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ABSTRACT 

The aim of the thesis is to develop an efficient dynamic control such as point to point 

and continuous path control strategy for Robot manipulator using Artificial neural 

network (ANN) and Adaptive Neuro fuzzy inference system (ANFIS),owing to the 

advantage of their learning ability & unique characteristics, which enables to control 

Robot manipulators 

In this work, a robot controller based on neural network is presented. This controller 

has been applied to a single link robot arm and three link SCARA (Selective 

Compliance Assembly Robot Arm) which has a highly nonlinear structure. The model 

based approaches for robot control (such as the computed torque technique) require 

high computational time and can result in a poor control performance, if the specific 

model-structure selected does not properly reflect all the dynamics. In addition, 

conventional-PD controller could not cope up with unmodeled dynamics. Moreover, 

Fuzzy logic can be used to map complex nonlinear relations by a set of IF-THEN 

rules. The membership functions are designed by intuitive human reasoning. This 

poses three problems. One, for different control application a new set of membership 

functions have to developed and second, latent stability problem and third, once these 

membership functions are developed and implemented there is no means of changing 

them. This means fuzzy logic lacks a learning function. Neural networks on the other 

hand self-organize the mapping relationship by learning. A dynamic model has been 

assumed here where a controller is associated with each joint and separate RBF 

(Radial Base Function) neural networks are used as assistants to the PD controllers in 

order to minimize tracking errors. All above features naturally allow one to consider 

investigating the feasibility of neural networks. 

The proposed ANFIS methodology combines artificial neural networks with fuzzy 

logic. The fuzzy sets are used to formalize the level of human perception of the 

physical system. The neural networks, on the other hand, perform all the necessary 

computations and with regard to their learning capabilities, they enable an adaptation 

of the existing controller through its learning to the changes in the system behavior. In 



this work, the ANFIS (Adaptive Neuro-Fuzzy inference system) for the dynamic 

control (point-to-point as well as continuous path control) of the three-link SCARA 

manipulator is designed. This new method for control combines th advantages of 

neural networks (learning and adaptability) with the advantages of fuzzy logic (use of 

expert knowledge) to achieve the goal of robust control of robot dynamic systems. 

Simulation results show very good tracking performance. 

In addition, a visual display of three-link SCARA manipulator is made by using C++. 

Further, in this work a practical approach to implement the Neuro. -Fuzzy technique 

has been discussed for future extension. 
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CHAPTER-1 

1.1 INTRODUCTION 

The very precise control of robot manipulator to track the desired trajectory is a very tedious 

job and almost unachievable to certain limit with the help of adaptive controllers. This task is 

achievable to certain limit with the help of adaptive controller but these also have their own 

limitation of assuming that the system parameters being controlled change relatively slow. 

With reference to the tasks assigned to an industrial robot, one important issue is to 

determine the motion of the joints and the end effectors of the robot. Therefore, the purpose 

of the robot arm control, as Fu et al [1]. wrote in one of the classical works on robotics, is to 

maintain the dynamic response of the manipulator in accordance with some prespecified 

performance criterion. 

Among the early robots of the first generation, non-servo control techniques, such as bang-

bang control and sequence control, were used. These robots move from one position to 

another under the control or limit switches, relays, or mechanical stops [19]. 

During the 1970s, a great deal of work was focused on including such internal state sensors 

as encoders, potentiometers, tachogenerators, etc., into the robot controller to facilitate 

manipulative operation (2, 3]. Since then, feedback control techniques have been applied for 

servoing robot manipulators. 

Up till now, the majority of practical approaches to the industrial robot arm controller design 

use traditional techniques, such as PD or PID controllers, by treating each joint of the 

manipulator as a simple linear servomechanism. In designing these kinds of controllers, the 

non-linear, coupled and time-varying dynamics of the mechanical part of the robot 

manipulator system are completely ignored, or are dealt with as disturbances. These methods 

generally give satisfactory performance when the robot operates at a low speed. However, 

when the links are moving simultaneously and at a high speed, the non-linear coupling 

effects and the interaction forces between the manipulator links may degrade the 

performance of the overall system and increase the tracking errors. The disturbances and 

uncertainties in a task cycle may also reduce the tracking quality of robot manipulators. 



Thus, these methods are only suitable for relatively slow manipulator motion and for limited-

precision tasks [4]. 

The Computed Torque Control (CTC) is commonly used in the research community. The 

CTC control law has the ability to make the error asymptotically stable if the dynamics of the 

robot are exactly known [5] However, manipulators are subject to structured and/or 

unstructured uncertainty. Structured uncertainly is defined as the case of a correct dynamic 

model but with parameter uncertainty doe to tolerance variances in the manipulator link 

properties, unknown loads, inaccuracies in the torque constants of the actuators, and others. 

Unstructured uncertainty describes the case of unmodeled dynamics, which result from the 

presence of high-frequency modes in the manipulator, neglected time-delays and non-linear 

friction. It has been widely recognized that the tracking performance of the CTC method in 

high-speed operations is severely affected by the structured and unstructured uncertainties. 

To cope with the problem, some adaptive approaches have been proposed to maintain the 

tracking performance of the robotic manipulator in the presence of structured uncertainty [6]. 

Some other researchers have also tried to incorporate the neural network into the controller 

design and good results were reported [7, 8]. The Fuzzy logic can also be used to map 

complex nonlinear relations by a set of IF-THEN rules. The membership functions are 

designed by intuitive human reasoning. This poses three problems. One, for different control 

application a new set of membership functions have to developed and second, latent stability 

problem[21] and third, once these membership functions are developed and implemented 

there is no means of changing them. This means fuzzy logic lacks a learning function. An An 

ANFIS model [11] is an adaptive neural network which represents a particular type of fuzzy 

inference system. Three types of fuzzy inference systems can be represented by an ANFIS 

model. 

].Type 1: A fuzzy inference system whose overall output is the weighted average of each 

rule's crisp output. The output membership functions are monotonic functions. 

2. Type2: A mamdani fuzzy inference system where the centroid defuzzification operator is 

replaced by a discrete version which calculates the approximate centroid of area. 

3.A Sugeno-type fuzzy inference system whose output is a linear combination of the input 

variables plus a constant term. 
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In this thesis, another control strategy, namely, the Neuro Control & a special case of type 3 

Neuro Fuzzy (Adaptive Neuro Fuzzy Inference System., i.e; ANFIS) control, which had been 

used in industrial process control previously, is proposed for robot control.The consequent 

output member of each rule is a constant. The output of the system is a weighted average of 

these constants. It can be represented by the network shown in fig 12. 

It has been demonstrated that Independent joint control is used for the projection and 

execution of the trajectory tracking, where PIDs and neural networks are used as controllers. 

The neural networks are used as assistants to the PID controllers in order to minimize 

tracking errors. All above features naturally allow one to consider investigating the 

feasibility of neural network& ANFIS based controller in robot control. 

1.2 Robot system 

The aim of the robot simulation is to develop a complete mathematical representation of an 

open-loop robot system by incorporating actuator effects, gear backlash and dynamic 

equation with inertia, centrifugal and Coriolis, frictional and gravitational, and other 

uncertainties. After having been built up, this simulation model will be treated as the 'real 

robot'. All measurements and simulations through this thesis will be performed on this 

model. 

1.2.1 SINGLE LINK MANPULATOR 

Fig: 1 Scheme of single link manipulator 

The single link assumed to be a thin homogenous rod of mass ml and length al.In this case 

there is no velocity coupling terms due to coriolis and centrifugal force because there is only 

one axis. 

3 



1.2.2 THREE LINK SCARA MANIPULATOR 

A SCARA (Selective Compliance Assembly Robot Arm) industrial robot is chosen as 

the prototype of the simulation model, because the dynamic characteristics of this kind of 

robots have been intensively researched. It is one of the best known robots to the research 

community. 

The SCARA model chosen in this work has two revolute joints and one prismatic joint (in 

the configuration RRP) to position the wrist. However, for a SCARA robot, the axes of all 

three joints are vertical, as shown in fig 2 the first revolute joint swings the arm back and 

fourth about a base axis that can be thought of as a vertical shoulder axis. The second 

revolute joint swings the forearm back and fourth about a vertical elbow axis. Thus, the two 

revolute joints control motion in a horizontal plane. The vertical component of the motion is 

provided by the third joint, a prismatic joint which slides the wrist up and down. 

Fig 2: Picture of a three link SCARA Manipulator 

4 



CHAPTER -2 

INTRODUCTION TO NEURAL NETWORK CONTROLLER 

2.1 General 

The science of artificial neural networks is based on the neuron. In order to understand the 

structure of artificial networks, the basic elements of the neuron should be understood. 

Neurons are the fundamental elements in the central nervous system. The diagram below 

(Fig.3) shows the components of a neuron. [5] A neuron is made up of 3 main parts - 

dendrites, cell body and axon. The dendrites receive signals coming from the neighboring 

neurons. The dendrites send their signals to the body of the cell. The cell body contains the 

nucleus of the neuron. If the sum of the received signals is greater than a threshold value, the 

neuron fires by sending an electrical pulse along the axon to the next neuron. 

Cell bear or Sonia 

Fig 3: A Biological Neuron 

The following model is based on the components of the biological neuron (Fig. 3). The 

inputs XO-X3 represent the dendrites. Each input is multiplied by weights WO- W3. The 
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Y 

Fig 4: Scheme of neuron model 

output of the neuron model, Y is a function, F of the summation of the input 

XO 

X1 

X2 

X3 
signals. 

2.2 Advantages of ANN's 
1. The main advantage of neural networks is that it is possible to train a neural network to 

perform a particular function by adjusting the values of connections (weights) between 

elements. For example, if we wanted to train a neuron model to approximate a specific 

function, the weights that multiply each input signal will be updated until the output from the 

neuron is similar to the function. 

2. Neural networks are composed of elements operating in parallel. Parallel processing 

allows increased speed of calculation compared to slower sequential processing. 

Inputs Output 

Direction of signals 

Fig 5: Scheme of neural network 
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3. Artificial neural networks (ANN) have memory. The memory in neural networks 

corresponds to the weights in the neurons. Neural networks can be trained offline and then 

transferred into 'a process where adaptive learning takes place. In our case, a neural network 

controller could be trained to control three link SCARA system in the simulink environment. 

After training, the network weights are set. The ANN is placed in a feedback loop with the 

actual process. The network will adapt the weights to improve performance as it controls the 

Robot system. 

2.3 Neural network structures 

The most common type of single layer feed forward network is the perceptron. Other types 

of single layer networks are based on the perceptron model. The details of the perceptron are 

shown in figure 6. 

1.0  

1, 

Fig 6:. The learning scheme of neural network. 

Inputs to the perceptron are individually weighted and then summed. The perceptron 

computes the output as a function F of the sum. The activation function, F is needed to 
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introduce nonlinearities into the network. This makes multi-layer networks powerful in 

representing nonlinear functions. 

There are 3 main types of activation function -tan-sigmoid, log-sigmoid and linear. [8] 

Different activation functions affect the performance of an ANN. 

Log-ciRmoid function 	 Tan-sigmoid function 	 Linear function 

Fig 7: various activation function scheme of neural network. 

