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ABSTRACT

Wavelet Transforms are widely preferred for the analysis of non-
stationary signals because of their property of multi-resolution ar;alysis,
thereby implying the anélysis of the s)'gnal of different frequencies with
different resolutions. They are in tum robust to noise signals which are
mixed up with the sighal of interest during acquisition.

This report presents discrete wavelet tran'sforrp based methods of
pre-prbcessing of the ECG signal for the removal of high frequency noise
and Io.w frequency‘ baseline drift. It also presents a discrete wavelet
transform based algorithm for the detection of QRS complex in the ECG

signal. The algorithms have been tested using the CSE database.

vi



‘Chapter 1
INTRODUCTION

1.1 ELECTROCARDIOGRAM

Electrocardiograrh (ECG)is a grap'hic rer.;ording or display of the time- |
variant voltages produced by the myocardium during the cardiac cycle. ECG
signal interprets heart action in terms of changing patterns of electrical
potential on the human body. It is used clinically in diagnosing ‘va_riou‘s
- cardiac diseaseé and conditions associated with fhe heart. Fig. 1.1 shows
theAwaveforn'j of the normal electfocardiogram.‘ The P, QRS and T waves
reflect the rythmic electrical depolariiation and repolarizatfon of myocardium
associated with the contractions of atria and ventricles. To the cardiologist,
thé shape and ’duratié_n of each feafur’e of the ECG are significant. In
generél,: the cardiologist looks critically at 'the varivous time intervals,
pqlarities and amplitudes to arrive at a proper diagnosis [1].

Under pathological conditions,v several changes may occur in the
ECG. These include (i) altered paths of excitation in the heart, (ii) chang.ed
origih'of waves‘(ectopic beats), (iii) altered relationships (sequences) of
features, (iv) changed magnitude of one or more features, and (v) differing
durations of waves or intervals.

The number of cases of heart ailments amoﬁg the masses has
increased the workload of ECG analysis and diagnosis at an exponential

rate. It has already crossed the limits of cardiologists to deal with all these



Fig 1.1 The Electrocardiogram waveform.



cases manually with utmost efficiency. .Hence, the requirement of computer
aided ECG aﬁalysis is indispensible. A good arﬁount of work has been
carried out in the past and lot of work is in progress for developihg reliable
techniques for fault free diagnosis of cardiac diseases.

QRS Complex detection in ECG signal is difficult, not only becaiu’se of
the physiological variability of the QRS compléxes, bu.t also.due to various -
typés of noises that can be present in the ECG signél, namely muscle noise,
artifacts due to electrode motion, powerline interference and baseline
wander [2].

Once the QRS complex is detected the other features of the ECG
signal can be deteéted using different featufe extraction methods of the
signal [3]. In order to correctly ektract the features, the ECG signal must be

pre-processed to remove the noise contaminating the signal.

1.2 DISCRETE WAVELET TRANSFORMS

Discrete wavelet transforms are reliable for the analysis of non-
stationary signals such as ECG due to their multi-resolution capability [4].
The discrete wavelet transforms localizes the most important spatial and
frequential featureé 6f a regular signal in a limited number of wavelet
coefﬁgients. They are very accurate and exhibits robustness to noise. They

“are in turn efficient for the removal of noise present in the signal [5].



1.3-  ORGANIZATION OF DISSERTATION

Chapter 1: Introduction

This chapter deals in brief with the general introduction é;nd the

organization of the dissertation.

Chapter 2: EIectrOcardiograrﬁ

In this chapter the general features of the ECG signal, various

techniques of recordings of ECG signal and the noise associated with ECG

are presented.

Chapter 3: Wavelet Transforms
This chapter presents the general characteristics of Fourier
‘Transforms and short time Fourier transforms and their disadvantages. It

gives a brief -introduction of wavelet transforms and their characteristic

features.

Chapter 4: Pre-processing of ECG Signal
In Chapter 4, a review about the various noise signals associated with
the ECG and methods of their removal are preéented. It also includes the

pre-processing aspects of ECG signal using wavelet transforms.



Chapter 5: QRS complex detection using wavelet transforms

A brief review of the various algorithms including the wavelet based

QRS detector developed for QRS detection are presented in this chapter.

Chapter 6: Results and discussion

This chapter includes the results of the three algorithms presented in
Chapters 4 and 5. These algorithms use the discrete wavelet transform for

pre-processing and QRS complex detection .

Chapter 7: Conclusions and future scope

This chapter includes the conclusions drawn from the work_carried

out in this dissertation and also the scope for future work.



Chapter 2
ELECTROCARDIOGRAM

24 INTRODUCTION

The biopotentials generated by the muscles of the heart result in the
electrocardiogram. ECG has become a very popular a-nd important tool next
to stethoscope and blood pressure measuring -instrument in the present
time. The main advantage of ECG is its simplic}ity and noninvasive

characteristics. The ECG provides faithful representation of the functioning

of the heart.

2.2 HEART PHYSIOLOGY AND FUNCTIONS

The heart is one of the most critical organs of the human'body. The
fun'ction of the heart is rhythmic pumping of the blood that it receives from
the veins and §ends into the arteries. It is perfbrmed by alternate rhyihmic
cqnt'raction and relaxation of the muscular fibres which are the basic
functional units of the muscular system [6].

The heart consists of several layers. The endocardium is the inner
most layer which consists of smooth lining of the cells. Next to this is
myocardium‘which constitutes the mass of the heart muscular cells. It is
their coordinated contraction and relaxatioh that causes the chambers of the
heart to pump the blood. The myocardium is.covered by a layer of fat, called
the epicardium; The pericardial sac which encloses the heart is formed by
the outermost two layers of the pericardium which have a small amount of -

lubricating fluid between them. Although the heart consists of several layers,



it is'only the myocardium that generates current large enough to be detected
and recorded on the surface of the human body.

The heart consists of four chambers, namely the right and left atria,
the right and left ventricles. The right atrium receives blood from different
parts of the body which is oxygen deficient and rich in carbon dioxide
through superior and inferior venacava. The blood is passed from right
atrium to the right ventricle which pumps i‘t out to the lungs for purification.
The left atrium receives the purified oxygen rich blood from the lungs and
passes it to the left ventricles which pumps it out to the circulatory network ‘
of the body through aorta, the network of arteries and capillaries. The valves
located between fhese chambers are made in such a shape so that the
blood flows onIyAin one direction. This prevents the backwara flow of blood
when the blood filled chamber is contracted. The contraction of the

myocardium of the chamber is known as the systole and the relaxation as

the diastole.

