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ABSTRACT 

A new type of Power System Stabilizer based on fuzzy set theory is proposed 

to improve the dynamic performance of a single machine power system. To have 

good damping characteristic over a wide range of operating conditions, speed 

deviation. (0 co) and acceleration (Acv) of a machine are chosen as the input signals to 

the fuzzy stabilizer on the particular machine. These input signals are first 

characterized by a set of linguistic variables using fuzzy set notations. The fuzzy 

relation matrix, which gives the relationship between stabilizer inputs and stabilizer 

output, allows a set of fuzzy logic operations that are performed on stabilizer inputs to 

obtain the desired stabilizer output. The effect of variation of coordinates of triangular 

membership function and scaling factors on performance of FLPSS has been 

investigated. 

The work also includes the dynamic stability of a machine connected to an 

infinite bus through a transmission line. K1-K6 model, as suggested by Heffron and 

Phillips, has been 'used to analyze the system dynamic stability. The effect of 

variation of loading conditions on K1-K6 parameters, effect of AVR gain on system 

stability has been studied. A systematic approach is introduced to tune the parameters 

of Delta-Omega PSS for single machine infinite bus system. 

Work has also been carried out for a multimachine system. Identification 

of optimum locations for Power System Stabilizer using Participation factor and 

Sensitivity methods. Than the multimachine system is simulated with Conventional 

Power System Stabilizer. All these work has been done using MATLAB 6.5 Simulink 

Tools. 
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CHAPTER-1 

Introduction 

1.1 General 
Small signal stability is the ability of the power system to maintain synchronism 

under small perturbations. The small signal dynamic stability of electric power system 

has been the subject of major theoretical and practical interest and it continue to grow in 

importance as the control requirements of the power plants become more sophisticated 

and demanding. 

The disturbances occur continually in a power system because of variations in the 

load and generation.. The disturbances are considered sufficiently small for Linerization 

of system equations to be permissible, for purposes of analysis. Small signal instability 

that may result can be of two forms. 

(i) Steady increase in rotor angle due to lack of sufficient synchronizing torque.. 

(ii) Rotor oscillations of increasing amplitude due to lack of sufficient damping 

torque. 

The low frequency rotor oscillations, also called the electromechanical models are in 

the range of 0.2 to 2.5 Hz. the damping characteristics of synchronous machine's rotor 

oscillations is a function of system structures, operating condition and control structures. 

The power system stabilizers are widely used to damp out low frequency oscillations. 

Eigen value analysis has become the main tool for the study of this type of power system 

stability problem. 

In many case, the system is approximated for design purpose by single machine tied 

to an infinite bus, which cannot reflect the interaction between machines e.g. inter area 

modes. As such a linear model of multimachine system is sought which does less 

approximation and more or less replicates the actual system. 

Also, the optimum application of stabilizer is well defined and straightforward in 

cases where the instability is clearly identified with a machine or a group of machines. 

However, in more general case of widespread oscillation permeating a large 
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interconnection, the identification of optimum sites for stabilizer application is 

complicated. To be effective the stabilizer must be applied to machine that is both near 

antinodes of the slightly damped modes of oscillations and connected via low enough 

transfer impedances to induce strong damping torque in the surrounding machines. 

Experience with the stabilizer application is rapidly developing but geographically loose 

interconnections have shown that the straight forward course of applying stabilizers at all 

new plants can be ineffective because these machines are not necessarily located at best 

points for damping of troublesome modes of oscillations. 

Hence, in view of the potentially high costs of applying stabilizers to older machines, 

it is vital that the relative effectiveness of stabilizers at all system locations be studied and 

PSS be applied or provided at all new machines and retrofitted only to those ol&r 

machines where they are essential for satisfactory system damping. 

1.2 Review of Literature 
Over the last few decades, a large number of research papers have appeared in the 

area of power system stabilizers. A brief review of the relevant research work is being 

made in this section. 

Kundur. at. al [1] provide a general introduction to the power system stability 

problem, including a discussion of the basic concepts, classification, and the definitions 

of related terms. This also includes the basic block diagram of the Power System 

Stabilizer. 

Padiyar.  . at. al [2] provide the basic concepts in applying, design and application 

of Power System Stabilizer it also include the control signals , recent development and 

future trends of the Power System Stabilizer. 

M.A.Pai . et . al [4] provide the basic approach, derivation of K1-K6 constants, 

synchronizing and damping torques. It also includes the Power System Stabilizer design. 
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Kundur et. al [5] has described a procedure for the design of power system 

stabilizer for a major generating station in Ontario. They have considered two alternative 

control schemes, one with and other with out transient gain reduction (TGR). Their 

investigations revel that, with appropriate selection of stabilizer parameters, both schemes 

provide satisfactory overall performance. They have also reported the importance of 

appropriate choice of wash out time constant and stabilizer limits in addition to phase 

lead compensation circuit parameters. 

Lee et. al [6] have further analyzed the performance of a power system stabilizer 

using speed and electrical power input as originally suggested by De Mello et. al. [8]. 

They have presented the design, testing and commissioning of this type of stabilizers on 

large fossil fired and nuclear units. 

El-Metwally and Malik at. al [7] has proposed a Fuzzy Logic Power System 

Stabilizer (FLPSS) with speed deviation (dw) and, active power deviation (iPe) as 

inputs to FLPSS considering seven linguistic variables and triangular membership 

function. They also have considered center of gravity (COG) defuzzifier. 

Y.Zhang et. al [9] has proposed an Artificial neural network (ANN) based power 

system stabilizer and its application to power system. The ANN based PSS combines the 

advantages of self- optimizing pole shifting adaptive control strategy and the quick 

response of ANN to introduce a new generation PSS. A popular type of ANN, the multi 

layer perception with error back propagation training method, is employed in this PSS 

.the ANN was trained by the training data group generated by the adaptive power system 

stabilizer (APSS). During the training, the ANN was required to memorize and simulate 

the control strategy of APSS until the differences are witlin the specified. criteria. 

Y.L.Abdel et. al [10] has proposed an optimal multiobjective design of robust 

multimachine power system stabilizer(PSS) using genetic algorithms. A conventional 

speed- based• lead-lag PSS is used in this work. The multimachine power system 

operating at various loading conditions and system configurations is treated as a finite set 



of plants. The stabilizers are tuned to simultaneously shift the lightly damped and 

undamped electromechanical modes of all plants to a prescribed zonein the s-plane 

Heffron and Philips et. al [11] have analyzed the effect of amplifying voltage 

regulators on under excited operation of large synchronous generators. They were first to 

present small perturbation model of machine-infinite bus system. Their investigations 

revels that the use of modern, continuous acting voltage regulators greatly increases the 

steady state stability limit of synchronous generator in the under excited region. 

Larsen and Swans at. al [12] presented three-part paper entitled "Applying Power 

System Stabilizers". In first of the paper general concepts associated with applying PSS 

utilizing shaft speed, a.c. bus frequency and electric power inputs were presented. Second 

part of the paper discusses system performance criterion, turing concepts, which enables 

attainment of these criterion and relative performance attainable with practical stabilizer 

equipment utilizing the three input signals. The third part discusses the practical 

considerations of tuning equipment in the field and equipment design, including 

minimizing the effects of tensional destabilization, power system noise. 

Anderson [1], Kundur [2], and Yu [4] have presented a comprehensive analysis of 

small signal stability. The analysis presented develops a clear insight into the problems of 

modeling and application of PSS. 

De Mello at. al [8] have stressed the importance of finding out the relative 

effectiveness of stabilizer at all system locations. They have proposed a method based on 

eigen vector analysis with which the effectiveness of stabilizer at a particular machine 

can be accurately determined. Arcidiacono et.al.[] have also used the eigen value and 

eigen vector approach to locate the power system stabilizers. 

Hiyama at. al [13] has presented a coherency based identification method for 

optimum sitting of power system stabilizers. Decomposition of multimachine power 
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system into several coherent groups is done and the most effective selection of a 

generator to be equipped with a stabilizer in each coherent groupis determined. 

Lim et.al. [14] have given a method for designing decentralized stabilizers by 

determine the parameters. of all stabilizers in the system such that some or all of its 

mechanical mode eigen values have desired locations in the complex plane. 

Hsu and Chen at. al [15] have proposed a novel approach for finding, optimum 

locations for stabilizer using participation factors. The proposed method is found to be 

convenient for identification of stabilizer location because the participation factors are 

real numbers and easy to complete. 

E.Z.Zhat at. al [16] has used the concept of participation factors and extended it 

by introducing new coupling factors where application of stabilizer yields maximum 

improvement of overall system damping characteristics. 

Chern-Lin Chen et.al. [17] have proposed a technique for sitting of power system 

stabilizers in a multimachine system by way of eigen value sensitivity model analysis. 

