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ABSTRACT 

It is well known that the conventional reliability analysis using probabilities has 

been found to be inadequate to handle uncertainty of failure data and modeling. To 

overcome this problem the concept of fuzzy probability has been used in the evaluation 

of reliability of systems. It has been amply-  demonstrated that the fuzzy set theory can be 

conveniently used for system reliability evaluation, particularly when there exists 

uncertainty in the failure data. In reality, even though one may use the best data 

collection procedures, failure data uncertainty always exists. In the presented work a 

concept of possibility of failure i.e. fuzzy set defined on probability space is used to 

evaluate system reliability. The notion of the possibility of failure is more predictive than 

that of probability of failure, the latter is the limiting case of the former. 

In the presented approach a fuzzy-set analysis is made for various system 

structures viz, fault tree, event trees etc. such analysis can not be made by hand 

calculations due to complexity of trees. Hence a computer algorithm is developed for 

each case. Also some approach of neural network is described for the reliability analysis. 

A feed-forward recursive neural network is used to perform the reliability analysis. 
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CHAPTER —Y 

INTRODUCTION 

In recent years, network reliability theory has been applied extensively in areas 

other than electronics, such as chemical engineering and energy production etc. 

Reliability assessment as such not new, engineers have always strived to operate 

systems that are relatively free from failures. In the past however, this reliability 

generally has been achieved from the subjective and qualitative experience of design and 

operating engineers. Once it is decided that quantitative reliability evaluation is needed it 

becomes necessary to decided on the method to use the indices required. In essence all 

technique are concerned with failure behavior of system cannot be defined in 

deterministic but as stochastic in nature ;I.e. it varies . randomly with time • complete 

assessment of a stochastic process can only be achieved using probability techniques. 

However, probability theory alone cannot predict either the reliability of system. The 

assessment requires a through understanding of system, its design, the way it operates the 

way it fails, its environment and the stresses to which it is subjected. 

The analysis of system reliability often requires the use of subjective judgment, 

uncertain data, the approximate system models. By allowing imprecision and 

approximate analysis fuzzy logic provide an effective tool for characterizing system 

reliability in this circumstances, it does not force precision, where it is not possible. In the 

present work the main concepts of fuzzy logic, fuzzy arithmetic and linguistic variables 

are applied to the analysis of system structure, fault tree, event trees, the reliability of 

degradable system, and the assessment of system criticality based on the severity of a 

failure and its probability of occurrence. 

Fault tree analysis is a logical and diagrammatic method to evaluate the 

probability of an accident resulting from sequence and combinations of fault and failure 

events. In conventional fault tree analysis, the failure probabilities of a component of a 

system are treated as exact values in estimating the failure probability of the top event. 

For many systems it is often difficult to evaluate the failure probability of component 
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from the past occurrences because the environment of the system changes. In these cases 

a concept of "possibility of failure" i.e. a fuzzy set defined in probability space is used. 

The notion of possibility of failure is more predictive than that of the probability of 

failure, the latter is limiting case of former. By resorting the.concept, we can allocate a 

degree of uncertainty to each value of the probability, in this manner, different aspects of 

uncertainty probability and possibility can be simultaneously treated. In the present work, 

we will consider the application of notions and techniques from fuzzy logic, fault trees, 

and Markov modeling to robot fault tolerance. 

The Markov model is a method of determining system behaviors by using 

information about certain probabilities of event within the system. Markov Models treat a 

system as a series of states with specific, constant rate transition between them. At all the 

time s, the system is in exactly one state. The only information available is the current 

state, the allowed transition, and the probability of this transition. Such a system is 

referred to as memoryless, and is said to possess the Markov property. As an illustration, 

fuzzy Markov modeling of a power generator with a derated state has been developed in 

this present work. 

Event trees are useful for system reliability analysis and risk quantification since 

they illustrate the logic of combination of probabilities and consequences of event 

sequences. For many systems, estimation of single number for the probabilities and 

consequences has to be used in the analysis. Fuzzy logic is used to account for 

imprecision and uncertainty in data while employing event tree analysis. The application 

of fuzzy event trees is further demonstrated by using set of event trees for an electric 

power system protection system to assess the viability of the method in computing the 

risk associated with a failure in an electric power-system. 
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Another approach to the reliability analysis, based on neural networks, is introduced 

in this work. The reliability analysis of a simple non-redundant digital system, Simplex 

system, with repair is used to illustrate the neural network approach. The discrete time 

Markov model of simplex systems and the TMR system is realized using feed-forward 

recursive neural network. The energy function and update equations for the weight of 

neural network are established such that the network converges to the desired reliability 

of the simplex system under design. The failure rate and repair rate, satisfying the desired 

reliability, are extracted from the neural weights at convergence. 



CHAPTER — 2 

FUZZY LOGIC: AN OVERVIEW 

Among the various paradigmatic changes in science and mathematics in this 

century one such change concerns the concept of uncertainty. Uncertainty is concerned 

essential to science, it is not only an unavoidable plague, but it has in fact a great utility. 

It is generally agreed that an important point in the evaluation of the modern 

concept of uncertainty was the publication of a paper by Lotif A. Zadeh (1965). In this 

paper, Zadeh introduced a theory whose objects — Fuzzy sets — are sets with boundaries 

that are not precise. The membership in a fuzzy set is not a matter of affirmation but 

rather a matter of a degree. 

The significant of Zadeh's paper was that it challenged not only probability theory 

as the sole agent for uncertainty but the very foundations upon which probability theory 

is based: two value logic. The capability of fuzzy sets to express gradual transition from 

membership to non-membership and vice-versa has a broad utility. It provides us not only 

with a meaningful and powerful representation of measurement of uncertainty, but also 

with a meaningful representation of vague concepts expressed in natural language. For 

example instead of describing the weather today in terms of the exact percentage of cloud 

cover, we can just say it is sunny. While the latter description is vague and less specific it 

is often more useful. Research on the theory of fuzzy sets has been growing steadily since 

the inception of the theory in the mid 1960. The body of concept and result pertaining to 

the theory is now quit impressive. 

The four features that make the fuzzy logic superior to classical theory are: 

1. The fuzzy logic allow us to express irreducible observation and measurement 

uncertainties in their various manifestations and make these uncertainties intrinsic 

to empirical data. Such data, which are based on graded distinction among states 

of relevant variables are usually called fuzzy data, when fuzzy data are processed, 

their intrinsic uncertainties are processed as well, and the result obtained are more 

meaningful than their counterparts obtained by processing the usual crisp data. 
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2. Fuzzy logic offers far greater recourses for managing complexity and controlling 

computational cost. 

3. Fuzzy logic has considerably greater expressive power, consequently it can 

effectively deal with a broader class of problem. In particular, it has the capability 

to capture and deal with the meanings of sentence expressed in natural language. 

4. The fuzzy logic has greater capability to capture human common sense reasoning, 

decision making and other aspects of human cognition. 

2.1 FUZZY ARITHMATIC 

A set, A of points or objects in some relevant universe, X is defined as those 

elements of X that satisfy the membership property defined for A. In traditional or crisp 

set theory each element of X either is or is not an element of A. Element in fuzzy set can 

have a continuum of degrees of membership ranging from complete membership to 

complete non-membership. 

The membership function µ(x) gives the degree of membership for each elements 

xcX. µ(x) is defined on [0 1] where 1 represents elements that are completely in A, and 0 

represents that are completely not in A and values between 0 and 1 represents partial 

inclusion in A: 

Formally, A is represented as the order pair (x, µ(x)). 

A= {(X, µ(x)) I xcX, and 0 µ(x) 1 } 

The use of numerical scale for the degree of membership provides a convenient 

way to represent graduation in the degree of membership. Precise degrees of membership 

generally do not exist; instead they tend to reflect a sometime subjective ordering of the 

elements in the universe. 

2.2 FUZZY NUMBERS 

Fuzzy numbers are numerical approximation such as "about 5". Formally a fuzzy 

number is defined as a close interval on R (the real line), N(the integers) or any totally 

ordered set whose membership function is normal and convex and reaches its maximum 

values (1.0) at the number (e.g. 5). For simplicity fuzzy numbers are often represented 

with triangular membership functions as illustrated in fig.2.l 
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Fig 2.1 

The width of membership function shows range of possible values. 

2.3 BASIC OPERATIONS ON FUZZY SETS: 

1. A fuzzy set A is contained in fuzzy set B, A c B if µ,(x) g a(x) for all xeX. 

2. The basic set operations for two fuzzy sets A and B 

Intersections 

A n B = min [ JA(x), PB(X)] 
9. 

: Union 

Au B = max [p.A(x), µB(x)] 

Complement 

A = 1- 9A(x) 

These operations satisfy the associativity and distributivity properties of ordinary 

sets. 

