Low ice probability 

9.  03.48 Non Distributed No Type-II, Low ice probability 

10 36.24 Non Distributed No Type-II, Low ice probability 

11 37.98 Non Distributed No Type-II, Low ice probability 

12 63.17 Distributed Yes Type-I, High ice probability 

13 37.80 Non Distributed No Type-II, Low ice probability 

14 30.03 Non Distributed No Type-II, Low ice probability 

15 57.28 Distributed Yes Type-I, High ice probability 

16 53.72 Non Distributed No Type-II, Low ice probability 



Figure:. 4.12 Pixels having a) CPR>1 are masked by red colour, b) m<®.35 pixels are blue colour, 
• e)CPR>1 & m<®.35 are masked by green co'our. d) ROIs from different crater regions are show®. 

Once we decide ROIs satisfying CPR>1_ and m<0.35 condition we need to examine -the 
distribution of 6 for distributed or non-distributed property. Only nine craters from scene 
"FSR CDR LV2 01633_0R" are shown-here rest of the craters are shown in Appendix-
III 

Histograms of all ROls(1-16) 

3. ROI#3, Non-distributed delta . 	4 	- 4. ROI*4, Distributed delta 
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13.ROI#13, Non-distributed delta 	 1.4.ROI#14;  Distributed delta 

15.ROI#15, Distributed delta 16.ROI# 16, Distributed delta 

Figure: 4.13, Histograms of S for 16 ROIs (1-16) 

In Fig. 4.13 histogram for relative phase (6) is plotted to find out distribution nature of S in 
each ROI. If an expanded histogram is observed we conclude that S in this region is of 
distributed nature. If it is found that histogram is clustered around some particular value then 
distribution is of non-distributed nature. In above figure (Fig.4.13) histograms having serial 
number (1-9) are from scene "FSR CDR LV2 01628 OR, shown in Fig. 4.5(a) and serial 
number (10-16) are from scene FSR CDR LV2 01633TOR"shown in Fig. 4.5(b). 

4.3.2 RGB representation of scattering mechanism 

In section-3.4 methodology to resolve three scattering mechanisms (Fig.2.3) is discussed. It 
calculates the fraction of power associated in three scattering mechanisms and each value is 
used as input for the primary colours to generate an - RGB image of the area under 
investigation. Fig.4.14 shows an RGB image for the region shown in Fig.4.5(b). 



MA 

• Seeing the RGB image of m-6 decomposition it is clear that rim of 

craters has all types of ,  scatterers but volume scatterers are 

dominant. 

• Base of crater contains surface and volume scatterers. 

• Other regions (magenta in colour) contain surface and double 

bounce scatterers. 

I 

• liucirr 	- 

	

na 	 ;- 

(a) 	 (b) 

Figure: 4.14 a) RGB image of m-ö decomposition b) Colour composition of primary colours 1541 
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4.4. Implementation of statistical analysis 

4.4.1 Implementation of GoF test to determine best fit PDF 

Then GoF tests are applied on CPR value for different well known probability distribution 

functions (Beta, Kumarswamy, Johnson, Gen. Extreme Value, Log-Pearson, Weibull) on 

these ROIs. Since, 99.95% CPR pixels are in the range of 0-2 so GoF tests are applied only 

for bounded distribution. For every ROI Chi-square test parameter is calculated for each 

density function under test and based on the value off these functions are ranked as shown 

in Fig.4.15 for simplicity only three functions are shown here. For each of the ROls five best 

fitted distribution functions are selected according to Chi-square test parameter and number 

of occurrence of each density function is noted for each place as given in table-4.3. From this 

table it is concluded that distribution of CPR pixels is best represented by Generalized. 

Extreme Value distribution function [55]. Probability density function for Gen. Extreme 

Value is given in Eq. (4.1) and cumulative density function is given in Eq. (4.2). 