HSU Y.Y et.al [18] have proposed the participation method for optimum location 

of PSS in multimachine system. 

The research work pertaining to application of power .system stabilizers to a 

multimachine system shows that identification of troublesome modes and location of 

power system stabilizers plays a very significant role for designing optimum power 

system stabilizers. 

1.3 Outline of the Dissertation Work: 
Chapter-1: Presents. the brief review of the problem of small signal stability. This 

also includes the literature review of FLPSS, Delta-Omega PSS, . Optimal location and 

PSS for multimachine system 

5 



Chapter-2: Presents the designing an FLPSS with the help of 

MATLAB/Simulink. The coordinates of the triangular membership functions have been 

optimized. It also presents a comparison of system performance of an optimal 

conventional PSS with that with FLPSS. 

Chapter-3: Presents the dynamic model of a single machine infinte bus system 

with IEEE type-I excitation system in state space form, with and without Delta-Omega 

PSS. Concepts of power system stability as affected by excitation system have been 

studied. A detailed sensitivity analysis of the system under varying loading conditions 

and system parameters has been carried out to understand the effect of these variations on 

dynamic performance. 

Chapter-4: Presents a systematic approach for identifying the optimum location 

of Power System Stabilizer for a multimachine system using participation factor and 

sensitivity methods. 

Chapter-5: Presents the stability analysis of a Multi machine system with the 

help of MATLAB/Simulink.this include very popular model of multimachine system i.e. 

WSCC 3-machine, 9-bus system. In this result are compared with and without PSS. 

Chapter-6: Present the conclusion and further work carried out in this 

dissertation. This chapter includes the summary of all the result of every chapter, which is 

carried out in this dissertation work. 
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CHAPTER-2 

Power System Stabilizer For SMIB System 

2.1 Introduction 
A. lot of research work has been done in the past to find the ways and means to 

improve dynamic stability of a power system. Present trends in planning and operating of 

power system are to built power system with less redundancy and operate them closer to. 

transient stability limit. So more reliance and emphasis is being placed on power system 

controls to provide required compensating effects to reduction in stability margins 

inherent from present day trends in system design. High gain excitation system equipped 

with power system stabilizer have been extensively used in modern power system as an 

effective means of enhancing overall power system stability. 

With electric power. systems, the change in electric torque of synchronous 

machine following a perturbation can be resolved in two components, i.e. 

OTe = TsA6 +Td Acv 

The component of torque change in phase with the rotor angle perturbation A6 

is referred as the synchronizing torque component and the component of torque in phase 

with the speed deviationAtr is referred as the damping torque componet.system stability 

depends on the existence of both components of torque for each of the synchronous 

machine. 

The AVR gain plays a major role in system stability. The K1-K6 parameters vary 

with system loading. Hence magnitude and nature of synchronizing torque .component 

and damping torque component depends on both system loading and AVR gab. 

Tuning of supplementary excitation controls for stabilizing system modes of 

oscillations has been subject of much research. The basic tuning techniques utilized with 

PSS applications are phase compensation and root locus. To provide desired damping, 

stabilizer transfer function must compensate for the gain and phase characteristics of the 

excitation system, the generator and the power system, which collectively determine the 

stabilizer transfer function GEP(s). It is also necessary to recognize .the ronlinear nature 
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of power system. Hence it is a challenge to tune PSS to improve overall system stability 

over the wide operating range. 

2.2 Fuzzy Logic PSS for SMIB System 
A lot of work pertaining to Fuzzy Logic System Stabilizer (FLPSS) has been 

reported during the last few years. Critical review of the literature shows that most of the 

researchers have considered symmetrical triangular membership functions. No effort 

seems to have been made to study the effect of variation of co-ordinates of triangular 

membership functions on the performance of FLPSS. Moreover, COG defuzzification 

technique has invariably been used by most of the researcher. In view of the above the 

main objective of the work presented in this chapter are as follows. 

1. To present an algorithm for designing FLPSS 

2. To compare the dynamic performance of the FLPSS with a conventional PSS. 

3. To study the effect of the variation of co-ordinates of the triangular membership 

functions on system dynamic performance and hence to obtain more or less 

optimum 	triangular membership functions. 

4. To study the dynamic performance of the system considering several 

defuzzification techniques. 

Fig 2.1. A Machine Infinite Bus 

2.3 System Investigated 
A machine infinite bus system is considered for analysis. Static excitation 

system is considered. Nominal parameters of the system are given below [2]. 



Lade = 1.65, Laqu = 1.60, Li = 0.16, Ra = 0.003, R fd = 0.0006, La = 0.153, RE = 0.0, XE 

= 0.65, Kt = 200, TR =0.02, Ks = Ksq = 0.8491,ido = 0.8342,igo = 0.4518, edo = 0.6836, e y„ 

= 0.7298,K1(iner) = Kq (finer)_ = 0.434, Efdn = 2.395, Xd = 1.81, Xq = 1.76, X'd = 0.3, H 

=3.5, Kd = 0, Asat = 0.031, Bsat = 6.93,1/)T1_ 0.8,Wo = 377,Kstab = 9.5,T = 1.4, T1 

0.154,T2=0.033. Ovs,AS=0.0873,1 fife=0.2,Avi= 0.1,wz=0.1,AV..=0.1 

Initial steady state conditions are taken as 

Pt =0.9, Q, =0.3, Et =1.0 

2.4 Dynamic Model of the System in State Space Form • 

Following assumptions have been made in developing the dynamic model of the 

system. 

1. The mechanical power input remains constant during the period of the 

transient. 

2. Damping or a synchronous power is negligible. 

3. The synchronous. machine can be represented (electrically) by a constant 

voltage source behind a transient reactance. 

4. The mechanical angle of the synchronous machine rotor coincides with the 

electrical phase angle of the voltage behind transient reactance. 

5. If a . local load is fed at 'the terminal voltage of the machine, it can be 

represented by a constant independence (or admittance). to neutral. 

The non-linear model of the system is obtained as follows, 

d w (Tm — Te) 
(2.1) 

dt 	2H  

da 
d6=27rf(cv—coo) 	 (2.2) 
dt 

dv~ = (Et —V I)/TR 	 (2.3) 
dt 

X 



X =AX +rp 

KD  Ki 

2H 2H 
2itfo 0 

where A = K3K4 
0 -  

T3 

0  K5 

— TR 

(2.5) 

K2 	
0 

2H 
0 
	

0 

1 
	

K3KA 

T3 
	

T3 
K6 
	

1 

TR 
	

TR 

dWfd _ 2Jr f 
rRfd Efd  — RfdLfdI 

dt 	 Ladu 
(2.4) 

a linear model of the system is obtained by line arising the nonlinear model around a 

nominal operating point(transfer function model is given in the Fig. (2.2 ). 

The dynamic model of the liberalized system in the state space form is obtained 

from the transfer function model in the form: 

&L) 

X = 
Aqjfd 

OvI 

1  
2H 

r'=0 
0 
0 

P=[ OTC„ I 
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9 

Fig. (2.2) System Model without PSS 

Eigen values of the system shows that the system is unstable for the nominal 

operating point considered. The eigen values are given below. 

0.5043+j7.2316; 0.5043-j7.2316; -20.2083; -31.2231 

Fig.(2.3) shows that transfer function of the system with PSS. The linear state 

space model is given in the form 

X = AX + Fp  (2.6) 

_Ka _K~ Kz 
0 0 0 2H 2H 2H 

2rr f 0 0 0 0 0 

0 K3K4 _  1  KsKA 0 K3K4 
T3 T3 T3 T3 

0 Ks _ K6 0 --- 0 
TR TR TR 

KSTAB.KD KSTAB.KI _  KSTAB.K2 0 0 
2H 2H 2H TR 

Tlasl T1a52 Tlas3 0 Tlass 1 +T2 
T2 T2 T2 T2 .T2 

FAN 
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X  _ oqlfd 
r'=  

Ov1 

AV2 

Dut 

1 0  
2H 
0 0 

K3KA 0  
T3 

KSTAB 	0  

2H 
Ti KSTAB 	0  

T2 2H 

ATm 

P 	Avr.ef 
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CPSS 

Fig. 2.3(a) System Model with CPSS 

The internal structure of Conventional Power System Stabilizer (CPSS) is shown below: 

Phase 	 Washout 
	Stabilizer Gain 

Compensation 

Fig.2.3 (b) Internal Structure of CPSS 
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The eigen values of the closed loop system with PSS parameters 

Kst~b = 9.5, Ti = 0.154, Tz = 0.033 are shown below [2] 

-39.0958; -1.0054+j6.6065; -1.0054+j6.6065; -0.7388; -19.7974-j12.8254; 

-19.7974+j12.8254 

Examine the eigen values of the system with conventional PSS it is clearly seen 

that for the typical values of the PSS parameters damping ratio for the 

electromechanical mode is 0.27 

2.5 Fuzzy Logic PSS 
2.5.1.Selection of Input Signals to Fuzzy Logic PSS 

For the present investigations generators speed deviation (iw) and 

acceleration (co) are chosen as the input signals to the FLPSS. 

