
ON-LINE CAPACITOR SWITCHING FOR
DISTRIBUTION SYSTEM

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of the degree

of
MASTER OF ENGINEERING

In
ELECTRICAL ENGINEERING

(With Specialization in Power System Engineering)

By

PRADEEP KUMAR VERMA

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247 667 (INDIA)

MARCH, 2000

c 	

p r'&o "f P- r23

I hereby declare that the work presented in this dissertation entitled

"On-line Capacitor Switching for Distribution System", submitted in partial

fulfillment of the requirement for-the award of the degree of Master of Engineering, '

in Electrical. Engineering, with specialization in Power System Engineering, in the

Department of Electrical Engineering, University of Roorkee, Roorkee, is an authentic

record of my own work, carried out with effect from July 1999 to March 2000, under the

guidance of Dr. B. Das and Dr. N. P. Padhy, Department of Electrical Engineering,

University of Roorkee, Roorkee.

The matter embodied in this thesis has not been submitted for the award of any

other degree.

DATE : ll March, 2000. 	 (PRAD P KUMAR VERMA)

It is certified that the above statement made by the candidate is correct to the best of our

knowledge and belief.

0,
(Dr. B. Das) 	,325D 	 (Dr. N. P. Padhy)

Department of Electrical Engineering

University of Roorkee

Roorkee-247667

(INDIA)

I am greatly indebted to my guides Dr. B. Das, and Dr. N. P. Padhy,

Department of Electrical Engineering, University of Roorkee, Roorkee, for their kind

support and guidance during my work. Their co-operation and in-depth knowledge have

made my work possible.

I am also thankful to Sri Bharat Gupta, O.C. Power System Simulation Lab, for

providing me the best of facilities, which enabled my work to roll faster.

Last but not least, I am also grateful to Power System Engg. Faculty and my

classmates whose presence have made a workable atmosphere in the lab, conducive for

my work.

EP KUMAR VERMA)

II

.A scrqcq"

In this thesis, an artificial neural network based algorithm for determining optimal

capacitor switching pattern for a given loading condition in a radial distribution system

has been developed. Traditionally, combinatorial methods have been used to decide the

optimal switching patterns. However, these combinatorial methods take significant

amount of time for practical size power distribution system involving thousands of

feeders. Hence, these algorithms may not be very suitable for on-line application in a

modem distribution automation system. A multi-layer perceptron neural network with

error-back-propagation training algorithm has been used to determine the optimal

capacitor switching pattern. It has been found that the time taken by ANN based method

is quite less compared to the time taken by the traditional combinatorial methods.

III

Page no.

CANDIDATE'S DECLARATION 	 I

ACKNOWLEDGEMENT 	 II
ABSTRACT 	 III

CHAPTER 1 : Introduction 	 1

CHAPTER 2 : ANN (Artificial Neural Network) Algorithm 	 5

2.1 : Brief Review of ANN 	 5
2.2 : Error-Back-Propagation Learning Algorithm 	 7

2.3 : Conclusion 	 16

CHAPTER 3 : Optimal Capacitor Switching Algorithm 	 17

3.1 : Objective Function and Constraints 	 17

3.2 : Solution Methodology 	 19

3.3 : Conclusion 	 22

CHAPTER 4 : Results and Discussion 	 23

CHAPTER 5: Conclusion 	 32

REFERENCES 	 33

APPENDIX A - 	 34

APPENDIX B 	 36

N

a-IA IER1
INTRODUCTION

Due to rapid industrialization and population growth, the demand for electrical

power is ever increasing. To supply this ever-increasing load demand, total power

generation in India has grown tremendously during the past decades. However, to supply

quality power to the ultimate customers, it is not sufficient to merely increase the

generation. Adequate transmission and distribution facilities also need to be built-up and

consequently, there have also been substantial developments in the power transmission

and distribution system.
Apart from building up the infrastructure of transmission and distribution system,

it is also very important to continuously monitor the system to ensure safe, reliable and un-

interruptible power supply. Towards this objective, supervisory control and data
acquisition (SCADA) systems have been employed worldwide to continuously monitor
and control the transmission system. Similarly, to continuously monitor and control the

distribution system, the concept of "distribution automation" system has emerged quite a

few years ago [1]. In a distribution automation system, a lot of sensors and remote

terminal units (RTUs) are placed in the power distribution system. The data collected by

these sensors and RTUs are sent to a central computer station over a dedicated

communication channel. The sent data are then analyzed by appropriate analysis software

to assess the present health of the system. If any anomaly in the operation of the

distribution system is detected, proper remedial and control decisions are taken at the

central computer station by the help of proper software analysis packages. These control

decisions are then sent to the field through the same or other dedicated communication

channels for proper field implementation.
Obviously even with the presence of accurate sensors, RTUs and robust, reliable

communication channels, the effectiveness of a distribution automation system largely
depends upon the quality of the analysis software at the central computer station. As all

the decisions regarding the present health and remedial control action are to be taken by

1

the software analysis packages, the algorithms of the software packages must be such that

the results produced are highly accurate. Moreover, as the health monitoring functions and

control decision functions are to be carried out quickly to minimize the adverse effects of

any untoward conditions in a power distribution system, the algorithms of the software

analysis packages also need to be very fast.

The most common different control decision functions, which are currently being

employed in any modem distribution automation system, are:

Feeder reconfiguration to minimize the loss in the system.

• Volt-var control.

• Accurate fault location in a distribution system.

• Feeder reconfiguration for service restoration.

• Feeder load balancing.

■ Demand-side-management.

• Remote-monitoring.

Among the above listed functions, volt-var control is possibly one of the most

important functions in any modern distribution automation system. The objective of volt-

var control is to compensate for the reactive load demand locally, preferably at the site of

the load itself, such that these reactive loads do not have to be supplied from the

substation. Consequently, electric currents corresponding to these reactive currents do not

flow over the feeders and hence the voltage-drop and power loss in the feeders decrease.

Ideally, all reactive loads in the distribution system should be supplied locally, such that

electric currents corresponding to only active loads flow over the feeders (which is anyway

unavoidable), and thus voltage drop and power loss in the distribution system become

minimum.

The most common approach to supply reactive power is to install capacitors in the

system. Ideally, capacitors should be placed at all the load points in the system and if the

reactive load demand in the system remains constant, then the rating of the installed'

capacitors can be made equal to the reactive load demand in the system. Thus, all the

reactive. load demand in the system would be met locally. However, the real-life situation

is far from this scenario. Firstly, because of the cost consideration, it is not possible to

install capacitors at each load point in the system. Hence, the capacitors are to be installed

2

at some strategic locations in the system. Secondly, the load demand in the system
changes continuously. Hence it is not possible to compensate adequately for this changing
load demand by fixed capacitors, rather the capacitors should be switchable such that the
reactive power supplied by them vary with the variation in the load demand.

Thus, the volt-var control in a distribution system has two distinct aspects. First, to

place capacitors (preferably switchable) at some strategic locations in the system. The

location and sizes (rating of the capacitors in terms of KVAR supplied) of the capacitors

are decided based on forecasted load demands (both active and reactive) in the system

over a certain period (called the study period). This is known as the "capacitor placement"

problem and this is an involved optimization problem. Second, once the capacitors are

placed in the system based on "capacitor placement" study, it is necessary to determine

their optimal switching pattern (which capacitor to be switched `ON' and which capacitor

to be switched `OFF') at any loading condition such that the power loss and the voltage
D

drop in the system are minimum. This is known as the "capacitor switching" or "capa

allocation" problem and indeed, this is also an involved optimization problem.
Thus, the capacitor-switching algorithm pre-supposes the locations of the insta

capacitors and it strives to find out the optimal switching pattern of these capacitors for

minimum loss in the system at any given loading condition. Although significant amount

of work has been reported in the literature for capacitor placement problem [2-4], not

much work has been published in the literature in the area of optimal capacitor switching

problem. An approach for determining optimal capacitor switching pattern based- on

sensitivity approach has been reported in [5]. This method calculates the sensitivity factors

based on the repeated load-flow of the system.
However, as it has been mentioned earlier, for this information of optimal

switching pattern to be of any use in the modem distribution automation system, it has to
be obtained very quickly. Now, by the approach in [5], for a practical power distribution

system involving thousands of feeders, it takes a comparatively long time duration (few
minutes depending upon the system size) to perform the capacitor switching analysis and
compute the optimal switching pattern. In this case, it may be desirable to reduce the

computation time by some alternative technique such that the optimal capacitor switching

pattern can be obtained quickly. Artificial intelligence (Al) techniques, such as artificial

neural network (ANN) offers such a possibility of computation of optimal switching
pattern within a very short duration.

Artificial neural networks are computation tools, which try to mimic the operation

of human brain. Analogous to the operation of the human brain, ANNs operate on the

principle of parallel processing and consequently, they are quite fast, especially while

dealing with large volume of data without any known mathematical correlation among the

data. Clearly, optimal capacitor switching algorithm based on ANN technique is also

expected to be quite fast and hence, it is expected that they will be quite suitable for on-

line application in modem distribution automation system.

