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ABSTRACT 

Wavelet Transforms are widely preferred for the analysis of non-

stationary signals because of their property of multi-resolution analysis, 

thereby implying the analysis of the signal of different frequencies with 

different resolutions. They are in turn robust to noise signals which are 

mixed up with the signal of interest during acquisition. 

This report presents discrete wavelet transform based methods of 

pre-processing of the ECG signal for the removal of high frequency noise 

and low frequency baseline drift. It also presents a discrete wavelet 

transform based algorithm for the detection of QRS complex in the ECG 

signal. The algorithms have been tested using the CSE database. 
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Chapter 1 

INTRODUCTION 

1.1 ELECTROCARDIOGRAM 

Electrocardiogram (ECG) is a graphic recording or display of the time-

variant voltages produced by the myocardium during the cardiac cycle. ECG 

signal interprets heart action in terms of changing patterns of electrical 

potential on the human body. It is used clinically in diagnosing various 

cardiac diseases and conditions associated with the heart. Fig. 1.1 shows 

the waveform of the normal electrocardiogram. The P, QRS and T waves 

reflect the rythmic electrical depolarization and repolarization of myocardium 

associated with the contractions of atria and ventricles. To the cardiologist, 

the shape and duration of each feature of the ECG are significant. In 

general, the cardiologist looks critically at the various time intervals, 

polarities and amplitudes to arrive at a proper diagnosis [1]. 

Under pathological conditions, several changes may occur in the 

ECG. These include (i) altered paths of excitation in the heart, (ii) changed 

origin of waves (ectopic beats), (iii) altered relationships (sequences) of 

features, (iv) changed magnitude of one or more features, and (v) differing 

durations of waves or intervals. 

The number of cases of heart ailments among the masses has 

increased the workload of ECG analysis and diagnosis at an exponential 

rate. It has already crossed the limits of cardiologists to deal with all these 
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Fig 1.1 The Electrocardiogram waveform. 
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cases manually with utmost efficiency..Hence, the requirement of computer 

aided ECG analysis is indispensible. A good amount of work has been 

carried out in the past and lot of work is in progress for developing reliable 

techniques for fault free diagnosis of cardiac diseases. 

QRS Complex detection in ECG signal is difficult, not only becauSe of 

the physiological variability of the QRS complexes, but also due to various 

types of noises that can be present in the ECG signal, namely muscle noise, 

artifacts due to electrode motion, powerline interference and baseline 

wander [2]. 

Once the QRS complex is detected the other features of the ECG 

signal can be detected using different feature extraction methods of the 

signal [3]. In order to correctly extract the features, the ECG signal must be 

pre-processed to remove the noise contaminating the signal. 

1.2 DISCRETE WAVELET TRANSFORMS 

Discrete wavelet transforms are reliable for the analysis of non-

stationary signals such as ECG due to their multi-resolution capability [4]. 

The discrete wavelet transforms localizes the most important spatial and 

frequential features of a regular signal in a limited number of wavelet 

coefficients. They are very accurate and exhibits robustness to noise. They 

are in turn efficient for the removal of noise present in the signal [5]. 
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1.3 ORGANIZATION OF DISSERTATION 

Chapter 1: Introduction 

This chapter deals in brief with the general introduction and the 

organization of the dissertation. 

Chapter 2: Electrocardiogram 

In this chapter the general features of the ECG signal, various 

techniques of recordings of ECG signal and the noise associated with ECG 

are presented. 

Chapter 3: Wavelet Transforms 

This chapter presents the general characteristics of Fourier 

Transforms and short time Fourier transforms and their disadvantages. It 

gives a brief introduction of wavelet transforms and their characteristic 

features. 

Chapter 4: Pre-processing of ECG Signal 

In Chapter 4, a review about the various noise signals associated with 

the ECG and methods of their removal are presented. It also includes the 

pre-processing aspects of ECG signal using wavelet transforms. 
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Chapter 5: QRS complex detection using wavelet transforms 

A brief review of the various algorithms including the wavelet based 

QRS detector developed for QRS detection are presented in this chapter. 

Chapter 6: Results and discussion 

This chapter includes the results of the three algorithms presented in 

Chapters 4 and 5. These algorithms use the discrete wavelet transform for 

pre-processing and QRS complex detection . 

Chapter 7: Conclusions and future scope 

This chapter includes the conclusions drawn from the work carried 

out in this dissertation and also the scope for future work. 

5 



Chapter 2 

ELECTROCARDIOGRAM 

2.1 INTRODUCTION 

The biopotentials generated by the muscles of the heart result in the 

electrocardiogram. ECG has become a very popular and important tool next 

to stethoscope and blood pressure measuring instrument in the present 

time. The main advantage of ECG is its simplicity and noninvasive 

characteristics. The ECG provides faithful representation of the functioning 

of the heart. 

2.2 HEART PHYSIOLOGY AND FUNCTIONS 

The heart is one of the most critical organs of the human body. The 

function of the heart is rhythmic pumping of the blood that it receives from 

the veins and sends into the arteries. It is performed by alternate rhythmic 

contraction and relaxation of the muscular fibres which are the basic 

functional units of the muscular system [6]. 

The heart consists of several layers. The endocardium is the inner 

most .layer which consists of smooth lining of the cells. Next to this is 

myocardium which constitutes the mass of the heart muscular cells. It is 

their coordinated contraction and relaxation that causes the chambers of the 

heart to pump the blood. The myocardium is_covered by a layer of fat, called 

the epicardium. The pericardial sac which encloses the heart is formed by 

the outermost two layers of the pericardium which have a small amount of 

lubricating fluid between them. Although the heart consists of several layers, 
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it is only the myocardium that generates current large enough to be detected 

and recorded on the surface of the human body. 

The heart consists of four chambers, namely the right and left atria, 

the right and left ventricles. The right atrium receives blood from different 

parts of the body which is oxygen deficient and rich in carbon dioxide 

through superior and inferior venacava. The blood is passed from right 

atrium to the right ventricle which pumps it out to the lungs for purification. 

The left atrium receives the purified oxygen rich blood from the lungs and 

passes it to the left ventricles which pumps it out to the circulatory network 

of the body through aorta, the network of arteries and capillaries. The valves 

located between these chambers are made in such a shape so that the 

blood flows only in one direction. This prevents the backward flow of blood 

when the blood filled chamber is contracted. The contraction of the 

myocardium of the chamber is known as the systole and the relaxation as 

the diastole. 

2.3 FEATURES OF ECG SIGNAL 

ECG is a graphic recording or display of the time-variant voltages 

produced by the myocardium during the cardiac cycle [1]. Fig. 2.1 shows the 

basic waveform of the normal ECG. 