In practice, only shaft speed deviation (co) is readily available. The 

acceleration ( Acv) is derived from the iw measured at two successive sampling 

instants 

A6 (KT) = &o(KT) — Ow[(K — 1)T 
T 

Where T is the sampling period. 

2.5.2 Selection of Linguistic Variables 
The number of linguistic variables determines the quality of the control, which 

can be achieved using Fuzzy Logic Controllers. As the numbers of linguistic 

variables increases, the quality of control improves at the cost of increased 

computational time and computer memory. A compromise is needed between the 

two. For the power system under study, seven linguistic variables for each of the 

inputs and the output signals are considered. These seven linguistic variables are PB 

(positive big), NS (negative small), NM (negative medium) and NB (negative big). A 

choice of 7 linguistic variables results in a set of 49 "IF-THEN" rules (Fig. 2.5) 

shows the decision table. This table is obtained from the expert knowledge of the 

operators 
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In order to obtain the minimum and the maximum values of the stabilizer 

inputs the dynamic performance of the system without PSS is obtained for different 

magnitudes of perturbations. After choosing the linguistic variables, it is required to 

determine the membership functions for these linguistic variables. Generally gauss 

Ian, triangular or trapezoidal membership functions are prevalent. Here triangular 

membership function is used to define the degree of membership (Fig. 2.4). Degree of 

membership plays a very important part in designing a fuzzy controller. 

NB 	NM NS ZO PS PM PB 

(Unsymmetrical Triangular Membership Function) 

NB 	NM 	NS 	ZO 	PS 	PM 	 PB 

Symmetrical Triangular Membership function 

Fig. 2.4 

Now it is required to find the fuzzy region for the output for each fuzzy rule, for 

which Madman implication is used. 

Fuzzy rules are connected by AND operators and this operator are used to find the 

minimum between the two inputs membership functions. Later minimum between 

this result and the output membership function of a rule is calculated. This procedure 

is carried out for every rule and for every rule; an output membership function is 

obtained. To find the output membership function due to all these rules, the maximum 

among all of these rules is calculated. Suppose that at an arbitrary instant z W = -0.2 

and Ocv =1.3. 
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Fig 2.5. Decision Table[7] 

The input Aw =-0.2 corresponds to a linguistic variables NS and its 

membership function has a value of 0.2. It also belongs to the linguistic variable ZO 

with membership of 0.8. The fuzzy set for Oco is defined as 

{ z co }= {(NB,O),(NM,O),(NS,O),(ZO,0.8),(PS,O),(PM,O),(PB,0)}. 

Similarly the second input L w =1.3 corresponds to the linguistic variables PS and PM 

with memberships of 0.7 and 0.3 respectively. The fuzzy setfor w becomes 

{ Aw } = {(NB, 0), (NM, 0), (NS, 0), (ZO, 0), (PS, 0.7), (PM, 0.3), (PB, 0)). 

There is overlap between the membership functions corresponding to only two 

linguistic variables at any given instance. Any crisp input shall belong to two 

linguistic variables with a certain degree of membership. Since the controller has two 

inputs in total, we have 2x2=4 different combinations and so 4 rules shall be fired 

and corresponding to every rule there will be an output. Let x1 , X2, X3, and x4  be these 

outputs. The minimum operation on these 4 combinations results in membership 

functions 

µ(xi) 	= (Aw is NS andOth is PS) 
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= min [,u (&co is NS), µ (Ocv is PS)] 

= min [0.2, 0.7] 

= 0.2 

From the table in the Fig 3.8 it is seen that when Ow is NS and icv is PS, then 

output y is ZO. 

/v (ZO) = min[ µ(x1 ),µ (ZO)] 

= CLU1  

CLU stands for the clipped value of U. the linguistic output = ZO is clipped at 

u(x1) =0.2. 

Similarly, when Qw is NS and acv is PM then output y is PS(CLU2). In the 

other two cases , the output y takes the linguistic values PM(CLU3) and 

PS(CLU4).CLU2,CLU' and CLU4  are calculated in a similar fashion. It is to be noted that 

CLU4=CLU2  and therefore CLU4  may be neglected. 

The fuzzy region is calculated by taking the cylindrical projection at every point. 

Dynamic performance of the system with FLPSS is first examined considering 

the linear model. The same transfer function model as given in Fig2.3(a) with PSS block 

with LO) as input. 

The FLPSS operator in discrete mode. FLPSS output u is computed during 

each integrations step while solving the state equations using Rungta-Kutta technique. 

The dynamic model is with FLPSS is obtained from Fig. 2.6 as 

X= AX+Bu+ Fp 

KD  K'  K2  0  
2H 2H 2H 

2nf0 0 0 0 
Where A = 0  _  K3K4  	1 	K3Kn  

T3 	T3 	T3 

0 —KS  K6TR 0 
TR 
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T3 
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1 0  
06  2H 
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K3K+ 

L/' fd  T3 
An 0 0 

©T,n 
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5 

Fig 2.6 System Model with Fuzzy Based PSS 
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2.6 Analysis 
Following studies have been carried out considering Fuzzy Logic Power System 

Stabilizers. 

1. Comparisons of the transient performance of the system with conventional PSS 

and FLPSS. 

2. Effect of variation of co-ordinates of triangular membership function. 

3. Effect of different alternative defuzzification techniques. 

2.6.1 Comparison of Dynamic Performance of the System with 

Conventional PSS and FLPSS 
Fig. 2.7 and 2.8 shows the transient response for aw and Ob respectively 

following a 5 % step change in mechanical torque with conventional PSS and FLPSS 

obtained considering a linear model of the system. The scaling factors for Ow and Ow 

the stabilizing signals are respectively 5000, 350 and 500. Examination of the responses 

clearly shows that dynamic performance of the system with FLPSS is very close to that 

with conventional PSS and is in fact slightly better in terms of settling time. Further, in 

order to compare the dynamic performances quantitatively a quadratic performance index 
00 	 z 

J = f i4 w(t)]z  = 	IEcv(kt)j2Ot 	is evaluated. 
o 

Table 3.1 shows the value of J for CPSS and FLPSS.it also shows the peak overshoot of 

the dynamic response for L\co and Ltb . COG defuzzifier has been used and symmetrical 

triangular membership functions with equal base widths have been considered. 

Type of PSS J Setting Time 

(Sec.) 

Peak Overshoot 

oU) 	I a LW oh 

Conventional PSS 3.517x i0 7  3.7 3.7 0.024 2.7 

FLPSS 2.217x107  3.0 3.0 0.021 2.4 

Table 2.1 
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Fig. 2.8 Variation of speed deviation with time. 
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It is clearly that J obtained with FLPSS hardly differs from that with conventional PSS, 

whereas the peak overshoot also remains almost the same. However, the settling time 

falls by nearly 25%. 

2.6.2 Effect of Variation of Coordinates of Triangular Membership 
Function: 
An attempt. has been made towards gain tuning of the fuzzy logic controller by 

altering the coordinates of the membership. functions. Centre of Gravity / Area 

(COG/COA) defuzzifier is used in the analysis. 

Fig2.9 (a) shows a triangular membership functions, a,/3,y are the coordinates of 

the function. a denotes the left coordinate of the base /3 denotes the abscissa of the. peak 

and y denotes the right coordinate of the base. Let 831, 62 and /i3 be the x coordinates 

of the peaks of the membership functions PS, PM and PB respectively. 

For the membership functions PS let ci = (31 

For the membership functions PM let y = /32 - /31 

For the membership functions PB let z = /33 -(/31 + /32) 

=3-(y +c) 

iU.0) 	{ j3.0) 	( F.0) 

Fig. 2.9 (a) 
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Fig. (2.9)Variation of speed deviation with time. 
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Fig. 2.10 Variation of speed deviation with time 

At this stage, we assume that the separation between the peaks vary in geometric ratio i.e. 

y = Z  .It can be clearly seen from Fig 3.9(b) that the coordinates of PS, PM an PB are 
C' y 

(0, /3i, x(32), (/3i, /32, /33) and (/32, /33,...) . f 3 =3.0, the positive limit of the universe of 

21 



discourse (universe of discourse is -3.0 to 3.0). 

2.5 	''. 	 Angle deviation with 1.0 
Angle deviation 0.4 	- - - - 
Angle deviation 1.2  

2 

0.5 

0L 
0 0.5 	1 	1.5 	2 	2.5 	3 

Time (s) 

Fig. 2.11 Variation of rotor angle deviation with time 

Cl  J Setting Time Peak Overshoot 

1.2 2.35x 10 7  3.4 3.4 0.023 2.6 

1.0 2.223 x 10" 3.0 3.0 0.020 2.7 

0.4 2.217x10 7  2.5 2.5 0.026 2.9 

Table 2.2 

The value of ci is varied over a wide range in order to obtain its optimum value. 