In this thesis, a methodology for computing optimal capacitor switching pattern in

a distribution system based on ANN technique is developed. Essentially, the development

of the methodology comprises of two steps:

1. A suitably chosen ANN structure is to be trained first with a set of training data
(input: loading pattern, output : corresponding optimal switching pattern), with
the help of a suitable training algorithm. The training data would be obtained

from an optimal capacitor switching software package based on a conventional
capacitor switching algorithm.

2. Once the ANN is trained, with sufficiently large number of training data, the

ANN `learns' the implicit correlation between the loading patterns and the

optimal switching patterns. Next, new loading patterns (which have not been

used to train the ANN) . would be fed to the network and the network would

provide the optimal switching pattern at its output within a very short span.

In this work, the standard multi-layer perceptron neural network with error back

propagation training algorithm [6] has been used. The switching algorithm reported in [5]

has been used for optimal capacitor switching analysis.

This thesis report is organized as follows. Chapter 2 discusses about the _artificial

neural network algorithm used in this thesis. This chapter discusses elaborately the multi-
layer feed forward perceptron network and the error-back propagation training algorithm.

In Chapter 3, conventional optimal capacitor switching algorithm is discussed. Chapter 4

presents the important results of this work. Chapter 5 delineates the main conclusions and
gives a brief suggestion for further work.

4

CHAPTER 2

ANN (ARTIFICIAL NEURAL NETWORK) ALGORITHM

The recent resurgence of interest in neural network has its roots in the recognition

that the brain performs computation in a different manner than the conventional digital

computers do. The foundation of an artificial neural system is nothing but man made

neural systems, which results in major potential gain in the direction of information

processing by digital computers. Man has endeavored to build an artificial neural system

because of the fact that even an animal can process a visual information much better than

the most modem, fastest computer. And of course, humans are more efficient in this

regard than the other species. Hence, the gap between the information processing power of

the human brain and even the most modern, fastest computer is huge. Artificial neural

network is an effort towards bridging this gap.
Jurada [6] gave a brief but nice discussion on biological neuron systems and their

correspondence with the man made artificial neural network systems. Hence, these

fundamental concepts are not discussed here.

2.1 BRIEF REVIEW OF ANN

A neural network consists of simple processing units called `neurons' or `nodes',

which bear only a passing resemblance to actual biological neurons. Each neuron is

connected to other neurons in the network by unidirectional connections of different

strengths or weights. The neurons are usually arranged in a series of layer bounded by

input and output layers encompassing a variable number of hidden layers, connected in a

structure which depends on the complexity of the problem to be solved.
The most important features of the network are their ability "to learn" or "to be

trained" from examples. For many multi-input multi-output systems, the exact
mathematical relationship between the inputs and the outputs is not often known in
advance. Hence, for this kind of systems, it is often very difficult to determine the correct

output pattern for a given input pattern. On the other hand, ANNs, by use of proper

training algorithm, are able to identify or "learn" this implicit relationship. For the training

5

purpose, a number of input patterns and the corresponding output patterns are presented to

the ANN. By virtue of suitable training algorithms, the ANN is able to "learn" the implicit

co-relationship between the input and output patterns. As the learnt information is stored

across the network weights, the network is able to generalize. This means that appropriate

output pattern will be generated even for input pattern not actually included in the training.

Because of their ability to learn and generalize, the neural networks have the potential for

solving the required problem instantaneously, which takes much less time than the

conventional methods.

In the literature, a large variety of neural network architecture and their training

algorithms have been reported. A nice introduction to artificial neural network

(architecture and training algorithm) is given in Jurada [6]. Essentially, all neural network

architectures can be classified into two-categories [6] ;

e Feedforward network

o Feedback network

Similarly, the training algorithm for neural network can be divided into two broad

categories [6]

o Supervised learning

0 Unsupervised learning

Examples of supervised learning algorithms are [6] ;

o Perceptron learning algorithm

o Delta learning algorithm

o Widrow-Hoff learning algorithm

o Correlation learning algorithm

o Outstar learning algorithm

Examples of unsupervised learning algorithms are [6] ;

e Hebbian learning algorithm

a Winner-take-all learning algorithm

Among the above-mentioned learning algorithms, one of the most widely applied
one is "delta learning algorithm". In the literature, it is slightly, modified and is named as

"generalized delta learning algorithm" which ultimately gives rise to very popular "error-
back-propagation learning algorithm".

0

For the application of ANN for on-line capacitor switching, feedforward network

with supervised learning has been used. Specifically, multi-layer feedforward network
with error-back-propagation learning algorithm has been used in this work. Hence, in the

next section, the error-back propagation (EBP) learning algorithm for multi-layer

feedforward network is described [6].

2.2 ERROR-BACK-PROPAGATION LEARNING ALGORITHM

Fig. 2.1 shows a three-layer feedforward neural network. The layers are numbered

1., 2 and 3 from the leftmost side to the rightmost side as shown in the figure. At layer 1,

which is called the `input' layer, the input patterns are presented at the time of training.

Similarly at layer 3 the output patterns are presented at the time of training of the network

and hence, this layer is known as the `output' layer. Layer 2, which is intermediate

between the input and output layer, is known as the `hidden' layer. Hence the above three-

layer feedforward neural network is comprised of one input layer, one hidden layer and

one output layer. It is to be noted that, it is possible to have more than one hidden layer in
the neural network. However, in our study, only one hidden layer is used.

Each layer consists of several nodes. Number of nodes in the input layer is equal to

the number of inputs. Similarly number of nodes at the output layer is equal to the number

of outputs. There is no strict guideline, however, available for deciding the number of

nodes, in the hidden layer. In most cases, the optimum number of nodes in the hidden layer

is dependent on the problem tackled by the neural network and most often this number is

decided by trial and error.

There is, however, one important distinction between the input layer and the other

layers (hidden and output). At the nodes of the input layer, no processing is done on the

data or information presented to them. On the other hand, actual processing is done at the

nodes of the hidden and output layers. Hence, essentially, the nodes of the hidden and

output layers are the actual processing units or neurons, whereas the nodes of the input

layer are just junction points where the input data are presented.

ZI

Layer 1 	 Layer 2 	 Layer 3

(jth column of nodes)

Figure 2.1

Layered feedforward neural network with two continuous perceptron layers

.9

The nodes of the neural network are completely interconnected. That is, - each node

of the input layer is connected to every node of the hidden layer. Similarly, each node of

the hidden layer is connected to every node of the output layer. The information always
flows in the forward direction (i.e. from the input layer to the hidden layer and from the

hidden layer to the output layer). Hence, this kind of network is known as -multi-layer

feedforward network.

The interconnection between every pair of nodes is represented by a weight w.

Thus, the interconnections between the nodes of the input layer and the hidden layer can

be represented by a weight matrix W of the dimension (J X I), where I is the number of

input nodes and J is the number of nodes in the hidden layer

The matrix W is represented by W = w1 for i = 1, 2, ..I and j = 1, 2, ..J and w~;

denotes the weight of the interconnection between i"' node of the hidden layer and the j"'

node of the input layer. Similarly, the interconnection between the nodes of the hidden

layer and the nodes of output layer can be represented by a weight matrix V = vk~ for k = 1,

2, ..K and j = 1, 2, ..J Here, it is assumed that there are K number of nodes at the output

layer and vkj denotes the weight of the interconnection between the k"' node of the output

layer and the jth node of the hidden layer.
Hence, the weight matrix W, interconnecting the nodes of the input layer and

hidden layer is given by,

w1 1 W12 	w1

W = w21 W22 	w27 	
(2.1)

wJI WJ2 wJ!

Similarly, the weight matrix V interconnecting the nodes of the hidden layer and

output layer is given by,

V11 V12 V1J

V= v21 V22 	v2J 	
.......(2.2)

_ 	 V K1 V K2 VKJ

0

To train the network, the input-output patterns are presented to the network. Let

there is total P number of input-output patterns. In each pattern, let there are I inputs and K

outputs. Let the inputs are represented by an input vector z, where z is denoted by the

symbol,

	

z = [Zi , Z21 z1]T
	(2.3)

where `T' denotes the transpose of a vector. Similarly, the outputs are represented

by an output vector d, where

	

d=[d1,d2 ,......dK]T
	(2.4)

As described earlier, the information flow in an ANN proceeds from the input layer

to the output layer via the hidden layers. The computation process for this information

flow is described below. For a given input pattern z, input yy at the j`'' hidden node is

calculated by,

	

y j = 	W jizi ; for j =1, 2,J 	(2.5)
i=1

Let the inputs at the hidden layer be represented by the vector y, where y = [y i, Y2'
•
y] ̀. Then from Equation (2.5), vector y can also be calculated by the following

expression,

y = wz 	(2.6)

Output p; of the jth hidden node is then calculated by,

	

pj =f(y j)= 	1 	for j=1,2,J (2.7)
1+exp(-Ay j)

where X is a constant.