The electrical activity during the cardiac cycle is characterized by five 

separate segments designated as P, Q, R, S and T waves. 

P-wave : This is the deflection produced by the atrial depolarisation. 

Q-wave 

	

	This is the initial negative deflection resulting from ventricular 

depolarisation. 

R-wave : This is the positive deflection during ventricular depolarisation. 

7 



S-wave : This is the first negative deflection of ventricular depolarisation, 

that follows the first positive deflection (R). 

T-wave : This is the deflection produced by ventricular repolarisation. 

U-wave : This is present between T-wave and next P wave. It is a result 

of slow repolarisation of the intraventricular conduction. 

The electrical potential and the corresponding frequency range and 

durations of these waves are given in Table 2.1. 

Table 2.1 

Wave 
Amplitude 

(mV) 

Maximum 
frequency 

(Hz) 

Duration 
(sec) 

P 0.25 10 0.20 

R 1.6 20-30 0.45 

Q 25% of R-wave 20-30 0.15 

S Upto 2 20-30 0.16 

T 0.5 10 0.11 

2.4 RECORDING OF ECG 

The amplitudes, polarities, event timing and duration of the ECG are 

dependent to a larger extent on the location of the electrodes on the human 

body. 

To record ECG signal in 12 lead system, five electrodes are used 

which are fixed on the body of the patient. They are fixed on the following 

locations: 



Right arm 	RA 

Left arm 	LA 

Right leg 	RL 

Left leg 	LL 

Chest 

To record the ECG, following types of lead systems are used : 

(i) Bipolar standard limb leads 

(ii) Unipolar leads 

(iii) Unipolar chest leads or precordial leads 

(iv) Orthogonal leads 

2.4.1 Bipolar Standard Limb Leads 

Figure 2.2(a) shows the placement of leads in bi-polar limb lead 

configuration. The three bipolar limb leads I, H and III are the original leads 

selected by Einthoven to record electric potential in the frontal plane. 

The three bipolar-limb leads first introduced by Einthoven are : 

Lead I 	= 	LA — RA 

Lead II 	= 	LL — RA 

Lead III 	= 	LL — LA 

RL is grounded and is called reference or ground lead. 

In each of these lead positions, the QRS of a normal heart is such 

that the R wave is positive. Here, lead II produces the greatest. R-wave 

potential. 

2.4.2 Unipolar Leads 

The unipolar augmented limb leads are defined as follows : 
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Lead aVR = RA - LL + LA[ 
2 

Lead aVL = LA - [ RA + LL 2  

Lead aVF = LL - [ RA  ± LA  
2 

Fig. 2.2(b) shows the configuration of the placement of electrodes for 

unipolar leads aVR, aVL and aVF. 

2.4.3 Unipolar Chest Leads or Precordial Leads 

The leads V1  to V6  are unipolar leads located on the chest at different 

points, as shown in Fig. 2.2(c). 

2.4.4 Orthogonal Leads 

An ideal lead system for recording and Vector Cardiogram (VCG) 

essentially consists of the following characteristics: 

(i) The leads must be perpendicular to each other and also to the 

horizontal, vertical sagittal axis of the body. 

(ii) The amplitudes of the three leads should be equal from 

vectorial stand point. 

(iii) All the three leads should have the same strength and direction 

for all points in the heart where electromotive forces are 

generated. By convention, X, Y, Z are referred to as horizontal, 

vertical and sagittal axes and hence usually referred to as X, Y, 

Z leads [14]. 

The basic ECG lead configurations are shown in the Fig. 2.2. 
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V1 Fourth Intercostal tpice, 
at right iternal margin. 

V2 Four th intercostal space. 
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V2 Midway between V2 and V.4. 
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terior axillery line. 
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V I  — V o  

Fig 2.2(c) Precordial chest lead 
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2.5 NOISE ARTIFACTS IN ECG 

ECG signal may be corrupted by various kinds of noise. Typical 

examples are, 

Power line interference. 

(ii) Electrode contact noise. 
(iii) Motion artifacts. 

(iv) Muscle contraction (Electromyographic). 

(v) Base-line drift and ECG amplitude modulation with respiration. 

(vi) Instrumental noise generated by electronic devices used in 

signal processing. 

(vii) Electrosurgical noise and other less significant noise sources. 

A brief introduction of the noise in the ECG signal generated by the 

above sources and their methods of removal are presented in Chapter 4. 

2.6 THE CSE DATABASE 

CSE stands for Common Standards for Quantitative 

Electrocardiography. The main objective for the development of CSE 

database was the standardization of ECG measurement procedures in 

quantitative terms, comparative studies of measurements performed by 

different programs and establishment of reference database for ECG 

measurements. CSE database consisted of five datasets. The datasets 1 

and 2 consisted of 250 original and 310 artificial ECGs with 3-lead recording 

simultaneously. The datasets 3 and 4 consisted of 250 original and 250 

artificial ECGs with 12-lead recording simultaneously. The dataset 5 was 

developed for diagnostic ECG. Here, the artificial ECG data was constructed 

by selecting one beat from each lead group of the original recordings and 

making strings of identical beats. 

15 



Here the CSE dataset -3 is considered since it is a measuring 

database with various onsets and offsets of the ECG signals. The CSE 

dataset 3 consists of 125 ECGs, with normal and different pathological 

ECGs. All ECGs were recorded at 500 Hz sampling frequency. The dataset 

consisted of 26% of normal cases and the remainder abnormal cases. Here, 

eleven leads were digitized simultaneously (that is, eight independent 

standard leads [I, II, V1  to V6] and orthogonal leads X, Y and Z). The 

standard leads III, aVR, aVL and aVF were derived from leads I and II using 

the well known formulae [1]. Filtering or any other signal conditioning was 

not performed during data acquisition. 

The dataset 3 had been tested by various programs which analyzed 

all the leads simultaneously or three or six or twelve at a time. Analysis had 

been done by various referees and the Median results of the referees 

coincided best with the median derived from all programs. 

2,7 CONCLUSIONS 

As presented in this chapter, the ECG signal is a typical wave 

consisting of various waves designated as P, Q, R, S and T, in different 

frequency ranges with different amplitudes and durations (Table 2.1). Hence 

ECG signal is defined as a non-stationary signal since different frequency 

components exist at different time instants, in a cycle. Generally, a signal is 

termed as a stationary one if its frequency content does not change with 

time. 
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Chapter 3 

WAVELET TRANSFORMS 

3.1 INTRODUCTION 

Wavelet transforms (WT) is a type of transformation which is capable 

of producing the time and frequency information simultaneously, hence 

giving the time-frequency representation of the signal. The wavelet 

transforms can localize both time and frequency components of the signal 

as the signal is processed at various scales [7]. Wavelet transforms are 

generally divided into two categories 

(i) Continuous wavelet transform (CWT) 

(ii) Discrete Wavelet Transform (DWT) 

A brief introduction for the CWT and DWT is given in this chapter. 

