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ABSTRACT

The aim of vthe thesis is to develop an efficient dynamic control such as point to point
and continuous path control strategy for Robot manipulator using Artificial neural
network (ANN) and Adaptive Neuro fuzzy inference system (ANFIS),owing to the
advantage of their learning ability & unique characteristics, which enables to control
Robot manipulators | .

In this work, a robot controller based on neural network is presented. This controller
‘has been applied to a single link robot arm and three link SCARA (Selective.
Compliance Assembly Robot Arm) which has a highly nonlinear structure. The model
~ based approaches for robot control (such as the computed torque technique) require
high cbmputational tiine and can result in a poor control performance, if the specific
model-structure selected does not properly reflect all the dynafnics. In addition,
conventioﬁal-PD controller could not cope up with unmodeled dynamics. Moreover,
Fuzzy logic can be used to map complex nonlinear relations by a set of IF-THEN
rules. The membership functions are designed by intuitive human reasoning. This
poses three problems. One, for different control application a new set of membership
functions have to developed and second, latent stability problem and third, once these
membership functions are developed and implemented there is no means of changing
them. This means fuzzy logxc lacks a leammg function. Neural networks on the other
hand self-organize the mappmg relationship by learning. A dynamic model has been
assumed here where a controller is associated with each joint and separate RBF
(Radial Base Function) neural networks are used as assistants to the PD controllers in
order to minimize tracking errors. All above features naturally allow one to consider
investigating the feasibility of neural networks.

The proposed ANFIS methodology combines artificial neural networks with fuzzy
logic. The fuzzy sets are used to formalize the level of human perception of the
physical system. The neural networks, on the other hand, perform all the necessary
computations and with regard to their learning capabilities, they enable an adaptation

of the existing controller through its learning to the changes in the system behavior. In



this work, the ANFIS (Adaptive Neuro-Fuzzy inference system) for the dynamic
control (point-to-point as well as continuous path control) of the three-link SCARA
manipulator is designed. This new method for control combines ti.~ advantages of
neural networks (leérning and adaptability) with the advantages of fuzzy logic (use of
expert knowledge) to achieve the goal of robust control of robot dynamic systems.
Simulation results show very good tracking performance. |

In addition, a visual display of three-link SCARA manipi:lator is made by using C++.
Further, in this work a practical approach to implement the Neuro.-Fuzzy technique

has been discussed for future extension.
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CHAPTER-1

1.1 INTRODUCTION

The very precise control of robot manipulator to track the desired trajectory is a very tedious
job and almost unachievable to certain limit with the help of adaptive controllers. Tﬁis task is
achievable to certain limit with the help of adaptive controller but these also have their own
limitation of assuming that the system parameters being controlled change relatively slow.
With’ reference to the tasks assigned' to an‘ industrial robot, one important issue is to
determine the motion of the joints and the end effectors of the robot. Therefore, the purpose
of the robot arm control, as Fu et al [1]. wrote in one of the classical works on robotics, is to
maintain the dynamic response of the manipulator in accordance with some prespecified
performance criterion. |

Among the early robots of the first generation, non-servo control techniques, such as bang-
bang control and sequence control, were used. These robots move from one position to
another uhder the control or limit switches, relays, or mechanical stops [19].

During the 1970s, a great deal of work was focused on including such internal state sensors
as encoders, potentiometers, tachogenerators, etc., into the robot controller to facilitate
manipulative operation [2, 3]. Since then, feedback control techniques have been applied for
servoing robot manipulators. | |

Up till now, the majority of practical approaches to the industrial robot arm controller design
use traditional techniques, such as PD or PID controllers, by treating each joint of the
manipulator as a simple linear servomechanism. In designing these kinds of controllers, the
non-linear, coupled and time-varying dynamics of the mechanical part of the robot
manipulator system are corhpletely ignored, or are dealt with as disturbances. These methods
generally give satisfactory performance when the robot operates at a low speed. However,
when the links are moving simultanedusly and at a high speed, the non-linear coupling
effects and the interaction forces between the manipulator links may degrade the
performance of the overall system and increase the tracking errors. The disturbances and

uncertainties in a task cycle may also reduce the tracking quality of robot manipulators.



Thus, these methods are only suitable for relatively slow manipulator motion and for limited-
precision tasks [4]. |

~ The Computed Torque Control (CTC) is commonly used in the research community. The
CTC control law has the ability to make the error asymptotically stable if the dynamics of the
robot are exactly known [5] However, manipulators are subject to structured and/or
unstructured uncertainty. Structured uncertainly is defined as the case of a correct dynamic
model but with parameter uncertainty doe to tolerance variances in the manipulator link
properties, unknown loads, inaccuracies in the torque constants of the actuators, and others.
Unstructured uncertainty describes the case of unmodeled dynamics, which result from the
presence of high-frequency modes in the manipulator, neglected time-delays and non-linear
friction. It has been widely recognized that the tracking performance of the CTC method in
high-speed operations is severely affected by the structured and unstructured unc_ertainﬁes.
To cope with the problem, some adaptive approaches have been proposed to maintain the
tracking performance of the robotic manipulator in the presence of structured uncertainty [6].
Some other researchers have also tried to incorporate the neural network into the controller
design and good results were reported [7, 8], The Fuzzy logic can also be used to map
complex nonlinear relations by a set of IF-THEN rules. The membership functions are
designed by intuitive human reasoning. This poses three problems. One, for different control
application a new set of membership functions have to developed and second, latent stability
problem[21] and third, once these membership functions are developed and implemented
there is no means of changing them. This means fuzzy logic lacks a learning function. An An
ANFIS model [11] is an adaptive neural network which represents a particular type of fuzzy
inference system. Three types of fuzzy inference systems can be represented by an ANFIS
model.

1.Type 1: A fuzzy inference system whose overall output is the weighted average of each
rule’s crisp output. The output membership functions are monotonic functions.

2. Type2: A mamdani fuzzy inference system where the centroid defuzzification operator is
replaced by a discrete version which calculates the approximate centroid of area.

3.A Sugend-type fuzzy inference system whose output is a linear combination of the input

variables plus a constant term.



[n this thests, another control strategy, namely, the Neuro Control & a special case of type 3
Neuro Fuzzy (Adaptive Neuro Fuzzy Inference System., i.e; ANFIS) control, which had been
used in industrial process control previously, is proposed for robot control. The consequent
output member of each rule is a constant. The output of the system ivs a weighted average of -
‘these constants. It can be represented by the network shown in fig 12. v
It has been demonstrated that Independent joint control is used for the projection and
execution of the trajectory tracking, where PIDs and neural networks are used as controllers.
The neural networks are used as assistants to the PID controllers in order to minimize
tracking errors. All above features naturally allow one to consider investigating the
feasibility of neural network& ANFIS based controller in robot control.

1.2 Robot system

The aim of the robot simulation is to develop a complete mathematical representatioh ofan
open-loop robot system by iricorporati'ng actuator effects, gear backlash and dynamic
equation with inertia, centrifugal and Coriolis, frictional and gravitational, and other
uncertainties. After having been built up, this simulation model will be ‘treate‘d as the 'real
robot'. All measurements and simulations through this thesis will be performed on this
model.

1.2.1 SINGLE LINK MANPULATOR

* Fig: 1 Scheme of single link manipulator
The single link assumed to be a thin homogenous rod of mass ml and length al.In this case
there is no velocity coupling terms due to coriolis and centrifugal force because there is only

one axis .



1.2.2 THREE LINK SCARA MANIPULATOR

A SCARA (Selective Compliance Assembly Robot Arm) industrial robot is chosen as
the prototype of the simulation model, because the dynamic characteristics of this kind of
robots have been intensively researched. It is one of the best known robots to the research
community.

The SCARA model chosen in this work has two revolute joints and one prismatic joint (in
the configuration RRP) to position the wrist. However, for a SCARA robot, the axes of all
three joints are vertical, as shown in fig 2 the first revolute joint swings the arm back and
fourth about a base axis that can be thought of as a vertical shoulder axis. The second
revolute joint swings the forearm back and fourth about a vertical elbow axis. Thus, the two
revolute joints control motion in a horizontal plane. The vertical component of the motion is

provided by the third joint, a prismatic joint which slides the wrist up and down.

Fig 2: Picture of a three link SCARA Manipulator



CHAPTER -2

INTRODUCTION TO NEURAL NETWORK CONTROLLER -

2.1 General | .

The sciencé of értiﬁcial neural networks is based on the neuron. In order to understand the
structure of artificial networks, the basic elements of the neuron should be understood.
~ Neurons are the fundamental elements in the central nervous system. The diagram below
(Fig.3) shows the components of a neuron. [S] A neuron is made up of 3 main parts -
dendrites, cell body}and axon. The dendrites receive signals coming from the neighboring
neurons. The dendrites send their signals to the body of the cell. The cell body contains the
nucleus of the neuron. If the sum of the received signals is gréater than a threshold value, the

neuron fires by sending an electrical pulse along the axon to the next neuron.

/"'/
/ Axanal grborization
\ Axon fram another cell’
\ Synapse | . |
Sendrme ' Axon

Nuclsus
Synapses
Cell hody or Soma

Fig 3: A Biological Neuron
The following model is based on the components of the biological neuron (Fig. 3). The

inputs X0-X3 represent the dendrites. Each input is multiplied by weights WO0- W3. The



output of the neuron model, Y is a function, F of the summation of the input

signals.

Fig 4: Scheme of neuron model

2.2 Advantages of ANN’s

1. The main advantage of neural networks is that it is possible to train a neural network to
perform a particular function by adjusting the values of connections (weights) between
elements. For example, if we wanted to train a neuron model to approximate a specific
function, the weights that multiply each input signal will be updated until the output from the
neuron is similar to the function.

2. Neural networks are composed of elements operating in parallel. Parallel processing

allows increased speed of calculation compared to slower sequential processing.

Inputs Output

v

Direction of signals

Fig 5: Scheme of neural network



3. Artificial neural networks (ANN) have memory. The memory m neural networks

corresponds to the weights in the neurons. Neural networks can be trained offline and then

transferred into a process where adaptive learning takes place. In our case, a neural network

controller could be trained to control three link SCARA system in the simulink environment:

After t_raining, the network weights are set. The ANN is placed in a feedback loop with the |
actual process. The network will adapt the weights to improve performance as it controls the

Robot system. |

2.3 Neural network structures' |

The most common type of single layér feed forward nefwork is the perceptron. Other types

of single layer networks are based on the pérceptr()n model. The details of the perceptron are

shown in figure 6.

Fig 6: The learning scheme of neural network.

V'Inputs to the perécpfr()n are individually weighted and then summed. The perceptron

computes the output as a function F of the sum. The activation function, F is needed to



introduce nonlinearities into the network. This makes multi-layer networks powerful in
representing nonlinear functions.
There are 3 main types of activation function -tan-sigmoid, log-sigmoid and linear. [8]

Different activation functions affect the performance of an ANN.

Ay Ay

[ ———

] :- = I V————:‘ //
R __/! y | | L/ {

i}

Log-sigmoid function Tan-sigmoid function Linear function

Fig 7: various activation function scheme of neural network.