Piobabitiiy Dertalty Fcrnetiarc 
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Figure; 4.15 Graph of different tested curves for a ROI 

Table-4.3 

Frequency of best fit density function 

## Base of crater Rim of crater Total 

Position 1st 2nd 3rd 4th Su1F 1st 2nd 3rd 4th 5th 1st 2" 3rd 4th 5th 

Gen. Extreme Value 15 14 4 1 1 12 16 4 2 3 27 30 8 3 3 
Beta 7 10 6 6 8 9 11 6 6 3 16 21 12 12 17 
Kumaraswamy 8 6 4 10 4 9 6 4 11 2 17 12 8 21 8 
Johnson 4 4 7 6 10 2 4 11 9 5 6 8 18 15 21 
Log-Pearson 3 4 6 8 10 2 4 6 7 2 5 8 12 15 21 
Gen. Logistic 4 1 8 6 8 4 2 9 6 3 8 3 17 12 17 

CaArLc trelne f 	L IL59 

I zi.inglsifc ;,1A7j 
log, 1.ernofl L 	;1e753•[  3 
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4.4.2 Implementation of Pattern analysis 

GoF tests are done on different homogeneous regions to determine the distribution function 
which can represent CPR pixels for crater regions effectively; it is found that Gen. Extreme 

value distribution function can effectively represent it. After that CPR data are modelled for 
ROIs of the crater regions which were identified as type-I and type-II craters in previous 

section now parameters for Gen. Extreme Value density function are estimated as described 
in section-3.3.2. Estimated value of these parameters are shown in table-4.4 

Gen. Extreme Value probability density function is given below, x being the pixel value [55]: 

f(x) = iex — (1+kz) k (I+kz)-'-'~k 	 (4.1) 

Cumulative density function for Gen. Extreme Value PDF 

F(x)=expl—(l+kz) k
J 	

(4.2) 

Where, 

k =continuous shape parameter 

a=continuous scale parameter (G> 0 ) 
µ- continuous location parameter 

z= 
x —,u 
a 

For k ~ 0, its domain is given by (4.3) 

I+k 	> 0 
a 	 (4.3) 

Once we have estimated value of `k, 6 and µ' for both types of craters, range of these 
parameters can be calculated by method described in section-3.3.2 for each type of craters. 
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Graph of best'ftted Gen. Extrem Value function for Type-II X 10-3 
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Graph of best fitted Gen. Extrem Value function for Type-I 

Graphs of Gen. Extreme Value function for analysed craters 

0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2 
x, (CPR) 

Figure: 4.16 Graphs of best fitted density function for type-[1 craters 

v0 	0.2 	0.4 	0.6 	0.B 	1 	1.2 	1.4 	1.6 	1.8 
x, CPR 

Figure: 4.17 Graphs of best fitted density function for type-I craters 
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Ta ble-4.4 

Estimated parameters for Gen. Extreme value density function 

Type-ICraters. 	Higher 	probability 	of 
Planetary Ice 

Type-2 	Craters. 	Lower probability 	of 
Planetary Ice 

K a µ K a 

0.01343 0.26144 0.8166 0.09155 0.16387 0.52326 

0.02048 0.23797 0.69271 0.01373 0.21721 0.52523 

.00013238 0.22931 0.6559 0.08249 0.22096 0.53308 

0.00193 0.23938 0.63902 0.07983 0.I817 0.47591 

0.00417 0.24073 0.71551 0.04114 0.18426 0.6019 

-.005794 0.2414 0.81681 0.12559 0.20893 0.45652 

-0.03223 0.24582 0.7181 0.14201 0.17503 0.37379 

-0.02218 0.26475 0.85286 0.05104 0.21583 0.53171 

-0.07034 0.25819 0.73115 0.00984 0.19553 0.45527 

-0.00452 0.217 0.63984 -0.0074 0.21091 0.60555 

-0.00321 0.24357 0.74718 -0.0045 0.217 0.63984 

0.03648 0.21341 0.62826 

0.02291 0.14809 0.44907 

Table-4.5 

Obtained boundaries for range of position and scale parameter 

6 

Mean(m) Std. Dev 
(SD) 

m-SD m+SD Mean(m) Std. Dev 
(SD) 

m-SD m+SD 

Type-I 0.2436 0.0140 0.2296 0.2576 0.7296 0.0735 0.6561 0.8031 

Type-II 0.1964 0.0236 0.1728 0.2200 0.523 0.0801 0.4429 0.6031 

So, if the estimated value of `a' remains in the range of (0.2296 to 0.2576) and that of 'ii' 

remains in the range of (0.6561 to 0.8031) for CPR data in any ROI or crater then that ROI or 

crater can be labelled as type-I and if the estimated value of `a' remains in the range of 
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(0.1728 to 0.2200) and that of `it' remains in the range of (0.4429 to 0.6031) for CPR data in 
any ROI or crater then that ROI or crater can be labelled as type-II. If `µ' and `6' does not lie 

