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ABSTRACT 

A rapid increase in harmonic currents and voltages in the present AC 

systems due to large introduction of solid state switching devices. It is imperative to know 

the harmonic parameters such as magnitude and phase angles. This is essential for 

designing filters for eliminating and reducing the effects of harmonics in a power system. 

In the present work, An artificial neural network based approach has been 

presented to estimate the harmonic source currents injected into the system. Three-layered 

feed 'forward structured neural network was constructed with backpropagation learning 

algorithm. Neural network was trained and tested with the 18-bus example system, the 

results obtained from the tests showed acceptable estimates. 
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NOMENCLATURE 

a 	 Fourier coefficient 

A(th), B(th) 	Constants in mth  solution region 

B Phase angle 

c 	 Fourier coefficient 

C 	 Constant 

D Distortion Volt amps 

gi, gr 	 Imaginary and real parts of current balance eqution 

H Harmonic jacobian entry 

h,n 	 Number of harmonics considered 

Imaginary and real parts of harmonic current 

J I, J(-1) 	Convension and harmonic Jacobian matrix 

k 	 Harmonic number 

K Constant 

AM 	 Mismatch vector 

n 	 Number of system buses 

N 	 Number of non-linear loads 

PC;") 	 Inverse time constant, Mth  solution region 

T 	 Time 

AU 	 Voltage correction 

LW 	 Mismatch P,Q 

Yg4( 	 Entries in harmonic jacobian 

6k 	 Triad 

coo 	 Fundamental frequency 

tin  Jib ,tic 	Phase to neutral voltages 

Jacobian dimension 

Nj 	 Number of non-zero entries in jacobian 

t(superscript) 	Transpose 

Av, Act 	Update on v, a 
00) ,ok 	Phase angle of ith  harmonic voltage 
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Chapter 1 
Introduction 

1.1 INTRODUCTION 

Estimation of harmonic components in a power system is a standard approach 

for the assessment of the quality of the delivered power. Power system harmonics are 

known to be generated by a number of sources in the power network. The use of 

alternating current circuits in electrical power system has been common place nearly 

since the very inception of the interconnected power network. The most familiar loads 

on such a system are the constant power, constant impedance and constant current loads 

or a linear combination of thereof. In typical cases, the voltage and current waveshapes 

are nearly purely sinusoidal. In a modern electric power system loads may occur in 

which voltage or current waveforms are distorted. Prior to the development of static 

converter plant power system harmonic distortion was primarily with the design and 

operation of electric machines and transformers. Indeed the principal harmonic source 

present in the system in early days was the magnetising current of transformers, 

electrical generators provided the main secondary source. Since this practical economic 

design required that some departure from the ideal sinusoidal waveshapes be accc.',,,-A::!d, 

often harmonic signal levels on early power system could be reduced to acceptable 

levels through the use of wye-delta transformers. Today, the number and significance 

of harmonic producing elements is rapidly increased due to the development of high 

power semiconductor switches and the widespread use of fluorescent lighting. Because 

of the absence of stability problem and certain other advantages of low loss and 

efficient use of right-of-way, HVDC subsystem takes an important role in long distance 

transmission. In recent years, the HVDC conversion technique has been perfected and 

HVDC transmission has been applied in several countries of the world. Unfortunately, 

the character of HVDC converter is non-linear and the converter is a harmonic source 

in the power system. 
Gaseous discharge lighting (such as fluorescent, mercury arc and high pressure 

sodium) is a significant source of power system harmonics, particularly in metropolitan 
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areas. The electrical characteristics of this type of lamps are quite non-linear. Lamp 

ignition occurs during each half cycle when the applied ac voltage reaches some 

required firing potential. There are also substantial increase in harmonics on the 

distribution system due to increased use of variable speed motors, dimmer switches, 

microwave ovens, television sets, battery changers etc for the future there may be many 

power driven coming n lines as harmonic sources such as fuel cells, battery storage 

devices, photovoltaic cells, battery storage devices, photovoltaic cells, wind generator 

and MHD. These devices will also have an impact on the power system. The equipment 

not only generates harmonics but in cases where shunt filters are used also amplifies the 

system harmonics by causing resonance with the ac network impedance. As many other 

forms of pollution the generation of harmonics effects the whole (electrical) 

environment and probably at much longer distances from the point of origin. 

Perhaps the most obvious consequences of power system harmonics in the 

degradation of telephone communication caused by induced harmonic noise. However, 

therefore other less audible, though often more disastrous effects such as the 

maloperation of important control and protective equipment and the overloading of 
power apparatus and systems. Very often the existence of waveform pollution is only 

detected following excessive casualties (like the destruction of power factor correction 

capacitors) moreover, in the absence of an electrical welfare state, the casualties have to 

be repaired or replaced and the equivalent protected by filters at the customers expense, 

even through such preventive measures provide a general environment improvement. 

The effect of these harmonics on cables, generators, transformers and other 

loads represents very important serious problem. To determine the impact of these 

harmonic flows on the distribution and transmission network and to eliminate the 

harmonics by suitable design of harmonic filters. The magnitude and phase of harmonic 

currents flowing in all the elements of the power network must be calculated. 

1.2 STATE-OF-ART 

Harmonic analysis is the process of calculating the magnitudes and phases of 

the fundamental and higher order harmonics of the periodic waveform. The resulting 

series in known as fourier series and establishes a relationship between a time domain 
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and that function in the frequency domain. J.B.J. Fourier (1768-1830) set up the basis 
for harmonic calculations. 

With reference to power system harmonics, Steinmetz is one of the best known 

engineer who studied the power system harmonics and who published the result in the 

Transaction of the American Institute of Electrical Engineers(AIEE) (1900-1910). In 

general, the early studies were often relegated to harmonics produced by transformers 

non-linearity and results usually centered on the applicability of wye-delta connections. 

But the electrification of railroads in California in 1914 produced interests in 

rectifier loads and telephone influence and the interference in the 600-Hertz range. The 

methods used by early investigators for the reduction of harmonic interference has 

greatly influenced the later work. Later filtering was added. Modern literature on power 

system harmonic problem analysis and solution is mostly of the case history type [1] 

when the harmonic signal strength is low. • The assumption of sinusoidal analysis 

considerably. 

1.2.1 Mathematical Models for Harmonic Power Flow 

Some of the available literature on the mathematical models are the following : 

Pilleggi et al. [2] presented a workable mathematical model for specific devices 

which are known to inject harmonics into power distribution system namely ac/dc 

converter. An equivalent PI transmission line model has presented in [3]. Arrillaga et 

al. [4] have explored the modeling of ac system and converter plant components needed 

to assess the level of zero sequence harmonic generation in the transmission line 

connected to larger converter plants. Arrillaga et al. [5] have presented the three phase 

modelling of an a.c. transmission system for harmonic penetration studies. Circuit 

coupling and impedance are incorporated in a simulation process. Arrillaga et al. [6] 

presented a mathematical model in the form of a Norton equivalent to represent the 

harmonic behavior of the transformer magnetizing branch. The model is equally 

applicable in the presence of sinusoidal, non-sinusoidal and asymmetrical over 

excitation. Any number of harmonics can be modelled simultaneously. In reference [7] 

a generalised steady state model of the synchronous machine was presented, which can 

be taken into account any asymmetry or distortion presented in the armature voltages. 

They have showed that the field voltage is perfect d.c. The harmonic model of the 
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machine becomes a +ve admittance matrix. Carpinelli et al. [8] developed a generalised 

model of line commutated converters for the iterative harmonic analysis to avoid 
convergence problems and to save the accuracy of the results as well as computational 

efficiency. 

1.2.2 Harmonic Power Flow Methods 
Some of the methods are available in literature are the following: 

Xia and Heydt [9] have presented the modified Newton-Raphson power flow 
algorithm to accommodate non-linear loads without the assumption of superposition, 

radial circuitary or sinusoidal bus voltages. Grady et al. [10] developed a method to 

determine low audio range power system harmonics created by the non-linear loads and 

line commutated converters and incorporated into a harmonic power flow program. 

This method employs a Newton-Raphson solution technique that can model non-linear 

loads in inter-connected as well as in radial system. In reference [11] Tamby et al., 

described the salient features of harmonic flow program (r HARM. 
Heydt [12] presented a reverse power flow procedure to identify the source of 

harmonic signals in electric power system. In this procedure, the line and bus data at 

several points in the network are used with a least square estimator to calculate the 

injection spectrum at buses suspect of being harmonic source. 