The output from the perceptron is 

y(k) = f(w T [k] •x[k]) 	 (1) 

The weights are dynamically updated using the back propagation algorithm. The difference 

between the target output and the actual output (error) is calculated. 

e(k) = T[k] — y[k] 
	

(2) 

The errors are back propagated through the layers and the weight changes are made. The 

formula for adjusting the weights is 

w[k + I] = w[K]+p.e[k].x[k] 
	

(3) 

Once the weights are adjusted, the feed-forward_ process is repeated. The weights are adapted 

until the error between the target and actual output is low. The approximation of the function 

improves as the error decreases. Single-layer feed forward networks are useful when the data 

to be trained is linearly separable. If the data we are trying to model is not linearly separable 

or the function has complex mappings, the simple perceptron will have trouble trying to 

model the function adequately. 

A key property of artificial neural networks is their ability to generate input-output maps 

which under mild assumptions can approximate any function to any degree of accuracy. This 

property has been exploited by a number of researchers to propose controllers and control 

strategies for a variety of applications [1, 7-9, 17] several types of artificial neural networks 

Ey 



can be found in the literature. Some of them can be applied to a wide variety of problems, 

while others are targeted for special applications. This work considers the type of networks 

known as radial basis functions (RBF) neural networks. 

2.4 Radial basis functions neural network controller 

Radial basis functions neural networks belong to the class of multilayer feed forward 

neural networks. They are characterized by a hidden layer made up of a collection of 

locally tuned processing units. These units can be seen as independent kernel nodes which 

compute the distance between their corresponding centroid and the input they receive from 

the input units. The output of these kernel nodes is characterized by a nonlinear, radially 

symmetric activation function of that distance. Normally, the closer an input is to the center 

of the receptive field of one of these units, the stronger the response of the unit. The output 

layer is composed of linear units which are fully connected to the units in the hidden layer. In 

other words, each output unit performs a weighted sum of the responses it receives from each 

hidden unit. RBF neural networks are modeled by the following relation: 
m 

Y(X)= 
• 
JIlwjgj(Ilx"cj (4) 

In this equation, gj corresponds to the jth hidden unit w;  is the weight associated With the 

1ih unit, x represents the input vector and c;  is the receptive-field center of the jth unit. 

Broomhead and Lowe [3] who used them in the prediction of chaotic time series first brought 

radial basis functions into the neural networks literature. Their work was influenced by 

previous theoretical developments on multivariable Interpolation reported by Powell [2] and 

Micchelli [34]. Since then, many other researchers have studied the learning ability and 

representational capacity of RBF neural networks e.g. see [2, 16] 
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Desired 
Respon 

put 

Fig 8: The control system design for Robot Manipulator with ANN. 

It can be shown that the dynamic equations describing the behavior of robotic manipulators 

(controlled object) can be written in the following matrix form: 

M -'(9)f -M -' (9)C(9,4)`M -' (9)G 
	

(5) 

where f (t) is the vector of generalized (non-conservative) forces, q (t) the vector of 

generalized coordinates, M (q (t)) the inertia matrix, C (q (t), q (t)) the Coriolis and 

centrifugal force vector, and G (q (t)) the vector of potential energy terms representing the 

contributions to the generalized forces from the conservative forces acting on the system. 

Formally speaking, Eq. (2) represents the inverse dynamics of the arm: it is a mapping from 

link variables to input variables. The direct dynamics can easily be obtained from Eq. (2) 

considering that matrix M is always invertible. Therefore, 

q = M-1(q)f — M—' (q)C(q,q) —M—I  (q)G 

q=[D](q,a,fl 
	

(6) 

Eq. (4) represents the direct dynamics of the arm. [D] Represents a nonlinear transformation 

or a mapping from input variables to link variables. From this point of f =[ o]-'(q,q,4) view, 
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the inverse dynamics can be represented by the following relation: 

To emphasize this, note that [D]-' denotes an inverse mapping, i.e. an inverse transformation 

of the direct dynamics. In this sense, [D]-' represents a nonlinear function (transformation) 

from link variables to the input variables. For convenience, Let us make use of the following 

state-variable notation: 

x 1  =q x 2  =q u =f 
	

(7) 

Then, u can be expressed in the following way 

u = M(x l  )x. +C(xl ,x 2 )+G 

u=[D)-1(x l ,x 2 ,x 2 ) 
	

(8) 

Where x 2  denotes the response of the system under the influence of the input u. 

2.5 Controller design 

Let denote the desired response of the system, i.e. the desired acceleration. Thus, a control 

signal can be formed by using the arm's inverse dynamics. 

u=[D]-1(xl,x2, X2d)  

u=M(x I )x 2d +C(x l ,x2 ) +G 
	

(9) 
Then, equating Eqs. (7) and (10), it follows that 

M(xl)[x2d —21=0 	 (10) 

This leads to the following equality: 

x 2  =x 2d 	 (11) 

Hence, the response of the system satisfies the desired performance. The important aspect to 

highlight here is that this error equation is a satisfied only if the inverse dynamics of the 

system are known precisely. In this thesis, we propose the use of RBF neural networks to 

approximate the inverse mapping [DJ-' as closely as possible. From what has been, said so 

far, let us Use the following control law: 

u =[D]—'(q,q,gd)+Kve+Kpe 	 (12) 

Where [Dy-' is the neural network approximation of the actual inverse, dynamics of 
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the system. The last two terms on the right-hand side represent a servo feedback which is 

introduced to stabilize the system. K,, and K. are constant gain matrices and e = xld — x1 

represents the tracking error. Now, making use of Eqs. (13) and (15), it can be shown that 

k vei  + kpei  = di I (q,q, jd ) 	 (13) 

Eq.(14) characterizes a linear decoupled system driven by the nonlinear vector 

Function [DFRI  (q, q, qd ) .This function represents the error in the neural network 

approximation of the manipulator's inverse dynamics. It makes intuitive sense that instead of 

using one network to approximate the inverse dynamics of the whole arm, one ought to use a 

separate network for each joint of the manipulator. With this in mind and by using Eq.(14), 

the error equation for the ith joint of the manipulator is expressed as follows: 

k vei  + k pei  = di 1(q,q,qd) 
	

(14) 

In this last equation, K,, and K,, are constant gains and dl 1(.) the local approximation 

error of the RBF neural network assigned to the it  joint. Now, letting 

k ve+kpe=si,:. 	 (15) 

Eq. (15) can be written as follows: 

Ei  =d 1(q,q,g) 
	

(16) 

Noting thatEi  =ci  (t), one concludes that c1  (t) constitutes a measure of the tracking error 

that reflects the mismatch between the actual inverse dynamics of the system and its local 

neural network approximation. The question that remains to be answered at this point is how 

to update, or adjust, the network parameters on-line, so that the error measure e(t) converges 

to ci  (t) as t -- oc . A gradient descent approach comes immediately to mind. To do that, let 

us define the following cost function: 

J=ZE2 	 (17) 

J must be minimized over the parameter space of the network. In doing so, let us 

derive the update law. 

lE 



cis = —a0J 
J 

as. 
cvj=—a acv 	 (18)  J ad-1  
w = —ac 

Recalling that the output of the network is given by Eq. (1), the update law takes on 

the following form: 

w j  =—aci g j(.) 	 (19) 

In this update law, a > 0 is the adaptation or learning parameter. The subscript j denotes the 

jth weight of the RBF network. Therefore, the network's weights are updated according to a 

simple first-order differential equation involving the param- eter a, the current value obtained 

from a servo feedback loop, and the local response of the corresponding radial unit. It is 

important to point out that the above development depends on the underlying assumption that 

RBF networks are capable of approximating the inverse dynamics of the controlled system. It 

is known that RBF networks are capable of approximating any reasonable function: 

However, as it will be made evident shortly, that the fact by itself is not sufficient for 

stability.. Stability imposes the additional requirement that the error in the approximation of 

the inverse dynamics has to remain bounded. Satisfying this requirement with carefully 

designed . networks constitutes a nontrivial problem which still needs further research. A 

particularly Good example of research on this subject is the work by Sanner [47] who makes 

use of principles from sampling theory and Fourier analysis to develop networks that, under 

mild assumptions, are capable of uniformly approximating smooth functions on specified 

compact sets. Not surprisingly, it turns out that the condition on the bounded ness of the 

approximation error can be satisfied by carefully choosing the RBF network parameters, so. 

as to guarantee a desired uniform approximation in a target set. This translates into selecting 

an appropriate variance, when the units in the networks are Gaussian units, and precisely 

placing the network units in the region of interest. For the purposes of this thesis, it will be 

assumed that the RBF networks in the proposed control system have been designed so as to 

guarantee that the error in the approximation of the inverse dynamics remains bounded. 

13 



2.6 Stability analysis 
Consider the following proposition: 

Proposition. Given that the error in the approximation of the inverse dynamics is bounded, 

all states of the system will also remain bounded. 

Proof. Realizing that eq (14) represents an asymptotically stable linear system driven by the 

nonlinearity[D]—1 , the above proposition can be proven using the direct method of 

Lyapunov. To do that, let us use the following scalar Lyapunov function: 

V(e)= 2 eTe 
	

(20) 

The system itself is represented by the expression shown below. 

K ve+Kpe=[D]-1(q, i,q) 	 (21) 

e+Kv'Kpe=Kv 1[D]-1(q,q,4) 

Obviously, the function of Eq. (22) is positive definite. This satisfies the first condition of the 

Lyapunov theorem. To satisfy the second condition we must determine the circumstances 

under which V (e) is monotonically decreasing: 

V(e)=eTe 

V(e)=eT[Kv1[D](.)—Kv1Kpe] 	
(22) 

J 

V(e) must satisfy the condition that V(e) <0. Hence, 

eTKVl[D]-1(.)—eTKvlKpe<_0, 	 (23) 

IIK
—v'jj 11[5]—1 (•)

II ~ IIKV' II JjK pIN je 

But, (~[D]-1 II 5; therefore, 

hell ~ 	 (24) 
P 

In this last expression,Ip represents the largest eigenvalue of lambdap. Furthermore, from 

Eq. (24) and using Eq. (31) we can determine the bounds on 8. This is shown below. 
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[]_l (.) +— IKP el, 
II 	II ~I 	(I 	I~ 	II 

lell ~ ?A V 

Where A V , represents the maximum eigenvalue of K-1 

(25) 
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3.2 The structure of the controller 

A general structure of the proposed controller in a closed-loop control mode is 

presented in Fig. 1. When the 'switches' 5Sfl,S1I,...,Sb ,andSIII are in the Learning 

Phase (LP) positions, the control loop is open and the controller is in its learning phase 

during which it acquires and accumulates control knowledge. This knowledge is stored in an 

artificial neural network which is an important part of the neuro-fuzzy structure of the 
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controller. The details concerning the learning phase are presented in the following section. 

After the learning process is completed, all switches can be put in the Functioning Phase (FP) 

positions. The control loop is then closed and the control process is being performed. 