0L 
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Figure: 4.18 Graph of best fitted density function for craters. Red bars are range of position 
parameter of type-II craters and blue bars are for type-t craters 

'in any range then we cannot label the ROI as type-I or type-II conclusively. Significance of 
the range of position parameter `µ' for two crater types is explained in Fig.4.18. Position 
parameters gives the location of the peak of the curve, hence blue bars are boundaries for 
peak of type-I craters and red bars are boundaries for type-11 craters. It is observed that with 
the pattern analysis, it is possible to segregate the two types of craters, which represents that 
both type of craters have different pattern and it may be due to many reasons 

4.5. Implementation of textural analysis 

Classification of lunar surface into five different unknown categories using textural approach 
has been carried out as explained by the flow chart in Fig.4.19. The fractal map and Moran'sI 
map of the image are generated by estimating the local fractal dimension inside a chosen 
moving window. Fractal dimension and Moran'sI values are plotted as image pixels 
according to the methods discussed in section-3.6. These textured images are generated 
applying moving window approach for different window sizes. Fractal map and Moran'sI 
map for different windows for part of a scene as identified by `FSR CDR LV2 01633 OR' 
are shown in Fig.4.19 and in Fig.4.20. Fig.4.19a is total intensity map whose fractal and 
Moran's1 map are shown in these images. In fractal map as well in Moran'sI map (Fig 4.19 
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and 4.20) we can clearly see the wall rings of craters though these rings are clearer in 
Moran'sI map. As Moran'sI gives spatial autocorrelation so seeing these maps only we can 

conclude that craters rings at different heights have different textural properties. 

Fractal maps for local window sizes 5x5 and 9x9 

FFiguure: 4.19 a) Total power image b) IFir nctall h age for window suze 5x5 e) ]FraetaR nonage 
for window suze 9x9 
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Moran'sI maps for local window sizes 5x5, 7x 7 and 9x9 

Figure: 4.2® a) Mora®'s][ map(5x5) b) T map image for window size 7~7 e) `1' map for 
window size 9x9 (B/W) 
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4.5.1 Implementation of classification algorithm 

K-means unsupervised classification technique is used for classification of texture images. 
After classification image pixels are clustered in five different classes based on their D, I and 

SAR properties. Classified images of samescene are shown in below for different-  window 
sizes. Fractal and Moran'sl images are added accordingly to generate D+S, D+I+S, I+S maps. 

For compatibility all images were resized to same dimension. These images are then 
classified using K-mean classifier according to the algorithm as discussed in section-3.6.2. 

D+S Class fied images 

Fig.4.21 (a, b) are classified images of D+S map for window sizes 5x5 and 9x9 the same part 

which is shown in Fig.4.19a from scene "FSR CDR LV2_01633_OR" Classification of D+S 

image does the clustering of the pixels of base regions and of external rim regions of craters 

very effectively as well as it performs clustering of highly illuminated rim regions. In 

Fig.4.21c classified image based on only D value is shown, this image is very different when 

compared to classified image of D+S and original intensity image. It identifies start boundary 
of craters very effectively which is obvious as large discontinuities at the edges exist, though 

back edge is not identified clearly but for back edge still an unclear boundary between base 

region and outside of crater exist, this unclear boundary is better visible in D+S classified 

images. Table-4.6 shows pixel statistics of different classes for D+S images. -In class five 
maximum, mean and standard deviation value of D+S have abnormally higher value this 

anomaly is because `S' image has few pixels which has abnormally higher values, this is true 
for every classification result. Classification results for local window size 9x9 have larger 

clusters compared to window size 5x5 

Table-4.6 
Pixel statistics of different classes for D+S classification 

Class# Range Mean Std Deviation 

Max Min 
1.  2.0581 1.8144 2.018468 0.038883 

2.  2.2588 2.0582 2.189802 0.047846 

3.  2.4595 2.2589 2.343017 0.054656 

4.  2.6601 2.4596 2.533057 0.053723 

5.  20.565 2.6602 3.368587 1.445817 
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Classified maps of D+S snaps for local windows 5x5, 9x9, Fig.4.21c isforonly D map 
' 	 a  — 