Figs. 2.10 and 2.11 show the transient response for Ow and dS for a step increase in 

mechanical torque i.e. OTm = 0.05 pu for cl = 1.2,1.0 and 0.4.Examination of the 

responses shows that the maximum peak overshoot is nearly the same for ci = 1.2 and ci 

= 1.0 and increases slightly for ci = 0.4 whereas there is considerable reduction in setting 

time as ci is reduced to 0.4 whereas there is considerable reduction in setting time for Cl 
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is equal to 0.4.Examination of Table 3.2shows that the performance index J decreases 

slightly while the settling time decreases to about 50% with change in ci from 1.2 to 

0.4.The change in peak deviation is quite insignificant. 
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CHAPTER-3 

Delta —Omega Power System Stabilizer 

3.1 Introduction 
A lot of research work has been done in the past to find the ways and means to 

improve dynamic stability of a power system. Present trends in planning and operating of 

power system are to built power system with less redundancy and, operate them closer to 

transient stability limit. So more reliance and emphasis is being placed on power system 

controls to provide required compensating effects to reduction in stability margins 

inherent from present day trends in system design. High gain excitation system equipped 

with power system stabilizer have been extensively used in modern power system as an 

effective means of enhancing overall power system stability. 

With electric power systems, the change in electric torque of synchronous 

machine following a perturbation can be resolved in two components, i.e. 

ATe = TsAb +Td Aw 

The component of torque change in phase with the rotor angle 

perturbation Ab is referred as the synchronizing torque component and the component of 

torque in phase with the speed deviationAw is referred as the damping torque 

componet.system stability depends on the existence of both components of torque for 

each of the synchronous machine. 

The AVR gain plays a major role in system stability. The K1-K6 parameters vary 

with system' loading. Hence magnitude and nature of synchronizing torque component. 

and damping torque component depends on both system loading and AVR gain. Tuning 

of supplementary excitation controls for stabilizing system modes of oscillations has been 

subject of much research. The basic tuning techniques utilized with PSS applications are 

phase compensation and root locus. To provide desired damping, stabiizer transfer 

function must compensate for the gain and phase characteristics of the excitation system, 

the generator and the power system, which collectively determine the stabilizer transfer 

function GEP(s). It is also necessary to recognize the nonlinear nature of power system. 



Hence it is a challenge to tune PSS to improve overall system stability over the wide 

operating range. 

In the view of the above, the main objectives of the work presented in this chapter 

are: 

To develop a small perturbation model of a SMIB (single machine infinite bus) 

system in state space form. 

1. To study the effect of system loading on I{;-K6 constants. 

2. To study the effect of variation AVR gain on stability of system. 

3. To develop a small perturbation model of a SMIB (single machine infinite bus) 

system with delta -- omega Power System Stabilizer in state space form. 

4. To present a systematic approach for optimizing the parameters of Delta-Omega 

Power System Stabilizer. 

5. To study the effect of variation of system loading condition and system 

parameters on system dynamic response. 

9 

Fig. 3.1 Block Diagram representation of SMIB system with AVR 
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del delta 

Fig. 3.2 Block Diagram representation of SMIB system Delta-Omega PSS 

3.2System Investigated 
Synchronous generator connected to an infinite bus through a transmission line is 

considered. Thyristor based exciter modern AVR and Delta-Omega PSS have been 

considered. 

3.3 Small perturbation Transfer Function, model of SMIB system 

As power system is a highly nonlinear system, it is represented by nonlinear 

differential equations. In stability. studies of single machine infinite bus system, 

researchers have extensively used K1-K6 model, as suggested by Heffron and Philips. The 

equations to calculate parameters K1-K6 have been derived by liberalizing the system 

nonlinear equations around an operating point. The same small perturbation model is 

used in this thesis and is shown in Figure 3.1 

3.4 Dynamic model in state space form model of a SMIB system with 

AVR 

The dynamic model in the state space form can be obtained in the form 
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X =AX +rP 

Where, state vector X is given by 

X = [Aw ooifdtsfd -r  

And perturbation vector p is given by 

p = (ATmAVref )T  

The elements of state matrix A and perturbation matrix F are given in Appendix 3.1 

3.5 To study the effect of system loading on KI -K6 parameters 
The system parameters considered are given in Appendix 3.2 and equations to 

calculate parameters K1-K6  are given in Appendix 3.4. These equations have been 

derived using small perturbation model, by liberalizing the system nonlinear equations an 

around operating point. The active load is varied from 0.1 to 1.0 p.u. and reactive load is 

varied from —0.3 p.u. to 0.7 p.u. . The variation of parameters with variation in system 

load is plotted in Figs 3.3. It is observed that all parameters except K5  are positive and 
parameter K5 becomes negative under heavy loading conditions definitions of K-K6  
parameters is given in Appendix 3.3. 

0.0 

0.7 

0.4L 
0 
	

0.2 	0.4 	. 0.8 	0.8 	 1 
P (p.u.) 

Fig. (3.3 a) Variation of Parameters K with System Loading. 
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3.6 Effect of AVR gain 
The effect of variation of AVR gain is studied by computing on synchronizing 

and damping torque components for loading conditions such that 

(a) K5 is positive 

(b) K5 is negative 

From Figures 3.5 it is observed that when K5 is negative, with the increase in the 

value of AVR gain from zero damping torque decreases, reaches lowest for I{=7 and the 

increase with further increase in value of Ka (still remain negative) and becomes zero 

when Ka reaches infinity. While synchronizing torque first decreases slightly with 

increase in the value of AVR gain, reaches minimum for I~=14 and then increases with 

further increase in value of AVR gain K. 

Under light loading condition, when K5 is positive, as the value of ka is increased, 

the value of synchronizing torque decreases slightly (minimum for K,=200, remains 

positive) while damping torque increase up to K,=55• and for further increase in K, its 

value decreases but remains positive. Analysis shows that under heavy loading 

conditions, increase in the value of AVR gain has an adverse effect on system stability. 

3.7 Dynamic Model In State Space form of A SMIB system 

with PSS 
The dynamic model in the state space form can be obtained in the form 

X =AX +I'P 
Where state vector X is given by 

X = [AcoA(5OIV fdAEfdOV 1AV 2AV 3+T 

and perturbation vector p is given by 

ATm 
P AVref 

The elements of state matrix A and perturbation matrixr are given in Appendix 3.5. 
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instability point. In practice the final PSS gain should be at least a factor of 2-3 

(6-10dB) less than the instability gain. With the integral of accelerating power 

design the gain margins are typically much in excess of 10dB at times 

approaching 20dB. 

(2) The change in local mode frequency with and without PSS in operation should be 

less than 10%. In other worlds the PSS gain should be selected to limit the effect 

of the stabilizer on the synchronizing torque coefficient. 

3.9 Dynamic performance of the system 
The PSS is designed to give desired damping over the operating range. Dynamic 

response of the system for 0.05 p.u. Increases in mechanical torque over the wide 

operating range have plotted (Figures 3.5 to 3.6e). 

h 	Fig.,  3.5 (a) Dynamic response without PSS 

Rotor Speed variation for ATm =0.05 p.u. 
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3.6 Effect of AVR gain 
The effect of -variation of AVR gain is studied by computing on synchronizing 

and damping torque components for loading conditions such that 

(a) K5 is positive 

(b) Ks is negative 

From Figures 3.5 it is observed that when K5 is negative, with the increase in the 

value of AVR gain from zero damping torque decreases, reaches lowest for l=7 and the 

increase with further increase in value of Ka (still remain negative) and becomes zero 

when Ka  reaches infinity. While synchronizing torque first decreases slightly with 

increase in the value of AVR gain, reaches minimum for E=14 and then increases with 

further increase in value of AVR gain K. 

Under light loading condition, when K5 is positive, as the value of ka is increased, 

the value of synchronizing torque decreases slightly (minimum for K=200, remains 

positive) while damping torque increase up to 1f,-55 and for further increase in K, its 

value decreases but remains positive. Analysis shows that under heavy loading 

conditions, increase in the value of AVR gain has an adverse effect on system stability. 

3.7 Dynamic Model In State Space form of A SMIB system 
with PSS 

The dynamic model in the state space form can be obtained in the form 

X =AX +rP 

Where state vector X is given by 

X = [AcoA6A'FfdAEfdAViAV2AV3 T  

and perturbation vector p is given by 

ATm 
P' AVref 

The elements of state matrix A and perturbation matrixI' are given in Appendix 3.5. 
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3.8 Design of Robust Delta-Omega Power System Stabilizer 
Due to nonlinear nature of power system, if the PSS is designed for optimal 

performance about an operating point, its performance would be sub optimal at other 

operating points. Hence PSS is designed to give desired performance over the wide 

operating range. the operating range considered for design is 

(a) Active load variation from 0.5 p.u. to 1.0 p.u. 

