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ABBREVIATIONS 

D-Q is network frame of reference 

d-q is machine frame of reference 

S 	is rotor angle of synchronous machine 

wS  is synchronous speed 

w; 	is rotor speed 

c k is the admittance angle between buses i and k 

M; is inertia of the rotor 

Eq;  is the internal voltage along q-axis 

Ed; is the internal voltage along d-axis 

Efd  is the field excitation voltage on the rotor 

Iqi 	is the stator current along q-axis 

'di 	is the stator current along d-axis 

OVref is the change in the reference voltage 

AVref,SVC is the change in the voltage reference value of the SVC 

AT,,, is the change in the input mechanical torque 

V;  is the bus voltage 

O 	is angle of voltage at the bus with respect to reference 

PL; is the MW load at a bus 

QL;  is the MVAR load at a bus 

RS 	is the stator resistance 

Xd  is the synchronous reactance along d-axis 

Xq  is the synchronous reactance along q-axis 

Xd' is the transient synchronous reactance along d-axis 

Xq  is the transient synchronous reactance along d-axis 

KA  is the amplifier gain of static exciter 

TA  is the amplifier time constant of static exciter 

H 	is the rotor inertia in p.u. 

Tdo  is the time constant of the field along d-axis 

Tqo  is the time constant of the field along q-axis 
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D 	is the damping coefficient 

T~1 is the measuring time constant of the transducer 

TC is the controlling time constant of the SVC firing ckt. 

KP is the proportional gain of the voltage regulator 

K; is the integral time constant of the voltage regulator 

K 	is the slope of the SVC characteristics 
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ABSTRACT 

In this work an attempt has been made to investigate the improvement of Small 

Signal Stability using SVC. For this purpose state space model for the 3 machine, 10 bus 

system is developed, in which a SVC has been installed in the middle of a transmission 

line. Reduced order model of the system is obtained for ease of analysis and design. Two 

operating conditions are considered, to show the robustness of the controller. To improve 

the damping of the system, a damping controller for SVC has been designed. The 

improvement in the system damping has been investigated by eigen value analysis and the 

results shows the effectiveness of the designed controller. 
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CHAPTER I 

INTRODUCTION 

1.1 	SMALL SIGNAL STABILITY PROBLEMS [2] 

"It is the ability of a power system to maintain synchronism, when subjected to small 

disturbances". A disturbance is considered to be small if the equation describing the resulting 

response of the system may be linearized for the purpose of analysis. 

Instability that may result can be of two forms:- 

1. Steady increase in generator rotor angle due to lack of synchronizing torque. 

2. Rotor oscillations of increasing size due to lack of sufficient damping torque. 

In recent years in practical power systems the small signal stability problem is usually lack of 

sufficient damping of rotor oscillations. 

Local problems 

Local problems involve a small part of the system. They may be associated with rotor 

angle oscillations of a single generator or a single plant against the rest of the system. The 

stability problems related to such oscillations are similar to those of a single machine infinite 

bus system the most commonly encountered small signal stability problems are of this 

category this local problems also be associated with oscillation between rotors of a few 

generators close to each other. The local plant mode or inter plant mode oscillations have 

frequencies in the range of 0.7-2.0 Hz 

Global problems 

Global small signal stability problems are caused by interactions among large groups 

of generators and have wide spread effects. They involved oscillations of a group of 

generators in one area swinging against a group of generators in another area. Such 

oscillations are called inter area mode oscillations. Large interconnected systems usually 

have two distinct forms of inter areas oscillations. 
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a) Very low frequency mode involving all the generators in the system. The system 

is essentially split into two parts with generators in one part swinging against 

machines in other part. The frequencies of oscillations of this mode are in the 

order of 0.1-0.3 Hz. 

b) High frequency mode involves sub groups of generators swinging against each 

other. The frequencies of oscillations of these modes are typically in the range of 

0.4-0.7 Hz 

1.2 LITERATURE REVIEW 

The stability study of the system is predominantly dependent on the low frequency 

(0.1 - 2 Hz) rotor oscillation mode. A Power System Damping controller comprises of a 

lead/lag stage, a wash out stage and a high frequency filtering stage together with gain. The 

filter is designed to pass the swing mode frequency signal while allowing for any variation in 

the frequency range of system conditions. It rejects frequencies associated with non power 

swing modes, such as sub-synchronous torsional oscillation modes and modes relating to 

noise signals that over-ride the auxiliary control signals. 

Gain-phase margin technique [1, 5, 37] has been applied for the design of damping 

controller. In this technique, the controller is designed primarily for dominant swing mode 

frequency. The amount of phase lead compensation required corresponding to pure damping 

condition is obtained. This phase angle is a function of the controllability and observability 

constraints. The damping controller will be designed and verified for different operating 

conditions. 

Root Locus Technique [5,7,37] has been applied by various authors, in this work, For 

different auxiliary controllers, the loci of critical eigen values are obtained with varying 

controller parameters, each taken one at a time. Based on these root loci a range is selected 

for different parameters (K, Ti and T2) in which a high degree of stabilization is provided to 

the critical modes of the system. Power transfer limits are then evaluated for different 

combination of parameters in these ranges. The controller parameters which result in 

maximum power transfer are chosen as optimal for the particular auxiliary controller. 
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Damping Torque analysis [8] has been carried out mathematically for various input 

signals and it is shown that that the computed internal frequency (CIF) Provides maximum 

damping to the rotor mode at the considered operating point and results in the highest power 

transfer of all the signals investigated clearly indicating the importance of high observability 

of the mode to be damped in the auxiliary control signal. The synthesized signal CIF contains 

the effect of the swing mode in the highest measure and is thus effective. 

Linear Quadratic Regulator (LQR) [9, 10] has been applied for the design of damping 

controller. The LQR technique is one of optimal control that can be used to co-ordinate the 

controllers. The control co-ordination method involves formulating an LQR problem to 

determine a full state feed-back controller in which a quadratic performance index is 

minimized. An output feedback controller is then obtained, based on the reduced eigen space 

of the full state solution. The dominant modes of the full state feed-back system are retained 

in the closed loop system with output feedback. Control is calculated through an algorithm 

on the basis of reduced order model of the power system. The control dampens the output of 

the system, reducing it to zero. The controller is a self tuning adaptive regulator. 

For a controller based on linearized models, robust control theory [11, 12, 16, 17] has 

been applied. This technique explicitly considers the variations of the system operating 

condition using uncertainty models. The plant model under various operating conditions can 

be represented as the combination of uncertainty model and nominal model. A robust 

controller has been designed, so that the controller performance is satisfactory over a wide 

range of operating conditions. 

Fuzzy logic control technique [13] has been used for damping controller. In this, 

variable gain is proposed to terminate the switching control of SVC soon after reaching quasi 

steady state to avoid excess and unnecessary control. Real power flow signal is used to 

determine the state of the system. Depending on the state and using simple Fuzzy Logic 

Control rules, the control is calculated which modifies the firing angles of SVC to give 

maximum system damping. Variable gain has to be exercised in quasi steady state, (i.e. the 

transition between capacitive and inductive period) for maximum damping. 
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The ANN stabilizing controller[14] scheme of the SVC consists of a neuro identifier 

and a neuro controller which has been developed based on a functional link network model. 

A recursive online training algorithm has been utilized to train the two networks. A neuro 

controller is developed to synthesize the control action being used as supplementary signal to 

the SVC. A neuro-identifier is used to identify the dynamics of the frequency deviation of the 

SVC regulating bus. The controller learning algorithm can provide such output by 

minimizing a quadratic cost function. 

Damping controller has been designed using Genetic Algorithms [15], here, the 

optimization problem for robust, decentralized control may be restricted by problems of non-

differentiability, non- linearity, and non-convexity. So for this, GA technique is used for the 

linearized state space model of the power system. The objective function is defined as the 

sum the damping ratios of all the modes of interest with constraints. This sum is evaluated 

over several likely operating conditions to introduce robustness. This optimization yields the 

gain K, and time constants Ti  and T2  for all the controllers. 
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CHAPTER II 

MODELING OF SVC FOR LOAD FLOW STUDIES 

1.2.1 MODELING OF SVC FOR LOAD FLOW STUDIES [1, 181 

Load flow is a very important and powerful tool for power system analysis in 

planning stages. The models and load flow algorithms will mimic real time behavior of the 

system. So it is very important to consider the modeling of SVC for load flow analysis. 

A simpler representation assumes that the SVC slope, accounting for voltage 

regulation is zero. This assumption may be acceptable as long as the SVC is operating within 

limits, but may lead to gross errors if the SVC is operating close to its reactive limits. Let us 

consider the upper limit of SVC, when the system is operating under low loading conditions. 

