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.A scrqcq" 

In this thesis, an artificial neural network based algorithm for determining optimal 

capacitor switching pattern for a given loading condition in a radial distribution system 

has been developed. Traditionally, combinatorial methods have been used to decide the 

optimal switching patterns. However, these combinatorial methods take significant 

amount of time for practical size power distribution system involving thousands of 

feeders. Hence, these algorithms may not be very suitable for on-line application in a 

modem distribution automation system. A multi-layer perceptron neural network with 

error-back-propagation training algorithm has been used to determine the optimal 

capacitor switching pattern. It has been found that the time taken by ANN based method 

is quite less compared to the time taken by the traditional combinatorial methods. 
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a-IA IER1 
INTRODUCTION 

Due to rapid industrialization and population growth, the demand for electrical 

power is ever increasing. To supply this ever-increasing load demand, total power 

generation in India has grown tremendously during the past decades. However, to supply 

quality power to the ultimate customers, it is not sufficient to merely increase the 

generation. Adequate transmission and distribution facilities also need to be built-up and 

consequently, there have also been substantial developments in the power transmission 

and distribution system. 
Apart from building up the infrastructure of transmission and distribution system, 

it is also very important to continuously monitor the system to ensure safe, reliable and un-

interruptible power supply. Towards this objective, supervisory control and data 
acquisition (SCADA) systems have been employed worldwide to continuously monitor 
and control the transmission system. Similarly, to continuously monitor and control the 

distribution system, the concept of "distribution automation" system has emerged quite a 

few years ago [1]. In a distribution automation system, a lot of sensors and remote 

terminal units (RTUs) are placed in the power distribution system. The data collected by 

these sensors and RTUs are sent to a central computer station over a dedicated 

communication channel. The sent data are then analyzed by appropriate analysis software 

to assess the present health of the system. If any anomaly in the operation of the 

distribution system is detected, proper remedial and control decisions are taken at the 

central computer station by the help of proper software analysis packages. These control 

decisions are then sent to the field through the same or other dedicated communication 

channels for proper field implementation. 
Obviously even with the presence of accurate sensors, RTUs and robust, reliable 

communication channels, the effectiveness of a distribution automation system largely 
depends upon the quality of the analysis software at the central computer station. As all 

the decisions regarding the present health and remedial control action are to be taken by 
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the software analysis packages, the algorithms of the software packages must be such that 

the results produced are highly accurate. Moreover, as the health monitoring functions and 

control decision functions are to be carried out quickly to minimize the adverse effects of 

any untoward conditions in a power distribution system, the algorithms of the software 

analysis packages also need to be very fast. 

The most common different control decision functions, which are currently being 

employed in any modem distribution automation system, are: 

Feeder reconfiguration to minimize the loss in the system. 

• Volt-var control. 

• Accurate fault location in a distribution system. 

• Feeder reconfiguration for service restoration. 

• Feeder load balancing. 

■ Demand-side-management. 

• Remote-monitoring. 

Among the above listed functions, volt-var control is possibly one of the most 

important functions in any modern distribution automation system. The objective of volt-

var control is to compensate for the reactive load demand locally, preferably at the site of 

the load itself, such that these reactive loads do not have to be supplied from the 

substation. Consequently, electric currents corresponding to these reactive currents do not 

flow over the feeders and hence the voltage-drop and power loss in the feeders decrease. 

Ideally, all reactive loads in the distribution system should be supplied locally, such that 

electric currents corresponding to only active loads flow over the feeders (which is anyway 

unavoidable), and thus voltage drop and power loss in the distribution system become 

minimum.  

The most common approach to supply reactive power is to install capacitors in the 

system. Ideally, capacitors should be placed at all the load points in the system and if the 

reactive load demand in the system remains constant, then the rating of the installed' 

capacitors can be made equal to the reactive load demand in the system. Thus, all the 

reactive. load demand in the system would be met locally. However, the real-life situation 

is far from this scenario. Firstly, because of the cost consideration, it is not possible to 

install capacitors at each load point in the system. Hence, the capacitors are to be installed 
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at some strategic locations in the system. Secondly, the load demand in the system 
changes continuously. Hence it is not possible to compensate adequately for this changing 
load demand by fixed capacitors, rather the capacitors should be switchable such that the 
reactive power supplied by them vary with the variation in the load demand. 

Thus, the volt-var control in a distribution system has two distinct aspects. First, to 

place capacitors (preferably switchable) at some strategic locations in the system. The 

location and sizes (rating of the capacitors in terms of KVAR supplied) of the capacitors 

are decided based on forecasted load demands (both active and reactive) in the system 

over a certain period (called the study period). This is known as the "capacitor placement" 

problem and this is an involved optimization problem. Second, once the capacitors are 

placed in the system based on "capacitor placement" study, it is necessary to determine 

their optimal switching pattern (which capacitor to be switched `ON' and which capacitor 

to be switched `OFF') at any loading condition such that the power loss and the voltage 
D 

drop in the system are minimum. This is known as the "capacitor switching" or "capa 

allocation" problem and indeed, this is also an involved optimization problem. 
Thus, the capacitor-switching algorithm pre-supposes the locations of the insta 

capacitors and it strives to find out the optimal switching pattern of these capacitors for 

minimum loss in the system at any given loading condition. Although significant amount 

of work has been reported in the literature for capacitor placement problem [2-4], not 

much work has been published in the literature in the area of optimal capacitor switching 

problem. An approach for determining optimal capacitor switching pattern based- on 

sensitivity approach has been reported in [5]. This method calculates the sensitivity factors 

based on the repeated load-flow of the system. 
However, as it has been mentioned earlier, for this information of optimal 

switching pattern to be of any use in the modem distribution automation system, it has to 
be obtained very quickly. Now, by the approach in [5], for a practical power distribution 

system involving thousands of feeders, it takes a comparatively long time duration (few 
minutes depending upon the system size) to perform the capacitor switching analysis and 
compute the optimal switching pattern. In this case, it may be desirable to reduce the 

computation time by some alternative technique such that the optimal capacitor switching 

pattern can be obtained quickly. Artificial intelligence (Al) techniques, such as artificial 



neural network (ANN) offers such a possibility of computation of optimal switching 
pattern within a very short duration. 

Artificial neural networks are computation tools, which try to mimic the operation 

of human brain. Analogous to the operation of the human brain, ANNs operate on the 

principle of parallel processing and consequently, they are quite fast, especially while 

dealing with large volume of data without any known mathematical correlation among the 

data. Clearly, optimal capacitor switching algorithm based on ANN technique is also 

expected to be quite fast and hence, it is expected that they will be quite suitable for on-

line application in modem distribution automation system. 

In this thesis, a methodology for computing optimal capacitor switching pattern in 

a distribution system based on ANN technique is developed. Essentially, the development 

of the methodology comprises of two steps: 

1. A suitably chosen ANN structure is to be trained first with a set of training data 
(input: loading pattern, output : corresponding optimal switching pattern), with 
the help of a suitable training algorithm. The training data would be obtained 

from an optimal capacitor switching software package based on a conventional 
capacitor switching algorithm. 

2. Once the ANN is trained, with sufficiently large number of training data, the 

ANN `learns' the implicit correlation between the loading patterns and the 

optimal switching patterns. Next, new loading patterns (which have not been 

used to train the ANN) . would be fed to the network and the network would 

provide the optimal switching pattern at its output within a very short span. 

In this work, the standard multi-layer perceptron neural network with error back 

propagation training algorithm [6] has been used. The switching algorithm reported in [5] 

has been used for optimal capacitor switching analysis. 

This thesis report is organized as follows. Chapter 2 discusses about the _artificial 

neural network algorithm used in this thesis. This chapter discusses elaborately the multi-
layer feed forward perceptron network and the error-back propagation training algorithm. 

In Chapter 3, conventional optimal capacitor switching algorithm is discussed. Chapter 4 

presents the important results of this work. Chapter 5 delineates the main conclusions and 
gives a brief suggestion for further work. 
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CHAPTER 2 

ANN (ARTIFICIAL NEURAL NETWORK) ALGORITHM 

The recent resurgence of interest in neural network has its roots in the recognition 

that the brain performs computation in a different manner than the conventional digital 

computers do. The foundation of an artificial neural system is nothing but man made 

neural systems, which results in major potential gain in the direction of information 

processing by digital computers. Man has endeavored to build an artificial neural system 

because of the fact that even an animal can process a visual information much better than 

the most modem, fastest computer. And of course, humans are more efficient in this 

regard than the other species. Hence, the gap between the information processing power of 

the human brain and even the most modern, fastest computer is huge. Artificial neural 

network is an effort towards bridging this gap. 
Jurada [6] gave a brief but nice discussion on biological neuron systems and their 

correspondence with the man made artificial neural network systems. Hence, these 

fundamental concepts are not discussed here. 