3. A a -cut is the set of element in fuzzy sets that have a degree of membership 

greater than a: 

A,= {(X I xex, and µ(x) >a} 

4. Arithmetic operations on fuzzy numbers 

Fuzzy numbers are represented by 

A = [a, a2] 

B = [b1 b2] 

C = [CI c21 
Fuzzy arithmetic operations as defined above are equivalent to the corresponding 

interval arithmetic operation for each a cut. For the basic arithmetic operations we have: 
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Aa + Ba = [a]a , a2a] + [b10, b2a] 
= [a,a+ bin,  a2a+ b2a] --------- 	(1) 

Aa  - Ba  = [ala, a20] - [bla, b21 

_ [ala-  b2a, a2a-  bla] --------- 	(2) 

Aa  x B0 = {a10, a2 '] x [b1, b20  _ [a1  a x b 1  a, a2a x  b20] --------- 	(3) 

Aa -B0  = [a1, a20] - [b10, b20] 
_ [a,0- b20, a2 	b10] --------- 	(4) 

1=Ba 	=1=[b1 0,b2a] 

_ [ 1=b2a, 1= bla] --------- 	(5) 

Aa  x K = [a10, a20] x K 

_ [Kai a, Ka20] --------- 	(6) 

Operation (4) and (5) are undefined if the interval contains 0 as resulting interval 

goes to infinity. 

It is easy to show from the proportionality properties of triangles that addition and 

subtraction of triangular fuzzy numbers and a multiplication by a constant result in a 

triangular number. Multiplication, division and inversion of fuzzy number generally do 

not give a triangular result. Fig. 2.2 illustrates these properties of fuzzy number. This 

approximation simplifies the fuzzy arithmetic. 
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CHAPTER -3 

RELIABILITY EVALUATION OF ENGINEERING 

SYSTEMS 

In our modern society, professional engineers are responsible for the planning, 

design, manufacture and operation of products and systems ranging from the simple 

product to the complex system. The failure of these can often cause effects which range 

from inconvenience and irritation to a sever impact on society and on its environment. 

Users expect that the products and the systems they purchase should be reliable and safe. 

A question arises is how reliable or how safe will the system be .during its future 

operating life. This question can be answered in parts by the use of quantitative reliability 

evaluation. There are many variations on the definitions of reliability . but a widely 

expected form is as follows: 

"Reliability is the probability of a device performing its purpose adequately for 

the period of time intended under the operating conditions encountered". 

The definition breaks down into four basic parts: probability — adequate. 

performance — time — operating conditions.. The first part, probability provides . the 

numerical input for the assessment of reliability and also the first index of system 

adequacy. In many instances it is most significant index but there are many more 

parameters calculated and used, the most appropriate being dependent on the system and 

its requirement. These parameters are generally all termed reliability indices. Typical 

examples of additional indices are: 

- 	The expected number of failure that will occur in a specified period of 

time. 

- 	The average time between failure 

- 	The expected loss of output due to failure. 

The appropriate reliability index or indices are determined using 

probability theory. 
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3.1 	BASIC PROBABILITY THEORY 

The word probability is used frequently in a loose sense implying that a 

certain event has a good chance of occurring 

3.1.1 	General Concepts 

A. Permutations: 

The number of permutation of n different items is the number of different 

ways these items can be arranged. If all the items are used in the 

arrangement, the number of permutations is designated as 	If only some 

are used say r (r<n) the number of permutations as 

B. Combinations: 

The number of combination of n different items is the number of different 

selections of r items, each without regard to the order or arrangement of the 

items in the group. It is this regard for order which distinguishes 

combination from permutations. The number of combinations of r items 

from n items is the designated as °Cr. In practical reliability evaluation the 

concept of combinations is usually, but not universally of more use and 

importance than permutations. 

C. Independent events: 

Two events are said to be independent if the occurrence of one event does 

not affect the probability of occurrence of the other event. 

D. Mutually exclusive events: 

Two events are said to be mutually exclusive (or disjoint) if they cannot 

occur at the same time. 

E. Complimentary events: 

Two outcomes of an event are said to be complimentary if, when one 

outcome does not occur the other must. 

F. Probability distributions: 

In practice the knowledge o.f design, geometry or specification of events, 

experiments or systems is not readily available and a series of experiments must be 
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performed or a data collection scheme instituted to deduce sufficient knowledge about the 

system behavior for the application of probability theory to reliability evaluation. 

3.1.2 Probability Distribution in Reliability Evaluation: 

In practice the parameters that are normally associated with reliability evaluation 

are describe by probability distributions. This can easily be appreciated by considering 

that all components of a given type construction, manufacture and operating condition 

will not all fail after the same operating time but will fail at different time in future. 

Consequently, these time to failure obeys a probability distributions. 

The most useful continuous distributions are the normal and exponential. and the 

most important discrete distributions are binomial and poisson distributions. 

The cumulative distribution function increases from zero to unity as the random 

variable increases from its smallest to its largest value. In reliability evaluation, the 

random variable is time. If at t=0, the component or system is known to be operating 

then its probability of failure at t=0 is zero. As t— o however, the probability of failure 

tends to unity, as it is certainty that the component or system will fail given that the 

exposure time to failure is long enough. This characteristic is therefore equivalent to 

cumulative function distribution function and is measure of the probability of failure as a 

function of time. In reliability technology, this cumulative distribution function is known 

as the cumulative failure distribution function Q(t). From this probability of surviving 

R(t) = 1-Q(t) 

The derivative of cumulative distribution function of a continuous random 

variable gives the probability density function 

f(t) = 
dQ(t) _ dR(t) 
dt  dt 

Q(t) = ff(t)dt  
0 

R(t) = 1- f f (t)dt 
0 

General reliability function 

R(t) = e-~` 

). = failure rate 
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3.2 NETWORK MODELLING AND RELIABILITY EVALUATION OF 

SIMPLE SYSTEM 

The previous topics consider the application of basic probability techniques to 

reliability assessment. However, the system is frequently represented as a network in 

which the system components are connected together either in series or parallel, meshed 

or combination of these. 

3.2.1 Series-Systems 

The component are said to be in series from reliability point of view if they must 

all work for system success or only one need to fail for system failure consider a system 

consisting of two independent components A and B. Both components must work for 

system success. 

A 	 R 

Fig. 3.1 

The system reliability is given by 

Rs=RA  RB  

RA  = Probability of successful operation of A. 

RS = Probability of successful operation of B. 

For n component system 
n 

RS  =f R;  

3.2.2 Parallel Systems: 

The component are said to be in parallel from reliability point of view if only one 

need to be working for the system success or all must fail for system -failure. Consider a 

system consisting of two independent components A and B connected in parallel. 
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A 

R __1 

Fig. 3.2 

System reliability is given by 

Rs  = 1- QA  Qe 

QA.QB ; probability of failure of A and B respectively 

For n component system 

RS =I —  f Q; 

3.2.3 Series-Parallel Systems 

In these types of systems, the general principle used is to reduce sequentially the 

complicated configuration by combining appropriate series and parallel branches of the 

reliability model until a single equivalent block lefts. This equivalent element then 

represents the reliability of the original configuration. 

3.3 NETWORK MODELLING AND RELIABILITY EVALUATION OF 

COMPLEX SYSTEMS 

Many systems either do not have this simple type of structure or have complex 

operational logic. Additional modeling and evaluation techniques are necessary in order 

to determine the reliability of such systems. A typical system not having a series/parallel 

structure is the bridge type network shown in fig.3.3. 

Fig. 3.3 	istem often occurs in many engineering problems. There are 

number of technique available for solving this type of network including the: 

- conditional probability approach 
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- cut set — tie set analysis 

- tree diagram, logic diagram 

- connection matrix method 

Most of these more advance techniques are formalized method for transforming the 

logical operation of the system or the topology of the system into structure that consist of 

only series and parallel components and path or branches. The main difference between 

them is in the formal presentation or logic of the method and not the essential underlying 

concept. 

3.3.1 Cut Set Method 

The cut-set method a powerful one for evaluating the reliability of a system for 

two main reasons: 

(i) It can be easily programmed on a digital computer for the fast and efficient 

solution of any general network. 

(ii) The cut-set are directly related to the modes of failure and therefore identify 

the distinct and discrete ways in which a system may fail. 

"A cut set is a set of system components which when failed, causes failure of the 

system" 

In terms of reliability network or block diagram, the above definition can be 

interpreted as asset of components, which must fail in order to disrupt all paths between 

input and output of the reliability network. 

A minimum subset of any given set of components that cause system failure is 

known as a minimal cut-set. It can be define as follows: A minimal cut set is a set of 

system components, which, when failed, cause failure of the system but when any one 

component of the set has not failed does not cause system failure. This definition means 

that all components of a minimal cut-set must be failed to cause system failure. Using this 

definition, the minimal cut set of the system shown in fig.3.3 are listed in table 3.1. 
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Table 3.1 

number of minimal 	component of the 

cut-set 	 cut-set 

I AB 

2 CD 

3 AED 

4 BEC 

In order to evaluate the system reliability the minimal cut sets identified from the 

reliability network must be combined. From the definition of minimal cut set it is evident 

that all components of each cut must fail in order for the system to fail. Consequently, the 

components of the cut set are effectively connected in parallel and the failure 

probabilities of the components cut set may combined using the principle of parallel 

systems. In addition, the system fails if any one of the cut sets, occurs and consequently 

each cut is effectively in series with all other cuts. The use of this principle gives the 

reliability diagram in fig.3.4. 