If the slope is taken to be zero, then the generator will violate its minimum reactive limit 

point B 81=0. However the generator will operate well within limits if the SVC slope is taken 

into account. 

The SVC characteristic is represented by connecting the generator to a dummy bus 

coupled to the high voltage node via an inductive reactance whose value, on the SVC base, is 

equal to the per unit slope. The dummy bus is represented as a PV-type node whereas the 

high voltage node is represented as a PQ type node. 

If the SVC operates outside the limits, the generator representation is no longer valid. 

In such cases, changing the SVC representation to a fixed reactive suscep.tance will yield 

accurate results. However both representations require a different number of nodes. The 

generator uses two or three nodes where as the fixed susceptance uses only one node. It takes 

the form of a variable susceptance when the SVC is operating within limits and it takes the 

form of a fixed susceptance otherwise. 
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2.2 FLOW CHART FOR NRLF INCORPORATING SVC 



1 

FIND MAXIMUM 
MISMATCH 	J 

YES 
PRINT LOAD FLOW 
	

IF 
SOLUTION 
	

RESIDUE<E 
LINE LOSSES 

EVALUATE JACOBIAN ELEMENTS 

STOP 

EVALUATE A V AS AND UPDATE 

0 

Figure 2.1: Flow chart for Newton Raphson Load Flow algorithm incorporating SVC 

Figure 2.1 shows the flow chart of Newton Raphson Load Flow algorithm which is 

used in this work for obtaining load flow of the three machine ten bus system. The Load 

flow solutions of the system for two operating conditions are presented in APPENDIX B. 

The voltage profile of the system for both operating conditions is shown in the following 

next sections. 
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2.3 COMPARISON OF VOLTAGE PROFILE OF THE SYSTEM 

comparison of voltage profile of the system for base 
case operating condition 
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—.—without SVC —.—with SVC 

Figure 2.2 : comparison of voltage profile of the system for base case operating 

Condition with and without SVC 

Figure 2.2 shows the voltage profile of the system for base case operating condition 

without SVC and with SVC are overlapped. The voltage boosted by the SVC is very less for 

this operating condition in steady state. 



comparison of voltage profile of the system for stressed case 
operating condition 

1.1 

1.05 

1 	 ..........._ 

X 0.95 

0.9 

0.85 

°> 0.8 

0.75 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

bus number 

without SVC -- with SVC 

Figure 2.3 : Comparison of voltage profile of the system for stressed case 

operating condition with and without SVC 

Figure 2.3 shows the voltage profile of the system for heavily stressed case operation 

near the point of collapse. There is a significant change in the voltage profile boosted up by 

the SVC  in steady state. 

The load flow solution obtained in this stage is used to initialize the dynamic stability 

program for the computation of initial conditions and eigen values are obtained thereafter. 
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CHAPTER III 

MODELLING OF MULTI MACHINE POWER SYSTEM AND SVC 

3.1 MACHINE NETWORK TRANSFORMATION i4, 20, 22, 301 
In this chapter we will consider the linearized differential algebraic equation(DAE) 

model of Multi Machine Power System. This is further linearized to form the system state 

equations. Following notations are used. 

m = no. of generator buses (if there is infinite bus, it is machine no. 1) 

n = total no. of buses in the system 

b = total no. of branches in the system. 

The machine network transformation is expressed as 

Fd;  sin o5;  — cos S;  Fo;  (3.1) 
F ; cos 8;  sin S;  FQ;  

FD;  sin S;  cos 8;  Fd; (3.2) 
FQ;  —cos8, sins;  Fq;  

for i = 1...m 

where F can either be voltage V or current I. Fig 3.1 shows the graphical 

representation of equations. 

Figure 3.1 : Graphical representation of machine network transformation. 
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3.2 DAE MODEL FOR MULTI MACHINE POWER SYSTEM 

This is a comprehensive dynamic model for study of low frequency oscillations in 

power system. Fig 3.1 shows the synchronous machine two axis model and fig 3.2 shows the 

static exciter model. 

Vref —►\_ E  1 +sTA  

V 

Figure 3.2 : Static exciter model 

The assumptions for deriving this model are as follows 

1) Stator has three coils in a balanced symmetrical configuration centered 1200  electrical 

apart. 

2) Rotor has four coils in a balanced symmetrical configuration located in pairs 90°  electrical 

apart. 

3) All energy stored in electrical system inside the machine terminals is included in the 

energy stored in coupling field. 

4) The coupling field is lossless. This assumption neglects the phenomena such as hysteresis 

but not saturation. 

5) The relationship between the flux linkages and currents must reflect a conservative 

coupling field. It must be independent of 6 	when expressed in d-q-o coordinate system. 

6) Space harmonics are neglected. 
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3.2.1 Differential Equations for synchronous machine 

d8 
dt = M i —IUS 	 (3.3). d 
dt 

dto 	T; 	[Eq; — X'dl'di]Igi [ E li +X'qi Igi] I di Di(tl —tu5 ) 
(3.4) 

dt M ; 	M ; 	 M. 	 Mi 

dEei = Ear _ ( X vj — X'gr )` 9i 
dt 	T 'goi 	Tgai 

(3.5) 
dEgi _ E9i _ (X di — X'di )'di + Ejdi 
dt 	T 'doi 	T .doi 	T doi 

(3.6) 
3.2.2 Differential Equations for Exciter 

dE jdi 	Ejai K rj 	l 
(3.7) 

+ A~ (Y re j _.v ' Vi  / 
dt TAi TAi 

3.2.3 Stator algebraic equations 

The stator algebraic equations in polar form are 	 (3 8) 

Edi — Vi sin (8,-6r )—RsiIdi +X9i I9; = 0 

E ; — V; cos (8; — B; ) — RS; Iq; + X di Id = 0 	 (3.9) 

3.2.4 Network equations are 

the network equations are 

Idi 'i sin(8i — 9i )+ Igi V; cos(Si —9)+ PLi (Vi )— t VkViYik cos(Si — ei — a(k) - 0 	(3.10) 
k=1 

Idi Vi COS(S, —9i )—Igi Vi sin(CS; —9i)+QLi(Vi)—jVkViYik sin(gi —9i —aik)= 0 
k=1 	 (3.11) 
for i=1,....m 

n 

	

PLi( )—I Vk ViYk cos(Si —B; —aik) — 0 	 (3.12) k=1 
n 

	

QLi\ /—~jVkk sin(Si —vi —aik)=0 	 (3,13) 
k =1 

for i=m+1......n 
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The linearization of the differential equations yields 
	 (3.14) 

dAS  =Aar 
dt 

(3.15) 
d0 w  _ OT,.  —  [Egi  — X 'di  I  di  ]1 Jgi +  [ - -.Eq, + X 'di''di ]I  qi  _  [ Edi + X' qi I  qi I "di 

dt M. 	Mi 	 M ; 	 M. 

[i..Edi +  X'1 1qi  ]I  di  _  Di (L w1) 

M. 	Mi  
(3.16) 

d6Edi  _  Ld;  _  (Xqi  — X'qi  1"` qi  
(3.17) 

dt 	T qoi 	 Tgoi  

diEgi  _ _  LEgi  _  ( X  di — X  di ) 1  di  +  AE fdi  
dt 	T'doi 	T 'doi 	 T'doi 

(3.18) 
d0Ef;1 	1 DEfdi + 	(AV f  —AVi ) dt 	T 	TA;  

where the symbol 8 stands for partial derivative. 

Writing (3.14)-(3.18) in matrix form we obtain, 
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o s o 1 
_D; 

0 —'qio 
0 

—1dio  

0 A S 

A 
0  

M i  M ;  

o Eqi  = 0 0 
—1 

T Clio 0 

1 

dio 

a E<<i  

A Edi 0 0 0 
—1 0 A Ed, 

Tq;o 
AEfdi —1  AE rd; 0 0 0 0 

Tai 

0 	 0 

I qio ( X  d; —n  qi) — E  d;o 1  Clio  A  d;  —n  qi  — qio 

Mi 	 M. 

(Xd, — X'd;) + 	_ 	 0 	 Aldi 

T o do; 	 AJ gi 
Y V' 

L 
qio 

C 
	

0 

0 0
1 

[00 	 1  0  

0 0 AOi M1 	OTw; +10 	0 	
[AV

, + 0 	0 	d 	fori = 1......m 
0 0 0 0 	r '' 

0 	_  KAY 	 0 	KAI 	 (3.19) 
LTAB 	L 	Tai 
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In simplified form. 