Once the outputs at the nodes of the hidden layer are calculated, the input rk to k`''

node at the output layer is given by,

rk = lVkjp j; for k =1, 2,K 	(2.8)
j=1

The output ok of the k"' node of the output layer is given by,

	

ok =f(rk)= 	1 	fork=1,2.......K 2.9
1 + exp(-?.rk) 	 "()

10

It is to be noted that the output dk for the k"' node at the output layer is the desired

output, whereas ok is the calculated output by the ANN based on the weight matrices and

the input vector. By the process of training, ANN tries to make ok equal to dk by modifying

the weights of the interconnections suitably. In the error-back propagation algorithm, the

weights are modified in such a way that the total error at the output layer between the

desired output and the calculated output is minimized.

The total error is defined as,

1K
E = —E (dk - Ok)2 	(2.10)

2k=l

According to the classical optimization theory, to minimize E, the weights should

be changed in the negative direction of the gradient of E. Hence, the adjustments of

weights Ovkj and Awe; are given by,

AVk, _ - 	aE 	(2.11)
aV kj

	

= - 'tj aE 	(2.12)

Where r is a constant, called learning constant.

Now,

aE _a ark
.......(2.13)

5"kl ark akJ

From equation (2:8), we have,

ar 	 ..(2.14) k

Again,

• aE aE aok (2.1s) ark aok ark
From equation.(2.9) we have,

ao k = f'(rk) 	 ark 	 .(2.16)

11

Now, for X = 1,

f'(rk) 	exp(-rk) 	_ 	1 	1± exp(-rk) -1

[1± exp(-rk)]2 [1± exp(-rk)] [1± exp(-rk)]
Or,

f'(rk) = ok (1 - Ok) 	(2.17)

Also, from equation (2.10), we have,

aE =-(dk -Ok)
~Ok

Hence, combining equations (2.11), (2.14), (2.17) and (2.18) we have,

AV k; = rl(dk - Ok)Ok (1 - Ok)P j

.......(2.18)

......(2.19)

Hence, the modified weight v'Jk becomes

Vk; =V + AVk; = Vki + '1(dk - Ok)Ok(1 - Ok)Pj

for j=1,2........J and k=1,2.......K
........(2.20)

For the adjustment of weights between the input layer and hidden layer,

aE
HIV .. 	 . (2.21)

fori=1,2.......Iand j=1,2.......J

Now,

aEaEoY
= 	

j

	

~,■' 	 -(2.22)
ji ~j aVV

From equation (2.5) we have,

yi

	

aw Jr
= Zi 	(2.23)

Now,

aE aE ap;
ayj - api ONj (2.24)

Now, proceeding as in equation (2.17) and from equation (2.7) we have,

12

ap' =f'(y.)=p.(1-'P j)
ayj

Again,

a 	a 	I K K (dk - ok)2

ap; 	ap; L2k=1

Or,

x

ap; a - 	? {dk f(rk)}2 ap;
Or,

K

a =->(d - 0k) 	{J (rk)} ap ; 	k=1 	ap;
Or,

K aE =-E(dk -Ok)`
t

,(rk) ark
ap; 	k=1 	 ap;

From equation (2.8), we have,

vrk =Vk;
ap;

Putting equation (2.27) and (2.17) into equation (2.26) we have,

aE K - L(dk •Ok)Ok(l-Ok)Vkj
Vp;

Hence, from equations (2.24), (2.25) and (2.28), we have,

aE 	 K (
- Pj (1 - pj)E (dk - Ok)Ok (1 - Ok)V kj ay;

k=1

From, equations (2.21), (2.22), (2.23) and (2.29) we have
K

Owjf =11ZipJ(1-pj)L(dk -Ok)Ok(l-Ok)Vkj
k=1

Let us define,

........(2.25)

.......(2.26)

.......(2.27)

.......(2.28)

.......(2.29)

(2.30)

13

5 ok =(dk -Ok)Ok(1-ok)

Then from equation (2.20),

V kj = V kj + 15okPJ(2.31)
for j=1,2.......Jandk=1,2.......K

And, from equation (2.30),
K

Aw j; = 11ZIP;(1- P;)ZsokVkJ 	(2.32)
k=1

Hence, the modified weights w';, is given by,
K

w;~ = w + iiz~P, (1- P~)LBOk V kk 	(2.33)
k=1

Equations (2.31) and (2.33) describe the relationships through which the various

weights in the ANN are to be modified. It is to be noted that this modification proceeds

backward from the output layer to the input layer via the hidden layers. The modifications

are dependent upon the error at the output layer. Hence this training algorithm is known as

the "Error-back-propagation training algorithm". Note that the relationships described in

equations (2.31) and (2.33) are for one single input-output pattern. When P patterns are

presented, the weights are modified for each pattern according to the equations (2.31) and

(2.33) and the cumulative error (summation of the total errors over all the P patterns) is

calculated. If the cumulative error is less than a specified tolerance limit, the ANN is said

to have converged or "trained" properly. This entire sequence of modification of the

weights over all the P patterns is known as one iteration of training of ANN. If the

cumulative error.is not less than the specified tolerance value, another iteration of training

starts. If the training of the ANN is proceeding properly, the cumulative error in the

subsequent iterations should reduce. Iterations of training are continued till the cumulative

error becomes less than the specified limit.

To accelerate the convergence of the error-back-propagation algorithm, a factor

called "momentum factor" is often used. In this method, the weight adjustment in the

current step is supplemented with a fraction of the immediate past weight adjustment.

Mathematically this is expressed as,

AW(t) = 1\7E(t) + ahE(t -1)

14

Where, 	a 	= 	Momentum factor

t 	— 	For current training step

	

t — 1 = 	For immediate past training step

Based on the above discussions, the detailed algorithm for error-back-propagation

training procedure for multi-layer feedforward ANN is described below.

ERROR BACK PROPAGATION ALGORITHM (EBPTA) [6]

Given are P training pairs {Z,, d„ z2 , d2,zr , dp }

wherez,is(Ix 1),d,is(Kx1)andi=1,2.......P

The input vectors have been augmented by fixing the I"' component of each z, to a

value —1.0. Size J-1 of the hidden layer having outputs p is selected. As hidden layer

output have also been augmented, the J h̀ component of p is also of value —1.0. p is (J x 1)

and o is (K x 1), where o is the output vector.

Step 1: 71 F— 0, emax chosen.

Weight V and W are initialized at small random values; V is (K x J) and W is (J x

I).

qE--1,p<--1,EE--0

Step 2: Training step starts here.

Input is presented and the layers' outputs computed:

z*-zP ,d<--dP ,p; E--f(wTz)

where wi, a column vector, is j-th row of W, and

Ok E f(vkp)

where Vk, a column vector, is the k-th row of V.

Step 3: Error value is computed:

2
 2, K

Step 4: Error signal vector So and S~, of both layers are computed.

Vector 8 is (K x 1), SP is (J x 1).

15

The error signal terms of the output layer in this step are

ook = (dk - 0k)(l - Ok)ok
fork=1,2......K

The error signal terms of the hidden layer in this step are
K

opj =Pj(I-pi)ESokvkj,for j=1,2,.....J
k=1

j Step 5: Output layer weights are adjusted:

V kj 	V kj + T8okpj ,

fork=1,2......Kand j=1,2......J
Step 6: Hidden layer output are adjusted:

W ji 	W ji + i8P1Z i ,
for j=1,2......Jandi=1,2......I

Step 7: If p < P then p - p + 1, q E-- q + 1, and go to step 2: otherwise, go to step 8.

I Step 8: The training cycle is completed.

	

rms error, E 	1
PK

For E < emax, terminate the training session. Output weights W, V, q and E.

If E > emax, then E - 0, p –.1, and initiate the new training cycle by going

Ito step 2.

Once the neural network is trained, the input pattern for which the output pattern is

to obtained, is presented to the ANN and the output is calculated in the feedforward mode

following step 2 of the algorithm.

2.3 CONCLUSION

In this chapter, the detail algorithm of the error back propagation training

algorithm for multi-layer feedforward neural network is discussed. For the development of

ANN based optimal capacitor switching algorithm, this algorithm has been used for

training the neural network.

16

CHAPTER 3

OPTIMAL CAPACITOR SWITCHING ALGORITHM

One of the most important and desirable control function in a modem distribution

automation system is volt-var control (VVC). Primarily, VVC deals with the voltage and

reactive power control in the distribution system, although in concrete terms, the main

objective of VVC may not be directly minimizing the voltage violations or reactive power

violations. One -of the typical objectives of VVC is the , real power loss minimization

subjected to various operating constraints in the system. As discussed in Chapter 1, this

objective can be achieved by controlling the reactive power support at different buses in

the system. Different constraints in the system may be in the form of voltage constraints at

different buses, loading constraints at different lines, power factor and reactive power

demand constraints at the substation etc. Additional to the requirement of minimization of

power loss, it is also desirable that the solution be obtained in least possible number of

steps.