Xu and Matri et al. [13] developed a multiphase harmonic load flow (MHLF) 
technique for the harmonic analysis of static compensators and other non-linear devices 

under balanced or unbalanced conditions. The harmonic load flow is obtained from the 

interaction between the Norton equivalent circuit of the non-linear elements and the 

linear network at harmonic frequencies, in the reference [14] Girggis et al. presented an 
optimal measurement scheme for tracking the harmonics in power system voltage and 

current. They have introduced the new concept based on Kalman filtering theory for the 
optimal estimation of the parameters of time varying harmonics. 

Vinay Sharma et al in [15] presented a method based upon the frequency 
domain analysis, which is utilised in conjunction with the fundamental load flow 

calculations for computing a harmonic voltage profile on a power system. Valcarcel et 

al. [16] presented a two step harmonic power flow algorithm that analyses harmonics in 

unbalanced systems. The first step is the fundamental frequency power flow for the ac 
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linear network in which non-linear loads are represented by current sources. The 

second is a frequency domain iterative Newton-Raphson method. 

In reference [17] Carbone et al. presented a improved technique called as 

"preliminary step technique" which is a combination of time-domain simulation and 

iterative harmonic analysis. They have also presented another method called 

"Reactance pair technique" to improve the convergence properties. Caramia et al. [18] 

developed a probabilistic method for assessing harmonic distortion level in a power 

system. This method is extremely useful for analysing multiconverter system. Proposed 

method utilises a Monte Carlo simulation technique. 

In reference [19] Arrillaga et al. described the structure of the harmonic domain, 

a new frame of reference for the harmonic analysis of power systems. It utilises the 

Newton-Raphson technique. 

1.2.3 Artificial Neural Networks 

With the development of artificial intelligence and neural network in recent 

years, there is a growing interest in applying these approaches to power system 

problems. A few papers are found in the literature in the field of power system 

harmonic analysis. 

In reference [22], Widrow et al. described the history, origination operating 

characteristics and basic theory of several supervised neural network training 

algorithms including the perceptron rule, the LMD algorithm and the back-propagalCon 

technique. Hartana et al. [23] used a neural network approach to make initial estimates 

of harmonic sources in a power system with non-linear loads and relatively few 

permanent harmonic instruments. 

Mori et al. [24] presented a neural network based method for predicting voltage 

harmonics in power system. The three-layered neural network was constructed with the 

back-propagation algorithm. The characteristic of input and hidden units are examined 

and concluded that the number of input units has more influence on the model accuracy 

than the number of hidden units in constructing the network. 

Dash et al. [25] presented a new approach for the estimation of harmonic 

components of a power system using a linear adaptive neurons called Adeline. 
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Adaptive tracking of components of power system can easily be done using this 

technique. 

1.3 OBJECTIVES OF PRESENT STUDY 

The present study is an effort to use a neural network based approach to 

estimate a harmonic sources in a power system. Although many conventional methods 

available in the literature, they are less accurate during randomly varying load 

conditions. The present study aims to develop a three layered feed forward neural 

network with back-propagation learning scheme and train the neural net with a 18 bus 

system example and test to estimate unknown harmonic sources. 

1.4 ORGANISATION OF DISSERTATION 

Chapter II presents the mathematical modelling of various power system 

components and Newton-Raphson technique as well as sparsity programming 

technique, which are used for the harmonic power flow analysis of a system. 

Chapter III introduces the artificial neural networks, describes the architecture 

of ANN, error minimization and weight change computation, based on back-

propagation error learning algorithm. 

Chapter IV presents the neural network training process for estimating harmonic 

sources and gives the results. 
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Chapter 2 

Harmonic Power Flow Analysis 

The non-linearity of a load results in a non-sinusoidal load current which is 

periodic and possesses a fourier expansion, the non-sinusoidal load current passing  

through the network results in non-sinusoidal periodic voltages which also possesses 

fourier expansions. The higher frequency terms in these expressions are termed 

harmonics. 

2.1 DEFINITIONS RELATED TO HARMONICS 

Harmonic analysis requires definitions and mathematical relationships beyond 

those of ordinary fundamental frequency network analysis. Their definitions of active 

power, reactive voltamperes, distortion voltamperes and apparent voltamperes are 

based on Fourier series expansions for voltage and current. It has been shown in Grady 

[10] that in a balanced bilateral system, the even order harmonics and the d.c. Offsets 

do not exist. Under these assumptions, the following  definitions apply to the harmonic 

power flow algorithm. 

Voltage 
h 

V(t) = E ak  sin(kwot + 8k ), k odd 
k=1 

Current 
h 

i(t) = E ck  sin(kwot + 4k), k odd 
k=1 

Active Power 
h 

P = 	akck  cos(Sk  Ok ), k odd 	 (2.3) 
k=1 

Reactive Voltamperes 
h 

Q = E akck  sin(8k  Ok), k odd 	 (2.4) 
k=1 

(2.1) 

(2.2) 
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Root Mean Square Voltage and Current 

V RMS = 

Apparent Voltamperes 

S 	VMS,  

Power Factor 

PF = 
S 

Harmonic Distortion 

= 

- h 

L 
_ k=1 

and 

RidS 

of 
h  

ak2  
[k.3 

1/2 	 11/2 
' 	I RMS 	

[
E 

C2 	, 
k=1 

Distortion Voltamperes 

k odd 

k odd 

(2.5) 

(2.6) 

(2.7.) 

(2.8) 

D = AlS 2  _P2  —Q2  

Voltage and Current 
]1/2 h 	]1/2 

Ck 
[k=3 HD, = , 

V Rms 	 I RMS 

To analyse the harmonic propagation in an ac network, proper modelling of the various 

components in the network in the harmonic domain is necessary. In the next section, 

modelling of various components in the network is discussed in detail. 

2.2 MODELLING OF NETWORK COMPONENTS 

The modelling emphasis is restricted to harmonic orders in the low audio range 

(fundamental to the 25-50th  multiple). Interaction between voltage and current 

harmonics of different order in a non-linear device is permitted, i.e., non-linearities are 

assumed to be equally distributed among the three phases. 

2.2.1 Transmission Line Model 

In the harmonic power flow algorithm, it is assumed that the transmission 

network is linear with no interaction between harmonics of different frequencies. Under 

perfectly balanced conditions, three phase transmission lines can be represented by 

their single-phase positive sequence models and nominal PI circuits. For a long line a 

number of PI models are connected in series to improve the accuracy of voltages and 

currents, which are affected by standing wave effects. As the frequency increase, the 

number of nominal PI sections to maintain a particularly accuracy increases 
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proportionally. On the other hand, the computational effort can be greatly reduced and 

simultaneously, the accuracy can be improved with the use of an equivalent PI model 

derived from the solution of the second order linear differential equations describing 
wave propagation phenomenon along the transmission lines. 

The equivalent PI model in Fig. 2.1 is obtained from the nominal P1 model by 

applying correction factors to the series impedance and shunt admittance's as given in 

[10,25]. 

Yd2 	 Yd2 

Figure 2.1 : Equivalent PI Representation of long transmission line 

GL+ jBL  = Zn  = Z
sinhy/ 

71  

)7, /2 = Yi — tanh- 
2 	

Yi 
2 

(2.9) 

(2.10) 

where, y = zy 

Z = z/ 

1= length of transmission line in miles 

z= series impedance of line/mile 

y = shunt admittance of line/mile 
As frequency increases, the skin effect begins to dominate the resistance of the line. 

The approximate formula for evaluating the skin effect [10] is given by, 
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x = Re = 0.175 —
k 

+ 0.288 
rdc 	rde 

(2.11) 

where k is the harmonic number and rac, rdc  are the ac and dc resistance per unit 

length of the conductor (ohms per mile) respectively. 

In the bundled conductor case, rdc  is the per phase conductor value. Using this 

formula for evaluating the skin effect, the per conductor ac resistance in the kth 

harmonic order is obtained. 