2.1 BRIEF REVIEW OF ANN 

A neural network consists of simple processing units called `neurons' or `nodes', 

which bear only a passing resemblance to actual biological neurons. Each neuron is 

connected to other neurons in the network by unidirectional connections of different 

strengths or weights. The neurons are usually arranged in a series of layer bounded by 

input and output layers encompassing a variable number of hidden layers, connected in a 

structure which depends on the complexity of the problem to be solved. 
The most important features of the network are their ability "to learn" or "to be 

trained" from examples. For many multi-input multi-output systems, the exact 
mathematical relationship between the inputs and the outputs is not often known in 
advance. Hence, for this kind of systems, it is often very difficult to determine the correct 

output pattern for a given input pattern. On the other hand, ANNs, by use of proper 

training algorithm, are able to identify or "learn" this implicit relationship. For the training 
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purpose, a number of input patterns and the corresponding output patterns are presented to 

the ANN. By virtue of suitable training algorithms, the ANN is able to "learn" the implicit 

co-relationship between the input and output patterns. As the learnt information is stored 

across the network weights, the network is able to generalize. This means that appropriate 

output pattern will be generated even for input pattern not actually included in the training. 

Because of their ability to learn and generalize, the neural networks have the potential for 

solving the required problem instantaneously, which takes much less time than the 

conventional methods. 

In the literature, a large variety of neural network architecture and their training 

algorithms have been reported. A nice introduction to artificial neural network 

(architecture and training algorithm) is given in Jurada [6]. Essentially, all neural network 

architectures can be classified into two-categories [6] ; 

e Feedforward network 

o Feedback network 

Similarly, the training algorithm for neural network can be divided into two broad 

categories [6] 

o Supervised learning 

0 Unsupervised learning 

Examples of supervised learning algorithms are [6] ; 

o Perceptron learning algorithm 

o Delta learning algorithm 

o Widrow-Hoff learning algorithm 

o Correlation learning algorithm 

o Outstar learning algorithm 

Examples of unsupervised learning algorithms are [6] ; 

e Hebbian learning algorithm 

a Winner-take-all learning algorithm 

Among the above-mentioned learning algorithms, one of the most widely applied 
one is "delta learning algorithm". In the literature, it is slightly, modified and is named as 

"generalized delta learning algorithm" which ultimately gives rise to very popular "error-
back-propagation learning algorithm". 
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For the application of ANN for on-line capacitor switching, feedforward network 

with supervised learning has been used. Specifically, multi-layer feedforward network 
with error-back-propagation learning algorithm has been used in this work. Hence, in the 

next section, the error-back propagation (EBP) learning algorithm for multi-layer 

feedforward network is described [6]. 

2.2 ERROR-BACK-PROPAGATION LEARNING ALGORITHM 

Fig. 2.1 shows a three-layer feedforward neural network. The layers are numbered 

1., 2 and 3 from the leftmost side to the rightmost side as shown in the figure. At layer 1, 

which is called the `input' layer, the input patterns are presented at the time of training. 

Similarly at layer 3 the output patterns are presented at the time of training of the network 

and hence, this layer is known as the `output' layer. Layer 2, which is intermediate 

between the input and output layer, is known as the `hidden' layer. Hence the above three-

layer feedforward neural network is comprised of one input layer, one hidden layer and 

one output layer. It is to be noted that, it is possible to have more than one hidden layer in 
the neural network. However, in our study, only one hidden layer is used. 

Each layer consists of several nodes. Number of nodes in the input layer is equal to 

the number of inputs. Similarly number of nodes at the output layer is equal to the number 

of outputs. There is no strict guideline, however, available for deciding the number of 

nodes, in the hidden layer. In most cases, the optimum number of nodes in the hidden layer 

is dependent on the problem tackled by the neural network and most often this number is 

decided by trial and error. 

There is, however, one important distinction between the input layer and the other 

layers (hidden and output). At the nodes of the input layer, no processing is done on the 

data or information presented to them. On the other hand, actual processing is done at the 

nodes of the hidden and output layers. Hence, essentially, the nodes of the hidden and 

output layers are the actual processing units or neurons, whereas the nodes of the input 

layer are just junction points where the input data are presented. 



ZI  

Layer 1 	 Layer 2 	 Layer 3 

(jth column of nodes) 

Figure 2.1 

Layered feedforward neural network with two continuous perceptron layers 
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The nodes of the neural network are completely interconnected. That is, - each node 

of the input layer is connected to every node of the hidden layer. Similarly, each node of 

the hidden layer is connected to every node of the output layer. The information always 
flows in the forward direction (i.e. from the input layer to the hidden layer and from the 

hidden layer to the output layer). Hence, this kind of network is known as -multi-layer 

feedforward network. 

The interconnection between every pair of nodes is represented by a weight w. 

Thus, the interconnections between the nodes of the input layer and the hidden layer can 

be represented by a weight matrix W of the dimension (J X I), where I is the number of 

input nodes and J is the number of nodes in the hidden layer 

The matrix W is represented by W = w1 for i = 1, 2, ..I and j = 1, 2, ..J and w~; 

denotes the weight of the interconnection between i"' node of the hidden layer and the j"' 

node of the input layer. Similarly, the interconnection between the nodes of the hidden 

layer and the nodes of output layer can be represented by a weight matrix V = vk~ for k = 1, 

2, ..K and j = 1, 2, ..J Here, it is assumed that there are K number of nodes at the output 

layer and vkj denotes the weight of the interconnection between the k"' node of the output 

layer and the jth node of the hidden layer. 
Hence, the weight matrix W, interconnecting the nodes of the input layer and 

hidden layer is given by, 

w1 1 W12 	w1 

W = w21 W22 	w27 	
(2.1) 

wJI WJ2 wJ! 

Similarly, the weight matrix V interconnecting the nodes of the hidden layer and 

output layer is given by, 

V11  V12  V1J 

V= v21 V22 	v2J 	
.......(2.2) 

_ 	 V K1 V K2 VKJ 
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To train the network, the input-output patterns are presented to the network. Let 

there is total P number of input-output patterns. In each pattern, let there are I inputs and K 

outputs. Let the inputs are represented by an input vector z, where z is denoted by the 

symbol, 

	

z = [Zi , Z21  ......z1  ]T 
	 .......(2.3) 

where `T' denotes the transpose of a vector. Similarly, the outputs are represented 

by an output vector d, where 

	

d=[d1,d2 ,......dK ]T 
	 .......(2.4) 

As described earlier, the information flow in an ANN proceeds from the input layer 

to the output layer via the hidden layers. The computation process for this information 

flow is described below. For a given input pattern z, input yy  at the j`'' hidden node is 

calculated by, 

	

y j  = 	W jizi  ; for j =1, 2, ......J 	 ....(2.5) 
i=1 

Let the inputs at the hidden layer be represented by the vector y, where y = [y i, Y2'  
•
y] ̀. Then from Equation (2.5), vector y can also be calculated by the following 

expression, 

y = wz 	 .......(2.6) 

Output p;  of the jth  hidden node is then calculated by, 

	

pj  =f(y j)= 	1 	for j=1,2, .....J 	.......(2.7) 
1+exp(-Ay j ) 

where X is a constant. 

Once the outputs at the nodes of the hidden layer are calculated, the input rk  to k`'' 

node at the output layer is given by, 

rk  = lVkjp j; for k =1, 2, ......K 	 .......(2.8) 
j=1 

The output ok  of the k"' node of the output layer is given by, 

	

ok  =f(rk )= 	1 	fork=1,2.......K 	..... 2.9 
1 + exp(-?.rk ) 	 "( ) 
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It is to be noted that the output dk  for the k"' node at the output layer is the desired 

output, whereas ok  is the calculated output by the ANN based on the weight matrices and 

the input vector. By the process of training, ANN tries to make ok  equal to dk  by modifying 

the weights of the interconnections suitably. In the error-back propagation algorithm, the 

weights are modified in such a way that the total error at the output layer between the 

desired output and the calculated output is minimized. 

The total error is defined as, 

1K 
E = —E (dk  - Ok  )2 	 .......(2.10) 

2k=l 

According to the classical optimization theory, to minimize E, the weights should 

be changed in the negative direction of the gradient of E. Hence, the adjustments of 

weights Ovkj  and Awe;  are given by, 

AVk, _ - 	aE 	 .......(2.11) 
aV kj  

	

= - 'tj aE 	 .......(2.12) 

Where r is a constant, called learning constant. 