Fig. 3.4 

Although, these cut-set are in series, the concept of series systems cannot be used 

because the same component can appear in two or more of cut sets. The concept of union 
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does apply however and if the i h̀  cut is designated as Ci and its probability of occurrence 

is designated as P(Ci), than the unreliability of the system is given by 

QS =P (CitC2VC3V .........iC1..........uC,) 

This method calculate the unreliability and hence the reliability of the system 

precisely, but it can be an exhaustive and time consuming exercise which can become 

prohibitive with large systems. To overcome this problem, approximation can be made in 

the evaluation, which although they reduce precision, permit much faster evaluation. The 

degree of imprecision introduced is negligible and often within the tolerance associated 

with the data of the component reliabilities for systems, which have high value ol' 

component reliability. 

QS  = P(C1 ) + P(C2) +............+ P(C1 ) +.............+ P(C) 
n 

=f l P(C; ) 

For the system shown in fig.3.4 

Qs = QAQB + QCQD + QAQD QE± QB QCQE 

3.3.2 Tie Set Method 

The tie set method is complement of cut-set method. It is used less frequently, in 

practice, as it does not directly identify the failure modes of the system. It has certain 

special applications and therefore is discussed briefly. 

A tie set is a minimal path of the system and in therefore a set of system 

components connected in series. Consequently a tie set fails if any one of the components 

in it fails and this probability can be evaluated using the principle of series system. For 

the system to fail however all of the tie sets must fail therefore all tie sets are effectively 

connected in parallel. The reliability diagram for fig 3.3 is shown in fig. 3.5. 

Fig. 3.5 
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3.4 EVENTS TREES 

An event tree is a pictorial representation of all the events which can occur in 

system. It is defined as a tree because the pictorial representation gradually fans out like 

branches of a tree as an increasing number of events are considered. Event trees are 

useful for system reliability analysis and quantification since they illustrate the logic of 

.combination of probabilities and consequences of event sequences. 

3.5 FAULT TREES 

Fault trees use a logic that is essentially the reverse of that used in event trees. In 

this method a particular failure condition is considered and a tree is constructed that 

identifies the various combinations and sequence of other failures that leads to the Iailurc 

being considered. 
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CHAP'!'ER - 4 

APPLICATION OF FUZZY LOGIC TO RELIABILITY 

ENGINEERING 

The analysis of system reliability often requires subjective judgment, uncertain 

data, and approximates system models. By allowing imprecision and approximation 

analysis fuzzy logic provides an effective tool for characterizing system- reliability in 

these circumstances, it does not force precision where it is not possible. 

In the case of reliability, uncertainty is due to the fact since failures are relatively 

rare events. Collecting enough data on which to base a statistical "probability of lailure" 

is a costly and difficult undertaking and the relevance of the data to any particular system 

as well its validity is often questionable. Furthermore, especially early in the design the 

item whose probability of failure is needed often does not exist and it must be estimated 

based on engineering judgment or experience from similar items. Extrapolating these 

failure probabilities through statistical method to calculate a system level reliability only 

increases the uncertainty. 

4.1 PARALLEL, SERIES AND NON-SERIES-PARALLEL SYSTEM 

ANALYSIS 

The organizational structure of most system can be described as a series, parallel 

or a non-series parallel system. The reliability of such systems is easily analyzcd 

probabilistically. 

let. 
Pi 	= 	probability of failure of component i 

R; 	= 	reliability of component i 

PSys 	= 	System probability of failure 

Rsy5 	= 	System reliability = 1- Psys 

4.1.1 Parallel Systems 

For parallel system the system probability of failure Psys , is the product of 

individual component probabilities. 

PSyS=P1xP2xP3x.........xP~, 



Although the equation is precise, as observed earlier, the numbers used in its 

computation seldom are. Fuzzy logic provides an intuitively appealing way of handing 

uncertainty by treating the probability of failure as a fuzzy number. This allows the 

analyst to specify a range of value with an associated probability distribution li)r the 

failure probabilities. If associated a triangular membership function with the interval, we 

assume that the analyst has more confidence that the actual parameter lies near the center 

of the interval than at the edges. Here the analysis of a simple 2 component parallel 

system is considered. Let PA  and PB be the component failure probabilities of a simple 

two component parallel system then: 

Psys  = PA  PB '& (PAPB) 0 

If PA  and PS are fuzzy probabilities on the interval [PA!, PA!] and [PB!, PB2] respectively, 

the result PSyS  will be a fuzzy probability PA  PB with range [PA!  x PB!,  PA2 x P112]. This is 

illustrated in figure 4.1. 

1 

PA! 	PBI 	PA2 	P82 PA IPB I 	 PA2l', 2 

Fig.4.l 

The system probability of failure can also be evaluated using linguistic 

description of the component failure probabilities. Such descriptions are often used as 

guidelines for estimating numerical reliabilities. Although the descriptions arc less 

precise than numerical failure probabilities, they may in many cases be more accurate in 

the sense that they-give a truer assessment of the knowledge of the component reliability 

than a numerical value. Each term identifies a range of reliability than a numerical value. 

19 



Each term identifies a range of reliabilities specified as a fuzzy set. A parallel system is 

evaluated using the linguistic rule: 

If Fail(A) = PA  and Fail(B) = PB then Fail(sys) = PAP, 

And corresponding fuzzy arithmetic operations to yield the (fuzzy) system probability of 

failure and its associated degree of possibility of possibility. If desire the fuzzy result can 

be defuzzified to give the system probabilities of failure. 

To illustrate the procedure, consider a 2 component parallel system, the failure 

probability of two components can be expressed using following term; 

Very high if P, .8 

High if .6 P i  <.8 

Moderate if .4 P, < .6 

Low if .2 P1<.4  

Very low if 0 P1 <.2 

These five fuzzy sets are shown in Fig. 4.2. 

To calculate 1-P where P is a fuzzy probability is defined as moving to the 

corresponding fuzzy set at the opposite end of the scale. Thus 

1 — low = high 

I — very high = very low 

1 — moderate = moderate 

etc. 

The analyses of parallel system using above concepts are shown in fig. -4.3 

4.1.2 Series System 

In series system all system components must be operational for the system to 

work. Series systems are most easily analyses in terms of their component reliabilities 

RSYS =R1  x R2 x .............R„ 

The analysis of series system is identical to that of parallel system. One example 

of series system is shown in fig. 4.4. 
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4.1.3 Combination System 

Series parallel systems are arranged as combinations of series and parallel 

elements. Series parallel systems can be analyzed by successively analyzing their series 

and parallel subsystems. Non-series parallel systems can be analyzed using either pathset 

or cutest method. The analyzed is carried out by treating each of the probabilities of 

failure as a fuzzy probability or as a linguistic value. 
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Fig. 4.2 fuzzy sets used for fuzzy calculations of two component systems 
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CEIAP'1'ER -  5 

EVALUATION OF FUZZY RELIABILITY OF PRACTICAL 

SYSTEMS 

5.1 EVALUATION OF FUZZY RELIABILITY OF NON-SERIES PARALLEL 

NETWORK 

5.1.1 Concept of Fuzzy Probability 

Fuzzy probability represents a fuzzy number, between zero and one assigned to 

the probability of event. One can choose different types of membership functions for 

fuzzy probabilities. For example a fuzzy probability may have trapezoidal membership 

function. The fuzzy probability of an event i can then be denoted by a four parameter 

function i.e. 

Pi = (a11,ai2 ,8 2 ,,8l) 

as shown in Fig.5.1. 

Probability Values 

Fig. 5.1: 
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The membership function is given by 

0 	forO 5 p <_ a,, 

1 
_(a,2 P 

forail : p ~ ai2 
aid 

(P) = 1 	forai2 S P Ail 
1 — P—/3i2 	

i ~P~f~l~ or 	~ f~ 	~2 	l 
/''id 

1 

where aid = (ai2 — ai, )did =,Qi, — l8 2 operation used in computing fuzzy reliability: 

Basically only two operations i.e. multiplication and compliment, need to be 

performed in assessing system reliability of non-series parallel system. A procedure is 

developed to carry out these operations efficiently. Let Pi and Pj be the two fuzzy sets that 

have membership function given by µpi(p) and ,j(p) respectively. The operations used in 

fuzzy reliability can be defined as follows 

Multiplication 

The multiplication of two fuzzy sets Pi and Pj that have trapezoidal membership 

functions represented by 

Pia = P1. P~j 

would have membership function given by 

0 	 for0 < p < ai2•aj2 

P < - 1 —a;. +[(p—ai2 aj.2 )/(aid ~.d .a )+a- 	f 	<_ 	a..a. J 	 i1 
22  

il' 	jI 	i2 	f2 

1 	 forai2.a12 < P ~ A2'/' j2 

1 +Yij [(P — Ni2, j2) l(id'Yjd)+ /-'ij 2 f fOr 2'flj2 ~ p ~ Jl 'N/1 

0 	 ford, •f I <_ p <_ 1 

where 

a;d aj 2 + aid a,2 
j 

2aid aid 

_ Nidftj2 +i8jdfi2 

J 	L,9id  jd 
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However, an approximate formula can be used 

Pij = P;. Pj=(ail•ajl•aj2•ai2,3l2•fj2•i3ll.Pit) 

Complementation 

The complementation of a fuzzy set P; 

P1= 1 

For example in case of a trapezoidal membership function as shown in f 1g. 