2.3 FEATURES OF ECG SIGNAL

ECG is a graphic recording or display of the time-variant voltages
produced by the myocardium during the cardiac cycle [1]. Fig. 2.1 shows thg
basic waveform of the normal ECG. |

Thé electrical activity during the cardiac cycle is chafe;cterized by five
separate segments designatedas P, Q,R,Sand T wavés. |
P—Wave :  Thisisthe deflection produced by the atrial depolarisation.
Q-wave : This is the initial negative deflection resulting fromventricular:

depolarisation.

‘R-wave : Thisis the positive deflection during ventricular depolarisation.



S-wave : This is the first negative deflection of ventricular depolarisation,
ttjat follows the first positive deflection (R). |

T-wave : This is the deflection produced by ventricular repolarisation.

U-wave : Thisis present between T-wave and next P wave. It is a resuit
of slow repolarisation of the intraventricular conduction.

The eleétrical potential and the corresponding frequency range and

durations of these waves are given in Table 2.1.

Table 2.1
T Maximum
~ Amplitude , Duration

Wave frequency

(mV) (sec)
. (H2)

P 0.25 10 0.20
R 1.6 20-30 0.45
Q 25% of R-wave | 20-30 0.15
S Upto2 |  20-30 0.16
T 0.5 10 0.1

2.4 RECORDING OF ECG

The amplitudes, polarities, event timing and duratioﬁ of the ECG are
dependent to a larger extent on the location of the electrodes on the human
body..

To record ECG‘ signal in 12 lead system, five electrodes are used

Which are fixed on the body of the patient. They are fixed on the following

locations:




Rightarm - RA
Left arm - LA
Right leg - RL
Left leg - LL
Chest - V,-Vq

To record the ECG, following types of lead systems are used :
(i) Bipolar standard limb leads

(i) Unipolar leads |

(i) Unipola_r chést leads or precordial leads

(iv)  Orthogonal leads

2.4.1 Bipolar Standard Limb Leads

Figure 2.2(a) shows the placement of leads in bi-polar limb lead
configuration. The three bipolar limb leads I, Il and Ill are the original leads |
selected by Einthoven to record electric potential in the frontal plane.

The three bipolar-limb leads first introduced by Einthoven are :

Lead | = LA-RA
Lead Il =  LL-RA .
Lead Il = - LL-LA

RL is grounded and is called reference or ground lead.
In each of these lead positions, the QRS of a normal heart is such

that the R wave is positive. Here, lead Il produces the greatest R-wave

potential.

2.4.2 Unipolar Leads

The unipolar augmentedvlimb'leads' are defined aé follows :



LeadaVR=RA-[:M]
2

LeadaVL =LA-| RA+LL
L 2

-

leadaVF = LL-| RA+LA ]
: 2

N -

Fig. 2.2(b) shows the configuration of the placement of electrodes for

unipolar leads aVR, aVL and aVF.

2.4.3 Unipolar Chest Leads or Precordial Leads

The leads V, to V, are unipolar leads located on the chest at different

points, as shown in Fig. 2.2(c).

2.4.4 Orthogonal Leads
An ideal lead system for recording and Vector Cardiogram (VCG)
essentially consists of the following characteristics:
(i) The leads must be perbendicular to each other and also to the
horizontal, vértical sagittal axis of the body.
(i) The amplitudés of fhe three leads should be equal from
vectorial stand point.
(iii) AII the three leads should have the same strength and direction
for all points in the heart where electromotive forces are
generated. By convention, X, Y, Z are referred to as horizontal,

vertical and sagittal axes and hence usually referred to as X, Y,

Z leads [14].

The basic ECG lead cohfigurations are shown in the Fig. 2.2.
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2.5 NOISE ARTIFACTS IN ECG

ECG signal may be corrupted by various- kinds of noise. Typical

examples are. :

() Power line interference.
(ii) | Electrode contact noise.
(i)  Motion artifacts;
(iv)  Muscle contraction (Electromyographic).
(v) Base-line drift and ECG amplitude modulation with respiration.
(vi) Instrumental noise generated by electronic devices used in
signal processing. o

(vii)  Electrosurgical noise and other less significant noise sources.

A brief introduction of the noise in the ECG signal generated by the o

above sources and their methods of removal are presented in Chapter 4

26 THE CSE DATABASE

CSE stands for Common Standards for Quantitative
Electrocardiography. The main objective for' the development of CSE
database was the standardization of ECG measurement proéedures in
quantitative terms, - comparative studies of measurements performed by
different programs and establishment of reference data.base for ECG
measurements. CSE database consisted of five datasets. The datasets 1
and 2 consisted of 250 original and 310 artificial ECGs with 3-lead recording
simultaneously. The datasets 3 and 4 consisted of 250 original and 250
artificial ECGs with 12-lead recording s.imultaneously. The dataset 5 was’
developed for diagnostic ECG. Here, the artificial ECG data was constructed
by selecting one beat from- each lead group of the original recordings and

making strings of identical beats.

15



Here the CSE dataset -3 is considered since it is a measuriﬁg
database with various onsets and offsets of the ECG signals. The CSE
dataset 3 consists of 125 ECGs, with normal and different pathological
ECGs. All ECGs were recorded at 500 Hz sampling frequency. Tr;e dataset
consisted of 26% of normal cases and the remainder abnormal cases. Here,
eleven leads were digitized simultaneously (that is, eight independent
standard leads [I, Il, V, to V4] and orthogonal leads X, Y énd Z). The
standard leads lli, aVR, aVL and aVF were derived from leads | and || using
the well known formulae [1]. Filtering'or any other signal conditioning was
not performéd during data acquisition.

The dataset 3 had been tested by various programs which analyzed
all the leads simultaneously or three or six or twelve at a time. Analy:sis had
been done by various réferées and the Median résultsbf the réferees

coincided best with the median derived from all programs.

2.7 CONCLUSIONS

As presented in this chapter, the ECG signal is a typical‘ wave
consisting of various waves designated as P, Q, R, S and T, in different
frequency ranges with different amplitudes and duratiohs (Table 2.1). Hence
ECG signal is defined as a non-stationary signal since different frequency
components exist at different time instants.in a cycle. Generally, a signal is

termed as a stationary one if its frequency content does not change with

time. o
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Chapter 3
WAVELET TRANSFORMS

3.1 INTRODUCTION

lV\-laveIet transforms (WT) is a type of transformation which is capable
of producing the time and fréquency information simultaneously, hence
giving the tjme-frequency representation of the signal. The wavelet
transforms can localize both time and frequency components of the signal
as the signal is processed at various scales [7]. Wavelet transforms are
generally divi:ded into two: cétegories
() Continuous wavelei transform (CWT)
(i) Discrete'Wavelet Transform (DWT)

A brief introduction for the CWT and DWT is given in this chapter.