Now, 

aE _a ark  
.......(2.13) 

5"kl ark akJ 

From equation (2:8), we have, 

ar 	 ..(2.14) k  

Again, 

• aE aE aok  .......(2.1s) ark   aok  ark  
From equation.(2.9) we have, 

ao k  = f'(rk ) 	 ..... . ark 	 .(2.16) 
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Now, for X = 1, 

f'(rk) 	exp(-rk ) 	_ 	1 	1± exp(-rk ) -1 

[1± exp(-rk )]2 [1± exp(-rk )] [1± exp(-rk )] 
Or, 

f'(rk) = ok (1 - Ok) 	 .......(2.17) 

Also, from equation (2.10), we have, 

aE =-(dk -Ok ) 
~Ok 

Hence, combining equations (2.11), (2.14), (2.17) and (2.18) we have, 

AV k; = rl(dk - Ok )Ok (1 - Ok )P j 

.......(2.18) 

......(2.19) 

Hence, the modified weight v'Jk becomes 

Vk; =V + AVk; = Vki + '1(dk - Ok)Ok(1 - Ok)Pj 

for j=1,2........J and k=1,2.......K 
........(2.20) 

For the adjustment of weights between the input layer and hidden layer, 

aE 
HIV .. 	 . (2.21) 

fori=1,2.......Iand j=1,2.......J 

Now, 

aEaEoY 
= 	

j 

	

~,■' 	 -(2.22) 
ji ~j aVV 

From equation (2.5) we have, 

yi 

	

aw Jr 
= Zi 	 .......(2.23) 

Now, 

aE aE ap; 
ayj - api ONj (2.24) 

Now, proceeding as in equation (2.17) and from equation (2.7) we have, 
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ap' =f'(y.)=p.(1-'P j) 
ayj 

Again, 

a 	a 	I K K  (dk  - ok )2  

ap; 	ap;  L2k=1 

Or, 

x 

ap;  a  - 	? {dk f(rk )}2  ap;  
Or, 

K 

a =->(d -  0k) 	{J (rk)} ap ; 	k=1 	ap;  
Or, 

K aE =-E(dk -Ok)`
t

,(rk)  ark  
ap; 	k=1 	 ap;  

From equation (2.8), we have, 

vrk =Vk; 
ap;  

Putting equation (2.27) and (2.17) into equation (2.26) we have, 

aE K  - L(dk •Ok)Ok( l-Ok )Vkj  
Vp; 

Hence, from equations (2.24), (2.25) and (2.28), we have, 

aE 	 K (  
- Pj (1  - pj )E (dk - Ok )Ok (1  - Ok )V  kj ay; 

 
k=1 

From, equations (2.21), (2.22), (2.23) and (2.29) we have 
K 

Owjf =11ZipJ(1-pj)L(dk -Ok)Ok(l-Ok)Vkj 
k=1 

Let us define, 

........(2.25) 

.......(2.26) 

.......(2.27) 

.......(2.28) 

.......(2.29) 

(2.30) 
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5 ok =(dk -Ok)Ok(1-ok) 

Then from equation (2.20), 

V kj = V kj + 15okPJ .......(2.31) 
for j=1,2.......Jandk=1,2.......K 

And, from equation (2.30), 
K 

Aw j; = 11ZIP;(1- P;)ZsokVkJ 	 ........(2.32) 
k=1 

Hence, the modified weights w';, is given by, 
K 

w;~ = w + iiz~P, (1- P~)LBOk V kk 	 .......(2.33) 
k=1 

Equations (2.31) and (2.33) describe the relationships through which the various 

weights in the ANN are to be modified. It is to be noted that this modification proceeds 

backward from the output layer to the input layer via the hidden layers. The modifications 

are dependent upon the error at the output layer. Hence this training algorithm is known as 

the "Error-back-propagation training algorithm". Note that the relationships described in 

equations (2.31) and (2.33) are for one single input-output pattern. When P patterns are 

presented, the weights are modified for each pattern according to the equations (2.31) and 

(2.33) and the cumulative error (summation of the total errors over all the P patterns) is 

calculated. If the cumulative error is less than a specified tolerance limit, the ANN is said 

to have converged or "trained" properly. This entire sequence of modification of the 

weights over all the P patterns is known as one iteration of training of ANN. If the 

cumulative error.is not less than the specified tolerance value, another iteration of training 

starts. If the training of the ANN is proceeding properly, the cumulative error in the 

subsequent iterations should reduce. Iterations of training are continued till the cumulative 

error becomes less than the specified limit. 

To accelerate the convergence of the error-back-propagation algorithm, a factor 

called "momentum factor" is often used. In this method, the weight adjustment in the 

current step is supplemented with a fraction of the immediate past weight adjustment. 

Mathematically this is expressed as, 

AW(t) = 1\7E(t) + ahE(t -1) 
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Where, 	a 	= 	Momentum factor 

t 	— 	For current training step 

	

t — 1 = 	For immediate past training step 

Based on the above discussions, the detailed algorithm for error-back-propagation 

training procedure for multi-layer feedforward ANN is described below. 

ERROR BACK PROPAGATION ALGORITHM (EBPTA) [6] 

Given are P training pairs {Z,, d„ z2 , d2, .....zr , dp } 

wherez,is(Ix 1),d,is(Kx1)andi=1,2.......P 

The input vectors have been augmented by fixing the I"' component of each z, to a 

value —1.0. Size J-1 of the hidden layer having outputs p is selected. As hidden layer 

output have also been augmented, the J h̀ component of p is also of value —1.0. p is (J x 1) 

and o is (K x 1), where o is the output vector. 

Step 1: 71 F— 0, emax chosen. 

Weight V and W are initialized at small random values; V is (K x J) and W is (J x 

I). 

qE--1,p<--1,EE--0 

Step 2: Training step starts here. 

Input is presented and the layers' outputs computed: 

z*-zP ,d<--dP ,p; E--f(wTz) 

where wi, a column vector, is j-th row of W, and 

Ok E f(vkp) 

where Vk, a column vector, is the k-th row of V. 

Step 3: Error value is computed: 

 

2 
 2, ...... K 

Step 4: Error signal vector So and S~, of both layers are computed. 

Vector 8 is (K x 1), SP is (J x 1). 
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The error signal terms of the output layer in this step are 

ook = (dk - 0k)(l  - Ok )ok 
fork=1,2......K 

The error signal terms of the hidden layer in this step are 
K 

opj =Pj(I-pi)ESokvkj,for j=1,2,.....J 
k=1 

j Step 5: Output layer weights are adjusted: 

V kj 	V kj + T8okpj ,  

fork=1,2......Kand j=1,2......J 
Step 6: Hidden layer output are adjusted: 

W ji 	W ji + i8P1Z i ,  
for j=1,2......Jandi=1,2......I 

Step 7: If p < P then p - p + 1, q E-- q + 1, and go to step 2: otherwise, go to step 8. 

I Step 8: The training cycle is completed. 

	

rms error, E 	1  
PK 

For E < emax, terminate the training session. Output weights W, V, q and E. 

If E > emax, then E - 0, p –.1, and initiate the new training cycle by going 

Ito step 2. 

Once the neural network is trained, the input pattern for which the output pattern is 

to obtained, is presented to the ANN and the output is calculated in the feedforward mode 

following step 2 of the algorithm. 

2.3 CONCLUSION 

In this chapter, the detail algorithm of the error back propagation training 

algorithm for multi-layer feedforward neural network is discussed. For the development of 

ANN based optimal capacitor switching algorithm, this algorithm has been used for 

training the neural network. 

16 



CHAPTER 3 

OPTIMAL CAPACITOR SWITCHING ALGORITHM 

One of the most important and desirable control function in a modem distribution 

automation system is volt-var control (VVC). Primarily, VVC deals with the voltage and 

reactive power control in the distribution system, although in concrete terms, the main 

objective of VVC may not be directly minimizing the voltage violations or reactive power 

violations. One -of the typical objectives of VVC is the , real power loss minimization 

subjected to various operating constraints in the system. As discussed in Chapter 1, this 

objective can be achieved by controlling the reactive power support at different buses in 

the system. Different constraints in the system may be in the form of voltage constraints at 

different buses, loading constraints at different lines, power factor and reactive power 

demand constraints at the substation etc. Additional to the requirement of minimization of 

power loss, it is also desirable that the solution be obtained in least possible number of 

steps. 

To solve this constrained optimization problem, several approaches have been 

suggested in the literature. A co-ordination method for switching discrete switchable 

capacitors and tap changers has been proposed in [7]. This approach is based on a 

simplifying assumption that all capacitors and tap changers have equal increments. 

Roytelman et. al. [5] solves this problem by oriented discrete gradient method. In this 

method, .the best-  direction for search is determined by calculating sensitivity factors. 