The general procedure for the construction of the proposed controller has 

three main stages: 

1. The choice of the controller structure in terms of its inputs and outputs, and 

the definition of the so-called primary fuzzy sets for them, 

2. The learning phase of the controller, 

3. The assessment of the controller quality which corresponds to the functioning phase (that 

is, the decision making phase) of the controller. The controller presented in Fig. I has n 

inputs, eO l ; e02; . . . ; eon and one output uO (of course, our approach can be easily 

generalized for the case of multi-output controller). Since the controller output (the control 

signal) is usually predetermined, the choice of the controller inputs determines the controller 

dynamics and, therefore, has a significant influence on the quality of the controller. The 

choice of the controller inputs is performed by block B 1 (see Fig. 1) on the basis of the plant 

output signal y (present and previous values), the desired output trajectory yDOT (also 

present and previous values), and sometimes on the basis of previous control actions 

u'(t-AT) . Where j E { 1,2,...) and AT is a sampling period. Block B2 in Fig. 1 is a delay 

unit supplying block B I with the control signal uO delayed by j sampling periods. The 

parameters kel ; ke2 ; ... ; ken are the scaling factors for the controller inputs; similarly ku 

is the scaling factor for the control signal u. Blocks FI and DFI of Fig. I represent the 

fuzzification interface and the defuzzification interface, respectively, and they will be 

described in the following sections. In the case of a simple control system in which yDOT is 

a set-point value ySP and the controller has two inputs: the control error and the change of 

control error, the structure of block B I is presented in Fig. 2. If we need an incremental 

controller, then the system of Fig. I - instead of output u (the control action) is characterized 

by output Au (the change of the control action),In such a case, the final control action uO.t 

applied to the plant is of the form (see Fig. 3): 	u'(t)=  

t >_ 0, u'(t < 0) = 0 where ü(t j. 7). is a previous control and kDu is a scaling factor for the 
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After the learning process is completed, all switches can be put in the Functioning Phase (FP) 
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is, the decision making phase) of the controller. The controller presented in Fig. I has n 
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generalized for the case of multi-output controller). Since the controller output (the control 

signal) is usually predetermined, the choice of the controller inputs determines the controller 

dynamics and, therefore, has a significant influence on the quality of the controller. The 

choice of the controller inputs is performed by block B I (see Fig. 1) on the basis of the plant 

output signal y (present and previous values), the desired output trajectory yDOT (also 

present and previous values), and sometimes on the basis of previous control actions 

u'(t -AT) . Where j e (1 ,2,... } and 4T is a sampling period. Block B2 in Fig. 1 is a delay 

unit supplying block B 1 with the control signal uO delayed by j sampling periods. The 

parameters ke 1; ke2 ; ... ; ken are the scaling factors for the controller inputs; similarly ku 

is the scaling factor for the control signal u. Blocks Fl and DFI of Fig. 1 represent the 

fuzzification interface and the defuzzification interface, respectively, and they will be 

described in the following sections. In the case of a simple control system in which yDOT is 

a set-point value ySP and the controller has two inputs: the control error and the change of 

control error, the structure of block BI is presented in Fig. 2. If we need an incremental 

controller, then the system of Fig. 1 - instead of output u (the control action) is characterized 

by output t u (the change of the control action),In such a case, the final control action uO.t 

applied to . the plant is of the form (see Fig. 3): 	u'(t)=u'(t-OT)+kOu.Du(t), 

t >_ 0, u'(t <0) =0 where i(t j. 7). is a previous control and .kDu is a scaling factor for the 
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change of control bu(t) .Once the controller structure, in terms of its inputs and outputs, is 

established, a collection of the primary fuzzy sets for each input and for the output of the 

controller must be defined. The primary fuzzy sets (fuzzy clusters or granulas) for a given 

input or output formally represents the aggregations of the masses of numerical data from the 

inputs and the output. These sets establish a perception level for the ordinary neural network 

which is an internal part of the proposed neuro-fuzzy scheme. All learning and inference 

processes are then carried out at this level. The primary fuzzy sets enable reasoning on a 

higher (semantic or linguistic) level than in the case of ordinary neural network. These 

BLOCK BI 

YDOT = vSetPoint 	 e' :e_e, 	kg 

-T BLOCK Bd 	 k 
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Fig 10: Internal representation of block B1 of neuro-fuzzy controller. 
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sets can also be used as premises and consequences in the linguistic conditional rules 

describing the control strategy. If significant amounts of numerical data from the inputs and 

the output of the controller are available, then the determining of the primary fuzzy sets can 

be made with the use of the fuzzy clustering technique .However, in general, both the 

definition of primary fuzzy sets and the choice of model structure utilize a considerable 

amount of a priori knowledge and rely to significant extent on the 'engineering feel' of the 

plant to be controlled. For these reasons, this stage of controller design is difficult to be 

formalized. The second stage of the controller design is the learning of the neuro-

fuzzystructure of the controller. The aim of this stage is to incorporate into the neuro-fuzzy 

system all available knowledge concerning the control strategy of a given plant the 

qualitative, linguistic, usually rule-based knowledge as well as the quantitative, numerical, 

nonfuzzy data and relations between them. 

3.3 The learning phase of the controller 

Consider a general case of the controller of Fig. 1 with n normalized (that is, After applying 

the scaling factors) inputs el  , e2  ,.., en  (ei  a Ei  , i =1,2,........., n): And one normalized output. 

u(u E U) Ei and U are the universes of discourse for fuzzy sets. For input ei  (i =1,2,......, n),, a 

collection Ai1,Ai2,.., Aiai a F(Ei  )of ai primary fuzzy sets is defined. F(Ei ) denotes a 

family of all fuzzy sets defined on Ei. For output u, a collection B1, B 2  ,..., Bb  €F(U) of b 

primary fuzzy sets is determined. During the learning phase when the switches 

Sl,„,,,,Sn,Slj,...,Sb,andSIIIofFig. I are in the LP positions and the control loop is open, 

the neuro-fuzzy structure of the controller acquires and accumulates the control knowledge. 

A part of this knowledge (provided by a human expert) is usually formulated as a set of 

linguistic conditional rules of the type: 

(......ALSO) 

IF(elisA(k))AND(e2isA2k)  )AND.....AND(enisAnk)) 
(26) 

THEN(uisB(k) ) 
ALSO.... k 1 2 	K 
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where Aik),i =1,2,...,n and B(k) .are the linguistic descriptions (like negative big, positive 

small, close to zero and so on) of the controller inputs el;e2; ... ; en and output u for the kth 
control rule. The symbols Aik),B ) . Also denote here fuzzy sets, which formally represent 

these descriptions, that is, Alk) E F(Ei),i =1,2........,n and B(k) e F(U) another part of the 

control knowledge, in a general case, has the form of the sets of the controller input/output 
measurements 

(elP)~e(P) ~........,e(P),u(P) ), p=1 , 2 	P, 	 (27) 

where e (P) E E i , i =1,2,....., n, u (p) e U and p is a number of (n+-element measurement 

sample. In order to underline the cause-effect relationship, data (3) can also be presented in a 

rule-like form: 
(.....ALSO) 

I eliselp) AND(e2ise2P) AND........... AN enise(P) 

THEN(uisu(P) ) 
(.....ALSO)p =1,2,......., P. 	 (28) 
(.........ALSO) 

Fuzzy sets el p) E F(Ei ), i=1, 2,...,n, u E F(U) 

which formally represent the measurements e.p. i ; u.p., have the form of fuzzy singletons, 

that is, 

e_(p) (ei )_ l fore = eP,Oforei ~ eP 
	

(29) 

where p e(p) (ei 3 denotes a membership function of the fuzzy set EP (analogously, the fuzzy 
i 

singleton is defined for u (p) . In this way, both the control knowledge (2) and the numerical 

control data (3) or (4), have a unified form of a fuzzy-set based representation. 

In further considerations, for simplicity, we assume that description (2) ± with index k 

ranging from I to K+P -covers both knowledge (2) and data (4). As mentioned earlier, the 

collections of the primary fuzzy sets for the inputs and for the output, establish the perception 

level for the ordinary neural network which is an internal part of the proposed neuro-fuzzy 
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controller. This implies that both the fuzzy and nonfuzzy (measurements) data which are to 

be processed by the neuro-fuzzy system, first must be 'transferred to the perception level 

determined by the primary fuzzy sets for the inputs (see INPUT BLOCKS I in Fig. 1) and the 

output (see INPUT BLOCK II in Fig. 1). The representations of these transferred data are 

called activation degrees (ADs -for short) of the primary fuzzy sets for particular inputs. 

These ADs are then processed by the neural network, which generates at its output the Ads 

(k)(  k) of the primary fuzzy sets for the output -see Fig. 1. During the learning 

phase of the controller design, these output ADs are compared with corresponding so-called 

desired activation degrees (DADs ± for short) dik)  ........ .dbk~ which are determined for the 

output portion of the learning data. The errors between the DADs dc' ) and the Ads 

=1,2........,m, are then processed by the learning algorithm (see Fig. 1) which adjusts 

the weights of the neural network in such a way as to reduce the errors to an acceptable level. 

As for the classical neural network of Fig. 1, we use a multilayer perceptron [17] because of 

its universal approximation properties [3, 4, 10, 11]. As far as these properties are concerned, 

the existing literature regarding the number of neurons in hidden layer(s) of the perceptron is, 

unfortunately, of limited practical usefulness, since it does not give practical indication as to 

the sufficient number of neurons in the hidden layer for a given problem. Therefore, usually 

the learning process is being conducted independently for several different numbers of nodes 

in the hidden 'layer in order to select the best solution. The back-propagation learning 

algorithm [17] is used as a learning technique for this network. All available learning data are 

processed repeatedly by the learning. algorithm until the cost function is reduced to an 

acceptable value. The overall cost function Q which is being minimized during the learning 

process is a mean square error between DADs and ADs for outputs, that is 

Q 	d(k) 

(K + P)b k=l j=1 1 	J 
(30) 

It remains yet to determine how to calculate the ADs and DADS.. Consider the controller 

input ei with the collection of ai primary fuzzy sets A ij E FE i , j =1,2,...., a i and assume that 
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the fuzzy set A; a F(E; ) . is to be represented in terms of these primary sets. The ADs ofAij  

induced by Ai can be calculated as the possibility measures fl (A; /A) of Ai with respect 

to Aij: 

fl(A;/A;  j= sup{min[u , (ei),,uA (ei)]} 
Ai 	ij 
	 (31) 

In a particular case of a nonfuzzy numerical data eP E Ei  the fuzzy set A is reduced to a 

fuzzy singleton (cf. (5)) -e , and then expression (7) has the form: 

(32) 

The DADs are calculated in an analogous way. These definitions of ADs and 

DADs have been incorporated into the structure of Fig. 1. 

4. The functioning phase of the controller after the learning phase of the neural network is 

successfully completed, the switches SSn,S1I,...,Sb ,andSIII  of Fig. 1 can be 'shifted' 

to the FP position, and then the control process starts. However, some additional problems 

concerning the output part of the controller remain to be solved. The output Ads L j j = 1; 2; . 