[]= [A
Lj IA I ]+{Blj ][M gi ]+[B2i1[AVgi ]+[E j IiU i ] 	fori=1,....m (3.20) 

	

DIdi 	 O 0. 	 ATM, 
where [Aigi J = 	, [A g, ] — "V. , and [Au 

I AV 	
(3.21) 

 

gr  refl 

for `m' machine system above equation can be expressed in matrix form as, 

oX =[A,J{Lx}+[B,][LV g 1+[B2]AVg ]+[E;IAU] 	 (3.22) 

where, [A,1 [B, ], [B2] and [E, ] are block diagonal matrices. 

Now linearizing the stator algebraic equation (3.8)-(3.9) we get, 

DEdi — sin\Sio — 9 (, )z V. — Vp cos(810 — eio) .8, + Vo cos\Sio — eio )AOi 

— RsiMdi + X' qi Mqi = 0 	
(3.23) 

AE' gi -- cos((5i. — O,, )AV + Via sin(s(o — B;o )ici — V,.0 sin(S;o — 0 c, )©o 
(3.24) 

— RsiAI gi + X'di Aidi = 0 	i =1,....,m 

Writing equation (3.23)-(3.24) in matrix form, we have, 

A S, 
1 

I—P~-, sin(6j.—Oi.) 

V.o cos(sio — eio) 0 0 1 0 	zE'~+ — Rsi 	X'qi Aldi 

 0 1 1 0 	' ~ 	— X'di — Rs; Mqi 
di 

fdi 

+
V0cos(5j, 

— 

910

i

)

o 
—  

sin(oio 

L- V si1(5 — e )— cos
r6 
i

—

o 

B

— 

io

B
l

i 
l  

AB =0 	i =1,....., in 	(3.25) 
io 

 

Rewriting above equation we obtain, 

0 = [cri ][Ax, ] + [Dri ][psi l + [D2i ][AVsi 1 	i =1,.....m 	 (3.26) 
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In matrix notation, 

0=[Ci ][&]+[ Dj ][Af g ]+[D2 ][dv$ ] 	i= 1...m 	 (3.27) 

where [c, , [D, ]and [D2] are block diagonal matrices. 

Linearizing the network equation (3.10)-(3.11), which pertain to generators, we obtain. 

V o  sin(5i0 — Bio lAI  dt + I dfo sin(8i0 — eio) v,  + I  dio wo cos(Sio — eio )Asi 

—'dio 1 o  cos(CSio — eio )Aei  + vio  cos(810 — eio )1 tqi 

+ Igio  cos(8io — eio ) o f — I  gioVio sin( 5,0 — eio )QSi 

+ IgioVto sin(CSio — eio )t  & 	VkO ik cos (o — eko — aik )]Li ';  
k =1 

n 	 n 

— Vio  E {Yk cos(Oio — Oko — a ik $Vk + Vio t VkoYik Sin\eio — Oko — a ik ! AOi 
k=1 	 k=1 

n 	 aP v 
— Vio I [v 1k sin(910  — 9ko  '— aik ) 9k  + a'  (V 	= 0 	 (3.28) 

k=1 	 i 
xi 

vio  CoSV io — eio lzdi + 'dio COS(Uio — eio )A Vi — 'dio 1io sin(gio — eio )ASi 

+ I dio vio Sin(8i0 — eio lAei — Vio Sin(5jo  . Bio )AJ gi 

— I qio  sin (5,0 — Bio )A  vi — I qio Via Cos\Sio — eio AJI-  
n 

+ I gioVio COS(510 — eio )A0i — Y, VkoYik sin(Oio — eko — aik)]AV 
k=1 

n 	 n 

— vo t  [Y•k sin(Oio — Oko — 1k )'k — vio Y vkoY•k COS(eio — Oko — aik ) 0i 
k=) 	 k=1 
xi 	 xi 

n 
vio E [vko ;k cos(o  o — Oko — aik )AOk  

k=1 	 i 
xi 

i =1,..., m 
	

(3.29) 
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Rewriting the above equations in matrix form we get, 

C? I 	Ax! 	D32 	AIgi 
0=  + 

C2m ~ni 	 D3m A/ gm 
(3.30) 

	

Da 1.1 	... 	D41.n, 	AVgr 	DSi.m+1 	... 	D51.n 	AVtm+i 

	

D4m,1 	D 4ntm AVgm 	DSm,m+1 "' 	D5m,n A 

Where the various sub matrices are as follows: 

[Idi. V.o cos(S10 — 9;a ) — Igio Vo sin(8io — O,, ) 0 0 0 0 0 0 

	

C,; _ 	r 	r 	 (3.31) 
 - IdioVio sill(Uio — O ) — IgioY 

7, 
io cos(CJio — 9io )0 0 0 0 0 0 

V•o sin([Sio — Bio) Vio cos(Csio — 9,) 
Vo cos(Sio — eio ) - V. sin(Sio — eio 1 

1 dio vo cos(8io — Bio ) — I qio Vio sin(8i0 — eio) 'dio Sin\Sio — eio l +''qio cos(Sio — 
n 

+ V.o 	Vk0 Y1k sin(Bio — V ko — aik) 	 — 	VkoYk cos(Oio — eko — aik ) 
k=1 	 k=1 
21 

—Vio Y,.i cos(ar)+ aPLi(Vi). 
a vi 

'dio V o sin (810 — eio ) + I qio Vio cos( ä,0 — Oio )'dio cos(810 — eio) — I qio sin(sio — eio ) 
if 	 n 

— V-o I VA,,Yk cos(Oio — Bko — aik) — I VkoY.k sin(Oio ' eko —aik) 
k=1 	 k=1 

= 

AV.. 

(3.32) 

—VoVkoYik sin(eio —Bko —aik)—Voyik COS(8i0 —eko —aik 1 =1,...m 
D.1i.k =  

[ViYkoylk cos(O10 —Bko —aik ) — .VIIoY k sin( 910 —9ko —aik) 	k = 1,....m 
(3.33) 

— V.o V.o Yk sill (O o — Bko — aik ) — Vio'k COS(eio — Bko — aik ) 1 = 1,...m 
— 	 l 

VI'o VkoY.k C0S(ei0 — eko — aik) — V o Yik sin(Bio — eko — aik ) k = m +1 
(3.34) 
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In matrix notation. 

	

0=K2IAX]+[D3J[AigI+[D4][AVgj+[D,JAV,1 	 (3.35) 

[A011  
where 	AVii 

D V; 

Here [C2] and [D3] are block diagonal matrices, whereas [D4], [D5] are full matrices. 

Linearizing the network equations (3.12)-(3.13) for lad buses, we obtain. 

8P (V. 
O = Li i AVi 	E VkoYk COS(eio — eko — aik ) AVi + I VioVkoY,.k sin(B io — Oko _ aik) AOi 

aV 	k=I 	 k=1 
xl 

n 	 n 
— Vio 	[Yk COS(eio — eko — aik )1 Vk — r'o Z [VkoY,.k sin(Bio — Bko — aik )]& 

	

k=1 	 k=1 
ml 

(3.36) 

O _ QLiQr/i — 
	vkoY,.k sin (eio — eko _aik)] !,V — 	Y io VkoYik COS(eio — Bko  

a~ 	Y 	k=1 	 k=1 
xl 

— Y io 	LYik Sin(t9io — eko — aik )1 k + Vio Ej [Vk,,Yk cos(Bio — eko — aik )]Aek 
k=1 	 k=1 

xl 

i = m + 1,.....,n 	 (3.37) 

Rewriting in matrix form we get, 

	

D61n+1.1 	"' 	L6,n+l,n1 	A gl 	D7ur+l.m+l 	... 	D7,,11 A V lnr+l 

()= 	 + 	 (3.35) 

	

D60,1 ... D6n,m ©Vgm [ D7,+1 	 D7n,n AVln 

The various sub matrices are defined as follows: 

— VioVkoYik sin(e 	 Vi io - eko — alk ) — .Y•k COS(8io — eko — aik ) 

D6i = 'k 	V.ro Vkok 	r Y. cos(9.o — Bko — a k 	t . ) — 	Y. sin(B.o — e 	al k ) — a.k ) r 	 r 	V. o rk 	r  
i=m+1,....,n 	 (3.39) 

k=1...... n 



	

n 	
aPLi (Vi ) 	n 	cos(8;.,- Bk0-a!k ) 

V'oVkoYik sin(Oio —eko raik 	aV 	y 	-Vi°Yrrcos(aik) 

	

k=1 	 V i 	k=1 
Y1 

D71=1 	 r l 
laQLi (Vi / 	n V~ Y k $in(&,O -9 ,-alk ) 	 (3.40) 

	

— 	~oVkoYk COSPO — Bko — aik / 	— 	-Vr „Y;; sin(afk ) 
k=1 	 ~Vi 	k=1 
zl 

i = m + 1,...., n 

— J7 Vko Y k sin (eio — eko — aik ) — T'0 Yk cos(Oio — Bko — aik ) 

D'' k 
_

VV.o Vkoik Y cos(Bro . — Bko — a ik 	io ) -- 	Yrk . sin(Bro — Bko — a ik ) r  

i =m+1.....,n 	 (3.41) 
k=m+l,...,n 

Rewriting in compact form we obtain, 

0 = [D6 ][A V, I + [D7 ]{ AVr ] 	 (3.42) 

where [D6] and [D7] are full matrices. 