In this work, the basic approach outlined in [5] has been followed to determine the 

optimal capacitor switching patterns. Although the basic philosophy remains the same, for 

this work, it has been slightly modified. In the following sections, the optimal capacitor 

switching algorithm is described in detail. 

3.1 OBJECTIVE FUNCTION AND CONSTRAINTS 

From a mathematical point of view, the optimal capacitor switching problem is a 

constrained minimization problem where the constraints are inequality constraints. In this 
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work, the objective is to minimize the real-power loss in the distribution system. 

Consequently, the objective function is 
n 

PL _ 	Ili ` z ri 	 .......(3.1) 

Where, PL —> Total real power loss in the system. 

n I —> Number of feeders in the system. 

ri --> Resistance of the i"' feeder. 

I — Magnitude of the current flow through ith feeder. 

The value ofPL is computed by using an accurate load-flow program given the 

load-profile in the system and the setting of other control variables (such as transformer 

tap settings, settings of any shunt-connected reactors, capacitors etc.). The objective is to 

minimize the value of PL subjected to different inequality constraints. Also, it is desirable 

that the solution of this problem be obtained at minimum number of steps. 

The different inequality constraints in the system are: 

(a) Voltage at all the buses should be within some specified minimum and 

maximum limits. 

Mathematically, 
Vmin ~ V ~ V max 	for i =1, 2, ......nb 	.......(3.2) 

Where, n b —+ Number of buses in the system 

Vi —Voltage at i"' bus 

vmin ' VImax 
—* Minimum and Maximum limits of the voltages of the i"' bus 

(b) Current flow through each feeder is less than the maximum specified limit. 
I j 	!max fori=1,2, ......ni 	 .......(3.3) 

Imax 	Maximum value of Ii 

(c) Current flow through each transformer must be less than the maximum 

allowed limit. 
It ~Itmax 	fori=1,2,......nt 	 .......(3.4) 

Where, nt --* Number of transformers in the system 
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li —4 Current through it'' transformer 
tmax l i 	—) Maximum allowable current through i"' transformer 

(d) Power factor at the substation must be within certain minimum and 

maximum limits. 

PFmin ~ PF <_ PFinax 	 (3.5) sub 	sub 	sub 	 \ 

Where, P Flub -- Power factor at the substation 

PFS b -+Minimum allowable limit for PFsub 

PFS ax Maximum allowable limit for PFSUb 

(e) Reactive power demand at the distribution substation must be within 

specified limits. 

Qmin <n 	 / <Qmax 
sub 	'sub 	sub 	l3' ~) 

Where, Qsub - Reactive power demand at the distribution substation 

Q min - Minimum limit of Q sib 
QrnaX  --* Maximum limit of Q5~b 

In- this work, among all the above constraints, only the constraint described in 

equation (3.2) is considered. Hence, the statement of the constrained optimization problem 

is as follows: 
"Under the current loading condition, find the optimal switching pattern of the 

already installed shunt capacitors in the distribution system such that the real power loss in 

the system is minimum and simultaneously the voltages at all the buses lie within their 

respective operating limits". 

3.2 SOLUTION METHODOLOGY 

As the capacitors to be switched are discrete, not continuous, in nature, the optimal 

capacitor switching problem is essentially a discrete (integer) programming problem with 
non-linear objective function and inequality constraints. To solve such kind of discrete 
optimization problem, combinatorial methods are generally used. In combinatorial 

method, all possible discrete solutions are checked and finally the most optimal solution is 

19 



selected. Depending upon the size and nature of the optimization problem, the number of 

possible solutions may be very large and hence, time taken to find the most optimum 

solution may be very large. To overcome this problem, combinatorial methods use special 

strategies such that only effective subsets of all possible solutions are searched. 

One of the most commonly used, simple and reliable combinatorial strategies is 

gradient descent method. This method can be used for any type of variables and objective 

function. In this method, the control variables are moved by a reasonable step in that 

direction in which objective function decreases the most. For discrete control variables, the 

chosen step size is generally equal to the discrete increments of the control variables. This 

direction (which is generally termed `the descent direction') can be chosen by a number of 

methods, such as (a) by chance (Monte Carlo method), (b) by any evaluation strategy or 

(c) by the largest negative partial derivative of the objective function with respect to the 

control variables. In the last case, the method is known as the gradient or oriented discrete 

co-ordinate descent method. 

In this work, the oriented discrete co-ordinate descent method has been used to 

determine the optimal capacitor switching pattern for a given loading condition. In this 

method, as discussed earlier, the partial derivative of the objective functionF is calculated 

with respect to the discrete control variables X l  at the current operating point. The partial 

derivative is computed as the ratio of the differences in the objective function to the 

corresponding increments in the discrete control variables. Mathematically, 
aFk 	Fk+1 _ Fk 

aaxk 	xk+1 _ Xk 	 ..(3.7) 

Where k, k+l are the current and the next position of the control variables. The 

corresponding values of the objective function are denoted by Fk  and Fk+i  respectively. 

In this work, the objective function is the real power loss in the distribution system, 

which is calculated by a load-flow program given the system loading pattern and the size 

and switching status of the discrete capacitor bank. The switching status of the shunt 

capacitor bank represents the control variables. The rated sizes of the capacitor bank are 

the increments for the capacitors. 
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The variables (switching pattern) which gives rise to the largest negative partial 
derivative. is the - direction at which the capacitors should be switched. Starting from the 

initial operating condition, this switching process is repeated till there is no further 

decrease in the real power loss in the distribution system. 

Based on the above discussion, the algorithm for finding the solution of optimal 

capacitor switching problem is as follows: 

Step 1. Read the input data. 

Step 2. From the input data, identify the buses at which the discrete capacitor banks are 

connected, the size of the connected capacitor banks and the initial switching status of the 

capacitor banks (i.e. which capacitor is `ON' and which capacitor is `OFF'). The input 

operating condition is termed as the `base operating condition'. 

Step 3. Let nc denotes the number of capacitors connected in the system. Set MODEL  = 

"SWITCHABLE". Where MODE;  = mode of the capacitor i, either "SWITCHABLE" or 

"FIXED"., for i 1, 2.......nc. 

Step 4. Calculate the real power loss at the base operating condition. Let this be denoted 

as PL. 

Step 5. For each capacitor i = 1, 2........nc, perform the following steps, if MODE;  is not 

equal to "FIXED". 

(a) Change the status of the capacitor. That is, if the capacitor is already `ON', then 

make it `OFF' or if the capacitor is already `OFF', make it `ON'. The status of the 

remaining capacitors remains unchanged. 

(b) Calculate the power loss in the system at this new configuration by running 

load-flow. Let this loss be denoted as PL;. 

(c) Calculate the partial derivative PD;  by the following relationship: 

PL- - PL PD;  _ 	g  c;  
where _e;  is the capacitance value of the i"' capacitor. 
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(d) After the load-flow solution is obtained, check whether the voltage at any bus 

violates the minimum and maximum limits. If there is no violation, store the value of 

PD,. If there is violation, do not store the value of PD1 . 

(e) Restore the original status of the capacitor i. 

Step 6. From the stored values of PD1 , find the index j, 1 < j 5 nc, For which PD, is 

negative - maximum. If all the stored partial derivatives (PD,) are positive, optimal 

switching pattern has been achieved and go to step 11. Otherwise, go to step 7. 

Step 7. Set PDB  equal to PDT  . 

Step 8. Change the status of the capacitor j. 

Step 9. Set MODE;  _ "FIXED". 

Step 10. Go back to Step 5. 

Step 11. Print the total system loss and the switching status of the capacitors. 

3.3 CONCLUSION 

In this chapter, an oriented discrete co-ordination descent method is described for 

finding the optimal capacitor switching pattern under a given loading condition. In this 

work, only the constraint of bus-voltage violation has been taken into consideration. By 

the use of this algorithm, a large number of optimal switching patterns under varying load 

conditions can be generated for training and testing of ANN. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

It has been already discussed in Chapter 1 that the main objective of developing an 

ANN based optimal capacitor switching algorithm is to reduce the time taken to arrive at 

the optimal capacitor switching pattern for a given loading pattern. To achieve this 

objective, some researchers have reported ANN based capacitor switching technique in the 

literature [8]. However, in [8], multi-stage ANN architecture has been used, which 

enhances the complexity. of implementation of the proposed ANN technique. On the other 

hand, if the same objective can be achieved with a single-stage ANN architecture, the 

implementation of the ANN algorithm would be simpler. In this work, a three-layer, single 

stage, feedforward neural network has been used for developing the ANN based optimal 

capacitor switching algorithm. 
As has been already discussed in Chapter 1, development of any ANN based 

algorithm essentially consists of two steps. Firstly, the ANN should be trained properly 

and secondly, once the ANN is trained, the accuracy of the result predicted by the ANN 

must be tested. To train the ANN, a number of input-output pairs (input : loading pattern 

of the distribution system and output : optimal capacitor switching pattern) must be 

submitted to the ANN. These input-output pairs are obtained by a conventional optimal 

capacitor switching algorithm at different loading patterns in the system. During training, 
the weights of the interconnections in the ANN architecture are suitably modified 

according to the training algorithm. Once the ANN is trained, the performance of the ANN 

is tested by comparing the output predicted by the ANN with that obtained by the 

conventional algorithm. 
To illustrate the development of an ANN based optimal switching algorithm, a 

sample 30-bus system [8],  has been chosen. The one-line diagram of the network is shown 

in Fig. 4.1. The data for this test system are given in Tables A.1 and A.2 in Appendix A. 