.. b; form a controller response expressed in terms of the perception level determined by the 

output primary fuzzy sets. This response must be 'retranslated' to the level of the output u of 

the controller. In other words, this response must be expressed in the form of a fuzzy set, say 

B (in Fig. 1, we call it a control fuzzy set), from the family F .U.. The fuzzy set B - according 

to our proposition - can be created as follows: 

11B (u) = max { min[PB1(u ), vl  ]....... min[,uBb (u)' vb 1 } 
	

(33) 

The set B is a sum (max-operator) of particular primary fuzzy sets for the controller output u 

modified (min-operators) by corresponding activation degreest .1. This way of determining B 

was chosen because it is compatible to the way of performing the 'translation' in the opposite 

direction; that is, from the input-output level of the controller to the perception level 

determined by the primary fuzzy sets. The solution (9) is also similar to the way the output 

fuzzy set is generated by the compositional rule of inference [18]. Since the controller 
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operates in a closed-loop control mode, it has to generate a nonfuzzy control signal u. For 

this reason, a defuzzification procedure (a defuzzification interface. DFI, see Fig. 1) must be 

applied to the set B. In the existing literature, several defuzzification methods have been 

reported, e.g. a method which selects the nonfuzzy output, the membership function value of 

which corresponds to the maximum or a more effective a centre-of-area method which takes 

into account the entire shape of the membership function of B ([13] presents the details). 

Blocks FI of Fig. I represent the fuzzification interfaces. Each of them for a given nonfuzzy 

input eP E Ei  generates its fuzzy-set representation in the form of a fuzzy singleton in an 

analogous way as in formula (5). Before the control process starts, we can also assess how 

the obtained controller (including its output part which has not participated in the learning 

phase) fits the control knowledge (2) and data (3). In the case of the nonfuzzy data (3), we 

can apply the following quality index: 

a  = 1 y (u(p) _up 2 
1  P =1l P 

(34) 

where u (p)  as defined in Section 3 (formula (3)) the pth sample of the output portion of 

control measurements (p = 1, 2; ... ; P) and u0  is the controller response • corresponding - to . 

In the case of the fuzzy knowledge (2), the criterion of the good-mapping property [6] can be 

applied. The functioning phase of the neuro-fuzzy controller in the closed-loop control mode 

directly corresponds to the phase of testing of neural-network based systems. Testing is being 

performed with the use of the data that have not been utilized at the learning of the neuro-

fuzzy system and, therefore, it enables to assess the generalizing properties of the neuro-

fuzzy system obtained. The above controller design can be accomplished by using ANFIS 

Toolbox. 

3.4 Adaptive Neuro Fuzzy Inference System (ANFIS) 

3.4.1 Introduction 
The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. Using a 

given input/output data set, the toolbox function anfis constructs a fuzzy inference system 

(FIS) whose membership function parameters are tuned (adjusted) using either a back 
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propagation algorithm alone, or in combination with a least squares type of method. This 

allows our fuzzy systems to learn from the data they are modeling. 

ANFIS (Adaptive Neuro Fuzzy Inference System) is an architecture, 

which is functionally equivalent to a Sugeno type fuzzy rule base (Jang [10], Sun & 

Mizutani, 1997; Jang & Sun, 1995). Under certain minor constraints the ANFIS architecture 

is also equivalent to a radial basis function network. Loosely speaking ANFIS is a method 

for tuning an existing rule base with a learning algorithm based on a collection of training 

data. This allows the rule base to adapt. The network in Figure. 8 may be extended by 

assigning a linear function to the output weight of each neuron, wk  = ak u+bk , k=l, 

2........,K where a k  E R "' is a parameter vector and en is a scalar parameter. The network is 

then equivalent to a first order Sugeno type fuzzy rule base (Takagi and Sugeno, 1985). The 

requirements for the radial basis function network to be equivalent to a fuzzy rule base is 

summarised in the following (Jang et al., 1997) 

1. Both must use the same aggregation method (weighted average or weighted sum) to 

derive their overall outputs. 

2. The number of activation functions must be equal to the number of fuzzy if-then rules. 

3. When there are several inputs in the rule base, each activation function must be equal to a 

composite input membership function. One way to achieve this is to employ Gaussian 

membership functions with the same variance in the rule base, and apply product for the 

DQG operation. The multiplication of the Gaussian membership functions becomes a multi-

dimensional Gaussian radial basis function. 

4. Corresponding activation functions and fuzzy rules should have the same functions on the 

output side of the neurons and rules respectively. 

If the training data are contained in a small region of the input space, the centers of the 

neurons in the hidden layer can be concentrated within the region and sparsely cover the 

remaining area. Thus, only a local model will be formed and if the test data lie outside the 

region, the performance of the network will be poor. On the other hand, if one distributes the 
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basis function centres evenly throughout the input space, the number of neurons depends 

exponentially on the dimension of the input space. 

3.4.2 ANFIS architecture and learning algorithm 
Without loss of generality we assume two inputs, u, and u 2  and one output, y. Assume for 

now a first order Sugeno type of rule base with the following two rules 

Iful is A, andu2isn, then yl-cl 'l u l +c12 u2 +c10 
Iful isA, andu2isB2  then y2=c21u1 +c22 u2 +c20 

Incidentally, this fuzzy controller could interpolate between two linear controllers depending 

on the current state. If the firing strengths of the rules are a, and a2  respectively, for two 

particular values of the inputsu, and u, then the output is computed as .a weighted average 

-  y_ a l y1 +a 2 y2  _-  
al  +a2.

alyl + 
 

Y 

Layer 1 	 2 	3 	4 	5 

Fig 12: The layer structure of the ANFIS network. 

The corresponding ANFIS network is shown in Figure.12. A description of the layers in the 

network follows. 
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1. Each neuron i in layer 1 is adaptive with a parametric activation function. Its output is 

the grade of membership to which the given input satisfies the membership function, 

i.e. ,. An example of a membership function is the generalised bell function 

Ax) = 2b 
1+ 

lal 

where {a, b, c}is the parameter set. As the values of the parameters change, the shape 

of the bell-shaped function varies. Parameters in that layer are called premise parameter 

2. Every node in layer 2 is a fixed node, whose output is the product of all incoming 

signals. In general, any other fuzzy AND operation can be used. Each node output represents 

the firing strength a;  of the i th rule. 

3 Every node in layer 3 is a fixed node which calculates the ratio of the Ith rule's firing 

strength relative to the 

sum of all rule's firing strengths, 

a- ai  =  a +la  ,i=1,2 
r 2 

The result is a normalized firing strength 

(36) 

4. 	Every node in layer 4 is an adaptive node with a node output 

ai  yi  = ai  Ici l  u l  +ci2u 2  +c10 , i=l, 2 .Whereat  is the normalized firing strength from layer 

3 and i 1, ci2 , cio l is the parameter set of this node. Parameters in this layer are called 

consequent parameters. 5. Every node in layer 5 is a fixed node, which sums all incoming 

signals. It is straightforward to generalise the ANFIS architecture in figure.12 to a rule 

base with more than two rules. 

3.4.3 The ANFIS learning algorithm 
When the premise parameters are fixed, the overall output is a linear combination of the 

consequent parameters. In symbols, the output y can be written as 

(35) 
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y a +a yl + a a y2 l 	2 	1 	2 

y=al(cllei1+c 2 u 2 +c10)+a2(c21u1 + c22u2+c20) 	 (37) 

y =(a lul)cl1+~a1u2~12 +a1c10 +(a2u2 21+(a2u2~22 +a2c20 

which is linear in the consequent parameters cij (i =1, 2 ...j = 0, 1, 2...) hybrid algorithm 

adjusts the consequent parameters c;; in a forward pass and the premise parameters ~a i ,b1  , ci } 

in a backward pass (Jang et al., 1997)[101. In the forward, pass the network inputs propagate 

forward until layer 4, where the consequent parameters are identified by the least-squares 

method. In the backward pass, the error signals propagate backwards and the premise 

parameters are updated by gradient descent. Because the update rules for the premise and 

consequent, parameters are decoupled in 
Nk K": MD ,rn 	F OiS 

nxr. 

Figure 13: the membership functions before learning 
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Figure 14: the membership functions after learning. 

the hybrid learning rule, a computational speedup may be possible by using variants of the 

gradient method or other optimisation techniques  on the premise parameters. Since ANFIS 

and radial basis function networks (RBFNs) are functionally equivalent, a variety of learning 
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methods can be used for both of them [19]. Figure 13 and 14 shows the membership function 

of the input before training and after training. 

3.5 FIS Structure and Parameter Adjustment 
A network-type structure similar to that of a neural network, which maps inputs through 

input membership functions and associated parameters, and then through output membership 

functions and associated parameters to outputs, can be used to interpret the input/output map. 

The parameters associated with the membership functions will change through the learning 

process. The computation of these parameters (or their adjustment) is facilitated by a gradient 

vector, which provides a measure of how well the fuzzy inference system is modeling the 

input/output data for a given set of parameters. Once the gradient vector is obtained, any of 

several optimization routines could be applied in order to adjust the parameters so as to 

reduce some error measure (usually defined by the sum of the squared difference between 

actual and desired outputs). Anfis uses either back propagation or a combination of least 

squares estimation and back propagation for membership function parameter estimation. 

3.6 Validation 

The modeling approach used by anfis is similar to many system identification techniques. 

First, we hypothesize a parameterized model structure (relating inputs to membership 

functions to rules to outputs to membership functions, and so on). Next, we collect 

input/output data in a form that will be usable by anfis for training. We can then use anfis to 

train the FIS model to emulate the training data presented to it by modifying the membership 

function parameters according to a chosen error criterion. In general, this type of modeling 

works well if the training data presented to anfis for training (estimating) membership 

function parameters is fully representative of the features of the data that the trained FIS is 

intended to model. This is not always the case, however. In some cases, data is collected 

using noisy measurements, and the training data cannot be representative of all the features 

of the data that will be presented to the model. This is where model validation comes into 

play. 
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3.7 Model Validation Using Checking and Testing Data Sets 

Model validation is the process by which the input vectors from input/output data sets on 

which the F1S was not trained, are presented to the trained FIS model, to see how well_the 

FIS model predicts the corresponding data set output values. This is accomplished with the 

ANFIS Editor GUI using the so-called testing data set, and its use is described in a 

subsection that follows. We can also use another type of data set for model validation in 

anfis. This other type of validation data set is referred to as the checking data set and this set 

is used to control the potential for the model over fitting the data. When checking data is 

presented to anfis as well as training data, the FIS model is selected to have parameters 

associated with the minimum checking data model error. 

One problem with model validation for models. constructed using adaptive techniques is 

selecting a data set that is both representative of the data the trained model is intended to 

emulate, yet sufficiently distinct from the training data set so as not to render the validation 

process trivial. If we have collected a large amount of data, hopefully this data contains all 

the necessary representative features, so the process of selecting a data set for checking or 

testing purposes is made easier. However, if we expect to be presenting noisy measurements 

to the model, it's possible the training data set does not include all of the representative 

features we want to model. 

The basic idea behind using a checking data set for model validation is that after a certain 

point in the training, the model begins over fitting the training data set. In principle, the 

model error for the checking data set tends to decrease as the training takes place up to the 

point that over fitting begins, and then the model error for the checking data suddenly 

increases. 

3.8 Constraints of anfis 

Anfis is much more complex than the fuzzy inference systems discussed so far, and is not 

available for all of the Muzzy inference system options. Specifically, anfis only supports 

Sugeno-type systems, and these must have the following properties: 

•Be first or zeroth order Sugeno-type systems. 



-Have a single output, obtained using weighted average defuzzification. All output 

membership functions must be the same type and be either linear or constant. 

-Have no rule sharing. Different rules cannot share the same output membership function, 

namely the number of output membership functions must be equal to the number of rules. 