There are indeed‘oth'e.r’ tranéforms like short time Fourier transforms,
wigner distributions etc., but waQeIet transforms are proved to be efficient
regarding the resolution analysis.

The aim of signal analysis is to extract the relevant information from a
signal by transforming it. .- The basic transform used for the énalysis- of

frequency components of a signai is the Fourier transform.

3.2 FOURIER TRANSFORM

The Fourier transform decomposes a signal to compiex exponential
functions of different frequencies. The Fourier transform of a signal is given

by the following equation

17



X(f) = jx(t).e‘-’““_dt ' - (3.1

-

where, t —)vtime

f 5 frequency

X - signal in time domain

X > signal in frequency domain, and

et > cos(t) — jsin(t)

As in equation (3.1), the signal x(t) is multiplied with the complex
expressions of sines and césines of frequenby ‘f. If the signal has a high
amplitude component of frequency ‘f, then the component of the signal and
the sinusoidal term will coincide and the. product of them gives a relatively
large value, otherwise not. Hence, Fourier transforms tells us whether a
certain frequency componént exists or not. It does not give any indication of
the time at which th.e frequency component occurs. Hence, it is not suitable
if the signal has varying frequency, i.e., when the signal is- non-stationary.
Since the ECG signal is a non-stationary signal as discussed in 'Chapter 1,

the Fourier traﬁsform of it is not efficient because the time instance of the
| occurrence of frequency component is important for the analysis. Aléo, the
ECG signal cannot be described by basis functions in téfms of the sines and
cosines easily with all its fea'tures covered faithfully [8].

In order to overcome this problem, thé Short time. Fourier transform

are developed.

18



3.3 SHORT TIME FOURIER TRANSFORM (STFT)

The STFT of a signal is given by

STFT (1,f) = [x(t).w*(1-1) e 2™ dt (3.2)
where, w(t) is the window function and ™' is the complex conjugate. ‘¢’ is the
location of the window as the window is shifted through the signal.

Here the signal'is divided into small enough segments, where these
ségments of the signal can be assumed to be siationary. Here, a window is
selected whose length is equal to the segment of the signal where its
stationa.rity is valid. |

But STFT suffers from the lacuna that the window chosen is of finite
length, thus covering only a portion of the signal, which causes the
frequeﬁby resolution to get poorer, i.e., the exact frequency components that
exist in the signal alre not known. Indeed the time intervals in which certain

band of frequencies exist can be known.

3.3.1 Disadvéntage of Short-Time Fourier Transforms

The resolution of the signal depends upon the selection of window
length in case of STFT. Fig. 3.1 shows the difference lengths of windows for

the gaussian window function in the form

w(l) = exp(—a.t2/2)
‘a’ determines the length of the window.
Fig. 3.1(a) shows a narrow window. The STFT has a very good time

resolution, but relatively poor frequency resolution.

19



Fig. 3.1(d) shows a wide window. The STFT has a good frequency
resolution but relatively poor time resolution because, it covers a Widl'e range
of frequencies of the input signal.

Hence, if a narrow window is used, the time resolution of the §ignal is
godd and the frequency resolution is poor. If a wide window is uéed, the
freq(xency resolution of the signal is good and the time resolution is poor. .

Since ECG signal morphology changes from timé to time, the.
selection of window of fixed length is not possible. Hence, if the STFT of the
ECG signal is taken, a compromisé must be-made regarding the time

resolution or the frequency resolution based on the selection of the window

~length. .

In order to overcome the problem of resolution,.v;/avelet transforms are
proposed. Here, _thé length of window is not fixed and chan'.ges in
accordance with the signal. As presented in the introduction to this chapter,
there are two types of wavelet transforms i.e. continuous wavelet traﬁsforms

and discrete wavelet transforms.

20
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3.4 CONTINUOUS WAVELET TRANSFORMS (CWT)

The continuous wavelet transforms was developed as an aiternative
approach to the STFT to overcome the resolution pfoblem.

The continuous wavelet transform is defined as

CWT(‘t,s) = x[ll?l Ix(t),w*(t"fjdt | (3.3)

S

As seen from the equation 3.3, the transformed signal has two

- variables, ‘¢’ and 's’. 'y is the transforming function, called mother

wavelet. The mother wavelet serves as a prototype for generating the other

window functiohs. The variables '’ and 's’ are named as ‘translation’ and
‘'scale’ paramé?ers re_spéctively.

The term ‘translation’ refers to the |ocatioh of the window, as the
window is shifted through the signal. The term scale has an important
significance. H:eré, high scales correspond to the global information .of a
signal (that usdally spans tﬁe entire signal) whereas.low scales _correspond
to a detailed infiormation of a hidden pattern in the signal (that usually lasts a
relatively short% time), i.e., large scales dilates the signal and small scales
compress the signal. In wavelet transform, the scales s > 1 dilates the
signals whereas scales s < 1 compresses the signal.

Since mother wavelet is chosen to serve as a prototype for all |
windows, all the windows used are the dilated (or compressed) and shifted
versions of the mother wavelet [7]. |
Fig.3.2 shows the interpretation of the time and frequency resolutions. Here,
each box corresponds to a value of the wavelet transform in the time-

it
frequency plare. Although the widths and heights of the boxes change, the

NI
rJ



area is constant. Hence, we see that each box represents an equél‘\ portion
of the time-frequency plane with respect to area, but giving different
proportions to time and frequency with time and frféquency taken
independently. We see that at low frequencies, the height of _thé boxes w.r.t.
y-axis are shorter (which corresponds to betterAfrequency resolution, since
there is less ambiguity regarding the value of exact frequency), but their
widths w.r.t. x-axis are longer (which corresponds to poor time resolution,
since there is more ambiguity regarding the value of the exact time). At
higher frequencies, the width of the boxes decreases, i.e., the time
resolutiongets better and the height of the boxes increases‘. i.e., the
frequency resolution gets poorer.

From the CWT, if the signal has a spectral component that
corresponds to the current value of 's’, the product of the wavelet with the
sighal of the location where this spectral component exists gives a rélatively
large value. If the spectral componeht that correspondé to the current value
of ‘s’ is not present in the signal, the product value will be relatively small.
Here WT have the property to analyze the signal using Multi Resplution
Analysis (MRA) [4]. The MRA implies that the analysis of the signal is made

at different frequencies with different resolution.
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The ma‘in disadvantages of CWT are computational compiexity and
- redundancy. Hence discretized CWT are developed by discretizing either * ;’
‘or 's' or both. Here the parameter ‘s’ is discretized first on a Iogarithmic grid.
The time parameter is then discretized with respect to the scale parameter,
l.e., a different sampling rate is used for évery scale. But this process
creates a high redundancy as far as the signal re-construction is concerned
[4]. So, the diécrete wavelet transforms are developed in order to overcome
the problem of redundancy associated with continuous wavelet transform,

which significantly reduces the computation time.

3.5 DISCRETE WAVELET TRANSFORM (DWT) A

The DWT are easier to implement than CWT. The DWT is based on
the process of Subband Coding.

The CWT is computed by changing the scale of the analysis, shifting
the window in time, multiplying by the signal and integrating over ail times as
presented in section 3.4. In discrete wavelet transform, filters of different
cutoff frequencies are used to analyze the signal at different scales. The
signal is passed through é series of high pass filters to analyze the high
frequencies and through a series of low pass\ fiters to analyze the low
frequencies. |

Filtering of a signal in discretg time corresponds to the mathematical

operation of convolution of the signal with the impulse response of the filter.
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The convolution operation in discrete time is defined as

x(n]*h(n] = Z x[k].h{n - k] : (3.4)

k=—x
where h[n] > Low pass filter
x(n) > Input éignal

x[n]*gn] = 3 x[kl.gn-k] (3.5)

Mo .
where, g(n) = High pass filter.

The discrete wavelet transform is implemented in the form of sub-
band 'coding: The Subband Coding algorithm is-shown in Fig. 3.3.

The original signal is convolved With high pass filter, according to the
equation (3.4). Similarly the original signal is convolved with the low pass
filter and half of the samples are eliminated according to the Nyquist"s rule.
Here the signal is subsampled by 2.

Here, the high- pass filter removes all frequencies thét are below half
of tHe highest frequency in the signal. Similarly, the low pass filter removes
all the frequencies that are above half of the highest frequency in the éignal.

Discarding every other sample, subsamples fhe'signél by two. Here,
low pass filtering removes the high frequency information thereby éltering
the resolution. vSubsampling process changes the scale: Here, the time
resolution of the signal is halved after each filter operation.

As shown in Fig. 3.3, first the signal is passed through high pass filter.
The output of high pass filter after sub sampling corresponds to the detailed
information of the input signal in the range x/2~ n radians. Similarly, the

input signal is passed through the low pass filter. Now half of the sa_imples

26



are eliminated, since the signal has the highest frequency of ;2 radians,
according to Nyquist criteria [4]). The signal obtained at the output of low
pass filter is the approximation signal. Here, the detail signal corresponds to
the output of the high pass filter. The detailed level is the level 1 DWT
coefﬂciénts of Fig.3.3 which corresponds to the high frequency components
of the input signal. This process is revpeated for the next lower level until the
desired fre-quehcy range is achieved.

Here the frequencies fhat are most prominent in the original signal will
appear as high amplitudes in that region of the DWT signal that includes
those particular frequencies. Here, the localization of these frequencies is
preserved. If the main information of the signal lies in the high frequencies,
the time localization of these frequencies will be more precise since these
are chéracterized by more number of samples. Here, this process has good
time resolution at high frequencies and good frequency resolution at low
frequencies. |

The high pass and low pass filters are not independent of each other
and are related by g[L—1-n]=(-1)".h[n]

Where L = length of the filter.

As an example, if the input signal is sampled at 500 Hz sampling frequency,

the implementation of the DWT algorithm for this signal at different levels of

decomposition is shown in Fig. 3.4.
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Some of the wavelets used for the analysis are given in the

Table 3.1{9].
Table 3.1
, High pass filter
Wavelet Low pass filter coefficients coefficients
h(n) g(n)

Daubechies

4 0.482962, 0.836516, 0.224144, g(L-1-n) = (1)

-0.129409 h(n)
L = length of filter

5 10.33267, 0.806807, 0.458775, - 135077, | -do-
-0.085441 |

5 0230378, 0.714846, 0630887, “do-
-0.27984, -0.187034, 0.030841, E
0.032883, -0.010597

10 0.160102, 0.603829, 0.724308, -do
0.138428, -0.242294, -0.03224, |
0.077571, -0.006241, -0.012581,
0.003336

B-Spline 0.5,0.25,05 -do-

Type

Linear

Cubic 0.0625, 0.25, 0.375, 0.25, 0.0675 -do- |

Quadratic 0.125, 0.375, 0.375, 0.125 -2.0, 2.0 —
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3.6 CONCLUSIONS

From the above presentation on wavelet transforms, it is seen that
wavelet transform is most suited for the analysis of non-stationary signals
such as ‘ECG since it has the capacity to analyse the signal at different

frequencies with different resolutions.
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Chapter 4
PRE-PROCESSING OF ECG SIGNAL

4.1 INTRODUCTION
The ECG signal is corrupted by various sources of noise. The feature
extractions from the ECG signal can be made more accurate if the input

ECG signal to the processing system is made free from the noises

associated with it.

4.2 SOURCES OF NOISE
While recording the ECG, unwanted signals interfere with it and

hence ECG signal gets corrupted with noise. Typically the noise sources are

classified as:
(1) Power line interference.
(2) Muscle artifacts.
(3) Baseline wander.

(4) Instrumental noise.

4.2.1 Power Line Interference

The inductive coupling is from neighbouring power frequency devices
by magnetic flux linking with the lead wire from the patient to the ECG
machine. It may be reduced by twisting the lead wire in a systematic fashion
so as to reduce the effective area of flux linking. The cépacitive coupling
from the power. frequency device is due to the lead wire as well as to the

patient. Thé method of completely eliminating power frequeﬁcy interference



is to provide effective shielding to the patient and the machine. This

interference. produces 50 Hz signal, which is as shown in Fig. 4.1(a).

4.2.2 Muscle Artifacts

Whenever a muscle is activated, it produces an EMG signal. The
electrodes, placed at this site, pick up the unwanted EMG signal. This
causes abrupt variations of voltages. Hence a -high frequency noise is
produced with a frequency range of dc to 10000 Hz and peak amplitudes
varying from 50.,,V to about 1 mV. The ECG corrupted with EMG noise is
shown in Fig. 4.1(c). Tha signals resulting from muscle contraction can be
assumed to be transient bursty of zero-mean band limited Gaussian noise.
Gaussian noise is the noise which spans over the entire frequency range of

the signal. Theoretloally the Gaussian white noise is assumed to be of

mﬁnlte bandwidth.

4.2.3 Baseline Wander

If the electrode contact is not proper or if there is a body movement,
-the baseline wanders or drifts. This introduces low frequency noise of fhe
order of 0.5Hz. The baselin.e-also drifts with reépiration which can be

represented as a sinusoidal component at the frequency of respiration

added to the ECG signal as shown in Fig. 4.1(c).

4.2.4 Instrumental Noise

This is generated within the recording instrument which causes high
frequency periodic variations in the ECG signal. Artifacts generated by

electronic devices in the instrumentation system as shown in Fig. 4.1(d) can
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not be corrected by QRS detection algorithm. Here, the input amplifier is
saturated and,hb information about the ECG signal can reach the detector.
Here an alarm must sound to alert the ECG technician to take corrective
action. While recording ECG, the signal is corrupted by both high frequency
and low frequéncy noises.

The best performance of an ECG processing system is achieved if the input
signal is free from noise. The removal of noise is important not only for
computer processing but also for visual ex_amination of the ECG
'waveform.Several filters have been designed to pre-process the ECG signal
for the removal of nois.e content preéent in it [10,11].A few filters are‘
discussed below.

Finite impulse response (FIR) filters are normally preferred for noise
removal fromA the ECG as they introduce minimum signal distortion because
of their linear phase characteristics.

A multi band filter known as extraction filter which uses integer
arithmetic is designéd and implemented for the removal of baseline drift and
powerline interference in the ECG signal [11]. This filter is designed for real
time execution.

An other online digital filter developed for the subtraction of 50 Hz
interference from the ECG signal used the postulate that the interference
can be measured in intervals of the ECG signal, where the latter is
'iSOeléctric or changes linearly with time. The sum of equally spaced sample
amplitudes frbm one period of a periodic interference ;ignal is zero. The
interferehce of the signal is reduced based on the criteria of threshold
selection derived from the backward differences [12] .The above algorithms

work for removal of 50 Hz signal only.
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The wavelet based noise reduction is effective in the removal of the
Gaussian noise present in the ECG signal and also the 50 Hz interference
signal. Since the ECG signal has the frequency range of 0-30 Hz generally
and the high frequency noise has the range that does not overlap with that

of the ECG siéjnal, the noise is well isolated from the ECG signal.

4.3 PRE-PROCESSING OF ECG SIGNAL USING WAVELET
TRANSFORMS
Here, two different algorithms are implemented using discrete wavelet
transforms to pre-process the ECG signal, one for the removal of high
-frequency noise present in the signal due to soft tissue motion artifacts and

the other for the reduction of baséline drift present in the ECG signal.

4.3.1 Denoising ECG Signal Using Discrete Wavelet Transforms

Here, an qff-line denoising algorithm .is implemented based on
adaptive wavelet technique. Wavelet-based noise removal exploits the
tirhé/scéle characteristic of the DWT. Normally, noise consists of high-
frequency components and is thus localized in the finer, detailed levels of
the DWT. In these levels, the important coefficients, corresponding to the
true signal information, have a relatively high magnitude, and the lower
magnitude coefﬁcients represent the noise. The expected noise energy is
the same in all coefficients. Hence if this energy is not too large, noise has a
relatively small influence on the important large signal coefficients.
Therefore the small coefficients should be replaced by zero, because they

are dominated by noise and carry only small amount of information:
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Here, the variable white noise (Gaussian noAise) is added to tr:we ECG
signal to produce the noisy output. Here, the-éignal is decomposeid using
Daubechies wavelet-6 (Table 3.1). At each level of decomposition, the
standard deviation(g;) of the wavelet coefficients is calculated and {hen the -
threshold is defined based on the value ‘ai.o'; where ‘g’ is a variabléa. Here,
three levels of decomposition are chosen for the high frequenc':y noise
removal of the ECG signal. Since the noise corresponds to high frequency
contents of the signal, at the finest or detailed scale, ‘¢, is set to a rélatively

large value to remove the noise components present at that level. Then at

the next lower levels ; is reduced and the process is repeated. The values
of ', for the three Ieyéls are presented in Chapter 6. This proicess is

repéated for three levels of decomposition considered and trjen' the
reconstruction of the signal is made. The root mean square error :(RMSE)
and. the percent root mean square difference (PRD) of the actué! signal
without noise and the reconstructed signal is calculated to ,juffjge the

performance of the algorithm.

The root mean square error is defined as

" N
RMSE =\/§ > [xorg(i)—xm(i)]z
i=l

where x (i) - original input signal
Xe(i) > reconstructed signal

and N - total number of samples
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and the percent root mean square difference is defined as

5 [xorg @) = xreci) ]2

PRD = | &=

N 2
2 [Xorg (1]
i=|

The general algorithm for denoising ECG signal is presented on

page no. 39.

4.3.2 Baseline Wander Reduction of ECG Signal Using Discrete

Wavelet Transforms |

Here also, an off-line algorithm is implemented to reduce thé baseline
drift of the ECG signal. Generaliy, the' baseline wandering can make the
inspection of the ECG signal difficult because some features can be masked
by it. More over, in automatic inspection systems, the other processing tasks
such as wave detection, signal classification, etc., can be affected.

As presented in Chapter 3, at each level of decomposition of the
DWT, the input signal is decomposed into two parts, i.e. detail or high
frequency components, and the approximation itself or the low frequency
components. Here, the approximation of the signal is considered for the
reduction of baseline drift in ECG signal since the approximation signal and
baseiine drift are low frequency signals.

The best level of approximatidn of the signal is decided based on
measure of the resultiné signél variance at that level. In order to reduce the
baseline wandering, the approximation found must have a narrow spectrum
and the variance of the resuliing signal should be as low as possible, since

the approximation must not have high frequency components of the signal.
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Here, fhe input signal is sampled at 500Hz sampling freque;ncy, and
hence the eighth level of approximation corresponds to the frequency range
of (0-1)Hz which is the frequency range of the baseliné wandering. The
eighth level of approximation is calculated, and then, it is subtracted from
the signal. Consequently, the baseline wander of the signal is greatly
reduced. | |

For the purpose of testing this algorithm, a sinusoidal signal is
generated with the sampling frequency of 500 Hz and the low frequency
éignal of 1 Hz is added to it. The algorithm is tested on this signal' and it is
seen that the eighth level of decomposition corresponds to the low
frequency component of 1 Hz and the corresponding low frequency
component is effectively reduced by subtracting it from the original §ignal.

The general algorithm for the ba_seline wander reduction is presented
on page no. 40. |

The codes are ldeveloped in: "‘C' 'Ianguage for the implementation of
the two algorithms. The results of the two programs are presented in

chapter 6.

ALGORITHM FOR DENOISING OF ECG SIGNAL ,

1. Input the ECG signal data file.

2. Calculate the DWT of the signal at the scale S=2/, i=1, the array bJ[j]

contains the coefficients of the detail level or the output of High pass

filter.
3. ‘Calculate the standard deviation (; ) of the detail signal ét this lével.
4. Calculate ' ;.o ' for i = 1 and make b[j]=0 for bj]<( ' yi.qi )- [w =2’.0,1.5,0.5

for 1=1,2,3 respectively.]
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5. Fori=2, repeat steps 2, 3and 4.

6. Fori=3, repeat steps 2, 3 and 4.

7. Reconstruct the signal starting from the lowest level (i=3) by up-sampling
and iﬁen convolving the high pass and low pass filters.

8. Calculate the RMSE and PRD.

ALGORITHM FOR BASELINE WANDER REDUCTION

1. Input the ECG signal.

2. Calculate the D WT of the input signal at scales $=2', i= 110 8.

3. Interpoléte fhe eighth level of approximation} signal linearly to get the
samples corresponding to the input signal. |

4. Subtract the input signal from the coefficients obtained after interpolation.

- The flowcharts of the two algolrithms discussed are given in Fig. 4.2

and Fig. 4.3.

4.4 CONCLUSIONS

Here, two algorithms based on the Discrete Wavelet
Travnsforms for the reduction of high frequency and low frequency noise in
the ECG signal have been presented. It is seen that the algorithm for
baseline wander reduction works effectively for thé testing sinusoidal signal,
with the low frequency component added to it. The low frequency signal is

separated from the sinusoidal signal and thus it is reduced as per the -

algorithm.

40




/READ THE INPUT FILE /

< :

RECONSTRUCT
THE SIGNAL

2

: CALCULATE
) COMPUTE DWT PRD. RMSE

(. 29 .
3 T

COMPUTE S.D (o)
OF WAVELET
SIGNAL
b[i]=i=1 ton

v

COMPUTE Th=o,.

1

YES
bli] = 0

1=i+]

< STORE bji]

Fig 4.2 Flow Chart for Denoising of ECG Signal

41



READ THE INPUT FILE in
alk], bik]

=1

ad

COMPUTE DWT (1. 2)

it

NO

YES

STORE LOW PASS
OUTPUT IN d(kl

v

INTERPOLATE d[k]

v

ak]=a[k]-d[K]

Fig 4.3 Flow Chart for Baseline Wander Reduction

42



Chapter 5
QRS COMPLEX DETECTION USING
| WAVELET TRANSFORMS

51 INTRODUCTION

The detection of QRS complex — specifically, the detection of the
peak of the Q'RS complex or R wave in an ECG signal is a difficult problem |
since it has a time-varying morphology and is subject to physiological
variations due to the patient and due to corruption with noise. Since the
QRS complexes have a time-varying morphology, they are not always tﬁe
strongest signal component in the ECG signal. Therefore P-wave or T-wave
with characteristics similar to that of QRS complex, as well as spikes from
high frequency pacemakers can compromise the detection of QRS complex.
In addition, there are many sources of noise in a clinical environment that
can degrade the ECG signal. These include powerline interference, muscle
contraction noise, poor electrode contact, patient movement and baseline
wander due to réspiration. TherefO(e QRS detectors must be -invariant to
different noise sources and should be able to detect QRS complexes even
‘when the morphoiogy of ECG signal is \)arying with time.

Most of the current QRS detectors can be divided into two stages:'a
preprocessor stage to emphasize the QRS complex ahd a decision stage to
threshold the QRS enhanced éignai. In the preprocessor stage, the ECG
' signal is first bandpass filtered to reduce noise and differentiated to
emphasize the Iargg slope of th‘e R-vyave and then squared to further exploit
the higﬁ—frequency content of the QRS complex. A short time energy

- estimate is obtained by smoothening the resulting signal with a moving



window integration. The selection of bandwidth of the bandpass ﬁlt:er and
the duration of the sliding analysis window is not straightforward. The
bandwidth of the bandpass filter must be chosen to reflect the trade-off
~ between noise reduction and loss of high-frequency details.vlf the barzldwidth
is too large, noise reduction suffers. If the bandwidth is too srﬁa:ll high
frequency QRS characteristics are lost. Similarly a long wmdow allows a
large energy accumulatlon whereas a short window allows too little energy
to accumulate. So a fixed bandwidth of bandpass filter and fixed Window
length can not serve the purpose of detection of QRS complex m ECG
signal. ' |

A number of algorithms have been proposed for the ECG QRS
detection, These include the algorithms based on amblitude ahd first
derivative, based on first and second derivative, based on digital filters [3]

but each algorithm has its own advantages and disadvantage.

52 QRS Detection Algorithms
The performance of any QRS detection algorithm depends on

the accurate detection of QRS complex in the presence of ndfse.

5.2.1 Algorithm based on amplitude and first derivai:ive

~In this algorithm, the largest positive valued element of th;je array
containing the ECG data points is calculated and is takeﬁ asa reference for
the threshold [3)]. The first derivative y(n) is calculated at each point of input
signal x(n) such that l
y(n) = x(n+1)-x(n-1) l<n<N.,

where ‘N’ is the total number of samples.



A QRS complex occurs when three consecutive points in the first -
‘derivative' array exceed a positive -slope threshold and are followed within

the next 100 ms by two consecutive points which exceed the negative

(descending slope) threshoid [3].

5.2.2 Algorithm based on first and second derivatives
Here, ghe absolute va|ueé of the first and second derivatives are
calculated froén the ECG, the scaled sum of the first and second deriyatives
-i,s sforéd and scanned until the threshold is met or exceeded [3]. Once this
| occurs, the next eight points are compared with the threshold. If six or more
of these eight?boints exceed the threshold, the QRS complex is identified.
The above two algorithms do not work satisfactorily because QRS

complex has a time varying morphology and can not be judged with the

slope criteria alone.

5.2.3 Digital Filters

Two algorithms based on the digital filters for QRS detection are

presented below.

5.2.31 Okada Algorithm

This algorithm is proposed by Okada [13]. Here the smoothing of
input signal |s made by three point moving average filter, and is passed
through the low pass filter. It effectively reduces a band pass filtering
operation on' the original data. The difference signal is then squa»red. To
further highlight the high frequency QRS complex, ‘the resulting signal is

multiplied by a non-linearly filtered version of itself.
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5.2.3.2 MOBD Algorithm

This algorithvm ‘proposed by Suppappola and Sun, referred to as
multiplication of -the backward differences(MOBD), used only non-linear
fi Itenng to detect the QRS complex. Here, to emphasize the hlgh frequency
characteristics of the sngnal the square of the derivative (or- backward
difference) of the signal is calculaped. The successive samples of the
backward difference of the ECG signal are multiplied together to highlight
the high frequency content of the signal [15]. |

As seen from the above two algorith}hs, their irhplementatior):involve .
complex programming. Moreover the QRS complexes ére supbressed along
with the noise by thesé algorithms [3]. ‘The best performance of the above
algorithms is achieved when the signal is first pre-processed. for the removal
of various noise componenis associated with it.

The advantage of using Discrete Wavelet Transformsvover the above
algorithms described for QRS detection includes the easy irhplementation of
DWT algorithm, which do‘es not require any pré-processing stage for the

noise reduction before the detection of QRS complex.

5.2.4 Template Matching Techniques

‘ln these methods, templates are used for classifying the patterns in
the ECG signal that are quite related to the human recognitidn procéss.
5.2.4.1 Template Cross Correlation _

Here the template of-a QRS waveform is correlated with the incoming
» ECG S|gnal and the value of the cross-correlation coefficient is calculated If

the coefficient is hlgh then it is identified as a QRS complex [15]
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5.2.4.2 Template subtraction

Here also the template of the QRS waveform is stored and is
compared with the incoming ECG signal. Each point of the incoming signal
is subtracted from the corresponding point in the template. The QRS
complex is de¢ided by the low value of the resulting ;subtraction [15]. Other
technique include automata-based template matching where the ECG signal
is reduced to a set of pre-defined tokens[15]. |

in the template matching technique discussed, the selection of a
template is difficult because QRS complex has different shapes for different
leads and also all the peaks in the QRS complex (Q, R and S) are not |
always present which makes the matching difficult.

5.2.5 Discrete Wavelet Transform Based Technique

Here a discrete wavelet transform (DWT) is used to overcome the
above problegns.’ A chosen “mother wavelet” has a fixed shape, however the
wavelet derived from it by changing scales, referred to as “daughter”
wavelets, have different bandwidths and time supports. At any particular
scale, the DWT is the convolution of the signal and the time-scaled daughter
wavelet. Scaling the mother wavelet is the mechanism by which the DWT
adapts to the gpectral and temporal changes in the signal being analyzed.
So, for smaller scale values, it exhibits high temporal-and' low spectral

resolution whereas for larger scale values, it exhibits low temporal and high

spectral resolution.

5.3 DWT - BASED QRS DETECTOR

As most of the energy distribution of QRS complex lies in the range of

6-30 Hz [14), it is taken as a reference for wavelet based QRS detector as
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the frequency range specified above lies in the fourth level of decomp}osition
and the QRS detection is performed at fourth levei itself. However, since
QRS complex is a transient and the DWT computed exhibits local maxima
‘across several -scalés at the instance of occurance of transients [14], the
fourth and the successive levels are taken as reference to ascertain the
QRS peak. Here the ECG signal is sampled at 500 Hz.. | |

The algorithm is as follows:

1. Read the input data file

2. Compute the DWT of the input signal at scales S - 2,
i=1to5. |

3. Store the detailed signal at fourth and fifth levels.

4. Locate the local. maxima across the two levels which exceed a

threshold
Value.

5. If the corresponding local maxima across the two levels lies with in

the range of 15 samples, go to 6 eise go to 7.
6. Store the corresponding data point at fourth level. Advance the
search to fifteen data points ahead. Go to 5. ‘

7. lgnore that sample, move to the next one and go to 5.

8. Output the QRS peaks.

Here, two wavelets.-are taken and the analysis is made for different
filter lengths. The algorithm is tested with CSE database. The two wavelets
used are Quadratic spline wavelet and Daubechies wavelét-10 (table 3.1).

The two wavelets are first tested on the known sinusoidal signal of sampling
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frequency 500 Hz with different frtlaque'ncy corhponents added to it. It is
seen that the DWT algorithm Worked effectively in separating the different
- frequency components in-corresponding levels of decomposition. The
amplitudes of the signals at different levels of decomposition are compared
with their known amplitudes and it is seen that they match.

The results of the above algorithm are presented in the next chapter

and the flowchart is given in Fig 5.1.

5.4 CONCLUSIONS

In this Chapter, a general discussion on various QRS
detection algdrithms has been carried out. A DWT based QRS detector is

presented in detail stating its advantage over the other QRS detection

algorithms.
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l Chapter 6
RESULTS AND DISCUSSION

6.1 GENERAL
The resuits and a discussion on the algorithms given-in chapter
4 énd chapter 5 are presented in this chapter. They include
(i)- denoising of ECG signal using Discrete Wavelet Transforms.
(ii) reduction of baseline wander of ECG using Discrete Wavelet
: Transforms and | |
(ili) ~ Discrete wavelet transform based QRS detector.

The wavelet used for denoising "of ECG -signal and -reduc_tion of
baselinef:Wander of ECG signal is Daubechies Wavelet-6 (DB-6) with the
coefficients of high pass filter and low pass filter prese;lted in table 3.1 of.
chapter 3. ‘

As presented in chapter'3. the main pchess in DWT is the splitting
up of the input signal into t\’NO_ parts, one the high frequency are detaii signal
and the other low frequency or approxifnation signat. Any wavelet chosen
for DWT algorithm splits the input signal as presented. in chapter 3. The
efficiency of the first two algorithms lies in the selection of. the decomposition |
level for the effective noise removal. Hence one wévele£ can be used both
for the reduction of high frequency noise and the low frequency noise in the
input ECG signal. '

All the algorithms are tested using the CSE database.



6.2 DENOISING OF ECG SIGNAL USING DISCRETE WAVELET |
TRANSFORMS
As discribed in chapter 4, since the noise corresponds to the high
frequency component of the ECG signal, the thresholds selected at the
three levels considered He're are different, with the value at most -detailed
level relatively high and less with the next two lower levels. |
At the detailed level, the threshold is selected as g, x 2.0, where ‘g,
is the standard-deviation at that level, i = 1.
In the next two lower levels, the thresholds are o, x 1.5 and g, x 0.5,
i = 2 and 3, respectively. |
The performance of the algorithfn is measured based on the root
mean square error (RMSE) and percentage root mean square difference
(PRD). |
Figs 6.1, 6.2 aﬁd 6.3 show the signai béfore and after processing.
Figs 6.1 and 6.2 show the input ECG signgl corrupted with Gaussian hoise
“and the output signal of the reduction of the noise. The RMSE calculated for
the signals in figs 6.1 andv6.2 are 0.04309 and 0.07167 respectively while
the PRD calculated are 15.437 and 9.6552 respectively. The RMSE and
PRD of the algorithm for the two data files are also shown in the figures. Fig.
6.3 shows the input ECG .signal corrupted by noise and the output after
noise removal. The: RMSE and PRD calculatéd are 0.0657 and 10.23:57
respectively.
Generally if the tolerance range of RMSE is (0O — '0.2'), it is acceptable.
If the PRD calculated lies in the range (0 — 10) %, it is quite good. If it lies in

the range (10 —15) % .it is also acceptable.
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6.4 DISCRETE WAVELET TRANSFORM BASED QRS DETECTOR

The algorithm is tested on two wavelets Daubechies Wavelet-10
(DB-10) and Quadratic Spline Wavelet. The low pass coefficients of (DB-10)
are | |

h(0) = 0.160102, h(1) = 0.603829, h(2) = 0.724309, h(3) = 0.138428,

h(4) = -0.242295, h(5.) =-0.032245, h(6) = 0.07751, h(7) = -0.006241,
for a filter of length L =8 |
and g(L-1-n) = (1).hMn), g() > high pass coefficients. |
The algorithm is tested on CSE dataset-3 for all 15 lead daia of 38 records.
The -analysis results are given in Table 61 Here, ‘FP’ denot_es’the number
of false positives which corresponds io.a detector error _of detecting a QRS
comp‘lex\ where there is none and ‘FN' denotes number of false negatives

which corresponds to a detector error of not detecting a QRS complex

where there is one.

‘ Table 6.1. .
No. of - Filter ~FP % FP | FN ‘ ?%FN
Beats length | ‘ |
7035 8 13 0.185 222 3.15

For the Quadratic Spline wavélet with the lowpass filter coefficients
h(0) = 0.125, h('1) = 0.375, h(2) = 0.375, h(3) = 0.125,

and high pass filter coefficients |
g(1) = -2.0, g(2) = 2.0

The analysis results are tabulated in Table 6.2.
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Table 6.2

No. ofBeats | FP % FP FN T  %FN )

7035 - _ - 44 0.625

As seen frqm tables 6.1 and 6.2, the number of FP's incase of DB-10
are 13 and incase of Quadratic spline wavelet are none. Sinﬁilarly the
number of :FN’s in case of DB-10 and Quadratic spline wavelet are 222 and
44 respectively. By comparing the results of the algorithms given in table 6.1
énd table 6.2, it can be stated that the algorithm works effectively for the
Quadfatic Spline wavelet with the least error of 0.625.-

| Fig. 6.7 shows the correct QRS peak detection of the input signal with
the Quadratic"SpIine wavelet. Fig. 6.8 shows the accurate detection of QRS
'peak in the presence of the high amplitude P-wave. Fig. 6.9 shows the false
detection of the QRS peaks with (DB-10) wavelet whereas Fig. 6.10 shows
the correct detection of the QRS'peak with spline wavelet for the same input

data file.

Fig. 6.11 shows the accurate detection of the QRS,peak'in case of
the baseline wandering of the input signal.

It shows that the detection of QRS complex is accurate in the
presence of the noise such as high amplitude P-wave or bayseline‘ drift. It is
because the frequency range of these noise signals .and-that of the QRS
complex does not overlap. In case the frequency band of the noise and that
of the QRS complex overlap, then it is difficult to detect the QRS complex.

Fig. 6.12 shows the input signal corrupted with both basehline drift and
-high frequency noise and the output after the reduction pf baseline drift. Fig‘.

6.13 shows the same sighal after removal of the high frequency noise
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_ presentin it. Fig. 6.14 shows the QRS complex detection of the same signal

after the removal of the noise contaminated‘with it.

6.5 CONCLUSIONS

It can be cén‘cl(;c_ied from the results of the implementation of the
algorithms presented in chapter 4 and chapter 5 that the discrete wavelet
transform proved to be an effective tool for the reduction of both high

frequency and' low frequency noise present in the ECG signal and for the

accurate QRS complex detection in ECG signal.
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_ Chapter 7
CONCLUSI‘ONS AND FUTURE SCOPE OF THE WORK

7.1  CONCLUSIONS

In this work, threé algorithms based on discrete wavelet transforms

have been developed to remove

().  The high frequency noise.

(i) - The low -freq"uency baseline wander and

(iii) Detect the QRS complex in ECG signal.

All these algorithms were tested on CSE détaset—s. The performance
of these algorithms were measuréd with the help of PRD and RMSE in theA
case of high frequency noise‘ removal and by the measurement of ECG
parameters manually before and after préces_sing incase of baseline wander
reduction. It has been seen that the algorithm worked effectively in the
~ removal of high frequency noise with the maximum PF§D and RMSE of
16;3145 and 0.22 respectively for 20 records of CSE dataset-3. Regarding
the basel.ine wander reduction, the maximum of 2% change is accounted in
measuremenf of ECG parameters before and after processing. The
algorithm also works satisfactorily for the detection of QRS complex in ECG
. signél with the Quadratic spline wavelet with a least pefce‘ntage error of
0.625, tested on 38 records of CSE dataset-3.

The advantage of DWT based detection of QRS complex is tﬁat it
does not assume stationarity within the analysis segment and exhibits

robustness to noise. The. algorithm presented here is computationally

simple.



7.2 FUTURE SCOPE

The work can be expanded with respect to the choice of the best
wavelet among the available wavelet library or a new wavelet can be

suggésted. Also the extraction of other features of the ECG signal can be

added to the work. ‘
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