Rewriting the above equations together we have, 

[ x]=[A,Jdx]+[B,][JI g j+[B 2 ][AV g j+[E,][LxU]. 	 (3.43) 

0 = [C1][ ]+ [D1][Al,]+[D2][A s] 	 (3.44) 

0 = [C, I1 X ] + [D3 ]{AJg I + [D4 ][AVs I+ [D5]LAVi ] 	 (3.45) 

0 = [D6]IAV R J+[D7][AV1] 	 (3.46) 

Eliminating AIg and writing in matrix for, we obtain, 

	

0 	C' D' A V + 0 0u 
d _ [A' B' J& 

[ LD2]

(3.47) 

where A'= [A, ] — [B, ] [D,-' j [C, ] 	 (3.48) 

B'= {B, I — [B1 ] [DI 1 j [D2 ] 	 (3.49) 

C'= [C, I — [D3 ] [D1 ][C11 	 (3.50) 
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D* = LD4]- [D3][D_'][Dz][Ds]  
(3.51) 

 

[D6]  [D7] 

AV N = vg 	 (3.52) 
o V, 

Reordering the variables in voltage vector, we get, 

 [AO,AV,.......AVm A02 .....AO LIVm+ ....AVn ~ 	(3.53) 

After reordering equation (3.47) as in equation (3.53) 

Az A B, Bz 

0 = C, 	D„ 	D12 Dy, + 0 Du 	 (3.54) 

0 Cz D;, D;2 AYb 0 

where Dyb is the set of load flow variables, and Ayc is the set of other algebraic variables in 

the network equations. The system state equation is finally as follows. 

[A} = [Asys lAx]+ [E][Au1 	 (3.55) 

where 

	

whereJAE[DI
' g Diz 	 (3.56) 

[Cz 	 -D21 D22 

Eigenvalues of Matrix Asys are computed to predict the stability of the system. 
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3.3 BLOCK DIAGRAM OF DYNAMIC MODEL OF THE SVC [19, 21, 231 

Dynamic model of SVC for dynamic stability analysis is given as 

%is 

Figure 3.1 : SVC block diagram 

3.4 MODIFICATION OF LINEAR MODEL INCORPORATING SVC 

Here the admittance of the SVC seen by the system, BS„,,, is the state variable x3. 

The block K is the slope of the control characteristic. Here Kp=O, so that integrator voltage 

regulator is used. The SVC block diagram model I shown in figure3.1. The state equations of 

the SVC are 

— (V,•r (1 + K_r,) — 1 ) 	 (3.57) 
T, 

X2 = Ki(V ef,s,•r —x1 ) 	 (3.58) 

X3 =(2 +Kp(V rej.svc —XI)—X3 ) Tr 	 (3.59) 

QSr = —(VSZr x3) 	 (3.60) 

When these equations are linearized 

0 .r = T (0 V5,,r (1 + Kx 3 ) + VS,•r K&3 — Ax, 

(3.61) 

Axe =Ki(AVYef,s,r —&) 

1 	 (3.62) 
Ax3 = T:- (, 	 —AXI)—AX3/ 

r  (3.63) 

~Qsir = —(V3 AX3 + 2Vs ,rX3 AV5,,) 
(3.64) 
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Arranging in matrix form we obtain 

—1 0 KVsvc 	1+Kx3 
(3.65) 

~I 	7'M 	Tm 	AxI   

dX 2 = —KI 0 	0 	AX2 	0 

	

L i3i —Kp —1 —1 Ax3 	0 
T, 7 T, 

where 

= Asvc~s~~ + BsvcOVsv~ 

The network equation of the svc bus will be modified as 

0 = aQLi lVi) 
AV. — Y I ko yik sin(Oio — eko — aik) AVi 	11 VioVko Yik sin(Bio — eko — aik) Avi 

aVi 	k-I 	 k=l 
xl 

n 	 n 

— Vio E [Yk sin (9,0 — eko — aik )}\Vk — Vio [Vko Yk COO',, — eko — aik 
k=1 	 k=I 

x1 

+ [— 2Vsvc'x3 AY —svc v
2 

svc1.).A3 

(3.67) 

Correspondingly the C and D22s,,c will be modified. Modifications needed for 

incorporating SVC's state space model into the system state space are as shown below 

Az 	A. 0 B, BZ 
0x 

~sVC 	0 ASVC 0 	BSVC 	
(3.68) ~y~ 0 	Cl' 0 D„ D,2 A 

o 	 b 

C;SvC 0 Dz1 	D;2, i  

By eliminating the algebraic equations Asys Matrix is obtained, 

[A 	— A 	0 —[B,' 
BZ [J ~~1 C' 	0 	(3.69) 

srs — 0 
Asvc 	0 Bsvc  ~E 	Czsvc 0 

Eigen values of the ASys matrix are computed to predict the stability of the system. 

(3.66) 
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3.5 COMPUTATION OF INITIAL CONDITIONS 

To compute the matrix Asy5 it is necessary to compute the initial values for all the 

dynamic states. In power system dynamic analysis, the initial conditions are normally found 

from a base case load flow solution. 

Step 1: The first step in calculation of initial conditions is the calculation of the generator

• P.—JQ
c currents as, I.; = c̀  	` 	 (3.70) 

V; 

Step 2: S; is computed as E. = Angle of (i'1 f + (Rs; + jX q, )IG;e'~' ) 
	

(3.71) 

Step 3: Compute Id; Iqi Vd; Vq; as, 

'di + jlgi = IG;e
. i(r-6i+niz) 	 (3.72) 

Vdi + j V ; = 
	 for i=1,...,m 	 (3.73) 

step 4: compute E' di as, Ed; = Vd; + RS; Id; — X q; Iq; 	i =1,......., m 	 (3.74) 

Step 5: Compute E' 9; as, EQ; = Vq; + Rsi'gi — X di I d; 	i =1,......., m 	 (3.75) 

Step6: Compute E fd; asE fd; = EQi + (X di — X di )di 	i =1,...., 	 (3.76) 

The above equations are used for calculating the eigen values of the systems 
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CHAPTER IV 

LOCATION OF SVC AND SELECTION OF INPUT SIGNALS 

The study system used in this work comprises of 3 machines, 10 buses and 10 

lines. No machine has power system stabilizer (PSS), and each machine model has its 

own exciter. Each machine has same type of exciter model (i.e. static exciter model). The 

power system network diagram is shown in figure 4.1. The system data [4] used for the 

study is given in APPENDIX A. 

Bus 7 	 Bus 9 

Bus 2 	 Bus 8 	 Bus 3 

Figure 4.1: 3 Machine 10 Bus power system network diagram 
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4.1 PLANNING AND PREPARING THE SYSTEM MODEL FOR THE DESIGN OF 
CONTROLLER 

It is found in open literature as well as in practice that the damping of the system 

decreases as the system is heavily loaded. The effective damping contribution of the SVC 

damping controller depends on its location and the selection input signals. 

In order to show the effectiveness of the damping controller the study is 

conducted on two different operating conditions which are extremely apart; one base case 

(normal) operating condition and the other at heavily loaded (stressed) operating condition 

near the point of collapse which may assumed to be occurring on the system. In order to 

obtain more meaningful realistic study, the system includes the following characteristics: 

1. Heavy power transfer, 

2. Multiple areas, 

3. Realistic area Dynamics, and 

4. Two operating conditions. 

A very systematic problem formulation is followed in order to obtain the system 

dynamic model. 

1. Load flow is conducted for both operating conditions 

2. Location of SVC and input signals to the damping controller are selected 

3. Reduced order model of the system is obtained 

4. Objectives and constraints of the controller are enumerated 

5. Damping controller is designed and tuned for robustness 

6. Controller performance is verified for both of the operating conditions. 

The Load flow solutions of the system are obtained for two operating conditions with and 

without SVC in both the cases are presented in the chapter 2 and results are shown in APPENDIX 

B. SVC Location is chosen based on bus participation factors and input signals to the controller 

are selected based on observability controllability residues of the various possible local input 

signals. Reduced order model of the system is obtained for ease of analysis and design. Finally 

the design process is carried out using residue method and controller is tuned for robustness. 
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4.2 	LOCATION OF SVC FOR EFFECTIVE DAMPING USING MODAL ANALYSIS 124, 251 

The location of SVC is based on the determination of critical eigen values corres-

ponding to voltage instability under the stressed operating condition. Critical modes are 

computed by studying the system modes in the vicinity of the point of collapse. Eigen vectors 

of the critical eigen value give the information about the combination of loads responsible for 

the voltage collapse. System bus participation factors are used to determine the most suitable 

location for the SVC. 