-Have unity weight for each rule 

An error occurs if the FIS structure does not comply with these constraints. Moreover, anfis 

cannot accept all the customization options that basic fuzzy inference allows. That is, we 

cannot make our own membership functions and defuzzification functions; we must use the 

ones provided. 

3.9 ANFIS Editor GUI 

The basic structure of the type of fuzzy inference system that we've seen thus far is a model 

that maps input characteristics to input membership functions, input membership function to 

rules, rules to a set of output characteristics, output characteristics to output membership 

functions, and the output membership function to a single-valued output or a decision 

associated with the output. We have only considered membership functions that have been 

fixed, and somewhat arbitrarily chosen. Also, we've only applied fuzzy inference to 

modeling systems whose rule structure is essentially predetermined by the user's 

interpretation of the characteristics of the variables in the model. 

In this section we discuss the use of the function anfis and the ANFIS Editor GUI in the 

Fuzzy Logic Toolbox. These tools apply fuzzy inference techniques to data modeling. As we 

have seen from the other fuzzy inference GUIs, the shape of the membership functions 

depends on parameters, and changing these parameters will change the shape of the 

membership function. Instead of just looking at the data to choose the membership function 

parameters, we will see how membership function parameters can be chosen automatically 

using these Fuzzy Logic Toolbox applications. 

Suppose we want to apply fuzzy inference to a system for which we already have a 

collection of input/output data that we would like to use for modeling, model-following, or 

some similar scenario. We don't necessarily have a predetermined model structure based on 

characteristics of variables in the system. There will be some modeling situations in which 
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we can't just look at the data and discern what the membership functions should look like. 

Rather than choosing the parameters associated with a given membership function arbitrarily, 

these parameters could be chosen so as to tailor the membership functions to the input/output 

data in order to account for these types of variations in the data values. This is where the so-

called neuro-adaptivelearning techniques incorporated into anfis in the Fuzzy Logic Toolbox 

can help. 

The basic idea behind these neuro-adaptive learning techniques is very simple. These 

techniques provide a method for the fuzzy modeling procedure to learn information about a 

data set, in order to compute the membership function parameters that best allow ' the 

associated fuzzy inference system to track the given input/output data. This learning method 

works similarly to that of neural networks. The Fuzzy Logic Toolbox function that 

accomplishes this membership function parameter adjustment is called antis.. 
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Fig 15 shows the Graphic user interface of ANFIS: Editor. 

By this GUI(graphic user interface): 
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'Load data (training, testing, and checking) by selecting appropriate radio buttons in the 

Load data portion of the GUI and then clicking Load Data... The loaded data is plotted on 

the plot region. 

•Generate an initial FIS model or load an initial FIS model using the options in the Generate 

FIS portion of the GUI 

'View the FIS model structure once an initial FIS has been generated or loaded by clicking 

the Structure button 

'Choose the FIS model parameter optimization method: backpropagation or a mixture of 

back propagation and least squares (hybrid method) 

•Choose the number of training epochs and the training error tolerance 

•Train the FIS model by clicking the Train now button This training adjusts the membership 

function parameters and plots the training (and/or checking data) error plot(s) in the plot 

region. 

'View the FIS model output versus the training, checking, or testing data output by clicking 

the Test Now button 

This function plots the test data against the FIS output in the plot region. We can also use the 

ANFIS Editor GUI menu bar to load FIS training initializations, save the trained FIS, open a 

new Sugeno system, or open any of the other GUIs to interpret the trained FIS model. In this 

work the ANFIS Editor is used for designing the controller for single link manipulator and 

three link SCARA manipulator.The training data(such as error, change in error(input sgnal) 

and control signal(output signal))is collected from the conventional controller model as 

shown in fig 36. In this section, the tracking and adaptability features of the ANFIS control 

applied to a three-link SCARA manipulator are tested using simulation. Figure. 17 and 18 

show the architecture of the fuzzy system with the ANFIS approach The ANFIS 

methodology is used to estimate the parameters of the membership functions and the 

consequent functions. The nine rules are used to model the fuzzy part of the ANFIS 

controller as shown in Figure 18, 19 and 20 show the three membership functions for each 

linguistic variable. 

The fuzzy rules generated by the ANFIS method are shown in Figure.21 .Figure. 

23 and 24 show the results of applying the ANFIS methodology with the training data & 
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trained results. The ANFIS structure is trained for 50 epochs and the performance (MSE) is 

found to be 0.0064759. Figure.22 the fuzzy rule viewer of MATLAB, which shows the use 

of the fuzzy system for calculating the output of the model for specific input values. Figure. 

37 and 43. shows the response of the point to point control to a sequence of -step (constant) 

input signals (we use 400 samples) The figure.31, 39 and 41 show the simulation model of 

three-link SCARA Manipulator Figure. the response of the three-link SCARA manipulator 

for continuous path control with the sine wave trajectory. 

Finally, the figure.42, 45 and 47, 49,51 show the plot of the difference between 

both the conventional PD controller and the signal by the ANFIS.. The results are compared 

with a classical PD controller and with an ANFIS (sugeno) controller, to measure how much 

the adaptive fuzzy approach could improve the performance. Of course, the neuro-fuzzy 

controller (designed with ANFIS) was better in tracking and adaptability than the other 

controllers. Another advantage of this method over classical quantitative controllers is that it 

does not require a fixed sampling time. Therefore, the proposed design confirms the fact that 

ANFIS control is relevant. to the control fast of non-linear processes such as robot 

manipulator controls where quantitative methods are not always appropriate. From the 

response shown in figure 42, 45,47, ,49, ,51,52, and 53 it is very clear that ANFIS controller 

gives no tracking error,i.e the response of the desired trajectory is almost superimposed with 

the actual one, Thus the ANFIS controller gave the best results when compare to 

conventional PD controller. 

In this work, the feasibility of ANFIS control for a three-link SCARA manipulator has been 

proved and illustrated by simulation. The best parameters for the fuzzy controller were 

determined by using the ANFIS methodology and by using simulations of the SCARA 

manipulator dynamics. A simulation tool (i.e., Fuzzy logic toolbox (ANFIS)) was used to 

validate experimentally the tracking ability and the insensibility to plant parameter changes. 

The ANFIS controller presented very interesting tracking features and was able to respond to 

different dynamic conditions. In addition, the fuzzy control computation is very inexpensive, 

and this regulator could be used for the control of machine tools and robotics manipulators 

[11] without significantly increasing the cost of the drive. The only extra cost is for the 

optical encoder. Another advantage of this method over classical quantitative controllers is 
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that it does not require a fixed sampling time. Therefore, the proposed design confirms the 

fact that fuzzy control is relevant to the fast control of non-linear processes such as SCARA 
manipulator control where quantitative methods are not always appropriate. Thus, the results 

obtained using the ANFIS controllers are encouraging when compared to conventional PD 

controller 
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4.2 Dynamic model of Single link Manipulator: 

Fig 25:The scheme of single link manipulator 

The single link assumed to be a thin homogenous rod of mass m and length t.In this case 

there is no velocity coupling terms due to coriolis and centrifugal force because there is only 

one axis 

The equation of motion for the arm is 

X24' = —10sino-23-u  2 
(38) 

Where 0  is the angle of the arm, and Z is the torque supplied by the DC motor. 

The objective is to train the controller so that the arm tracks the reference 

trajectory. 

Gravity 

Fig 26: Simulink Model of Single Link Manipulator. 
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CHAPTER- 4 

DYNAMICS OF ROBOT MANIPULATOR 

4.1 Introduction 

The manipulator system is a classic control problem that is used industries around the world. 

it is a suitable process to test prototype controllers due to its high non-linearities and lack of 

stability. In this chapter, the dynamical equations of the system will be derived, the model 

will be developed in simulink and basic controllers will be developed. The aim of developing 

a Robot system in simulink is that the developed model will have the same characteristics as 

the actual process. It will be possible to test each of the prototype controllers in the simulink 

environment. Before the robot model can be developed in simulink, the system dynamical 

equations will be derived using `Lagrange Equations'. [1] The Lagrange equations are one of 

many methods of determining the system equations. Using this method, it is possible to 

derive dynamical system equations for a complicated mechanical system such as the Robot 

manipulator. The Lagrange equations use the kinetic and potential energy in the system to 

determine the dynamical equations of the robot system. 

In this work, two kinds of robot systems are considered viz, Single link robot manipulator 

and Three link SCARA manipulator. The SCARA model chosen in this work has two 

revolute joints and one prismatic joint (in the configuration RRP) to position the wrist. 

However, for a SCARA robot, the axes of all three joints are vertical, as shown in fig 27 the 

first revolute joint swings the arm back and fourth about a base axis that can also be thought 

of as a vertical shoulder axis. The second revolute joint swings the forearm back and fourth 

about. a vertical elbow axis.. Thus, the two revolute joints control motion in a horizontal 

plane. The vertical component of the motion is provided by the third joint, a prismatic joint 

which slides the wrist up and down. 
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4.2 Dynamic model of Single link Manipulator: 

Fig 25:The scheme of single link manipulator 

The single link assumed to be a thin homogenous rod of mass m and length l.in this case 

there is no velocity coupling terms due to coriolis and centrifugal force because there is only 

one axis 

The equation of motion for the arm is 

-10sin4-2 -u 
~t 

dt' 	 (38) 

Where'i' is the angle of the arm, and u is the torque supplied by the DC motor. 

The objective is to train the controller so that the arm tracks the reference 

trajectory. 

Gravity 

Fig 26: Simulink Model of Single Link Manipulator. 
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4.3 Dynamic model Of Three link SCARA Manipulator 

x 

Joint 1 

Fig 27: The arrangement of three-link SCARA manipulator in three-dimensional 

co-ordinates. 

4.3.lBackground: Mechanical and mechatronic system often result in an implicit second 

order model description of the type 

M( )a = (~[, , i, t) 	 (39) 

with a state-dependent mass matrix M, an acceleration vector q and a generalized force 

function&. Simulators often impose restrictions for this type of model descriptions. Only a 

few simulators accept the description as given above, some allow a description as an implicit 

first order system. 

and some require the explicit description given. by 
(40) 
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The symbolic derivation of the explicit form is only possible with reasonable effort for very 

small systems or systems with a simple-structured mass matrix. Therefore it is common 

practice to carry out the inversion of the mass matrix numerically. 

Another interesting question is, whether a simulator that permits implicit descriptions 

breaks the implicit loop before integrating the states or uses an implicit integration scheme to 

solve the system directly. Few simulators offer so-called DAE solvers for the second method, ti 
sometimes with restrictions with respect to other features like linearization, event handling 

etc. In general, advanced features like implicit description, DAE solvers, algebraic loop 

solvers etc. result in higher computation times and in some computational overhead. 

Therefore it has to be checked whether it is worth to use such a tool or to work 

"conventionally" by setting up an explicit system description. In order to investigate this 

class of problems, a model for a SCARA robot (Selective Compliance Assembly Robot Arm) 

as shown on the title page of this SNE issue was chosen. Fig. 27 

4.4 Mechanical system of three link SCARA (Task a) 

A three-axis SCARA robot as indicated in Fig. I is investigated. This robot type has 

two vertical revolute joints and one vertical prismatic joint. The axes of all three joints are 

vertical (parallel to z-axis in fig 27). The joint vector 4 consists of the joint angle q, and q, 
and the joint distance q3 . 