P;=(1 —(3~t, 1 -1312, 1—a12, I — a~i) 

5.1.2 Bridge Network 

Fig.5.2 A Bridge Network (Non-Series Parallel) 

System reliability of a non-series parallel network can be assessed through (he use 

of two operations i.e. multiplication and complementation. Consider the bridge network 

shown in fig 5.2. There are four minimum pathsets in a bridge network. 

{1,2}, {3,4}, {1,4,5}, {2,3,5} 

The system reliability can be expressed as 

Rs = P,.PP + PZ .P3 .P4 + PZ .P34 .P,.P4 .P5 + P2 .P34 .P45 .P2 .P.F 

Where;. 

P12 = Pt . P2 

P34 = P3 • P4 

P145 = Pt • P4 • P5 

P235 = P2 • P3 • PS 

Where P; denotes the fuzzy reliability of i h̀ element. The fuzzy system reliability can be 

computed using following procedures. 
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Let 

PA, = P,.P2 
P42 = P z .P3 .P4 

PA3 = P Z .P34 .P4 A 

PA4 = P 2 .P34 .P45 .PZ .P3 .P5 

So system reliability can be expressed as 

R, = I — (PA-I .P~2 .P 3 .P ) 

Now let us assume that the trapezoidal membership functions and the fuzzy probabilities 

of elements 1,2,3,4,5 are given as follows: 

Pi = (0.18, 0.9, 0.94, 0.98) 

P2 = (0.26, 0.7,- 0.80, 0.94) 

P3 = (0.38, 0.55 0.72, 0.92) 

P4 = (0.17, 0.32, 0.45, 0.55) 

P5 = (0.16, 0.18, 0.26, 0.55) 

respectively. These fuzzy probabilities are shown in fig.5.3. Now carry out 

multiplications and complementation, the system fuzzy reliability is found to be, 

Rs = (0.18, 0.70, 0.80, 0.94) as shown in fig. 5.4. 

The inference that can easily be drawn is that the system reliability lies between limits 

0.7- 0.80 with a 100% possibility. 
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FUZZY PROBABILITY OF ELEMENT 

Fig.5.3 

FUZZY PROBABILITY OF ELEMENT 

Fig 5.4 
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5.2 FUZZY RELIABILIY MODELING — LINGUISTIC APPROACH 

A fuzzy process, similar to stochastic process is carried out for reliability network 

modeling. As an illustration, fuzzy Markov modeling for a power generator with a 

derated sate has been developed. The model indicates the possibility of the power 

generator being in different states after some transition period by considering the experts 

subjective opinions about the state transition probabilities and it is seen that this model 

serve better. 

Reliability of elements in a network depends on numerous factors. To evaluate the 

probability associated with the failure in an analytic manner considering all such factors 

would become very difficult. As an alternative, fuzzy modeling has been applied for 

subjective evaluation, which replaces the analytical approach. 

The basic operations on fuzzy sets can be represented by simple networks as in 

the theory of reliability networks. The intersection operation on fuzzy sets can be 

represented by a parallel network and so on. A fuzzy process is carried out for reliability 

modeling of a power generator with a derated state. Linguistic values are assigned to the 

sate transition probabilities. 

5.2.1 Comparison between Reliability Networks and Basic Operation on Fuzzy 

Sets 

Let P and Q be two fuzzy sets and µp(x) and gQ(x) are respective grades of 

membership of x in P and Q. The union of fuzzy sets P and Q is denoted by P u Q and is 

defined by 

P v Q= µP(x) V µQ(x) `c1 x 	 - 

Where v is the symbol for maximum. The intersection of fuzzy set P and Q is denoted 

by P n Q and is defined by 

P (1 Q= µp(X) A .tQ(x) V x 

Where A is the symbol for minimum. The result obtained from these operations can be 

compared with the reliability values obtained from the networks. For two elements R, 

and R2 connected in series, the system reliability is given by 

R, = R i * R2 and RS  must be less than or equal to the minimum of R 1 and R-, 

J̀ 

	

	 These results resemble the intersection operation on fuzzy sets. If these elements are 

connected in parallel, the reliability value will be 
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RP = 1-(1-R1)(1-R2) 

Which resemble the grade of membership obtained from the probabilistic algebraic sum 

of two fuzzy subset. Rp  must be greater than or equal to the maximum of Rr and R. This 

resembles the union operation on fuzzy sets. If the operation has to be done with three 

fuzzy subsets, it is as given below: 

g(A,B,C)=(AABAC) A (AAB) A (AABAC) 	. 

where g(A,B,C) is the grade of membership obtained from the above fuzzy operation can 

be shown in fig. 5.5 

fig. 5.5 Sample reliability network representing g(A,B,C). 

The reliability value obtained from the above network must be greater than or 

equal to g(A,B,C) 

5.2.2 FUZZY RELIABILITY MODELING 

If we have the fuzzy elements in a reliability network, that is, the reliability values 

of those elements are not known precisely, we can assign linguistic variables such as 

Low, Medium, High etc., as reliability values and then we can evaluate the total network 

reliability. The final result obtained is also fuzzy in nature yet it convey a meaningful 

solution if we quantify the linguistic variables. The fuzzy grades of membership of 

linguistic variables Low, Medium and High defined by the following fuzzy sets 

31 



Low: 	[(0.5,0.2),(0.7,0.3),(1.0,0.4),(0.7,0.5),(0.5,0.6)] 

Medium: 	[(0.5,0.4),(0.7,0.5),(1.0,0.6),(0.7,0.7),(0.5,0.8)] 

High: 	[(0.5,0.7),(0.7,0.8),(0.9,0.9),(1.0, 1.0)] 

Therefore, the fuzzy sets for Very low, Very medium, and Very low are as 

follows: 

Very Low 	=Low2 

Very Low: 	 .0.6) 1  
Very Medium: [(0.25,0.4),(0.49,0.5),(1.0,0.6),(0.49,0.7),(0.25,0.8)] 

Very High: 	[(0.25 , 0.7) , (0.49 , 0.8) , (0.81 ,0.9),([.0, 1.0)] 

Similar to stochastic process, a fuzzy process can be defined as follows: 

A finite process in discrete time with a discrete state space Q = {q l , q2 ...qn; is 

called a finite fuzzy process if it satisfies the following conditions. 

i) The matrix F which describe the state transition has the following for 

ql  q2  qr 

q[ f!I fl2 flr 

F= 
q2 

. 

f21 

.............................. 

f22 f2r 

qr frt 

.............................. 

fr2 frr 

where 0 fa I denotes the grade of membership of state transition from state q j 

to qj. This matrix will be called the fuzzy state transition matrix of the fuzzy process. 

ii) Let A be a fuzzy set defined on S, and 

WA = [q(0) O92(0) .... 0qr~°~ I 

be a row vector, called initial state designator of A, where 0 is the grade of 

membership of states with respect to A. Then the state designator of A at t = n is obtained 

by, 

WA(n) = WA(0) . Fn = WA(°) [ f j(n) ] 
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where 

f j(n) = 	max 

over all 

parallel paths 

from q;to qj 

min  

over all 

series paths 

from q; to q; 

= the set of grade of membership of state transition of a path from 

q; toc~ 

An example is shown for the application of a fuzzy process in the reliability 

modeling of power generator systems. 

CASE STUDY 

Markov Modelling of a Power Generator with a Derated States — Linguistic 

Approach 

In this model a power generator is said to have three states: 

i) Fully operational ( full power generation ) 

ii) Partial operation (power generation at a derated level) 

iii) Failed (no power output ) 

For example, at a coal-fired power station, the generator derated state may occur 

due to failure of some of the unit pulverizers. 

The state space diagram is given in fig. 5.6 
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Very High(VH) 
	

Very Low(VL) 

Fig.5.6 State Space Diagram 

The generating system can either be derated or fail completely and can be 

repaired. Here it is assumed the state transition probability are known imprecisely and 

defined in terms of linguistic variables. 