There are indeed other transforms like short time Fourier transforms, 

wigner distributions' etc., but wavelet transforms are proved to be efficient 

regarding the resolution analysis. 

The aim of signal analysis is to extract the relevant information from a 

signal by transforming it. The' basic transform used for the analysis of 

frequency components of a signal is the Fourier transform. 

3.2 FOURIER TRANSFORM 

The Fourier transform decomposes a signal to complex exponential 

functions of different frequencies. The Fourier transform of a signal is given 

by the following equation 

17 



X(f) = J x(t).C2 -1711  dt 
	 (3.1) 

where, 	t 4 time 

f 4 frequency 

x 4 signal in time domain 

X 4 signal in frequency domain, and 

e-t 4 cos(t) — jsin(t) 

As in equation (3.1), the signal x(t) is multiplied with the complex 

expressions of sines and cosines of frequency 'f, If the signal has a high 

amplitude component of frequency T, then the component of the signal and 

the sinusoidal term will coincide and the product of them gives a relatively 

large value, otherwise not. Hence, Fourier transforms tells us whether a 

certain frequency component exists or not. It does not give any indication of 

the time at which the frequency component occurs. Hence, it is not suitable 

if the signal has varying frequency, i.e., when the signal is non-stationary. 

Since the ECG signal is a non-stationary signal as discussed in Chapter 1, 

the Fourier transform of it is not efficient because the time instance of the 

occurrence of frequency component is important for the analysis. Also, the 

ECG signal cannot be described by basis functions in terms of the sines and 

cosines easily with all its features covered faithfully [8]. 

In order to overcome this problem, the Short time. Fourier transform 

are developed. 
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3.3 SHORT TIME FOURIER TRANSFORM (STFT) 

The STFT of a signal is given by 

STFT 	f) = fx(t).w*(t - e—j27cft  dt 
	 (3.2) 

where, w(t) is the window function and '*' is the complex conjugate. 'T' is the 

location of the window as the window is shifted through the signal. 

Here the signal is divided into small enough segments, where these 

segments of the signal can be assumed to be stationary. Here, a window is 

selected whose length is equal to the segment of the signal where its 

stationarity is valid. 

But STFT suffers from the lacuna that the window chosen is of finite 

length, thus covering only a portion of the signal, which causes the 

frequency resolution to get poorer, i.e., the exact frequency components that 

exist in the signal are not known. Indeed the time intervals in which certain 

band of frequencies exist can be known. 

3.3.1 Disadvantage of Short-Time Fourier Transforms 

The resolution of the signal depends upon the selection of window 

length in case of STFT. Fig. 3.1 shows the difference lengths of windows for 

the gaussian window function in the form 

w(t) = exp(-a.t2  / 2) 

'a' determines the length of the window. 

Fig. 3.1(a) shows a narrow window. The STFT has a very good time 

resolution, but relatively poor frequency resolution. 
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Fig. 3.1(d) shows a wide window. The STFT has a good frequency 

resolution but relatively poor time resolution because, it covers a wide range 

of frequencies of the input signal. 

Hence, if a narrow window is used, the time resolution of the signal is 

good and the frequency resolution is poor. If a wide windOw is used, the 

frequency resolution of the signal is good and the time resolution is poor. 

Since ECG signal morphology changes from time to time, the 

selection of window of fixed length is not possible. Hence, if the STFT of the 

ECG signal is taken, a compromise must be made regarding the time 

resolution or the frequency resolution based on the selection of the window 

length. 

In order to overcome the problem of resolution, wavelet transforms are 

proposed. Here, the length of window is not fixed and changes in 

accordance with the signal. As presented in the introduction to this chapter, 

there are two types of wavelet transforms i.e. continuous wavelet transforms 

and discrete wavelet transforms. 

20 



(a) 	a = 0.01 
	 (b) 	a= 0.001 

(c) 	a= 0.0001 
	

(d) a = 0.00001 

Fig 3.1 	Gaussian window function of varying regions of support[4]. 

(a)  a. = 0.01 

(b)  a = 0.001 

(c)  a = 0.0001 

(d)  a = 0.00001 
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3.4 CONTINUOUS WAVELET TRANSFORMS (CWT) 

The continuous wavelet transforms was developed as an alternative 

approach to the STFT to overcome the resolution problem. 

The continuous wavelet transform is defined as 

CWT(T,$) = 	jx(t). y *(-t- 	dt 
	 3.3) 

As seen from the equation 3.3, the transformed signal has two 

variables, . I T' and 's'. ' v(t) ' is the transforMing function, called mother 

wavelet. The mother wavelet serves as a prototype for generating the other 

window functions. The variables ' ' and 's' are named as 'translation' and 

'scale' parameters respectively. 

The term 'translation' refers to the location of the window, as the 

window is shifted through the signal. The term scale has an important 

significance. Here, high scales correspond to the global information of a 

signal (that usually spans the entire signal) whereas low scales correspond 

to a detailed information of a hidden pattern in the signal (that usually lasts a 

relatively shortl time), i.e., large scales dilates the signal and small scales 

compress the signal. In wavelet transform, the scales s > 1 dilates the 

signals whereas scales s < 1 compresses the signal. 

Since mother wavelet is chosen to serve as a prototype for all 

windows, all the windows used are the dilated (or compressed) and shifted 

versions of the mother wavelet [7]. 

Fig.3.2 shows the interpretation of the time and frequency resolutions. Here, 

each box corresponds to a value of the wavelet transform in the time-

frequency plade. Although the widths and heights of the boxes change, the 
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area is constant. Hence, we see that each box represents an equal, portion 

of the time-frequency plane with respect to area, but giving different 

proportions to time and frequency with time and, frequency taken 

independently. We see that at low frequencies, the height of the boxes w.r.t. 

y-axis are shorter (which corresponds to better frequency resolution, since 

there is less ambiguity regarding the value of exact frequency), but their 

widths w.r.t. x-axis are longer (which corresponds to poor time resolution, 

since there is more ambiguity regarding the value of the exact time). At 

higher frequencies, the width of the boxes decreases, i.e., the time 

resolution gets better and the height of the boxes increases, i.e., the 

frequency resolution gets poorer. 

From the CWT, if the signal has a spectral component that 

corresponds to the current value of 's', the product of the wavelet with the 

signal of the location where this spectral component exists gives a relatively 

large value. If the spectral component that corresponds to the current value 

of 's' is not present in the signal, the product value will be relatively small. 