(a) 	 (b) 	 (c) 

Figure: 4;21 Classftied Image for D+S map for local wiimdow sizes (aa), for window size 5x5, (b) for window 
size 9x9 and (c) for only b map 9z9 window size 
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I+S classifies images 

Fig.4.22 (a, b) gives the classified images of same scene which is used earlier based on I+S 
values. Fig.4.22c is classified image of the same region based on only `I' value. Classification 

of I+S images gives bigger cluster sizes when compared to cluster size of D+S classified 

images. `I' value doesn't vary much if terrain properties changes gradually but sharp 
discontinuities are detected readily if its size is comparable to window size. In regions having 

high discontinuity `I' value remains very less, so K-mean classifier may classify these pixels 
together in,same class, so classification based on only `I' values is not much reliable [36]. 

Seeing Fig.4.22c it can be concluded that regions just outside of crater has very less spatial 

correlation so we can say these regions are very rough in nature. Rims of craters have high 

spatial correlation so it can be decided that rims either do not change properties or change in 

gradually and sharp changes are not observed. However in some craters base region contains 

high discontinuities. Overall accuracy beside few specific terrain properties classification 

based on `I' value is not of much information. The classification results based on 
combination of `I' values with image pixels, however, is better than `I' alone. 

Table-4.7 

Pixel statistics of different classes for I+S classification 

Class# Range Mean Std Deviation 

Max Min 

1.  0.0382 0.0283 0.033925 0.004594 

2.  2.2588 2.0582 2.189802 0.047846 

3.  0.427 0.2332 0.305022 0.049363 

4.  0.6209 0.4271 0.497166 0.052935 

5.  18.301 0.6209 1.395977 1.470826 



Classified maps of I+S maps for window sizes 5x5, 9x9, Fig.4.22c is classified map 
for only Moran'sI value andfr window size 9x9 

Figure: 4.22 Classified Image for I+S map for local window sizes (a) for `viudow size 5x5, (b) for window 
size 9x9 and (e) for only I map, 9x9 window size 
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D+I+S Classified maps 

Fig.4.23 gives the classified images of the same scene which is used earlier for D+I+S map. 

Classification of D+I+S images gives smaller cluster sizes compared to cluster sizes in D+S 
as well as in I+S classified images. This classification is based on all three properties which 

are discussed here fractal, spatial autocorrelation and image pixel value. Classified D+I+S 
image identify the outer border, rim and rough regions inside the crater bases too. Due to 

unavailability of terrain type of lunar surface analysis of classified images is very limited. 
Fig. 4.23c is classified image based on only `I' value. 

Table-4.8 

Pixel statistics of different classes for D+I+S classification 

Class# Range Mean Std Deviation 

Max Min 
1.  2.2125 1.8704 2.153412 0.057551 

2.  2.4166 2.2126 2.342707 0.05109 

3.  2.6206 2.4167 2.503575 0.055739 

4.  2.8246 2.6207 2.696398 0.055186 

5.  20.725 2.8247 3.516717 1.415746 
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Classified maps of D+I+S maps for window sizes 5x5, 9x9, Fig.4.23c is classified 

map for only Moran 'sI value and for window size 9 x9 

Figure: 4.23 Classified Image of IID+1I+S map for Local window sizes (a) for window size 5x5, (b) for 
window size 99 and (c) for-only I neap 9x9 window size 
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Justification for 5 classes 
The prime reason behind selecting only five classes for the classification of textural images is 

three scattering phenomenon. One class for each regions having dominant volume scatterers, 
dominant double bounce and dominant surface scatterers. Beside this one class is reserved for 

rim of the craters as rims have very high illumination from mini-SAR sensor and one class I 
for error pixels which have abnormally high intensity in the range of (1 to 25) as discussed in 

section-4. 1. Since ground truth data is not available so it is very tough to judge the accuracy 
and also labelling of classes cannot be done intuitively, location of crater boundaries and rims 

are known approximately from total intensity image it was observed that some classes 

overlapped to these regions hence the type of these regions concluded. 