(b) Reactive load variation from-0.3 p.u. to 0.7 p.u. 

(c) Frequency of rotor oscillation from 0.2 Hz to 2.5 Hz. 

The delta-omega Power System Stabilizer has three parts: 

(1) Phase compensation block 

(2) Washout block 

(3) Stabilizer Gain 

The transfer function block diagram representation of system PSS is shown in Figure 3.2 

and Delta-Omega PSS is shown in Figure 3.4. 

	

1 T3.s+1 I  T1.s+1 	 Tw.s 	 _K 	t  

del_Vs 	T3.s+1 	 T2.s+1 	 Tw.s I 

Phase 	 Phase 	 Washout 	
del wr Stabilizer Gain (Kstab) 

Compensation' 	Compensation 

Fig.3.4 Delta-Omega Power System Stabilizer 

3.8.1 Phase Compensation Block 
As mentioned earlier, to provide damping stabilizer transfer function must 

compensate for the gain and phase characteristics of the excitation system, the generator 

and the power system. GEP(s) is the transfer function from the stabilizer output to the 

component of electric torque. if the exciter transfer function Gex(s) and the generator 

transfer function between AEfd and OTe were pure gains, a direct feedback of of Acw, 

would result in pure damping component. However in practice they exhibit a frequency 

dependent gains and phase characteristic. Therefore the PSS transfer function should 
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have appropriate phase compensation circuits to compensate for phase between exdter 

input and electric torque. In the ideal case, with the phase characteristic of GPSS (s) 

being an exact inverse of the exciter and generator phase characteristics to be 

compensated, the PSS would result in pure damping torque at all oscillating frequencies. 

if the phase lead network provides more compensation than the phase lag between OTe 
and AVs, the PSS introduces a negative synchronizing torque component and vice versa. 

Usually the PSS is required to contribute to the damping of rotor oscillations over a range 

of frequencies (0.2Hz to 2.5 Hz), so phase lead network should provide compensation 

over this frequency range. So a compromise is made and a characteristic acceptable for 

different system conditions is selected. Generally under compensation upto-45 degree is 

acceptable as reported in literature [5]. 

3.8.2 Signal Washout block 
The signal washout block serves as high pass filter. With the time constant Tw  high 

enough to allow signals associated with oscillations in cryr to pass unchanged. Without it 

steady changes in speed would modify the terminal voltage. From the viewpoint of 

washout function, the value of TW  is not critical and may be in the range of 1 sec to 20 

seconds. The main consideration is that is that it be long enough to pass stabilizing 

signals at the frequencies of interest unchanged, but not so long that it leads to 

undesirable generator voltage excursions during system isianding conditions. As 

recommended in the literature [5], washout time constant equal to 10 seconds is 

considered for further investigation in this thesis. 

3.8.3 Stabilizer Gain 
The stabilizer gain determines the amount of damping introduced by the stabilizer. 

The damping of electromechanical mode increases with the stabilizer gain, while 

damping of control mode decreases. 

The choice of the best PSS gain requires consideration of a number of factors: 

(1) As the local mode root damping is increased, there is another mode, sometimes 

called the exciter mode or control mode, which decreases in damping .If the PSS 

gain is increased to the value, where exciter mode becomes unstable is called the 
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instability point. In practice the final PSS gain should be at least a factor of 2-3 

(6-10dB) less than the instability gain. With the integral of accelerating power 

design the gain margins are typically much in excess of 10dB at times 

approaching 20dB. 

(2) The change in local mode frequency with and without PSS in operation should be 

less than 10%. In other worlds the PSS gain should be selected to limit the effect 

of the stabilizer on the synchronizing torque coefficient. 

3.9 Dynamic performance of the system 
The PSS is designed to give desired damping over the operating range. Dynamic 

response of the system for 0.05 p.u. Increases in mechanical torque over the wide 

operating range have plotted (Figures 3.5 to 3.6e). 
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Fig. 3.5 (a) Dynamic response without PSS 

Rotor Speed variation for ATM =0.05 p.u. 
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Sensitivity analysis is also carried out to know the effect of variation of system 

loading and parameters on system dynamic response. for the operating for P=1.0 p.u. and 

Q=0.7 p.u. the dynamic response of the system. With and without PSS, following 5% 

step increase in mechanical torque is plotted (Figures 3.10 qnd 3.11e). It is observed that 

response settles down satisfactorily with PSS i.e. response settles down to their steady 

state value in about less than 3 seconds. As it is clear from Figure 3.10, system is unstable 

without PSS. 

The eigen value analysis for the same operating condition i.e. P=1.0 p.u. and 

Q=0.7 p.u. is also carried out which reveals that damping ratio for electromechanical 

mode increases with PSS from-0.11 to +0.4245. the eigen value analysis is presented in 

P=1.0 p.u.; 	Q=0.7 p.u; 	 PSS Parameters- T1=0.314 secs 

T2=T4=0.03 secs 

Eigen Value Without PSS Eigen Value With PSS 

Real cve Damping- 

Ratio 

w,, Mode Real COd Damping- 

Ratio 

wil Mode 

-51.86 -53.53 

+0.609 +5.45 -0.111 5.48 Electro- 

mech 

-13.08 0.756 17.287 Excitor 

Mode 

-5.45 -0.111 5.48 Electro- 

mech 

-13.08 0.756 17.287 Excitor 

Mode 

-12.89 -45.89 

-2.33 +4.97 0.424 5.487 Electro 

mech 

-2.33 -4.97 0.424 5.487 Electro 

mech 

-0.10 

-6.89 

Table-3 
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3.10 Sensitivity analysis 
The operating conditions and system parameters never remains constant and PSS 

parameters once tuned cannot changes on system dynamic performance. 

3.10.1 Effect of variation in real power P 
Figures 3.6(a) and 3.6(e) shows the responses foncw for a small step 

perturbation in Tm (=0.05 p.u.), with real power varying from 0.5 p.u. to 1.0p.u. peak 

deviation in rotor speed &o slightly and settling time also decreases. It may thus inferred 

that dynamic responses are are quite insensitive to wide variation in p. 

3.10.2 effect of change in reactive power Q 
Figures 3.6 a to 3.6 e show the responses for Acv, A6, AEt and APe for small step 

perturbation in Tm (=0.03 p.u.), with reactive power Q varying from-0.3 p.u. to 0.7 p.u., 

peak deviation in all rotor speed deviation&co, terminal voltage deviationAEt, terminal 

power deviation tPe and settling time , all increases slightly. However system remains 

stable. It may thus be inferred that dynamic responses are quite insensitive to wide 

variation in Q. 

3.10.3 Effect of change in transmission line reactance Xe 
Figure 3.7 shows the response for tw for small step perturbation in Tm (=0.05 

p.u.), with transmission line reactance Xe varying from 02 p.u. to 0.9 p.u., both , peak 

deviation in rotor speed Acv and settling time, both increases slightly. However system 

remains stable. It may thus be inferred that dynamic responses are quite insensitive to 

wide variation in transmission line reactance Xe. 

3.10.4 Effect of change in inertia constant H 
Figure 3.8 shows the responses for Acw for small step perturbation in Tm (=0.05 

p.u.), with inertia constant H varying from 2.OMJ/MVA to 8.0 MJ/MVA, peak deviation 

in rotor speed Acv decreases slightly while settling time increases slightly. It may thus be 



inferred that dynamic responses are quite insensitive to wide variation in inertia constant 

3.11 Conclusion 
The following are the significant conclusions of work presented in this chapter 

(1) Small perturbation model of SMIB system in state space form, with and without 

PSS has been developed. 

(2) Studies show that parameter K5 plays very important role in determining the small 

signal stability of the system. If K5 is negative, increase in value of AVR gain 

adversely affects the small signal stability. 

(3) A systematic approach has been introduced to tune the Delta-Omega PSS using 

frequency domain. techniques. 

(4) A detailed sensitivity analysis shows that the system dynamic responses are quite 

insensitive to wide variations in system loading conditions and parameter 

variations. 
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CHAPTER-4 

Optimum Location of PSS 

4.1 Introduction 
The enhancement of damping of electromechanically oscillations in a multi 

machine power system by the application of power system stabilizers has been the 

subject of great attention and is much more important today when many large and 

complex power systems frequently operate close to their stability limits. Most of the work 

on application of power system stabilizers is connected with the tuning of their 

parameters to achieve satisfactory damping characteristics of an inter connected system. 