T 	d. 	d q  
(41) 

The equations of motion of can be written in the following compact form 

m(q) q + h(q,  9 )9 + g(q) = 
(Or) 

m(q)q = b (Implicit equation) 	 (42) 
The mass matrix M is block —diagonal and can be easily inverted symbolically. 

mall  ma12  0 
M= ma 21  ma 22  0 	 (43) 

0 0 ma33 
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Several elements of M depend on the joint variable q2 

mal 1=01 +202cos(g2)+03, 

mad 2 = 02co s(g2)+03, 

ma7 I = ma l 2, ma22 = 03 (44) 

ma33 = m3L +03motu3' 

The. calculation of the moments of inertia €, is based on the assumption that the two 

physical links are rods of mass m, , mZ with homogeneous mass distribution along the 

length L, , L, . The stator mass of the vertical drive motor is m3A , the moment of inertia of the 

rotating parts is 03,„0, and the mass of the load is m,c . 

+m 	
J

2 +m3 L , 	(2~Ze2=+m3]LIL2, 
 (45) 

193 =(m2 +m3 L2,m3A+m3L 

The right-hand side of the dynamic equation is 

b=(bl,b21b3 )T , 

b1 =  T1 + 02 (2q l q 2 +q 2 Jsin(q 2' 	 (46) 

b 2 =T2 _e2g1 sin(g2),b3=T3 —m3Lg 

with the joint torques T, (t), T2 (t) and the joint force T, (t). Numerical data for the geometric 

and mass parameters of the SCARA robot are given below: 

ml =8kg,L1 =0.4m,g=9.81m/s2, 

m2 =6kg,L2 =0.3m,u3 =1047m 1, 

m3A = 2.5kg,m3L = 0.5kg, 03mot = 91.106kgm2 

4.5 Servo. Motor and PD-Control for three link SCARA (Task b) 

The electrical relationship of the measure of a robot servo motor is given by a first 

order differential equation. 

_ (Uai — kTiuigi —Raiiai ) i=1 2,3 
	

(47) 
ai 
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Ial _ [—In~ax ~ I- ~ Imax 1,i =1,2,3 	 (48) 

where U a; (t) is the applied armature voltage. The resulting armature current I, is limited to 

maximum value I; that can be calculated from the maximum permitted torque Ti" 

—1 
I max = T max 	k 	, i =1,2,3 1 	t 	2 Ti (49) 

The joint torque (force) Ti of a motor is proportional to the armature current IQ; and given by 

Ti = ut 2 kTil ai 	i 1,2,3 	 (50) 

Numerical values for the motor constant k, the gear ratio u1 , the resistance R; and the 

inductance L; for each motor are given below. Note that u3 includes the transformation from 

the rotational to the linear motion and is not dimensionless. 

kTl = 0.4Vs, 

R ai = 3.901 m, 

La i = 7.3mH, 

ul = 130, 

T max = 2.3Nm, 

k T2 = 0.25Vs, 
R a2 = 50 Ohm, 

La2 = 25mH, 

u2 =100, 

T2 l = 0.6Nm, 

k t3 = 0.4Vs, 

R a =40 Ohm, 
La3 = 25mH, 

u3 =1047m - 1 

T3 ax = 0.6Nm 

In order to control the point —to-point motion of the robot a rather primitive single —axis PD-

control is employed. For a given target joint position vector q position errors (4; - q; ) can be 

calculated. From the position errors and the joint velocities q,. the control voltage U 0; is 

determined by 

U i -P1 (g i —q i )—D,i=1,2,3 
Uai =[_Umax ~ U. <Umax]1,2;3. 

Proportional gains P, and derivative gains D ; are given for each controller. In regular 

operation mode the armature voltage shall be limited byU;°,g . However, in an emergency 

situation Unux ," may be. 

(51) 
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P, =1000V, 	P, 1000V, 	P3 = 5000V, 

D, = IOVs, 	D, = 25Vs, 	D3 =1OVs, 

U ; K.'^ = I OOV, UZ' eg =75V, 	U,"ug =90V, 

U;114IX = 230V, U;;;~x = 230V, U; ar = 230V 

Task a) Modelling method. There are several ways to formulate and implement the model, 

depending on the simulator's features, e.g. 

i) "manual" symbolic manipulations for setting up explicit model equations, 

implementation of the explicit model description, 

ii) derivation of explicit equation using software for symbolic calculations, 

implementation of the explicit model description, 

iii) using special features of the simulator for deriving and simulating the equations 

(mechatronic modules, etc.), 

iv) Implementation of the implicit equations, using algebraic loop breaking features 

of the simulator. 

v) Implementation of the implicit equations, using Matlab 6.5/simulink. 

The simulator's features for this type of models should be sketched briefly by giving (parts 

of) the model description of at least one (but preferably of some) of .the above given 

methods. In case of alternative modeling approaches the effectiveness should be compared, 

taking into account preparation time, necessary knowledge for certain alternatives, etc. 

Task b) Simulation of a point-to-point motion, controlled by-a single axis PD control shall 

be performed. No obstacle is present for this task. 

Initial values at t = 0: 

q1 =q2 =q3 = 0, 41 =42 =43 =0 

Target (terminal) values at 1: 

Si =2,q, =1,q3 =0.3, 

As results graphs of the joint positions is plotted. 
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4.6 Simulink model of three link SCARA manipulator. 

 

Fig 28:The simulink model of three link SCARA Manipulator. 

The dynamic equation of the robot is given by 

m(q) q + h(q, q)q + g(q) = r 

(OR) 

rn(q)q = b (50) 

The overall dynamic model of a three-link SCARA robot without controller and 

actuator dynamics is designed by using simulink tool of MATLAB 6. as follows, 

.4  
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Pr. d ct2 

Fig 29: Simulink representation of Mass matrix of the three link SCARA 

S 	X * =33 

 Sum3 
 Product4 

From6 

Fig 30: Simulink representation of block ma of Mass matrix. 
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h3 

nl =T + G 2 (241 ~! 2 + 2) sin (q 2. ), 
b2 T 2 —G 2 4 sin (q2 ), b3 = T3 — m3L S 

Fig 31: Simulink representation of b (right side) block of Dynamic equations. 

From 
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From 

From? 

b1  =r1  +02(24142+g2)sin(q2), 
b2  =12  — O 2 q 1 sin  (q2 ), b3 = 7'3 — m3L g 

Fig 32: Simulink models of b vector. equations. 
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Fig 33: Simulink Model of Three Link SCARA Manipulator with controller and 

actuator. 
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Fig 34: Simulink model of Servci motor dynamics 
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CHAPTER 5 

DYNAMIC CONTROL OF SINGLE LINK MANIPULATOR: 

5.1 Point to point control 
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Fig 36: shows the simulation of single link manipulator using conventional 

PD, ANN and ANFIS controller. 

The figure 34 shows the simulation arrangement of single link manipulator with three type of 

controller namely, Conventional PD, Neuro control and ANFIS control. This model is developed 

by using simulink, neural network toolbox and ANFIS (fuzzy logic Toolbox). The target value 

one radian is chosen to be the desired point to reach by the manipulator from initial point zero. 

All the three output of the controllers are connected to multiplexer to have a visual display of 

three-controller output. 
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5.2 Response of single link manipulator 

Fig: 37 shows the response of single link manipulator with Conventional PD, 

ANN and ANFIS controller. 

Simulation studies were carried out to evaluate the performance of the NN controller. They 

were carried out in two parts. The first part is to evaluate the trajectory tracking capability of 

the controller for single link manipulator. The second part is to compare the performance of 

the controller with a conventional Proportional Derivative (PD) controller. Figure 33 shows 

the simulation result of single-link manipulator with neurocontroller for a sine wave joint 

angle trajectory. The solid line represents the desired input and the dotted line represents 

actual output. From Figs.33 and 35 it can be seen that the difference between actual joint 

angle trajectory and desired trajectory is almost zero. As'expected, the network was found to 

be fully trained. Significant improvement can be observed as the broken line closely follows 

the solid line from this it is concluded that the errors in the links are almost minimum 
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Continuous point control 

5.3 Simulation diagram of single link manipulator 
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Fig 38: Simulation of single link manipulator using Conventional PD, ANN 

and ANFIS Controller 

. The figure 38 shows the simulation arrangement of single link manipulator with three type 

of controller namely, Conventional PD, Neuro control and ANFIS control. This model is 

developed by using simulink, neural network toolbox and ANFIS (fuzzy logic Toolbox). A 

PD controller does not use the dynamic model of the controlled robot manipulator and is 

there for easy to implement, simple to compute, and also robust against dynamic 

uncertainties of the robot manipulator the disadvantage, on the other hand , is its relatively 

poor tracking performance in comparison with controller using accurate robot dynamic 

models such as computed torque controller. The sine wave of unit amplitude is chosen as 

desired trajectory of the manipulator from initial point zero. All the three output of the 

controllers are connected to multiplexer to have a visual display of three•controller output. 
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Hence, from the result, the Neuro fuzzy output is superior when compare to other two 

controllers. 

5.4 Response of single link manipulator 

Time(s) 

Fig 39: Response of joint angle trajectory (sine) of single link manipulator with 

conventional PD, ANN and ANFIS controller. 

Hence, the response of ANFIS controller is almost very near to the desired joint angle 

trajectory. This is due to the genesis of ANFIS and also the Adaptive capabilities and 

learning ability of it. From the figure, it infers that the neuro-fuzzy controller response is 

faster in comparison with the neuro controller; moreover, the desired trajectory is almost 

coincident with the actual trajectory. Whereas the PD control could not able to follow very 

exactly because of no proper method to choose the optimal value of proportional and 

derivative constant. 
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CHAPTER-6 

DYNAMIC CONTROL OF THREE-LINK SCARA MANIPULATOR: 

Point to point control 
In point to point control method, the,end effector of the robot moves to a sequence of discrete 

point in the workspace. The path between the points is not explicitly controlled by the user. 

Point to point motion is useful for operations, which are discrete in nature for example, spot 

welding, pick-and-place, loading, and unloading, is an application for which point-to-point 

motion of the tool is all that is required [18]. The Figure shown below is the simulation. 

model of the Three link SCARA manipulator with PD controller, this controller can perform 

very well under normal condition, But in case of parameter variation and other uncertainties 

it can not do well its operation and hence it detroites the over all system performance 

6.1 Simulation model of three-link SCARA manipulator with conventional 

controller 

rwitiz 	 D 

Fig 40: The internal block of PD controller of a three-link SCARA manipulator. 
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Fig 41: Simulation model of a three-link SCARA Manipulator with conventional PD 

Controller. 

The Figure 41 shows the simulation model of a three-link SCARA manipulator for point to 

point control This model is developed by using the dynamic equations and Simulink 

package of MATLAB6.The initial point is assumed to be zero and the final joint angles are 2, 

1, 0.6, .Control section is a PD controller internally it has summer and other terminals from 

the output of the dynamic model as shown in fig 40.The PD controller is tuned for achieving 

the desired output, but due to lack of intelligence like Neuro-Fuzzy and ANN is could not 

able to cope up with the structured uncertainties and parameter variations. The output of the 

PD control goes to the servo motor control and actuates the joints of the SCARA manipulator 

to follow the desired point to point, from the initial value. 
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6.2 Response of Three link SCARA Manipulator 

Time(s) 

Fig 42: Simulation results of three link SCARA Manipulator with conventional PD 

Controller. With initial point (0,0,0) to target point (2, 1, 0.6). 