The most critical modes of the system can be computed by performing a point of 

collapse power flow solution, which requires the computation of system jacobian matrix at the 

point of maximum loadability. Modal or eigen value analysis of the system jacobian matrix 

near the point of collapse can be used to identify buses vulnerable to voltage collapse and 

locations where injections of power benefit the system most. The eigen vectors of the critical 

eigen value give the information about the loads responsible for the voltage collapse. The 

linearized relationship between the load voltage and reactive power load is expressed as 

XAV=OQ 	 (4.1) 

Where X is the V-Q sensitivity in general this sensitivity can be obtained from system 

jacobian matrix. When X is close to zero, a small change in load results in large change in the 

voltage. Modal voltage is a particular combination of reactive power loads given by the 

corresponding left and right eigen vectors. The participation of each load in forming the critical 

mode determines the importance of the load in collapse. The degree of participation of loads is 

determined from an inspection of the entries of the left eigenvector of the critical mode. Larger 

eigen vector entries signify locations most suitable for voltage support. 

	

AQ = JR AV 	 (4.2) 

JR 	i Ai 	 (4.3) 

where JR is the reduced jacobian matrix, 

E and rl are the left and right eigen matrices respectively and 

A represents the system eigen values of the jacobian matrix. 
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The Bus participation factor of bus `k' in the critical mode `i' is 

Pik = tki 17ik 	 (4.4) 

Identifying critical mode is not trivial, the magnitude of eigen value is only a relative 

measure of proximity to instability as the system approaches collapse, the eigen values that 

initially have small real component may not be critical, and other eigen values may become 

critical. For the stressed case operating condition of power system eigen vales of jacobian 

matrix obtained are the critical modes of voltage instability given in the following table 4.1 

Eigen values of jacobian matrix 

Mode no eigenvalue 

1 58.2529 
2 48.2495 
3 44.3082 
4 28.1373 
5 20.1470 
6 0.0938 
7 13.6454 
8 4.7803 
9 7.4388 

Table 4.1: eigen values of jacobian matrix at the point of system voltage collapse 

Bus Participation Factors 

X1 A2 X3 X4 X5 X6 X8 M A10 
2 0.0958 0.0048 0.0192 0.0335 0.2753 0.1402 0.1092 0.0802 0.2419 
3 0.0081 0.1199 0.1092 0.0030 0.1516 0.1117 0.1137 0.3825 0.0002 
4 0.0016 0.2785 0.4406 0.0891 0.0021 0.0298 0.0307 0.0030 0.1247 
5 0.0091 0.0732 0.0935 0.2365 0.0101 0.1104 0.0993 0.1098 0.2582 
6 0.0004 0.0772 0.0195 0.0683 0.0010 0.0599 0.5358 0.0372 0.2007 
7 0.6220 0.0177 0.0548 0.0162 0.0114 0.1487 0.0042 0.0441 0.0808 
8 0.1332 0.0277 0.0071 0.0712 0.5421 0.1432 0.0002 0.0083 0.0669 
9 0.0441 0.3697 0.2554 0.0011 0.0032 0.1129 0.0059 0.2076 0.0001 
10 0.0857 0.0312 0.0007 0.4812 0.0032 0.1431 0.1010 0.1273 0.0266 

Table 4.2: Bus participation factors of the system for all modes of voltage instability 
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From the bus participation factors shown in table 4.2, it is observed that the area 

corresponding to buses 2, 7, 8, 10 near the second machine are the buses most vulnerable to 

instability. But it is proved [1] that the best location for installation of SVC is the mid-point of 

transmission line (instead of a generator bus 2 or 7), where the voltage variations are maximum 

without SVC. Therefore mid-point located SVC can best support the system from voltage 

instability by suitable reactive power compensation. From the table 4.2 the bus participation 

factors corresponding to buses 8 and 10 have almost same values. Therefore, either bus 8 or 10 

can be selected as the best location for installing SVC. In this work, a SVC has been installed 

at bus number 10. 

4.3 	SELECTION OF INPUT SIGNALS FOR THE CONTROLLER [2, 35] 

Locally measurable quantities can be used for identifying the inter area modes of 

oscillations which shows good observability of the modes of the system can be used as input 

signals to the controller. The possible local measurements that can be selected as input 

signals to the controller are as follows 

Y = C X 	 (4.5) 

AJi k 
Y = 9k 	 (4.6) 

Line current magnitude ( Alm ) can be expressed in terms of states of the system (AX) as 

I ik =Y'k(Vi —Vk) 

rik = (Gik + jBik ) {(Vi  cos(81 ) — Vk  cos(8k  )) + J(V sin(oi ) — Vk  sin((Sk  ))) 	 (4.7) 

Iik 2  =(Gik 2  +Bik 2 ){V12  +Vk 2 ) - 2V.Vk  cos(8i  —8k )} 

Linearizing the above equation 

21/k JAI ik I = ( Gik 2  +B(k 2 ){ 2Vi AY +2Vk AVk  — 2{(Vk  cos(6i  — Jk)AVi 

+V1  cos(81 — Sk )AVk — V, Vk  sin(Si  — 6k )8i + Vi  Vk  sin(51  — 5k )ASk) f f (4.8) 

From the equation (3.47), AV can be expressed in terms of AX, 

AV=[M]AX 	 (4.9) 

where [M] _ - [JAEJ -I  [C] 
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I AJik I = (Gik 2 + Bik 2 ) { (Vi - Vk Cos(5i - rsk ))OV + (Vk - V CoS(51 - 8k ))k 

+ V Vk sin(Ui — r~k )r~U1 — V,Vk sin(8i — Uk )A8k )J / 1ik 	 (4.10) 

The above equation can be expressed in terms of AX 

Aik = (G/k2 + Bik 2 ) 1 l (V - Vk COS(CSi - CSk ))MV1 + (Vk - Vi COS(Si - Sk ))MVk 

—VVk sin(81 —8k )Ma +VVk sin(Ji —8k )M & )} 	}[AX (4.11) 

= [C,] AX 	 (4.12) 

A_A. = (Y A.V. COS(81 - 8k - aik ))AVE. + (YkV. COS(CSi - CSk - aik ))AVk 

— (V; Y,.k Vk sin(9, — Sk — aik ))08i + (V. Y,.k Vk sin(8; — 8k — aik ))A8k 	(4.13) 

AP 'k = { (Y.k Vk COS(CSi - 8k - aik ))MVi + (YkV COS(5i - CSk .' aik ))MVk 

— (T , Y,.k V. sin(8i — 8k — aik ))M 6 + (V,.Yk Vk sin(Bi — Sk — aik ))Ma )AX 	(4.14) 

AQik = (Y.k Vk sin(V; - Sk - aik) + 2V Y,.k sin(aik ))OV + (Yk Vi sin(CSi - 5k - aik )) AVk 
+ (V Y.k Vk COS(CSi - 8k - aik ))A(5i — (ViY,.kVk cos(51 — Sk — aik ))L\8k 	(4.15) 

AQik = { (Y.k Vk sin(CSi - 8k - aik ) + 2V.Yik sin(aik ))MVi + (YkV sin(FJi - 8k - aik ))MVk 
— (V Y.k Vk COS(8i — 8k — aik ))M & + (V,.Y,.kVk cos(S, — 8k — aik ))Ma }/ X 	(4.16) 

Arranging these three signals in matrix form 

Y = [C] AX 

Aik 	C1 
= C2 [LX} 

C3 

The state space representation of power system is 

X=AX+BU 

Y=CX 

The equivalent system representation in modal form is given by 

Z =[A]Z+[T-'B]U 
Y = [CT]Z 

=A.;Z+'Z[T -'];[B]kUk 
i-1 

(4.17) 

(4.18) 

(4.19) 
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where X; is the i h̀ eigen value of the system and [T-t ]; is the i h̀ row of left eigen 

matrix [B]k is the k h̀ column of the B matrix. The open loop Transfer Function of the power 

system can be obtained as 

G(s) = = C[sI — Asys]-' B 	 (4.20) 

= [CT][sI — A]-'[T-'B] 	 (4,21) 

Z; =A,Z+Z /3(k Uk 	 (4.22) 

Where /3ik indicates the controllability of the ith mode, in other words 13;k means the 

effect of k`" input on i;" mode[24]. 