H M VL 
F= M VH M 

L M VL 

The tree diagram for this state transition matrix is shown in fig. 5.7. This tree 

diagram explains the status of the power generator after two steps given that the fairy 

process started in state 1, state 2, and state 3 respectively. That is, 

HMM 
F 2 = M VH M 

MMM 

If the initial state designator WA{°t is defined as, 

WA(0)  [ M H L] 

then the state designator at t = 2 can be obtain as follows: 
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WA  _ WA  (2) 	(o) F2 

HMM 

_ [M H L] M VH M 

MMM 

By using the fuzzy basic operation 
WA(2)_[M H M] 

The first element in the above vector is obtained as follows: 

(Mr VH) u (H n M) u (L n H)=[M] 

Using the quantitative measure of linguistic variables, the following W A(2)  can be 

obtained 

W At2) = { [(0.5 , 0.4) , (0.7 , 0.5), (1.0 , 0.6), (0.7 , 0.7) , (0.5 , 0.8)], [(0.5,0.7), 

(0.7 , 0.8) , (0.9 , 0.9) , (1.0, 1.0)],[(0.5,0.4),(0.7,0.5),(I.0,0.6), 

(0.7 , 0.7) , (0.5 , 0.8)] 

WA(2) 	[ 0.6 1.0 0.6] 

The approximation WAt2)  vector contains the values those have highest grade of 

membership in the quantitative definitions of linguistic terms and expresses that there is a 

high probability of the system being in state 2 (partial operation state) allcr two 

transitions. 

The fuzzy steady-state designator vector is determine by the following equation 

U 
i,j=1,2,......k 

.I 

where k is the total number of state 

that is for the above considered 3-state problem, 

7̀1I A JII)v ,̀z-2 A f21)V(23 A  31)-71I 	(1) 

( ,TI A A2)V(r2 n ✓ 22) v (713 A  /32) =ir, 	( 2) 

(ff1 A J13) V (ff2 n ✓ 23)V(713 A J33)-71 	(3) 

Since the operation on the left hand side (LHS) of the above equations, are fuzzy 

operations, to solve them, the following procedure is used. 
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STEP 1: 

Start with an initial approximation for 7r1 , ~r3 , )r3 . 

STEP 2: 

Compute left hand side (LHS)of equation (1), (2), and (3). Let e be the tolerance 

limit. 

if (LHS; - RHS;) e for i= 1, 2, 3. 

then 

the obtained Tr, vector is the fuzzy steady state designation vector. 

Stop. 

else 

perturb the values of if,, z2 , z3 

go to step 2. 

Example 

if ,r; vector is [0.6 1.0 0.41, 

then the fuzzy steady state designation vector is given as, 

[ 0.6 1.0 0.6J 

36 



t=I 	t=2 

qi<:; 
q3 

q, 

q3 	q2 

min{µ;Vi 
III - H 
f,2 =M 
f13 =VL 
fl, = M 
f12 =M 

t=0 

Gl 
q3 f13 = M 
q, f11 =VL 

Q3  Q2  f12  = V L 

Q3  f1 3 VL 

q, f21  =M 

q l  q2 f22 =M 

q3 f23 =VL 

q, f2 l  = M 

q2 q2 f22 = VH 

q3 f23 =M 
q, f21 =L 

Q3  q2  f22 =M 

q3 f23 = VL 
q, f31 =L 

q, q2 f32 = L 

q3 f33 = VL 
q I  f31  = M 

q2 q2 f32 = M 
q3  f33 = M 

qI f31 = VL 

q3 q2 f32 = VL 

3 f33 =VL 

q2 

N.- 

q3 

max.min 	I 

f11(2)= H 
f12(2)  = H 
fl3(2)  = 

f2 l (2̀)  = H 
f22(2)  = H 
f23(2)  = 

f31(2) = H 
f 2(2) =  

f33(2)  = H 

Fig. 5.7 TREE DIAGRAM 
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5.3 EVENT TREE ANALYSIS BY FUZZY PROBABILITY 

(Calculation of Risk associated with an Electric Power System) 

Event trees are useful for system — reliability analysis and risk quantification since 

they illustrate the logic of combination of probabilities and consequence oI' event 

sequences. For many systems, estimation of the single number for the probability and 

consequences is difficult due to uncertainty and imprecision of data. Here I uses tizzy-

set logic to account for imprecision and uncertainty in data while event tree analysis 

CASE STUDY 

Consider the electric power system as shown in fig. 5.8. Each of the traiisl wmcr 

is protected by differential scheme i.e. both circuit breaker protecting each of the 

transformer are operated by the sane fault detector, FD, and a combine relay / trip signal 

device, RTS. Given that fault occurs on the transformer TRI it is desired to evaluate the 

probability of successful operation of the protection system. 

Generally electric power protection system involves the sequential operation of 

set of components and devices. Event trees are particularly useful because they recognize 

the sequential operational logic of system. Fig.5.9 shows the fuzzy event tree IUr the 

network shown in fig. 5.8. 

FUZZY PROCEDURE FOR EVALUATING RISK 

There is an important consideration is the severity of the effect of the failure. The 

`risk' associated with a failure increases as either the severity of the effect of the l iilure 

or the failure probabilities increases. 

Fuzzy logic provides a more flexible and meaningful way of assessing risk. The 

analysis uses linguistic variables to describe the severity and frequency of occurrence of 

the failure. These parameters are "fuzzified" to determine their degree of membership in 

each input class using membership functions. The resulting "fuzzy inputs" are evaluated 

using a linguistic rule base and fuzzy logic operations to yield a classification of the 

"riskiness" of the failure and an associated degree of membership in each risk class. This 

"fuzzy conclusion" is then "defuzzified" to give a single risk priority for the failure. 



CB2 . 

T i  

TRZ 	 H-i  
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Fig. 5.8 POWER SYSTEM NETWORK 

CB2 works 
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Fig.5.9 EVENT TREE FOR ALL POSSIBLE CASI?S 

39 



127 
	

MT 

input variable "input 1" 

A 	 I 	 m 
	

h 	 vh 

/t\A 
input variable "input2" 

Fig. 5.10 fuzzy sets used for fuzzy calculations of two component systems 
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Fig.5. I I "fuzzy conclusion" and then "defuzzified" to give a single risk priority for the 
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5.4 ROBOT RELIABILITY USING FUZZY FAULT TREE AND MARKOV 

MODELS 

Robot reliability has become an increasingly important issue in the last few years, 

in part due to the increased application of robots in hazardous and unsaltu'atecl 

environments. We will consider the application of notion and techniques from fuzzy 

logic, fuzzy fault tree, and Markov modeling to robot fault tolerance. Fuzzy logic lends 

itself to quantitative reliability calculations in robotics. Fault trees are standard reliability 

tool that can easily assimilate fuzzy logic. Markov modeling allows evaluation of 

multiple failure modes simultaneously, and is thus an appropriate method of modeling 

failures in redundant robotic system. 

The increasing desire to produce more reliable robots has created interest in 

several tools used in fault tolerance design. Such tools seek to evaluate the effectiveness 

of new designs. The extra components needed for fault tolerance robot design obviously 

add extra cost and extra possibilities of failure. Reliability analysis tool such as lault trees 

and Markov models are needed to give hard numbers showing that the benefits of the 

fault tolerant design are tangible and worth the effort. 

TEST PROBLEM 

The classic test problem is the two degree of freedom, planar manipulator. From a 

reliability engineering point of view, it is interesting to investigate the effect of redundant 

systems on this robot. Kinematics redundancy arises when more degree of freedom are 

available than are needed to perform the task. For the planner robot interested only in 

end- effector position, the required number of degree of freedom is two. If a robot in this 

situation possesses three degree of freedom, it can still reach a significant fraction of its 

workspace if one of its joint is frozen. Sensor redundancy occurs when there is more than 

one sensor at each joint, allowing sensor failure without joint failure. 

Four distinct robots are examining her as shown in fig.5.12: 

The non redundant robot with two joints and one sensor per joint 

The partial redundant robot with just sensor or kinematic redundancy, and 

The fully redundant robot with both sensor and kinematic redundancy. 

The aim is to determine how much more reliable the redundant robots are. 
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Fig.5.12 Four distinct robots 

5.3.1 FAULT TREE 

Basics 

Fault tree is a common tool in reliability analysis. Basic events are connected 

through a series of logic gates to a terminal event that usually represents the 

failure of the system. The classic And and Or gates are the basic gates needed to 

represent most systems. Additionally, the N/M (N out of M) gate is useful in the 

redundant system. An And gate represent a so called parallel system. All of the 

components must fail for the system to fail. An Or gate corresponds to a series 

system. The system fails if any of the components fail. An N/M system is a type 

of redundant system. N out of the M elements in the system must fail before the 

system itself fails. Fault trees for the four robots are shown in fig.5.13. 