4.5.2 Effect of Window Size on Classification 

Since window size is one of the major factors explaining various kinds of textures, it is 

important to critically analyze the windowing effect for textural analysis of mini-SAR. data. 

For window selection various sizes are considered starting from 5x5 and increasing it by 

steps of 2 to obtain the odd size window. For getting different type of texture information, we 

have varied the window size up to 15 x 15. The size of local window is considered to be odd 

because it contains a centre pixel, which acts as the representative of the whole local 
neighbourhood. The smallest size selected is to be 5x5 because it provides minimum 4 points 

for least square slope estimation in `D' calculation, which would be only 2 points if 3X3 

window were used, while the maximum size of local window is chosen to be 15x 15 because 

beyond this size the blurring effect in the processed texture image highly increases and hence 

do not provide much information. The process is done for both methods, i.e., TPSAM and 

DBC. For getting the variation of `D' values in local neighbourhood, the maximum and 

minimum values of `D' for both methods are compared. In parallel, for each local window, 

the value of Moran'sI is computed and finally the I-map is generated. This was the second 

texture map for the study. The maximum and minimum values of `I' along with mean and 
standard deviation for each local window size are estimated as shown in table-4.9. The 

minimum values of `D' are less than 2.0 in both the methods, i.e., TPSAM and DBC, which 

are due to the fact that natural scenes are not exact fractals nevertheless they are modelled 

with fractals and they are statistically self-similar rather than exactly self-similar. The 

maximum value of D for both methods shows a variation such that in DBC with increase in 

local window size maximum value of D decreases, while in TPSAM maximum value of D 

increases first and then decreases as far as the local window size is increased, which is 
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obvious, since for increasing size of images smaller irregularities get • hidden. Another 

important notable point in DBC is that the difference between maximum and minimum 

values becomes lesser as the window size increases while the minimum value of D for 

TPSAM is almost same. The standard deviation (SD) gives the deflection from the mean and 

the values of SD show that the data is compact about the mean D. 

Table-4.9 

The Values of `D' and `I' for different window size 

W 	5 	7 	9 	11 	13 	15 

D * 	 Max 3.1288 2.9107 2.9543 2.8471 2.7830 2.7384 

(TPSAM) 
Min 1.7468 1.7803 1.8145 1.8031 1.8343 1.8104 

Mean 2.1639 2.1888 2.2294 2.2530 2.2293 2.1935 

SD 0.1283 0.1265 0.0994 0.0859 0.0797 0.0787 

D 	Max 2.9802 2.883 2.8626 2.8247 2.7953 2.7595 

(DBC) 	Min 0.5742 1.2369 1.5429 1.6143 1.7046 1.7464 

Mean 2.3334 2.3427 2.3618 2.2845 2.3283 2.3278 

SD 0.2831 0.1893 0.1675 0.1385 0.1582 0.1382 

Moran'sI 	Max 0.2395 0.2950 0.3207 0.3295 0.3350 0.3373 

Min -0.0577 -0.0165 -0.0118 -0.0141 -0.0061 0.0042 

Mean 0.1363 0.1484 0.1593 0.1688 0.1760 0.1812 

SD 0.052 0.0552 0.0550 0.0544 0.0545 0.0547 

Concluding from the table-4.9, The TPSAM values of `D' are suitable to be used for the 

classification study. Further, the values of `I' represented in table-4.9 show that as the 

window size increases, the minimum values go into positive range which are negative for 
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lower window sizes. It shows that with increase in local window, the association of 

neighbouring pixels increases. So, for identifying irregularities or similarity in a region 

-Moran'sI map alone is much suited. It is also observed from the results that the values of `D' 

increase with random variation in pixel values, which is opposite to that of `I' as it decreases 

with randomness in pixel values. This shows an inverse relation in `D' and `I' [56]. This 

inverse relation is also clear from table-4.9, where the mean values of `D' and `I' show an 

opposite behaviour, i.e., with increase in local window size the mean value of D (both 

TPSAM and DBC) increases while the mean value of `I' decreases. Finally, it infers that 

- TPSAM performance better than DBC because the variation in the values of DBC is more 

than that of TPSAM. It is again clear from the values of SD for both methods that the SD for 

TPSAM is more stable than that of DBC. 