The Figure shows the response of the point-to-point control of SCARA manipulator the link 

two has some initial transient due to sudden change in inertia and momentary actuating 

signals to the joints this effect can be overcome by using neuro control or ANFIS control. 

The sine trajectory is chosen for the joint 1 and joint 2 and a step of 0.6 is chosen for 

prismatic joint a desired input, to evaluate the performance under dynamic condition. 
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6.3 Training results of ANN 

The neural network tool box provide a set of blocks we can build in simulink or which can 

be used by the function gensim to generate the simulink version of any network we have 

created in Matlab. Here the single layer neural network is trained (back propagation 

algorithm) for 10000 epochs, with 16 hidden neurons and learning rate of 0.1 the 

performance indices (mean square error) after training is found to be 0.000111. 

This index is very good for this application. Hence, the generated simulink block from this 

program is used inthe simulation model for evaluating the performance of the robot system. 
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Fig 43: The training results of neural network. 
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6.4 Simulation of Three link SCARA manipulator with Neuro controller 
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Fig 44: The simulink model of neuro controller for a three link SCARA Manipulator 

The figure shows the simulation model of three-link SCARA manipulator using neural 

network. The trained ANN network is obtained in the form of simulink block is used as a 

neuro controller for each link of the manipulator The output of the neuro network gives the 

control signal to the robot actuators and also neural network act as a nonlinear compensator 

during uncertainties The neural network is trained for the given trajectories after attaining 

the desired performance index .the neural network will work as a assisting member with 

conventional PD controller during uncertainties and parameter variation. The tracking 

performance of this manipulator is evaluated by using its response .From the response it 

concludes that the neural network follows almost closely to the desired value. Figure 44 

shows the response of three link SCARA manipulator with Neuro control from the graph it 

infers that the neural network has good tracking performance, but the problem is to have 

judicious data for training with properly chosen training parameters .Simulation result of 

three-link SCARA manipulator with neurocontroller for joint angles 



6.5 Response of Three link SCARA manipulator with Neuro controller of 

Point to Point control 

Fig 45: The response of point-to-point control of three link SCARA Manipulator with 

The figure shows the response of the three link SCARA manipulator for point to point 

control with initial values for three joint are (0,0,0) and the target value is (2,1,0.6) radians 

the trained neural network try to use the recall phase(generalization and, memorization 

ability) and it produce a desirable control signal this signal actuates the servomotors of the 

joints from the response it is very clear that neural network has good tracking ability but it 

requires a judicious data and training parameter to obtain the satisfactory . The Fuzzy logic 

can` also be used to map complex nonlinear relations by a set of IF-THEN rules. The 

membership functions are designed by intuitive human reasoning. This poses three problems. 

One, for different control application a new set of membership functions have to developed 

and second, latent stability problem[21] and third, once these membership functions are 

developed and implemented there is no means of changing them. This means fuzzy logic 

lacks a learning function Therefore this work is again focused on the area of neural and fuzzy 

logic together to overcome the drawbacks of neural network as well as-fuzzy logic. 
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6.6 Simulation of Three link SCARA manipulator with Neuro-Fuzzy 

controller. 
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Fig 46: Simulink Model of Neuro Fuzzy controller for three-link SCARA manipulator 
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6.7 Response of Three link SCARA manipulator with Neuro-Fuzzy controller 

of Point to Point control 

Fig 47: The response of point to point control (2, 1, and 0.6) of three link SCARA 

manipulator with Neuro Fuzzy controller. 

From the graph it infers that the ANFIS control has good tracking performance, which 

combines the advantage of two methodologies namely, Fuzzy logic and neural network he 

solid line represents the desired input and the dotted line represents actual output. From Fig 

47.It can be seen that the difference between actual joint angle trajectory and desired 

trajectory is almost coincident in the graph. As expected, the ANFIS network was found to 

be fully trained. Significant improvement can be observed as the broken line closely follows 

the .solid line; this is due to the function approximation capabilities and adaptability features 

of ANFIS network. The ANFIS network provides the desirable torque signal to cope with 

uncertainties .Thus it makes the joint angles to follow the desired joint angles. 
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Continuous path control 

6.8 Simulation of Three link SCARA manipulator with conventional 

controller 

rr. 1tC . WC910 

Fig 48: Simulink Model of PD controller for three link SCARA manipulator. 

The figure 48 shows the simulation arrangement of three link SCARA manipulator with 

conventional PD control of values as follows 

P, =1000V, 	PZ  =1000V, 	P3  = 5000V, 
D, =10Vs, 	D2  =25Vs, 	D3  =1 OVs, 

U,' ms's =100V, U 	= 75V, 	U eg = 90V, 

U;'nmx  = 230V, U;nux  = 230V, U' = 230V 
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6.9 Response of Three link SCARA manipulator with conventional controller 

Fig 49:Shows the joint angle trajectory response of SCARA Manipulator 

with Conventional PD controller. 

This figure 49 shows the response of continuous path control of three link SCARA manipulator 

with joint angle 0.8sin(t), 0.5sin(t) and the joint distance 0.3m for the third link. The PD control 

shows some deviation from the desired trajectory, this because of the selection of PD vaules does 

not depend on the dynamic model, hence due to approximation in the dynamic model lead to the 

deviation. Hence, this problem can be overcome by using the intelligent control. 
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6.10 Simulation of Three link SCARA manipulator with Neuro 

controller 
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Fig 50: Shows the simulink model of Neuro controller for three link SCARA 

Manipulator. 

The figure 50 shows the simulink model of SCARA manipulator with Neuro control The 

neural network is trained for the given trajectories after attaining the desired performance 

index .the neural network will work as a assisting member with conventional PD controller 

during uncertainties and parameter variation. The tracking performance of this manipulator is 

evaluated by using its response .From the response it concludes that the neural network 

follows almost closely to the desired trajectory. Figure 51 shows the response of three link 

SCARA manipulator with Neuro control from the graph it infers that the neural network has 

good tracking performance, but the problem is to have judicious data for training with 

properly chosen training parameters .Simulation result of three-link SCARA manipulator 

with neurocontroller for a sine wave joint angle trajectory. 



6.11 Response of Three link SCARA manipulator with Neuro controller 

Fig 51: Response of joint angle trajectory of three-link SCARA manipulator with 

neuro controller 

The solid line represents the desired input and the dotted line represents actual output. 

From Fig 51 it can be seen that the difference between actual joint angle trajectory and 

desired trajectory is almost merged in the graph. As expected, the network was found to be 

fully trained. Significant improvement can be observed as the broken line closely follows the 

solid line; this is due to the function approximation capabilities of RBF neural network in 

conjunction with the conventional PD controller. The RBF neural network provides the 

desirable torque signal to cope with uncertainties .Thus it makes the joint angles to follow the 

desired joint angle trajectory. 
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6.12 Simulation of Three link SCARA manipulator with Neuro-Fuzzy 

controller 
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Fig 52: Show the simulink model of SCARA Manipulator with Neuro fuzzy controller. 

Figure 52 shows the feasibility of ANFIS control for a three-link SCARA manipulator has 

been proved and illustrated by simulation. The best parameters for the fuzzy controller were 

determined by using the ANFIS methodology and by using simulations of the SCARA 

manipulator dynamics. A simulation tool (i.e., Fuzzy logic toolbox (ANFIS)) was used to 

validate experimentally the tracking ability and the insensibility to plant parameter changes. 

The ANFIS controller presented very interesting tracking features and was able to respond to 

different dynamic conditions. In addition, the fuzzy control computation is very inexpensive, 

and this regulator could be used for the control. of machine tools and robotics manipulators 

[11] without significantly increasing the cost of the drive. The only extra cost is for the. 

optical encoder. Another advantage of this method over classical quantitative controllers is 

that it does not require a fixed sampling time. Therefore, the proposed design confirms the 

fact that fuzzy control is relevant to the fast control of non-linear processes such as SCARA 

manipulator control where quantitative methods are not always appropriate. Thus, the results 



obtained using the ANFIS controllers are encouraging when compared to conventional PD 

controller. 

6.13 Response of Three link SCARA manipulator with Neuro-Fuzzy 

controller 

Fig 53: Show the joint angle trajectory response of the Three-Link SCARA 

manipulator with Neuro Fuzzy controller. 

From the graph it infers that the ANFIS control has good tracking performance, which 

combines the advantage of two methodologies namely, Fuzzy logic and neural network he 

solid line represents the desired input and the dotted line represents actual output. From Fig 

53 it can be seen that the difference between actual joint angle trajectory and desired 

trajectory is almost coincident in the graph. As expected, the ANFIS network was found to 

be fully trained. Significant improvement can be observed as the broken line closely follows 

the solid line; this is due to the function approximation capabilities and adaptability features 

of ANFIS network. The ANFIS network provides the desirable torque signal to cope with 

uncertainties .Thus it makes the joint angles to follow the desired joint angle trajectory. 
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CHAPTER-7 

THE VISUAL DISPLAY OF THREE-LINK SCARA MANIPULATOR 

7.1 Animation 

Animation is the art of moving an object on the computer screen. Twining 

is the art of changing the shape of an image. We might have seen a lot of animation in 

cartoon films and video games, Twining is very common in advertisements. In this chapter 

we will discuss, in brief, how animation and twining are possible in computer graphics. 

Animation is an optical illusion. We can not give continuous motion to an image. 

But we can flash a number of images quite rapidly in a certain manner so that the viewer will 

get the impression of a moving image. Suppose an image is placed a some position of the 

screen, shown for a fraction of a second, erased rapidly and redrawn at a new location 

slightly shifted from its original location. Human brain require time to register the change in 

position of the image If the process is completed fast enough, because of persistence of 

vision, the human brain will register the shift in position of the image as motion This is the 

principle of all animations. 

7.2 The steps for producing animation is given below 

1. Generate the image at some location X 

2. Wait for some time (a few mill seconds) 

3. Erase the image from the current location. 

4. Redraw the image at a new location slightly from the original location 

5. Repeat step 2 through 4 as long as required. 

For animation we will use function delay () defined in header file dos.h .the function may be 

called as delay (k). 

Using the inverse kinematics of SCARA manipulator, and perspective projection of the frame 

of the SCARA manipulator in three dimensional co-ordinate enables to develop the visual 

display of SCARA Manipulator in C++.[l 8] 
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CHAPTER-8 

A PRATICAL APPROACH TO IMPLEMENT A NEURO FUZZY 

TECHNIQUE. 

8.1 Introduction 

Fuzzy logic can be used to map complex nonlinear relations by a set of IF-THEN rules. The 

membership functions are designed by intuitive human reasoning. This poses two problems, 

one for different control application a new set of membership functions have to developed 

and second, once these membership functions are developed and implemented there is no 

means of changing them. This means fuzzy logic lacks a learning function. Neural network 

on the other hand self-organizes the mapping relationship by learning. So by integrating 

neural networks and fuzzy logic it is possible to overcome these problems. Implementing this 

algorithm on a TMS320 DSP chip is discussed. Controlling a three link manipulator is taken 

as an example to evaluate the controller. 