The identification of optimum stabilizer locations is very important in a multi 

machine system. The stabilizers installed and tuned at arbitrary locations in a network 

may not be very effective. One of the most commonly used approach stabilizer sitting is 

the eigenvector method proposed by De Mello [8]. In this method the eigenvector 

corresponding to each eigen value is obtained. By observing the eigenvector, it is 

possible to identify the generator location, which affects a particular swing mode the 

most. One of the problems in using the right eigenvector for identifying the relationship 

between the states and swing modes is that the elements of the eigen vectors are 

dependent on units and scaling associated with the state variables. Although this method 

has been successfully applied to some power systems, it may fail in certain systems with 

generators of rather different rated capacities. In fact it has been found in recent study 

that the eigenvector itself may lead to undesirable stabilizer locations. 

Another method, the frequency domain method, based on concept of coherent 

groups [13] was proposed for improving the total system. Although this method was 

successfully tested [15]; it suffers from arbitrations concerning the selection of a 

particular site for power system stabilizer application within one coherent group, which 

cannot be overcome without extensive investigations of dynamic performances of 

stabilized systems under various combinations of selected generators. 

Recently, ' the concept of participation factors was . shown to be valuable and feasible 

means for resolving this problem [18], but it is still restricted to the sequential power 

an 



system stabilizer application, which considers the enhancement of damping of jua one 

critical electromechanical mode at a time. 

In this chapter an approach for exact identification of machines where the 

application of stabilizers ensure maximum improvement of overall system damping 

characteristics using Sensitivity and Participation methods are presented. 

4.2. Methods of PSS location 
The PSS location selection problem has been studied for a long time. There are 

various methods for the selection of the PSS location. Some of these methods are: 

1. Right-eigen vector method. 

2. Participation factors 

3. Sensitivity of PSS effect (SPE). 

4. Optimal Location of Power System Stabilizers Based on Probabilistic Analysis. 

1. Right-eigen vector method 

The right 	eigen vector method [16], which uses the right eigenvector 

information of a mode to identify the best PSS location. This approach is based on the 

consideration that the right-eigenvector entries measure the activity of the state variables 

participating in an oscillation mode and these state variables may be used as PSS input. 

According to this method PSS should be locate on that which has maximum value 

of j pa.j . Where ;uaW is the amplitude of the right-eigenvector entry corresponding to 

machine speed (icv ). 

2. Participation factors 

One problem is using right and left eigenvectors [18] individually for identifying 

the relationship between the states and the modes is that the elements of the eigenvectors 

are dependent on units and scaling associated with the state variables. As a sohtion to 

this problem, a matrix called the participation matrix (P), which combines the right and 

left eigenvectors as a measure of the association between the state variables and the 

modes. 
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With pki = LkIWik 

pki 

Where 

ti = The element on the kth row and ith column of the modal matrix 

= kth entry of the right eigenvector(Pr 

Wi = The element on the ith row and kth column of the modal matrix'-P. 

= kth entry of the left eigenvector W. . 

The element p,i = Jki',k is termed the participation factor. It is a measure of 

the relative participation of the kth state variable in the ith mode, and vice versa. 

The machine, which has highest participation factor, is best for the PSS location. 

3.Sensitivity of PSS Effect 

If a machine is selected for PSS installation, for best affect the amplitude of PSS 

input (measured by right-eigenvector) should be relatively large, and second the control 

effect of PSS should also be strong. 

In the right-eigenvector information to identify the best PSS locations. Therefore 

the result of this method may be. misleading. In the participation method also does not 

control effect of PSS. 

In order to take into consideration both PSS input and PSS control effect in 

selecting PSS location[16], sensitivity of PSS Effect (SPE) for a machine (jth) is defined 

as follows: 

SPEj = ,ueW;vAEfd j  L 	(j = 1, ....m) 
tej 

Where, µes,; : right eigenvector entry corresponding to (Ew j ), 

Supposing speed is used as PSS inpu. 

viEfdj : Left eigenvector entry corresponding to state DEfj 

SPE measure both the activity of PSS input (ia .) participating in a certain mode 

of oscillation and the control effect of PSS on this mode.. The larger the amplitude of SPE 

the better the overall performance of PSS, if installed. 
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1.4.Optimal Location of Power System Stabilizers Based on Probabilistic Analysis 

The probabilistic approach for the optimum location of power system stabilizers 

(PSSs). When the variation of nodal injected power representing various load levels is 

described by statically attributes and considered in eigenvalue analysis, the probabilistic 

distribution of a eigen value will be expressed by its expectation and variance under the 

assumption of normal distribution. The utilization of PSSs will improve both of the 

expectations and variances for the critical eigenvalue. This method therefore calculated, 

not only the sensitivity coefficients, which are, accomplished distributions of these 

sensitivity coefficients which are accomplished by means of the second order sensitivity 

calculation of eigenvalues with respect to nodal injections and PSS gains. 

1.5 Coupling Factors 

The coupling factors give the mutual coupling between two generators affected a 

particular mode. The coupling between the ith and jth machine in a particular oscillatory 

mode h is defined as 

C,;(h) 
_ prn p~i~ 
M; M; 

(3.12) 

Where 

P;h= participation factor of ith machine in' h mode. 

PJh=participation factor of jth machine in hth mode. 

M;=moment of inertia of ith machine,. 

MM=moment of inertia of jth machine. 

The total coupling factor, which weights the influence of stabilizers applied over 

machines I and j on their dynamic behavior under simultaneous excit tion of all 

Cii = 	C1(h) 
	

(3.13) 
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The coupling factor defined in equation (3.13) represents a suitable and reliable 

base for identification of the most effective combination of generators for system 

stabilizer application, yielding maximum enhancement of the total system stability. 

4,3 Optimum PSS Site 
In our example we will use the Participation factor and Sensitivity method for 

PSS location. According to Participation method which machine has the hghest value of 

participation factor will be best suited for PSS location. 

According to Sensitivity method PSS will be located at that machine which has 

the highest value of Sensitivity factor. 

4.4 Optimum Location of PSS for Multi-Machine System 
A 3-machine9-bus system [3] is used for determine the optimal location of the 

PSS.The linear model of the system is shown in the Fig 1. and data of the system are 

shown in the tablet and eigen values are shown in table2. 

First Participation factor method and Sensitivity Method are used for PSS location. 

The following table is given below which show the damping ratio and 

participation factor of the corresponding swing modes. 

A 3-machines, 9-buses system is used in this work. The oscillation behavior , of 

the system is calculated with the help of eigen analysis. 

A 3-machines, 9-buses system is shown in the fig and data are given in the tables. 
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Fig. 4.1:WSCC 3-machine, 9-bus system 

all impedances are in pu on a 100 -MVA base 

(Generator Data) 

Generator No. 1 2 3 

Rated MVA 247.5 192.0 128.0 

kV 16.5 18.0 13.8 

H(sec) 23.64 6.4 3.01 

Power Factor 1.0 0.85 0.85 

Type Hydro Steam Steam 

Speed 1 S0r/min 3600r/min 3600r/min 

xd 0.1460 0.8958 1.3125 

x d 0.0608 0.1198 0.1813 

Xq 0.0969 0.8645 -- 1.2578 

X 'q 0.0969 0.1969 0.25 



x, (leakage) 0.0336 0.0521 0.0742 

Tdo  8.96 6.00 5.89 

T'qo  0 0.535 0.600 

Stored 	energy 	at 

rated speed 

.2364MW.s 640MW.s 301MW.s 

Then with the help of above data for 3-machines and 9-buses system the eigen values can 

be calculated which is shown in the following table. Form this it is possible to calculate 

the Right eigen vector, Left Eigenvector and participation factors. 

Participation Factor: 

Swing Mode Eigen Frequency Damping . Machine No. Participation 

Value (A) (f) Ratio Factor 

Hz ( 	) 

1.  -0.7209+j12.7486 2.02 0.056 3 0.41 

2.  -0.1908+j8.3672 1.33 0.022 2 0.32 

Sensitivity Method: 

Mode No G1(gl) G2(g2) G3(g3) 

1.  0.0000 0.7765 14.4264 

2.  0.6914 2.7610 1.7593 

3.  1.9148 0.7765 1.4074 

In participation methods, participation factor is calculated for corresponding to 

each machine. Like in our case machine 3 has the maximum participation factor, so 

Machine 3 will be best suited for PSS location. 

In. sensitivity method, sensitivity is calculated for each machine and which has 

highest value of sensitivity is best suited for PSS location. In our model machine 3 has 

the highest value of sensitivity, so machine 3 will be best suited for PSS. location. 
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CHAPTER-5 

PSS For Multimachine System 

5.1 Introduction 
To provide damping to rotor oscillations, the stabilizer must produce a component 

of electrical torque in phase with the speed variations. The implementation details may 

differ, depending upon. the stabilizer input signal employed. However, for any input 

signal the transfer function of the stabilizer must compensate for the gain and phase 

characteristics of the excitation system, the generator and the power system, which 

collectively determine the transfer function, from the stabilizer output to the component 

of electrical torque, which can be modulated via excitation control. 

Kundur et al[] have presented a comprehensive study pertaining to power system 

stabilizer. Two alternative excitation control schemes were considered, one with and one 

without transient gain reduction. It has been shown that with appropriate selection of 

stabilizer parameters both schemes provide satisfactory overall performance. The 

importance of appropriate choice of washout time constant and stabilizer output limits in 

addition to phase lead compensation parameters has been demonstrated. However no 

systematic approach for designing power system stabilizer parameters has been 

presented. 

5.2 Illustrative system Example 
We have considered the popular Western System Coordinated Council (WSCC) 

3-machine, 9-bus system [3] shown in Fig.1. The base MVA is 100, and system 

frequency is 60 Hz. The system data are given in Appendix I. The system has been 

simulated with classical model for the generators. The disturbance initiating the transient 

is a three phase-fault occurring near bus 7 at the end of line 5-7. Opening of line 5-7 

clears the fault. The system, while small, is large enough to be nontrivial and thus permits 

the illustration of a number of stability concepts and results. 
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5.3System Modeling 
The complete system has been represented in terms of Simulink blocks in a single 

integral model. It is self-explanatory with the mathematical model given below. One of 

the most important features of a model in Simulink is its tremendous interactive capacity. 

It makes the display of a signal at any point readily available, all one has to do is to add a 

Scope block there or an output port alternatively. Giving a feedback signal is also as easy 

as drawing a line. A parameter within any block can be controlled from Matlab command 

line or through an m-file program. This is particularly useful for transient stability study 

as the power system configurations differ before fault, during fault and aftr fault. 

Loading conditions and control measures can also be implemented accordingly 

5.3.1 Mathematical Modeling of The system 
Once the Y matrix for each network condition (pre-fault, during and after fault) is 

calculated, we can eliminate all the nodes except for the internal generator nodes and 

obtain the Y matrix for the reduced network. The reduction can be achieved by matrix 

operation with the fact in mind that all the nodes have zero injection currents except for 

the internal generator nodes. In the power system with n generators, the nodal equation 

can be written as: 

jn 

	

 
— 

Ynn Ynr Vh 	 (i)  
0 	Y yrr V, 	.......... 

Where the subscript n is used to denote generator nodes and the subscript r is used 

for the remaining nodes. 

Expanding equation (1), 

In=YnnVa+YnrVr, 0=YrnVn+YrrVr 

From which we eliminate Vr to find 

rn = (Ynn — Yn. Yr: Y,. )v~ 	..................... (2) 

Thus the desired reduced matrix can be written as follows, 

YR = (1'nn —Ynr Y:r Yrn) 	(3 ) ..................... 



It has dimensions (n x n) where n is the number of generators. Note that the network 

reduction illustrated by Eqs. (1) - (3) is a convenient analytical technique that can be used 

only when the loads are treated as constant impedances. 

For the power system under study, the reduced matrices are calculated. Appendix-II gives 

the resultant matrices before, during and after fault. 

The power into the network at node i, which is the electrical power output of 

machine i, is given by [28]. 

n 

Pet = E,°G,i + }~ EE 1Y,1 cos(6i — b; + 5 j )_ 	i =1,2,3..........., n 	... (4) 
~-i 
l..i 

Where, 

Yv; =Y,j L0 j) =Gq + jB jj 
=negative of the transfer admittance between nodes i and j 

Y« Y,, LO, =G„ + jB„ 
= driving point admittance of node i 

The equations of motion are then given by 

2H. dza. 	 n 
— bi +ô)] 	...... (5) tuR dt 

do. and 	--=M ; —w R 	a= 1,2..........,n 	.........(6) 
dt 

It should be noted that prior to the disturbance (t = 0") P,o = Peso, 
Thereby, 

PmiOi = EZGuu + 	E1E,Y1JO cos(O.0 — bio +6oo) 	.. ..............(7) 

The subscript 0 is used to indicate the pre•transient conditions. 	 "S► 
A <a 01 o,2 

coo. hlo.....r.......... 

SO 	P, 
ROO D$ 



As the network changes due to switching during the fault, the corresponding 

values will be used in above equations. 

5.3.2 Simulink Models: 
In this Dissertation work two types of model are used: 

A. Classical Model. 

B. Detailed model of Multimachine System with PSS. 

A. Classical Model: 
The classical model of a synchronous machine may be used to study the stability of a 

power system for a period of time during which the system dynamic response is 

dependent largely on the stored kinetic energy in the rotating masses. The classical model 

is the system this time on the order pf one second or less. The classical model is the 

simplest model used in studies of power system dynamics and require s a minimum 

amount of data; hence, such studies can be conducted in a relatively short time and at 

minimum cost. Further more, these studies can be providing useful information. For 

example, they may be used as preliminary studies to identify problem areas that require 

further study with more detailed modeling. Thus a large number of cases for which the 

system exhibits a definitely stable dynamic response to the disturbances under study are 

elimination from further consideration. 

A classical study will be presented here on a small nine-bus power system that has 

three generators and three loads. A one-line impedance diagram for the system is given in 

Fig.1 (In appendix 5.1). 

5.4 Simulation Result 

System responses are given for different values of fault clearing time (F.C.T.). 

Figures 1(a) and (b) show the individual generator angles and the difference angles (with 

gen. #1 as reference) for the system with F.C.T. = 0.1 sec., whereas Figs 1(c) and (d) 

show the rotor angular speed deviations and accelerating powers for the same case. The 

results show that the power system is stable in this case. 
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Figures 2.(a), (b) and (c) show the system responses for a F.C.T. value of 0.16 

sec. At this point the system is critically stable. The system becomes unstable for F.C.T. 

0.17 sec., as the system responses in Figs 3.(a), (b) and (c) indicate. 

Thus a simple model based on Simulink, is very well suited for analyzing the 

transient stability performance of a power system under any syst✓m condition. The same 

model can also be extended to incorporate a more general (/practical) case of systems 

with exciters, turbines, speed governors etc. 
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Fig. 5.1: System responses for F.C.T.= 0.1 sec. 
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Fig. 5.3: System responses for F.C.T.= 0.17 sec 

B. Detailed Model of Multimachine system with PSS 
Thus a simple model based on Simulink, is very well suited for analyzing the 

transient stability performance of a power system under any system condition. The same 

model can also be extended to incorporate a more general (/practical) case of systems 

with exciters. So the detailed model of the multimchine system has the following 

simulation result: 
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Fig.5.4: System responses for F.C.T.= 0.1 sec 
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Fig.5.5: System responses for F.C.T.= 0.16 sec 
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Fig. 6.6: System responses for F.C.T.= 0.17 sec 
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CHAPTER-6 - 

Conclusion And Scope For Future Work 

6.1 Conclusion 
6.1.1 The Following are the significant results of the investigated carried 
out for FLPSS 

• Performance of an optimum conventional PSS is similar to that of FLPSS. 

• Unsymmetrical triangular membership functions with ci = 0.4 provides the best 

dynamic performance of the FLPSS. 

• The scaling factors decrease inversely with increase in magnitude of perturbation. 

• FLPSS using adaptive scaling factors provide good performance 

6.1.2 The Following are the significant results of the investigated carried 
out for Delta-Omega PSS 

• Small perturbation model of SMIB system in state space form, with and without 

PSS has been developed. 

• Studies show that parameter K5 plays very important role in determining the 

small signal stability of the system. If K5 is negative, increase in value of AVR 

gain adversely affects the small signal stability. 

• A systematic approach has been introduced to tune the DeltaOmega PSS using 

frequency domain. techniques. 

• A detailed sensitivity analysis shows that the system dynamic responses are quite 

insensitive to wide variations in system loading conditions and parameter 

variations. 

6.1.3 Identification of optimum locations for PSS for 3machine 9 -bus 
system using Sensitivity and Participation methods is presented. 

6.1.4 A new approach for tuning PSS of a multimachine system is. 
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Proposed and tested for 3machine 9-bus system. 

6.2 Scope For Future Work 
• Investigation on Nero-Fuzzy PSS needs to be carried out. 

• Fuzzy Logic PSS for a large multimachine system need to be explored. 

Effect of different Deffuzification Techniques like COG, COS, MOM, LOM and 

Bisector etc. 

• Delta-Omega PSS for multimachine system. 
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APPENDIX 3.1 

ELEMENTS OF MATRIX A (WITHOUT PSS, WITH AVR ONLY) 

all a12 a13 0 0 
a21 0 0 0 0 
0 a32 a33 a34 0 
00 0 a44 a45 
0 a52 a53 0 a55 

Where 

all=-Kd/(2*H); 

a12=-K1/(2*H); 

a13=-K2/(2*H); 

a21=w0; 

a32=-K4* K3/T3; 

a33=-1/T3; 

a34=K3/T3; 

a44=-1/Ta; 

a45=-Ka/Ta; 

a52=K5/Tr; 

a53=K6/Tr; 

a55=-1/Tr; 

PERTURBATION MATRIX F 
1/(2*H) . 	0 

0 	0 
0 	0 
0 	Ka/Ta 
0 	0 

a 



APPENDIX 3.2 

The nominal parameters of the system investigated are 

following: 

Et =L0 

H = 3.5 MJ/MVA 

Re = 0 

Xd = 1.81 

Xq =1.76 

Xd' = 0.3 

Xl = 0.16 

D = 0 

kPT1 = 0.2 

Ra=0.003 

Tdo' = 8.0 seconds 

Asat = 0.031 

Bsat = 6.9 

Ka=50 

Tr = 0.02 seconds 

b 



APPENDIX 3.3 

DEFFINITION OF PARAMETERS K1-K6 

LTe 
K1= 

L4Tfd 

• Change in electric torque for a change in rotor angle with constant 

flux linkage in d-axis 

ATe 
K2= 

L'Pfd A3 . 

• Change in electric torque for a change in d-axis flux linkage with 

constant rotor angle. 

K3_ Xd'+Xe 
Xd + Xe 

• Impedance factor 

1(4= 1 AWJd 
K3 Mc 

• Demagnetizing effect of a change in rotor angle 

D  
K5= 

. 	LAS fl /d 

• Change in generator terminal voltage for a 	change in d-axis flux 

linkage with constant rotor angle. 

C 



AEt  
K6= 

1 ',a 

• Change in generator terminal voltage for a change in d-axis flux 

linkage with constant rotor angle. 

N 



efdo=ladu*ifdo; 

Wado =xads*(-ido+ifdo); 

Wago =-xags*iqo; 

Sato =sgrt(Wado ^2+'aqo ^2); 

ksdinc=l/(l+bsat*asat*exp(bsat*('ato - qtl ))); 

ksqinc=ksdinc; 

rt=ra+re; 

xtq=xe+laqu * ksqinc+xl; 

xdls=l/(1/(ladu * ksdinc)+(1/lfd)); 

xtd=xe+xdls+xl; 

d=rt"2+xtq*xtd; 

m 1=eb *(xtq * sin(6 o )-rt*cos(6 o ))/d; 

nl=eb*(rt*sin(bo )+xtd*cos(6o ))/d; 

m2=xtq*ladu*ksdinc/(d*(Iadu*ksdinc+lfd)); 

n2=rt * ladu * ksdinc/(d * (ladu * ks dinc+lfd)); 

kl=nl*(qlado +(laqu*ksginc*ido))ml*(Wago +xdls*iqo); 

k2=n2*( !ado +(laqu*ksginc*ido))m2*(Wago +xdls*iqo)+xdls*iqo/lfd; 

k3=1fd^2/(1adu*(lfd-xdls+m2*xdls*lfd)); 

k4=ladu*ladu*ksdnic*eb*(xtq* sin( bo)-t*cos(bo ))/(d*(ladu  * ksdinc+lfd)); 

k5=edo*(-ra*ml+xl*nl+laqu*ksginc*n1)/et+eqo*(ra*nl-xl*ml-xdls*ml)/et; 

k6=edo * (-ra* m2+x 1 *m2+xdls*laqu* ksqinc* n2)/et+eqo*(-ra* n2-

x l * m2+xdls* ((1/lfd)-m2))/et; 

f 



APPENDIX 3.5 

ELEMENTS OF STSTE MATRIX A (WITH DELTA-OMEGA PSS) 

all a12 a13 0 0 0 0 0 

a21 0 0 0 0 0 0 0 

0 a32 a33 a34 0 0 0. 0 
0 0 0 a44 a45 a46 0 0 
0 a52 a53 0 a55 0 0 0 

a61 a62 a63 0 0 a66 a67 a68 

a71 a72 a73 0 0 0 a77 a78 
a81 a82 a83 0 0 0 0 a88 

Where 

all=-Kd/(2*H); 

a12=-K1/(2*H); 

al3=-K2/(2*H); 

a21=w0; 

a3 2=-w0 * Rfd * m l * Xdls; 

a33=-(w0* Rfd/Lfd)*(1-(Xd1s/Lfd))+m2*Xdls; 

T3=-l/a33; 

a34=K3/T3; 

a44=4/a33; 

a45=-Ka/Ta; 

a46=Ka/Ta; 

a52=K5/Tr; 

a53=K6/Tr; 

a55=-1/Tr; 

a81=Kstab*all; 

a82=a12*Kstab; 

g 



APPENDIX-5.1 

Generator Data 

Generator No, 1 2 3 

Rated MVA 247.5 192.0 128.0 

kV 16.5 18.0 13.8 

H(sec) 23.64 6.4 3.01 

Power Factor 1.0 0.85 0.85 

Type Hydro Steam Steam 

Speed 180r/min 3600r/min 3600r/min 

Xd 0.1460 0.8958 1.3125 

x a_ 0.0608 0.1198 0.1813 

xq  0.0969 0.8645 1.2578 

x q  0.0969 0.1969 0.25 

x4  (leakage) 0.0336 0.0521 0.0742 

Tdo  8.96 6.00 5.89 

T'qo 0 0.535 0.600 

Stored energy at 
rated speed 

2364MW.s 640MW.s 301MW.s 

Note: Reactance values are in pu on a 100 MVA base. All time constants are in seconds. 
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Fig. 1: WSCC 3-machine, 9-bus system; 
all impedances are in pu on a 100-MVA base 
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NOMENCLATURE 

Kgd = saturation factor for direct axis inductance. 

Ksq  = saturation factor for quadrature axis inductance 

Ksd (iner) = incremental saturation factor for direct axis inductance. 

Ksq  (iner) = incremental saturation factor for quadrature axis inductance. 

Re  = line resistance. 

Xe  = line inductance. 

Ra  = armature resistance. 

Rfa, Lra = are respectively rotor circuit resistance and inductance. 

Efd = field voltage 

Pfd = Rotor circuit flux linkage. 

Id = direct axis component of current at the generator terminals. 

Iq  = quadrature axis component of current at the generator terminals. 

Te  = air gap torque. 

Tao = mechanical torque applied. 

'Paq  Pi = Flux linkages of the armature in the quadrature and direct axis 
respectively. 

V1 = voltage output across the transducer. 

Et  = terminal voltage magnitude. 

Eb = voltage at the infinite bus. 

Lq, Ld = are stator self-inductances. 

L1 = Linkage inductance. 

Led and Laq  = are mutual component of Ld & Lq  respectively. 
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Lady, = is the unsaturated value of Ld and Ld5  is the saturate value. 

P = Generator real power output 

Q = Generator reactive power output 

S = Lap lace operator. 

X = State vector 

A = System Matrix 

B = Control Matrix 

p = Perturbation Matrix. 

0 = Small perturbation. 

Ed = d-axis component of E. 

Eq  = q- axis component of E1. 

Ebd  = d-axis component of E. 

Eby  = q-axis component of Eb. 

Ira = generator field current. 

It  = generator field current. 

f = system frequency. 

H = Inertia Constant. 

rp = Power factor angle between Et & It. 

Si = Load angle (angle between Et and quadrature axis). 

So = Angle between infinite bus voltage and quadrature axis. 

co = Angular speed. 

Tm  = Mechanical Torque. 

Pe = Air gap power. 
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To = Electrical Torque. 

TR, = Mechanical Torque. 

Xd = Direct axis reactance of synchronous machine. 

Xq  = Quadrature axis reactance of synchronous machine. 

X1 = Leakage reactance of synchronous machine. 

Xd' = Direct axis transient reactance of synchronous machine. 

Xq' = Quadrature axis transient reactance of synchronous machine. 

`Fat = Air gap or mutual flux linkage. 

'Fad = d-axis component of air gap flux linkage. 

'Faq  = q-axis component of air gap flux linkage. 

Tti = Machine saturation parameter. 

Asat  = Constant depending upon saturation characteristic. 

Bsat = Constant dependirig upon the saturation characteristic. 

KsdIMc = Incremented saturation factor of direct axis. 

Ksd  = Saturation factor of quadrature axis. 

Ksq inc = Incremental saturation factor of quadrature axis. 

Lads = Saturated value of direct axis mutual reactance of synchronous machine. 

Laqu  = Unsaturated value of quadrature axis mutual reactance of synchronous 
machine. 

Tdo' = Direct axis transient open circuit time constant. 

Ka  = AVR gain. 

VS  = Stabilizer signal. 

V f = AVR reference signal. 

Kst.b  = Stabilizer gain. 
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KS1, KS2, KS3 = Stabilizer parameters. 

TW, Tw1, Tw3, TW3, TW4 = Washout time constants of PSS. 
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