Here WT have the property to analyze the signal using Multi Resolution 

Analysis (MRA) [4]. The MRA implies that the analysis of the signal is made 

at different frequencies with different resolution. 
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The main disadvantages of CWT are computational complexity and 

redundancy. Hence discretized CWT are developed by discretizing either `I ' 

or 's' or both. Here the parameter 's' is discretized ft r s t on a logarithmic grid. 

The time parameter is then discretized with respect to the scale parameter, 

i.e., a different sampling rate is used for every scale. But this process 

creates a high redundancy as far as the signal re-construction is concerned 

[4]. So, the discrete wavelet transforms are developed in order to overcome 

the problem of redundancy associated with continuous wavelet transform, 

which significantly reduces the computation time. 

3.5 DISCRETE WAVELET TRANSFORM (DWT) 

The DWT are easier to implement than CWT. The DWT is based on 

the process of Subband Coding. 

The CWT is computed by changing the scale of the analysis, shifting 

the window in time, multiplying by the signal and integrating over all times as 

presented in section 3.4. In discrete wavelet transform, filters of different 

cutoff frequencies are used to analyze the signal at different scales. The 

signal is passed through a series of high pass filters to analyze the high 

frequencies and through a series of low pass filters to analyze the low 

frequencies. 

Filtering of a signal in discrete time corresponds to the mathematical 

operation of convolution of the signal with the impulse response of the filter. 
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The convolution operation in discrete time is defined as 

x[n] * h[n] 	x[k].11[11 - k] 
k=-7: 

where h[n] -4 Low pass filter 

x(n) 	Input signal 

x[n]*g[n] = I x[k].g[n - k] 

(3.4) 

(3.5) 

where, g(n) 	High pass filter. 

The discrete wavelet transform is implemented in the form of sub-

band coding. The Subband Coding algorithm is-shown in Fig. 3.3. 

The original signal is convolved with high pass filter, according to the 

equation (3.4). Similarly the original signal is convolved with the low pass 

filter and half of the samples are eliminated according to the Nyquist's rule. 

Here the signal is subsampled by 2. 

Here, the high pass _filter removes all frequencies that are below half 

of the highest frequency in the signal. Similarly, the low pass filter removes 

all the frequencies that are above half of the highest frequency in the signal. 

Discarding every other sample, subsamples the signal by two. Here, 

low pass filtering removes the high frequency information thereby altering 

the resolution. Subsampling process changes the scale. Here, the time 

resolution of the signal is halved after each filter operation. 

As shown in Fig. 3.3, first the signal is passed through high pass filter. 

The output of high pass filter after sub sampling corresponds to the detailed 

information of the input signal in the range n/2- 	radians. Similarly, the 

input signal is passed through the low pass filter. Now half of the samples 
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are eliminated, since the signal has the highest frequency of TE / 2 radians, 

according to Nyquist criteria [4]. The signal obtained at the output of low 

pass filter is the approximation signal. Here, the detail signal corresponds to 

the output of the high pass filter. The detailed level is the level 1 DWT 

coefficients of Fig.3.3 which corresponds to the high frequency components 

of the input signal. This process is repeated for the next lower level until the 

desired frequency range is achieved. 

Here the frequencies that are most prominent in the original signal will 

appear as high amplitudes in that region of the DWT signal that includes 

those particular frequencies. Here, the localization of these frequencies is 

preserved. If the main information of the signal lies in the high frequencies, 

the time localization of these frequencies will be more precise since these 

are characterized by more number of samples. Here, this process has good 

time resolution at high frequencies and good frequency resolution at low 

frequencies. 

The high pass and low pass filters are not independent of each other 

and are related by g [ L 1 	n ] = (-1)n.h[n] 

Where L = length of the filter. 

As an example, if the input signal is sampled at 500 Hz sampling frequency, 

the implementation of the DWT algorithm for this signal at different levels of 

decomposition is shown in Fig. 3.4. 
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x[n] 	f = 0 TE 

f = Th/2 TE 
	 hn] f = 0 - 7t/2 

Level 1 : DWT coefficients 

f = 714 — st/2 	 g[n] 
	

h[n] f = 0 — rt/4 

Level 2 : DWT coefficients 

  

f = Th/8 — 7/4 h[n] f = 0 - 7t/8 

 

x[n] = 
g[n] = 
h[n] = 

Level 3 : DWT coefficients 

Original signal 
High pass filter 
Low pass filter 

Fig. 3.3 : Subband Coding Algorithm 



x[n] 	= 	Original signal 
g[n] = 	High pass filter 
h[n] = 	Low pass filter 

Fig. 3.4 Subband Coding Algorithm for Input Signal 
of Sampling Frequency 500 Hz 

x[n] f = 0 - 250 Hz 

vir 

f = 125 - 250 Hz g[n] 

1 

Level 1 : DWT coefficients 

h[n] f = 0 - 125 Hz 

TIT 

f = 62.5 - 125 Hz 	 h[n] f = 0 —62.5 Hz 

Level 2 : DWT coefficients 

f = 31.2 — 62.5 Hz g[n] 
	 h[n] f = 0-31.2Hz 

Level 3 : DWT coefficients 

f = 15.6 - 31.2 Hz g[n] 	h[n] 
f = 0-15.6 Hz 
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Some of the wavelets used for the analysis are given in the 

Table 3.1(9]. 

Table 3.1 

Wavelet Low pass filter coefficients 
h(n) 

High pass filter 
coefficients 

g(n) 
Daubechies 

4 0.482962, 0.836516, 0.224144, g(L-1-n) 	= 	(-1)n 

-0.129409 h(n) 

L = length of filter 

6 0.33267, 0.806891, 0.458775, -.135011, -do- 

-0.085441 

8 0.230378, 0.714846, 0.630881, -do- 

-0.27984, -0.187034, 0.030841, 

0.032883, -0.010597 

10 0.160102, 0.603829, 0.724308, -do 

0.138428, -0.242294, -0.03224, 

0.077571, -0.006241, -0.012581, 

0.003336 

B-Spline 0.5, 0.25, 0.5 -do- 

Type 

Linear 

Cubic 0.0625, 0.25, 0.375, 0.25, 0.0625 -do- 

Quadratic 0.125, 0.375, 0.375, 0.125 -2.0, 2.0 
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3.6 CONCLUSIONS 

From the above presentation on wavelet transforms, it is seen that 

wavelet transform is most suited for the analysis of non-stationary signals 

such as ECG since it has the capacity to analyse the signal at different 

frequencies with different resolutions. 
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Chapter 4 

PRE-PROCESSING OF ECG SIGNAL 

4.1 INTRODUCTION 

The ECG signal is corrupted by various sources of noise. The feature 

extractions from the ECG signal can be made more accurate if the input 

ECG signal to the processing system is made free from the noises 

associated with it. 