The loading pattern given in Table A. 1 is termed as "base operating condition". In this 

system, there are total 22 load points. At each load point, both real (KW) and reactive 
(KVAR) loads are specified. Hence, total number of real and reactive loads in the system 
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is 44. There are also 17 positions of switchable capacitors installed in the system. Hence, 

the ANN architecture used in this work has 44 input nodes and 17 output nodes. Only one 

hidden layer of the ANN has been chosen and the number of nodes in the hidden layer has 

been chosen as 15. 

Figure 4.1 : One-line Diagram of the Sample Distribution System 

To train the ANN, it is necessary to generate a number of input-output patterns at 

different loading conditions. The different loading conditions in the system are achieved 

by varying the KW and KVAR loads in the system within a certain range with respect to 

the "base operating condition". For example, the KW and KVAR loads can be varied in 
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such a way that the new loading condition always remains within a range of 90% - 110% 

of the "base opearting condition". Similarly, for any other specified ranges, the KW and 

KVAR loads can be varied accordingly. In this work, four different ranges of loading have 

been considered. These are, a) 90% - 110%, b) 80% - 120%, c) 70% - 130% and d) 60% - 

140%, of the "base operating condition". To vary the loading within any specified range 

(e.g. 90% - 110%), a large quantity of random numbers within a range of 0.9 — 1.1 have 

been generated and subsequently, the KW and KVAR loads at "base operating condition" 

have been multiplied by these random numbers. Consequently, a large number of loading 

conditions within a range of 90% - 110% of the "base operating condition" are generated. 

Once these new loading conditions are generated, the oriented discrete descent method 

described in Chapter 3 have been used to find out the optimal capacitor switching patterns 

at each of these newloading conditions. Thus, a number of input-output patterns are 

generated. Out of these generated input-output patterns, some of the patterns have been 

used to train the network and some of remaining patterns have been used to test the 

performance of the trained ANN. To train the ANN, error-back-propagation training 

algorithm as described in Chapter 2 has been used. 

The results of ANN training and testing, when the loading has been varied within a 

range of 90% - 110% of the "base operating point", are tabulated in Table 4.1. As 

observed from this table, for this operating range, 10000 input-output patterns have been 

used to train the ANN and after the ANN is trained, 1000 input-output patterns, which had 

not been used during training, have been used to test the performance of the ANN. The 

performance of the ANN is quantified by "test error (percentage mismatch)". It is shown 

in Table 4.1 that for learning constant = 0.01 and momentum factor = 0.8, the "test error 

(percentage mismatch)" is 3.57. The meaning of the "test error" is as follows. As 

discussed earlier, each pattern has 17 - output values. Hence, for total 1000 test patterns, 
there are total 17000 output values. Upon testing, the ANN predicts wrong output values 

for 3.57% of 17000 output values, i.e, for 3.57*170 = 607 output values, the predictions of 

the ANN do not match with the output . values obtained from oriented discrete descent 
method. For the rest 17000 — 607 = 16393 output values, predictions of ANN exactly 

match with those obtained from the oriented discrete descent method. Table 4.1 also 
shows the rms error during training after 50 cycles of ANN training for this combination 
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of learning constant and momentum factor. It may be argued that the rms error during 

training would probably reduce had the training of the ANN been continued for more 

number of cycles and consequently, the test error would also reduce. To verify this, a 

graph of rms error during training with respect to the number of training cycles has been 

plotted as shown in Fig. 4.2. From this figure, it is observed that the training error remains 

practically constant after 5 cycles of training. Hence, the error would not further reduce 

even with more number of training cycles. 

Table 4.1 

1=45, 	J=15, 	K=17, 	2 = 1.0, 	Range of loading = 90% - 110% 
Number of training patterns = 10000 	 Number of test patterns = 1000 

Value of 
learning 

constant 

Value of 
momentum 
factor (mf) 

No of cycles 
taken at 

convergence 

rms error at 
convergence 

Test error 
(percentage 
mismatch) 

0.01 0.8 50 0.000208 3.57 
0.6 0.9 30 0.000209 6.21 
0.05 0.6 39 0.000209 5.02 

0.0003 

0.0002 

0 

2 
cc 

0.0001 

0 
-. - - - - N I N N N NI HI f•l Al f7 Q 'Q Q t}' d 

NO. OF TRAINING CYCLES 

Figure 4.2 : Operating range 90% - 110% 
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Table 4.1 also shows the training and testing results for other combinations of 

learning constant and momentum factor. It is observed that for all the other combinations, 

the performance of the ANN is worse than that obtained with the first combination 

(learning constant = 0.01 and momentum factor = 0.8). Different other combinations of 

learning constant and momentum factor have also used. In every case, the test error has 
been found to be greater than 3.57%. Hence, this combination of learning constant and 

momentum factor is the most optimum combination and to denote this, the results 

corresponding to this combination in Table 4.1 have been given in boldface letters. 

Results corresponding to the operating range 80% - 120% are given in Table 4.2. 

As in the case of Table 4.1, the results for most optimum combination are shown in 

boldface letters and the, plot of rms training error Vs. number of training cycles for the 

optimum combination is shown in Fig. 4.3. Similarly, corresponding results and plot for 

the operating range 70% - 130% are given in Table 4.3 and Fig. 4.4 respectively and those 

for the operating range 60% - 140% are shown in Table 4.4 and Fig. 4.5 respectively. 

Table 4.2 

1=45, 	J=15, 	K=17, 	A=1.0, 	Range of loading = 80% - 120% 
Number of training patterns = 20000 	 Number of test patterns = 1000 

Value of 
learning 

constant 

Value of 
momentum 
factor (mf) 

No of cycles 
taken at 

convergence 

rms error at 
convergence 

Test error 
(percentage 
mismatch) 

0.05 0.6 220 0.000189 6.58 
0.001 0.9 75 0.000191 12.572 
0.6 0.9 70 0.000192 16.783 
0.67 0.6 50 0.000125 31.727 

From tables 4.1 - 4.4 it is found that best performance of the ANN is achieved for 

the lowest range (90% - 110%) and the highest range (60% - 140%). For the lowest range, 

the outputs of various patterns were quite close to each other. Hence, after training, the 

ANN was able to predict the correct output patterns for most of the input patterns as it was 

able to learn the implicit relation between the input and output patterns relatively easily. 

On the other hand, for the highest range, the outputs of various patterns were 'diverse in 
nature. Hence, to learn the implicit relation properly, number of training patterns required 
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by the ANN was double (20,000) the number that was required for the lowest range 

(10,000). For the other two ranges, although 20000 training patterns were used, the test 

error of the ANN was more. It may be possible that if more number of training patterns 

were used or some other combination of learning constant and momentum factor were 

used, possibly the performance of the ANN would have been better for the other two 

ranges. But as the highest range also covers the loading patterns in the other ranges and 

the performance of the ANN in the highest range is almost the best, this exercise was not 

felt necessary. It is to be noted that the values of the learning constant and the momentum 

factor were found by trial and error method. From the tables, it can also be observed that 

for best performance, the value of the learning constant preferably be in the order of 0.01 

and the value of the momentum factor preferably be in the range of 0.6 —.0.8. It is to be 

noted that these values are not universal in nature, they are only valid for the test system 

under consideration. For any other system, the appropriate values of these two constants 

must be found out by trial and error method. It may be argued that it is possible to reduce 

the test errors of the ANN further by other combinations of number of training patterns, 

learning constant and the momentum factor. However, by carrying out large number of 

training sessions of the ANN by various combination of the learning constant and 

momentum factor, it was found that to improve the performance of the ANN slightly 

better, the time taken for the training becomes unacceptably large. Hence, those results are 

not given in this thesis report. 