Fig.4.19 shows the D-map for window size 5x5 and 9x9. As emphasized, the `D' values are 

susceptible to sharp changes; the D-maps can identify the linear features as well as the 

lumped portions in images. The front side of rim got identified as these pixels had very high 

value in original power image too though base regions didn't had such advantage. For 

increasing local window size, the texture image (D-map) goes to, be blurred and the size of 

the D-map decreases due to border effect. For various window sizes, the texture and hence 

the identified land features get changed. It is observed in D-maps that for lower window size, 

e.g., 5, 9, the linear features (e.g. rim of craters) are sharply identifiable whereas for increased 

local window size, these features get blurred. For lower window size these features are 

clearly visible, while for higher window size the blurring effect again takes place making the 

features mixed with other features. The D-map is combined with the image for testing the 

combined effect of `D' and pixel values. For this purpose, the D-map and image sizes are 

made same and the `D' values are scaled in the range of image pixel values. For various local 

window sizes and hence `D' maps the original image is resized. - The effect of Moran'sI is 

studied in a similar way to that of `D'. At first the I-map alone is tested for feature 

identification and then the combination of `I' with pixel values is tested. I-map is sensitive to 

smooth areas, which is opposite to that of `D' values and provides very fine textured images 

as shown in Fig.4.20. With the I-map the sharp changes in image pixel intensities are not easy 

to identify, however if the sharp change is extended up to window size then these can be 

identified. 
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4.5.3. Comparison of texture parameters for different craters 

In Fig.4.24 comparison graph for fractal dimension is shown. Standard deviation of the 

fractal dimension is very low which indicates that fractal dimension is not varying much with 

the movement of local window over intensity map. Further mean of fractal dimension has 

lower value indication the radar backscatter intensity is not varying much in a local window 

but it may have large deviation when compared pixel by pixel basis• but it has random 

distribution in a local window as indicated by statistics of Moran'sI. 

In Fig.4.25 comparison graph for Moran'sI is shown. Minimum value of the Moran'sI ranges 

in (0 to 0.05) indicating a random behaviour of pixels i.e. high irregularities in those local 

windows. Maximum value of Moran'sI is limited around 0.32 which shows that on lunar 

surface large smooth regions do not exist where pixels are closely related. Thus we conclude 

that on average lunar surface is highly irregular in nature. 

In Fig.4.26 statistics of total intensity is shown. The graph for maximum value of intensity is 

not shown because it has abnormally large value due to occasional occurrence of error pixels 

in intensity image. These error pixels can be assume as a result of random errors present in 

mini-SAR sensors. As we can see standard deviation value is comparable to mean and 

maximum pixel intensity value, thus we can say that radar backscatter is very sensitive and it 

changes rapidly also indicating rough behaviour of surface. 

Statistics of Fractal Dimension (D) 
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Figure: 4.24 Statistics graph of fractal dimension for 16 craters 
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Figure 4.25 Statistics graph of Moran'sI for 16 craters 
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Figure 4.26 Statistics graph of total. intensity 'S' for 16 craters 
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4.6 Comparison of two different images for some craters, 

4.6.1.- Comparison of,RGB image and classified D+I+S for a random crater: 

In Fig.4.27 comparison between RGB image of `m-S' decomposed image and classified 
image of D+1+S map is done for a crater region. In Fig.4.27a RGB image of m-6 
decomposition and in Fig.4.27b classified image is shown. From RGB image of m-S 
decomposition it is clear that base of rim has surface and volume scatterers and outside where 
the pixels are shown in magenta are regions having double bounce and surface scatterers. So 
comparing these two images we can estimate that in classified image green pixels contain 
primarily volume and surface scatterers, blue pixels contain double bounce and surface 
scattering properties these conclusions are not very conclusive, it's only a -rough idea of 
scattering, behaviour or these two. classes. For good results classification of smaller region 
should be done. 