4.2 SOURCES OF NOISE 

While recording the ECG, unwanted signals interfere with it and 

hence ECG signal gets corrupted with noise. Typically the noise sources are 

classified as: 

(1) Power line interference. 

(2) Muscle artifacts. 

(3) Baseline wander. 

(4) Instrumental noise. 

4.2.1 Power Line Interference 

The inductive coupling is from neighbouring power frequency devices 

by magnetic flux linking with the lead wire from the patient to the ECG 

machine. It may be reduted by twisting the lead wire in a systematic fashion 

so as to reduce the effective area of flux linking. The capacitive coupling 

from the power frequency device is due to the lead wire as well as to the 

patient. The method of completely eliminating power frequency interference 
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is to provide effective shielding to the patient and the machine. This 

interference. produces 50 Hz signal, which is as shown in Fig. 4.1(a). 

4.2.2 Muscle Artifacts 

Whenever a muscle is activated, it produces an EMG signal. The 

electrodes, placed at this site, pick up the unwanted EMG signal. This 

causes abrupt variations of voltages. Hence a high frequency noise is 

produced with a frequency range of dc to 10000 Hz and peak amplitudes 

varying from 50. .V to about 1 mV. The ECG corrupted with EMG noise is 

shown in Fig. 4.1(c). The signals resulting from muscle contraction can be 

assumed to be transient bursty of zero-mean band limited Gaussian noise. 

Gaussian noise is the noise which spans over the entire frequency range of 

the signal. Theoretically, the Gaussian white noise is assumed to be of 

infinite bandwidth. 

4.2.3 Baseline Wander 

If the electrode contact is not proper or if there is a body movement, 

the baseline wanders or drifts. This introduces low frequency noise of the 

order of. 0.5Hz. The baseline also drifts with respiration which can be 

represented as a sinusoidal component at the frequency of respiration 

added to the ECG signal as shown in Fig. 4.1(c). 

4.2.4 Instrumental Noise 

This is generated within the recording instrument which causes high 

frequency periodic variations in the ECG signal. Artifacts generated by 

electronic devices in the instrumentation system as shown in Fig. 4.1(d) can 
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not be corrected by QRS detection algorithm. Here, the input amplifier is 

saturated and, no information about the ECG signal can reach the detector. 

Here an alarm must sound to alert the ECG technician to take corrective 

action. While recording ECG, the signal is corrupted by both high frequency 

and low frequency noises. 

The best performance of an ECG processing system is achieved if the input 

signal is free from noise. The removal of noise is important not only for 

computer processing but also for visual examination of the ECG 

waveform.Several filters have been designed to pre-process the ECG signal 

for the removal of noise content present in it [10,11].A few filters are 

discussed below. 

Finite impulse response (FIR) filters are normally preferred for noise 

removal from the ECG as they introduce minimum signal distortion because 

of their linear phase characteristics. 

A multi band filter known as extraction filter which uses integer 

arithmetic is designed and implemented for the removal of baseline drift and 

powerline interference in the ECG signal [11]. This filter is designed for real 

time execution. 

An other online digital filter developed for the subtraction of 50 Hz 

interference from the ECG signal used the postulate that the interference 

can be measured in intervals of the ECG signal, where the latter is 

isoelectric or changes linearly with time. The sum of equally spaced sample 

amplitudes from one period of a periodic interference signal is zero. The 

interference of the signal is reduced based on the criteria of threshold 

selection derived from the backward differences [12] The above algorithms 

work for removal of 50 Hz signal only. 
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The wavelet based noise reduction is effective in the removal of the 

Gaussian noise present in the ECG signal and also the 50 Hz interference 

signal. Since the ECG signal has the frequency range of 0-30 Hz generally 

and the high frequency noise has the range that does not overlap with that 

of the ECG signal, the noise is well isolated from the ECG signal. 

4.3 PRE-PROCESSING OF ECG SIGNAL USING WAVELET 

TRANSFORMS 

Here, two different algorithms are implemented using discrete wavelet 

transforms to pre-process the ECG signal, one for the removal of high 

frequency noise present in the signal due to soft tissue motion artifacts and 

the other for the reduction of baseline drift present in the ECG signal. 

4.3.1 Denoising ECG Signal Using Discrete Wavelet Transforms 

Here, an off-line denoising algorithm is implemented based on 

adaptive wavelet technique. Wavelet-based noise removal exploits the 

time/scale characteristic of the DWT. Normally, noise consists of high-

frequency components and is thus localized in the finer, detailed levels of 

the DWT. In these levels, the important coefficients, corresponding to the 

true signal information, have a relatively high magnitude, and the lower 

magnitude coefficients represent the noise. The expected noise energy is 

the same in all coefficients. Hence if this energy is not too large, noise has a 

relatively small influence on the important large signal coefficients. 

Therefore the small coefficients should be replaced by zero, because they 

are dominated by noise and carry only small amount of information. 
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Here, the variable white noise (Gaussian noise) is added to the ECG 

signal to produce the noisy output. Here, the signal is decomposed using 

Daubechies wavelet-6 (Table 3.1). At each level of decomposition, the 

standard deviation(ai) of the wavelet coefficients is calculated and then the 

threshold is defined based on the value 	where 'a: is a variable. Here, 

three levels of decomposition are chosen for the high frequency noise 

removal of the ECG signal. Since the noise corresponds to high frequency 

contents of the signal, at the finest or detailed scale, 'ai' is set to a relatively 

large value to remove the noise components present at that level. Then at 

the next lower levels a;  is reduced and the process is repeated. The values 

of ai ' for the three levels are presented in Chapter 6. This process is 

repeated for three levels of decomposition considered and then the 

reconstruction of the signal is made. The root mean square error (RMSE) 

and the percent root mean square difference (PRD) of the actual signal 

without noise and the reconstructed signal is calculated to , judge the 

performance of the algorithm. 

The root mean square error is defined as 

RMSE = 1  i korg  (i) - xrec(id2  
N i=1   

where xorg(i) 4 original input signal 

xrec(i) 4 reconstructed signal 

and N 4 total number of samples 
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and the percent root mean square difference is defined as 
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The general algorithm for denoising ECG signal is presented on 

page no. 39. 

4.3.2 Baseline Wander Reduction of ECG Signal Using Discrete 

Wavelet Transforms 

Here also, an off-line algorithm is implemented to reduce the baseline 

drift of the ECG signal. Generally, the baseline wandering can make the 

inspection of the ECG signal difficult because some features can be masked 

by it. More over, in automatic inspection systems, the other processing tasks 

such as wave detection, signal classification, etc., can be affected. 

As presented in Chapter 3, at each level of decomposition of the 

DWT, the input signal is decomposed into two parts, i.e. detail or high 

frequency components, and the approximation itself or the low frequency 

components. Here, the approximation of the signal is considered for the 

reduction of baseline drift in ECG signal since the approximation signal and 

baseline drift are low frequency signals. 