To solve this constrained optimization problem, several approaches have been

suggested in the literature. A co-ordination method for switching discrete switchable

capacitors and tap changers has been proposed in [7]. This approach is based on a

simplifying assumption that all capacitors and tap changers have equal increments.

Roytelman et. al. [5] solves this problem by oriented discrete gradient method. In this

method, .the best- direction for search is determined by calculating sensitivity factors.

In this work, the basic approach outlined in [5] has been followed to determine the

optimal capacitor switching patterns. Although the basic philosophy remains the same, for

this work, it has been slightly modified. In the following sections, the optimal capacitor

switching algorithm is described in detail.

3.1 OBJECTIVE FUNCTION AND CONSTRAINTS

From a mathematical point of view, the optimal capacitor switching problem is a

constrained minimization problem where the constraints are inequality constraints. In this

17

work, the objective is to minimize the real-power loss in the distribution system.

Consequently, the objective function is
n

PL _ 	Ili ` z ri 	(3.1)

Where, PL —> Total real power loss in the system.

n I —> Number of feeders in the system.

ri --> Resistance of the i"' feeder.

I — Magnitude of the current flow through ith feeder.

The value ofPL is computed by using an accurate load-flow program given the

load-profile in the system and the setting of other control variables (such as transformer

tap settings, settings of any shunt-connected reactors, capacitors etc.). The objective is to

minimize the value of PL subjected to different inequality constraints. Also, it is desirable

that the solution of this problem be obtained at minimum number of steps.

The different inequality constraints in the system are:

(a) Voltage at all the buses should be within some specified minimum and

maximum limits.

Mathematically,
Vmin ~ V ~ V max 	for i =1, 2,nb (3.2)

Where, n b —+ Number of buses in the system

Vi —Voltage at i"' bus

vmin ' VImax
—* Minimum and Maximum limits of the voltages of the i"' bus

(b) Current flow through each feeder is less than the maximum specified limit.
I j 	!max fori=1,2,ni 	(3.3)

Imax 	Maximum value of Ii

(c) Current flow through each transformer must be less than the maximum

allowed limit.
It ~Itmax 	fori=1,2,......nt 	(3.4)

Where, nt --* Number of transformers in the system

18

li —4 Current through it'' transformer
tmax l i 	—) Maximum allowable current through i"' transformer

(d) Power factor at the substation must be within certain minimum and

maximum limits.

PFmin ~ PF <_ PFinax 	 (3.5) sub 	sub 	sub 	 \

Where, P Flub -- Power factor at the substation

PFS b -+Minimum allowable limit for PFsub

PFS ax Maximum allowable limit for PFSUb

(e) Reactive power demand at the distribution substation must be within

specified limits.

Qmin <n 	 / <Qmax
sub 	'sub 	sub 	l3' ~)

Where, Qsub - Reactive power demand at the distribution substation

Q min - Minimum limit of Q sib
QrnaX --* Maximum limit of Q5~b

In- this work, among all the above constraints, only the constraint described in

equation (3.2) is considered. Hence, the statement of the constrained optimization problem

is as follows:
"Under the current loading condition, find the optimal switching pattern of the

already installed shunt capacitors in the distribution system such that the real power loss in

the system is minimum and simultaneously the voltages at all the buses lie within their

respective operating limits".

3.2 SOLUTION METHODOLOGY

As the capacitors to be switched are discrete, not continuous, in nature, the optimal

capacitor switching problem is essentially a discrete (integer) programming problem with
non-linear objective function and inequality constraints. To solve such kind of discrete
optimization problem, combinatorial methods are generally used. In combinatorial

method, all possible discrete solutions are checked and finally the most optimal solution is

19

selected. Depending upon the size and nature of the optimization problem, the number of

possible solutions may be very large and hence, time taken to find the most optimum

solution may be very large. To overcome this problem, combinatorial methods use special

strategies such that only effective subsets of all possible solutions are searched.

One of the most commonly used, simple and reliable combinatorial strategies is

gradient descent method. This method can be used for any type of variables and objective

function. In this method, the control variables are moved by a reasonable step in that

direction in which objective function decreases the most. For discrete control variables, the

chosen step size is generally equal to the discrete increments of the control variables. This

direction (which is generally termed `the descent direction') can be chosen by a number of

methods, such as (a) by chance (Monte Carlo method), (b) by any evaluation strategy or

(c) by the largest negative partial derivative of the objective function with respect to the

control variables. In the last case, the method is known as the gradient or oriented discrete

co-ordinate descent method.

In this work, the oriented discrete co-ordinate descent method has been used to

determine the optimal capacitor switching pattern for a given loading condition. In this

method, as discussed earlier, the partial derivative of the objective functionF is calculated

with respect to the discrete control variables X l at the current operating point. The partial

derivative is computed as the ratio of the differences in the objective function to the

corresponding increments in the discrete control variables. Mathematically,
aFk 	Fk+1 _ Fk

aaxk 	xk+1 _ Xk 	 ..(3.7)

Where k, k+l are the current and the next position of the control variables. The

corresponding values of the objective function are denoted by Fk and Fk+i respectively.

In this work, the objective function is the real power loss in the distribution system,

which is calculated by a load-flow program given the system loading pattern and the size

and switching status of the discrete capacitor bank. The switching status of the shunt

capacitor bank represents the control variables. The rated sizes of the capacitor bank are

the increments for the capacitors.

20

The variables (switching pattern) which gives rise to the largest negative partial
derivative. is the - direction at which the capacitors should be switched. Starting from the

initial operating condition, this switching process is repeated till there is no further

decrease in the real power loss in the distribution system.

Based on the above discussion, the algorithm for finding the solution of optimal

capacitor switching problem is as follows:

Step 1. Read the input data.

Step 2. From the input data, identify the buses at which the discrete capacitor banks are

connected, the size of the connected capacitor banks and the initial switching status of the

capacitor banks (i.e. which capacitor is `ON' and which capacitor is `OFF'). The input

operating condition is termed as the `base operating condition'.

Step 3. Let nc denotes the number of capacitors connected in the system. Set MODEL =

"SWITCHABLE". Where MODE; = mode of the capacitor i, either "SWITCHABLE" or

"FIXED"., for i 1, 2.......nc.

Step 4. Calculate the real power loss at the base operating condition. Let this be denoted

as PL.

Step 5. For each capacitor i = 1, 2........nc, perform the following steps, if MODE; is not

equal to "FIXED".

(a) Change the status of the capacitor. That is, if the capacitor is already `ON', then

make it `OFF' or if the capacitor is already `OFF', make it `ON'. The status of the

remaining capacitors remains unchanged.

(b) Calculate the power loss in the system at this new configuration by running

load-flow. Let this loss be denoted as PL;.

(c) Calculate the partial derivative PD; by the following relationship:

PL- - PL PD; _ 	g c;
where _e; is the capacitance value of the i"' capacitor.

21

(d) After the load-flow solution is obtained, check whether the voltage at any bus

violates the minimum and maximum limits. If there is no violation, store the value of

PD,. If there is violation, do not store the value of PD1 .

(e) Restore the original status of the capacitor i.

Step 6. From the stored values of PD1 , find the index j, 1 < j 5 nc, For which PD, is

negative - maximum. If all the stored partial derivatives (PD,) are positive, optimal

switching pattern has been achieved and go to step 11. Otherwise, go to step 7.

Step 7. Set PDB equal to PDT .

Step 8. Change the status of the capacitor j.

Step 9. Set MODE; _ "FIXED".

Step 10. Go back to Step 5.

Step 11. Print the total system loss and the switching status of the capacitors.

3.3 CONCLUSION

In this chapter, an oriented discrete co-ordination descent method is described for

finding the optimal capacitor switching pattern under a given loading condition. In this

work, only the constraint of bus-voltage violation has been taken into consideration. By

the use of this algorithm, a large number of optimal switching patterns under varying load

conditions can be generated for training and testing of ANN.

22

CHAPTER 4

RESULTS AND DISCUSSION

It has been already discussed in Chapter 1 that the main objective of developing an

ANN based optimal capacitor switching algorithm is to reduce the time taken to arrive at

the optimal capacitor switching pattern for a given loading pattern. To achieve this

objective, some researchers have reported ANN based capacitor switching technique in the

literature [8]. However, in [8], multi-stage ANN architecture has been used, which

enhances the complexity. of implementation of the proposed ANN technique. On the other

hand, if the same objective can be achieved with a single-stage ANN architecture, the

implementation of the ANN algorithm would be simpler. In this work, a three-layer, single

stage, feedforward neural network has been used for developing the ANN based optimal

capacitor switching algorithm.
As has been already discussed in Chapter 1, development of any ANN based

algorithm essentially consists of two steps. Firstly, the ANN should be trained properly

and secondly, once the ANN is trained, the accuracy of the result predicted by the ANN

must be tested. To train the ANN, a number of input-output pairs (input : loading pattern

of the distribution system and output : optimal capacitor switching pattern) must be

submitted to the ANN. These input-output pairs are obtained by a conventional optimal

capacitor switching algorithm at different loading patterns in the system. During training,
the weights of the interconnections in the ANN architecture are suitably modified

according to the training algorithm. Once the ANN is trained, the performance of the ANN

is tested by comparing the output predicted by the ANN with that obtained by the

conventional algorithm.
To illustrate the development of an ANN based optimal switching algorithm, a

sample 30-bus system [8], has been chosen. The one-line diagram of the network is shown

in Fig. 4.1. The data for this test system are given in Tables A.1 and A.2 in Appendix A.