Y = [CT]X 	 (4.23) 

The measure of mode observability of a certain mode i from the local line signal is 

given by [CT]. The open loop transfer function of the power system can be expressed in 

terms of modes and residues 
n 	R,~ 

G(s) =E( 2 )  (4.24) 

Lt 
R _ 	

, 
(s + 2; )G(s) 	 (4.25) 

is the residue associated with its' mode and jth transfer function and can be expressed in 

mode controllability and observability 

R = [CT][T-'B] 	 (4.26) 

R;l = Ctrb f * Obsv 	 (4.27) 

Vref' 4 
 _ 	 y 

 

Fig: 3.1: Block diagram representation of closed loop system 
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Adding the feedback loop will cause a change in the i h̀  eigen value[35]. The closed 

loop poles are give by 

	

I + G(s) H(s) 	 (4.28) 

(s+?) + R J  * H(s) 	 (4.29) 

	

(s+ +AX 	Where [X=Rl *H(s) 

Therefore a damping controller with j'h  input signal having largest residue for ith 

mode will cause largest change in A;. The local signal which has large residue value can be 

selected as the best input signal to the controller. 

The residue values of the three input signals obtained from the system under 

consideration are 

Line 10-7 Line 10-5 

D Irn  4.7973 4.1572 

A P 4.2467 3.4108 

0 Q 3.9461 1.5634 

Table 4.3: Residue values of the line measurements 

Therefore line current magnitude signal D I,,, in the line 10-7 is taken as input 

signal to the controller which shows largest residue value. 

31 



CHAPTER V 

DESIGN OF DAMPING CONTROLLER FOR SVC 

5.1 MODEL ORDER REDUCTION [26, 32] 

Detailed mathematical modeling of the system is very difficult to analyze as it 

contains too many oscillatory modes of the system. Reduced model order of the system can 

be obtained for ease of analysis and design of control system. 

5.1.1 OBJECTIVES OF MODEL ORDER REDUCTION 

In the present 3-Machine, 10-Bus system the full detailed mathematical model 

consists of 18 states, 5 states for each machine and 3 states for SVC, which is large in 

dimension and needs to be reduced for the following reasons. 

1. Large scale system is very difficult for both analysis and design of control system. 

2. Large dimensional system in state space form requires large computer storage and 

more simulation time. 

3. Controller based on large dimensional state vector is neither economical nor 

reliable. 

4. A very detailed mathematical model of the system consists of higher order 

differential equations which are difficult to solve in general. 

5.1.2 MODEL ORDER REDUCTION OF THE SYSTEM 

A reduced order model of the system, which retains the important characteristics of 

the original higher order system, can replace the original system. A reduced order model 

should approximately have the same time and frequency as that of the original system. The 

reduced order model of a system in state space form can be obtained by eliminating some of 

the states from the higher order system. A systematic procedure is followed in order to obtain 

the reduced order model of the system which mimics the original system. 

1. 	Elimination of zero eigen value [191 

In the multi machine model developed in the previous chapter, absolute rotor angles 

are taken as state variables; there will be a zero eigen value present in the model. This arises 

because the sum of the columns in the A matrix corresponding to 's will add up to zero. It 
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can be suppressed by taking the angle differences instead of absolute angles as the state 

variables. This reduces the order of the system by one. If the r h̀  machine is taken as the 

reference, the required changes in A can be achieved by deleting the row and column 

corresponding to A5, and placing -1 in the intersections of the rows corresponding to other 

AS's and column corresponding to AW r. 

2. Pole Zero cancellation [5] 

If the system is not completely state controllable and observable, that means that there 

exists a sub-system which is disconnected or in other words isolated from the input and 

output variables. The cancelled modes can't be controllable and observable. A minimal 

realized system achieved by pole zero cancellation is completely controllable and observable. 

There is one pole zero combination which can be cancelled in the open loop system transfer 

function of the power system. This reduces the order of the system by one. 

3. Elimination of infinitely fast states 

As the measuring and control time constants(T,,,, TT ) of the SVC are very small the 

corresponding state variables xi and x3 of the SVC can be treated as infinitely fast acting 

states, in other words these states can be approximated to instantaneously measurable and 

controllable states, which can be eliminated from the system obtained from step 2. In this 

step the order of the system is reduced by two. 

4. Elimination of weakly coupled states 

Hankel singular values can be computed from balanced realization of the system 

represented in state space form. Very small Hankel singular values indicates that the 

associated states are weakly coupled between the input and output variables which can be 

eliminated. This is done as follows, the state vector can be partitioned into two parts X1 

which can be retained, X2 which can be eliminated 

X _ All Al2 X 1 

0 	A21 A22 X z 

The derivative of fast states X2 can be made equal to zero, and then solved for the 

remaining state equations X1 . In the three machine ten bus system considered in this work 

there are five states whose Hankel singular values are very small they have been eliminated 

by the above method. This reduces the order of the system by five. The final reduced order 

model of the system contains 9 states, 
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5.1.3 THE STEP RESPONSE OF THE HIGHER ORDER AND REDUCED ORDER 
MODEL OF THE SYSTEM 

Step Response of original system and reduced oreder model system 
35 

Time (sec) 

Figure 5.1: comparing the open loop step response of original higher order system 

and reduced order system 

The step response of the original system and reduced order system for base case 

operating condition are shown in figure 5.1. The original system contains 17 states after 

eliminating zero eigen value and the reduced order model of the system contains 9 states, 

which is completely controllable and observable and stable. This model is very easy to 

analyze and to design the control system. In the root locus plane it is easy to tune for optimal 

damping compared to original higher order system. From the response plot it is observed that 

the reduced order model of the system contains all the important characteristics of the 

original higher order system. Fig. 5.1 shows the validity of the reduced order model of the 

system that can be used to replace the original higher order system. The step responses of the 

open loop transfer function of the system between line current magnitude a,,, and AVsvcrCf 

are shown for comparison of the original and reduced order model systems. 
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5.2 	DESIGN OF DAMPING CONTROLLER [4,7,31,33,35,371 

5.2.1 OBJECTIVE AND CONSTRAINTS OF DAMPING CONTROLLER 

The objective of the damping controller is to improve the over all dynamic stability of 

the system by providing damping for poorly damped modes of oscillations. 

The constraints on the design are: 

1. The damping controller must coordinate with the other system controls 

(generation dispatch; load frequency control; voltage control). 

2. Control action shall not cause excessive variation in major system variables; 

e.g., voltage, power, speed, frequency. 

3. The controller designed based on linearized model should not interfere the 

transient controls of the system 

4. The controller should give satisfactory performance for diverse operating 

conditions. 

5.2.2 COMPONENTS OF DAMPING CONTROLLER 

The basic function of damping controller is to add damping to the poorly damped 

nodes of oscillations by controlling its terminal voltage using auxiliary control signals. In 

order to provide damping the controller must produce a component of torque in phase with 

the dynamic oscillations of input signals. In practice, line current flow (AIiine) and SVC 
voltage regulator input (LVsvcref) exhibit frequency dependent gain and phase characteristics. 

Therefore the damping controller to be designed should contain appropriate phase 

compensation circuits to compensate for the phase lag between voltage regulator input 

(.Usvcre) and the line current (~.Ii;,1e) flow. In ideal case, with the phase characteristics of the 

damping controller should be an exact inverse of the voltage regulator input (OVSVCref) and 

line current 	flow phase characteristic. The damping controller would result in a pure 

damping torque at all oscillating frequencies of the range of interest. The damping controller 

is required to contribute to damping of the rotor oscillations over a range of frequencies 

rather than for a single frequency. Block diagram of the damping controller is shown in 

fig.5.2. 
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Figure 5.2: Block diagram of damping controller 

1. Phase compensation (T1 , T2, T3, T4) 

This block provides the appropriate phase lead characteristic to compensate for phase 

lag between the voltage regulator input (LVsvcref)  and the line current flow (Altine). Normally 

the phase lead network should provide composition over the frequency range of 0.1-2.0 Hz. 

The amount of phase compensation changes with the system conditions. 

2. The signal washout block (T) 

It serves as a high pass filter with the time constant T,v  enough to allow signals 

associated with oscillations in DI,,, to pass unchanged, without it, steady changes in line 

current would modify the error signal. It allows the damping controller to respond to the 

changes in current only. 