If the probability of failure of all the parts on the `leaves' of the tree is 

known, these probabilities can be propagated through the tree using the Ii llowing 

rules: 

Or gate: 	PC  = 1 — (I - P„) (I - Pb) 

And gate: 	Pc = Pa.Pb  
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N/M gates are best decomposed into an equivalent set of And and Or gates. One 

Or gate is used, with its input being the 	possible N member combination of 
m 

the M inputs. For example, the failure probability for a 2/3 could be calculated as: 

Pd  = I —(1 - PaPb) (1 - PaPc) (I - PI)Pc) 



Non-Redundant Robot Kinematically Redundant Robot 

Rcln t F.tilut'w 

.T:~int i 	T.:•it I 	T.:•inr 
P.ai2:?I 	I P ',i1. 	I 	I Pii1, 

MM®H®M®N®W= 

Robot with Redundant Sensors 	 Fully Redundant Robot 

fig.5.13 Fault Tree for example Robots 
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5.3.2 Fuzzy Fault Tree 

The probabilities for the basic events in a fault tree are often not known with great 

accuracy. Fuzzy member are a natural way to represent uncertainties such as these. The 

fuzzy representation of a failure probability can be propagate through a fault tree using 

fuzzy arithmetic. The resulting fuzzy number will cover a rage of possible results, giving 

an accurate view of what is actually known about the system. 

5.3.3 Markov Modeling 

The Markov model is a method of determining system behaviors by using 

information about certain probabilities of event within the system. Markov Models treat a 

system as a series of states with specific, constant rate transition between them. At all the 

time s, the system is in exactly one state. The only information available is the current 

state, the allowed transition, and the probability of this transition. Such a system is 

referred to as memoryless, and is said to possess the Markov property. 

A useful way of looking at Markov models is to consider a large population of 

such systems. The probability of being in each state will be rough equivalent to the 

relative number of systems in each state in a large population. Thus `the probability of 

being in state X at time T' is interchangeable with `the population of state X at time T' 

A simple Markov model for a repairable one component system is shown in 

fig.5.14. 

Failure Rate Repair Rate a 

Fig. 5.14 Markov model for a Reparable One component system 



The system failed with a constant rate A. while it is in the working state. 

Once failed, repairs proceed at rate a. This system exponentially approaches the steady 

state where it has probability a/( k + a) of being in the working state and the probability 

A. /( k + a) of being in the field state. 

5.3.4 Markov Model for the Example Robot 

For the robots we are considering, the Markov models become complicated 

quickly. Even the simple non-redundant robot has four separate part components of 

interest (one sensor and one motor per joint), each of one can either working or lit lied. 

This leads to 24, or 16 possible states of the system. The fully redundant robot has 9 

components, leading to 512 possible states. This is too many states to deal with el'Icctive. 

It is necessary to group and cut states until a reasonable number is reached. We do this in 

part by grouping the components into three categories: 

i) Motor 

ii) Single sensor, and 

iii) Pairs of sensors on the same joint 

State with one or more of this parts failed are represented by states with labels M, 

S, and P respectively. States are characterized only by how many motors, sensors, and 

matching pairs of sensors are failed. Another reduction is accomplished by lumping all 

system and joint failures which have the same cause together, regardless of extraneous 

subsystem failures. For example, if the fully redundant robot fails from a working state 

into the state where two motor have failed, additional failures are ignored, and the state is 

referred to as 'MM+', where the '+' indicates that there may be other failed components. 

Our final reduction of the model was to make the standard Markov simplification and 

assume the sensor and motor failure rates were constant across the robot and time. The 

Markov models of the example robots are shown in fig.5.15 (a), (b), (c) 
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Non-Redundant Robot 	 Robot with Rundnt Senori 

Fig. 5.15(a) Markov models for first two robots. 
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Fig. 5.15 (b) Markov model for Kinematically Redundant Robot 
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Fig. 5.15 (c) Markov model for Fully Redundant Robot 
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In addition to the state shown, the utility of the robot_ is calculated. The utility in a 

Markov model does not in general corresponds to any one state of the model, but Instead 

is a weighted sum of several states where all the robot joints are working is weighted by 

one, and a state where two out of three joints are working is weighted by 0.5. The utility 

of the robot is the topic of great interest in regard to reliability, as it shows a measure of 

how useful the robot is expected to be over time. It results in a numerical value of 

usefulness to compare different robot configuration. 

5.3.5 Fuzzy Markov Modeling of the Robots 

Component failure rates can be very difficult to calculate accurately during the 

design process, as environmental factor and component interactions cannot be easily 

determined before several prototypes are built. This can leads to crisp values being given 

for a order of magnitude estimate. Even if the result is only viewed as a rough guess, 

exactly `how fuzzy' the guess is not known. In addition unlike fuzzy fault tree, one 

cannot simply take the extreme values and propagate them through using fuzzy 

arithmetic. This method results in nonsensical results for the transient state. 

The method used here for generating Markov models were using a 

straightforward method, the explicitly used the extension principle and computing power 

to get the results. Only the zero and one a-cuts were generated, to keep the couuihuting 

reasonable. For each of these cuts we.needed to generate a set of points that roughly 

cover the available intervals for that a-cut. 

For our examples, each cut was divided into twenty geometrically-spaced 

intervals, and all possible combinations of these intervals were run through a Markov 

model of the system. 

All of the resulting curves were compared, and the highest probability and the 

lowest probability outputs for each time step made bounds of the new a-cut 

The fuzzy Markov model generated has a 3-D membership function with axes of 

time, probability of being in state, and membership. If the trapezoidal representation is 

used, this can be represented by 2-D plots of the four edge of function. The highest and 

the lowest lines on the probability axis represent the zero a-cut, while-the inner two lines 

represent the one a-cut. 

The output of the fuzzy Markov model for four different robots is as shown in fig. 
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Fig.5.16: Non Redundant Robot 
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A) NON REDUNDANT ROBOT: 

The first and simplest model is the non-redundant robot. The output of the fuzzy 

Markov model is as shown in fig.5.16. 

fnitial:Working State 	State M 	 State S 	 Utility 
1 	 1 

0.6 	 0.6 

00 	200 	400 00 

* 	The initial/working state in this robot has the highest population of all the robots. 

This is not the surprising, as this robot has the fewest components (two motors, 

two sensors) and thus there are fewer parts to fail. However, all part failures lead 

instantly to system failure, so the robot has the lowest utility of all the robot as 

well. 

* 

	

	The lowest bounds of the fuzzy sets are much lower than the upper bounds. For 

both the M and S states, the one a-cut alone covers most of the range of 

possibilities. This indicates that it is not possible to Isolate one or the other Failure 

mode as being predominant with the given data. 

* 

	

	The fuzzy sets give a somewhat misleading impression of the error possibilities 

when considered together. Both states have high memberships in high 

probabilities at the same time. This does not allow both states to have very high 

probabilities or very low probabilities at the same time, as the axioms of 

probability would not allow this. Instead, these membership function indicate that 

it is highly possible that either type of failure could be that probable, and that with 

the fuzzy probabilities we have, this range of probabilities we have. 
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B) ROBOT WITH REDUNDENT SENSOR: 

The model of the redundant sensor as shown in the fig.5.15(a) and 5.17 iclIs us 

the following: 
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0 
0 200 400 

fig.5. 17 Robot with Redundant Sensor 

• Although the robot fails out of the initial state more quickly than the previous 

robot, it has a higher utility. There are six components in the failure models, so 

failures are more common. However many of this are not fatal to the system. 

• Note that the lower bound of utility are not significantly better than those for the 

non-redundant robot. This robot has a `weakness' -- high motor failure rates 

bypass its redundancy. 

• This model, unlike the previous one, has transitory states, or state that have no 

population in both the initial (new) and final (failed) states of the robot. The states 

S and SS are very possible for a large set of probabilities and times. This is 

because the time at which these functions hit a maximum is highly dependent on 

the failure rates. For high rates this peak is very early, and for low rates, it 

53 



!I'Iua r'1'JC'.. v State: 	st I : rv: 

C 	cot, 	CC0 V U 200 200 

happens very late. The positions in between are filled by various intcrmccliate 

failure rates. Similarly, the lower bounds for these states arc very low, as the low 

failure rates grow very slowly, and before they get too large, the high failure rates 

grow very slowly, and before they get too large, the high failure rates have 

already peaked and soon drop below them. Thus the wide range of possibilities 

for these states. 

• Several anomalies can be observed on the transitory states. Notably, a small spike 

at the beginning of the state and a series of bumps alone the top edge of the state. 

C) KINEMATICALLY REDUNDENT ROBOT: 

The model of the kinematically redundant robot shown in fig.5.15(b) and 5.18. 

shows us some serious flaws 

Stale MM 
	

J(lL 

fig.5.18 Kinematically Redundant Robot 
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• Although the initial state decays approximately as fast as for the previous robot 

(both have six component), the utility of these robot is considerably lower. This is 

because of the effect of the lower utility of the partially degraded states 

• This robot does not have the weakness in the way the previous robot did. The 

kinematic redundancy applies equally to sensor and motor failures immobilizing a 

joint. However the higher number of components meant that very high failure 

rates had a strong effect than on the non redundant robot, so the utility lower 

bound is still low 

• This robot, like those previous, also has very uncertain failure states. it is 

interesting to note the limited range of the SM failure state. This is the First state 

we encounter that requires both a sensor and a motor failure. This causes this state 

to be limited in its maximum population, as it is most populous when both failure 

rates are high, and thus the MM and SS failure rates are also high. This state also 

has the same upper bound on the one and the zero cuts after a certain amount of 

time has passed. This is because the population of this state is influenced strongly 

by the ratio of the two failure rates 
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The model of a fully redundant robot as shown in the iig.5. 15(c) and 5.19 Icil us 
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• With nine components, this robot fails out of the initial state faster than any other 

robots. However, its utility is the highest by a wide margin, as it has protection 

from both kinds of component failure. Even the lower hounds show noticeable 

improvement. 