The loading pattern given in Table A. 1 is termed as "base operating condition". In this

system, there are total 22 load points. At each load point, both real (KW) and reactive
(KVAR) loads are specified. Hence, total number of real and reactive loads in the system

23

is 44. There are also 17 positions of switchable capacitors installed in the system. Hence,

the ANN architecture used in this work has 44 input nodes and 17 output nodes. Only one

hidden layer of the ANN has been chosen and the number of nodes in the hidden layer has

been chosen as 15.

Figure 4.1 : One-line Diagram of the Sample Distribution System

To train the ANN, it is necessary to generate a number of input-output patterns at

different loading conditions. The different loading conditions in the system are achieved

by varying the KW and KVAR loads in the system within a certain range with respect to

the "base operating condition". For example, the KW and KVAR loads can be varied in

24

such a way that the new loading condition always remains within a range of 90% - 110%

of the "base opearting condition". Similarly, for any other specified ranges, the KW and

KVAR loads can be varied accordingly. In this work, four different ranges of loading have

been considered. These are, a) 90% - 110%, b) 80% - 120%, c) 70% - 130% and d) 60% -

140%, of the "base operating condition". To vary the loading within any specified range

(e.g. 90% - 110%), a large quantity of random numbers within a range of 0.9 — 1.1 have

been generated and subsequently, the KW and KVAR loads at "base operating condition"

have been multiplied by these random numbers. Consequently, a large number of loading

conditions within a range of 90% - 110% of the "base operating condition" are generated.

Once these new loading conditions are generated, the oriented discrete descent method

described in Chapter 3 have been used to find out the optimal capacitor switching patterns

at each of these newloading conditions. Thus, a number of input-output patterns are

generated. Out of these generated input-output patterns, some of the patterns have been

used to train the network and some of remaining patterns have been used to test the

performance of the trained ANN. To train the ANN, error-back-propagation training

algorithm as described in Chapter 2 has been used.

The results of ANN training and testing, when the loading has been varied within a

range of 90% - 110% of the "base operating point", are tabulated in Table 4.1. As

observed from this table, for this operating range, 10000 input-output patterns have been

used to train the ANN and after the ANN is trained, 1000 input-output patterns, which had

not been used during training, have been used to test the performance of the ANN. The

performance of the ANN is quantified by "test error (percentage mismatch)". It is shown

in Table 4.1 that for learning constant = 0.01 and momentum factor = 0.8, the "test error

(percentage mismatch)" is 3.57. The meaning of the "test error" is as follows. As

discussed earlier, each pattern has 17 - output values. Hence, for total 1000 test patterns,
there are total 17000 output values. Upon testing, the ANN predicts wrong output values

for 3.57% of 17000 output values, i.e, for 3.57*170 = 607 output values, the predictions of

the ANN do not match with the output . values obtained from oriented discrete descent
method. For the rest 17000 — 607 = 16393 output values, predictions of ANN exactly

match with those obtained from the oriented discrete descent method. Table 4.1 also
shows the rms error during training after 50 cycles of ANN training for this combination

25

of learning constant and momentum factor. It may be argued that the rms error during

training would probably reduce had the training of the ANN been continued for more

number of cycles and consequently, the test error would also reduce. To verify this, a

graph of rms error during training with respect to the number of training cycles has been

plotted as shown in Fig. 4.2. From this figure, it is observed that the training error remains

practically constant after 5 cycles of training. Hence, the error would not further reduce

even with more number of training cycles.

Table 4.1

1=45, 	J=15, 	K=17, 	2 = 1.0, 	Range of loading = 90% - 110%
Number of training patterns = 10000 	 Number of test patterns = 1000

Value of
learning

constant

Value of
momentum
factor (mf)

No of cycles
taken at

convergence

rms error at
convergence

Test error
(percentage
mismatch)

0.01 0.8 50 0.000208 3.57
0.6 0.9 30 0.000209 6.21
0.05 0.6 39 0.000209 5.02

0.0003

0.0002

0

2
cc

0.0001

0
-. - - - - N I N N N NI HI f•l Al f7 Q 'Q Q t}' d

NO. OF TRAINING CYCLES

Figure 4.2 : Operating range 90% - 110%

041

Table 4.1 also shows the training and testing results for other combinations of

learning constant and momentum factor. It is observed that for all the other combinations,

the performance of the ANN is worse than that obtained with the first combination

(learning constant = 0.01 and momentum factor = 0.8). Different other combinations of

learning constant and momentum factor have also used. In every case, the test error has
been found to be greater than 3.57%. Hence, this combination of learning constant and

momentum factor is the most optimum combination and to denote this, the results

corresponding to this combination in Table 4.1 have been given in boldface letters.

Results corresponding to the operating range 80% - 120% are given in Table 4.2.

As in the case of Table 4.1, the results for most optimum combination are shown in

boldface letters and the, plot of rms training error Vs. number of training cycles for the

optimum combination is shown in Fig. 4.3. Similarly, corresponding results and plot for

the operating range 70% - 130% are given in Table 4.3 and Fig. 4.4 respectively and those

for the operating range 60% - 140% are shown in Table 4.4 and Fig. 4.5 respectively.

Table 4.2

1=45, 	J=15, 	K=17, 	A=1.0, 	Range of loading = 80% - 120%
Number of training patterns = 20000 	 Number of test patterns = 1000

Value of
learning

constant

Value of
momentum
factor (mf)

No of cycles
taken at

convergence

rms error at
convergence

Test error
(percentage
mismatch)

0.05 0.6 220 0.000189 6.58
0.001 0.9 75 0.000191 12.572
0.6 0.9 70 0.000192 16.783
0.67 0.6 50 0.000125 31.727

From tables 4.1 - 4.4 it is found that best performance of the ANN is achieved for

the lowest range (90% - 110%) and the highest range (60% - 140%). For the lowest range,

the outputs of various patterns were quite close to each other. Hence, after training, the

ANN was able to predict the correct output patterns for most of the input patterns as it was

able to learn the implicit relation between the input and output patterns relatively easily.

On the other hand, for the highest range, the outputs of various patterns were 'diverse in
nature. Hence, to learn the implicit relation properly, number of training patterns required

27

by the ANN was double (20,000) the number that was required for the lowest range

(10,000). For the other two ranges, although 20000 training patterns were used, the test

error of the ANN was more. It may be possible that if more number of training patterns

were used or some other combination of learning constant and momentum factor were

used, possibly the performance of the ANN would have been better for the other two

ranges. But as the highest range also covers the loading patterns in the other ranges and

the performance of the ANN in the highest range is almost the best, this exercise was not

felt necessary. It is to be noted that the values of the learning constant and the momentum

factor were found by trial and error method. From the tables, it can also be observed that

for best performance, the value of the learning constant preferably be in the order of 0.01

and the value of the momentum factor preferably be in the range of 0.6 —.0.8. It is to be

noted that these values are not universal in nature, they are only valid for the test system

under consideration. For any other system, the appropriate values of these two constants

must be found out by trial and error method. It may be argued that it is possible to reduce

the test errors of the ANN further by other combinations of number of training patterns,

learning constant and the momentum factor. However, by carrying out large number of

training sessions of the ANN by various combination of the learning constant and

momentum factor, it was found that to improve the performance of the ANN slightly

better, the time taken for the training becomes unacceptably large. Hence, those results are

not given in this thesis report.

It has been already discussed in Chapter 1 that the prime motive behind the

development of ANN based algorithm is to reduce the time taken for deciding the optimal

capacitor switching pattern for a given loading condition. It has been found that for 1000

loading patterns, the CPU time taken by the oriented discrete descent method for

determining corresponding optimal switching patterns is 380.439545 secs, whereas, the

CPU time taken by the ANN is 1.648351 secs. Hence, the ANN based method is almost

230 times faster. Obviously, for larger systems, the difference between the time taken by

the combinatorial method and the ANN would be more and consequently, for a practical,

real life large system, the ANN based method would be much faster than the traditional

methods and hence, would be more suitable for on-line application.