The best level of approximation of the signal is decided based on 

measure of the resulting signal variance at that level. In order to reduce the 

baseline wandering, the approximation found must have a narrow spectrum 

and the variance of the resulting signal should be as low as possible, since 

the approximation must not have high frequency components of the signal. 
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Here, the input signal is sampled at 500Hz sampling frequency, and 

hence the eighth le'Vel of approximation corresponds to the frequency range 

of (0-1)Hz which is the frequency range of the baseline wandering. The 

eighth level of approximation is calculated, and then, it is subtraCted from 

the signal. Consequently, the baseline wander of the signal is greatly 

reduced. 

For the purpose of testing this algorithm, a sinusoidal signal is 

generated with the sampling frequency of 500 Hz and the low frequency 

signal of 1 Hz is added to it. The algorithm is tested on this signal and it is 

seen that the eighth level of decomposition corresponds to the low 

frequency component of 1 Hz and the corresponding low frequency 

component is effectively reduced by subtracting it from the original signal. 

The general algorithm for the baseline wander reduction is presented 

on page no. 40. 

The codes are developed in. 'C' language for the implementation of 

the two algorithms. The results of the two programs are presented in 

chapter 6. 

ALGORITHM FOR DENOISING OF ECG SIGNAL 

1. Input the ECG signal data file. 

2. Calculate the DWT of the signal at the scale S=2', 1=1, the array b[j] 

contains the coefficients of the detail level or the output of high pass 

filter. 

3. Calculate the standard deviation (ai  ) of the detail signal at this level. 

4. Calculate `ai.o.;  ' for i = 1 and make b[j]=0 for b[j]<( 	). [cti  =2.0,1.5,0.5 

for 	i =1,2,3 respectively.] 
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5. For 1=2, repeat steps 2, 3 and 4. 

6. For i=3, repeat steps 2, 3 and 4. 

7. Reconstruct the signal starting from the lowest level (i=3) by up-sampling 

and then convolving the high pass and low pass filters. 

8. Calculate the RMSE and PRD. 

ALGORITHM FOR BASELINE WANDER REDUCTION 

1. Input the ECG signal. 

2. Calculate the D WT of the input signal at scales S=2' , i= 1 to 8. 

3. Interpolate the eighth level of approximation signal linearly to get the 

samples corresponding to the input signal. 

4. Subtract the input signal from the coefficients obtained after interpolation.  

The flowcharts of the two algorithms discussed are given in Fig. 4.2 

and Fig. 4.3. 

4.4 CONCLUSIONS 

Here, two algorithms based on the Discrete Wavelet 

Transforms for the reduction of high frequency and low frequency noise in 

the ECG signal have been presented. It is seen that the algorithm for 

baseline wander reduction works effectively for the testing sinusoidal signal, 

with the low frequency component added to it. The low frequency signal is 

separated frorn the sinusoidal signal and thus it is reduced as per the 

algorithm. 

40 



CALCULATE 
PRD. RMSE 

START 

READ THE INPUT FILE 

j=1 

4111111111 Yes 

	  RECONSTRUCT 
THE SIGNAL 

COMPUTE DWT 
(t. 2') 

COMPUTE S. D ( ) 
OF WAVELET 

SIGNAL 
b[il=i= 1 to n 

COMPUTE Th= a,. a, 

j = j +1 

YES 
bill = 0 
i= 

YES 

STORE 61 i I 

Fig 4.2 Flow Chart for Denoising of ECG Signal 



COMPUTE DWT (t. 

alk]=a[1(]-d[k] 

STORE LOW PASS 
OUTPUT IN clikl 

INTERPOLATE dik I 

7, READ THE INPUT FILE in 
atki, b[kl 

STOP 

Fig 4.3 Flow Chart for Baseline Wander Reduction 

42 



Chapter 5 

QRS COMPLEX DETECTION USING 

WAVELET TRANSFORMS 

5.1 INTRODUCTION 

The detection of QRS complex — specifically, the detection of the 

peak of the QRS complex or R wave in an ECG signal is a difficult problem 

since it has a time-varying morphology and is subject to physiological 

variations due to the patient and due to corruption with noise. Since the 

QRS complexes have a time-varying morphology, they are not always the 

strongest signal component in the ECG signal. Therefore P-wave or T-wave 

with characteristics similar to that of QRS complex, as well as spikes from 

high frequency pacemakers can compromise the detection of QRS complex. 

In addition, there are many sources of noise in a clinical environment that 

can degrade the ECG signal. These include powerline interference, muscle 

contraction noise, poor electrode contact, patient movement and baseline 

wander due to respiration. Therefore QRS detectors must be invariant to 

different noise sources and should be able to detect QRS complexes even 

when the morphology of ECG signal is varying with time. 

Most of the current QRS detectors can be divided into two stages: a 

preprocessor stage to emphasize the QRS complex and a decision stage to 

threshold the QRS enhanced signal. In the preprocessor stage, the ECG 

signal is first bandpass filtered to reduce noise and differentiated to 

emphasize the large slope of the R-wave and then squared to further exploit 

the high-frequency content of the QRS complex. A short time energy 

estimate is obtained by smoothening the resulting signal with a moving 



window integration. The selection of bandwidth of the bandpass filter and 

the duration of the sliding analysis window is not straightforward. The 

bandwidth of the bandpass filter must be chosen to reflect the trade-off 

between noise reduction and loss of high-frequency details. If the bandwidth 

is too large, noise reduction suffers. If the bandwidth is too small, high 

frequency QRS characteristics are lost. Similarly a long window allows a 

large energy accumulation whereas a short window allows too little energy 

to accumulate. So a fixed bandwidth of bandpass filter and fixed Window 

length can not serve the purpose of detection of QRS complex in ECG 

signal. 

A number of algorithms have been proposed for the ECG QRS 

detection, These include the algorithms based on amplitude and first 

derivative, based on first and second derivative, based on digital filters [3] 

but each algorithm has its own advantages and disadvantage. 

5.2 QRS Detection Algorithms 

The performance of any QRS detection algorithm depends on 

the accurate detection of QRS complex in the presence of noise. 

5.2.1 Algorithm based on amplitude and first derivative 

In this algorithm, the largest positive valued element of th'e array 

containing the ECG data points is calculated and is taken asa reference for 

the threshold [3]. The first derivative y(n) is calculated at each point of input 

signal x(n) such that 

y(n) = x(n +1) — x(n —1) 1-< n < N 

where 'N' is the total number of samples. 
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A QRS complex occurs when three consecutive points in the first 

'derivative array exceed a positive slope threshold and are followed within 

the next 100 ms by two consecutive points which exceed the negative 

(descending slope) threshold [3]. 

5.2.2 Algorithm based on first and second derivatives 

Here, the absolute values of the first and second derivatives are 

calculated from the ECG, the scaled Sum of the first and second derivatives 

is stored and scanned until the threshold is met or exceeded [3]. Once this 

occurs, the next eight points are compared with the threshold. If six or more 

of these eight'points exceed the threshold, the QRS complex is identified. 

The above two algorithms do not work satisfactorily because QRS 

complex has a time varying morphology and can not be judged with the 

slope criteria alone. 

5.2.3 Digital Filters 

Two algorithms based on the digital filters for QRS detection are 

presented below. 

5.2.3.1 	Okada Algorithm 

This algorithm is proposed by Okada [13]. Here the smoothing of 

input signal is made by three point moving average filter, and is passed 

through the low pass filter. It effectively reduces a band pass filtering 

operation on the original data. The difference signal is then squared. To 

further highlight the high frequency QRS complex, the resulting signal is 

multiplied by a non-linearly filtered version of itself. 
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5.2.3.2 MOBD Algorithm 

This algorithm proposed by Suppappola and Sun, referred' to as 

multiplication of the backward differences(MOBD), used only non-linear 

filtering to detect the QRS complex. Here, to emphasize the high frequency 

characteristics of the signal, the square of the derivative (or babkward 

difference) of the signal is calculated. The successive samples of the 

backward difference of the ECG signal are multiplied together to highlight 

the high frequency content of the signal [15]. 

As seen from the above two algorithms, their implementation Involve 

complex programming. Moreover the QRS complexes are suppressed along 

with the noise by these algorithms [3]. The best performance of the above 

algorithms is achieved when the signal is first pre-processed 'for the removal 

of various noise components associated with it. 

The advantage of using Discrete Wavelet Transforms over the above 

algorithms described for QRS detection includes the easy implementation of 

DWT algorithm, which does not require any pre-processing stage: for the 

noise reduction before the detection of QRS complex. 

5.2.4 Template Matching Techniques 

In these methods, templates are used for classifying the patterns in 

the ECG signal that are quite related to the human recognition process. 

5.2.4.1 Template Cross Correlation 

Here the template of a QRS waveform is correlated with the incoming 

ECG signal and the value of the cross-correlation coefficient is. calculated. If 

the coefficient is high, then it is identified as a QRS complex [15]. 
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5.2.4.2 Template subtraction 

Here also the template of the QRS waveform is stored and is 

compared with the incoming ECG signal. Each point of the incoming signal 

is subtracted from the corresponding point in the template. The QRS 

complex is decided by the low value of the resulting subtraction [151. Other 

technique include automata-based template matching where the ECG signal 

is reduced to a set of pre-defined tokens[15]. 

In the template matching technique discussed, the selection of a 

template is difficult because QRS complex has different shapes for different 

leads and also all the peaks in the QRS complex (Q, R and S) are not 

always present which makes the matching difficult. 

5.2.5 Discrete Wavelet Transform Based Technique 

Here a discrete wavelet transform (DWT) is used to overcome the 

above problems. A chosen "mother wavelet" has a fixed shape, however the 

wavelet derived from it by changing scales; referred to as "daughter" 

wavelets, have different bandwidths and time supports. At any particular 

scale, the DWT is the convolution of the signal and the time-scaled daughter 

wavelet. Scaling the mother wavelet is the mechanism by which the DWT 

adapts to the spectral and temporal changes in the signal being analyzed. 

So, for smaller scale values, it exhibits high temporal and low spectral 

resolution whereas for larger scale values, it exhibits low temporal and high 

spectral resolution. 

5.3 DWT — BASED QRS DETECTOR 

As most of the energy distribution of QRS complex lies in the range of 

6-30 Hz [14], it is taken as a reference for wavelet based QRS detector as 
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the frequency range specified above lies in the fourth level of decomposition 

and the QRS detection is performed at fourth level itself. However, since 

QRS complex is a transient and the DWT computed exhibits local maxima 

across several scales at the instance of occurance of transients [14), the 

fourth and the successive levels are taken as reference to ascertain the 

QRS peak. Here the ECG signal is sampled at 500 Hz..  

The algorithm is as follows: 

1. Read the input data file 

2. Compute the DWT of the input signal at scales S = 2', 

i = 1 to 5. 

3. Store the detailed signal at fourth and fifth levels. 

4. Locate the local. maxima across the two levels which exceed a 

threshold 

Value. 

5. If the corresponding local maxima across the two levels lies with in 

the range of ± 15 samples, go to 6 else go to 7. 

6. Store the corresponding data point at fourth level. Advance the 

search to fifteen data points ahead. Go to 5. 

7. Ignore that sample, move to the next one and go to 5. 

8. Output the QRS peaks. 

Here, two wavelets..are taken and the analysis is made for different 

filter lengths. The algorithm is tested with CSE database. The two wavelets 

used are Quadratic spline wavelet and Daubechies wavelet-10 (t4)le 3.1). 

The two wavelets are first tested on the known sinusoidal signal of sampling 
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frequency 500 Hz with different frequency components added to it. It is 

seen that the DWT algorithm worked effectively in separating the different 

frequency components in - corresponding levels of decomposition. The 

amplitudes of the signals at different levels of decomposition are compared 

with their known amplitudes and it is seen that they match. 

The results of the above algorithm are presented in the next chapter 

and the flowchart is given in Fig 5.1. 

5.4 CONCLUSIONS 

In this chapter, a general discussion on various QRS 

detection algorithms has been carried out. A DWT based QRS detector is 

presented in detail stating its advantage over the other QRS detection 

algorithms. 
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Chapter 6 

RESULTS AND DISCUSSION 

6.1 GENERAL 

The results and a discussion on the algorithms given in chapter 

4 and chapter 5 are presented in this chapter. They include 

(i) • 	denoising of ECG signal using Discrete Wavelet Transforms. 

(ii) reduction of baseline wander of ECG using Discrete Wavelet 

Transforms and 

(iii) Discrete wavelet transform based QRS detector. 

The wavelet used for denoising of ECG signal and reduction of 

baseline wander of ECG signal is Daubechies Wavelet-6 (DB-6) with the 

coefficients of high pass filter and low pass filter presented in table 3.1 of 

chapter 3. 

As presented in chapter 3, the main process in DWT is the splitting 

up of the input signal into two parts, one the high frequency are detail signal 

and the other low frequency or approximation signal. Any wavelet chosen 

for DWT algorithm splits the input signal as presented in chapter 3. The 

efficiency of the first two algorithms lies in the selection of the decomposition 

level for the effective noise removal. Hence one wavelet can be used both 

for the reduction of high frequency noise and the low frequency noise in the 

input ECG signal. 