2.2.2 Synchronous Machines Model 

When harmonic currents flow from the network into the stator windings of a 

generator, they create a flux rotating at a speed greater than the speed of the rotor. Thus 
the harmonics react with both the direct and quadrature axis inductances. effective 

average inductance[4,10] experienced by the positive or negative sequence odd 

harmonic current is given by 

" 
Lk = k[

L
d 

+  L "  
q1 

2 
	 k> 1 	 (2.12) 

where k is the harmonic order and 11",1_,q" are the direct and quadrature axis 

subtransient inductances. Based on equation. (2.12), the basic model of a synchronous 

generator for harmonic power flow study is given in fig Fig. 2.2. Pg  ,Qg  and V(1)  are 
fundamental frequency active Reactive power generation and voltage respectively. 

"harmonic only 
impedance' 

(1_,"+Lq")/2 

Figure 2.2 : Power Flow Model of Synchronous Model 
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"HARMONIC ONLY 
IMPEDANCE" 

2.2.3 Load Models 

It is difficult to model accurately most system load buses since the exact 

composition of loads at that bus is usually unknown. Certainly, induction motors and 

heating and lighting loads are major components of a system bus load. Pileggi et al. [3] 

suggested that in the absence of the information regarding specific load composition at 

a bus, the load should be modelled as a shunt resistor in parallel with a suitable inductor 
or capacitor to account for the active and reactive power at 60 Hz respectively. This is 

referred to as a "generalized conventional load" model as shown in Fig. 2.3. 

	

Resistance 	R = [V(1)]2  /PL  

	

Inductance 	L = [V(1)12  /QL  
Where V(1), PL and QL are fundamental frequency voltage, active and 

reactive loads respectively. 

Figure 2.3 : Power Flow Model Of a Generalized Conventional Load 

2.2.4 Modelling of Other Network Elements 

Other network elements such as reactors, capacitors and transformers are 

modelled [5,9] as lumped impedances, which vary with frequency according to the 

usual sinusoidal steady state impedance formulas. The connection configuration of 

these elements (i.e., wye-wye, grounded wye-delta etc.) is used to modify the zero 

sequence impedance appropriately. Three phase transformer connections are 

represented by complex turns ratios which account for the —30°, 0° or +30° phase shift 
at various harmonic frequencies. 
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2.2.5 Non-linear Resistive Load Model 

Due to their widespread use and being significant sources of harmonics, the 

gaseous discharge lamps (fluorescent, mercury arc and sodium discharge types) are 

included in this study. Grady and Heydt [10] developed a relationship between 

instantaneous currents and voltage for the lamp as given by, 

i(t) = BEbk Vk  (t), 	k odd, N odd 	 (2.13) 
k=1 

E c (k)  sin(kwot + y (k)
), 	k odd, h odd 

k =1 

The coefficients b1, b3, b5 are calculated by comparison with actual measured 

results with sinusoidal applied voltage. This model assumes only odd powers of and 

odd harmonics in the applied voltage. The "b" coefficients are kept constant at the 

predetermined values. while B, the non-linear resistor state variable is dependent on the 

real power drawn by the resistor and the terminal voltage. What is required is an 

expression for the current drawn by the non-linear resistor in the following form, 

i(t) = 	C(k)  sin(kwot + (I)(k)) 
	

(2.14) 
k=1 

where h is the highest harmonic of interest in order to transform the eq. (2.13) to the 

form of eq. (2.14). The values of V(t) for the full range of one fundamental cycle as a 

function of time are first considered. Fourier series for voltage is 
h 

V(t) = E v(k) sin(kwot + 8(k)), 
k=1 

k odd, h odd 	 (2.15) 

The instantaneous values of (t) are calculated for these samples of V(t) using 

i1 (t) = b1 V(t) + boV3(t) + b5V5(t) +  	 (2.16) 

Having thus obtained the instantaneous values of i1(t) for one fundamental cycle an 

FFT program is used to get eq. (2.16) in the form of eq. (2.15) 

i1 (t) 	E Ak  sin(kwto  + y k ), 	k odd 	 (2.17) 
k=1 

Since i(t) = Bii(t) we have reduced our problem to one of determining B. The real 

power consumed by the non-linear resistor can be expressed in terms of the harmonic 

voltages and currents as, 
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P = 	"  2I   cos(O k  — y k ) 	k odd 	 (2.18) 
k=1 

It can also be expressed as 

P = B[ Vicm ilk  COS 	—y k )] k odd 	 (2.19) 
k=1   

From equations (2.18) and (2.19), the value of B can be calculated. 

The necessary partial derivation for the harmonic Jacobian matrix may be determined 
by examining 

i(t) 	[c(k){cos(lcwot)cos(4)(k)) — sin(kwoOsin(0k))1] 
k=1 

i(t) 	[IP()  cos(kwo  + Tick)  sin(lcw. 	 (2.21) 
k=1 

where I(k)  is the magnitude of the kth harmonic phasor component of i(t) and I;,k)  and 

IP')  signify the real and imaginary components. The partial derivative of I.k)  and 

with respect to harmonic voltage magnitude and phase angles and with respect to 
variable B are readily obtained. For use in a harmonic power flow study, these partial 

derivatives are substituted into the Jacobian matrices. 

2.2.6 Modeling of Converter 

The generation of harmonic currents at a rectifier load is a complex phenomenon if the 
bus voltage is non-sinusoidal. Reference [9,10] gives an iterative procedure for the 

analysis of both six and twelve pulse bridges. For a six pulse bridge, the six regions of 

i(t) (load currents) are calculated by the solution of the appropriate differential equation 

which can be obtained by applying Kirchoffs voltage law for the R-L circuit. Fig. 2.4 

shows a three-phase full wave bridge rectifier with a general load consisting of passive 

elements resistance R and filter inductance F and d.c: voltage. The three-phase 

transformer is pictorially shown in this figure and may be connected in a variety of 

three phase connections. The turns ratio 1:expaps) is determined by the connections of 

windings and the sequence of applied voltage. For the full wave rectifier, only k-th 
harmonic orders, where k = 1, 5, 7, ....occur in the system. For other non-linear loads, 

(2.20) 
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A Y A 

C 

harmonics of specified values of k may or may not exist depending on transformer 
connection and type of non-linearity. 

: eiPs 

L 

L 

0 a2 0 b2 O 
C2 

Figure 2.4 : Full Wave Six Pulse Bridge Rectifier 

The resulting load phase currents can be expressed in a fourier series with odd terms 

only. 

0 
(1) = E(Pocos(100-F/i) sin(kot)) ; 

	/ =1, 5, 7, 11, 13 	(2.22) 

/(1)  — --2 (t) cosywod(wo 	 (2.23) 
7t  

T (1) = 2 n+Cg. a  (1) sin (1 wt)d(o)t) 
	

(2.24) 

Equation (2.22) to (2.24) are valid for any a (the firing angle). Then the integration 

period in (2.23&2.24) is divided into six periods in each of which ia(t) is known. The 

six regions are denoted by superscript i=1,2,....6 on is  and the general expression for 

region i is given by [4], 

= 	+ 	+ 	Ykwuk  sin (kwt +C" +0) 

After substituting the values of A, B, Y, 0 and p in the above equation, (the values of 

all these constants are explained in Appendix B), we get fourier expansion of load 

current. 

L 
0 a1  o b, 

O 
ci 
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I )  ,T 
2 

TC 4.4  

A(m)  sin /cot 
1 

(m) 
Y2  

+ B(m) e
au ( (p(m)  cos Icot + lsin lvvt) 

(p(m))2 ± 1 2 

(in) y2 

1:  

(m) cos lcot 
1 

2 

2 6  [ ('") 
(A( m )  + 13' )  eP Cm) ) 	 t) cos (kot)d(co t) 

+ y(m) 2 

U  k 	k foo 
k 

sin(kcot + 	+ 	) cos(/ co 0 d (cot)] 

= ICI)  -F Ifi)  1T  1,s 

2 6  I (!) 	r' )  
it m=1  (A( m )  + B'n )  e"""') sin (/coi)cl(wt) 

(2.25) 

(2.26) 

,,„.) 
+ Ennouk  1,2„,)  sin(kcot + 4), + 0`;' )  ) sin(/ cot) d (0) 0 

== I(I) 	1(1)  r,T 	r,S 

(m) 
/2 (m ) 

eP (p( m )  sin /cot / cos /cot) 
co (in) )2 + / 2 + B( m )  

jU ) 

[ 2 	Y,'" )u,  cosak + Ocot + 4), ± 0(k m)  
-ri" "=" —E E 	2 7t m 	k 	./... 	 -- 11: -- 1 

r 'n )u 	cos((lc 1)cot + 	+ 0;c m ) ] -  k k  
k 	2 	 -F / 

Y ("' )tt 
2 
	 t sin (4) 1 

Y(m)Uk  
Ir",S) 	E[E 	 2  

m k 

[ sin((k + °co  t + (I) k  +0 "') 
— k —1 

Yk( m )ti k  sin((k — Ocot + (I) k +0 c "' )  
+ 

2 	 — k +1 

 

   

Y (m)u + 	 t cos(  (I), + 44')  ) 
2 

 

(2.27) 
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VG 	v" )8, [ 
27, k  

1, 	E cos(0 (k)  — /c0 (I)  + Ica) — cos(0 (k)  — k0 + k8 ) 	(2.28) 

Partial derivatives of Ii iTthrough Iris will be used in a Newton-Raphson as a element 

of J acobian matrix. 