It has been already discussed in Chapter 1 that the prime motive behind the 

development of ANN based algorithm is to reduce the time taken for deciding the optimal 

capacitor switching pattern for a given loading condition. It has been found that for 1000 

loading patterns, the CPU time taken by the oriented discrete descent method for 

determining corresponding optimal switching patterns is 380.439545 secs, whereas, the 

CPU time taken by the ANN is 1.648351 secs. Hence, the ANN based method is almost 

230 times faster. Obviously, for larger systems, the difference between the time taken by 

the combinatorial method and the ANN would be more and consequently, for a practical, 

real life large system, the ANN based method would be much faster than the traditional 

methods and hence, would be more suitable for on-line application. 
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Figure 4.3: Operating range 80% - 120% 

Table 4.3 

1=45, 	J=15, 	K=17, 	X.=1.0, 	Range of loading = 70% - 130% 
Number of training patterns = 20000 	 Number of test patterns = 1000 

Value of Value of No of cycles rms error at Test error 
learning momentum taken at convergence (percentage 

.constant factor (mf) convergence mismatch) 
0.01 0.6 200 0.000176 3.8 
0.08 0.6 90 0.000198 4.94 

0.2 - 0.9 
Error was randomly increasing and decreasing 

0.001 0.8 40 0.00041 Convergence 
rate was very 

poor 
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Figure 4.4: Operating range 70% - 130% 

Table 4.4 

I = 45, 	J = 15, 	K = 17, 	?. = 1.0, 	Range of loading = 60% 140% 
Number of training patterns = 20000 	 Number of test patterns = 1000 

Value of 
learning 

constant 

Value of 
momentum 
factor (mf) 

No of cycles 
taken at 

convergence 

rms error at 
convergence 

Test error 
(percentage 
mismatch) 

0.01 0.8 140 0.000174 3.58 
0.9 0.9 130 0.000182 5.26 

0.007 0.6 100 0.000203 12.62 
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CHAPTER 5 

CONCLUSION 

In this thesis, a neural network based optimal capacitor switching algorithm has 

been developed. The main conclusions of this work are: 

• The ANN based method is much faster than the traditional combinatorial 

methods for solving the optimal capacitor switching problem. 

• As the range of loading pattern increases, number of training patterns required 

to train the network adequately also -increases. 

• The performance of the ANN reaches a plateau when EBPTA is used, after 

which the performance does not improve or the improvement can be achieved at 

a cost of unacceptably large training time. 

• There is no proven method to choose the various parameters of the ANN such 

as learning constant and momentum factor. Their values for best performance of 

.. the ANN can only be decided by trial and error method. 

FUTURE SCOPE OF WORK 
As already discussed in the main conclusion, the performance of the ANN reaches 

a plateau when it is trained by EBPTA. Hence, it is necessary to investigate the 

performance of the multi-layer feedforward ANN by training it with different other 

training algorithms such as, over-relaxation error back propagation training algorithm. 

Moreover, different other type of ANNs such as, functional link network, counter-

propagation network, Hopfield network etc. can also be investigated for this application. 
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APPENDIX A 

Table A.1 
[System Network and Load Data] 

Bus 

1  

Bus 

J 

Branch Impedance Max. Load at Bus j 

r(Q) x1 (Q) P(kW) Q(kVar) 

0 1 0.5096 1.7030 - - 

1 2 0.2191 0.0118 522 174 

2 3 0.3485 0.3446 - - 

3 4 1.1750 1.0214 936 312 

4 5 0.5530 0.4806 - - 

5 6 1.6625 0.9365 - 

6 7 1.3506 0.7608 - - 

7 8 1.3506. 0.7608 - - 

8 9 1.3259 0.7469 189 63 

9 10 1.3259 0.7469 - - 

10 11 3.9709 2.2369 .336 112 

11 12 	- 1.8549 1.0449 657 219 

12 13 0.7557 0.4257 783 261 

13 14 1.5389. 0.8669 729 243 

8 15 0.4752 0.4131 477 159 

15 16 0.7282 0.4102 549 183 

16 17 1.3053 0.7353 477 159 

6 18 0.4838 0.4206 432 144 

18 19 1.5898 1.3818 672 224 

19 20 1.5389 0.8669 495 165 

6 21 0.6048 .0.5257 207 69 

3 22 0.5639 0.5575 522 174 

22 23 0.3432 0.3393 1917 63 

Contd... 
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23 24 0.5728 0.4979 - - 

24 25 1.4602 1.2692 1116 372 

25 26 1.0627 0.9237 549 183 

26 27 1.5114 0.8514 792 264 

1 28 0.4659 0.0251 882 294 

28 29 1.6351 0.9211 882 294 

29 30 1.1143 0.6277 882 294 

Vented =23 kV 

Table A.2 

[Capacitor KVARs at Different Tap Positions] 

Tap position 
Capacitor kVar 

Cap. #1 
At bus 13 

Cap. #2 
At bus 15 

Cap. #3 
At bus 19 

Cap. #4 
At bus 23 

Cap. #5 
At bus 25 

1 875 875 500 Fixed at 
750 

600 
2 700 700 425 525 
3 525. 525 350 450 
4 350 350 275 375 
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APPENbIX B 

SOFTWARE FOR TRAINING OF ANN 

THIS PROGRAM TRAINS A FEED-FORWARD NEURAL NETWORK WITH 
ERROR-BACK PROPAGATION TRAINING WITH ONE HIDDEN LAYER. THE 
TRAING INPUT DATA 
IS TAKEN FROM THE FILE 'DATA.DAT AND THE TRAINING OUTPUTDATA IS 
TAKEN FROM THR 'OUTPT_VO.DAT' FILE. THE PARAMETERS OF THE ANN IS 
DEFINED IN THE FILE 'INP VOLT.DAT' FILE 

#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#define a 50 

void netf (int J, int I, float U [a] [a] ,float x [a] ,float 
net3 [a]) ; 

void sigm(int J„float net2[a],float,lam,float 
fnet2 [a] , float y-[a] , float f_net2 [a]) ; 

void adj(int K,int J,float eta,float mf,float 
delo [a] , float cw [a] [a] , float W [a] [a] , float y [a]) ; 

void main() 
{ 
FILE *fp, *fq, *fr, *fs, *fw, *fpt_s 
float nets [a]., net2 [a] , net3 [a] ; 
float U_[a] [a] , V[a] [a] , W[a] [a] , x[a] , y [a] , z[a] ; o[a] 

float fnetl [a] , fnet2 [a] , fnet3 [a] , d [a] , f net3 [a] ; 
float  

Cu [a]._[a] , cv [a] [a] , cw [a] [a] ,sun, tempi [a] , t [a] [a] , b [a] , f_netl [ 
a] , f_net2 [a] ; 

float delo [a] , dely [a] , delz [a] ; 
int i,j,k,l,I,J,K,n,p,pt,m,q 
float 

lam,eta,emax,e,erms,mf,r[a],inc,e_l,timel,time2,time 
char ans ; 

timel = clockt-O /CLK TCK ; 

/* opening the 'INP_VOLT.DAT' file, which stores the initial 
data for the training */ 

if (.(fr = fopen(,'inp_volt.dat","r")) _= NULL) 
{ 
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printf("\nERROR !! the file 'INP VOLT.DAT' does not 
exist !\n") ; 

exit (1) 
} 

/* opening the -DATA.DAT' file, which stores the training 
input patterns */ 
if ((fq = fopen("data.dat","r")) == NULL) 

{ 
printf("\nERROR !! the file -DATA.DAT' does not exist  

exit (1) 
} 

/* opening the 'OUTPT_VO.DAT' file, which contains the 
training output patterns */ 

if ((fs = fopen("outpt_vo.dat", "r")) == NULL) 
{ 

printf("\nERROR 1! the file 'OUTPT_VO.DAT' does not 
exist !\n") 

exit (1) 
} 

/* opening the 'SUMMARY.DAT' file, which contains the 
summary of training */ 

if .((fpt_s = fopen("summary.dat", "a")) == NULL) 

printf("\nERROR !! the file -SUMMARY.DAT' can not open !\n") 

exit (1) 
} 

/* reading from the -INP_VOLT.DAT' file */ 

fscanf (fr, "%d\t%d\t%d\t%f\t%f\t%f\t%f\t%d\n%d", &I, &J, &K, &lam 
,&eta,&mf,&emax,&n,&pt) 

fclose(fr) 
I = I + 1 ; 

printf("\nNO. OF INPUTS 	 I = %d",I) ; 

printf("\nNO. OF NEURONS IN HIDDEN LAYER: 	J = %d",J) 

printf("\nNO. OF OUTPUTS 	K = %d",K) ; 

printf("\nNON LINEARITY FACTOR 	lam =%f",lam) ; 

printf("\nLEARNING CONSTANT 	eta =%f",eta) ; 
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printf("\nMOMENTUM FACTOR cnf 	= 	%f " , mf) 
printf (".\nMIN. ERROR emax=%f" , emax) 

printf("\nNO. OF CYCLE YOU WANT TO TRAIN ANN :n=%d",n) 

printf("\nNO. OF PATTERN pt 	= %d",pt) 	; 

printf( "\ndo YOU WANT TO START WITH PREVIOUSWEIGHTS(Y/N=") 	; 

ans = getch(); 