(a) ni-s decomposed image 	 (b) Classified image 
Figure: 4.27 (a) Comparison of mô decomposed image and Classified result 



4.6.2. Comparison of RGB images of two craters 

In Fig.4.28 comparison between RGB image of `m-S' decomposed image for crater type-I 
and crater type-II is done for a crater. In Fig.4.28a RGB image of type-I and in 
Fig.4.28bRGB image of type-II crater is shown. In these images we can see that type-I craters 
has larger number of green pixels and also green pixels have more intensity when compared 
to type-II craters. We can also see that base of type-II craters has larger number of magenta 
pixels thus it has regions having double bounce and surface scatterers thus we can conclude 
for type-II craters double bounce scatterers were responsible for CPR> 1. 

(a) Type-I crater (b) Type-H crater 

Figure: 4.28 RGB image of type-I and type-II craters to study scattering mechanism 

4.6.3. Comparison of classified image of type-I and type-II craters 

Figure: 4.29 Comparison of classified image of'D+I+S map for type-I and type-IT crater 
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In Fig.4.29 comparison between classified image of 'D+I+S' map for crater type-I and crater 

type-II is shown. In Fig.4.29a classified image of type-I and in Fig.4.29b classified image of 

type-II crater is shown. In these images we can see that type-I craters has larger number of 

blue pixels which represents class-3 and type-II has large number of green pixels which 

represents class-2. However dominance of class-2 in type-I crater can be seen here but we 

cannot generalize this as this trend is observed in very few craters which is type-I craters. 
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Chapter 5 

Conclusion 

In this thesis polarimetric study and classification lunar surface using textural property of 

mini-SAR data is carried out. It is a unique attempt to apply satellite image classification 

techniques to lunar surface. Fractals and spatial autocorrelations are considered for texture 

analysis. Textural information based on fractal properties and spatial autocorrelation is 

extracted using different methods. Then K-means classification algorithm is applied to such 

textured images to cluster lunar surface in different classes. The limitation of classification 

algorithms is that they necessitate prior information about study area. The success of this 

classification lies in the fact that how accurately the land cover classification is being 

performed for lunar surface using mini-SAR and its textured images. However the accuracy 

of this study cannot be calculate but it still can provide a very good platform for future 

classification strategies. 

The present work is dedicated to terrain classification of lunar surface using mini-SAR 

(Miniature Synthetic Aperture Radar) data. Craters based on its `m-S' and CPR property 

has been classified in two categories, one having dominant volume scattering phenomenon 

and another having dominant double bounce and surface scattering phenomenon, in present 

thesis these two types of craters are called type-I and type-II respectively. A density function 

based approach is applied to differentiate type-I and type-II craters. Classification of mini-

SAR images for different regions are done to identify different classes present in it and their 

relation to some specific ground cover type which could be identified easily (mostly of crater 

regions). 

Summary of chapters 

Chapter 1, Presents an overview of the Chandrayan-I mission of ISRO. A brief description of 

problem formulation is given. About aim and objectives of this dissertation is discussed. It 

also gives a brief description of different scattering phenomenon. 
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Chapter 2, Gives a brief review of radar basics and different scattering models. It gives an 

overview of the properties of mini-SAR sensor. Definition and application of fractals and 

spatial autocorrelation (Moran's]) in satellite image analysis are discussed. Classification 

algorithms (K-means) used in this thesis is also presented. Description of different scattering 

phenomenon is given. 

Chapter 3, Describes the methodology used for classifying type-I and type-II craters using m-

S technique, `m-S' decomposition to generate RGB image of mini-SAR data to understand 

scattering phenomenon associated with lunar surface. Then using this results as training data 

a pattern analysis technique to identify type-I and type-II craters is presented. Methodology 

for statistical analysis of CPR pixels to determine best fit distribution function is presented. 

Chapter 4, It presents the results obtained from `m-S' analysis of craters. Range of estimated 

position and shape parameter for the two types of craters is determined. Classified images are 

analyzed to identify various surface type viz, rim or craters, base of craters edge of crater. 

Statistics of pixels from different classes are calculated. Dependence of fractal dimension and 

Morans'I value on window size is discussed. 

Concluding remarks and Future Work 

Probability density based technique is presented for identifying two types of craters based on 

mean and standard deviation of position and shape parameters. 

In this study classification algorithms were applied only for five classes and a large region of 

interest (ROI) was selected for analysis. So, detail study of particular regions (e.g. different 

craters) to explore the properties of lunar surface is required. Selecting ROIs limited to 

craters and its neighbouring for large numbers of craters can be done based on textural 

analysis discussed in this work. 