The d.c. current Id is given by [20], 

where V(k)  is the line to line ac kth harmonic voltages and 

xe  is the equivalent fundamental reactance in the converter circuit 

Sk  is the triplet. 

1 if k in positive sequence 
6 k  = { —1 if k in negative sequence 

0 if k in zero sequence 

Similarly DC voltage is given by, 

3-12-  
V = 	 

27-c 
V (k)o, r 

cos(0")  — 	+ ka) — cos(0")  k0")  + 	(2.29) 

Power transmitted through the converter is, 

V (k) V (1)8 8 r Va / d  c 	k I  Lcoso (k)  _ k0 (1)  + ka)cos(0 (1)  — /0 (') +/a) 
k ,1 	kl 

COSO (k)  — k0 (1)  + k8)cos(0 (1)  —10 (I)  + /8 )1 	(2.30) 

Where, C = 3/(27)0. 

Based on the above modelling techniques, the Newton-Raphson method for solving 

harmonic power flow problem is described in the next section. 

2.3 NEWTON-RAPHSON METHOD FOR HARMONIC LOAD FLOW 

ANALYSIS 

Newton-Raphson method for power flow study solution is well known. The 

mismatch equations, i.e., active power and reactive power balances are forced to zero 

iteratively by forcing the bus voltages towards the solution. 

Consider bus 1 to be slack bus, buses 2 through m-1 are conventional load buses 

(linear loads : P-V or P-Q buses) and buses m through n as non-sinusoidal load buses. 

Buses 1 through m-1 are handled in the usual way. For buses m through n inclusive, the 
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0 

ect).n (vT,  Vm5) , 	am,pm ) 

dk) (VT, v((5)„ am,pm) 

gp(n) (vp,  Vn5) , 	an,i3n) 

(2.32) 

active power P is specified and apparent voltamperes are known. Also the form of the 

non-linearity is known. The power balance equations are that AP and AQ at all non- 

slack buses is zero for all harmonics. The functional forms of AP and AQ as a function 

of Ybusl and Qbus  (i.e., bus voltage magnitudes and phase angles) is as in the 

conventional case with that Ybus  must be modified at harmonic frequencies. The 

specified values of Ps  and Qs  are known at buses 2 through m-1. But only 13(1)  is known 

at buses m through n. The above formulation is insufficient to solve the harmonic 

power flow problem. Two additional relations are required: current balance and 

apparent volt-ampere balance. The current balance is written for the fundamental 

frequency (s = 1) as (only converter loads are considered, incase of Non-Linear 

Resistive loads the expressions for currents have been explained in section 2.2.5) 

I;.111  - 	- a(vT, v(m5) , 
I(l) 	g ( I  ) ( v (111.1)  , v 2 ) , 

I.1)in.fi  
= 

IV1.1+1  
• • • 

gVn)  (v(n1) , vn5) , _ 	, n 

111513  M ) 

a rn) Pm) 

(2.31) 

, an,13n) _ 

where 1.!)1,, and I 1m)  are the real and imaginary bus injection currents at bus m, 

harmonic 1. am  is the triggering angle at bus m, and 13m  is commuting resistance or 

d.c. voltage, expressions for the I terms in (2.31) are given in eq. (2.27). Also eq. (2.31) 

is rewritten for s # 1 (i.e., for harmonics) 
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Again, the current expressions are given in eq. (2.27). 

The apparent volt-ampere balance at each bus 

E(p1(s))2 +E(R))2 +1D12 (2.33) 

where 1= m, 	, n and ED12  denotes the total distortion voltages at bus . 

Since Dm, 	, D1 can be calculated from gr,m, 	. , gi,n. these distortion 

voltamperes are not treated as independent variables. 

Total number of equations required for the harmonic power flow is 2(1+h)n + 3N. 

These are power balance equations 	 2(n-1). 

Swing bus voltage and swing bus angle 	 2 

current balance equations (2.31) & (2.32) 	 2nh 

apparent volt-ampere balance equation (2.29) 	 N. 

The number of unknowns is accounted as follows : 

Bus voltage magnitudes and angles for all harmonics 

plus fundamentals 	 2n(1 +h) 

Total reactive voltamp at each non-linear load bus 

a and Q  at each rectifier bus 	 2N 

Hence there are 2(1+n)n + 3N unknowns. 

Newton's method is formulated by forcing the appropriate mismatches. AM to 

zero using a Jacobian matrix, J, and obtaining appropriate correction term AU . 

AM = MU 

- J(1) 	J(5) 	7(7) 

yG(1,1) yG(1,5) yG(1,7) 

▪ YG(" )  YG"'" YG(")  
YG(7 ' 5)  YG(')  

0 -1  -AV( 1)- 

H" )  AV" )  
H (" 
H (7) 	Aa 

••• 

••• 

----(2.34) 

where all elements in (2.34) are subvectors and submatrices partitioned from AM , J 

and AU . These sub-elements are, 
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/woo 	(vi(k),Aer), Avi(k), 	tic) t 	 AV,;) • 	k = 1, 5, 7 

Act 	= (Accm,APm,...,APn) t  

OW = (Pis) 	— fi,2„ Q1; — fn,2) t  
= mismatch active power and reactive voltampere, 

AI(1)  = 	+ grim, If?„, + ga„ 	+ gP)n ) t  

= mismatch fundamental current 

AI(k) 
	

(1.1(1) , 	 + grkm , I i(ti)1 	g kri),,, 

= mismatch harmonic currents 

J(1) 
	

= conventional power flow study Jacobian 
j(k) = harmonic k Jacobian 

1(k) + g(k 
	

k 

submatrix °2(m-1),2n 
partial derivatives of P an Q w.r.t V(k)  and 0(k)  

These are formed in the conventional way 

(note : 02(m-1),2n denotes a 2(m-1) by 2n array of zeroes. Also note that YbLIS  matrix 

used to generate J(k)  is YL9 . Also 

(YG)(k 	
y(k,k) G(k,k) k  

i)  = 
G(k,i) 	 k j 

where y(k'k)  is an array of partial derivatives of injection currents (kth harmonic only) 

with respect to kth harmonic voltages and G(k j)  are the partials of the kth harmonic load 

current with respect to the jth harmonic supply voltages. 

G(Ì ''1)  is given by, 
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ti 

°2(m-1),2N 02(m-0,2(m-1) 

agg) ag  k ) 

Vi(IP (i)  aVY 

0 
agi(mk) 	 agi(mk) 

(i)  

0 

02 N ,2(m -) 

	 0 

0 
	 aglk) aglk) 

vPae,fj)  av,P) 

0 
ag r(nk ) 	agr(nk ) 

vPaoP) avP) 

Note that for k = 1, only the last 2N rows exist. These partials are found by 

differentiating the sinusoidal steady state parts of eq. (2.27) for harmonic loads. Also, 

H(k)  is the partial derivative of non-sinusoidal loads real and imaginary currents with 

respect to triggering angle a and commutation resistance 13 

H(k)  = diag 

agr(tk) 	r(tk) 

aat apt 
agi(tk) agi(k) 

aat 	 apt _ 

t=m„n; k=1,5,7 	 

  

0 
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Set Initial values 

4  
Iteration - 1 

	rt; 
Form AW, and ..1(k ) , for 

k = 1, 6, 

Print desired output 

Iteration = iteration + 1 

Read In system information 
and data 

4, 

Form admittance matrices 
yilq= k 	1, 6, .... 