3. Damping controller gain (K) 

The gain has an important effect on damping of the oscillations. The value of gain is 

chosen by examining its effect over a wide range of values. The damping increases with 

increase in gain up to certain value beyond which further increase in gain will reduce the 

damping. Ideally gain K should be set at a value corresponding to max damping. Most of the 

cases K is chosen as 1/3 of the critical eigen value. 
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5.2.3 METHOD OF DESIGN OF DAMPING CONTROLLER [35] 

The open loop transfer function of the power system can be expressed in terms of 

modes and residues 
n  R 

G(s) =1 	'' 	 (5.2) 
(s+A) 

Lt 
R.. _ 	(s + ).. )G . (s) 	 (5.3) 

is the residue associated with ith  mode and jth  transfer function and can be expressed in 

mode controllability and observability 

R = [CT][T -'B] 	 (5.4) 

R,1  = Ctrb j  * Obsv;, 	 (5.5) 

V,.e; 4  n R 	 y  
G(s) = ' .    

 

Fig: 5.3 Block diagram representation of closed loop system 

Adding the feedback loop will cause a change the i h̀  eigen value[35]. The closed 

loop poles are give by 

I + G(s) H(s) 	 (5.6) 

(s+>) + R *H(s) 	 (5.7) 

(s+N;) + AX 	Where AX = * H(s) (5.8) 

In the case of pure gain feedback without any compensation the eigen value of the 

closed loop system will modify the real part and imaginary part of the eigen value is given by 

the expression (5.8). 
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i.e, when H(s) = K then AA = K * R;~ 

= K * R, (real + J lmag ) 

When the phase characteristic is exactly compensated then pure damping can be 

added to the mode without modifying the phase angle of the mode. Therefore from the 

residue value the required amount of phase compensation can be obtained. A single stage 

phase lead compensator is designed which is valid well up to 600 of phase compensation. If 

the amount of compensation required is more than 60° then multiple stages of same 

compensator blocks are cascaded for obtaining the required amount of phase compensation. 

The single stage phase lead compensator design steps are as follows 

The pole-zero spread of the compensator is obtained from the required amount of phase angle 

compensation c~.; 

(1—sinO..) 
a =  (5.9) 

(l+ sin 

The time constants of the compensator block are 

_ 1 

T tUM  (5.10) 

T2 =aT, 

where co,,, is the centre frequency where the peak value of the compensation occurs 

The total overall transfer function of the feedback path appears as 

H(s) =1{ sT
W [(I+sTD ]fh  (FILTER) 	(5.11) 

(l+sTw ) [(I + sT2 ) 

where `m' is the no. of stages of the compensator 

The filter can be used to filter the noice signals and for rejecting the range of modes 

of the system corresponding to sub-synchronous torsional band to avoid adverse interaction 

with these mode. 
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5.2.4 TUNING OF THE DAMPING CONTROLLER [28, 34,37] 

The initial direction of eigen value migration as gain is increased from zero is 

determined by the phase at the local mode frequency. For perfect compensation, 4L=0 Pure 

damping will be added and the eigen value will move directly into the left half plane with 

no change in frequency. If phase lag exists, the frequency will increase in proportion to the 

amount of damping increase, given by the following expression 

tan qL =— zuL 	 (5.13) 

where W L is the Iocal mode frequency 

aL is the local mode decay rate 

Frequency (rad/sec) 

Figure 5.4: Bode plot of the compensator 

For (DL= 45 the frequency will increase at the same rate as the damping, and for 

Ik= -90, no change in damping will take place, but frequency will increase. This analysis 

is very importanant in the tuning stage of the controller in the root locus plane for optimum 

damping. 
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CHAPTER VI 

RESULTS AND CONCLUSIONS 

6.1 	RESULTS 

The damping of the system decreases as the system is heavily loaded. So, It is very 

important to ensure the damping of the system under heavily loaded operating condition near 

the point of collapse. The damping controller has been designed for inter area modes of 

oscillation of the system for stressed case operating condition. 

The damping controller is designed using observbility controllability residue method. 

The damping controller is designed and tuned based on reduced order model of the system 

and the results are shown on the original higher order system applying damping controller. 

The eigen values of the higher order system applying damping controller are 

presented in table 6.1 for stressed case operating condition. Table 6.2 shows the eigen values 

of the original higher order system without SVC, with SVC, and with SVC damping 

controller. 

Without SVC With SVC With SVC 
damping controller 

-0.8569 +12.69751 -0.6406+12.7798i -0.6849+12.7856i 
-0.8569-12.69751 -0.6406-12.7798i 0.6849-12.78561 
-0.2988+8.0069i -0.1123+8.2348i 0.2486+8.1593i 
-0.2988-8.00691 -0.1123-8.2348i 

4-4.7803+5.0831i 
0.2486-8.1593 i 

-0.0758+6.42581 -3.0649+3.24611  
-0.0758-6.4258i -3.0649-3.2461i -4.7803-5.08311 
-0.1359 -4.5255+1.24961 -4.4435+1.1707i 
-4.4994+1.2475 i -4.5255-1.2496i -4.4435-1.1707i 
-4.4994-1.24751 -4.4556 -4.4417 
-4.3736 -0.1428 -2.4321+1.46971 
-1.2974 -2.6055+1.5845i -2.4321-1.4697i 
-2.7647+1.28321 -2.6055-1.58451 -1.2154 
-2.7647-1.2832i -1.2164 -0.1280 
-3.2258 -3.2258 -0.0996 

-81.7535 -3.2258 
-5.1339+30.1877i -79.3136 

-8.3965+32.7296i 
-8.3965-32.7296i 
-6.6633 

Table 6.1 : Eigen values of system for stressed case operating condition 



Without SVC With SVC With SVC 
Damping controller 

-0.8481 +12.76471 -0.8171 +12.74691 -0.8281+12.77261 

-0.8481 -12.7647i -0.8171 -12.7469i -0.8281-12.7726i 

-0.2509 + 8.3637i -0.2902 + 8.1721i -0.4772+8.86281 

-0.2509 - 8.36371 -0.2902 - 8.1721i -0.4772-8.8628i 

-2.2411 + 3.0194i -2.1478 + 2.9317i -2.1966+2.91071 

-2.2411 -3.0194i -2.1478-2•.9317i -2.1966-2.91071 

-4.6669 + 1.3818i -4.6836 + 1.3734i -4.7008+1.38111 

-4.6669 - 1.3818i -4.6836 - 1.3734i -4.7008-1.38111 

-0.1363 -0.1441 -3.5883 

-3.4863 + 0.9991 i -3.1964 + 0.6390i -2.8571+0.52931 

-3.4863 - 0.9991i -3.1964 - 0.6390i -2.8571-0.52931 

-2.2618 -2.8495 -0.1279 

-0.8873 -0.8954 -0.0998 

-3.2258 -3.2258 -0.8945 

-14.9967 +13.6840i -3.2258 

-70.1185 -19.6108+21.0013i 

-14.9967 +13.6840i -67.4854 

-19.6108 -21.0013i 

-6.8338 

Table 6.2 : eigen values of the system for base case operating condition 

The transfer function of the system is obtained between input V fe  f  and output Iline  from the 

mathematical modeling of multi machine power system. The step response of the transfer function is 

shown in figure 6.1. 
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comparison of Step Response of the stressed system 

without damping controller 
— with damping controller 
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Figure 6.1: comparison of step response of the original higher order system 

for stressed case operation 

• Figure 6.1 Compares the step response of Open Loop Transfer Function of the system 

without damping controller (indicated by dashed lines) and step response of Closed Loop 

Transfer Function with damping controller for stressed case operating condition, which 

shows that the damping of the system is improved with the damping controller. 

• The step response of the system with and without damping controller for heavily 

loaded condition is shown in the figure 6.1. The same damping controller is applied for base 

case operation of the system, the step response is shown in figure 6.2, both response plots 

shows the improvement in damping of the system. The controller designed based on stressed 

case operation is satisfactory for base case operating condition also without adding any 

adverse side effects. 
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comparison of Step Response of system for base case operating contion 

- - - without damping controller 
— with damping controller 

C 
0 

t 
C 

w 

C 
a) 

I.J 
O 
G) 
C 
C 
0 
Q 
CO 
N 

N 

0 

YID 	 ~~ 

F rt X11. \r ;~,~.+~:~_. 

0.5 
Q 
	

5 	10 	15 	20 	25 	30 	35 

Time (sec) 

Figure 6.2: comparison of step response of the original higher order system 

for base case operation 

Figure 6.2 compares the step response of Open Loop Transfer Function of the system 

without damping controller (indicated by dashed lines) and step response of Closed Loop 

Transfer Function with damping controller for base case operating condition, which shows 

that the damping of the system is improved with the damping controller. 