• The PM state is similar to the SM state in the previous robot in that it requires 

both types of failure to happen, and is thus limited to 0.5 in its upper hound for 

both the zero and one a-cuts. However, its lower bound is less prominent, as it 

requires a pair of sensor failures, which is less likely to happen than a single 

sensor failure. 

• The transient state SM and SSM exhibit similar behavior. Although these states 

are transient, they also contain both the motor and sensor faults, and thus they 

exhibit the same ratio based convergence of a-cuts. 

• The large size of the states M and S is expected, as they result from the initial 

transition out of the working state. However, the large possible population in the 

SSP state has fewer working sensors than any other states, so failure out of this 

state would be at an unusually low rate. 

Several themes can be found in the fuzzy Markov models above. The increasing in 

the rate of component failure as reliability schemes are implemented is made clear. 

Higher reliability will paradoxically require us to deal with more component Failures. 

However those failures will be mitigated by the reduced rate of system failure that is 

evidenced by the higher utilities displayed by the fault-tolerant robots. Sensor redundancy 

provides a lot of this reliability for little effort, assuming that the motors are somewhat 

reliable. Kinematic redundancy adds a little more margin, but it not as useful, as the 

damaged robot is not as useful as the initial one. On the other hand, kinematic 

redundancy guarantees us that the first failure will not be fatal, and give us improvement 

no matter which components has the higher fault rate, so it should be considered. 
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CHAP'1'h:lt-6 

APPLICATION OF NEURAL NETWORK FOR THE RELIABILITY 

ANALYSIS 

6.1 	Neural Network for the Reliability Analysis of Simplex System 

Another approach to the reliability analysis, based on .neural. networks, is 

introduced in this work. The reliability analysis of a simple non-redundant digital system. 

Simplex system, with repair is used to illustrate the neural network approach. The 

discrete time Markov model of simplex systems is realized using feed-forward recursive 

neural network. The energy function and update equations for the weight of neural 

network are established such that the network converges to the desired reliability of the 

simplex system under design. The failure rate and repair rate, satisfying the desired 

reliability, are extracted from the neural weights at convergence. 

The reliability of hardware under design is usually arrived at by assuming suitable 

values for certain parameters such as the failure rate, coverage factor, and the repair rate, 

whichever is applicable to the design. The reliability of the system is, then, computed 

using discrete or continuous time analysis. If the resultant reliability does not meet the 

design requirements, then the whole process is repeated to obtain another set Of values. 

This technique is lengthy. and complicated when dealing with complex fault-tolerance 

systems. 

Neural networks have demonstrated advantages in speed and development cflart 

over conventional computers in performing some basic operations. The collective 

computation capabilities of neural networks will be employed in the reliability analysis. 

A neural network will be used to determine the design feature features of a system, given 

its reliability after a specified period of operation. The initial conditions and the desired 

reliability are feed into the neural network. When the neural network converges, its 

different weight will indicate the appropriate parameter, and hence the features of the 

system under investigation. A feed-forward recursive neural network is employed to 

represent the Markov model of a simplex non-redundant system with repair (Simplex 



system). The energy function and the update equations of the weights are derived using 

the least mean square, gradient learning procedure. 

6.1.1 Simplex System 

. Consider the Markov model of a simple non-redundant system with a constant 

failure rate ?. and a constant repair rate µ, as shown in fig. 6.1. During the time interval 

At, the system will have probability of failure given by XAt and a probability cal' repair 

µAt. State o represents the condition of the system being completely operational, and 

state f represents the failed condition. If the system is in state o, the probability of' the 

system transitioning to state f during the time period Ot is XAt. Also if the system is in 

state f the probability of transitioning to state o is µAt. The discrete time-equation Ii►r the 

Markov model are given by 

Po(t + At) = P0(t)(1- A.At) + P j(t)( µAt) 	 (6.1.1) 

P~{t + At) = Po(t)(XAt) + Pf(t)(I - µAt) 	 (6.1.2) 

Initially the system is assumed operational; that is P0(0) = I and P1(0) = 0 

Fig 6.1 Markov Model of a Simple Non-Redundant System With Repair 

6.1.2 The Neural Network 

A feed forward recursive network is set to represent the simplex system. As 

shown in fig. 6.2, the network consists of two layers of neurons: one forms the input and 

the other forms the output. The number of neurons in each layer equals to two, which is 

the number of states in the Markov model. The weight connecting the input and output 

neurons represent the entries of the transition matrix of the discrete-time equalions. In 
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other words, the weights of the neural network are related as follows to the Markov 

model:. 

W21=A.L\t 

Wit= µ0t 

Wit =1—W21 
	

(6.1.3) 

W22=1 - W12 

At any time t during operation of the system 

X, = P~)(t) 

X 2 =P(t) 

+ At) 	 (6.1.4) 

Y2 =P1(t+At) 

X1 	W22 

Fig. 6.2- Neural Network for Simplex system 

The initial conditions are given by X1 = 1, and X2 = 0. the basic equation of the neural 

network are: 

Y =WIC X2 +W12X2 

Y-) = W21 X1 + W22 Xz 	 (6.1.5) 

The energy function E for the neural network and the update equations arc 

obtained using the least mean square, gradient descent learning procedure as follows: 

E = (Yi — Dl)2 + (Y2 — D2)2 	 (6.1.6) 

where D1 and D2 are the desired outputs of the network which are, respectively, 

equivalent to the required reliability and unreliability of the system; while Y, and Y. are 

'a1 

Y2 
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the actual outputs of the network. The change in the weight W;j, denoted by W ;;, is 

related to the energy function by the following update relation: 

(6.1.7) 

where K is the constant of proportionality. Using the chain rule 

aE  aE c?Y, + aE aY2 
a 2 	aY, aW12 aY2 aWf, 	 {6.1.8) W1  

After substituting from equation (6.1.5) and (6.1.6), we get 

a
aE =2X 2 ((D2 — Y2)— (D, — Y~~) 	 (6.1.9) 
1412 

= 2X 2 (error2 — error,) 

where error, = Di — Y1 and error2 = D2 — Y2. Similarly 

aE =2X1((D1 — Y1)— (D2 — Y2)) 	 (6.1.10) 
aW21 

= 2X, (error, — error2 ) 

where error, = D1 — Yi and error2 = D2 — Y2. Finally the update equations for Ilic Iwu 

weights are: 

AW12 = 2KX 2 (error, —error2 ) 	 (6.1.11) 

AW21 = 2KX 2 (error2 — errors ) 	 (6.1.12) 
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6.1.3 SIMULATION RESULTS 

Computer simulation of a neural network representing the Simplex System is 

performed. The time of operation of the system under design is take as t = 10 hours and 

At = 0.1 sec. The initial failure and repair rates are chosen within an attainable practical 

range. A sample of the result obtained from the simulation is shown in table 6.1. 

For example consider the case when the software is run with initial repair rate µ = 

0.2 repair/hour (W12 = 5.5 * 10-~' repair/0.1 sec) and initial failure rate X = 0.3 failure 

/hour (W21 = 8.3 * 10-`' failure/0.1 sec), the desired probability being P0 = 0.92 and Pf = 

0.08 after 10 hour of operation (t = 10 hour). The network coverage in only five iteration 

to P1, = 0.9200089 and Pr = 0.079991. These results are within the 0.001 accuracy limits 

from the desired values. The d T rent weights at convergence are W12 = 1.07462 * 10-s 

repair/0.1 sec and W21 = 9.4965 * 10-' failure/0.1 sec. Form these values the required 

failure and repair rates are calculated as: 

~. = W21 / At = 0.0 34187 failure/hour 	 (6.1.13) 

11= W 12 !  At = 0.386864 repair/hour 	 . (6.1.14) 

To verify these results, ? , FL and the time (t = 10 hour) values are substituted in the 

continuous time solution of equation (6.1) and (6.2). The same magnitude for Po and Pf 

are obtained. 

Initial Values Desired Values Values at Convergence 

N = Number of Iteration 

k fi P„(t) PI(t) P(t) N 

0.03 0.210 0.39 0.61 0.4001 0.2510 0.150 10 

0.03 0.20 0.52 0.48 0.5119 0.2010 0.198 8 

0.03 0.20 0.65 0.35 0.6499 0.1764 0.324 13 

0.03 0.20 0.80 0.20 0.7996 0.0923 0.365 8 

0.03 0.20 0.87 0.13 0.8699 0.0574 0.378 6 

0.03 0.20 0.92 0.08 0.9200 0.0342 0.387  

Table 6.1 -- Simulation results of the Simplex System 
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6.2 	RELIABILITY ANALYSIS OF 7'LIE T.IR SYSTEMS ON NEURAL. 

NETWORK 

A six-neuron teed-forward recursive neural network is used to perform the 

reliability analysis of a Triple Modular Redundancy (TMR) digital system. The network 

represents the discrete-time Markov model of the TMR system with a minimal number of 

states. The initial conditions and the desired reliability of the TMR system after a 

specified period of operation are fed into the neural network. At convergence, the 

different weights of the neural network indicate the appropriate failure rate for the 

modules to be used. 

6.2.1 TMR SYSTEM 

The TMR is the most common form of passive hardware redundancy. Its basic 

concept, as shown in the fig.6.3, is to the triplicate the hardware. and perform a.majority 

vote to determine the output of the system. If one modules becomes faulty, the two 

remaining fault-free modules mask the result of the faulty module when the majority vote 

is performed. 

Fig.6.3. The TMR System 



l ig.6.4 illustrates the reduced Markov model of the THE system with the 

minimal no of state. State three indicates all three modules in the TMR system are 

working correctly. In state 2, only two modules are functioning correctly. Sate f is the 

failed state in which two or more modules have failed. The probability that the system 

being in any given state S at some time t1-At depends on the probability that the system 

was in a state from which it could transition to state S and the probability of that 

transition occurring. Denoting the failure rate by ? , the equations of the discrete Markkov 

model of the TMR system are: 

P3(t + At) = P3(t)( I - 32 At) 
	

(6.2.1) 

P2(t + At) = P;(t)(37  At) + P2(t)(I  -2XAt) 	 (6.2.2) 

Pt + At) = P2(t)(2XAt) + P1(t) 	 (6.2.3) 

Initially, all three modules are assumed be fault-free; that is P3(0) = 1, P2(0) = 0 

and Pt(0) = 0. 

l -3?.At 	 1-2AAt 	 1.0 

3XAt 	 2XAt 

fig.6.4. Reduced Markov Model of a TMR System with a Minimal Number of State 

6.2.2 The Neural Network 

A feed-forward cascade recursive network is set to represent the TMR system. As 

illustrated in fig.6.5, the network consists of six neurons; three in the output'nyer. In fact 

the number of neurons in each layer is equal to the number of states in the Markov model. 

The weight connecting the neurons of the input and output layers represent the entries of 

the transition matrix 
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Y2 

Xl 	 Wil 	 Y1 

Fig.6.5. Neural Network for TMR System 

Now let 

1-3W 

—3W  

W22 —I-2W 

W32  2W 

W33  = 1 

(6.2.4) 

where W is equal to ?,At. The inputs of the networks are 

XI = P3(t) 

X2 = P2(t) 

• X3 = P1(t) 

The outputs of the networks are 

Y i = P3(t +Ot) 

Y2 = P2(t +At) 

Y3 = Pr(t +At) 

The initial conditions for the neural network are given by X2 = X3 = 0 and XE = 1. The 

input and the output of the neural network is related as follows 

Y,=W H IXI 

Y2 = W21 X + W22 X2 

Y3 = W32 X2 + W33 X3 



6.2.3 SI lULATIONS RESULTS 

Computer simulation of a six-neuron network realizing the TMR system is 

performed. The time of operation of the Systelll under design is taken as t = 10 hours and 

At = 0.1 sec. Table 6.2 shows sample results of the simulation. Considered the case when 

the desired probability value P3(t) = 0.75 and the initial failure rate X = 40x 10-5 

failure/hour (weight W = 1.1 1 1 x 10-~` failure per 0.1 sec) are fed in the simulation 

program. The network coverage after 29 iteration to P3(t) = 0.750875, P2(t) = 0.225746 

and P(t) = 0.023379 within a 0.01 implied accuracy. At convergence W = 2.652915 x 

10-7 failure per 0.1 sec, from which the value of the failure rate is calculated: 

i, = W/ At = 0.0096 failure/hour 

These results are verified using the continuous time solution of the Markov model 

equations. 

Initial X Desire 

P3(t) 

Value at Convergence 

P3(t) P2(t) P, (t) ? x 10-3 N 

40 0.40 0.3998 0.4285 0.1709 30.55 37 

40 0.50 0.5003 0.3899 0.1097 23.00 35 

40 0.60 0.5994 0.3342 0.0663 17.00 33 

40 0.75 0.7508 0.2257 0.0237 09.60 29 

40 0.90 0.9001 0.0963 0.0037 03.50 20 

Table6.2 Simulation Results of the TMR System 
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CHAPTER —7 

CONCLUSION AND FUTURE SCOPE 

7.1 GENERAL 
In reliability evaluation, uncertainty is due to the fact that since failure are 

relatively rare events (typically only a few per million hours of operation) collecting 

enough data on which to. base a statistical "probability of failure" is a costly and difficult 

undertaking and the relevance of the data to any particular system as well its validity is 

often questionable. Furthermore especially early in the design, the item whose probability 

of failure is needed often does not exist and it must be estimated based on "engineering 

judgment" or "experience" from "similar" items. Extrapolating these failure probabilities 

through statistical methods to calculate a system level reliability only increase the 

uncertainty. 

The analysis of system reliability often requires the use of subjective judgment, 

uncertain data and approximate system models. Fuzzy set theory provides an effective 

tool for characterizing system reliability in these circumstances. Probability theory alone 

is not sufficient to deal with the problem of subjectivity. Reliability information can best 

be expressed using fuzzy set, because it can seldom be defined crisply and the use of 

natural language expressions about reliability offers a powerful approach to bundle tlE 

uncertainties more effectively. 

7.2 FUZZY FAULT TREE ANALYSIS 
Fault tree analysis (FTA) is a logical and diagrammatic method to evaluate the 

probability of an accident resulting from sequences and combinations of fault and failure 

events. Thus a fault tree is useful for understanding logically the mode of occurrence of 

an accident. In conventional fault tree analysis, the failure probabilities of system 

components are treated as exact values. For many systems, however it is often difficult to 

evaluate the failure probabilities of components from past occurrence, because the 

environment of the system is changes. Fuzzy fault tree provides a powerful and 

computationally efficient technique for developing fuzzy probability based on 

independent events. The probability of any event that can be described in terms of 



sequence of independent unions, intersections and complements may be calculated by 

fuzzy fault tree. The application of fuzzy fault tree is further demonstrated by using the 

application to robot fault tolerance. In this work, we discussed the existing fault tree 

methods of dealing with the fuzzy data that is common in reliability situations, and 

expanded them into the Markov domain. The new method of fuzzy Markov modeling 

showed much promise for increasing the flexibility of fuzzy reliability analysis, just as 

crisp Markov expands the possibilities of crisp analysis. 

7.3 FUZZY EVENT TREE ANALYSIS 

Event trees are useful for system reliability analysis and risk quantification since 

they illustrate the logic of combination of probabilities and consequences of probabilities 

and consequences of event sequences. The application of fuzzy event trees is further 

demonstrated by using set of event trees for an electric power system protection system to 

assess the viability of the method in computing the risk associated with a failure in an 

electric power system. The "risk" associated with a failure increases as either the severity 

of the effect of the failure or the failure probability increases. Fuzzy event tree provides a 

more flexible and meaningful way of assessing risk. 

7.4 MARKOV MODEL 

The Markov model is a method of determining system behaviors by using 

information about certain probabilities of event within the system. Markov Models treat a 

system as a series of states with specific, constant rate transition between them. At all the 

time s, the system is in exactly one state. The only information available is the current 

state, the allowed transition, and the probability of this transition. Such a system is 

referred to as memoryless, and is said to possess the Markov property. As an illustration, 

fuzzy Markov modeling of a power generator with a derated state has been developed in 

this present work. 

7.5 NEURAL NETWORK ANALYSIS 

Reliability analysis based on neural networks, is introduced in this work. The 

reliability analysis of a simple non-redundant digital system, Simplex system, with repair 

is used to illustrate the neural network approach. The discrete time Markov model of 
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simplex systems and the TMR system is realized using feed-forward recursive neural 

network. The . main interesting feature of the introduced method is the utilization of the 

collective computational abilities of neural networks in the analysis in the various aspects 

of the reliability analysis. 

7.6 FUTURE SCOPE 

Reliability information can best be expressed using fuzzy sets, because it can 

seldom be defined crisply, and the use of natural language expressions about reliability 

offer a powerful approach to handle the uncertainties more effecively 

Future work in the area of fuzzy Markov modeling is like to focus on four 

areas. The first and most obvious of these is reduction of computational complexity of the 

model. Similarly, further method of simplification of the model should be considered. 

Additionally, Markov modeling is a very broad area, and expanding this technique to 

some of the modified Markov model show promise. Finally, application of this technique 

to other systems is an interesting research issue. 	. 

Future work in the area of neural network work may include the repair rate 

and coverage factors in the reliability analysis of TMR system. 
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