Solve simultaneous equations and update bus 
voltage (fundamental and harmonics) and (141, 

Form A I, and (YG) for j, 
k = 1, 5, .... 

Calculate each Individual non-sinusoidal loads. 
Calculate g, i  ki, g1 110  and ID, for k = 1, 5, 	 

and I = m, 	, n. 
Also calculate elk I)  and Floo, k = 1, 5, 	 

2.4. FLOW CHART FOR HARMONIC POWER FLOW 

2.5 SPARSITY PROGRAMMING METHOD FOR THE HARMONIC 

POWER FLOW 

The Jacobian matrix used in harmonic power flow studies in a sparse array of 

approximate dimensions twice the number of buses time the number of harmonics 

considered. The fundamental frequency vector is as sparse as Ybus the remainder has 
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very large blocks of zeros which are wholly relegated to the upper right and lower left 

triangles. Also submatrices on the diagonal appear which are as sparse as Ybus. For a 

200 bus system in which 5 harmonics are considered, typically, the Jacobian is over 

99% sparse unlike the fundamental Jacobian which relies on optimal ordering to obtain 

large blocks of zeros, in the harmonic case, large blocks of zeros occur independent of 

bus ordering. The diagonal entries are generally non-zero. It is approximate to examine 

a specially designed sparsity programining method suited for this case. One such 

method which has given excellent access time with reasonable storage requirements is 

termed the LLT-URT sparsity programming method with diagonal fixes. In this 

method, the diagonal entries are stored separately along with two parallel vectors which 

contain pointers. The first of these pointers point to a lower left triangle (LLT) array of 

non-zero matrices in the column corresponding to the diagonal position whence it was 

indexed. The second vector similarly contains pointers to the upper right triangle (ULT) 

non-zero entries in the row corresponding to the diagonal position whence it was 

indexed. In parallel with the LLT non-zero entry vector is a vector containing the 

proper row number of that non-zero entry. Similarly, the URT array has a parallel 
vector containing column matrices. 

Fig. 2.5 pictorially illustrates the method. The total storage (for an Ni square 

Jacobian and NZ  non-zero entries half of which are in the URT half in the LLT) is 3Ni + 

3Nz. The access time to find an off diagonal entry is typically less than that required for 

4 scans of a vector for the correct entry. 
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Stored nonzero 
quantities 

URT 

Coluinn/row 
stored 

Urn' 	1.I,T 

All diagonal 
entries stored 

First next entry 
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for 	for 
1.11V1' 

J22 

• • • I)LAG 

Next nonzero 
entry pointer 
kilns 	1,I,T 

Zero denotts 
no further 

entries 

Figure ,2.5 Sparsity storage technique using 1,1:1'/URT 
storage and chained data structures 
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Chapter 3 

FEED FORWARD NEURAL NETWORKS 

3.1 INTRODUCTION TO ANN 

Neural network computing was developed as a method of using a large number 

of simple parallel processors to recognize preprogrammed or "learned" patterns. With 

the development of artificial neural network in recent years, there is growing interest in 

applying this approach to the area of power system. Neural systems gained popularity 

over other methods as they are efficient in discovering similarities among large bodies 

of data in distributed/fault tolerant models for non-linear, partly unknown, and noisy 

corrupted systems. Artificial neural network (ANN) is the functional imitation of a 

human brain which simulates the human intuition in making decisions and drawing 

conclusions even when presented with complex, noisy, irrelevant/partial information. 

The information going to the input layer units of ANN is recorded into an internal 

representation and the outputs are generated by the internal representation when excited 

by the input pattern. It can model any non-linear function without knowledge of the 

actual model structure and during testing phase it gives the result in very short time. A 

neural network consists of a number of neurons which are the elementary processing 

units that are connected together according- to some pattern of connectivity. 

A "connection" between a pair of neurons has an associated numerical strength 

called synaptic weight. The positive synaptic weight represents excitatory connection 

that increases the strength of connection, while negative weight represents inhibitory 

connection that decreases the strength of the connection between neurons. The 

development of ANN involves two phases, training phase and testing phase. Training 

of ANN is carried out by presenting the network with examples called training patterns. 

The synaptic weights get modified to represent the given problem accurately. Once the 

network has learnt the problem, it may be presented with new unknown patterns and its 

accuracy can be checked. This is called testing phase. Depending upon the training 

imparted, ANN can be classified as supervised ANN or unsupervised ANN. 
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The supervised ANN requires a set of inputs and outputs for its training. During 

the training period, the output obtained from the ANN is compared with the desired 

output (target) and the difference (rms error) is reduced by using some learning 

algorithm. The training is continued till the actual output reaches to an acceptable level. 

The trained ANN can then be used for testing purpose by providing unknown patterns 

to it. Supervised ANN may be feed forward or non-recurrent network such as Multi 

Layer Perception (MLP), Functional Link Net (FLN), and Radial Basin Function 

(RBF), or a feedback or recurrent ANN such as Hopfield network. To train a supervised 

ANN, various learning algorithms such as error back-propagation Widrow-Hoff 

learning rule, Hebbian learning rule etc. are established in the literature. 

In unsupervised ANN, there are no expected outputs presented to neural 

network, as in a supervised training algorithm. Instead, a network, by its self-organizing 

properties, is able to infer relationships and learn as more inputs are presented to it. 

In the present work, a supervised feedforward ANN with error back propagation 

training algorithm supervised has been used. 

3.2 FEEDFORWARD BACKPROPAGATION NETWORK 

The feedforward ANN with error training algorithm back propagation is a very 

popular model in neural network in literature. It does not have feed back connections, 

but errors are back propagated during training. In the following two subsections, the 

basic architecture and the training algorithm of the ANN is discussed briefly. 

3.2.1 Architecture of the ANN 

A typical three-layer feedforward backpropagation of network is shown in Fig. 

3.1. The three layers are designated as input, hidden and output layers. In each layer, a 

number of actual processing elements or networks (nodes) are present. However, on the 

input layer, there are no processing elements. The nodes at the input layer simply 

function as the receiving points of the inputs. The nodes are connected from input to 

output layers via the hidden layer in a feedforward way. 
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Output pattern 

Output layer 

Wkj 

Hidden layer 

Wj1 

Input layer 

k 

J 

Input pattern 

Figure 3.1 : Three-layer Feed Forward Neural Network 

Now, consider relationship between input and output of a neuron. Defining output of 

unit i at the previous layer as 0i, the input of unit j at the present layer can be written 

as, 

nett  = E 	 (3.1) 

where Wij : 	weight between the units i of the previous layer and unit j of the 

present layer. 

Fig. 3.2 depicts the relationship given by Eq. (3.1). Output Oi  of unit j at the present 

layer is expressed by the following relation : 

Unit j 

Oi  

Figure 3.2 : A basic processing unit 
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O f  = f (nett ) (3.2) 

Where f (x) = sigmoid function such as 

1 = (3.3) f(x) 
1+ exp(—x) 

1 
O. = (3.4) 

-{E wu  o f  +e,) 
1+e 

Where 0 j is the threshold or bias used to augment the input to any neuron. 

The outputs of the hidden layer units are then transmitted to the inputs of the output 

layer through another weighted network in the same manner. 

3.2.2 Error Minimization and Weight Change Computation 

During training, the weights in the ANN are modified to minimize the total 

error Er; which is the sum of squared difference between the set of training outputs for 

all patterns p, tpi and the set of actual outputs Opi  

Er  = E I (t Pi  . - 0PI  ) 2 	 (3.5) 2  p   

where tpj  : desired output at jth neuron at the output layer for pattern 'p' and 

Opi : the calculated value of the jth neuron at the output layer for pattern p. 

The error Er  can be minimized by adjusting the weight between the units. The 

steepest descent method is utilised to modify the weights in order to 	minimize Er. 

The expressions for modifying the weights of the ANN are given by [30]: 

W kj = Wkj +118okYj for k = 1, 2„ K and j = 1, 2, J (3.6) 

\Tit  =vii  + ri6yiz, 	for j = 1, 2„ J and i = 1, 2, I (3.7) 

5ok = (dk — Ok) 	— 000k 	for k = 1, 2„ K (3.8) 

K 

5 YJ  - 	 E 8ok 	kj for j = 1, 2, 	 = 	J 	J 	w (3.9) 
k=1 

where I : no. of input nodes 

J : no. of hidden layer nodes 

K : no. of output nodes 

wkj : weight between the kth node cf the output layer and the jth node of the 
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hidden layer. 