From the figures 6.1 and 6.2, it can observed that the oscillations in line current 

between buses 10 and 7 is effectively damped out. 
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6.2 DISCUSSION 

1. Robustness of the designed controllers [35] 

A robust controller is expected to perform satisfactorily at various operating 

conditions. However, since the proposed controller has been designed using linear analysis of 

the power system, it is important to check that it performs satisfactorily when disturbances 

occur. The robustness of the controller is evaluated in two different ways. The first is to 

evaluate the system performance and damping ratio of critical modes of the system under a 

heavily stressed operating condition compared to the original operating condition. The 

second way is to evaluate the system response to various disturbances using time domain 

simulation of the nonlinear power system model. 

2. Coordination with Other Controls [32] 

Certain inherent design characteristics of the Damping Controller provide good 

coordination with the generation dispatch; load frequency; and voltage control systems; as 

follows: 

1 . The damping controller provides no control signals to the turbines (steam, gas, 

hydro) in the system. In addition, the damping controller provides no steady-state control 

signals to the generators. 

2 . The control signals to the SVC voltage regulator are inherently supplementary, by 

using rate type wash-outs on the line current measurements used by the gain of the damping 

controller. 

The first inherent design characteristic means that the damping controller has no 

steady-state effect on generation control. The second inherent characteristic means that the 

damping controller has no steady-state effect on system voltage control. 
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6.3 CONCLUSIONS 

The damping controller is designed using observbility controllability residue method. 

The damping controller is designed and tuned based on reduced order model of the system 

and the results are shown on the original higher order system applying damping controller. 

The damping controller is designed for inter area modes of oscillation for two 

operating conditions which are extremely apart covering the entire range of operation of 

power system. The step response of the system for both operating conditions shows the 

improvement in damping of the system for both operating conditions. 

Therefore, it can be concluded that the performance of the controller will be 

satisfactory for any other system operating point in the range between these two extreme 

operating cases. 
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APPENDIX A 

BUS DATA OF THE 3-MACHINE, 9-BUS SYSTEM FOR HEAVILY LOADED 
CONDITION AT BUS NUMBER 5 

000 ~ 	' 0000 
000 ~ 	~ 0000 

BUS DATA OF THE 3-MACHINE, 9-BUS SYSTEM FOR NOMINAL BASE CASE LOADING 
CONDITION 

• ~ ~ ' ® ®~ ®fiiiiYi7 ®~ 

u;. wo.............,,, 
mute,......_._. 	~ 
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LINE DATA OF THE SYSTEM 

From To R X B/2 
2 7 0.0 0.0625 0.0 
1 4 0.0 0.0576 0.0 
3 9 0.0 0.0586 0.0 
4 6 0.017 0.092 0.079 
4 5 0.01 0.085 0.088 
5 10 0.016 0.0805 0.153 
10 7 0.016 0.0805 0.153 
6 9 0.039 0.17 0.179 
9 8 0.0119 0.1008 0.1045 
8 7 0.0085 0.072 0.0745 

EXCITER DATA 

KA  TA  
El 20.0 0.20 

E2 20.0 0.20 

E3 20.0 0.20 

MACHINE DATA 

Bus H Xd  Xd  Xq  Xq  Tdo  Tq0  D 
1 23.64 0.1460 0.0608 0.0969 0.0969 8.9600 0.3100 0.0125 
2 6.40 0.8958 0.1198 0.8645 0.1969 6.0000 0.5350 0.0068 
3 3.01 1.3125 0.1813 1.2578 0.2500 5.8900 0.6000 0.0048 
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APPENDIX B 

LOAD FLOW STUDY 
REPORT FOR POWER CALCULATIONS FOR IEEE 10 BUS SYSTEM 

LOAD FLOW SOLUTION FOR THE STRESSED OPERATING CONDITION WITHOUT SVC 

Bus 
no 

voltage 
V 

angle Generation 
MW 	MVAR 

Load 
MW 	MVAR 

Qmin Qmax 

1 1.0400 0.0000 3.2811 1.6719 0.0000 0.0000 -1.0000 1.0000 
2 1.0250 -1.3049 2.2209 0.7543 0,0000 0.0000 -1.0000 1.0000 
3 1.0250 -4.0684 1.1455 0.2143 0.0000 0.0000 -1.0000 1.0000 
4 0.9647 -10.8580 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.8671 -27.3287 -0.0000 0.0000 4.5000 0.5000 0.0000 0.0000 
6 0.9649 -12.9260 -0.0000 0.0000 0.9000 0.3000 0.0000 0.0000 
7 0.9883 -9.1804 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.9859 -10.9753 -0.0000 0.0000 1.0000 0.3500 0.0000 0.0000 
9 1.0149 -7.7681 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
10 0.9218 -17.7272 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LOAD FLOW STUDY 
REPORT FOR POWER CALCULATIONS FOR IEEE 10 BUS SYSTEM 

LOAD FLOW SOLUTION FOR STRESSED CASE OPERATING CONDITION WITH SVC 

Bus 
no 

type voltage 
V 

Angle Generation 
MW 	MVAR 

toad 
MW 	MVAR 

Amin Qmax  

1 1 1.0400 0.0000 3.3241 1.3683 0.0000 0.0000 -1.3683 -1.0000 1.0000 
2 2 1.0250 -2.3869 2.1755 0.3965 0.0000 0.0000 -0.3965 -1.0000 1.0000 
3 2 1.0250 -4.6683 1.1227 0.0843 0.0000 0.0000 -0.0843 -1.0000 1.0000 
4 0 0.9816 -10.8096 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 
5 0 0.9089 -26.4406 0.0000 0.0000 4.5000 0.5000 0.0000 0.0000 0.0000 
6 0 0.9795 -13.0007 -0.0000 0.0000 0.9000 0.3000 -0.0000 0.0000 0.0000 
7 0 1.0096 -9.9369 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 
8 0 1.0018 -11.5569 -0.0000 0.0000 1.0000 0.3500 -0.0000 0.0000 0.0000 
9 0 1.0222 -8.2684 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 
10 2 0.9760 -18.0723 -0.0000 0.5000 0.0000 0.0000 -0.5000 -0.5000 0.5000 

Type : 	1 swing bus 	 SVC installed at 10th  bus 

2 PV bus 	 Line power flow P10-7 = 1.7982+0.5100] 
3 PQ bus 
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LOAD FLOW SOLUTION FOR THE BASE OPERATING CONDITION OF POWER SYSTEM WITHOUT SVC 

Bus 
no 

type Voltage 
V 

Angle Generation 
MW 	MVAR 

Load 
MW 	MVAR 

Qmin Qmax 

1 1 1.0400 0.0000 0.7163 0.2688 0.0000 0.0000 -1.0000 1.0000 
2 2 1.0250 9.2499 1.6300 0.0664 0.0000 0.0000 -1.0000 1.0000 
3 2 1.0250 4.6470 0.8500 -0.1089 0.0000 0.0000 -1.0000 1.0000 
4 0 1.0259 -2.2163 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0 0.9959 -3.9822 -0.0000 0.0000 1.2500 0.5000 0.0000 0.0000 
6 0 1.0127 -3.6930 -0.0000 0.0000 0.9000 0.3000 0.0000 0.0000 
7 0 1.0258 3.6897 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S 0 1.0159 0.7027 0.0000 -0.0000 1.0000 0.3500 0.0000 0.0000 
9 0 1.0324 1.9490 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
10 0 1.0148 -0.1600 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 

LOAD FLOW STUDY 
REPORT FOR POWER CALCULATIONS FOR IEEE 10 BUS SYSTEM 

LOAD FLOW SOLUTION FOR THE BASE OPERATING CONDITION OF POWER SYSTEM WITH SVC 

Bus 
no 

type Voltage 
V 

Angle Generation 
MW 	MVAR 

Load 
MW 	MVAR 

Qmin Qmax 

1 I 1.0400 0.0000 0.7163 0.2679 0.0000 0.0000 -1.0000 1.0000 
2 2 1.0250 9.2483 1.6300 0.0652 0.0000 0.0000 -1.0000 1.0000 
3 2 1.0250 4.6466 0.8500 -0.1093 0.0000 0.0000 -1.0000 1.0000 
4 0 1.0259 -2.2161 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0 0.9960 -3.9820 -0.0000 0.0000 1.2500 0.5000 0.0000 0.0000 
6 0 1.0128 -3.6928 -0.0000 0.0000 0.9000 0.3000 0.0000 0.0000 
7 0 1.0259 3.6884 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
S 0 1.0160 0.7021 0.0000 -0.0000 1.0000 0.3500 0.0000 0.0000 
9 0 1.0324 1.9487 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
10 2 1.0150 -0.1617 0.0000 0.0023 0.0000 0.0000 -0.5000 0.5000 

Type : 	1 swing bus 	 SVC installed at 10th  bus 

2 PV bus 	 line power flow P10-7  =.0.8675-0.0839j 

3 PQ bus 
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