All the algorithms are tested using the CSE database. 
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6.2 DENOISING OF ECG SIGNAL USING DISCRETE WAVELET 

TRANSFORMS . 

As discribed in chapter 4, since the noise corresponds to the high 

frequency component of the ECG signal, the thresholds selected at the 

three levels considered here are different, with the value at most -detailed 

level rel6tively high and less with the next two lower levels. 

At the detailed level, the threshold is selected as a;  x 2.0, where 'a: 

is the standard- deviation at that level, i = 1. 

In the next two lower levels, the thresholds are a;  x 1.5 and ai  x 0.5, 

= 2 and 3, respectively. 

The performance of the algorithm is measured based on the root 

mean square error (RMSE) and percentage root mean square difference 

(PRO). 

Figs 6.1, 6.2 and 6.3 show the signal before and after processing. 

Figs 6.1 and 6.2 show the input ECG signal corrupted with Gaussian noise 

and the output signal of the reduction of the noise. The RMSE calculated for 

the signals in figs 6.1 and 6.2 are 0.04309 and 0.07167 respectively while 

the PRD calculated are 15.437 and 9.6552 respectively. The RMSE and 

PRD of the algorithm for the two data files are also shown in the figures. Fig. 

6.3 shows the input ECG signal corrupted by noise and the output after 

noise removal. The RMSE and PRD calculated are 0.0657 and 10.23,57 

respectively. 

Generally if the tolerance range of RMSE is (0 — 0.2), it is acceptable. 

If the PRD calculated lies in the range (0 — 10) %, it is quite good. if it lies in 

the range (10 —15) )̀/0 ,it is also acceptable. 
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6.4 DISCRETE WAVELET TRANSFORM BASED QRS DETECTOR 

The algorithm is tested on two wavelets Daubechies Wavelet-10 

(DB-10) and Quadratic Spline Wavelet. The low pass coefficients of (DB-10) 

are 

h(0) = 0.160102, h(1) = 0.603829, h(2) = 0.724309, h(3) = 0.138428, 

h(4) = -0.242295, h(5) = -0.032245, h(6) = 0.07751, h(7) = -0.006241, 

for a filter of length L = 8 

and g(L — 1 — n) = (-1)" . h(n), 	g( ) 4 high pass coefficients. 

The algorithm is tested on CSE dataset-3 for all 15 lead data of 38 records. 

The analysis results are given in Table 6.1. Here, `FP' denotes the number 

of false positives which corresponds to a detector error of detecting a QRS 

complex,  where there is none and 'FN' denotes number of false negatives 

which corresponds to a detector error of not detecting a QRS complex 

where there is one. 

Table 6.1 .  

No. of 
	

Filter 	FP 
	

% FP 
	

FN 
	

%FN 

Beats 	length 

7035 
	

8 
	

13 
	

0.185 
	

222 
	

'3.15 

For the Quadratic Spline wavelet with the lowpass filter coefficients 

h(0) = 0.125, h(1) = 0.375, h(2) = 0.375, h(3) = 0.125, 

and high pass filter coefficients 

g(1) = -2.0, g(2) = 2.0 

The analysis results are tabulated in Table 6.2. 

54 



Table 6.2 

No. of Beats 	FP 
	

% FP 
	

FN 
	

% FN 

7035 
	

44 
	

0.625 

As seen from tables 6.1 and 6.2, the number of FP's incase of DB-10 

are 13 and incase of Quadratic spline wavelet are none. Similarly the 

number of FN's in case of DB-10 and Quadratic spline wavelet are 222 and 

44 respectively. By comparing the results of the algorithms given in table 6.1 

and table 6.2, it can be stated that the algorithm works effectively for the 

Quadratic Spline wavelet with the least error of 0.625. 

Fig. 6.7 shows the correct QRS peak detection of the input signal with 

the Quadratic iSpline wavelet. Fig. 6.8 shows the accurate detection of QRS 

peak in the presence of the high amplitude P-wave. Fig. 6.9 shows the false 

detection of the QRS peaks with (DB-10) wavelet whereas Fig. 6.10 shows 

the correct detection of the QRS peak with spline wavelet for the same input 

data file. 

Fig. 6.11 shows the accurate detection of the QRS peak in case of 

the baseline wandering of the input signal. 

It shows that the detection of QRS complex is accurate in the 

presence of the noise such as high amplitude P-wave or baseline drift. It is 

because the frequency range of these noise signals and that of the QRS 

complex does not overlap. In case the frequency band of the noise and that 

of the QRS complex overlap, then it is difficult to detect the QRS complex. 

Fig. 6.12 shows the input signal corrupted with both baseline drift and 

high frequency noise and the output after the reduction of baseline drift. Fig. 

6.13 shows the same signal after removal of the high frequency noise 
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present in it. Fig. 6.14 shows the QRS complex detection of the same signal 

after the removal of the noise contaminated with it. 

6.5 CONCLUSIONS 

It can be conoluded from the results of the implementation of the 

algorithms presented in ch'apter 4 and chapter 5 that the discrete 'wavelet 

transform proved to be an effective tool for the reduction of both high 

frequency and low frequency noise present in the ECG signal and for the 

accurate QRS complex detection in ECG signal. 
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Chapter 7 

CONCLUSIONS AND FUTURE SCOPE OF THE WORK 

7.1 CONCLUSIONS 

In this work, three algorithms based on .discrete wavelet transforms 

have been developed to remove 

(1). 	The high frequency noise. 

(ii) The low frequency baseline wander and 

(iii) Detect the QRS complex in ECG signal. 

All these algorithms were tested on CSE dataset-3. The performance 

of these algorithms were measured with the help of PRD and RMSE in the 

case of high frequency noise removal and by the measurement of ECG 

parameters manually before and after processing incase of baseline wander 

reduction. It has been seen that the algorithm worked effectively in the 

removal of high frequency noise with the maximum PRD and RMSE of 

16.3145 and 0.22 respectively for 20 records of CSE dataset-3. Regarding 

the baseline wander reduction, the maximum of 2% change is accounted in 

measurement of ECG parameters before and after processing. The 

algorithm also works satisfactorily for the detection of QRS complex in ECG 

signal with the Quadratic spline wavelet with a least percentage error of 

0.625, tested on 38 records of CSE dataset-3. 

The advantage of DWT based detection of QRS complex is that it 

does not assume stationarity within the analysis segment and exhibits 

robustness to noise. The algorithm presented here is computationally 

simple. 
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7.2 FUTURE SCOPE 

The work can be expanded with respect to the choice of the best 

wavelet among the available wavelet library or a new wavelet can be 

suggested. Also the extraction of other features of the ECG signal can be 

added to the work. 
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