28

0.000215

0.00021

0.000205

0.0002

a
0

0.000195

0.00019

0.000185

0.00018

0.000175
1~ 	a to 	F- M m n 	n t•I O, Vi 	F- N 00 ~T O ~D N 00 ~ '+ N M M 'lT 	N ~O 10 F- t- W CO CO 	oO .~" Ni .o .Mi ^ „may U) .fir .'C 'C N CO .fir N

NO. OF TRAINING CYCLES
Figure 4.3: Operating range 80% - 120%

Table 4.3

1=45, 	J=15, 	K=17, 	X.=1.0, 	Range of loading = 70% - 130%
Number of training patterns = 20000 	 Number of test patterns = 1000

Value of Value of No of cycles rms error at Test error
learning momentum taken at convergence (percentage

.constant factor (mf) convergence mismatch)
0.01 0.6 200 0.000176 3.8
0.08 0.6 90 0.000198 4.94

0.2 - 0.9
Error was randomly increasing and decreasing

0.001 0.8 40 0.00041 Convergence
rate was very

poor

29

0.0005

0.0004

ad 0.0003
O

0.0002

0.0001

0
r 	a Wn 	r 	— r M a to 	r M ON 	- t- c o v — r M a W) .. r M ~+ - N In '0 'D r- l~ 00 O N N M M V IA V) b 10 r DO 00 Cl

NO. OF TRAINING CYCLES
Figure 4.4: Operating range 70% - 130%

Table 4.4

I = 45, 	J = 15, 	K = 17, 	?. = 1.0, 	Range of loading = 60% 140%
Number of training patterns = 20000 	 Number of test patterns = 1000

Value of
learning

constant

Value of
momentum
factor (mf)

No of cycles
taken at

convergence

rms error at
convergence

Test error
(percentage
mismatch)

0.01 0.8 140 0.000174 3.58
0.9 0.9 130 0.000182 5.26

0.007 0.6 100 0.000203 12.62

30

1
0.0002

0.0005

0.0004

a
0.0003

0.0001

.r In v 	t. .r In in o, M tN - in 0. m 1- 	in o. M r 	 N .-. In 0, M N N N N r F1 O . R in in V %c V [- r` 00 00 GO a m O 	N.. ti Ni 	war

NO. OF TRAINING CYCLES
Figure 4.5; Operating range 60%L 140

31

CHAPTER 5

CONCLUSION

In this thesis, a neural network based optimal capacitor switching algorithm has

been developed. The main conclusions of this work are:

• The ANN based method is much faster than the traditional combinatorial

methods for solving the optimal capacitor switching problem.

• As the range of loading pattern increases, number of training patterns required

to train the network adequately also -increases.

• The performance of the ANN reaches a plateau when EBPTA is used, after

which the performance does not improve or the improvement can be achieved at

a cost of unacceptably large training time.

• There is no proven method to choose the various parameters of the ANN such

as learning constant and momentum factor. Their values for best performance of

.. the ANN can only be decided by trial and error method.

FUTURE SCOPE OF WORK
As already discussed in the main conclusion, the performance of the ANN reaches

a plateau when it is trained by EBPTA. Hence, it is necessary to investigate the

performance of the multi-layer feedforward ANN by training it with different other

training algorithms such as, over-relaxation error back propagation training algorithm.

Moreover, different other type of ANNs such as, functional link network, counter-

propagation network, Hopfield network etc. can also be investigated for this application.

32

REFERENCES

1. Kazuaki Kato, Hiromi Nagasaka, Akimichi-Okimato, Toshihito Kunieda and

Toshihiko Nakamura, "Distribution Automation Systems for High Quality Power
Supply", IEEE Transaction on Power Delivery, Vol. 6, No. 3, July 1991, pp : 1196 -

1203.

2. Hsiao-Dong Chiang, Jin-Cheng Wang, Orville Cockings and Hyoun-Duckshin,

"Optimal Capacitor Placement in Distribution Systems: Part 1: A New Formulation
and the Overall Problem ", IEEE Transaction on Power Delivery, Vol. 5, No. 2, April

1990, pp : 634 - 642.

3. Hsiao-Dong Chiang, Jin-Cheng Wang, Orville Cockings and Hyoun-Duckshin,

"Optimal Capacitor Placement in Distribution Systems: Part 2: Solution Algorithms

and Numerical Results ", IEEE Transaction on Power Delivery, Vol. 5, No. 2, April

1990, pp : 643 - 649.

4. Y. Baghzoug, "Effects of Nonlinear Loads on Optimal Capacitor Placement in Radial

Feeders ", IEEE Transaction on Power Delivery, Vol. 6, No. 1, January 1991, pp : 245

-251.

5. I. Roytelman, B. K. Wee and R. L. Lugtu, "Volt/Var Control Algorithm for Modern

Distribution Management System ", IEEE Transactions on Power Systems, Vol.-10,

No.-3, August 1995, pp : 1454-1460.

6. Jack M. Jurada, "Introduction to Artificial Neural Systems ", Jaico Publishing House,
1997.

7. R. Baldic and F. F. Wu, "Efficient Integer Optimization Algorithm for Optimal

Coordination of Capacitor and Regulators ", IEEE Transaction on Power Delivery,

Vol. 5, No. 3, 1990, pp : 805-812.

8. N. Iwan Santoso and Owen T. Tan, "Neural-Net Based Real-Time Control of

Capacitors Installed on Distribution System ", IEEE Transaction on Power Delivery,

Vol. 5, No. 1, January 1991, pp : 262-272.

33

APPENDIX A

Table A.1
[System Network and Load Data]

Bus

1

Bus

J

Branch Impedance Max. Load at Bus j

r(Q) x1 (Q) P(kW) Q(kVar)

0 1 0.5096 1.7030 - -

1 2 0.2191 0.0118 522 174

2 3 0.3485 0.3446 - -

3 4 1.1750 1.0214 936 312

4 5 0.5530 0.4806 - -

5 6 1.6625 0.9365 -

6 7 1.3506 0.7608 - -

7 8 1.3506. 0.7608 - -

8 9 1.3259 0.7469 189 63

9 10 1.3259 0.7469 - -

10 11 3.9709 2.2369 .336 112

11 12 	- 1.8549 1.0449 657 219

12 13 0.7557 0.4257 783 261

13 14 1.5389. 0.8669 729 243

8 15 0.4752 0.4131 477 159

15 16 0.7282 0.4102 549 183

16 17 1.3053 0.7353 477 159

6 18 0.4838 0.4206 432 144

18 19 1.5898 1.3818 672 224

19 20 1.5389 0.8669 495 165

6 21 0.6048 .0.5257 207 69

3 22 0.5639 0.5575 522 174

22 23 0.3432 0.3393 1917 63

Contd...

34

23 24 0.5728 0.4979 - -

24 25 1.4602 1.2692 1116 372

25 26 1.0627 0.9237 549 183

26 27 1.5114 0.8514 792 264

1 28 0.4659 0.0251 882 294

28 29 1.6351 0.9211 882 294

29 30 1.1143 0.6277 882 294

Vented =23 kV

Table A.2

[Capacitor KVARs at Different Tap Positions]

Tap position
Capacitor kVar

Cap. #1
At bus 13

Cap. #2
At bus 15

Cap. #3
At bus 19

Cap. #4
At bus 23

Cap. #5
At bus 25

1 875 875 500 Fixed at
750

600
2 700 700 425 525
3 525. 525 350 450
4 350 350 275 375

35

APPENbIX B

SOFTWARE FOR TRAINING OF ANN

THIS PROGRAM TRAINS A FEED-FORWARD NEURAL NETWORK WITH
ERROR-BACK PROPAGATION TRAINING WITH ONE HIDDEN LAYER. THE
TRAING INPUT DATA
IS TAKEN FROM THE FILE 'DATA.DAT AND THE TRAINING OUTPUTDATA IS
TAKEN FROM THR 'OUTPT_VO.DAT' FILE. THE PARAMETERS OF THE ANN IS
DEFINED IN THE FILE 'INP VOLT.DAT' FILE

#include <stdio.h>
#include <math.h>
#include <time.h>
#define a 50

void netf (int J, int I, float U [a] [a] ,float x [a] ,float
net3 [a]) ;

void sigm(int J„float net2[a],float,lam,float
fnet2 [a] , float y-[a] , float f_net2 [a]) ;

void adj(int K,int J,float eta,float mf,float
delo [a] , float cw [a] [a] , float W [a] [a] , float y [a]) ;

void main()
{
FILE *fp, *fq, *fr, *fs, *fw, *fpt_s
float nets [a]., net2 [a] , net3 [a] ;
float U_[a] [a] , V[a] [a] , W[a] [a] , x[a] , y [a] , z[a] ; o[a]

float fnetl [a] , fnet2 [a] , fnet3 [a] , d [a] , f net3 [a] ;
float

Cu [a]._[a] , cv [a] [a] , cw [a] [a] ,sun, tempi [a] , t [a] [a] , b [a] , f_netl [
a] , f_net2 [a] ;

float delo [a] , dely [a] , delz [a] ;
int i,j,k,l,I,J,K,n,p,pt,m,q
float

lam,eta,emax,e,erms,mf,r[a],inc,e_l,timel,time2,time
char ans ;

timel = clockt-O /CLK TCK ;