: interconnection weight between the jth node of the hidden layer and the 

ith node of the input layer. 

dk : desired output at the kth node of output layer 

Ok : calculated output at the kth node of the output layer. 

rl : learning constant 

zi  : input to the ith node of the input layer 

: input to the jth node of the hidden layer 

Sok  : error signal of the.kth node of the output layer 

Syj  : error signal of the jth node in the hidden layer. 

3.3 STEPWISE SOLUTION ALGORITHM 

To obtain the input features of a neural network, which consists of 'fundamental 

voltages and load currents at the non-linear load buses and fundamental and complex 

harmonic line currents, a large number of load patterns are generated by perturbing the 

load at non-linear load buses and full harmonic load flow is carried out by using 

PCFLO program which was developed by W.M.Grady. Neural networks are trained till 

the error between the desired output and that obtained from the neural network is 
reduced significantly. 

The solution algorithm for estimating the harmonics by using back-propagation 

algorithm can be summarized in the following steps. 

Step 1 : Assign the input signals to unit at the input layer. 

Step 2 : Set the maximum number of iterations IT' and Number of training 

patterns IP max  

Step 3 : Initialise weights randomly at the starting. 

Step 4 : Set the iteration count IT = 0 

Step 5 : Set the input pattern count IP = 1 

Step 6 : Calculate the output of ANN and compute the error. 

Step 7 : If the number of patterns are less than IP"'„ then increment the IP = IP + 1, 

otherwise go to next step. 
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Step 8 : Check for the error sufficiency. If the error is less than desired, stop the 

processes, otherwise modify the weights. 

Step 9 : Check the number of iterations. If the iteration are less than IT', then 

increment the IT to IT = IT + 1 and go to the step 5, otherwise stop the processes. 
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3.4 FLOWCHART FOR TRAINING OF BACK-PROPAGATION 

ALGORITHM 

Modify weights to minimize 
error 

Start 

Initialize weights 
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IP=IP + 

Compute error for pattern IP 
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Print error 

4.  
Stop 

End 

Yes 
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Chapter 4 
RESULTS AND DISCUSSIONS 

4.1 NEURAL NETWORK TRAINING PROCESS 

A feature encountered in applying neural networks to estimating harmonic 

current sources was the separability of input-output pairs. When harmonic source 

measurements (which are neural network outputs) were paired with the input 

measurements (which consists of fundamental load currents and bus voltages at all non-

linear load buses as well as available permanent harmonic line current measurements), 

it was found [23] that each quantity in the output (real and imaginary parts of each 

harmonic) was relatively independent. This would be expected for harmonic sources 

with varying firing angles and/or magnitude. The output corresponding to particular 

harmonic source would be sensitive only to a particular subset of hidden layer. It was 

therefore advantageous to divide the neural network into separate networks for each 

known harmonic source. These can be further subdivided into two separate neural 

networks representing real and imaginary parts of the harmonic current source, which 

also behaves independently. This eliminates the need to adjust a large number of 

weights interconnecting the hidden layer with most of the outputs essentially to zero, 

which aided in obtaining convergence during the training sessions. 

The structured neural network of figure shown in Fig. 4.1 is divided into 

multiple parallel-networks as mentioned above, all with the same inputs, but each with 

a single output (real value). The input set consists of real numbers representing the real 

and imaginary parts of fundamental load currents and bus voltages at all non-linear load 

buses and the fundamental load currents and harmonic complex currents 

(corresponding to harmonic order of its output) at the permanent metering points in the 

lines. In the training process for the neural networks, the initial weights and thresholds 

were randomly selected. The other parameters in the training process were learning rate 

which is initially chosen to small (0.02) to present overshot, and the momentum 

factor, p, which is set to 0.01 (constant). 
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5th harmonic current 11th harmonic current 

Real Imaginary Real Imaginary 

Inputs 

Figure 4.1 : Structured Neural Network 

As the algorithm is converged, the learning rate was increased to accelerate the 

convergence. In cases where the algorithm did not converge, or the output converged to 

values different than the training output, the initial weights and thresholds were altered 

and the process was started again. 

4.2 TRAINING OF 18 BUS SYSTEM 

In the present work the above discussed training process was applied to 18 bus 

system taken from the reference [28] shown in Fig. 4.2. The 18 bus system consists of a 

nine linear loads and one non-linear load (converter load). For training the input set 

consists of a real and imaginary parts of load current and bus voltages at bus 5 and the 

fundamental and harmonic complex currents (corresponding to harmonic order of its 

output) at the permanently metering points on the lines 5-4 and 5-6, a total of 12 inputs. 

The outputs, each form a separate neural network are real numbers which represents the 

real and imaginary parts of 5th  , 7th  and 11th  harmonics injected at bus 5. A total of 6 

5th, - networks for identifying )7th  and 11th  harmonics were trained, in addition to input 

and output layer, each network contains a 30 node hidden layer. 
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Figure 4.2 : 18 bus example system 

The neural networks were trained with a series of 70 input-output pairs obtained 

by varying the non-linear load at bus 5 in the range from —20% to +20% of the "base" 

load. During the training the learning parameter II = 0.2 is used to achieve the 

convergence. In case of 5th  harmonic the rms error obtained during the training was 

0.001, for 7th  harmonic 0.03 and for 11th  harmonic 0.005. During training the ANN it 

has been observed that with the increase of order of harmonics, the convergence 

becomes difficult and time consuming. After the neural networks were trained, it was 

tested by two simulation studies. It has been done by varying the load at non-linear load 

bus in between the same ranges (-20% to 20%) that have been used for training. The 

results of the two tests are shown in Tables 4.1 and 4.2 respectively. 
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Table 4.1 : Results of Test-1 

All the values are in P.U. 

Harmonic 

currents 

Outputs 

5th  harmonic 

current 

7th  harmonic 

current 

11th  harmonic 

current 

Real 

part 

Imagina 

ry part 

 Real 

part 

Imagina 

ry part 

Real 

part 

Imagina 

ry part 

Desired output 0.04525 

8 

0.061623 

0.037726 0.039478 

0.025326 0.006172 

Neural network 

output 

0.04496 

8 
0.062086 

0.038346 0.039897 
0.025608 0.005988 

Table 4.2 : Results of Test-2 

Harmonic 

currents 

Outputs 

5th  harmonic 

current 

'7th  harmonic 

current 

11th  harmonic 

current 

Real 

part 

Imagina 

ry part 

Real 

part 

Imagina 

ry part 

Real 

part 

Imagina 

ry part 

Desired output 

0.056855 

0.05264 

8 

0.052986 

0.015999 0.025207 0.007899 

Neural network 

output 0.056084 

0.05134 

8 
0.052089 

0.016877 0.024968 0.008182 
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Chapter — 5 

Conclusions and scope for future work 

Conclusions 
Conventional methods for predicting harmonics in power system are less accurate 

and time consuming. Artificial Neural Network (ANN) based methods are accurately 

give estimates during testing once they are successfully trained and they give results with 

in short time. The following points concluded from this study. 

(i) The conventional Newton-Raphson power flow method has been modified by 

including current and apparent volt-ampere balance and there by permits 

harmonic power flow studies. 

(ii) A method to determine low audio range power system harmonics related by line 

commutated converters and non-linear loads has been described. 

(iii) An artificial Neural-Network based method has been presented for predicting 

harmoni4 currents in power system. A three-layered feed forward structured 

neural network was constructed with backpropagation learning algorithm. 

(iv) ANN was trained and tested with an example system. The results obtained from 

the simulation studies showed acceptable estimates. 

(v) During training of ANN, it was observed that with increase of the order .of 

harmonics the convergence becomes difficult and time consuming. 

Scope for future work 

In the present study, an example system taken for training and testing of a neural 

network consists of one non-linear load (converter load). In the future, this work can be 

extended to consider the system which consists of multiple non-linear loads for 

estimating and analyzing the severity of the problem. 
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Appendix A 

Table A-1. Bus Data 

Bus 

Num 

Bus 

Name 

Bus 

Type 

P 

Gen 

(%) 

Q 
Gen 

(%) 

S 

VA 

(%) 

P 

Load 

(%) 

Q 

Load 

(%) 

Bus 

Volt 

(%) 

Shunt 
Load 

(%) 

1 gar12.5 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2 capl-2 03 - 	0.0 0.0 0.0 2.0 1.2 0.0 -10.5 

3 cap4 03 0.0 0.0 0.0 4.0 2.5 0.0 -6.0 

4 cap3 03 0.0 0.0 0.0 15.0 9.3 0.0 -6.0 

5 sixpulse 23 0.0 0.0 0.0 30.0 22.6 0.0 -18.0 

6 six 03 0.0 0.0 0.0 8.0 5.0 0.0 0.0 

7 cap6 03 0.0 0.0 0.0 2.0 1.2 0.0 -6.0 

8 eight 03 0.0 0.0 0.0 10.0 6.2 0.0 0.0 

9 nine 03 0.0 0.0 0.0 5.0 3.1 0.0 0.0 

20 cap? 03 0.0 0.0 0.0 10.0 6.2 0.0 -6.0 

21 cap8-9 03 0.0 0.0 0.0 3.0 1.9 0.0 -12.0 

22 bus22 03 0.0 0.0 0.0 2.0 1.2 0.0 0.0 

23 bus23 03 0.0 0.0 0.0 8.0 5.0 0.0 0.0 

24 cap10-11 03 0.0 0.0 0.0 5.0 3.1 0.0 -15.0 

25 cap12 03 0.0 0.0 0.0 10.0 6.2 0.0 -9.0 

26 bus26 03 0.0 0.0 0.0 2.0 1.2 0.0 0.0 

50 gar138 03 0.0 0.0 0.0 0.0 0.0 0.0 -12.0 

51 swing 01 0.0 0.0 0.0 0.0 0.0 105.0 0.0 
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Table A-2.Line Data 

Bus to Bus from 
R(t) 
(%) 

X(t) 
(%) 

Line 

Chag , 
(/0) 

Length 

(mi) 

1 2 0.431 1.204 0.0035 0.318 

2 3 0.601 1.677 0.0049 0.443 

3 4 0.316 0.882 0.0020 0.233 

4 5 0.896 2.502 0.0073 0.661 
5 6 0.295 0.824 0.0024 0.218 
6 7 1.720 2.120 0.0046 0.455 
7 8 4.070 3.053 0.0051 0.568 
2 9 1.706 2.209 0.0043 0.451 
1 20 2.910 3.768 0.0074 0.769 

20 21 2.222 2.877 0.0056 0.587 
21 22 4.503 6.218 0.0122 1.269 
21 23 3.985 5.160 0.0101 1.053 
23 24 2.910 3.768 0.0074 0.769 

23 25 3.727 4.593 0.0100 0.985 
25 26 2.208 2.720 0.0059 0.583 
50 1 0.312 6.753 0.000 0.000 
50 51 0.050 0.344 0.000 0.000 
51 0 0.000 0.010 0.000 0.000 
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APPENDIX B 

Fourier Expansion of Phase Currents at Non-Linear Load Busses 
With reference to Fig (2.4) in chapter 2 , The transformer secondary line to 

neutral voltages be tia( t) ,ub(t), ( t) with fouricr series. 

ua (t) = uk sin(kcoo t + (1), ) 

ub(t)=Euk sinkojt— 	
3
0) 4-(1)k 

k 

= Euk sinOccoot + 	27t8k  

k 	 3 

U c (t) = EU k sin(kcoot + 	
27c 

3 
8k 	) 

Where To is the period of coo ,coo is the fundamental frequency ,uk 

unit fourier coefficients, 

Sk 	= 1 	1 -c---1,4,7 	 

= -1 k=2,5,8 	 

= 0 	k=3,6,9 	 

are the per 

	

and 	Ek denotes summation I c---1 to co .Note that To =(2n)koo.Examination 

of equations (A1-A4) shows that the line to neutral voltages are positive sequence 

voltages for k=1,4,7.... , negative sequence only for 	and zero sequence for 

k=3 ,6,9 	 

The line to line voltages are uab(t),u„,(t) and ubc(t) are given in per unit as 

uab(t) = u.(t)—u,(0= Euk sin(kcoot +~k ) 

ubc(t) = u 	)—ue (t)= Euk sin(koo t -1--(13sk 27c8k  

3 
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u ca (t) = u c  (t) —u a (0= E sin(kcoot +4)k  + 2716
) 

k  

Where 

(i)k 	(1)k ± 6k 6 
These transformer secondary line to line terminal voltages do not contain any 

third harmonic(k-3). Independent of the transformer connection since when k=3, ua  

,ub  ,uc  are only in zero sequence, which cannot be applied to the bridge rectifier. 

Similar examination shows that for line to line voltages , only +ve sequences occur 

for k=1,4,7... and only -ve sequences occur for k-2,5,8 .. No components exit for 

k=3,6,9. The line to line voltages shifted by ak (n/6) from the line to neutral voltages. 

There is further considerable simplification for bridge rectifier since no even 

harmonics exit in either line voltages or currents. This is the case since uab ,ubc. ,u,_a are 

odd functions , 

U ab  ± 	) 
2 

Since no even harmonic voltages occur , no even harmonic currents will flow 

in the network. From fig B 1, let a be the rectifier triggering angle. Consider only 

uab(t) (the other line to neutral voltages are ± it 	phase shifted): the period 

a < t < a + pt/3 is divided into a commutation period a < t < a + t. and a conduction 

period a +11 < t < a +1_1/3 . In these periods, it is desired to write and solve the 

Kirchoffs law equations for voltage and current. The result is used to obtain the 

Fourier analysis of the rectifier supply voltage. For the commutation period ueb  and 

Uab are applied conducting SCR's el, al, and b2. 

LPi(a" LPi(c" uab(t) ucb(t) 	 (B12) 

(R + (2L + F)p)i(al)  + (R + (L + F)p)i(el)  = uab(t) E 	(B13) 

_ d ( 
P  = dt 
	 (814) 
 

3 

— ab  = ba (t) 
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ui 	c'ck) 	uab 	'Jac 	ubc ca 

f a 

II (2)1 	(3) I I  ( 14)1 

1 (21  (3 
i  

I 
I 	I 

I 	I 
1 	I 

1 

I PERIOD ! 

(1) 1 ( 2 ) (3) (ti)l 

1 	 1 

1 	1  

1 1 (1) 

i  (6). 0 	) )I 
a 

(i 
(2)

) 

(I ,  

C 

The subscript (1) denotes the first period of interest. Figure (B2) will help for 

the understanding of this period. Solving for 41) , it°, and ill)  yields 

Figure B1 Phase Currents in n Bridge Rectifier 

i(1) (t) 	KY)ePlt  fil)(uk ,t) 
	 (B15) 

i( ) ) (t) = — KP)  + K 1t + fr(u k  ,t) 
	 (B16) 

i(1)(t) = — i(2)(t) — i(01) (t) 
	 (B17) 
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0 = ia(1)(a) = KJ)  + K(21)  eP'a  + faq)(uk  , a) — 
2R 
E (B25) 

C 

   

   

   

   

   

   

9 • 

 

Figure B2 First Case Studied 

where 

1) 	

Zki 
sin(koot 	—k  0k1) 

Uk 	sin(kwot + (1)1, 8k2 °kI 
k=1,5,7,11 

7c 278 
+ 	k ) (B18) 

2 	3 

fC1) (13k.t ) 
k=1,5,7,11 

uk 
 Sin(k0)0t +4k  0k1) Zkl 

2 „ , E 	'-`k 4  sin(kwot + t k + 61/44 ek 1 
k=1,5,7,11 Zk 1 Zk 3 

27r8 
+ 	k ) (B19) 

2 	3 

and the K(1)  terms are constants which are determined by initial conditions and 

continuity expressions, and 

zkiArg(Oki ) = 2R + j(3L 2F)k 	 (B20) 

zk2Arg(ek2) = R + j(L +F)k 	 (B21) 

z ga jLk k3Ar( 2 ) 	 (B22) 

zk4Arg(ek4) = R + j(2L + F)k 	 (B23) 

=  — 2R  
3L + 2F 	

(B24) 
 

and (A) Arg (B) denoted a vector of length A and phase angle B (radians). 
Continuity at t = a gives Eqs. (B25-B26) 
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-R P2 = 
2L +F 

(B31) 

i(cI)(a) = i(cI)(a-)-K(I1)  + 	epi c‘ + (1)  (u k ,a) — (B26) 

The commutation period ends at t = a + 	< it /3. The commutation angle 

g is solved from i(e1) (a + IA) = 0 in Eq. (B16). 

The second period, a + 	t 5 a+ it / 3 is solved similarly. Figure B3 refers 

to this period and SCR's al, b2 are conducting. The defining differential equation is 

(B27) and the solution is (B28-B30) (note the use of the superscript (2) to denote the 

second period of interest), 

C 

Figure B3 Second Case Studied 

uab(t) E = i(a2) (R + (2L + F)p) 
	

(B27) 

i(a2)(t)  = K(22) e t f?) (u k 0  _ 	 (B28) 

1((2)(t) _ - ;(2) 
b " 

i(c2)(t)  = 0  

where 

fa(2) (uk ,t) 	Esin(kwot + 4)k  - 0k4)  
k=1,5,7,11,.. 71(4 

(B29)  

(B30)  

(1331) 

and 42)  is determined by the continuity of ia  at t = a + µ . Fig. (B4) refers to 

this period. The differential equations are 
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(3)  

	rain 	 

L 
	110P 	 

c b 

_A< 
c 3  

i (3) 
a 

( 3) 

LPi(b3)  — LPi(." = ua. —uab 	 (B32) 

— (R + (2L + F)p) ic(3)  (R + (L + Fp)i ) = uac — E 	 (B33) 

The initial condition is 

i(3)  (CC + n/3) = 0 	 (B34) 

ir(a+4/3) = ii,,2)(a+7/3) 	 (B35) 

and the solution is similar to the solution for i(a1) , it!)  , i(c1)  . Using the fact that 

the supply voltage in phase ac in the time current interval (a + TC / 3,a + 27/ 3) has the 

:=figure B4 Third Case Studied 

same value as that in phase ab for the interval (a, a + 7/ 3), it is easy to show that 

shifting ia(1) , 4,1) , ic(1)  by it / 3 radians and reversing the sign results in .(3) ' b .(3) ' c *(3) a  
For example, in phase a, 

i(2)  (t) = 	— 7/ 3) 

— 241)  eP' (1-n  / 3)  + fa(1)(Uk  , t — 7/3) + fc(1)(uk ,t— 7/3)— EiR 

Phase b and c are handled similarly. 0 
After the commutation period, the situation of the phase a current is identical 

to that of the phase c current in a <t 5 a + 27/ 3. In the time interval 

a + 47/3 < t < a + 27 , the situation of is identical to that ai l, in a < t < a + 27/ 3. 
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The b and c currents are similarly related. Therefore for 

a+ 27t /3 <t 5 a + zin / 3 , ia(t) is found by shifting ic(l)  through 	by 27t/3. For 

a + 47r/3 < t < a + 27t , is  is found by shifting i1,1)  through 4,4)  by 47t/3 . 

Hence 

	

is  (t) = 	is  (t+ 

and only odd harmonics exist in is  provided that only odd harmonics exist in 

the supply voltage. 

A Method for Calculating the Phase Currents of a Full Wave Bridge Loaded 

with And E-R-L Load 

This Appendix concludes with final comments on the full wave bridge loaded 

as in Fig. Al. Two cases occur : When commutation does no exist, ia(t) is solved as 

indicated in the previous section where KV)  is obtained using initial conditions, 

= 0 , and i(a2)(a.) = 0 . Then 

i(2) (a)  = KS2) eP2a f.2)(uk a) = 0 

(2) 	 (;(2) 	;(2). ) Since and K- is found. Having found i(2)  iP is also found 

	

2 	 a , 	 kLb 	'a 

the phase current cannot be negative in this period, the sign of is  is checked at t = 

a +71/3 . If ia( a + n / 3) is zero, the period ends precisely at t = a + it /3 . If is  is 

negative, this period has not ended at a + it and the ending time must he calculated 

(denote this ending time as t1 ). Then ti is found from 

	

i(2)(to 	K(22)ep2t, + fa(2)(u k ,ti ) 	= 
R 

If is  is positive, the commutation period does not exist. This is the second case 

mentioned above and discussed next. 

If the commutation period does not exist, the problem is more complex and the 

solution is briefly outlined here. In this case, the initial value of i(1)  must he known to 

obtain lq)  and K(21)  . This problem is solved by noting 
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ir(o,± it /3) = -1(e1)(a) 

4,,,3)(cc + 7E/3) = 4,2)(cc, +7c/3) 

i(2)(a + n/3) = -K(2)  el)2(a+1/3)  - (2)(uOa +7r/3) + —E 
a 

Substitution of 4,2)  into Eq. (A14-A15) gives K(11)  , K(,1)  and KV). 

Unfortunately, the simultaneous solution of these constants requires the use of 
Newton's method since the simultaneous relations are transcendental. The result is 

summarised by introducing simplifying notation, 

K - - K(1)  1  

K 2  = 2 - K(1)  epla  

K3 	2 = K(2)  ep2a  

E 	(1 A = R - f 1̀  (u, ot) 

B - fV)(uk ,cc +7c/3) - <1)(uk ,cc) 

D eP27d3  

G = B - A - 
R 

C = A + B 

H1  = eP'11 	H 	1-1  2  = eP2  

Then Newton's method is used as follows (after eliminating K11)  and K(21)  ), 

2R 

iteration k+1 

aF1  aF1  
A= 31(3  aµ 

aF, aF2  
OK3  apt 

-k 
+A 

iteration k 

r-Fi(K3,1,)1 
F2(K34)] 



The b and c currents are similarly related. Therefore for 

a + 27r/ 3 <t < a + 47t/ 3, ia(t) is found by shifting ic(I)  through 	by 27t/ 3. For 

a + 47t /3 < t < a + 27c , is  is found by shifting 	through 4,4)  by 47t/ 3. 

Hence 

is  (t)—ia (t +70 

and only odd harmonics exist in is  provided that only odd harmonics exist in 

the supply voltage. 

A Method for Calculating the Phase Currents of a Full Wave Bridge Loaded 

with And E-R-L Load 

This Appendix concludes with final comments on the full wave bridge loaded 

as in Fig. Al, Two cases occur : When commutation does no exist, ia(t) is solved as 

indicated in the previous section where KV)  is obtained using initial conditions, 

p. = 0 , and i(a2)(a) = . Then 

iV)(a) = K(22)  ep2a  + fa(2)(uk ,a) = 0 

and K(22)  is found. Having found i(2)  i(2)  is also found a 	b 	 = ii(a2) ). Since 

the phase current cannot be negative in this period, the sign of is  is checked at t = 

a + a/ 3 . If ia( a + it/ 3) is zero, the period ends precisely at t = a + it/ 3 . If is  is 

negative, this period has not ended at a + TE / 3 and the ending time must he calculated 

(denote this ending time as ti). Then t1  is found from 

;(2)(i. 	K(22.)ep2t1 + f.2)(U k ,ti ) — 	= 0 
Rla 

If is  is positive, the commutation period does not exist. This is the second case 

mentioned above and discussed next. 

If the commutation period does not exist, the problem is more complex and the 

solution is briefly outlined here. In this case, the initial value of ic(1)  must he known to 

obtain K(11)  and KP . This problem is solved by noting 
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aF, 
31(

-
3 

= D — 111  

aF2  = - (H2  + 8K3  
aF, 	 - p11-1,K3  + (cc + g) 

aF2  
(p2H2  +DpiHi )K3  + piCHI  + f2 (a+  g) 

Also 
F1(k3  + g) 	(D — H2  )K3 + f1  (a + — G 

F2(k3 	— (H2  + DH1)K3  + f2  (cx, + pi) + CHI  

(cc + IA) = f i) (1.A.k  + a+ 	fP(uk ,a + g)— f 2)(uk  , cc+ g) 

f,(cc + Ix) = fa(1)(gk  + a + g)— 	(uk, cc + g) — fa(2) (uk  , a + 

After obtaining K3 and p., K1  and K2 are calculated from 

Ki  = K2  + A 

2K2  + DK3  = C 
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