Textural analysis is performed on total power image this could be performed digital elevation 

map (DEM) of lunar surface to estimate roughness and to analyze different scattering 

mechanisms. 

A detail study of classified images for more number of classes is also required. Analysis of 

accuracy of performed classification should be done by collecting available ground truth data 

on lunar surface from different agencies based on accuracy results window size could be 

optimized. 
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APPENDIX-I 
MINISAR SENSOR PROPERTIES [2] 

Mode 	 SAR 	 Scatterometer 

.n t 	- 	_ xy 	~-  (• System p1rlme~erS' 	 s 	x is 	r y a 
°"~,."~ 	P~.~  

Altitude 	 100km 	 100km  

Frequency 	 .2.38 Gi-Iz(S band) "h 	5 2 38 GHz(S band) 

Polarization . 	 „43 Transmit LCP; Receive & V . *y1p s Transmit LCP rReceive   H& Ua 

Spacecraft Velocity ' 	{ 	1631 m%s 	*' ` , 	1631: n/s~ a r 	s 

•Rang swat    	 O 	 ~  	~l,q; , NA -  
~  

  
Strip length •. . 	325 km  

	300kd'?n    ss } 

Antenna parameters 

Antenna length 1.37m 1.37m 

Antenna width 0.925m 0925m 

Boresight gain 26.1dB 26.1dB 

Antenna efficiency 53% 53% 

Grazing angle 55 deg 90 deg 

RF parameters 

Transmit pulse width 	84µs 	 83µs 

Chirp bandwidth 	 2.1 MHz 	 2.1 MHz 
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Peak power at transmitter port 40 W 

Average transmitted power 11 W 

System noise temperature 620K 

40 W 

11W 

620K 

Digital parameters 

PRF 	~ 	 3100 Hz 	~~ 	3750 Hz 	aQ 

• 
~ 

No.,samples/pulse` 	 X1119 	 X11,186  

AID sampling frequency 	8 2MHz •  . 	8 2MIz • 

Number of bits per sample 	• 8 	 y 	4` 	8 •
v 	 , 9 

ti 

Number of receive channels 	2 ~ 	3 	 • 2"  

Peak data rate Into SSDR 	183.43 Mbps 	• 	187.43 1Vlbps • 

Collect time/orbit 	6 Amin 	e E 6 min• 
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APPENDIX-II 
CRITICAL x2 VALUES FOR UP TO 30 DEGREES OF FREEDOM 

Degree of Freedom a= 0.1 a0.05 a= 0.01 

• 1 2.706 3.841 6.635 
2 4.605 5.991 9.21 
3 6.251 7.815 11.345 

• 4 7.779 9.488 13.277 
5 9.236 11.07 15.086 
6 10.645 12.592 16.812 
7 -12.017 14.067 18.475 
8 13.362 15.507 20.09 
9 14.684 16.919 21.666 

10 15.987 18.307 23.209 
11 17.275 19.675 24.725 
12 18.549 21.026 26.217 
13 19.812 22.362 27.688 

• 14 21.064 23.685 29.141 
15 22-.307 24.996 30.578 
16 23.542 26.296 32 
17 24.769. 27.587 33.409 

• 18 25.989 28.869 34.805 
19 27.204 30.144 36.191 
20 28.412 31.41 	• 37.566 

• 21 29.615 32.671 38.932 
22 30.813 33.924 40.289 
23 32.007 35.172 41.638 
24 33.196 36.415 42.98 
25 34.382 37.652 44.314 
26 35.563 38.885 45.642 
27 36.741 40.113 46.963 
28 37.916 41.337 43.278 
29 39.087 42.557 49.558 
30 40.256 43.773 50.892 
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APPENDIX-III 

Masked images for CPR>1 and for m<0.35 for scene "FSR CDR LV2 01628 OR" 

(a) 	 (b) 	 (c) 	 (d) 

Figure 5.1 Pixels having a) CPR>1 are masked by red colour; b) m<0.35 pixels are blue colour, c)CPR>1 
& m<0.35 are masked by green colour. d) ROIs from different crater regions are shown. 
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