/* opening the 'INP_VOLT.DAT' file, which stores the initial
data for the training */

if (.(fr = fopen(,'inp_volt.dat","r")) _= NULL)
{

36

printf("\nERROR !! the file 'INP VOLT.DAT' does not
exist !\n") ;

exit (1)
}

/* opening the -DATA.DAT' file, which stores the training
input patterns */
if ((fq = fopen("data.dat","r")) == NULL)

{
printf("\nERROR !! the file -DATA.DAT' does not exist

exit (1)
}

/* opening the 'OUTPT_VO.DAT' file, which contains the
training output patterns */

if ((fs = fopen("outpt_vo.dat", "r")) == NULL)
{

printf("\nERROR 1! the file 'OUTPT_VO.DAT' does not
exist !\n")

exit (1)
}

/* opening the 'SUMMARY.DAT' file, which contains the
summary of training */

if .((fpt_s = fopen("summary.dat", "a")) == NULL)

printf("\nERROR !! the file -SUMMARY.DAT' can not open !\n")

exit (1)
}

/* reading from the -INP_VOLT.DAT' file */

fscanf (fr, "%d\t%d\t%d\t%f\t%f\t%f\t%f\t%d\n%d", &I, &J, &K, &lam
,&eta,&mf,&emax,&n,&pt)

fclose(fr)
I = I + 1 ;

printf("\nNO. OF INPUTS 	 I = %d",I) ;

printf("\nNO. OF NEURONS IN HIDDEN LAYER: 	J = %d",J)

printf("\nNO. OF OUTPUTS 	K = %d",K) ;

printf("\nNON LINEARITY FACTOR 	lam =%f",lam) ;

printf("\nLEARNING CONSTANT 	eta =%f",eta) ;

37

printf("\nMOMENTUM FACTOR cnf 	= 	%f " , mf)
printf (".\nMIN. ERROR emax=%f" , emax)

printf("\nNO. OF CYCLE YOU WANT TO TRAIN ANN :n=%d",n)

printf("\nNO. OF PATTERN pt 	= %d",pt) 	;

printf("\ndo YOU WANT TO START WITH PREVIOUSWEIGHTS(Y/N=") 	;

ans = getch();

/* set the initial weights of the ANN randomly */
if(ans 	== 	'N' 	11 	ans 	=_ 	'n')

{
printf ("NO")

/* ---------------WEIGHTS OF FIRST STAGE 	------------*/

for(j 	= 	0; 	j 	< J; 	j++)
{
for(i = 0; 	i < 	I; 	i++)

{
inc = rand() 	/ 	900000.0 	;
V[j] [i] 	= 	inc 	;
cv[j] [i] 	= 	0.0 	;

}

/*

}

--------------- WEIGHTS OF SECOND STAGE ----------- 	*/

for (k = 0; 	k < K; 	k++)
{
for(j 	= 	0; 'j 	< 	J; 	j++)

{
inc = rand() 	/ 900000.0 	;
W [k] [j] 	= inc
cw [k] [j] 	= 	0.0

}
}

/*

}

get the initial weights from 'W1 VOLT.DAT' 	file */

else
{

38

printf ("YES") ;

/* opening the -Wl_VOLT.DAT' file, which stores the weight
vectors from previous training */

if ((fw = fopen("wl_volt.dat", "r")) == NULL)
{
printf("\nERROR !! the file 'W1_VOLT.DAT' does not

exist !\n") ;
exit (1)

}

1 /* --------------- WEIGHTS OF FIRST STAGE ------------ */

for(j - 0; j < J; j++)
{
for(i = 0; i < I; i++)

{
fscanf (fw, "%f ",&V[j] [1])
cv [j] [i] = 0.0 ;

}
}

1 /* --------------- WEIGHTS OF SECOND STAGE ----------- */

for(k = 0; k < K; k++)
{
for(j = 0; j < J; j++)

{
fscanf (fw, " of ", &W [k] [j])
cw [k] [j] = 0•0

}
}

/* ------------- CHANGE OF WEIGHT OF THE FIRST STAGE -------

for(j - 0; j < J; j++)
{
for(i = 0; i < I; i++)

{
fscanf (fw, "%f ", &cv [j] [1]) ;

}
}

/* --------------CHANGE OF WEIGHTS OF SECOND STAGE -------
- */

39

for(k = 0; k < K; k++)
{
for(j = 0; j < J; j++)

{
fscanf (fw, "%f ", &cw [k] [j])

}

/* close the 'W1 VOLT.DAT' file */
fclose(fw) ;

p = 0 ;

do
{ 	 /* start of -do' loop - */
p,._ p + 1

e = 0.0
el = 0.0 ;.

/* --------------- GET THE INPUT PATTERNS -------------- */

for (m = 0; m < pt; m++)
{
for (1 = 0; 1 < (I-1) ; 1++)

{
fscanf (fq, "%f ", &z [1]) ;
z [I-1] = -1.0 ;

}

I/* --------- GET THE DESIRED OUTPUT PATTERNS -------- */

for (k = 0; k < K; k++)
{

fscanf (fs, "%f" , &d[k]) ;
}

%* ------ CALCULATE INPUT TO THE NODES OF THE HIDDEN LAYER --

netf (J, I, V, z, net2) ;

/* ----- CALCULATE OUTPUT OF THE NODES OF THE HIDDEN LAYER -
 */

sigm(J, net2, lam, fnet2, y, fnet2) ;

40

/* ----- CALCULATE INPUT TO THE NODES OF THE OUTPUT LAYER --

netf(K, J, W, y, net3) ;

/* ----- CALCULATE OUTPUT AT THE OUTPUT NODES -------*/

sigm(K, net3, lam, fnet3, o, f_net3) ;

1/* calculate error and the derivatives of the error */

for (k = 0; k < K; k++)

r[k] = d[k] - o[k] ;
e_1 = e_1 + r[k] * r[k]
r[k] = r[k] * r[k] * 0.5
e += r [k] ;
delo [k] = (d [k] - o [k]) * fnet3 [k]

for (j = 0; j < J; j++)
{
sum = 0.0
for (k = 0; k < K;' k++)

{
sum += delo [k] * W[k] [j]

}
tempi[j] = sum
dely [j] = tempi[j] * f_net2 [j]

/* --------- MODIFY THE WEIGHTS OF THE SECOND STAGE --------

adj (K, J, eta, mf , delo, cw, W, y) ;

/* --------- MODIFY THE WEIGHTS OF THE FIRST STAGE ---------

adj (J, I, eta, mf , dely, cv, V, z) ;

erms = sqrt(e) ;
erms = erms/pt ;

41

erms = erms/K ;
printf("\n\nCOUNT NO.=%d

CYCLE\n",p,erms);
ERMS=%f\nPLEASE WAIT FOR NEXT

fprintf (fpt_s, "%d 	%f\n" ,.p, erms) ; /* writing in
summary.dat*/

if (erms > emax)
{
rewind(fq)
rewind (f s)

}

/* OPEN THE 'WATVOLT.DAT' FILE, WHICH CONTAINS THE WEIGHTS
AFTER -TRAINING */

if ((fp = fopen ("wat_volt . dat" , "w")) == NULL)•

{
printf("\nERROR 1! the file 'WAT_VOLT.DAT' can not

open !\n") ;
exit (l)

}

/* WRITE THE WEIGHTS INTO THE -WAT_VOLT.DAT' FILE */

for (j = 0; -j < J; j++)
{
for(i = 0; i < I; i++)

{
fprintf (fp,"%f 11 ,V [j] [i])

}
}

fprintf (fp,"\n)

for (k = 0; k < K; k++)
{

for (j = 0; j < J; j++)
{

fprintf (fp, "%f ", W [k] [j])
}

}
fprintf (fp, "\n")

for (j. = 0; j < J; j++)
{
for(i = 0; i < I; i++)

{
fprintf (fp, "%f " , cv [j] [i])

42

}
	}

fprintf (fp, "\n")

for (k = 0; k < K; k++)
{

for (j = 0; j < J; j++)
{

fprintf (fp, "%f ", cw [k] [j])
}

}

/* CLOSE THE -WAT VOLT.DAT' FILE */
fclose (fp)

} while (erms > emax && p < n) ; 	/* end of -do' loop

time2 = clockO/CLKTCK
time = time2 - timel ;

printf("\n\n\n\n\n\n\n\n\n\n\n\nTRAINING HAS OVER IN [%d
CYCLES] \n& FINAL ERROR [erms] AT CONVERGANCE =%f\nTOTAL
TIME TAKEN=%l.Bfsec\n\n\n\n\n\n\n\n\n\n\n",p,erms,time);

/* CLOSE THE 'DATA.DAT' FILE */

fclose (fq)

/* CLOSE THE 'OUTPT VO.DAT' FILE */

fclose (fs)
getch O ;

} /* end of 'main' function */

~/* - - ------ FUNCTION TO MODIFY WEIGHTS -------------- */

-void adj(int K,int J, float eta, float mf,float
delo [a] , float cw [a] [a] , float W [a] [a] , float y [a])

{
i.nt k, j
float c w [a] [a] ;

for (k = 0; k < K; k++)
{

43

for (j = 0; j < J; j ++)
{

cw[k] [j] = cw[k] [j]
Cw[k] [j] = 0.0;
cw [k] [j] = eta * delo[k] * y[j] + mf

c_w[k] [j] ;
W [k] [j] = W [k]

[j]

 + cw [k] [j} ;

} /* end of 'adj' function */

/* -- FUNCTION TO CALCULATE OUTPUT OF A NODE THROUGH SIGMOID
FUNCTION -- */

void sigm(int J,float net2[a],float lam,float
fnet2 [a] , float y [a] , float f_net2 [a])

•
{
int j
float -b [a] ;

for (j = 0; j < J; j++)
{

b[j] = - (net2[j] * lam)
b[j] = exp(b[j])
fnet2[j] = 1.0 / (1.0 + b[j]) ;
y[j] = fnet2[j]
fnet2[j} = y[j] * (1 - y[j]) ;

}
return ;

} /* END OF 'sigm' FUNCTION */

/* --------- FUNCTION TO COMPUTE OUTPUT OF EACH STAGE ------
*/

void netf (int J,int I, float U[a] [a] ,float x [a] ,float
net3[a])

int i, j
float sum ;

for (j = 0; j < J; j++)
{
sum = 0.0

44

for (i = 0; i < I; i++)
{
sum = sum + U[j] [i] * x [i] ;
}

net3[j] = sum ;
}

return ;

} /* end of 'netf' function */

45

SOFTWARE FOR TESTING OF ANN

#include<stdio.h>
#include<math.h>
#include<time.h>
#define a 50

void netf(int J, int I, float U [a] [a] ,float x [a] ,float
net3 [a]) ;
. void sigm(int J,float net2[a],float lam,float
fnet2 [a] , float y [a] , float f_net2 [a])
void adj(int K,int J,float eta,float mf,float

delo [a] , float cw [a] [a] , float W [a] [a] , float y [a]) ;

void main()
{

FILE *fp, *fq, *fr, *fs, *fw ;
float neti [a] , net2 [a] , net3 [a] ;
float U [a] [a] , V [a] [a] , W [a] [a] , x [a] , y [a] , z [a] , o [a]

• float fnetl [a] , fnet2 [a] , fnet3 [a] , d [a] , f_net3 [a] ;
float

cu [a] [a] , cv [a] [a] , cw [a] [a] , sum, tempi [a] , t [a] [a] , b [a] , f_netl [
a] , f_net2 [a]

float delo [a] , dely [a] ,del z [a] ;
int i,j,k,l,I,J,K,n,p,pt,m,q,diff,t_diff;
float lam,e,erms,r[a],inc,time,timel,time2;
char ans;

/* opening the 'TIPCAP.DAT' file, which stores the initial
data for the testing */

if ((fr = fopen("tip_cap.dat","r")) == NULL)
{

printf("\nERROR !! the file -TIP CAP .DAT' does not
exist !\n") ;

exit (l)
}

/* opening the 'PAT_CAP.DAT' file, which stores the testing
input patterns */

if ((fq = fopen ("pat cap.dat" , "r")) _= NULL)

46

printf("\nERROR !! the file•'PAT_CAP.DAT' does not
exist !\n") ;

exit(1)
}

/* opening the -TOUT_CAP.DAT' file, which contains the
training output patterns */

if ((fs = f open ("tout_cap.dat", "r")) _= NULL)
{

printf("\nERROR !! the file 'TOUT_CAP.DAT' does not
exist !\n") ;

exit (1)
}

/* reading from the -TIP_CAP.DAT' file */
fscanf (fr, "%d\t%d\t%d\t%f\n%d" , &I, &J, &K, &lam, &pt) ;
fclose(fr)
I = I + 1 ;

printf("\nNO. OF INPUTS 	I = %d" , I) ;
printf("\nNO. OF NEURONS IN HIDDEN LAYER: 	J = %d",J) ;
printf("\nNO. OF OUTPUTS 	 K = %d",K) ;
printf("\nNON LINEARITY FACTOR 	lam= %f",lam) ;
printf("\nNO. OF PATTERN 	pt = %d",pt) ;

/* get the initial weights from -W1_CAP.DAT' file */
if ((fw = fopen ("wl_cap. dat" , "r")) == NULL)

printf("\nERROR !! the file -W1_CAP..DAT' does not
exist !\n") ;

exit (1)

/* --------------- WEIGHTS OF FIRST STAGE ------------- */
for(j = 0; j < J; j++)

{
for (i = 0; i < I; i++)

{
fscanf (fw, "%f ",&V[j] [1])

}
/* --------------- WEIGHTS OF.SECOND STAGE ------------ */

for (k = 0; k < K; k++)
{
for(j = 0; j < J; j++)

47

fscanf (fw, "%f ",&W[k] [j]) ;

/* close the 'W1CAP.DAT' file */
fclose,(fw) fp=fopen ("relt_cap . dat" , "w") ;

timel=clockO/CLK TCK;

/* --------------- GET THE INPUT PATTERNS -------------- */
tdiff = 0;
for (m = 0; m < pt; m++)

{
for (1 = 0; 1 < (I-1) ; l++) {

fscanf(fq,"%f ",&z[l])
z [I-l] = -1.0 ;

}
/*printf ("\ncheck 1\n") ; */-

/* ---------- GET THE DESIRED OUTPUT PATTERNS -------- */
for .(k = 0; k < K; k++)

{
-fscanf (fs, °%f" , &d [k]) ;.

/*printf("check_2\n") ; 	*/

/* --_------- CALCULATE OUTPUT OF FIRST STAGE -------- */
netf(J, I, V. z, net2);

/*printf("check_3\n") ;*/.

/* ----- INCLUDE SIGMOIDE FUNCTION IN FIRST STAGE ------*/
sigm(J, net2, lam, fnet2, y, f_net2)

/ *print f ("check <4 \n") ;*/

/* ---------- CALCULATE OUTPUT OF SECOND STAGE ------- 	*/
netf (K, J, W, y, net3)

/*printf("check5\n");*/

/* -------INCLUDE SIGMOIDE FUNCTION IN SECOND STAGE -------
*/

sigm(K, net3, lam, fnet3, o, f_net3)
/*printf("check 6\n");*/

48

time2 = clock () /CLK TCK;

time = time2 - timel;
/* calculate error and the derivatives of the error */

for (k = 0; k < K; k++)

/*

printf ("\no [%d] =%f d [%d] =%f" , k, o [k] , k, d [k]) ;
getch();*/
if (o [k] < 0.5)
o [k] = 0.0 ;
if (o [k] >= 0.5)
o[k] = 1.0 ;
r [k] = d [k] - o[k]

}
diff = 0;
for (k=0 ; k<K; k++)
{
if((o[k]) !_ (d[k]))
diff = diff + 1;
}
fprintf (fp, "%d %d \n" , m, diff)
t_diff = t_diff + diff;

}
fprintf(fp,"\n\nMAXIMUM MISMATCH FOR THIS SET =%d\nI=%d
J=%d K=%d\nlam=%f TEST PATTERN=%d\nTOTAL TIME TAKEN=

%1.12f sec.",t_diff,I,J,K,lam,pt,time);
fclose (fp) ;
fclose (fq)
fclose (fs)
printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nTESTING IS

OVER,SEE */ RELT.CAP.DAT /* FILE FOR RESULTS\nTOTAL MISMATCH
FOR THIS SET =%d\nTOTAL TIME TAKEN =%1.12f
sec.\n\n\n\n\n\n",t_diff,time);

getch () ;
}

/* --------FUNCTION TO INCLUDE SIGMOIDE FUNCTION ----------

void sigm(int J,float net2[a],float lam,float
frnet2 [a] ,float y [a] ,float f_net2 [a])

{
int j;

float b [a] ;

for (j=0; j<J; j ++)
{

49

b[j] = - (net2 [j] * lam)
b[j] = exp(b[j])
fnet2 [j] = 1.0 / (1.0 + b[j])
y[j] = fnet2 [j]
f_net2 [j] = y[j] * (1 -

}

return ;
}

/* --------- FUNCTION TO COMPUTE OUTPUT OF EACH STAGE ------
*/
void netf(int J,int I, float U [a] [a] ,float x [a] ,float
net3 [a])

{
nt i; j ;
float sum ;

for (j = 0; j < J; j++)
{
sum = 0.0 ;
for (i = 0; i < I; i++)
{
sum = sum +U[j][1] *x{il ;

}
net3[j] =,sum ;

}
return;

} /* end of 'netf' function */

50

	G10069.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