/* set the initial weights of the ANN randomly */ 
if(ans 	== 	'N' 	11 	ans 	=_ 	'n') 

{ 
printf ("NO") 

/* ---------------WEIGHTS OF FIRST STAGE 	------------*/ 

for(j 	= 	0; 	j 	< J; 	j++) 
{ 
for(i = 0; 	i < 	I; 	i++) 

{ 
inc = rand() 	/ 	900000.0 	; 
V[j] [i] 	= 	inc 	; 
cv[j] [i] 	= 	0.0 	; 

} 

/* 

} 

--------------- WEIGHTS OF SECOND STAGE ----------- 	*/ 

for (k = 0; 	k < K; 	k++) 
{ 
for(j 	= 	0; 'j 	< 	J; 	j++) 

{ 
inc = rand() 	/ 900000.0 	; 
W [k] [j ] 	= inc 
cw [k] [j] 	= 	0.0  

} 
} 

/* 

} 

get the initial weights from 'W1 VOLT.DAT' 	file */ 

else 
{ 
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printf ( "YES") ; 

/* opening the -Wl_VOLT.DAT' file, which stores the weight 
vectors from previous training */ 

if ((fw = fopen("wl_volt.dat", "r")) == NULL) 
{ 
printf("\nERROR !! the file 'W1_VOLT.DAT' does not 

exist !\n") ; 
exit (1) 

} 

1 /* --------------- WEIGHTS OF FIRST STAGE ------------ */ 

for(j - 0; j < J; j++) 
{ 
for(i = 0; i < I; i++) 

{ 
fscanf (fw, "%f ",&V[j] [1]) 
cv [j ] [i] = 0.0  ; 

} 
} 

1 /* --------------- WEIGHTS OF SECOND STAGE ----------- */ 

for(k = 0; k < K; k++) 
{ 
for(j = 0; j < J; j++) 

{ 
fscanf (fw, " of ", &W [k] [j]) 
cw [k] [j ] = 0•0  

} 
} 

/* ------------- CHANGE OF WEIGHT OF THE FIRST STAGE ------- 

for(j - 0; j < J; j++) 
{ 
for(i = 0; i < I; i++) 

{ 
fscanf (fw, "%f ", &cv [j ] [1]) ; 

} 
} 

/* --------------CHANGE OF WEIGHTS OF SECOND STAGE ------- 
- */ 
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for(k = 0; k < K; k++) 
{ 
for(j = 0; j < J; j++) 

{ 
fscanf (fw, "%f ", &cw [k] [j]) 

} 

/* close the 'W1 VOLT.DAT' file */ 
fclose(fw) ; 

p = 0  ; 

do 
{ 	 /* start of -do' loop - */ 
p,._ p + 1 

e = 0.0 
el = 0.0 ;. 

/* --------------- GET THE INPUT PATTERNS -------------- */ 

for (m = 0; m < pt; m++) 
{ 
for (1 = 0; 1 < (I-1) ; 1++) 

{ 
fscanf (fq, "%f ", &z [1]) ; 
z [I-1] = -1.0 ; 

} 

I/* --------- GET THE DESIRED OUTPUT PATTERNS -------- */ 

for (k = 0; k < K; k++) 
{ 

fscanf (fs, "%f" , &d[k] ) ; 
} 

%* ------ CALCULATE INPUT TO THE NODES OF THE HIDDEN LAYER -- 

netf (J, I, V, z, net2) ; 

/* ----- CALCULATE OUTPUT OF THE NODES OF THE HIDDEN LAYER - 
 */ 

sigm(J, net2, lam, fnet2, y, fnet2) ; 
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/* ----- CALCULATE INPUT TO THE NODES OF THE OUTPUT LAYER -- 

netf(K, J, W, y, net3) ; 

/* ----- CALCULATE OUTPUT AT THE OUTPUT NODES -------*/ 

sigm(K, net3, lam, fnet3, o, f_net3) ; 

1/* calculate error and the derivatives of the error */ 

for (k = 0; k < K; k++) 

r[k] = d[k] - o[k] ; 
e_1 = e_1 + r[k] * r[k] 
r[k] = r[k] * r[k] * 0.5 
e += r [k] ; 
delo [k] = (d [k] - o [k]) * fnet3 [k] 

for (j = 0; j < J; j++) 
{ 
sum = 0.0 
for (k = 0; k < K;' k++) 

{ 
sum += delo [k] * W[k] [j ] 

} 
tempi[j] = sum 
dely [j ] = tempi[j] * f_net2 [j ] 

/* --------- MODIFY THE WEIGHTS OF THE SECOND STAGE -------- 

adj (K, J, eta, mf , delo, cw, W, y) ; 

/* --------- MODIFY THE WEIGHTS OF THE FIRST STAGE --------- 

adj (J, I, eta, mf , dely, cv, V, z) ; 

erms = sqrt(e) ; 
erms = erms/pt ; 
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erms = erms/K ; 
printf("\n\nCOUNT NO.=%d 

CYCLE\n",p,erms); 
ERMS=%f\nPLEASE WAIT FOR NEXT 

fprintf (fpt_s, "%d 	%f\n" ,.p, erms) ; /* writing in 
summary.dat*/ 

if (erms > emax) 
{ 
rewind(fq) 
rewind (f s) 

} 

/* OPEN THE 'WATVOLT.DAT' FILE, WHICH CONTAINS THE WEIGHTS 
AFTER -TRAINING */ 

if ((fp = fopen ("wat_volt . dat" , "w")) == NULL)•

{ 
printf("\nERROR 1! the file 'WAT_VOLT.DAT' can not 

open !\n") ; 
exit (l) 

} 

/* WRITE THE WEIGHTS INTO THE -WAT_VOLT.DAT' FILE */ 

for (j = 0; -j < J; j++) 
{ 
for(i = 0; i < I; i++) 

{ 
fprintf (fp,"%f 11 ,V [j] [i]) 

} 
} 

fprintf (fp,"\n) 

for (k = 0; k < K; k++) 
{ 

for (j = 0; j < J; j++) 
{ 

fprintf (fp, "%f ", W [k] [j ]) 
} 

} 
fprintf (fp, "\n") 

for (j. = 0; j < J; j++) 
{ 
for(i = 0; i < I; i++) 

{ 
fprintf (fp, "%f " , cv [j ] [i]) 
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} 
	} 

fprintf (fp, "\n") 

for (k = 0; k < K; k++) 
{ 

for (j = 0; j < J; j++) 
{ 

fprintf (fp, "%f ", cw [k] [j ]) 
} 

} 

/* CLOSE THE -WAT VOLT.DAT' FILE */ 
fclose (fp) 

} while (erms > emax && p < n) ; 	/* end of -do' loop 

time2 = clockO/CLKTCK 
time = time2 - timel ; 

printf("\n\n\n\n\n\n\n\n\n\n\n\nTRAINING HAS OVER IN [ %d 
CYCLES ] \n& FINAL ERROR [erms] AT CONVERGANCE =%f\nTOTAL 
TIME TAKEN=%l.Bfsec\n\n\n\n\n\n\n\n\n\n\n",p,erms,time); 

/* CLOSE THE 'DATA.DAT' FILE */ 

fclose (fq) 

/* CLOSE THE 'OUTPT VO.DAT' FILE */ 

fclose (fs) 
getch O ; 

} /* end of 'main' function */ 

~/* - - ------ FUNCTION TO MODIFY WEIGHTS -------------- */ 

-void adj(int K,int J, float eta, float mf,float 
delo [a] , float cw [a] [a] , float W [a] [a] , float y [a] ) 

{ 
i.nt k, j 
float c w [a] [a] ; 

for (k = 0; k < K; k++) 
{ 
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for (j = 0; j < J; j ++) 
{ 

cw[k] [j] = cw[k] [j] 
Cw[k] [j] = 0.0; 
cw [k] [j ] = eta * delo[k] * y[j]  + mf 

c_w[k] [j] ; 
W [k] [j] = W [k] 

[j] 

 + cw [k] [j} ; 

} /* end of 'adj' function */ 

/* -- FUNCTION TO CALCULATE OUTPUT OF A NODE THROUGH SIGMOID 
FUNCTION -- */ 

void sigm(int J,float net2[a],float lam,float 
fnet2 [a] , float y [a] , float f_net2 [a] ) 