The output from the perceptron is

y(k)= f(w T [k)x]k)) M
The weights are dynamically updated using the back propagation algorithm. The difference
“between the target output and the actual output (error) is calculated.

e(k) = T(k]-y[K] @)
The errors are back propagated through the layers and the weight changes are made. The
formula for adjusting the weights 1s |

wlk +1]= w[K]+u.e[k].x[k] 3)
Once the weights are adjusted, the feed-forward process is repeated. The weights are adapted
until the error between the target and actual output is low. The approximation of the function
improves as the error decreases. Single-layer feed forward networks are useful when the data
to be trained is linearly separable. If the data we are trying to model is not linearly separable
or the function has complex mappings, the simple perceptron will have trouble trying to
model the function adequately.

A key property of artificial neural networks is their ability to generate input-output maps
which under mild assumptions can approximate any function to any degree of accuracy. This
property has been exploited by a number of researchers to propose controllers and control

strategies for a variety of applications [I, 7-9, 17] several types of artificial neural networks



can be found in the literature. Some of them can be applied to a wide variety of problems,
while others are targeted for special applications. This work considers the type of networks

known as radial basis functions (RBF) neural networks.

2.4 Radial basis functions neural network controller

Radial basis functions neural networks belong to the class of multilayer feed forward

neural networks. They are characteriied by a hidden layer made up of a collection of

locally tune'd processing units. These units can be seen as independent kernel nodes which
compute the distance between their correéponding centroid and the input they receive from
the input units. The output of these kernel nodes is characterized by a nonlinear, radially
- symmetric activation function of that distance. Normally, the closer an input is to the center
of the receptive field of one of these units, the stronger the response of the unit. The output
layer is composéd of linear units which are fully connected to the 'unifs in the hidden layer. In
other words, each output unit performs a weighted sum of the responses it receives from each

hidden unit. RBF neural networks are modeled by the followmg relatlon

Y= zwg ({lx c. (4)

In this equation, gj corresponds to the jth hidden unit o ;s the weight associated .With the
~j"unit, x represents the input vector and ¢ ;1s the receptive-field center of the jth‘uni,t.

Broomhéad and Lowe [3] who used them in the prediction of chaotié time series first brought |
radial bé_sis functions into the neural networks literature. Their work was influenced by
previous theoretical developrhents on multivariable Interpolaﬁon reported by Powell [2] and
- Micchelli [34]. Since then, many other researchers have studied the learning ability and

representatlonal capac1ty of RBF neural networks e.g. see [2, 16]



Desired

Response "

B PD

¥,

S

—>] Neural ...Ngtwork

Output

ROBOT D>
Manipulator

controller

Fig 8: The control system design for Robot Manipulator with ANN.

It cah be shown that the dynamic equations describing the behavior of robotic manipulators
(controlled object) can be written in the following matrix form:

j=M"(q)/-M""(q)Clg.9)~M~-' ()G (5)
where f (t) is the vector of generalized (non-conservative) forces, q (t) the vector of
generalized coordinates, M (q (t)) the inertia matrix, C (q (t), q (t)) the Coriolis and
centrifugal force vector, and G (q (1)) the vector of potential energy terms representing the
contributions to the generalized forces from the conservative forces acting on the system.
Formally speaking, Eq. (2) represents the inverse dynamics of the arm: it is a mapping from
link variables to input variables. The direct dynamics can easily be obtained from Eq. (2)

considering that matrix M is always invertible. Therefore,

§=M(@f -M7(9)C(q.9)-M-'(@)G

q=[D)(4,4,9) (6)
Eq. (4) represents the direct dynamics of the arm. [D] Represents a nonlinear transformation

or a mapping from input variables to link variables. From this point of f =[D}"(¢.4.4) view,

10



the inverse dynamics can be represented by the following relation:

To emphasize this, note that [D]”' denotes an inverse mapping, i.e. an inverse transformation
of the direct dynamics. In this sense, (D] represents a nonlinear function (transformation)

from link variables to the input variables. For convenience, Let us make use of the following

state-variable notation: v

q=axy=qu=f R | ()
Then, u can be expressed in the following way
u= M(Xl )X2 +C(X1,X2)+‘G

u=D1 (e xp%p) | - ®)
Where x., denotes the response of the system under the influence of thc input u
- 2.5 Controller design

Let denote the desired response of the system, i.e. the desired acceleration. Thus a control

si gnal can be formed by using the arm's inverse dynamics.

=[DI (x) g1 5q)

Then, equating Eqgs. (7) and (10), it follows that , -
MKy -%,1=0 - | (0
This leads to the following equality: | | )

Xy =Koy ~ ' an

Hence, the response of the system satisfies the desired performance. The important aspect to
highlight here is that this error equation is a satisfied only if the inverse dynamics of the
system are known precisely. In this thesis, we propose the use of RBF neural networks to

| approximate the inverse mappmg [D]‘ as closely as possxble From what has been said so

far, let us Use the following control law: .
u=D70,q.4y) +Kve+Kpe | | N ()

Where [D]'is the neural network approximatioh of the actual inverse dynamics of

11



the system. The last two terms on the right-hand side represent a servo feedback which is

introduced to stabilize the system. X, and K, are constant gain matrices and =X, , ~X,

represents the tfacking error. Now, making use of Egs. (13) and (15), it can be shown that
kyé; +kpe; =d7(a,4,44) | (13)

Eq.(14) characterizes a linear decoupled system driven by the nonlinear vector

Function [I~)]’"1 (9,9,9 d).This function represents the error in the neural network

approximation of the manipulator's inverse dynamics. It makes intuitive sense that instead of
using one network to approximate the inverse dynamics of the whole arm, one ought to use a
separate network for each joint of the manipulator. With this in mind and by using Eq.(14),

the error equation for the ith joint of the manipulator is expressed as follows:
ke, +kpe, =d1(q.4.4,4) | (14)
In this last equation, K, and K, are constant gains and 5;1(.) the local approximation

error of the RBF neural network assigned to the ;” joint. Now, letting

kvé+kpe=8i, o (15)
Eq. (15) can be written as follows:

e. =d71(q,4.4,) | _ (16)
Noting thate; =¢.(t), one concludes that €;(t) constitutes a measure of the tracking error
that reflects the mismatch between the actual inverse dynamics of the system and its local

neural network approximation. The question that remains to be answered at this point is how

to update, or adjust, the network parameters on-line, so that the error measure () converges
to &, (t) ast— . A gradient descent approach comes immediately to mind. To do that, let

us define the following cost function:

1.2

J must be minimized over the parameter space of the network. In doing so, let us

derive the update law.

12
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Recalling that the output of the network is given by Eq. (1), the update law takes on

the following form: ‘ |
©;=-0e;g;() - o ’} (19)
Inithis update law, a > 0 is the adaptation or learning parameter. The subscript j denotes the
jth weight of the RBF network. Therefore, the network's weights are updated according to a
simple first-order differential equation involving the param- eter a, the current value obtained |
from a servo feedback loop, and the-local response of the correspondmg radial umt Itis
' important to pomt out that the above development depends on the underlymg assumption that
~ RBF networks are capable of approx_rmatlng the inverse dynamics of the contro]led system. 1t
is known that RBF networks are capable of approximating any reasonable function.
However, as it will be made evident shortly, that the fact by itself is not sufficient for'
stability.. Stability.imposes the additional requirement that the error in the approximation of
the inverse dynamics has to remain bounded. Satisfying this requirement with carefully
d_esigned_netWorks constitutes a nontrivia] problem which still needs ﬁthher'research. A
particularly Good exam'ple of research on thisls'ubject is the work by Sanner [47] who makes
use of principles from sampling theory and Fourier analysis to develop networks that, under |
mild asSurnptions, are capable of uniformly approximating smooth functions on specified
“compact sets. Not surprisingly,‘it'tums‘ out that the condition on the bounded ness of the
approximation error can be satisfied by carefully choosing the RBF network parameters, SO
as to guarantee a desired umform approximation in a target set. This translates into selectmg
an appropriate variance, when the units in the networks are Gauss1an umts and precrsely
placmg the network units in the region of interest. For the purposes of this thesis, it will be
assumed that the RBF networks in the proposed control system have been designed so as to

guarantee that the error in the approx1matron of the i inverse dynamrcs remains bounded.

13



2.6 Stability analysis

Consider the following proposition:

Proposition. Given that the error in the approximation of the inverse dynamics is bounded,
all states of the system will also remain bounded.

Proof. Realizing that eq (14) represents an asymptotically stable linear system driven by the

nonlinearity[D]"l, the above proposition can be proven using the direct method of

Lyapunov. To do that, let us use the following scalar Lyapunov function:

T

Vig)=xe'e | (20)

N} —

The system itself is represented by the expression shown below.
Kvé+Kpe=[D]"1(q,4,6) |
e+K;'K Le=K; DI (4,4,9) )
Obviously, the function of Eq. (22) is positive definite. This satisfies the first condition of the
Lyapunov theorem. To satisfy the second condition we must determine the circumstances
under which V (e) is monotonically decreasing: |

Vie)=eT ¢ |

: -Ip” = 22
Vie)=eT [Kvl[D] l)-k7k peJ (22)

V(e) must satisfy the condition that V(e)<0. Hence,

eTRIIDI (- TRTIK e <0, ~ (23)

ko' ore] 2 <] Ik

But,

i[f)]'l “ < ¢; therefore,
Jols = 24)

In this last expression,Ip represents the largest eigenvalue of lambda p. Furthermore, from

Eq. (24) and using Eq. (31) we can determine the bounds on 8. This is shown below.

14
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Where 4,, , represents the maximum eigenvalue of K_‘Jl :

(25
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CHAPTER-3

INTRODUCTION TO NEURO FUZZY CONTROLLER FOR ROBOT

3.1 Introduction -
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Fig 9: The general structure of the neuro fuzzy controller in closed loop mode.

3.2 The structure of the controllér

A general structure of the proposed controller in a closed-loop control mode is

presented in Fig. 1. When the "switches' sl ,,,,‘,,,Slll,'SII ,...,S%)I ,andS»III are n the Learning

Phase (LP) positiohs, the control loop is open and the cont‘foller,is in its leaming phase
during which it acquires and accumulates control knowledge. This knowledge is stored in an

artificial neural network which is an important part of the neuro-fuzzy structure of the
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controller. The details concerning the learning phase are presented in the following section.
After the learning process is completed, all switches can be put in the Functioning Phase (FP)
positions. The control loop is then closed and the control process is being performed.

The general procedure for the construction of the proposed controller has

three main stages: |

- 1. The choice of the controller structure in terms of its inputs and outputs, and

the definition of the so-called primary fuzzy sets for them,

2. The learning phase of the controller,

3. The assessment of the controller quality which corresponds to the functioning phase (that
1s, the decision making phase) of the controller. The controller presented in Fig. 1 has n
inputs, €01; €02; . . . ; eOn and one output u0 (of course, our approach can be easily
generalized for the case of multi-output controller). Since the controlier output (the control
signal) is usually predetermined, the choice of the controller inputs determines the controller
dynamics and, therefore, has a significant influence on the quality of thé controller. The
choice of the controller inputs is performéd by block B1 (see Fig. 1) on the basis of the plant
output signal y (present and previous values), the desired output trajectory yDOT (also
present and previous values), and sometimes on the basis of previous control actions
u'(t-AT) . Where je{l,2,...}and 4T is a sampling périod. Block B2 in Fig. 1 is a delay
unit supplying block B1 with the control signal u0 delayed By j sampling periods. The
parameters kel ; ke2 ; . . . ; ken are the scaling factors for the controller inputs; similarly ku
1s the scaling factor for the control signal u. Blocks FI and DFI of Fig. 1 repres'ent the
fuzzification interface and the defuzzification interface, respectively, and they will be
described in the following sections. In the case of a simple control system in which yDOT is
a set-point value ySP and the controller has two inputs: the control error and the change of
control error, the structure of block Bl is presented in Fig. 2. If we need an incremental
controller, then the system of Fig. 1 - instead of output u (the control. action) is characterized
by output Au (the change of the control action).In such a case, the final control action u0.t

applied to the plant is of the form (see Fig. 3).  u'(t)=u'(t-AT)+k A D),

t20,u'(t<0)=0 whereu(t-}-AT). is a previous control and kDu is a scaling factor for the
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t20,u’(t<0)=0 whereu(tj-A7). is a previous control and kDu is a scaling: factor for the
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change of control Au(f).Once the controller structure, in terms of its inputs and outputs, is

established, a collection of the primary fuzzy sets for each input and for the output of the
controller must be defined. The primary fuzzy sets (fuzzy clusters or granulas) for a given
input or output formally represents the aggregations of the masses of numerical data from the
inputs and the output. These sets establish a perception level for the ordinary neural network
which is an internal part of the proposed neuro-fuzzy scheme. All learning and inference
processes are then carried out at this level. The primary fuzzy sets enable reasoning on a

higher (semantic or linguistic) level than in the case of ordinary neural network. These
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sets can also be used as premises and consequences in the linguistic conditional rules
descr{bing the control strategy. If significant amounts of numerical data from the inputs and
the output of the controller are available, then the determining of the primary fuzzy sets can.'
be made with the use of the fuzzy clustering technique .However, in general, both the
definition of primary fuzzy sets and the choice of model structure utilize a considerable
amount of a priori knowledge and rely to significant extent on the ‘engineering feel' of the
plant to be controlled. For these reasons, this stage of controller design is difficult to be .
formalized. The second stage of the ‘controller design is the learning of the neuro-
fuzzystructure of the controller. The aim of this stage is to incorporate into the neuro-fuzzy
'system all available knowledge concerning the control strategy of a given plant the
qualitative, linguistic, usually rule-based knowledge as well as the quantitative, numerical,

nonfuzzy data and relations between them.

3.3 The learning phase of the controller
Constder a general case of the controller of Fig.' 1 with n normalized (that is, After applying

| the scaling factors) inputs €(,€9,-:8p (ei eE i,i=1,2, ......... ,n). And one normalized output.
u(ue U) Ei and U are the universes of discourse for fuzzy sets. For inpute, (i=12,...,n),,a

- collection A A-2 A- : (E )of ai primary fuzzy sets is defined. F(Ei ) denotes a

family of all fuzzy sets defined on Ei. For output u, a collection BI’BZ’ »By eF(U) of b

primary fuzzy sets is determined. During the learning phase when the switches |

%,,,,,,,SI SH, ,SH,andSmof Fig. 1 are in the LP posmons and the control loop is open,

the neuro-fuzzy structure of the controller acquires and accumulates the control knowledge.

A part of this knowledge (provided by a human expert) is usually formulated as a set of

o lmgulsnc condmonal rules of the type:

(26)
THEN(ust.(k.)) |
(ALSO..)k=12,......K,
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where Ai(k) i=12,..,n and B%) are the linguistic descriptions (like negative big, positive
small, close to zero and so on) of the controller inputs el;e2; . . . ; en and output u for the kth
control rule. The symbols Ai(k) ,B(k). Also denote here fuzzy sets, which formally represent

these descripti/ons, that is, Agk) eF(E,),i=12,.....,n and B(k) € F(U) another part of the

control knowledge, in a general case, has the form of the sets of the controller input/output
measurements

(efp),egp),........,egp),u(P) ),p=1,2......, P, (27)

sample. In order to underline the cause-effect relationship, data (3) can also be presented in a

rule-like form:

{.....ALSO)

IF(elisegp) )AND(ezise(zp)JAND ........... AND(eniseg’)]

THEN(uisu®)

(..ALSO)p=12,.....,P. | (28)
(......ALSO)

\ ~(p) 1= 71
Fuzzy sets & eF(EiJ, i=1,2,...n, 1eF{U)
which formally represent the measurements e.p. i ; u.p., have the form of fuzzy singletons,

that 1s,

U () (e ; )= {lfore ;= ef JOfore; # ef} (29)

where u =) \ei) denotes a2 membership function of the fuzzy set Elp (analogously, the fuzzy
! |

singleton is defined foru®) _ In this way, both the control knowledge (2) and the numerical
control data (3) or (4), have a unified form of a fuzzy-set based representation.

In further considerations, for simplicity, we assume that description (2) + with index k
ranging from 1 to K+P -covers both knowledge (2) and data (4). As mentioned earlier, the
collections of the primary fuzzy sets for the inputs and for the output, establish the perception

level for the ordinary neural network which is an internal part of the proposed neuro-fuzzy
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controller. This implies that both the fuzzy and nonfuzzy (measurements) data which are to
be processed by the neuro-fuzzy system, first must be “transferred' to the perception level
determined by the primafy fuzzy sets for the inputs (see INPUT BLOCKS I in Fig. 1) and the
output (see INPUT BLOCK II in Fig. 1). The representations of these transferred data are
called activation degrees (ADs -for short) of the primary fuzzy sets for particular inputs.

These ADs are then processed by the neural network, which generates at its output the Ads
O s ug() of the primary fuzzy sets for the output -see Fig. 1. During the learning

phase of the controller design, these output ADs are compared with corresponding so-called

desired activation degrees (DADs + for short) dgk), ....... ,dg() which are determined for the

oﬁtput portion of the leaming data. The errors between the DADs dgk) and the Ads

ugk), j=12,......,m, are then processed by the learning algorithm (see Fig. 1) which adjusts |

the weights of the neural network in such a way as to reduce the errors to an acceptable level.
- As for the classical neural network of Fig. 1, we use a multilayer perceptron [17] because of
its universal approximation properties [3, 4, 10, 11]. As far as these properties are concerned,
the existing literature regarding the number of neurons in hidden layer(s) of the perceptron is,

unfortunately, of limited practical usefulness, since it does not give practical indication as to
the sufficient number of néurons in the hidden layer for a given problem. Therefore, usually-
the learning process is being conducted independently for several different numbers of nodes
in the hidden layer in order to select the best solution. The back-propagation learning .
algorithm [17] is uséd as a learning technique for this network. All available learning data are
processed' repeatedly by the learning. algdrithm until the cost function is reduced to an

acceptable value. The overall cost function Q which is being minimized during the learning

process is a mean square error between DADs and ADs for outputs, that is

1 J® d(k)} | 30
Q= (K+P)b kz_h;l( J ‘ R : 00
It remains yet to determine how to calculate the ADs and DADs. Consider .the (;ontroller

input ei with the collection of ai primary fuzzy sets A i € F{E iJ’ j=1,2,...,a i and assume that
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the fuzzy setA; e F(E,). is to be represented in terms of these primary sets. The ADs ofAij

induced by A; can be calculated as the possibility measures H(A} /Aij) of A'i with respect
to Ay:
[Tlaifas)= suptminku . (e o (el (31)

i Y

In a particular case of a nonfuzzy numerical data elp €E,, the fuzzy set A; is reduced to a

fuzzy singleton (cf. (5)) 'é'l.o , and then expression (7) has the form:

[T (e /ag)=ma, e2) (32)
The DADs are calculated in an analogous way. These definitions of ADs and

DADs have been incorporated into the structure of Fig. 1.

4. The functioning phase of the controller after the learning phase of the neural network is

successfully completed, the switchevsSI,,,,,,,S%l_,SH,...,SH,andSIII of Fig. 1 can be “shifted'

to the FP position, and then the control process starts. However, some additional problems
concerning the output part of the controller remain to be solved. The output Ads b/ 1=1;2;.
.. b; form a controller response expressed in terms of the perception' level determined by the
output primary fuzzy sets. This response must be “retranslated' to the level of the output u of
the controller. In other words, this response must be expressed in the form of a fuzzy set, say
B (in Fig. 1, we call it a control fuzzy set), from the family F .U.. The fuzzy set B - according

to our proposition - can be created as follows:
pplu)= max{min[,uB1 (u),u1 }, min[,uBb(ul vy ]} (33)
The set B is a sum (max-operator) of particular primary fuzzy sets for the controller output u

modified (min-operators) by corresponding activation degreesrl". This way of determining B
was chosen because it is compatible to the way of performing the “translation' in the opposite
direction; that is, from the input-output level of the controller to the perception level
determined by the primary fuzzy sets. The solution (9) is also similar to the way the output

fhziy'set 1s generated by the compositional rule of inference [18]. Since the controller
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operates in a closed-loop control mode, it has to generate a nonfuzzy control signal u. For
this reason, a defuzzification procedure (a defuzzification interface DFI, see Fig. 1) must be
applied to the set B. In the existing literature, several defuzzification methods have been
reported, e.g. a method which selects the nonfuzzy output, the membership.funétion value of
which corresponds to the maximum or a more effective a centre-of-area method which takes
into account the entire shape of the membership function of B ([13] presents the details). -

Blocks FI of Fig. 1 represent the fuzzification interfaces. Each of them for a given nonfuzzy

input el.o €E, generates its fuzzy-set representation in the form of a fuzzy singleton in an

analogous way as in formula (5). Before the control process starts, we can also assess how
the obtained controller (including its output part which has not participated in the learning
phase) fits the control knowledge (2) and data (3). In the case of the nonfuzzy data (3), we
can apply the following quality index: |
5 :
Q=3 & [uP-u0) (4
P ooy o

where u(P as defined ‘in Section 3 (formula (3)) the pth sample of the output portion of

control measurements (p=1,2; .. .; P) and ul is the controller response-corresponding to .

In the case of the fuzzy knowledge (2), the criterion of the good-mapping property [6] can be
- applied. The functioning phase of the neuro-fuzzy cpntro]lér in the closed-loop control mode
directly corresponds to the phase of testing of neural-network baéed systems. Testing is being
peffonned with the use of the data that have not been utilized at the learning of the neuro-
fuzzy system and, therefore, it enables to assess the generalizing propertiés of the neuro-
fuzzy system obtained. The above controller design can be éccomplished by using ANFIS
Toolbox.

3.4 Adaptive Neuro Fuzzy Inference System (ANFIS)

34.1 Introductldn :
The acronym ANFIS derives its name from adaptive neuro- fuzzy znference system. Usmg a

given input/output data set, the toolbox function anfis constructs a fuzzy inference system

(FIS) whose membership function parameters are tuned (adjusted) using either a back
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propagation algorithm alone, or in combination with a least squares type of method. This

allows our fuzzy systems to learn from the data they are modeling.

ANFIS (Adaptive Neuro Fuzzy Inference System) is an architecture,
Whlch is functionally equivalent to a Sugeno type fuzzy rule base (Jang [10], Sun &
Mizutani, 1997; Jang & Sun, 1995). Under certain minor constraints the ANFIS architecture
is also equivalent to a radial basis function network. Loosely speaking ANFIS is a method
for tuning an existing rule base with a learning algorithm based on a collection of training

data. This allows the rule base to adapt. The network in Figure. 8 may be extended by

assigning a linear function to the output weight of each neuron, Wi =a£u+bk, k=1,

2, ,K wherea, eR™ is a parameter vector and en is a scalar parameter. The network is
then equivalent to a first order Sugeno type fuzzy rule base (Takagi and Sugeno, 1985). The
requirements for the radial basis function network to be equivalent to a fuzzy rule base is
summarised in the following (Jang et al., 1997)

1. Both must use the same aggregation method (weighted average or weighted sum) to
derive their overall outputs.

2. The number of activation functions must be equal to the number of fuzzy if-then rules.

3. When there are several inputs in the rule base, each activation function must be equal to a
composite input membership function. One way to achieve this is to employ Gaussian
membership functions with the same variance in the rule base, and apply product for the
DQG operation. The multiplication of the Gaussian membership functions becomes a multi-
dimensional Gaussian radial basis function. |

4. Corresponding activation functions and fuzzy rules should have the same functions on the
output side of the neurons and rules respectively.

If the training data are contained in a small region of the input space, the centers of the
neurons in the hidden layer can be concentrated within the region and sparsely cover the
remaining area. Thus, only a local model will be formed and if the test data lie outside the

region, the performance of the network will be poor. On the other hand, if one distributes the
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basis function centres evenly throughout the input space, the number of neurons depends
exponentially on the dimension of the input space.

3.4.2 ANFIS architecture and learning algorithm
Without loss of generality we assume two inputs, u,and u,and one output, y. Assume for

now a first order Sugeno type of rule base with the following two rules
Ifujis A, andu,isB, then y1=cl'1u1 +Cpplly +C1g
l-fulisAzanduzisB2 then y2;021u1+c22u2+020 |
Incidentally, this fuzzy controller could interpolate between two linear controllers depending

on the current state. If the firing strengths of the rules are @, and «, respectively, for two
particular values'o'f the inputsu, and u, then the output is computed as a weighted average

_AN Yy
aprey

=0y tayY)

Layer 1 -2 3 -4 5
- Fig 12: The layer structure of the ANFIS network.

The corresponding ANFIS network is shoWn in Figure.12. A description of the layers in the

network follows.
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1. Each neuron i in layer 1 is adaptive with a parametric activation function. Its output is
the grade of membership to which the given input satisfies the membership function,

1e. ,. An example of a membership function is the generalised bell function

I —— (35)

1+|qu"
a

where {a,b,c}is the parameter set. As the values of the parameters change, the shape

of the bell-shaped function varies. Parameters in that layer are called premise parameter

2. Every node in layer 2 is a fixed node, whose output is the product of all incoming
signals. In general, any other fuzzy AND operation can be used. Each node output represents

the firing strength «, of the i th rule.

3 Every node in layer 3 is a fixed node which calculates the ratio of the Ith rule’s firing
strength relative to the

sum of all rule’s firing strengths,

_a. .
@ =—1 =12 (36)
a.+a,

The result is a normalized firing strength

4, Every node in layer 4 is an adaptive node with a node output

oy, =a [c”u1 +Cinly +ci01 i=l, 2 .Wherea; 1s the normalized firing strength from layer
3 and icil’ciZ’ci 0} is the parameter set of this node. Parameters in this layer are called

consequent parameters. 5. Every node in layer 5 is a fixed node, which sums all incoming
signals. It is straightforward to generalise the ANFIS architecture in figure.12 to a rule
base with more than two rules.

3.4.3 The ANFIS learning algorithm
When the premise parameters are fixed, the overall output is a linear combination of the

consequent parameters. In symbols, the output y can be written as
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a a9

Y= 1+a2 y1+a +a2 y2

y= "1“11“1*"(12 2 ¥010)+ay(Cy Uy +E95uy +Cog) 37
y=(aup)ep) +au 2)°12+°‘1 1o+("‘2 2)°21 (a2“2)°22+"‘2 €20

which is linear in the consequent parameters cij (i =1, 2 .j=0,1,2..) hybrid algorifhm

adjusts the consequent parametersc;; in a forward pass and the premise parameters @, ,b.,c i}

in a backward pass (Jang. et al., 1997)[10]. In the forward, pass the network inputs propagate
forward until layer 4, where the consequent parameters are identified by the least-squares
method. In the backward pass, the error signals propagate backwards and the premise
‘parameters are updated by gradient descent. Because the update rules for the premise and

consequent, parameters are decoupled in
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Flgure 13: the membershlp functxons before learnmg

Figm:e 14: the membershib functions aft.er learning.

the hybrid learning rule, a computational speedup may be possible by using variants of the
gradient method or other optimisation techniques on. the premise parameters. Since ANFIS

and radial basis function networks (RBFNs) are functionally equiyalent, a variety of learning

27



methods can be used for both of them [19]. Figure 13 and 14 shows the membership function

of the input before training and after training.

3.5 FIS Structure and Parameter Adjustment

A network-type structure similar to that of a neural network, which maps inputs through
- input membership functions and associated parametérs, and then through output membership
functions and associated parameters to outputs, can be used to interpret the input/output map.
The parameters associated with the membership functions will change through the learning
process. The computation of these parameters (or their adjustment) is facilitated by a gradient
vector, which provides a measure of how well the fuzzy inference system is modeling the
input/output data for a given set of parameters. Once the gradient vector is obtained, any of
several optimization routines could be applied in order to adjust the parameters so as to
reduce some error measure (usually defined by the sum of the squared difference between
actual and desired outputs). Anfis uses either back propagation or a combination of least

squares estimation and back propagation for membership function parameter estimation.

3.6 Validation

The modeling approach used by anfis is similar to many system identification techniques.
First, we hypothesize a parameterized model structure (relating inputs to membership
functions to rules to outputs to membership functions, and so on). Next, we collect
input/output data in a form that will be usable by anfis for training. We can then use anfis to
train the FIS model to emulate the training data presented to it by modifying the membership
function parameters according to a chosen error criterion. In general, this typé of modeling
works well if the training data presented to anfis for training (estimating) membership
funétion parameters is fully representative of the features of the data that the trained FIS is
intended to model. This is not always the case, however. In some casés, data is collected
using noisy measurements, and the training data cannot be representative of all the features

of the data that will be presented to the model. This is where model validation comes into

play.

28



3.7 Model Validation Using Checking and Testing Data Sets

Model validation is the process by which the input vectors from input/output data sets on
which the FIS was not trained, are presented to the tréined FIS model, to see how well_the
FIS model predicts the corresponding data set output values. This is accomplished with the -
ANFIS Editor GUI using the so-called testing data set, and its use is described in a
subsection that follows. We can also use another type of data set for model validation in
anfis. This other type of validation‘data set is referred to as the checking data set and this set
is used to cortrol the potential for the mddei over fitting the data. When checking data is
presented to anfis as well as training data, the FIS model is selected to have parameters
associated with _the minimum checking data model error.

One problem with model validation for models constructed using adaptive techniques is
selecting a data set that is both representative of the data the trained model is intended to
emulate; yet sufficiently distinct from the training data set so as not to render the validation
process trivial. If we have collected a large amount of data, hopefully this data contains all
the nécessary representative features, so the process of selecting a data set for checking or
testiﬁg purposes is made easier. However, if we expé_ct to be presenting noisy measurements
to the model, it’s possible the training data set does not include all of the representative
features we want to model. |

The basic idea behind using a checking data set for model validation is that after a certain
point in the training, the model begins over fitting thé training data set. In principle, the
model error for the checking data set tends to decrease as the training takes place up to the
point that over fitting begins, and then the model error for th_e checking data suddenly

Increases.

3.8 Constraints of anfis

Anfis is much more complex than the fuzzy inference systems discussed so far, and is not
available for all of the fuzzy inference system options. Specifically, anfis only supports
Sugeno-type systems, and these must have the following properties:

*Be first or zeroth order Sugeno-type systems.
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*Have a single output, obtained using weighted average defuzzification. All output
membership functions must be the same type and be either linear or constant.

*Have no rule sharing. Different rules cannot share the same output membership function,
namely the number of output membership functions must be equal to the number of rules.
*Have unity weight for each rule '

An error occurs if the FIS structure does not comply with these constraints. Moreover, anfis
cannot accept all the customization options that basic fuzzy inference allows. That is, we
cannot make our own membership functions and defuzzification functions; we must use the

ones provided.

3.9 ANFIS Editor GUI
The basic structure of the type of fuzzy inference system that we’ve seen thus far is a model
that maps input characteristics to input membership functions, input membership function to
rules, rules to a set of output characteristics, output characteristics to output membership
functions, and the output membership function to a single-valued output or a decision
associated with the output. We have only considered membership functions that have been
fixed, and somewhat arbitrarily chosen. Also, we’ve only applied fuzzy inference to
modeling systems whose rule structure is essentially predetermined by the user’s
interpretation of the characteristics of the variables in the model.
In this section we discuss the use of the function anfis and the ANFIS Editor GUI in the
Fuziy Logic Toolbox. These tools apply fuzzy inference techniques to data modeling. As we
have seen from the other fuzzy inference GUIs, the shape of the membership functions
depends on parameters, and changing these parameters will change the shape of the
membership function. Instead of just looking at the data to choose the membership function
parameters, we will see how membership function parameters can be chosen automatically
using these Fuzzy Logic Toolbox applications.

Suppose we want to apply fuzzy inference to a system for which we already have a
collection of input/output data that we would like to use for modeling, model-following, or
some similar scenario. We don’t necessarily have a predetermined model structure based on

~ characteristics of variables in the system. There will be some modeling situations in which
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we can’t just look at the data and discem what the membership functions should look like.
Rather than choosing the parameters associated with a given membership function arbitrarily,
these parameters could be chosen so as to tailor the membership functions to the input/output
data in order to account for these types of variations in the data values. This is where the so-
called neuro-adaptivelearning techniques incorporated into anfis in the Fuzzy Logic Toolbox
can help. | | |

The basic idea behind these neuro-adaptive learning techniques is very simple. These
techniques provide a method for the fuzzy modeling procedure to learn information about a
data set, in order to compute the’ membership function parameters that best allow the
associated fuzzy inference system to track the given input/output data. This learning method
works similarly td that of neural networks. The Fuzzy Logic Toolbox function that

accomplishes this membership function parameter adjustment is called anfis..

Load or sove 0 ﬁsxﬁy Undlo. Dpenor editn FiS withany | [ ¥iot region.  [Status of The aumber of inpats, outputs,
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Checking data oppears on bunmallow;you to
the plotin blue os ++ open a grophical
©{FIS outpus appects on the ::;:;:“u:;':“ ofity
* lplotiniedos o+ o,
load sither training, : ' ]
testing, o1 checking Tost duta against
dota from disk or the il§ mode'l The
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tegfon. - ) Cleue Dato unloads the dots set Lood FIS or genercte FIS Teasin FIS aftes setfing optimization
selected undes Type: andclearstheolot | Hhiom boded doto using methed, etrot tolawance, vad number
region. yous chesen awmber of tAFs of spochs. This geaerates rrer plots
- |ond rules or fazy. in the plot region,

Fig 15 shows the Graphic user mterface of ANFIS. Editor.
By this GUI(graphlc user mterface)
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*Load data (training, testing, and checking) by selecting appropriate radio buttons in the
Load data portion of the GUI and then clicking Load Data... The loaded data is plotted on
the plot region.

*Generate an initial FIS model or load an initial FIS model using the options in the Generate
FIS portion of the GUI

*View the FIS model structure once an initial FIS has been generated or loaded by clicking
the Structure button -

*Choose the FIS model parameter optimization method: backpropagation or a mixture of
back propagation and least squares (hybrid method)

*Choose the number of training epochs and the training error tolerance

*Train the FIS model by clicking the Train now button This training adjusts the membership
function parameters and plots the training (and/or checking data) error plot(s) in the plot
region. _ .

+View the FIS model output versus the training, checking, or testing data output by clicking
the Test Now button

This function plots the test data against the FIS output in the plot region. We can also use the
ANFIS Editor GUI menu bar to load FIS training initializations, save the trained FIS, open a
new Sugeno system, or open any of the other GUIs to interpret the trained FIS model. In this
work the ANFIS Editor is used for designing the controller for single link manipulator and
three link SCARA manipulator.The training data(such as error, change in error(input sgnal)
“and control signal(output signal))is collected from the conventional controller model as
shown in fig 36. In this section, the tracking and adaptability features of the ANFIS control
applied to a three-link SCARA manipulator are tested using simulation. Figure. 17 and 18
show the architecture of the fuzzy system with the ANFIS approach .The ANFIS
methodology is used to estimate the parameters of the membership functions and the
consequent functions. The nine rules are used to model the fuzzy part of the ANFIS
controller as shown in Figure 18, 19 and 20 show the three membership functions for each
linguistic variable.

| The fuzzy rules generated by the ANFIS method are shown in Figure.21 .Figure.

23 and 24 show the results of applying the ANFIS methodology with the training data &
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trained results. The ANFIS structure is trained for 50 epochs and the performance (MSE) is
found to be 0.0064759. Figure.22 the fuzzy rule viewer of MATLAB, which shows the use
of the fuzzy system for calculating the output of the model for specific input values. Figure.
37 and 43. shows the response of the point to point control to a sequence of step (constant)
input signals'(we use 400 samples) .The figure.31, 39 and 41 show the simulation model of
three-link SCARA Manipulator Figufe._ the response of the three-link SCARA manipulator
for continuous path control with the sine wave tr_ajectory.

Finally, the figure.42, 45 and 47, 49,51 show the plot of the differenée between
~both the conventional PD controller and the signal by the ANFIS. The results are compared
with a classical PD controller and with an ANFIS (sugeno) controller, to measure how much
the adaptive fuzzy approach could improve the performance. Of course, the neuro-fuzzy
controller (designed with ANFIS) was better in tracking and adaptability than the other
controllers. Another advantage of this method over classical quan,tifative controllers is that it
does not require a fixed sampling time. Therefore, the proposed design confirms the fact that |
ANFIS control is relevant to the control fast of non-linear processes such as robot
manipulator controls -where quantitative methods are not always appropriate. | From the
response shown in figure 42, 45,47, ,49, ,51,52, and 53 it is very clear that ANFIS controller
gives no tracking error,i.e the response of the desired trajectory is almost superimposed with
the actual one, Thus the ANFIS controller gave the best results when compare to
conventional PD controller. | | _

In this work, the feasibility of ANFIS control for a three-link SCARA manipulator has been
proved and illustrated by sifnulation. The best parameters for the fuzzy controller were
determined by using the ANFIS methodology and by using simulations of the SCARA
manipulator dynamics. A simulation tool (ie., Fuzzy logic tooibox (ANFIS)) was used to
validate experimentally the tracking ability and the insensibility to plant parameter changes.
The ANFIS controller presented very interesting tracking features and was able to respond to |
different dynamic conditions. In addition, the fuzzy control computanon is very mexpenswe,
and this regulator could be used for the control of machine tools and robotics mampulators
[11] without significantly increasing the cost of the drive. The only: extra cost is for the

optical encoder. Another advantage of this method over classical quantitative controllers is
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that it does not require a fixed sampling time. Therefore, the proposed design confirms the
fact that fuzzy control is relevant to the fast control of non-linear processes such as SCARA
manipulator control where quantitative methods are not always appropriate. Thus, the results
obtained using the ANFIS controllers are encouraging when compared to conventional PD

controller
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Fig 16: Architecture of NEURO FUZZY (sugeno) inference system.
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Figl7: Neuro fuzzy structure of ANFIS controller
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4.2 Dynamic model of Single link Manipulator:

Fig 25:The scheme of single link manipnlator
The single lAink assumed to be a thin homdgenous rod of mass m and length LIn this case
there 1s no velocity coupling terms due to coriolis and centrifugal force because there is only
one axis B

The equation of motion for the arm is

2

¢ do

2 = - 10sing- 252 - 2 55
Where ?is the angle of the arm, and #is the torque supplied by the DC motor.
The objective is to train the controller so that the arm tracks the reference
trajectory.
- 1 1]
- s T s >CD
¥

Velotity Fosition

Friction

1 107sin(ui1)) —

Gravity

. Fig 26: Simulink Model of Single Link Manipulator.

40



RIS R O Y R R I HASE
20 BRI sy i3 2098 B W2
k94 E'I‘!thtn?t;%g P:Eﬁ
4 B ERADH M

5§ Erﬁ’lﬂhunm;;};: F:::g
B R ERROA I mix T H i o

7 5 ERAAN i} orvd) el BT bl L Eﬁwnm:&}ﬂl
& ¥ ERROR I nbr?Tae] KHURISZINERROP: 3 o H1 fei ol i os WS

|
|
|
|
|
i
i
i

EHHQR & uwwnnunun 0

Bi5 Narws. andesd

Fig 21: Representation of rule base of ANFIS Controller.

Lk | [ | | B |
4 = ] - [ |
'5 o [
”' = I a
’ e L [ |
N = 7
31|‘8 N S jj
« Dpaaet mves wedis, s ™ ™ a5e : [m

Fig 22: Rule viewer of ANFIS structure.

37



Quipud

Lasdds
T
%, trareg
€ Taeg
I Cleciing

AT DR

Load D,

tan U¥a baky!

— T

Trs

1 Piairg
aTeuny
C Chachivg,
> Dewa

Y toadDas.,

| Erpiogase

Eroch S0gra DOIRITSA

Fig 24: Training when error tolerance is chosen to be 0 and number of
epochs is limited to 50.

38



CHAPTER- 4

DYNAMICS OF ROBOT MANIPULATOR

4.1 Introduction |
Thc manipulator system is a classic control problem that is used industries around the world.
[t is a suitable process to test prototype controllers due to its high non-linearities and lack of
stability. In this chapter, the dynamical equations of the system will be derived, the model
wilf be developed in simulink and basic controllers will be developed. The aim of developing
a Robot system in simulink is that the devéloped model will have the same characteristics as -
~ the actual process. It will be possible to test each of the prototype controllers in the simulink
environment. Before thé robot model can be developed in simulink, the system dynamical
| equations will be derived using ‘Lagrange Equatidns’. ‘[1] The Lagfahge equations are one of
many methods of determining the system equations. Using this method, it is possible to
derive dynamical éystem equations for a complicated mechanical system such as the Robot
manipulator. Thé Lagrange equations use the kinetic and potential energy in the system to
determine the dynamical eduétions of the robot system. | | )
In this work, two- kinds of robot systems are considered viz, Single link robot manipulator
and Three link SCAR_A 'manipulai‘tor._The SCARA model chosen in this Work has two
revolute joints and one prisrhatic jont (in the configuration RRP) to position the wrist.
However, for a SCARA robot, .the axes of all three joints are vertical, as shown in fig 27 the -
first r,evolufe joint swings the arm back and fourth about a base axis that can also be thought .
of as a vertical Shouldef axis. The second révolute joint swings the forearm back and fourth
about a vertical elbow axis.. Thus, the two revolute joints ‘contro'l motion in a horizontal
- plane. The vertical component of the motion is provided by the third joint, a pi‘ismatic joint

‘which slides the wrist up and down.
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4.2 Dynamic model of Single link Manipulator:

Fig 25:The scheme of single link manipulator
The single link assumed to be a thin homogenous rod of mass m and length LIn this case
there is no velocity coupling terms due to coriolis and centrifugal force because there is only

one axis

The equation of motion for the arm is

2
é—?;' = - 10sin¢)—2%?-u
ar” ;
(38)
Where ®is the angle of the arm, and #is the torque supplied by the DC motor.
The objective is to train the controller so that the arm tracks the reference
trajectory.
.‘ *'
- 1 1
T e L »(D)
\’l

Fosition

Velocity

Friction

107siniui1)) —

Gravity

. Fig 26: Simulink Model of Single Link Manipulator.

40



4.3 Dynamic model Of Three link SCARA Manipulator

N

" Joint 1

Fig 27: The arrangement of three-link SCARA manipulator in three-dimensional
co-ordinates.
4.3.1Background: Mechanical and mechatronic system often result in an impiicit second
order model description of the fype | | B
M(PI=3G4m . - . T (39)
“with a state-dependent mass matrix M, an acceleration vector ‘3 énd a generalized force
functiong._ Simulators often impose restrictions for this type of model descriptions. Ohly a
- few simulators accept the description as given above, some allow a description as an implicit
first order syst:m | ‘ |
Az = h(3,1,1)
and some require the explicit description given by

2-FED=AD RGEY T
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The symbolic derivation of the explicit form is only possible with reasonable effort for very
small systems or systems with a simple-structured mass matrix. Therefore it is common
practice to carry out the inversion of the mass matrix numerically.

Another interesting question is, whether a simulator that permits implicit descriptions
breaks the implicit loop before integrating the states or uses an implicit integration scheme to
solve the system directly. Few simulators offer so-called DAE solvers for the second method,
sometimes with restrictions with respect to ¥other features like linearization, event handling
etc. In general, advanced features like implicit description, DAE solvers, algebraic loop
solvers etc. result in higher computation times and in some computational overhead.
Therefore it has to be checked whether it is worth to use such a tool or to work
“conventionally” by setting up an explicit system description. In order to investigate this
class of problems, a model for a SCARA robot (Selective Compliance Assembly Robot Arm)

as shown on the title page of this SNE issue was chosen. Fig. 27

4.4 Mechanical system of three link SCARA (Task a)

A three-axis SCARA robot as indicated in Fig. 1 is investigated. This robot type has

two vertical revolute joints and one vertical prismatic joint. The axes of all three joints are
vertical (parallel to z-axis in fig 27). The joint vector g consists of the joint angle ¢, and ¢,
and the joint distance g, .

dg
dt | @)

_d3
T

The equations of motion of can be written in the following compact form

- T 2 o
§=(91,92,93) , § , §=

mg) g+h(q, g)q+gl@ =1
(Or)

m(q)q="b (Implicit equation) (42)
The mass matrix M is block —diagonal and can be easily inverted symbolically.

ma;;  maj, 0
M = n132) m322 O o (43)
0 0 mg33
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Several elements of M depend on the joint \?ariable q,
| may :(91 +292005(q2)+@' ,

ma, 5 = @Zcos(q2)+@3,

May | =Ma| 4, Miysy = @3 (44)

_ )
mag3=m3p +6035¢U3:

The calculation of the moments‘ of inertia ®, is based on the assumption that the two
- physical links are tods of mass m,,m, with homogeneous méss distribution along the
‘lengthL,, L, . The stator mass of the vertical drive motor is m,,, the moment of inertia of the
rotating parts is ©,,,, and the mass of the load is m,, . o
4 =[E;—l +my +"‘3JL%’92 =[‘n;—2 4"‘3]%"2’
(45)
& =[“n;l ¥ “‘3JL22"“3A+‘“3L
The right-hand side of the dynamic equation is
b=(b;,b5,b5)T, |
bl =T, +@2(2‘c'11f124’-q%}sin(q2),‘ | | | (46)
by =Ty =0,dfsin(a5)by=T; ~my 2 |
with the joint torques 7,(t), T, (¢) and the joint force T,(¢). Numerical data for the gedmemc
and mass pararheters of the SCARA robbt are given bclow: |
m, :Skg,'Ll =0.4m,g =9.81m/s,
m, =6kg,L, =0.3m,u; = 1047m™1

2

=29 - -91 10-010wm2
myp =25kgmyy =0.5kg O =91.10-Ckgm

4.5 Servo Motor and PD-Control for three link_SCARA (Task b)

The electrical relationship of the measure of a robot servo motor is given by a first
order differential equation. | |

(Uy ~kpuia; -Raily)
L

I =

1

=123 o (47)

ai
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Iai 2[‘Iimax SL Slzmx]’i=1’2,3 (48)

where U, (t) is the applied armature voltage. The resulting armature current J, is limited to

maximum value I™ that can be calculated from the maximum permitted torque 7,™*

-1
max _ rmax ‘\/5 -
/M = [—z-kﬁ.] , i=1273 (49)

The joint torque (force) 7; of a motor is proportional to the armature current /,, and given by

NE)
Ty =u;5kpd

ai’ i=123 (50)
Numerical values for the motor constant k, the gear ratiou;, the resistance R, and the
inductance L, for each motor are given below. Note that u, includes the transformation from

the rotational to the linear motion and is not dimensionless.

le = O4VS, kT2 = O.ZSVS, kt3 = 0.4VS,
R, =3.90hm, R,, =50 Ohm, R, =40 Ohm,
L, = 7.3mH, Ly =25mH, L,y =25mH,

uy =130, u, =100, uy =1047m -1

Tlmax = 2.3Nm, Tinax = 0.6Nm, Ténax = 0.6Nm

In order to control the point —to-point motion of the robot a rather primitive single —axis PD-

control is employed. For a given target joint position vector § position errors (4, —g;) can be
calculated. From the position errors and the joint velocities ¢, the control voltage’ U, is
determined by

U, =P.(§;-9,)-D,q;,i=123

. (51)
=[_{ymax maxq ;=17
U, =l U]. SU}-SUi },1=1,2,3.

Proportional gains P, and derivative gains D, are given for each controller. In regular
operation mode the armature voltage shall be limited by U, . However, in an emergency

ireg *

situation U"" may be.

fmax
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P =1000V, P, =1000V, P, =5000V,

D, =10Vs, D, =25Vs, D; =10¥s,
ur =100V, U,., =175V, U =90y,

lreg 2reg 3reg

Unmx =23OV, Um:lx =23OV, Umax =230V

| max 2nmax JImax

Task a) Mode]ling method.--There are several ways to formulate and implement the model;
depending on the simulator’s features, e.g.
i) “manual” symbolic manipulations for setting up explicit model equations,.
implementation of the explicit model description,
it) derivation of explicit equation using' software for symbolic calculatibns,
implefnentétion of the expliCit model description,
i) using Special. features of the simulator for deriving and simulating the equations
(mechatronic modules, etc.), | : |
V) Implrementation of the implicit equations, using algebraic loop breaking features
- of the simulator. .
v)  Implementation of the implicit equations, using Matlab 6.5/simulink .
The simulator’s features for this type of models should be sketched briefly by giving (parts
of) the model description of at least onc' (but preferably. _of some) of .the above given
methods. In case of alternative modeling approaches the effectiveness should be 'cdmpared,
taking into account preparation time, necessary knowle_dge for certain alternativés, etc.
Task b) Simulation.of a pbint-to-point motion, controlled by-a single axis PD control shall
be performéd. No obstacle is present for this task.

Initial valuesat t =0:

91=43=¢3=0, | G1=42 =43 =0
Target (terminal) values at  :
9 =29, =1,4; =03,

As results graphs of the joint positiohs is plotted.
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4.6 Simulink model of three link SCARA manipulator.

Postion
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Fig 28:The simulink model of three link SCARA Manipulator.

The dynamic equation of the robot is given by

m(q)q+h(q,q)g+g(q) =1

(OR)
m(q)q=b . (50)

The overall dynamic model of a three-link SCARA robot without controller and
actuator dynamics is designed by using simulink tool of MATLAB 6. as follows,
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CHAPTER 5

DYNAMIC CONTROL OF SINGLE LINK MANIPULATOR: |

5.1 Point to point control
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Fig 36: shows the simulation of single link manipulator using conventional
PD, ANN and ANFIS controller.

- The figure 34 shows the simulation arrangement of single link manipulator with three type of
controller namely, Conventional PD, Neuro control and ANFIS control. This model is developed
~ by using simulink, neural network toolbox and ANFIS (fuzzy logic Toolbox). The target value
one radian is chosen to be the desired point to reach by the manipulator from initial point zero.
All the three output of the controllers are connected to multiplexer to have a visual display of

‘three-controller output.
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5.2 Response of single link manipulator

Neuro fuzzy

. Neural
. network + PD

Fig: 37 shows the response of single link manipulator with Conventional PD,
ANN and ANFIS controller.

Simulation studies were carried out to evaluate the performance of the NN controller. They
were carried out in two parts. The first part is to evaluate the trajectory tracking capability of
the controller for single link manipulator. The second part is to compare the performance of
the controller with a conventional Proportional Derivative (PD) controller. Figure 33 shows
the simulation result of single-link manipulator with neurocontroller for a sine wave joint
angle trajectory. The solid line represents the desired input and the dotted line represents
actual output. From Figs.33 and 35 it can be seen that the difference between actual joint
angle trajectory and desired trajectory is almost zero. As'expected, the network was found to
be fully trained. Significant improvement can be observed as the broken line closely follows

the solid line from this it is concluded that the errors in the links are almost minimum
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Continuous point control .

5.3 Simulation diagram of single link manipulator
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Fig 38: Simulation of single link manipulator using Conventional PD, ANN
a-nd ANFIS Controller

. The figure 38 shows the simulation arrangement of single link manipulator with three type
of controller namely, Conventional PD, Neuro control and ANFIS control. This model is
- developed by using simulink, neural network toolbox_ and ANFIS (fuzzy logic Toolbox). A
PD controller does not use the dynamic model of the controlled robot manipulator and is
there for easy to implement, simple to compute, and also  robust against dynamic
uncertainties of the robot manipulator - the disadvantage, on the other hand , is its relatively
poor - tracking performance in comparison with controller using accurate robot dynamic
“models s;ich as computed torque controller. The sine wave of unit amplitude is chosen as
| desiréd trajectory of the manipulator from initial point zero. All the three output of the -

controllers are connected to multiplexer to have a visual display of three-controller output. -
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Hence, from the result, the Neuro fuzzy output is supérior when compare to other two
controllers.

5.4 Response of single link manipulator

i

Amplitude (radians)

. Convention.

7

Time(s)

Fig 39: Response of joint angle trajectory (sine) of single link manipulator with

conventional PD, ANN and ANFIS controller.

Hence, the response of ANFIS controller is almost very near to the desired joint angle
trajectory. This is due to the genesis of ANFIS and also the Adaptive capabilities and
learning ability of it. From the figure, it infers that the neuro-fuzzy controller response is
faster in comparison with the neuro controller; moreover, the desired trajectory is almost
coincident with the actual trajectory. Whereas the PD control could not able to follow very
exactly because of no proper method to choose the optimal value of proportional and

derivative constant.
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CHAPTER-6

DYNAMIC CONTROL OF THREE-LINK SCARA MANIPULATOR:

Point to point control |
In point to point control method, the end effector vo.f the robot moves to a sequence of discrete
point in the workspace. The path between the points is not explicitly controlled by the user.
Point to point motion is useful for operations, which are discrete in nature .for example, spot
welding, pick-and-place, loading, and unloading, is an application for which point-to-point
motion of thé tool is all that is required [18]. The Figure shown below is the simulation
model of the Three link SCARA manipulator with PD controller, this controller can perform
very well under normal condition, But in case of parameter variation and other uncertainties

it can not do well its operation and hence it detroites the over all system performance

6.1 Simulation model of three-link SCARA manipulator with conventional

controller
- ] +
| ] >
' ’ Sumt Saturation -
From1
> >{>—
From2 ‘ D

Fig 40: The internal block of PD controller of a three-link SCARA manipulator.
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Fig 41: Simulation model of a three-link SCARA Manipulator with conventional PD
Controller. |
The Figure 41 shows the simulation model of a three-link SCARA manipulator for point to
point control .This model is developed by using the dynamic equations and Simulink
package of MATLABG.The initial point is assumed to be zero and the final joint angles are 2,
1, 0.6, .Control section 1s a PD controller internally it has summer and other terminals from
the output of the dynamic model as shown in fig 40.The PD controller is tuned for achieving
the desired output, but due to lack of intelligence like Neuro-Fuzzy and ANN is could not
able to cope up with the structured uncertainties and parameter variations. The output of the
PD control goes to the servo motor control and actuates the joints of the SCARA manipulator

to follow the desired point to point, from the initial value.
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6.2 Response of Three link SCARA Manipulator
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Fig 42: Simulation results of three link SCARA Manipulator with conventional PD
Controller. With initial point (0,0,0) to target point (2, 1, 0.6).

The Figure shows the response of the point-to-point control of SCARA manipulator the link
two has some initial transient due to sudden change in inertia and momentary actuating
signals.to the joints this effect can be overcome by using neuro cohtrol or ANFIS control.
The sine trajectory is chosen for the joint 1 and joint 2 and a step of 0.6 is chosen for

prismatic joint a desired input, to evaluate the performance under dynamic condition.
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6.3 Training results of ANN

The neural network tool box provide a set of blocks we can build in simulink or which can
be used by the function gensim to generate the simulink version of any network we have
created in Matlab. Here the single layer neural network is trained (back propagation
algorithm) for 10000 epochs, with 16 hidden neurons and learning rate of 0.1 .the
performance indices (mean square error) after training is found to be 0.000111.

This index is very good for this application. Hence, the generated simulink block from this

program is used in the simulation model for evaluating the performance of the robot system.
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Fig 43: The training results of neural network.
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6.4 Simulation of Three link SCARA manipulator with Neuro controller
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Fig 44: The simulink model of neuro controller for a three link SCARA Manipulator

The figure shows the simulation model of three-link SCARA manipulator using neural
network. The trained ANN network is obtained in the form of simulink block is used as a
neuro controller for each link of the manipulator .The output of the neuro network gives the
control signal to the robot actuators and also neural network act as a nonlinear compensator
during uncertainties .The neural network is trained for the given trajectories after attaining
the desired performance index .the neural network will work as a assisting member with
conventional PD controller during uncertainties and parameter variation. The tracking
performance of this manipulator is evaluated by using its response -From the response it
concludes that the neural network follows almost closely to the desired value. Figure' 44
- shows the response of three link SCARA manipulator with Neuro control from the graph it
infers that the neural network has good t_racking perfonnénce; but the problem is to have
judicious data for training with properly chosen training parameters .Simulation result of

three-link SCARA manipulator with neurocontroller for joint angles
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6.5 Response of Three link SCARA manipulator with Neuro controller of

Point to Point control

Fig 45: The response of point-to-point control of three link SCARA Manipulator with
ANN.

The figure shows the response of the three link SCARA manipulator for point to point
control with initial values for three joint are (0,0,0) and the target value is (2,1,0.6) radians
the trained neural network try to use the recall phase(generalization and memorization
ability) and it produce a desirable control signal .this signal actuates the servomotors of the
joints .from the response it is very clear that neural network has good tracking ability ,but it
requires a judicious data and training parameter to obtain the satisfactory . The Fuzzy logic
can-also be used to map complex nonlinear relations by a set of IF-THEN mles.h The
membership functions are designed by intuitive human reasoning. This poses three problems.
One, for different control application a new set of membership functions have to developed
and second, latent stability problem[21] and third, once these membership functions are
developed and implemented there is no means of changing them. This means fuzzy logic
lacks a learning function Therefore this work is again focused on the area of neural and fuzzy

logic together to overcome the drawbacks of neural network as well as-fuzzy logic.
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6.6 Simulation of Three link SCARA manipulator with Neuro-Fuzzy

controller.
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Fig 46: Simulink Mod‘el of Neuro Fuzzy controller for three-link SCARA manipulator
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6.7 Response of Three link SCARA manipulator with Neuro-Fu;zy controller

of Point to Point control

Fig 47: The response of point to point control (2, 1, and 0.6) of three link SCARA
manipulator with Neuro Fuzzy controller.
From the graph it infers that the ANFIS control has good tracking performance, which
combines the advantage of two methodologies namely, Fuzzy logic and neural network he
solid line represents the desired input and the dotted line represents actual output. From Fig
47.1t can be seen that the difference between actual joint angle trajectory and desired
trajectory is almost coincident in the graph. As expected, the ANFIS network was found to
be fully trained. Significant improvement can be observed as the broken line closely follows
the solid line; this 1s due to the function approximation capabilities and adaptability features
of ANFIS network. The ANFIS network provides the desirable torque signal to cope with

uncertainties . Thus it makes the joint angles to follow the desired joint angles.
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Continuous path control

6.8 Simulation of Three link SCARA manipulator with conventional

controller
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Fig 48: Simulink Model of PD controller for three link SCARA manipulator.

The figure 48 shows the simulation arrangefnent of three link SCARA manipulator with -

conventional PD control of values as follows

P =10007, P,=1000¢, P, =50007,
D, =10Vs, D,=25%s D, =10V,
U™ =100V, UM =75, U™ =90,

treg 2reg 3reg
Uy =230V, UTT, =230V, Uy, =230V
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6.9 Response of Three link SCARA manipulator with conventional controller
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Fig 49:Shows the joint angle trajectory response of SCARA Manipulator

with Conventional PD controller. |
This figure 49 shows the response of continuous path control of three link SCARA manipulator
with joint angle 0.8sin(t), 0.5sin(t) and the joint distance 0.3m for the third link. The PD control
shows some deviation from the desired trajectory, this because of the selection of PD vaules does
not depend on the dynamic model, hence due to approximation in the dynamic model lead to the

deviation. Hence, this problem can be overcome by using the intelligent control.
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6.10 Simulation of Three link SCARA manipulator with Neuro

controller
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Fig 50: Shows the simulink model of Neuro controller for three link SCARA
| Manipulator. | | .
The figure 50 shows the simulink model of SCARA manipulator with Neuro control .The
neural network is trained for the given trajectories after attaining the desired perfoﬁnaﬁce
index .the neural network will work as a assisting member with conventional PD controller
during uncertainties and parameter variation. The tracking performance of this manipulator is
evaluated by' using its response .From the response it concludes that the neural network
follows almost closely to the desired trajectory. Figufe 51 shows the response of three link
SCARA manipulator with Neuro control ﬁom the graph it infers that the neural network has
good tracking performance, but the problem is to have judicious data for training with
properly chosen training parameters .Simulation result of three-link SCARA manipulator

with neurocontroller for a sine wave joint angle trajectory.
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6.11 Response of Three link SCARA manipulator with Neuro controllef
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Fig 51: Response of joint angle trajectory of three-link SCARA manipulator with

neuro controller

The solid line represents the desired input and the dotted line represents actual output.
From Fig 51 it can be seen that the difference between actual joint angle trajectory and
desired trajectory is almost merged in the graph. As expected, the network was found to be
fully trained. Significant improvement can be observed as the broken line closely follows the
solid line; this is due to the function approximation capabilities of RBF neural network in
conjunction with the conventional PD controller. The RBF neural network provides the
desirable torque signal to cope with uncertainties .Thus it makes the joint angles to follow the

desired joint angle trajectory.

67



6.12 Simulation of Three link SCARA manipulator with Neuro-Fuzzy

controller
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Fig 52: Show the simulink model of SCARA Mahipulixtor with Neuro fuzzy controller.

Figure 52 shows the feasibility of ANFIS control for a three-link SCARA manipulétor has
been proved and illustrated by simulation. The best parameters for the fuzzy controller were
determined by using the ANFIS methodology and by using simulations of the SCARA
'manipulator dynamics. A simulation tool (i.e., Fuzzy logic toolbox (ANFIS)) was used to
validate experimentally the tracking ability and the insensibility to plant parameter changes.
The ANFIS controller presented very interesting tracking features and was able to respond to
different dynamic conditions. In addition, the fuzzy control computation is very inexpensiVe;
and this regulator could be used for the control of machine tools and robotics inanip'ulators
[11] without significantly increasing the cost of the drive. The only extra cost is for the
optical encoder. Another advantage of this method over classical quantitative controllers is
that it does not require a fixed sampling time. Therefore, the proposed design confirms the
fact that fuzzy control is relevant to the fast control of non-linear processes such as SCARA

manipulator control where quantitative methods are not always appropriate. Thus, the results
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obtained using the ANFIS controllers are encouraging when compared to conventional PD
controller.

6.13 Response of Three link SCARA manipulator with Neuro-Fuzzy

controller
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Fig 53: Show the joint angle trajectory response of the Three-Link SCARA
manipulator with Neuro Fuzzy controller.

From the graph it infers that the ANFIS control has good tracking performance, which
combines the advantage of two methodologies namely, Fuzzy logic and neural network he
sohd line represents the desired input and the dotted line represents actual output. From Fig
53 it can be seen that the difference between actual joint angle trajectory and desired
trajectory 1s almost coincident in the graph. As expected, the ANFIS network was found to
be fully trained. Significant improvement can be observed as the broken line closely follows
the solid line; this is due to the function approximation capabilitics and adaptability features
of ANFIS network. The ANFIS network provides the desirable torque signal to cope with

uncertainties . Thus it makes the joint angles to follow the desired joint angle trajectory.
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CHAPTER-7

THE VISUAL DISPLAY OF THREE-LINK SCARA MANIPULATOR
7.1 Animation _

Animation is the art of moving an object on the computer screen. Twining
is the art of changing the shape of an image. We might have seen a lot of animation in
cartoon films and video games, Twining is very common in advertisements. Ih this chapter
we will discuss, in brief, how animation and twining are possible in computer graphics.

Animation is an optical illusion. We can not give continuous motion to an image.
But we can flash a number of images quite rapidly in a certain manner so that the viewer will
get the impression of a moving image. Suppose an image is placed a some position of the
screen, shown for a fraction of a second, erased rapidly and redrawn at a new loéation
slightly shifted from its original lobation. Human brain require time to register the changé' in
position of the image .If the process is completed fast enough, because of persistence of
vision, the human brain will register the shift in position of the image as moﬁon .This is the

principle of all animations.

7.2 The steps for producing animation is given below
1. Generate the image at some location X

Wait for some time (a few mill seconds)

Erase the image from the current location.

Redraw the irnage at a new location slightly from the original location

A N

Repeat step 2 through 4 as long as required.

For animation we will use function delay ( ) defined in header file dos.h .the function may be
called as delay (k). | |

Using the inverse kinematics of SCARA manipulator , and perspective projection of the frame
of the SCARA manipulator in three dimensional co-ordinate enables to develop the visual
display of SCARA Manipulator in C++.[18] | |
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CHAPTER-8

A PRATICAL APPROACH TO IMPLEMENT A NEURO FUZZY

TECHNIQUE.

8.1 Introduction

Fuzzy logic can be used to map complex nonlinear relations by a set of IF-THEN rules. The
* membership functions are designed by intuitive human reasoning. This poses two problems,
one for different control application a new set of membership functions have to developed
and second, once these membership functions are developed and implemented there is no
means of changing them. This means fuzzy logic lacks a learning function. Neural network
on the other hand self-organizes the mapping relationship by leaming. So By integrating
neural networks and fuzzy logic it is pbssib]e to overcome these problems. Implementing this
algorithm on a TMS320 DSP chip is discussed. Controlling a three link manipulator is taken

as an example to evaluate the controller.

The object of this work is to develop an algorithm to implemeht such a type of Controller.for
a specific control problem. In order to do -such a‘task, it is necessary to have a large
computing power. The TMS320C30 digital signal processor from Texas Instfumerit [24],
with its powerful instruction sets, high-speed number crunching capabilities, innovative
architectures, is ideally suited for such an application. There are commercially available
boards based on TMS320C30 chips, which can be installed on a PC. A board form DSP
Research [109] has been utilized for this purpose. The software for the control algorithm can
be developed in C-language and can be compiled and down loaded to the DSP board.
O'INCA 1131 software is used-to train the neural network. A three link SCARA robot is used
as an object system. A model of a three link 'SC'ARA manipulétor is used to test the
controller. The controller objective is to move the end-effector of the three link SCARA

manipulator to the desired position with least oscillation and error. To perform this, a two-
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level hierarchical controller structure is used as discussed in [21]. This structure has two
fuzzy controllers, one a feature extractor which is a higher level and another is the low level
controller producing the desired torque. The NN can be used to adapt both the fuzzy

~ controller. However here we propose only adapting the lower level controller.

8.2 Self-organizing Neuro-Fuzzy Controller '
The learning capability of the neural network can be made use of in designing the fuzzy -
controller. The self-organizing fuzzy controller is one such combination of a neural network
and a fuzzy controller. Figure 54 shows a schematic diagram of the system forming the self-
organizing fuzzy controller. The aim of this system is to automatically form the fuzzy
controller. It uses two neural networks of the back propagation learning type, NN1 and NN2.
NN1 acts as a classifier of the dynamic responses of the object system being controlled
(robot system). NN2, set in judge- ment mechanism 2, has knowledgé of the dynamic
characteristics_ of the object system. Judgment mechanism 2 has a self-tuning mechanism to
automatically

determine the normalizing values of the membership functions to control the object system
adequately. In this particular case NNI1 classifies the error in the trajectory of the end effector
to several typical pat- terns such as a similar pattern to the desired response or an oscillating
and diverging pattern or an oscillating and slowly converging pattern or any other pattern.
The result of the classification is sent to judgment mechanism 1. NN2 is made to learn the

dynamic characteristics of the object system through pairs of
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Fig 54: Shows the schematic of self-organizing fuzzy controller.
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input and system response. NN2 can then be used to simulate the object system in cases
where it is too risky to control the object system with an incomplete fuzzy controller. The
judgfnent mechanism 1 decides whether a next fﬁzzy rule has to be formed or not and
whether tuning operationkis needed or not for the écaling of member- ship functions at the

currently established rules. Next the labels of the fuzzy variables in the antecedent part of the

fuzzy control rule are determined from the information of the dynamic response of the object
system and the rule is integrated using the fuzzy variable in the consequent part whose label
is calculated in the judgment mechanism 2. If there are no rules at the initial state in the
- fuzzy controller, then the judgment mec_hanism sets up some initial control value to control
the object system. The object system is controlled by the established fuzzy rules and the -
information of the dynamic response is sent to NN1. The self tuning operation of the
normalizing values for currently established fuzzy control rules is repeated until the dynamic
response is classified to desired response by NNI. If the dynamic response of the object
system is classified to the desired respdnse by NN‘l, the judgment mechanism 1 decides to
form a next new fuzzy control rule. The judgment mechanism 2 mainly plays a role in
detefmining the quantities for the label of the"fuzzy variable in the consequent part and in

tuning values for the fuzzy variables in both the antecedent and consequent parts. -

8.3 Hardware and Software
A fuzzy controller consists of mainly three parts hamely, a fuzzification of the input signals,
an inferencing méchanism and a defuzzification process to produce the crisp output. There
are several softwares available in the market which can be implemented for developing a
fuzzy controller. However, in order to make it adaptive fuzzy ‘controller, it is necessary to
develop the entire code, so as to have mechanism to update the rules or tune the membership
functions. The block diagram of the implementation scheme is shown in Figure 55. A Texas
Instrurnénts TMS320C30 DSP chip is used for real-time control. The TMS320C30 [108]
DSP is a third generation signal processing .chip from Texas Instruments. The chip
architectures, featuring multiple buses, provide a high degrée of parallelism. It has a rich
vinstru_ction set, with many ‘special digital signal processing instnictipns. It can perform

parallel multiply and add operatioﬁs on integer or floating point data in a single clock cycle.
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The TIGER 30 board [25] from DSP research incorporates a TMS320C30 running at its
maximum clock speed of 40 MHz, yielding 2 maximum throughput of 40 MFLOPS. The
TIGER 30 Development Systems includes an optimizing C compiler, supplied by Texas
Instruments. The C Compiler generates efficient object code, using the parallel instrﬁctions
of the TMS320C30. The output of the compiler is TMS320C30 assembly language source
code, making it easy to optimize critical sections of the code. Also included is a debugging
environment, which supports multiple source files and multiple watch variables, including
auto-variables. The TM320C30 has two memory buses, the primary bus and the expansion
bus. On the primary bus the TIGER 30 board has up to 1 M Words of static RAM on the
board. On the expansion bus it has up to 8kWords of memory on the main board. The TIGER
30 is IBM PC compatible. The data can be transferred in either 16 bit or 8 bit mode. The
memory on the primary bus is dual ported with host PC. Transfers can be either under CPU,
interrupt or DMA control, or any combination of the three. The host interface is designed
such that multiple ,TIGER 30 boards can reside on the bus for multi-processihg applications.
The TMS320C30 has two on-chip senal channels for 8/16/32 bit transfers of up to 8.3 Mbps.
The TIGER 30 board has two TLC32044 AID-.D/A converters. It features 14 bit resolution, a
band pass switched-capacitor anti-aliasing filter and a low-pass switched capacitor dutput
reconstruction filter. It has variable sampling rates up to 19.2 kHz. The software is developed
in C languége. Only the real-time component of the software is compiled using the C30
optimizing compiler. This includes all the components of the fuzzy controlier. The adaptation
and rule update is done on the PC. TIGER 30 board allows the PC to directly access the
primary memdry of the TMS320C30 bus and visa verse. This allows easy data transfer. If
there are any changes in the membership function or changes in the rule base, a memory
swap is done which updates the program running on the DSP board. Likewise all the
parameter from the éontrol]ed system can be transferred to the PC.

As described in Section 2 there are two neural nets NN1 and NN2 which is used to adapt the
fuzzy controller. NN2 is basically used to map the input-output relation of the controlled
system. The NNI1 is the one which maps the temporal response of the system out- put. A
multilayer perceptron is used to perform this function. O'INCA [107] software is used to

develop and train this neural net. The perceptron consists of two hidden layer consistiﬁg of )
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10 neurons. The input layer consists of 20 inputs corresponding to the samples of the
temporal data of the output. This NN has a bi- nary output consisting of 3 layers. The binary
number can map up to 8 different patterns. Initially this network is made to learn signals such

as oscillating and

diverging pattern, an oscillating and slowly converging pattern, an asymptotically and slowly
converging pattern etc. This is done by feeding the network with standard signals such as for
converging oscillatory pattern, €73t for asymptotically converging pattern, sin(wt+g)e =2t
for diverging pattern and like wise. Here w,aand @ are constants which are varied. The

neural net classifies these signals irrespective of the values of the constants.
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Fig: 55 Implementation scheme of Neuro fuzzy technique.

- Hence, Fuzzy mathematics has provided a range of mathematical tools to formalize ill-
defined descriptions in fhe form of linguistically stated IF-THEN rules into mathematical
equations that can be impleménted on digital computers. Integration of neural networks and
fuzzy logic is a new direction in intelligent control engineering. A self-organizing fuzzy
controller is pro- posed which can automatically tune the fuzzy rule base and also create new -
' fuzzy rules by the help of neural networks. The learning ability of the neural network can be
utilized, to optimize an adaptive fuzzy

controller. An adaptive fuzzy controller is developed'-which can be run for a real-time
system incorporating a TMS320C30 digital signal processing chip. The controller has two
parts, one which can be real-time re- sides in the DSP _board and the other part consisting of
adaptive mechanism runs on the PC processor. The adaptation of the fuzzy controller is

~ carried out by classifying the temporal history of the controlled
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variable into different patterns. These patterns initiate changes in the components of the

fuzzy controller in order to make the system perform in the desired manner.

A Three link manipulator model is used to evaluate the controller. A hierarchical structure
fuzzy controller is used to control the flexible link. There are two level of hierarchy, the
higher level basically extracts the feature of the manipulator link and the lower level
controller produces the desired torque. The adaptation of the fuzzy controller is carried out at
this level [12].
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CHAPTER- 9

CONCLUSIONS AND FUTURE SCOPE OF THE WORK
9.1Conclusions | )
The study compares conventional PD control scheme, neuro control scheme and Neuro fuzzy
control scheme. From the results of the first part of the work it has been found that the
conventional control scheme using PD controller is simplest to be implemented, but it cannot
cope with uncertainties in the robot dynamics.
From the second part of the work it was found that in the case of neural network based
controller is designed. It has good tracking performance .Only difficulties are prior training
and judicious parameters are essential for the success of neural network based controller.
Third part of the work in which ANFIS (Adaptive Neuro-Fuizy inference system) is
designed. The feasibility of ANFIS control for a three-link SCARA manipulator has been
proved and illustrated by simulation. The best barameters for the fuzzy controller were
determined by using the ANFIS methodology and by using simulations of the }SCARA
manipulator dynamics. A simulation tool (i.e., Fuzzy logic toolbox (ANFIS)) was used to
validate experimentally the tracking ability and the insensibility to plant parameter changes.
The ANFIS controller presented very interesting tracking features and was able to respond to
different dynamic conditions. In addition, the fuzzy control computation is very inexpensive,
and this regulator could be used for the control of machine tools and robotics manipulators .
[106] without significantly increasing the cost of the drive. The only extra cost is for the
optical encoder. Anéther advantage of this method over classical Quantitative controllers is
that it does not require a fixed sémpling time. Therefore, the proposed design confirms the
fact that fuzzy control is relevant to the fast control of non-linear processes such as SCARA |
manipulator control where quantitative methods are not always appropriate. Thus, the results
obtained using the ANFIS controllers are encouraging when compared to conventional PD
controller. | o .
Finally, Visual display of three link SCARA Ménipula’tor is made by using C++.

T Ve
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9.2 Future scope

The neural network based controller & ANFIS controller , which is developed in this work

is only software , which has not been interfaced with the physical robotic arm .Taking the

idea from this controller, it is possible to develop practical setup(as mentioned in chapter-8),

which can be interfaced with the robot arm and can control it on-line. Practical work of this

type can be done now with the recent data acquisition

of another robotic arm set up in the department. .
Since the required torque calculated from the neural network controller is not smooth,

improved performance is expected by the use of fuzzy logic. Due to lack of time it was not

possible to implement this. So, taking the idea of ANFIS controller discussed in chapter

three, software can be made, and then the practical work over it can be done.

With the help of this practical work, we can confirm the real supremacy of neuro-fuzzy

controller over other conventional controller .It can be done by doing a comparative study

using both the controller in turn to control the robotic arm.
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