The object of this work is to develop an algorithm to implement such a type of controller, for 

a specific control problem. In order to do such a task, it is necessary to have a large 

computing power. The TMS320C30 digital signal processor from Texas Instrument [24], 

with its powerful instruction sets, high-speed number crunching capabilities, innovative 

architectures, is ideally suited for such an application. There are commercially available 

boards based on TMS320C30 chips, which can be installed on a PC. A board. form DSP 

Research [109] has been utilized for this purpose. The software for the control algorithm can 

be developed in C-language and can be compiled and down loaded to the DSP board. 

O'INCA 1131 software is used to train the neural network. A three link SCARA robot is used 

as an object system. A model of a three link SCARA manipulator is used to test the 

controller. The controller objective is to move the end-effector of the three link SCARA 

manipulator to the desired position with least oscillation and error. To perform this, a two- 

71 



level hierarchical controller structure is used as discussed in [21]. This structure has two 

fuzzy controllers, one a feature extractor which is a higher level and another is the low level 

controller producing the desired torque. The NN can be used to adapt both the fuzzy 

controller. However here we propose only adapting the lower level controller. 

8.2 Self-organizing Neuro-Fuzzy Controller 

The learning capability of the neural network can be made use of in designing the fuzzy 

controller. The self-organizing fuzzy controller is one such combination of a neural network 

and a fuzzy controller. Figure 54 shows a schematic diagram of the system forming the self-

organizing fuzzy controller. The aim of this system is to automatically form the fuzzy 

controller. It uses two neural networks of the back propagation learning type, NNI and NN2. 

NNI acts as a classifier of the dynamic responses of the object system being controlled 

(robot system). NN2, set in judge- ment mechanism 2, has knowledge of the dynamic 

characteristics of the object system. Judgment mechanism 2 has a self-tuning mechanism to 

automatically 

determine the normalizing values of the membership functions to control the object system 

adequately. In this particular case NN1 classifies the error in the trajectory of the end effector 

to several typical pat- terns such as a similar pattern to the desired response or an oscillating 

and diverging pattern or an oscillating and slowly converging pattern or any other pattern. 

The result of the classification is• sent to judgment mechanism 1. NN2 is made to learn the 

dynamic characteristics of the object system through pairs of 
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Fig 54: Shows the schematic of self-organizing fuzzy controller. 
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input and system response. NN2 can then be used to simulate the object system in cases 

where it is too risky to control the object system with an incomplete fuzzy controller. The 

judgment mechanism I decides whether a next fuzzy rule has to be formed or not and 

whether tuning operation is needed or not for the scaling of member- ship functions at the 

currently established rules. Next the labels of the fuzzy variables in the antecedent part of the 

fuzzy control rule are determined from the information of the dynamic response of the object 

system and the rule is integrated using the fuzzy variable in the consequent part whose label 

is calculated in the judgment mechanism 2. If there are no rules at the initial state in the 

fuzzy controller, then the judgment mechanism sets up some initial control value to control 

the object system. The object system is controlled by the established fuzzy rules and the 

information of the dynamic response is sent to NN1. The self tuning operation of the 

normalizing values for currently established fuzzy control rules is repeated until the dynamic 

response is classified to desired response by NN1. If the dynamic response of the object 

system is classified to the desired response by NNI, the judgment mechanism 1 decides to 

form a next new fuzzy control rule. The judgment mechanism 2 mainly plays a role in 

determining the quantities for the label of the fuzzy variable in the consequent part and in 

tuning values for the fuzzy variables in both the antecedent and consequent parts. 

8.3 Hardware and Software 
A fuzzy controller consists of mainly three parts namely, afuzzification  of the input signals, 

an inferencing mechanism and a defuZzification process to produce the crisp output. There 

are several softwares available in the market which can be implemented for developing a 

fuzzy controller. However, in order to make it adaptive fuzzy "controller, it is necessary to 

develop the entire code, so as to have mechanism to update the rules or tune the membership 

functions. The block diagram of the implementation scheme is shown in Figure 55. A Texas 

Instruments TMS320C30 DSP chip is used for real-time control. The TMS320C30 [108] 

DSP is a third generation signal processing chip from Texas Instruments. The chip 

architectures, featuring multiple buses, provide a high degree of parallelism. It has a rich 

instruction set, with many -special digital signal processing instructions. It can perform 

parallel multiply and add operations on integer or floating point data in a single clock cycle. 
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The TIGER 30 board [25] from DSP research incorporates a TMS320C30 running at its 

maximum clock speed of 40 MHz, yielding a maximum throughput of 40 MFLOPS. The 

TIGER 30 Development Systems includes an optimizing C compiler, supplied by Texas 

Instruments. The C Compiler generates efficient object code, using the parallel instructions 

of the TMS320C30. The output of the compiler is TMS320C30 assembly language source 

code, making it easy to optimize critical sections of the code. Also included is a debugging 

environment, which supports multiple source files and multiple watch variables, including 

auto-variables. The TM320C30 has two memory buses, the primary bus and the expansion 

bus. On the primary bus the TIGER 30 board has up to I M Words of static RAM on the 

board. On the expansion bus it has up to 8kWords of memory on the main board. The TIGER 

30 is IBM PC compatible. The data can be transferred in either 16 bit or 8 bit mode. The 

memory on the primary bus is dual ported with host PC. Transfers can be either under CPU, 

interrupt or DMA control, or any combination of the three. The host interface is designed 

such that multiple TIGER 30 boards can reside on the bus for multi-processing applications. 

The TMS320C30 has two on-chip serial channels for 8/16/32 bit transfers of up to 8.3 Mbps. 

The TIGER 30 board has two TLC32044 AID-D/A converters. It features 14 bit resolution, a 

band pass switched-capacitor anti-aliasing filter and a low-pass switched capacitor output 

reconstruction filter. It has variable sampling rates up to 19.2 kHz. The software is developed 

in C language. Only the real-time component of the software is compiled using the C30 

optimizing compiler. This includes all the components of the fuzzy controller. The adaptation 

and rule update is done on the PC. TIGER 30 board allows the PC to directly access the 

primary memory of the TMS320C30 bus and visa verse. This allows easy data transfer. If 

there are any changes in the membership function or changes in the rule base, a memory 

swap is done which updates the program running on the DSP board. Likewise all the 

parameter from the controlled system can be transferred to the PC. 

As described in Section 2 there are two neural nets NNI and NN2 which is used to adapt the 

fuzzy controller. NN2 is basically used to map the input-output relation of the controlled 

system. The NNI is the one which maps the temporal response of the system out- put. A 

multilayer perceptron is used to perform this function. O'INCA [107] software is used to 

develop and train this neural net. The perceptron consists of two hidden layer consisting of 
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10 neurons. The input layer consists of 20 inputs corresponding to the samples of the 

temporal data of the output. This NN has a bi- nary output consisting of 3 layers. The binary 
number can map up to 8 different patterns. Initially this network is made to learn signals such 
as oscillating and 

diverging pattern, an oscillating and slowly converging pattern, an asymptotically and slowly 

converging pattern etc. This is done by feeding the network with standard signals such as for 

converging oscillatory pattern, a—at for asymptotically converging pattern, sin (cvt+0k —at 

for diverging pattern and like wise. Here w, a and 0 are constants which are varied. The 

neural net classifies these signals irrespective of the values of the constants. 
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Fig: 55 Implementation scheme of Neuro fuzzy technique. 

Hence, Fuzzy mathematics has provided a range of mathematical tools to formalize ill-

defined descriptions in the form of linguistically stated IF-THEN rules into mathematical 

equations that can be implemented on digital computers. Integration of neural networks and 

fuzzy logic is a new direction in intelligent control engineering. A self-organizing fuzzy 

controller is pro- posed which can automatically tune the fuzzy rule base and also create new 

fuzzy rules by the help of neural networks. The learning ability of the neural network can be 

utilized, to optimize an adaptive fuzzy 

controller. An adaptive fuzzy controller is developed which can be run for a real-time 

system incorporating a TMS320C30 digital signal processing chip. The controller has two 

parts, one which can be real-time re- sides in the DSP board and the other part consisting of 

adaptive mechanism runs on the PC processor. The adaptation of the fuzzy controller is 

carried out by classifying the temporal history of the controlled 

75 



variable into different patterns. These patterns initiate changes in the components of the . 

fuzzy controller in order to make the system perform in the desired manner. 

A Three link manipulator model is used to evaluate the controller. A hierarchical structure 

fuzzy controller is used to control the flexible link. There are two level of hierarchy, the 

higher level basically extracts the feature of the manipulator link and the lower level 

controller produces the desired torque. The adaptation of the fuzzy controller is carried out at 

this level [l2]. 
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CHAPTER- 9 

CONCLUSIONS AND FUTURE SCOPE OF THE WORK 

9.1 Conclusions 

The study compares conventional PD control scheme, neuro control scheme and Neuro fuzzy 

control scheme. From the results of the first part of the work it has been found that the 

conventional control scheme using PD controller is simplest to be implemented, but it cannot 

cope with uncertainties in the robot dynamics. 

From the second part of the work it was found that in the case of neural network based 

controller is designed. It has good tracking performance Only difficulties are prior training 

and judicious parameters are essential for the success of neural network based controller. 

Third part of the work in which ANFIS (Adaptive Neuro-Fuzzy inference system) is 

designed. The feasibility of ANFIS control for a three-link SCARA manipulator has been 

proved and illustrated by simulation. The best parameters for the fuzzy controller were 

determined by using the ANFIS methodology and by using simulations of the SCARA 

manipulator dynamics. A simulation tool (i.e., Fuzzy logic toolbox (ANFIS)) was used to 

validate experimentally the tracking ability and the insensibility to plant parameter changes. 

The ANFIS controller presented very interesting tracking features and was able to respond to 

different dynamic conditions. In addition, the fuzzy control computation is very inexpensive, 

and this regulator could be used for the control of machine tools and robotics manipulators 

[ 106] without significantly increasing the cost of the drive. The only extra cost is for the 

optical encoder. Another advantage of this method over classical quantitative controllers is 

that it does not require a fixed sampling time. Therefore, the proposed design confirms the 

fact that fuzzy control is relevant to the fast control of non-linear processes such as SCARA 

manipulator control where quantitative methods are not always appropriate. Thus, the results 

obtained using the ANFIS controllers are encouraging when compared to conventional PD 

controller. 

Finally, Visual display of three link SCARA Manipulator is made by using C++. 
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9.2 Future scope 

The neural network based controller & ANFIS controller , which is developed in this work 

is only software , which has not been interfaced with the physical robotic arm .Taking the 

idea from this controller, it is possible to develop practical setup(as mentioned in chapter-8), 

which can be interfaced with the robot arm and can control it on-line. Practical work of this 

type can be done now with the recent data acquisition 

of another robotic arm set up in the department. 

Since the required torque calculated from the neural network controller is not smooth, 

improved performance is expected by the use of fuzzy logic. Due to lack of time it was not 

possible to implement this. So, taking the idea of ANFIS controller discussed in chapter 

three, software can be made, and then the practical work over it can be done. 

With the help of this practical work, we can confirm the real supremacy of neuro-fuzzy 

controller over other conventional controller It can be done by doing a comparative study 

using both the controller in turn to control the robotic arm. 
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