•
{ 
int j 
float -b [a] ; 

for (j = 0; j < J; j++) 
{ 

b[j] = - (net2[j] * lam) 
b[j] = exp(b[j]) 
fnet2[j] = 1.0  / (1.0 + b[j]) ; 
y[j] = fnet2[j] 
fnet2[j} = y[j] * (1 - y[j]) ; 

} 
return ; 

} /* END OF 'sigm' FUNCTION */ 

/* --------- FUNCTION TO COMPUTE OUTPUT OF EACH STAGE ------
*/ 

void netf (int J,int I, float U[a] [a] ,float x [a] ,float 
net3[a]) 

int i, j 
float sum ; 

for (j = 0; j < J; j++) 
{ 
sum = 0.0 
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for (i = 0; i < I; i++) 
{ 
sum = sum + U[j]   [i] * x [i] ; 
} 

net3[j] = sum ; 
} 

return ; 

} /* end of 'netf' function */ 
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SOFTWARE FOR TESTING OF ANN 

#include<stdio.h> 
#include<math.h> 
#include<time.h> 
#define a 50 

void netf(int J, int I, float U [a] [a] ,float x [a] ,float 
net3 [a]) ; 
. void sigm(int J,float net2[a],float lam,float 
fnet2 [a] , float y [a] , float f_net2 [a]) 
void adj(int K,int J,float eta,float mf,float 

delo [a] , float cw [a] [a] , float W [a] [a] , float y [a]) ; 

void main() 
{ 

FILE *fp, *fq, *fr, *fs, *fw ; 
float neti [a] , net2 [a] , net3 [a] ; 
float U [a] [a] , V [a] [a] , W [a] [a] , x [a] , y [a] , z [a] , o [a] 

• float fnetl [a] , fnet2 [a] , fnet3 [a] , d [a] , f_net3 [a] ; 
float 

cu [a] [a] , cv [a] [a] , cw [a] [a] , sum, tempi [a] , t [a] [a] , b [a] , f_netl [ 
a] , f_net2 [a] 

float delo [a] , dely [a] ,del z [a] ; 
int i,j,k,l,I,J,K,n,p,pt,m,q,diff,t_diff; 
float lam,e,erms,r[a],inc,time,timel,time2; 
char ans; 

/* opening the 'TIPCAP.DAT' file, which stores the initial 
data for the testing */ 

if ((fr = fopen("tip_cap.dat","r")) == NULL) 
{ 

printf("\nERROR !! the file -TIP CAP .DAT' does not 
exist !\n") ; 

exit (l) 
} 

/* opening the 'PAT_CAP.DAT' file, which stores the testing 
input patterns */ 

if ((fq = fopen ("pat cap.dat" , "r")) _= NULL) 
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printf("\nERROR !! the file•'PAT_CAP.DAT' does not 
exist !\n") ; 

exit(1) 
} 

/* opening the -TOUT_CAP.DAT' file, which contains the 
training output patterns */ 

if ((fs = f open ("tout_cap.dat", "r")) _= NULL) 
{ 

printf("\nERROR !! the file 'TOUT_CAP.DAT' does not 
exist !\n") ; 

exit (1) 
} 

/* reading from the -TIP_CAP.DAT' file */ 
fscanf (fr, "%d\t%d\t%d\t%f\n%d" , &I, &J, &K, &lam, &pt) ; 
fclose(fr) 
I = I + 1 ; 

printf("\nNO. OF INPUTS 	I = %d" , I) ; 
printf("\nNO. OF NEURONS IN HIDDEN LAYER: 	J = %d",J) ; 
printf("\nNO. OF OUTPUTS 	 K = %d",K) ; 
printf("\nNON LINEARITY FACTOR 	lam= %f",lam) ; 
printf("\nNO. OF PATTERN 	pt = %d",pt) ; 

/* get the initial weights from -W1_CAP.DAT' file */ 
if ((fw = fopen ("wl_cap. dat" , "r")) == NULL) 

printf("\nERROR !! the file -W1_CAP..DAT' does not 
exist !\n") ; 

exit (1) 

/* --------------- WEIGHTS OF FIRST STAGE ------------- */ 
for(j = 0; j < J; j++) 

{ 
for (i = 0; i < I; i++) 

{ 
fscanf (fw, "%f ",&V[j] [1]) 

} 
/* --------------- WEIGHTS OF.SECOND STAGE ------------ */ 

for (k = 0; k < K; k++) 
{ 
for(j = 0; j < J; j++) 

47 



fscanf (fw, "%f ",&W[k] [j]) ; 

/* close the 'W1CAP.DAT' file */ 
fclose,(fw) fp=fopen ("relt_cap . dat" , "w") ; 

timel=clockO/CLK TCK; 

/* --------------- GET THE INPUT PATTERNS -------------- */ 
tdiff = 0; 
for (m = 0; m < pt; m++) 

{ 
for (1 = 0; 1 < (I-1) ; l++) { 

fscanf(fq,"%f ",&z[l]) 
z [I-l] = -1.0 ; 

} 
/*printf ("\ncheck 1\n") ; */- 

/* ---------- GET THE DESIRED OUTPUT PATTERNS -------- */ 
for .(k = 0; k < K; k++) 

{ 
-fscanf (fs, °%f" , &d [k]) ;. 

/*printf("check_2\n") ; 	*/ 

/* --_------- CALCULATE OUTPUT OF FIRST STAGE -------- */ 
netf(J, I, V. z, net2); 

/*printf("check_3\n") ;*/. 

/* ----- INCLUDE SIGMOIDE FUNCTION IN FIRST STAGE ------*/ 
sigm(J, net2, lam, fnet2, y, f_net2) 

/ *print f ("check <4 \n") ;*/  

/* ---------- CALCULATE OUTPUT OF SECOND STAGE ------- 	*/ 
netf (K, J, W, y, net3) 

/*printf("check5\n");*/ 

/* -------INCLUDE SIGMOIDE FUNCTION IN SECOND STAGE -------
*/ 

sigm(K, net3, lam, fnet3, o, f_net3) 
/*printf("check 6\n");*/ 
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time2 = clock () /CLK TCK; 

time = time2 - timel; 
/* calculate error and the derivatives of the error */ 

for (k = 0; k < K; k++) 

/* 

 

printf ("\no [%d] =%f d [%d] =%f" , k, o [k] , k, d [k]) ; 
getch();*/ 
if (o [k] < 0.5)  
o [k] = 0.0  ; 
if (o [k] >= 0.5) 
o[k] = 1.0 ; 
r [k] = d [k] - o[k] 

} 
diff = 0; 
for (k=0 ; k<K; k++) 
{ 
if((o[k]) !_ (d[k])) 
diff = diff + 1; 
} 
fprintf (fp, "%d %d \n" , m, diff) 
t_diff = t_diff + diff; 

} 
fprintf(fp,"\n\nMAXIMUM MISMATCH FOR THIS SET =%d\nI=%d 
J=%d K=%d\nlam=%f TEST PATTERN=%d\nTOTAL TIME TAKEN= 

%1.12f sec.",t_diff,I,J,K,lam,pt,time); 
fclose (fp) ; 
fclose (fq) 
fclose (fs) 
printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nTESTING IS 

OVER,SEE */ RELT.CAP.DAT /* FILE FOR RESULTS\nTOTAL MISMATCH 
FOR THIS SET =%d\nTOTAL TIME TAKEN =%1.12f 
sec.\n\n\n\n\n\n",t_diff,time); 

getch () ; 
} 

/* --------FUNCTION TO INCLUDE SIGMOIDE FUNCTION ---------- 

void sigm(int J,float net2[a],float lam,float 
frnet2 [a] ,float y [a] ,float f_net2 [a] ) 

{ 
int j; 

float b [a] ; 

for (j=0; j<J; j ++) 
{ 
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b[j]  = - (net2 [j ] * lam) 
b[j] = exp(b[j]) 
fnet2 [j ] = 1.0  / (1.0 + b[j])  
y[j] = fnet2 [j] 
f_net2 [j] = y[j] * (1 -  

} 

return ; 
} 

/* --------- FUNCTION TO COMPUTE OUTPUT OF EACH STAGE ------
*/ 
void netf(int J,int I, float U [a] [a] ,float x [a] ,float 
net3 [a] ) 

{ 
nt i; j ; 
float sum ; 

for (j = 0; j < J; j++) 
{ 
sum = 0.0 ; 
for (i = 0; i < I; i++) 
{ 
sum = sum +U[j][1] *x{il ; 

} 
net3[j] =,sum ; 

} 
return; 

} /* end of 'netf' function */ 

50 


	G10069.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix


