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ABSTRACT 

In this thesis, attempts have been made to analysis and understand the voltage 

stability or instability problem in a radial power distribution system. Although a lot of 

research work has been made and being carried out to understand the voltage instability 

problem in a transmission network, not significant amount of work has been carried_ out 

in this direction for power distribution system. Moreover, only constant load model has 

been used to analysis the voltage instability problem for power distribution system in the 

literature. However, in a power distribution system the power demand for almost all the 

loads which are connected, such as television, refrigerator etc. are voltage dependent in 

nature. Hence, for analyzing the voltage stability/instability problem in a radial power 

distribution system, it is more proper to take into account the voltage dependent 

characteristics of the loads instead of the constant power characteristics of the loads. 
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CHAPTER-1 

INTRODUCTION 

To meet the ever-increasing demand for electrical energy, it is necessary to augment the 

generation, transmission and distribution systems appropriately. While in the last few decades 

significant enhancement of total generation of electricity has taken place, matching 

augmentations have not taken place in the transmission and distribution sector due to the 

problem of the right-of-way, environmental regulations, financial bottlenecks etc. Consequently, 

more and more power is being pushed over the existing transmission and distribution circuits. It 

is a well known fact that as a transmission/distribution system carries more and more power, 

there is more threat to the stability of the system. Hence, before pushing more power over any 

transmission/distribution system, it is very important to determine the stability limit (maximum 

power which can be carried without any loss of stability) of that system. 

Different kinds of stability (or instability) problems occur in a system when the system is 

being increasingly loaded, such as transient stability, dynamic stability, voltage stability etc. 

Among the above three stability problems, the first two problems, namely transient stability and 

dynamic stability problem are manifested primarily in a high-voltage transmission system but not 

in a low-voltage distribution system. This is so because in a transmission system the influence of 

the dynamics of the synchronous generators are very important, whereas in a distribution system 

synchronous generator dynamic plays a very insignificant role. On the other hand, voltage-

instability is essentially a load-driven instability problem and hence it is manifested both in the 

transmission as well as distribution systems. 
As the transmission system carries bulk amount of power, any instability in the 

transmission system causes a major loss of electric supply and the revenue loss due to this 

disturbance of supply is also very high. Hence, it is extremely important to understand, predict 

and possibly arrest any kind of instability in the transmission system. Consequently, a 

phenomenal amount of research work have been carried out to solve various instability problems 

in the transmission system and a lot more amount of research work are also being actively 

pursued presently in this direction. On the other hand, as the importance of the distribution 
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network was perceived to be much less than that of a transmission network, not much research 

work has been carried out to prevent instability (i.e. voltage instability) in a distribution system. 

However, with the rise in demand of electricity, the amount of power carried by a 

distribution system has also increased significantly over time. As a result, the instability problem 

(i.e. voltage instability) of the distribution system has also become more acute. Essentially, a 

voltage instability phenomenon can be described as follows: 

When the load demand (active or reactive) in a system increases, the voltages in the 

different buses in the system decrease. If the load demand in the system increases progressively, 

the bus voltages also decrease progressively, until a sharp accelerated decrease in the magnitude 

of the bus voltages take place. When this happens, the overall voltage in the system becomes 

very low and hence, the voltage in the system is said to have "collapsed" or voltage in the system 

is said to be "unstable". Clearly, this low voltage in the system is an infeasible operating point. 

-As the voltage instability problem is essentially load driven, the nature of the problem 

depends upon the nature of the load. If the loads in the system are considered to be static (i.e. 

constant power load), then the instability in the system is considered to be static voltage 

instability problem. Traditionally, the static instability problem has been solved through repeated 

load flow study of the system. On the other hand, if the loads in the system are considered to be 

dynamic loads, such as induction motor loads, then the voltage instability problem is said to be a 

dynamic problem. This kind of problem is generally investigated by solving the ' associated 

differential equations in the system. 

In recent years the voltage instability problem in a distribution system has been studied as 

a static problem. In [1] and [2], the uniqueness of the load flow solution for a radial power 

distribution network has been studied in detail. It has been proved in [I ] and [2] that the feasible 

operating point in a radial distribution system is unique. Voltage stability limit of radial 

distribution system has been investigated in detail in [3] and [4]. In these two papers, simple 

algebraic criteria for determining very quickly whether a system is voltage stable or not based on 

its present loading condition has been developed. However, in all the above works constant 

power loads in the system have been assumed for investigation. However, in a power distribution 

system, the real and reactive power consumed by the connected loads such as television, 

refrigerator, air-conditioners, heaters, fluorescent tube light, pump, motors etc. have a voltage 

dependent characteristic, i.e. as the voltage across these loads varies, power consumption by the 
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loads also varies. Traditionally, the voltage dependent characteristic of the loads in a distribution 

system is given by the following two relations [5] : 

P=Po IVla  

Q = QQM b 	
----------(1.2) 

Where P and Q are the real and reactive power consumed by the loads, `a' and V. are the 
exponents. V is the voltage magnitude of the bus at which the load is connected, Po  and Qo  are 
the real and reactive power drawn by the load at the initial operating condition. The values of the 

exponents `a' and `b' for different type of loads are given in [5]. Obviously, it would be 

appropriate to considered the voltage dependency characteristics of the loads while doing a 

voltage stability analysis of a distribution system. 

In this thesis, an attempt has been made to determine the effect of the voltage dependent 

characteristics of the connected load on the voltage stability margin of a radial power distribution 

system. In Chapter 2, for constant power loads, a simple algebraic criterion for determining 

whether a distribution system is voltage stable or not at its present operating condition is derived. 

Based on the criterion, a simple computer algorithm to determine the voltage stability limit of a 

radial power distribution system is described. These are essentially the repetition of the work 

reported in [1-4]. Suitable modifications of this algorithm for considering the voltage dependent 

characteristic of the loads are also proposed in this chapter. A comparative analysis of the results 

regarding the voltage stability limits for constant power loads and voltage dependent loads is 

given in Chapter 3. Chapter 4 gives the main conclusions of this work. 
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CHAPTER-2 

VOLTAGE STABILITY ANALYSIS OF A DISTRIBUTION SYSTEM 

Introduction 

A distribution system is different from the transmission system in both structure and the 
characteristics. In most cases, the distribution system draws power from a single source 

(substation) and transmits it over a radial type structure. Consequently, the technique for 

analyzing the ,voltage stability problem in a distribution system is different from that used in the 

transmission system. It is possible to reduce a radial power distribution system to an equivalent 

two-bus system and subsequently predict the voltage stability limit of the original system from 

the voltage stability property of the equivalent two-bus system. In the next section, voltage 

stability criterion for a two-bus system is derived. In the subsequent sections, the algorithms for 

deriving an equivalent two-bus system from a radial distribution system for constant power loads 

and voltage dependent loads are described. 

2.1 	Voltage stability criterion for a two-bus system 

Let us consider a two-bus system shown in Fig. 2.1. Bus 1 is the swing (substation) bus 

and the voltage of bus 2 is expressed as e2  + jf 2  . The power demand at bus 2 is PP  + , jQZ  . 

1 
	 2 

V1= 1.0 LO° 
	

V2  = e2 + jf2 

r + jx 
P2 +jQ2 

Figure 2.1 : The two-bus system. 

The power flow equation in the rectangular form are expressed as: 

P2  = Gil (e2 + ./ z )+ e2 (e1 G2 i + . f1 B21) + .f2 (f G21 — e1 B21 ) 
	 ----------(2.1) 
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Qz = Bzz (e2 + .fzz )— ez (f Gzi — e1B21 ) + fz (e1G21 —f B21 ) 	----------(2.2) 

where y;, = G11 — jB;, and 
1 —i j 

G;jj — jBU _ 	
r+jx 	

----------(2.3) 
1 

r + jx 	 - 

From equations (2.1) and (2.2) and noting that e, + jf, =1.0 + JO, we have, 

z 

e + G21 	+ z 	
f 

B21 

z 	2 	Z 

z = Gz1 
+B1 

 2.4 ( 	) 2G22 2G22 4G22 G22 
2 

e2 + B2 	
+ fz — G21 

z 	z 	z 
— G21 + B21 Qz 	 (2.5) ----------  

2B22 
— 

 2B 22 
4D

2 B22 

Using equation (2.3), equations (2.4) and (2.5) can be re-written as, 

)2.+ 	 2 

[e2 2 	fz + 2r = (rz +x2)[1+4 2 	 ----------(2.6) 

2 	r z 	z z 1+4 )( 2 
(e2 — — + fz —  _ (r + x  ----------(2.7) 

2  2x  4x2 

Equations (2.6) and (2.7) define two circles on the e2 — f2 plane, with centers at 

(1 / 2, — x / 2r) and (1 / 2, r / 2x) respectively and radii of { (r2 + xz) 1+4rP z 
	

/2 and 
4rz 

(rz + x2) 1 + 4xQ

z 
]h/2 respectively. The intersection points of these two circles represent the 

4xz 

solution points of ez & f2. If the solutions for ez and fz exist, then these two circles must 

intersect each other. Thus, the condition for existence of the solution is, 

(r2 +xz
)[

1+4rP2 ]1/2+L 
(rz +x2) 1+4xQ

2 ~1/2 , r Z +xZ 

4r2 	 4xz 	 2xr 
(2.8) 

Simplifying equation (2.8) we get, 
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1+ 4rP 1+ 4xQ 	(PQ 2  2 	z  > 4 2 +  z 

r 2 	x2 	r x ) 
or, 

(1+4rP2)(1+4xQ2 ) >_ 4(P2 x+Q2r)2  
or, 

4(xP2  —rQ2)2  —4(rP2 +xQ2) <_ 1  

Equation (2.9) is the condition for voltage stability in the two-bus system. 

----------(2.9) 

2.2 	Reduction of radial distribution system to an equivalent two bus network 

To use the condition for voltage stability of a two-bus system for predicting the voltage 

stability property of a general radial distribution system, it is necessary to find an equivalent two-

bus system of a given radial power distribution network. Essentially, the DIST-FLOW technique 

proposed by Baran and Wu [6] is used to derive such an equivalent network. The technique is 

described briefly as follows. For presentational convenience, we first consider a special case 

where there is only one main feeder. The general case for any distribution system comprising one 

main feeder and a number of lateral feeders is considered next. 

2.2.1 Special case — Main feeder 
Consider that a distribution system consists of only a radial main feeder as shown•in Fig. 

2.2. In this figure, Vt  represents the substation bus voltage magnitude and is assumed to be 

constant. The distribution lines are modeled as series impedance z1  = ri  + jx, . Load demand at 

bus i is modeled as constant power sink, S, = PI  + jQli  . 

I 2 	i _ 	Li jQ1 
____>. 

i+l n 

P2 + JQ12 Pi + JQ1i 	Pi+1 + . li+l 	Pn + JQ1n 

Figure 2.2 : A radial distribution system comprising of one main feeder 
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The real and reactive power flows on the line from bus i to i +1 and the voltages on the 

buses can be derived with the following iterative formulas [61 : 

P+I = P — Psi — I'n+1 	 ----------(2.10) 

Qr+i = Q. — Q,,1 — Qrr+1 	 ----------(2.11) 

V2 = V 2 — 2(r1 P,. + x, Q; ) + (r,2 + x?) PZ 2Q? 	----------(2.12) 

(2.13) 
V;Z 

z + 2 
QIS~ = xl 

(~ 2Qi) 	 ----------(2.14) 
i 

Where Psi & Qls; are real and reactive power losses in the branch emanating from bus i and P; 

& Q11 are the real and reactive power demand. Derivation of equations (2.12) — (2.14) are given 

in Appendix A. 

Algorithm for equivalent two bus system : 
1 	 2 

Veq 

P,+jQ, 
Req + JXeq 	 p21 + JQ2 ~ 

Swing bus 

Figure 2.3 : The two-bus equivalent network. 

Using equations (2.10) — (2.14), an equivalent two-bus network can be derived from Fig. 

2.2 as shown in Fig. 2.3. The equivalent resistance and reactance can be computed by the 
algorithm described as follows: 

Step 1: Sum all the load demands on each bus in Fig. 2.2. Let this term be the initial power 

injection (P, + jQ,) for the swing bus in Fig. 2.2 as well as the load demand 

(P2 + jQ2 ) in Fig. 2.3. 
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Step 2: Starting from the substation bus, calculate the successive P , Q;+, , Vi+1 and, the power 

losses, Ps, ,Q13, in Fig. 2.2 using equations (2.10) — (2.14). 

Step 3: Sum all these power losses and compute the equivalent impedance (Req + jXe,, ). 

_ Z Psi 
Req 

_ 
 (P2 +Q2 ) 

__ ZQisi 

Xeq (P2 + Q1 ) 

----------(2.15 ) 

-----(2.16) 

Step 4: Calculate the new power injection of the equivalent 2-bus network by using equations, 

P,"ex = 	2 1 2 [(2PX q —2Re9 Xe9Qz +Req )—{(2P2X e9 — 2Reg X eqQz +Req )2 — 4(R q +X q) 2(R + Xeq ) 

(X qPi 2 + Re2Q22 — 2Reg X e~Q2P - I- Regl'2) 1i21 
----------(2.117) 

QieW = 	2 1 2(R +X [( 2Q2R —2Reg X e9 P+X eq ) --{(2QZR q —2Re7 X eg P2 +Xeq)2 - 4(R 9 +X 9) 
e9 	eq ) 

( X 2 P'2 + R2 '2 —2R X 'P'+X ') }J/2 1 eq 2 	eq ~2 	eq eq Q2 2 	eqQ2 	1 
----------(2.18) 

The derivations of the equations (2.17) and (2.18) are given in Appendix A. 

Step 5: Compare P, & P, which was obtained from Step 1, if (P1"e1"—P1 ) < tolerance, then 

stop. Otherwise, Set P, to P,"e"' and Q1 to Q; e'° and return to Step 2. 

2.2.2 General case - Lateral feeder. 

The algorithm described in previous sub-section can be generalized to include laterals. 

Consider a main feeder with a lateral branching out from the main feeder as shown in Fig. 2.4. A 

node k is referred as branching node indicating that there is a lateral branching out from that 

node. The same process for finding the equivalent network applied to the main feeder can be 
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applied to the lateral branching out of node k also. The only difference is that the voltage 

magnitude at the branching node Vk is not a constant, while voltage magnitude at the substation 

bus is a constant. Steps of the algorithm to consider lateral branches are as follows : 

Step 1: Sum all the load demands on each bus in Fig. 2.4. Let this term be the initial power 

injection (P, + jQ,) for the swing bus in Fig. 2.4 as well as the load demand 

(P2~ + jQ2 ) in Fig. 2.3. 

1 	 k 	 k_+1 	 n 

PLn + JQLn 

PkLI + JQkLI 	Pkli + JQkM PkLn + jQa. 

Figure 2.4 : A radial distribution system with laterals 

Step 2: Starting from the substation bus, calculate the successive V+, and check whether any 

lateral exists at each bus i. If there is a lateral at that bus then go to step 3, otherwise go 
to step 4. 

Step 3_: Let there be a lateral at bus k. Sum all the real and reactive loads on the lateral at bus k. 

Let this term be denoted as Pko + jQko : With the knowledge of the voltage on bus k 

which has already been calculated from step 2, it is possible to calculate power flows, 

losses and the bus voltages on the subsequent sections and buses on that lateral. Sum up 

the losses on all the sections on that lateral. Add this loss term to PkO + JQko • Let the 



resultant term be denoted as Pk,. + jQkr  . The original lateral would be replaced by a 

constant power load and the value of the load is Pkr + jQkr 

Step 4: Calculate the successive P.+, , Q;+, and V.+, and the power losses, P1,1 , Q,Si  on the main 

feeder in Fig. 2.4 from equations (2.10) - (2.14). 

Step 5: Sum all these power losses and compute the equivalent impedance (Req  + jXeq ) using 

equations (2.15) and (2.16). 

Step 6: By using equations (2.17) & (2.18), calculate the new power injection of the equivalent 

2-bus network 

Step 7: Compare Pt"ew & P, which was obtained from Step 1. If (Pr' — F) < tolerance, then 

stop. Otherwise, Set P to P,"e"' and Q, to Q; e"' and return to Step 2. 

2.3 Algorithm to derive two-bus equivalent for voltage dependent loads. 

From the discussion of Section 2.2, it is obvious that the algorithm described is suitable 

only for constant power loads. However, as discussed earlier in Chapter 1, in a practical 

distribution system the connected loads are often not of constant power type. Rather, they are 

essentially voltage dependent loads and expressed by the following equations: 

P=PO IVI" 	 ----------(2.19) 

Q  _ Qo  IVI b 	 ----------(2.20) 

Where P & Q are real and reactive parts of the loads at a voltage magnitude V. Fo  & Q0  are the 

loads at the initial operating condition. `a' & `b' are the suitable exponents. The typical values of 

`a' & `b' for different loads are shown in Table 2.1 [5]. 

Table 2.1 

Equipment Value of co-efficient 
`a'  

Value of co-efficient 

Refrigerator 0.77 2.5 

Television 0.76 7.4 

Tube-light 2.00 5.1 
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To derive an equivalent two-bus system of a radial distribution system with voltage 

dependent loads, the algorithm described in Section 2.2 is slightly changed. In the next two 
subsections, the details of the proposed algorithms are described. 

2.3.1 Algorithm for a radial system with only one main feeder 

When the distribution system comprises only one main feeder, the algorithm described in 

the Subsection 2.2.1 needs to be slightly modified. The detail algorithm is as follows: 

Step 1: Assume flat voltage profile in the system initially. As the exponents `a' and `b' and the 

values of Po and Qo are specified at each load bus, the effective real and reactive load 

demand at each bus can be calculated. Sum the load demands on each bus. Let this term 

be the initial power injection (P, + jQ1 ) for the swing bus in Fig. 2.2 as well as the load 

demand (PZ + jQ2 ) in Fig. 2.3. 

Step 2: Starting from the substation bus, calculate the voltage at the next bus by using equation 

(2.12). After the voltage is calculated, the effective real and reactive power at that bus is 
calculated using equations (2.19) and (2.20). Once these load demands are calculated, 

the power flows and the losses over the next feeder section can be calculated. 

Step 3: Repeat step 2 for all the subsequent buses and the feeder sections. Once the new load 

demands at all the buses are calculated, add these new load demands and set the result 

equal to load demand (P21 + jQ2~) in Fig. 2.3. 

Step 4: Sum all the losses and calculate the equivalent impedance (Req + jX eq ). 

Step 5: Calculate new power injections P,"e1" & 
Step 6: Compare P"e"' & P, which was obtained from Step 1. If (P1' ew —P) < tolerance, then 

stop. Otherwise, Set P, to P,"" and Q, to Q, e"' and return to Step 2. 
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2.3.2 	Algorithm for a radial system involving laterals 

With a little modification of the algorithm described in Subsection 2.2.2, it is possible to 

derive a two-bus equivalent for a radial system having several laterals. The algorithm is 
described as follows: 

Step 1: Assume flat voltage profile in the system initially. As the exponents `a' and `b' and the 

values of Po  and Q0  are specified at each load bus, the effective real and reactive load 

• demand at each bus can be calculated. Sum the load demands on each bus. Let this term 

be the initial power injection (P, + jQ,) for the swing bus in Fig. 2.4 as well as the load 

• demand (PP  + jQ2  ) in Fig. 2.3. 

Step 2: Starting from the substation bus, calculate the voltage at the next bus by using equation 

(2.12). Check whether any lateral exists at that bus. If there is a lateral at that bus then 

go to step 3, otherwise go to step 4. 

Step 3 : Let there be a lateral at bus k. Sum all the real and reactive loads on the lateral at bus k. 

Let this term be denoted as Pko  + JQko . With the knowledge of the voltage on bus k 

which has already been calculated from step 2, it is possible to calculate bus voltage, 

effective load at a bus, feeder section power flow and feeder section loss in that order on 

the subsequent buses and sections on that lateral. Sum up the losses on all the sections 

on that lateral. Add this loss term to Pko + jQko • Let the resultant term be denoted as 

Pk,, + jQ, ,.. The original lateral would be replaced by a constant power load and the 

value of the load is P,b. + jQ,,.. The original lateral, having voltage dependent loads on 

it, is replaced by a constant load as there is no easy method to compute aggregate or 

equivalent `a' and `b' coefficients for that lateral. 

Step 4: Calculate the successive bus voltage, effective load at a bus, feeder section power flow 

and feeder section loss in that order for the subsequent buses and feeder sections on the 

main feeder in Fig. 2.4. Once the new load demands at all the buses are calculated, add 

these new load demands and set the result equal to load demand (P2  + jQ2 ) in Fig. 

2.3. 

Step 5: Sum all these power losses and compute the equivalent impedance (Req  + fX eq ) . 

Step 6: Calculate the new power injection of the equivalent 2-bus network 

12 



Step 7: Compare P, & P1  which was obtained from Step 1. If (P,1e"' —P1 ) < tolerance, then 

stop. Otherwise, Set P, to P,"e1  and Q, to Q and return to Step 2. 

It is to be noted that while calculating the new power injections or replacing a 

lateral with an aggregate load power demand for the case with voltage dependent loads, no 

attempt was made to find equivalent or aggregate values of the exponents `a' and V. In other 

words, constant power load demand has been assumed while finding the new power injection or 

replacing the lateral with an equivalent .load demand. Apparently, this seems to be quite 

contradictory, as it appears to be more appropriate that the voltage dependent nature of the loads 

should be maintained always while doing the analysis with voltage dependent loads. However, a 

justification for this simplification is attempted in the next chapter. 	 _ 

2.4 	Conclusion 

In this chapter, a simple criterion for determining the voltage stability property of a radial 

distribution system based on an equivalent two-bus system has been described. Algorithm for 

deriving the equivalent two-bus network for a distribution system involving laterals and having 

constant power loads has also been described. Suitable modifications of this algorithm have been 

suggested to include the effect of voltage dependent loads in the system. 

13 



CHAPTER-3 

RESULTS AND DISCUSSION 

To investigate the effects of the voltage dependent loads on the voltage stability of a 

radial distribution system, detail studies have been carried out on two different study systems. To 

gain, an insight regarding the effects of the voltage dependent loads, voltage stability limits for 

these two systems have been found out for both the constant power and voltage dependent loads 

and subsequently, some interesting conclusions have been drawn from the comparison of these 

results. In the following sections, the main results of this work are presented in detail. 

3.1 	Radial distribution system with only one main feeder 

The first test system which has been undertaken for study is a 10-bus system taken from 

[7]. The one-line diagram of this system is shown in Fig. 3.1. The load data and the feeder data 

of this system are given in Tables B.1 and B.2 in Appendix B. 

1 	. 2 	3 	4 	5 	6 	7 	8 	9 	10 

P12,QI2 	PI31QI3 	PI41QI4 	PI5'QI5 	PI6,Q16 	P171QI7 	PI8,QI8 	PI9,QI9 - PI10,Q110 

Figure 3.1 : Radial distribution system with one main feeder 

It has been already discussed in Chapter 1 that as the loading (real or reactive) in an 

system increases, the voltages at the buses in the system decrease. After the loading is increased 

beyond a particular maximum level (value), the voltages in the system collapse. This maximum 

level is called the voltage stability limit of the system. It is obvious that the stability limit of a 
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system is always expressed in terms of the maximum loadability of the system. Consequently, if 

the real or reactive power loading at any bus of a distribution system is increased progressively, 

after a certain limit, the voltages at all the buses of the system would collapse. This maximum 

value of the load would be known as the stability limit of the system at that particular bus or the 

"bus stability limit". Similarly it is possible to determine the "bus stability limits" at all the 

buses of the system. As there are always two types of loads in any system (e.g. real and reactive), 
the "bus stability limits" would also be either of real power type or of reactive power type. 

An attempt has been made to determine the "bus stability limits" (both real and reactive 

power type) of the system shown in Fig. 3.1. To find out the limit at any particular bus (say bus 

no. 2),-the real or reactive power load at that bus is gradually increased till the voltages in the 

system collapse. The step-by-step algorithm for determining the "bus stability limits" is given 

below. Let this algorithm be denoted as algorithm 1. 
Step 1 : 	For the base loading condition given in Table B.1, determine the equivalent two- 

bus network following the algorithm described in Subsection 2.2.1. 

Step 2: 	Check whether the system is voltage stable or not using equation (2.9). If the 

system is voltage stable, go to step 3. Otherwise go to step 9. 
Step 3 : 	Choose any bus i of the system. 

Step 4: 	Set P = PB, , where P is the present real power loading at bus i and PB, is the 

base real power loading at that bus given in Table B.I. Increase the real power 

loading at bus i by an amount AP. Keep the loading at all the other buses 

constant at the level of the base loading condition. Hence P,. = PB, + OP. 
Step 5..: 	Determine the two-bus equivalent of the system at this new loading condition. 

After the two bus equivalent system is obtained, check for voltage stability using 
equation (2.9). If the system is stable, go to step 6. Else, go to step 7. 

Step 6: 	Set P = + aP and go back to step 5. 

Step 7: 	The "bus stability limit" at bus i is given by F. Set P = P91 . 

Step 8: 	Repeat steps 3, 4, 5, 6 and 7 for the remaining buses of the system. 
Step 9: 	Stop. 

In the above algorithm, real power "bus stability limits" have been found out. Similarly, 
the reactive power "bus stability limits" can also be found out very easily. 
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By following the above algorithm, both the real power and reactive power "bus stability 

limits" of the system in Fig. 3.1 have been found out. The results are tabulated in Table 3.1. To 
determine these limits, the increments OP (OQ) have been taken as 0.01 p.u. 

TABLE 3.1 : Bus stability limits for 10-Bus system with constant power loads 

Load bus number 
• 

Maximum value of load 
Pmax 	•u 

Maximum value of load 
Qmax(P.U)  

2 34.639614 31.70997 
3 20.234 56 16.88125 
4 11.927630 10.40655 
5 8.8817470 8.539557 
6 8.2846110 5.443332 
7 8.7863320 4.726276 
8 9.8747260 3.914331 
9 12.134130 2.631056 
10 14.291800 2.247780 

To present the results in Table 3.1 in a more compact form, the "bus stability limits" 

(both real and reactive) are plotted with respect to the "electrical distance" of the buses from the 

substation as shown in Figs. 3.2 and 3.3. The "electrical distance" of any bus from the substation 

is simply the modulus of the sum total of the impedances of the intermediate feeder sections 

which need to be traversed to reach that particular bus from the substation. For example, from 

Fig. 3.1 and Table B.2, the electrical distance of bus 4 from the substation is 0.018928 p.u. This 

value is calculated by first adding the impedances of the feeder sections 1-2, 2-3 and 3-4 and 

subsequently by computing the modulus of the resultant term. Similarly, the "electrical 

distances" for all the other buses from the substation can easily be computed. 

It is observed from Figs. 3.2 and 3.3 that the reactive power "bus stability limits" 

progressively decrease as the "electrical distance' increase. Hence, the further a load point from 

the substation is, lesser would be its reactive power stability limit. On the other hand, the real 

power limits decrease up to a certain distance and beyond that these limits again increase. Also, 

from Table 3.1 it can be easily seen that the reactive power limits are always less than the real 

power limits. This seems to be appropriate as it is known that the voltages in any system is more 

sensitive to the reactive power demand in that system and voltage stability phenomenon is 

essentially a manifestation of the reactive power deficiencies in the system. 
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Figure 3.3 : Reactive power "bus stability limits" for 10 bus system 
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To determine the voltage stability limits for any distribution system involving voltage 

dependent loads, it is first necessary to determine the condition for voltage stability for a simple 

two-bus network as has been done for the case with constant power loads. Towards this 

objective, the simple two-bus network in Fig. 2.3 is again considered. However, in this case, the 

real load demand is assumed to be P2' = Po I VJ' and the reactive load demand is assumed to 

be Q2 = Q0 I1b . The equations involving the real and imaginary parts of the voltage of bus 2 are 

highly non-linear involving the exponents `a' and W. The detail derivation of these non-linear 

equations is given in Appendix C (equations (C.7) and (C.8)). Hence, no easy, analytical solution 

of these two equations (which gives the voltage magnitude of bus 2) exists and consequently, any 

simple condition for checking the voltage stability as in equation (2.9) is very difficult to obtain. 

On the other hand, the voltage of bus 2 can be obtained by solving the equations (C.7) and (C.8) 

through numerical techniques. The solution for the voltage of bus 2 has been obtained for 

different values of `a' and V. The results are tabulated in Table 3.2. 

Table 3.2 

Coefficient `a' Coefficient `b' Real part of voltage Imagin 

voltage `'~ 

0.0 0.0 0.990163 -0.0000481 

0.76 7.4 0.984400 0.001301 

0.77 2.5 0.983078 -0.037791 

2.0 5.1 0.984956 -0.000353 

1.0 3.5 0.987656 -0.000481 

From the above table it is observed that the voltage of bus 2 does not change appreciably 

when different types of loads (constant power load having zero `a' and `b' coefficients or 

different voltage dependent loads) are connected at that bus. Hence, for the two-bus system, the 

stability condition given in equation (2.9) can be used as an approximate condition for voltage 

dependent loads. As the variation of the voltage of bus 2 is not very high (from constant power 

load to different voltage dependent loads), it is expected that the error accrued by using equation 

(2.9) as an approximate stability condition for voltage dependent loads would be within 

ar

f 

(P; art ~ 
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acceptable limits. By the same reasoning, in Section 2.3, constant power loads (most recent 

estimate of the loads based on the most recent information of various bus voltages) have been 
assumed while calculating the new power injections in the equivalent two-bus system or 

replacing a lateral with an aggregate load power demand. It is again expected, that the errors 

incurred by this "engineering" simplification would be within acceptable limits. 

To find out the "bus stability limits" with voltage dependent loads for the 10-bus system, 

three types of voltage dependent loads as given in Table 2.1 are considered. It has been assumed, 

rather arbitrarily, the following combinations of `a' and `b' coefficients for different buses as 

given in Table 3.3. The initial real and reactive power loading at the buses (Po  & Q0 ) are taken 

to be the same as the loading at each bus given in Table B.1. 

Table 3.3 : ̀ a' and `b' coefficients at different buses (Case I) 

Buses at which this 

type of load is 
connected 

Value of co-efficient 

`a' 

Value of co-efficient 

`b' 

7,8,9 0.77 2.5 

4,5,10 0.76 7.4 

2,3,6 2.00 5.1 

The step-by-step algorithm for determining the "bus stability limits" with voltage 

dependent loads is given below. Let this algorithm be denoted as algorithm 2. 
Step 1 : 	For the base loading condition described above, determine the equivalent two-bus 

network following the algorithm described in Subsection 2.2.2. 
Step 2: 	Check whether the system is voltage stable or not using equation (2.9). If the 

system is voltage stable, go to step 3. Otherwise go to step 9. 
Step 3: 	Choose any bus i of the system. 

Step 4: 	Set P•o  = Ptro  , where P,.o  is the present initial real power loading at bus i and 

PB;o  is the base initial loading at that bus given in Table B. 1. Increase the initial 

real power loading at bus i by an amount AP. Keep the initial loadings at all the 
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other buses constant at the level of the base initial loading condition. Hence P,.o  = 

I'BiO + AP. 

Step 5: 	Determine the two-bus equivalent of the system at this new loading condition. 

After the two bus equivalent system is obtained, check for voltage stability using 

equation (2.9). If the system is stable, go to step 6. Else, go to step 7. 

Step 6: 	Set P,.o  = P,.o+ LP and go back to step 5. 

Step 7: 	The "bus stability limit" at bus i is given by Po  . Set P,.o = Peen 

Step 8: 	Repeat steps 3, 4, 5, 6 and 7 for the remaining buses of the system. 
Step 9: 	Stop. 

Although in the above algorithm, real power "bus stability limits" have been found out, 

reactive power "bus stability limits" can also be found out very easily. 

The results regarding the "bus stability limits" for various voltage dependent loads in the 

10-bus system as described in Table 3.3 are tabulated in Table 3.4. Comparison of tables 3.4 and 

3.1 reveals that the stability limits of the system are lower for voltage dependent loads than the 

stability limits for constant loads. 

TABLE 3.4 : Stability limits with voltage dependent loads in 10-Bus system (Case I) 

Load bus number Maximum value of load 
Pmax 	.0 

Maximum value of load 
Qmax (p.u)  

2 17.13960 6.509886 
3 12.03412 3.781222 
4 4.527614 1.909654 
5 2.581749 2.339560 
6 3.084614 1.643335 
7 2.586335 1.826278 
8 1.674725 1.574333 
9 1.834114 1.531056 
10 1.691782 1.547777 

To investigate more elaborately the effects of voltage dependent loads on the "bus 

stability limits" of the system, two more combinations (sets) of `a' and `b' coefficients at 

different buses have been assumed and the corresponding stability limits have been found out. It 
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is to be noted that the choice of various `a' and `b' coefficients at different buses have been made 

arbitrarily. The two sets of `a' and `b' coefficients are tabulated in Tables 3.5 and 3.6 

respectively. 

Table 3.5 : ̀ a' and `b' coefficients at different buses (Case II) 

Buses at which this 

type of load is 

connected 

Value of co-efficient 

`a'  

Value of co-efficient 

2,4,6,9 0.77 2.5 

7, 10 0.76 7.4 

3, 5, 8 2.00 5.1 

Table 3.6 : ̀ a' and `b' coefficients at different buses (Case III) 

Buses at which this 

type of load is 

connected 

Value of co-efficient 

`a' 

Value of co-efficient 

`b' 

2,4,9 0.77 2.5 

3,5,7 0.76 7.4 

6,8,10 2.00 5.1 

The results of "bus stability limits" for case II and case III are shown in Tables 3.7 and 

3.8 respectively. 

TABLE 3.7: Stability limits with voltage dependent loads in 10-Bus system (Case II) 

ad bus number Maximum value of load 
Pmax 	•u 

Maximum value of load 
Qmax(p.U)  

2 17.439568 6.809886 
3 7.534109 3.281221 
4 4.627614 2.706546 
5 2.581748 2.439560 
6 2.884615 2.243335 
7 2.586335 1.526278 
8 1.674725 1.414333 
9 1.834114 1.531056 
10 1.691782 1.647778 
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TABLE 3.8 : Stability limits with voltage dependent loads in 10-Bus system (Case III) 

Load bus number Maximum value of load 
Pmax 	.0 

Maximum value of load 
Qmax(p.U)  

2 16.539572 6.309888 
3 11.734109 2.781222 
4 4.327614 2.706546 
5 3.381748 2.039560 
6 2.084615 1.743335 
7 2.674735 1.426278 
8 2.374725 1.414333 
9 1.834114 1.431056 
10 1.591782 1.447778 

From the results of Tables 3.7 and 3.8 it is again observed that the stability limits with the 

voltage dependent loads are less than the stability limits with constant loads. To present the 

results in a more compact form, the stability limits with constant power loads and with voltage 

dependent loads (for cases 1, II and III) are plotted with respect to the "electrical distance" in 

Figs. 3.4 and 3.5 respectively. Fig. 3.4 shows the real power stability limits and Fig. 3.5 shows 

the reactive power stability limits. From the comparison of Figs. 3.2, 3.3, 3.4 and 3.5 it is 

obvious that the stability limits with voltage dependent loads are definitely lower than the limits 

with constant power loads. 
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3.2 	Radial distribution system with laterals 

The second test system which has been considered for study is a 31-bus system taken 

from [8]. The one line diagram of this system is shown in Fig. 3.6. The load data and feeder data 
of this system are given in Tables B.3 and B.4 in Appendix B respectively. 

Fig. 3.6 : Radial distribution system with laterals. 

The same studies as carried out for the 10-bus system have also been undertaken for this 

system. Initially, the "bus stability limits" (both real and reactive) have been found out for 

constant power loading. Algorithm 1, as described in the previous section, has been followed for 

this study with the difference that in this case, to determine the equivalent two-bus network, the 

algorithm described in Subsection 2.3.1 has been used instead of the algorithm described in 

Subsection 2.2.1. The results regarding the stability limits for constant power loads are tabulated 

in Table 3.9.. 
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TABLE 3.9 : Bus stability limits for 31-Bus system with constant power loads 

Load bus number Maximum value of load 
Pmax 	•U 

Maximum value of load 
max (p.u)  

3 3.284797 4.761614 
5 1.942800 2.314518 
10 0.512600 1.014199 
12 0.422400 0.937499 
13 0.543800 0.924599 
14 0.552200 0.987399 
15 0.548600 1.016199 
16 0.378800 0.949599 
17 0.358800 1.079599 
18 0.358800 1.019599 
19 0.313800 0.884599 
20 0.427800 0.942599 
22 0.374400 1.004799 
23 0.336600 1.012199 
24 0.322800 1.017599 	- 

25 0.299800 0.779900 
26 0.314800 0.824899 
27 0.314800 1.014899 
28 0.308600 0.936199 
29 0.296600 0.932199 
30 0.192000 0.672200 
31 0.823000 1.010999 

The stability limits (both real and reactive) are plotted again with respect to the "electrical 

distance". These curves are shown in Figs. 3.7 and 3.8 respectively. From these two curves it is 

observed that with the increase in the electrical distance, both the real and reactive power 

stability limits generally decrease. However, the limits do not vary in a smooth fashion as in the 

case of the first system with only one main feeder. Moreover, the reactive power stability limits 

also do not decrease monotonically as in the case of first test system. 

The stability limits correspond to voltage dependent loads have also been found out for 

three different sets of `a' and `b' coefficients. These three different sets of coefficients are 

tabulated in Tables 3.10, 3.11 and 3.12. The stability limits for these three cases are tabulated in 

Tables 3.13, 3.14 and 3.15 respectively. The real power stability limits for these three cases are 

plotted in Fig. 3.9 and the reactive power limits for these same three cases are plotted in Fig. 
3.10. 
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Table 3.10 : ̀a' and `b' coefficients at different buses (Case I) 
Buses at which this Value of co-efficient Value of co-efficient 

type of load is `a' `b' 
connected 

13,14,17, 21, 26,27 0.77 2.5 

3,12,19,20,22,30,31 0.76 7.4 

5,10,15,16,18,23,25, 2.00 5.1 

.28,29 

Table 3.11 : `a' and `b' coefficients at different buses (Case II) 
Buses at which this Value of co-efficient Value of co-efficient 

type of load is `a' `b' 

connected 

12,14,19,20,23,25, 0.77 2.5 

30 

3,13,16,17,18,27,29, 0.76 7.4 

31 

5,10,15,22,24,26,28 2.00 5.1 

Table 3.12 : ̀a' and `b' coefficients at different buses (Case III) 

Buses at which this Value of co-efficient Value of co-efficient 

type of load is `a' `b' 

connected 

12,13,14,16,23,25, 0.77 2.5 

27 

5,10,17,19,20,24,30 0.76 7.4 

31 

3,15,18,22,26,28,29 2.00 5.1 
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TABLE 3.13 Stability limits with voltage dependent loads in 31-Bus system (Case I) 

Load bus number Maximum value of load 
Pmax 

Maximum value of load 
Qmax 

3 3.754799 4.761614 
5 1.752799 2.154198 
10 0.522600 1.054199 
12 0.422400 0.947499 
13 0.493800 0.964599 
14 0.492200 1.037399 
15 0.498600 1.026199 
16 0.358800 1.149599 
17 _ 0.348800 1.089599 
18 0.358800 1.029599 
19 0.263 c`JO 1.064599 
20 0.367800 0.992599 
22 0.304400 1.084799 
23 0.266600 1.042199 
24 0.292800 1.027599 
25 0.272800 1.139899 
26 0.292800 1.024899 
27 0.284600 1.024899 
28 0.286600 1.336199 
29 0.286600 1.052199 
30 0.186600 1.022199 
31 0.803000 1.140999 
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TABLE 3.14 : Stability limits with voltage dependent loads in 31-Bus system (Case II) 

Load bus number Maximum value of load 
Pmax 

Maximum value of load 
Qmax 

3 3.764799 4.621611 
5 1.712799 2.154198 

.10 0.542600 1.034199 
12 0.482400 0.907499 
13 0.493800 0.954599 
14 0.522200 0.987399 
15 0.488600 1.076199 
16 0.368800 1.049599 
17 0.358800 0.989599 
18 0.368800 0.989599 
19 0.314800 1.074599 
20 0.347800 1.032599 
22 0.304400 1.034799 
23 0.286600 1.032199 
24 0.282800 1.077599 
25 0.298800 1.049899 
26 0.264600 1.074899 
27 0.314800 1.074899 
28 0.286600 1.056199 
29 0.283600 1.072199 
30 0.190600 1.072199 
31 0.873000 1.140999 
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TABLE 3.15 : Stability limits with voltage dependent loads in 31-Bus system (Case III) 

Load bus number Maximum value of load 
Pmax 

Maximum value of load 
max 

3 3.954799 4.981611 
5 2.152800 2.354198 
10 0.582600 1.174199 
12 0.512400 0.967499 
13 0.482400 0.887599 
14 0.502200 0.947399 
15 0.478600 1.026199 
16 0.388800 1.149599 
17 0.388800 0.979599 
18 0.368800 1.029599 
19 0.294800 0.994599 
20 0.367800 1.062599 
22 0.304400 1.164799 
23 0.286600 0.992199 
24 0.291800 1.027599 
25 0.299800 1.119899 
26 0.294600 0.964899 
27 0.282800 1.074899 
28 0.298600 1.166199 
29 0.266600 1.022199 
30 0.206600 1.022199 
31 0.843000 1.110999 
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From the above results, it is observed that for the radial distribution system involving 

laterals, there is no particular pattern regarding the dependence of the stability limits on the type 

of loads (e.g. on `a' and `b' coefficients). From comparison of Tables 3..9, 3.13, 3.14 and 3.15 it 

is found that at some buses the real power stability limits have decreased for voltage dependent 

loads, whereas on the other buses, these limits have increased. On the other hand, the reactive 

power stability limits have increased for voltage dependent loads as compared to the limits for 

constant power loads. However, in all the three cases, it has been found that the stability limits 

(both real and reactive) generally decrease with the increase in electrical distance. Essentially, 

this means that the further a load point from the substation is, the lower would be its stability 

limits (apart from some exceptions). These variations in the stability limits with the electrical 

distance would be very heavily dependent upon the topology of the system. Hence, before 

coming to any definite conclusion, it would be necessary to investigate the stability limits with 

voltage dependent loads in a large number of different distribution systems. 
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CHAPTER-4 

CONCLUSIONS 

In this thesis, a detail investigation about the voltage stability limits in two different 

radial power distribution systems has been made. Two different types of loads, e.g. constant 

power loads and voltage dependent loads have been considered in both the systems. The main 

conclusions of this work are : 

• With the increase of distance of a load bus from the substation bus, the stability (both 

real and reactive) limits at that bus generally decrease. 

• For a radial distribution system with only a main feeder, the reduction in the stability 

limits with distance is monotonic in nature. 

• For radial distribution system with laterals presentin the system, the reduction in the 

stability limits with distance is not monotonic in nature. But generally, the limits 

decrease with the increase in distance. Also the variation in the stability limits with 

distance is heavily dependent upon the particular system topology. However, for 

distribution systems with laterals, lot of studies involving large number of different 

distribution systems are required before reaching at a definite conclusion. 

SCOPE FOR FUTURE WORK 

• In this thesis, no analytical expression for voltage stability condition has been derived 

with voltage dependent loads. This expression needs to be derived, as it would obviate 

the need of making "engineering approximations" as done in this thesis. 

• A technique for determining the equivalent `a' and `b' coefficients for a number of 

voltage dependent loads needs to be worked out. If such a technique exists, then in the 

equivalent two-bus system involving voltage dependent loads, equivalent values of `a' 

and `b' coefficients can be used. 

• In this work, different sets of `a' and `b' coefficients have been chosen and allocated 

to different buses randomly. However, for a practical power system, these coefficients 

should be chosen and allocated from detail load forecasting studies. 
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APPENDIX A 

Al 	Derivation of the iterative equations (2.12) — (2.14) 

Consider the feeder section between the buses i and (i + 1) in the distribution system 

shown in Fig. 2.2. The voltage of the (i + 1)r" bus, V.+, , can be expressed as, 

= V, —11 z. 	 ----------(A.1) 

Where, V1 is the voltage of bus 1, z1 = r; + jx, is the impedance of the feeder section between 

the buses i and (i + 1) and I. is the current over the feeder. Equation (A. 1) can be written as, 

	

V +,. = Vi — (ri + jx~)( P y Q̀  ). 	----------(A.2) 

Or, 	 1',i+1IL0 i+1 =IvlZer — (r +jx;)(p 
+>Q i). 

V,. 

Or, 	jV+, I(cosO,+, + j sinO i+,) = IV,.I(cos0; + j sin0; ) — (ri + jxi )( 	P + jQ̀ 	)' 
,Vi (cosoi + jsin01) 

Or, 

(r. + jx. ) V,•+1 I(cos9;+1 + jsin0;+,) = IVj1(cos0 i + jsin0;)— ` 	{(P cos0 i +Q; sin01 )— j(Q; cos0; 

-P.sinO;)} 

----------(A.3) 

Simplifying equation (A.3) we get, 

P x / 	
+ 	

(r.. cos9. 	. 	sin0 . + xQ cosO . 	.. sinO r. ) 
I~+d(cosei+, jS 	V ,in0,+l)—IIcOSB; —

P r e 	r + rQ i 	 . 	-- 	r  

IVI 
(x1 P. cosh. + r.P. sin0 . — r.Q cosO . + x.Q sin0 . ) 

IVI 

Taking the modulus of equation (A.4) on both sides and simplifying we get, 

V;+BI Z =vV I Z + (x,Q; +rPi )2 +(rQ; —xiP.)2 _2(x1 Q; +r; P,) 'vi' 
or, 
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• V;, I = I V I 
+ ( r,2  + x, )(P2 + Q,2 )  — 2(x; Q, + r P.) 	----------(A.5) 

lV. I 

Equation (A.5) is the same as that given in equation (2.12). 

The real and reactive power losses on that feeder, Sloss , can be derived as: 

Sloss = zI? 
# 

P +jQ, Or, 	 Sloss = ( rr + 1x3 	V1 Le i  

(r. + jx. ) 
Or, 	 S,oss  = `  V2 	{(P,. cos0 ;  + Q;  sin6;  )2  + (Q;  cos9 ;  — P,. sing ;  ) 2  

Or, 	 Sloss = 	r(P,.2  Q;2 )] 	 ----------(A.6) V, 2 	L 

Separating the real and imaginary terms from equation (A.6), 

1oss = VYi2 L(P.2 + Q2 )] 	 ----------(A.7) 
; 

Qrass = xz1(1  + Qi )] 	 ----------(A.8) 
V;  

Equations (A.7) and (A.8) correspond to the equations (2.13) and (2.14) respectively. 

A.2 	Derivation of the equations (2.17) and (2.18) 

1 

P, +jQ1 
+IX e4  

P2 ,  + jQ2,  
Swing bus 

Fig. A.1 : A simple two bus network 

Consider a simple two-bus network shown in Fig. A. 1. Let the voltage of the swing bus 

V, be assumed to be equal to 1.0/00.  For this two bus system the load flow equations are: 
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( P 2 +Q')  P2  =P —Rq' 2  
Y1  

Q2 = Ql — X eq ( I  V 2Q1 )  
I 

From equation (A.9), 

P 2  +Q1 2 )  (P, - PZ') 
Z 

Substituting equation (A.11) into equation (A.10) we get, 

Ql = Q21  + Req —(f--P2) 
eq 

Substituting . equation (A.12) into equation (A.9) and noting V1=1.0 Z0°, we get, 
X  

P2 f  —P —Req [P2  +{  Reg  (P —P2 )+Q2'  }2 ] 
eq 

Or, 

----------(A.9) 

--------(A.10) 

-------(A.11) 

---------(A.12) 

(Req +X )I 2 — 2P,P2  X q +X P22 +QZ RCS +2RegXeqQ2 P  —2RegXeqQ2 1'z 

P,Req  +P2  Rq  =O 
Or, 

(R q + X )P2  —(21X  q  — 2RegXeqQ2 + Req )I + (X gP22  + Q2 R q — 2Reg X eq Q2  P2  

Reg P2 ) = 0 
----------(A.13) 

Equation (A.13) is the quadratic equation involving P, . The solution of equation (A. 13) is: 

P, =   
2(R 

2  1 	2  [ ( 2' P2 X q  — 2Reg X eqQ21  + Req /I — {(2P2' X eq — 2Reg Xeq Q2'  + Rq )2 
eq  + X eq )   

I 	 I 	, 	, 
—4(R q +X q)(X q22  + R  qQ2 — 2Reg X eq Q2  P2  +Rg P2  ) }1/2] 

----------(A.14) 
Equation (A.14) corresponds to equation no. (2.17). 

Similarly, proceeding as before as in equations (A.9) — (A. 12) we get, 

Q2,  = Ql — X eq {QI2  + X  eq  	+ P 2 	------------(A. 15)  Q2
eq 

Or, 
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(R 2 +Xeq  )Q12   — 2Q,Q21 RQ +X g P221  +Q2 1  X q +2Reg X eqP2,Q1  — 2Reg XeQQ2 / P2 1  

— Qi Xeq  + Q2  Xeq  = 0 
Or, 

(R q + X 9 )Qi2  — (2Q2 R 2  q — 2Reg Xeq P2  — Xeq  )Qi + (XgPi + Qz R q — 2Reg XeqQ2  1'i 

+Q2  Xeq )=0 
----------(A.16) 

Equation (A.16) is the quadratic equation involving Q, . The solution of equation (A.16) is: 

Q — 	1   
2(R 

	

	2  ) [(
2Q2  / Req  2 2Req Xeq P2  + Xeq  ) — {(2Q2 + Req 2Req Xeq P2  + Xeq  ) 2  

2  + X  

I 	► 	 r 	! 	r 
— 4(R q +X q)(Q2  X q  +X 2P 2  —2RegXeqP2 Q2 +XegQ2 )}112} 

-----(A.17) 

Equation (A. 17) corresponds to equation number (2.18). 
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APPENDIX B 

TABLE B.1 : Load data of the 10-bus test system. 

Load bus number Real power 	.0 Reactive power(p.u)  
2 0.439568 0.109896 
3 0.2234114 0.081223 
4 0.427616 0.106546 
5 0.381749 0.439560 
6 0.384615 0.143335 
7 0.186335 0.026278 
8 0.274725 0.014333 
9 0.234114 0.031056 
10 0.391782 0.047778 

TABLE B.2 : Line data for the 10-bus system 

From bus To bus Resistance 	.0 Reactance(p.u)  
1 2 0.000976 0.003266 
2 3 0.000111 0.004788 
3 4 0.005906 0.009535 
4 5 0.005527 0.004814 
5 6 0.015693 0.013671 
6 7 0.007164 0.006240 
7 8 0.016263 0.009211 
8 9 0.037947 0.021492 
9 10 0.023949 0.023949 

Base KV = 23. 

Base KVA = 4186. 
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TABLE B.3 : Load data for 31-bus test system 

Load bus no. Real power 	.0 Reactive power(p.u)  
3 0.0348 0.0116 
5 0.0428 0.0142 

10 0.0126 0.0042 
12 0.0224 0.0075 
13 0.0438 0.0146 
14 0.0522 0.0174 
15 0.0486 0.0162 
16 0.0588 0.0196 
17 0.0588 0.0196 
18 0.0588 0.0196 
19 0.0138 0.0046 
20 0.1278 0.0426 
22 0.0744 0.0248 
23 0.0366 0.0122 
24 0.0528 0.0176 
25 0.0298 0.0099 
26 0.0448 0.0149 
27 0.0448 0.0149 
28 0.0486 0.0162 
29 0.0366 0.0122 
3.0 0.0522 0.0174 
31 0.0330 0.0110 
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TABLE B.4 : Line data of 31-bus test system. 

From bus To bus Resistance 	.0 Reactance(p.u)  
1 2 0.02733 0.02169 
2 3 0.00791 0.00042 
3 4 0.01258 0.01244 
4 5 0.02449 0.02129 
5 6 0.02449 0.02129 
6 7 0.03896 0.02194 
7 8 0.03896 0.02194 
8 9 0.03896 0.02194 
9 10 0.03896 0.02194 
10 11 0.03896 0.02194 
11 12 0.03896 0.02194 
12 13 0.03896 0.02194 
13 14 0.03896 0.02194 
14 15 0.03896 0.02194 
2 16 0.00791 0.00042 
16 17 0.03896 0.02194 
17 18 0.03896 0.02194 
4 19 0.01258 0.01244 
19 20 0.01258 0.01244 
20 21 0.02449 0.02129 
21 22 0.02449 0.02129 
22 23 0.02449 0.02129 
23 24 0.03896 0.02194 
7 25 0.02449 0.02129 
25 26 0.02449 0.02129 
26 27 0.03896 0.02194 
9 28 0.02449 0.02194 

. 28 29 0.03896 0.02194 
29 30 0.03896 0.02194 
7 - 31 0.02449 0.02129 

Base KY = 23 

Base MVA = 15 
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APPENDIX C 

Two Bus network with voltage dependent load 

Consider a two-bus system as shown in Fig. C.1. In this system, the loads at bus 2 are 

assumed to be voltage dependent loads as given in equations (1.1) and (1.2). 

1 	 2 
V, =1.ozo° 	 V2  = e2  + jf2  

r +jx 

I 

Figure C.1 : Equivalent two bus network 

The current in the network is given by, 
I — V1 —V2  

r + jx 
-----------(C.1) 

Noting that Vi  -= el  + jf, = 1.0 + JO and that V2  = e2  + jf2  , equation (C.1) reduces to 

I— [(1—  e2  )r —  f2 x] — j[(1  — e2  )x+  f2r] 	----------(C.2) 
r 2  + jx2  

As P+jQ=V21*,wehave, 

P+jQ= (e2 +jf2 )[(1— e2)r — fzx]+j[(1 - e2)x+f2r] 

r 2  +x2  

Separating the real and imaginary terms and after simplification we get, 

P =(1— e2)re2— xf2—f2r 	
(C.3)  

r2  + x2  

Q—  (1— e2)xe2 +rf2 — f2 x  
r 2  + x2  

----------(C.4) 

Now for voltage dependent loads, P = PV' and Q = Qo  V b  . Hence from equation (C.3) we 
have, 

+.fz )a
/2(1— e2)re2 — xf2  — f 2 r 

= 
 

r +x 
--------(C.5) 
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Taking logarithm at both sides of equation (C.5) we have, 

log Po + 2 log(e2 +f22 ) = log[(1— ez )ezr{l — of 2+ eZ~ }] — log(r z +x2)  
z 	z 

Let constant k, = log Po and k 2 = log(r z + x2 ) and k = kl+ k2. Then from the above equation, 
f z  

k +-(a —1) log(1 +(e2 —1)) + a log(l + 2) = log(l — ez ) + to {1— 
xf2  

+ f z
zr 

} + log r ---------(C.6) 
2 	e2 	 ez r—ez r 

Now applying the logarithmic series to equation (C.6) and considering only first two terms, we 
get, 

	

(e2 _1)2 a f2 f4 	e 	xf2 + f 2r ( xf2 + f 2r )2 
k +(a-1)[(ez — 1) — 	 ]+—[ 2 ---- )=[—e2   --]+[ 	z 2 	2 ez 2ez 	2 	ez r — ez r (ez r = ez r) 
Where k' = k — log r 

Simplifying the above equation, we get, 

e(-2ar 2 +4r 2 )+e2(12ar 2 —12r 2 )+e2(-24ar 2 +18r 2 +4k'r 2 )+e2(20ar 2 —16r 2 —8k'r 2 ) 
+ez(6ar 2 +16r 2 +4k'r 2 +2f2 ar z —4fxr-4f2 r z )+e2(4f2 ar z +4fxr+4f2 r z ) 
+ez(2f2ar2—ffar2+2fzx2+2f4r2+4f3rx)+2ef"ar2—ffar2)=0 

(C.7) 

Similarly, for the reactive power load, we have, 

Q=Q0IV b 
Then, from equation (C.4) we have, 

Q{2 
{
i 

6Jz = (1— ez)~z

f 
z -f z 

x oe+J ) 	
2 r+x  

Taking the logarithm at both sides of the above equation we have, 

log Q0 + log(e2 + 122 ) = log[(1 — ez )ez x{l + 	 2x } ] — log(r z + x2) 
e zx — e z 

Let constant k = k3+ k4, where k3 = log Q0 and k 4 = log(r z +x2 ).  Then from the above 

equation, 

k + (b 	l0 1+ e 1 + lo g(1 	log(l 	+ 	1— rfz—fzx + lo r ( 	) g( (z — )) 2 g( 	e ) = g( 	z) 	g{ a x—e x} 	
g z 	 z 

2 	 z 	z 

Now applying the logarithmic series to above equation and considering only first two terms, we 
get, 
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z 	a 	 z 	 ( 	z z 
f

2 
— f2 

k'+(b-1)[(e2 
_1)_(

e2 —1)
2  

bLJ; — J24) = [—e2 — e? J+Lr~Z 

_ z 

Z x — 
l 
r 	2

x) 
z J 2 	2 e 	2e 	2 	e2x — e2 x (ezx — e2 x) 

Where k' = k — log y 

Simplifying the above equation, we get 

e2(-2bx2 +4x2 )+e2(12bx 2 —12x2 )+eZ(-24bx2 +18x2 +4k x2 )+ez(2Obx z —16x 2 —8k 2 ) 
+e2(-6bx2 +16x2 +4k3c2 +2f 2 br 2 —4fxr-4f 22 x2 )+ez(-4f 22bx 2 +4fxr+4f22x2) 
+e2(2f2bx2— ffxr 2 +2fzr2+2f2x2 +4f2rx)+2efZbx2 — fZbx2 )=0 

----------(C.8) 
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APENDIX-D 

Software for 10-bus constant loads 
#include<stdio.h> 
#include<math.h> 
#define x 50 
#define y 50 
#define itmax 500 
#define EPS 0.00001 
#define BKVA 4186 
#define BKV 23 

void main() 

FILE*fp,*fs,*fq; 
int ii; 
int i,j,k, A[x][y],nbus,n,nlbus,m; 
float 
P[x],Q[x],p[x], q[x], V[x],R[x],X[x], a,b,c,P2,Q2,z,zl,z2,z3,z4,z5,z6,z7,z8; 
float tl, t2, t3, Pls [x] , Qls [x] , G [x] , H [x] , Req, Xeq, Pl [x] , Ql [x] , pls , qls ;• 
float oo; 
for(i=1;i<=x;i++) 

{ 
P [i] =Q [i] =R [i] =x[1]  =V [i] =Pls (i] =Qls [i] =pls=qls=tl=t2=t3=0 . 0 ; 
. z=zl=z2=z3=z4=z5=z6=z7=z8=P1 [x] =Q1 [x] =G [x] =H [x] =0. 0; 

} 
fp=fopen("b5.dat","r"); 
fs=fopen(,, b6.dat","r"); 
fq=f open("r.res", "w") 
clrscr(); 

/* CHECKING THE CONNECTIVITY OF BUSES*/ 

fscanf(fp,"9d",&nbus); 
for(i=1;i<=nbus;i++) 

{ 
for(j=1;j<=nbus;j++) 

{ 
A[i] [j]=0; 

} 
for(i=1;i<=nbus;i++) 

{ 
A[i] [i] =1; 

/* printf ("A[%d] [%d] =%d\n", i, i,A[i] [i]) ; */ 

for (i=1;i<=nbus;i++) 
{ 
for(; ;) 

{ 
fscanf (fp, "%d" , &n) 
if(n==999) 
break; 
A[i] [n] =1; 
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/* printf ("A[%d] [%d] =%d\n", i,n,A[i] [n]) ; */ 

/*SUMMATION OF ALL THE LOADS*/ 

fscanf (fp, "%d", &nlbus) 
for(i=1;i<=nlbus;i++) 
fscanf (fp, "%d%f%f" , &m, &Pl [i] , &Q1 [i]) 
for(ii=l;ii<=10000;ii++)/*my loop start*/ 
{ 
fprintf (fq, "\nload iteration no. ----- [%d] ", ii) ; 
V[1]=1.0; 
Ql [10] =Q1 [10] +0.1; 
P [1] =0 . 0; 
Q[1]=0.0; 
for (i=1;i<=nlbus;i++) 
{ 

P [1] =P [1] +Pl [i] 
Q[1]=Q[1]+Q1[i]; 

fclose (fp) 

/*fprintf (fq, "\nf %f\n" , P [1] , Q [1]) ; */ 
G [1] =P [1] 
H [1] =Q [1] ; 
/*fprintf (fq, "\n%f %-f",G[1] ,H[1]) ;*/ 

for k=1;k<=itmax;k++) 	/* start of the main iterative loop */ 
{ 

/*fprintf(fq,"\n\nSTART OF ITERATION NO.....[%d]",k);*/ 
R [x] =X [x] =V [x] =Pls [x] =Qls [x] =pls=qls=tl=t2=t3=0 .0; 
z=z1=z2=z3=z4=z5=zG=0.0; 
V [1] =1.0; 
for(i=1;i<=nbus;i++) 

{ 
for(n=i+l;n<=nbus;n++) 

{ 
if (A [i] [n] ==1) 

{ 
/*fscanf (fp, "%d %f %f", &m &P1 [n] , &Q1 [n]) ; */ 
fscanf (fs, "%f %f ° , &R [n] , &X [n]) ; 
P[n]=P[i]-(R[n])*(P[i]*P[i]+Q[i]*Q[i])/(V[i]*V[i])-Pl[n]; 
Q [n] =Q [i] - (X [n]) * (P [i] *P [i] +Q [i] *Q [i]) / (V [i] *V [i]) -Ql [n] ; 
tl=2* (R [n] *P [i] +X [n] *Q [i]) ; 
t2=(R[n]*R[n]+X[n]*X[n])*(P[i]*P[i)+Q[i]*Q[i]); 
t3=V [i] *V [i] ; 
c=(t3-tl+(t2/t3)); 
V [n] =sgrt (c) ; 
Pls [i] =R [n] * (P [i] *P [i] +Q [i] *Q [i]) / (v [i] *V [i]) 
Qls[i)=X[n]*(P[i]*P[i]+Q[i]*Q[i])/(V[i]*V[i]) 
} 

} 
} 

pls=qls=0.0; 
for(i=1; i<=nbus; i++) 

{ 
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pls=pls+Pls [i] ; 
qls=qls+Qls [ii; 

} 
Req=(pls)/ (P[1] *P[l]+Q[1] *Q[1]) 
Xeq= (qls) / (P(11 *P [] +Q [1] *Q(1]) 
z=Req*Req+Xeq*Xeq; 
zl=2*Xeq*Xeq*G[1]-2*Req*Xeq*H[1]+Req; 
z2=Xeq*Xeq*G [1] *G [1] +Req*Req*H [1] *H [1] 2*Req*Xeq*G [1] *H [1] +Req*G [l] 
z3=sgrt(fabs(zl*zl-4*z*z2)); 
z4=2*Req*Req*H[1]-2*Req*Xeq*G[1]+Xeq; 
z5=Req*Req*H [1] *H [1] +Xeq*Xeq*G [1] *G [1] -2*Req*Xeq*G [1] *H [1] +Xeq*H [1] 
z6=sgrt(fabs(z4*z4-4*z*z5)); 
p [1] = (z].-z3) / (2*z) 
q[l] = (z4-z6) / (2*z) 
if ((fabs (p [l] -P (l])) <EPS) 
break; 
else 

{ 
P[1]=p[1]; 
Q{1] =q [1] 

} 
rewind(fs); 

/*SUUPER LOOP END*/ 
} 	/* end of main loop */ 
z7=4* (Xeq*p [1] -Req*q [1]) * (Xeq*p [i] -Req*q [l]) ; 
z8=4* (Req*p [1] +Xeq*q [i]) 
if((z7-z8)<r1) 
{ 
} 
else 
{ 

goto out; 
} 

}/*my loop end*/ 
out: 
printf(In); 
printf("\nSystem 
printf ("\nQl  [10) 
getch(); 
} /* end of 

is not stable"); 
== %f\n",Q1110]); 

main */ 
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Software for 10-bus voltage dependent loads 
##include<stdio.h> 
#include<math.h> 
#define x 50 
#define y 50 
#define itmax 500 
#define EPS 0.00001 
#define BKVA 4186 
#define BKV 23 

void main() 

FILE*fp,*fs,*fq; 
int ii,count,countl; 
int i,j,k, A[x][y],nbus,n,nlbus,m; 
float 
P.[x] , Q [x] , p [x] , q [x] , V [x] , R [x] , X [x] , a, b, c, d, P2, Q2, z, zl, z2, z3 , z4, z5, z6, z7, z8; 
float tl,t2,t3,Pls[x],Qls[x],G[x],H[x],Req,Xeq,Pl[x],Ql[x],pls,gls; 
float oo,P11[x],Q11[x],wl[x],w2[x]; 
clrscrO; 
for(count=2;count<=10;count++) 
{ 
for (i=1;i<=x;i++) 

{ 
P [i] =Q [i] =R (i] =X[i] =V[i] =Pls [i] =Qls (i) =pls=qls=tl=t2=t3=0 .0; 
z=z1=z2=z3=z4=z5=z6=z7=z8=P1 [x] =Ql [x] =G [x] =H [x] =Pl1 [x] =Q1l [x] =0.0; 
wl [x] =w2 [x] =0 . 0; 

} 
fp=fopen("b5.dat","r"); 
fs=fopen("b7.dat","r"); 
fq=f open (11  r.res","w"); 
//clrscr(); 

/* CHECKING THE CONNECTIVITY OF BUSES*/ 

fscanf(fp,"%d",&nbus); 
for(i=1;i<=nbus;i++) 

{ 
for(j=1;j<=nbus;j++) 

{ 
A [i] [j]=O; 

} 
} 

for(i=1;i<=nbus;i++) 
{ 

A [i] [i] =1; 

for (i=1;i<=nbus;i++) 
{ 
for(; ; ) 

{ 
fscanf(fp,"%d",&n); 
if(n==999) 
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break; 
A [i] [n] =1; 

} 

/*SUMMATION OF ALL THE LOADS*/ 

fscanf (fp, "%d" , &nlbus); 
for(i=1;i<=nlbus;i++) 
{ 
fscanf (fp, "%d%f%f" , &m, &P1 [i] , &Q1 [i]) 
//P1 [m] =b; 
//Q1  [m] =d; 
} 

for(ii=l;ii<=10o0;ii++)/*my loop start*/ 

V[1]=1.0'; 
Ql [count] =Q1 [count] +0.1; 
P[1]=0.0; 
Q [1] =0.. 0; 
for (i=1; i<=nlbus; i++) 

P[1]=P[1]+P1[i]- ; 
Q [1] =Q [-1] +Ql [i] ; 

} 
fclose (fp) 

G[l] =P [1] ; 
H[1]=Q(1]; 

for(k=1;k<=itmax;k++) 	/* start of the main iterative loop */ 
{ 
R [x] =X [x] =V [x] =Pls [x] -Qls [x] =pls=qls=tl=t2=t3=0 .0; 
z=zl=z2=z3=z4=z5=z6=0.0; 
V(1] =1.0; 
for(i=1;i<=nbus;i++) 

{ 
for (n=i+1; n<=.nbus ; n++) 

{ 
if (A[i] [n] ==1) 

{ 
fscanf (fs, 11 %f%f%f%f" , &R [n] ,&X[n]  , &wl [n] , &w2 [n]) 

tl=2*(R[n]*P[i]+X[n]*Q[i]); 
t2= (R [n] *R [n] +X [l.] *x [n]) * (P [i] *P [i] +Q [i] *Q [i]) ; 
t3=V [i] *V [j] 
c= (t3-tl+ (t2/t3)) 
V [n] =sgrt (c) ; 	. 
P11 [n] =P1 [n] * (pow (V [nl , w1 [n])) 
Qil [n] =Q1 [n] * (pow (V [n] , w2 [n])) 
P [n] =P [i] - (R [n]) * (P [i] *P [i] +Q [i] *Q [i]) / (V [i] *V [i]) -P1l [n] ; 
Q[n]=Q[i]-(X[n])*(P[i]*P[i]+Q[i]*Q[i])/(V[i]*V[i])-Q11[n]; 
Pls [i] =R [n] * (P [i] *P [i] +Q [i] *Q [i]) / (V [i] *V [i]) ; 
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Qls[i7=x[n]*(P[i]*P[i]+Q[i]*Q[i])/(V[i]*V[i]) 
} 

} 
} 

pls=qls=0.0; 
for(i=1;i<=nbus;i++) 

{ 
pls=pls+Pls[i]; 
qls=qls+Qls [i] 

Req= (pls) / (P [1] *P [1] +Q [1] *Q [1]) ; 
Xeq=(qls)/(P[1]*P[1]+Q[1] *Q[1]); 
z=Req*Req+Xeq*Xeq; 
zl=2*Xeq*Xeq*G [1] -2*Req*Xeq*H [1] +Req; 
z2=Xeq*Xeq*G [1] *G [1] +Req*Req*H [1] *H [1] -2*Req*Xeq*G [1] *H [1] +Req*G [1] ; 
z3=sqrt(fabs(zl*zl-4*z*z2)); 

/* 	fprintf (fq, "\n%f %f %f %f" , z, zl, z2, z3) ; */ 
z4=2*Req*Req*H [1] -2*Req*Xeq*G [1] +Xeq; 
z5=Req*Req*H [1] *H [1] +Xeq*Xeq*G [1] *G [1] -2*Req*Xeq*G [1] *H [1] +Xeq*H [1] ; 
z6=sgrt (fabs (z4*z4-4*z*z5)) 
p11] = (zl-z3) / (2*z) 
q[1] = (z4-z6) / (2*z) 
if ((fabs (p [1] -P [1])) <EPS) 
break; 
else 

{ 
P11] =p [1] 
Q[1]=q[1]; 

} 
fclose (fs) 

/*SUUPER LOOP END*/ 
} 	/* end of main loop */ 

z7=4* (Xeq*p [1] -Req*q [l)) * (Xeq*p [1] -Req*q [1]) ; 
z8=4* (Req*p [1] +Xeq*q [1]) ; 
/*oo=z7-z8; 
fl=Xeq*G [1] -Req*H [1] ; 
el=(l-sqrt (fabs (1-oo))) /2; 
e2= (1+sqrt (fabs (1-00))) /2; 

if ((z7-z8) <=1) 
{ 

fprintf(fq,"\nsystem is voltage stable").; 
} 
else 

//fprintf(fq,"\nSystem is not stable"); 
//fprintf (fq, "\nPl [2] ==  
goto out; 

} 
//fprintf (fq, "P1 [2] = %f, V[23 = %f\n", Pl [2] ,`7[2]) ; 
}/*my loop end*/ 

out: 
printf(I'"); 
//printf("\nSystem is not stable"); 
printf (" \n%f\n" , Q1 [count]) ; 

} 
} 	/* end of main */ 
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Software.for 31-bus with lateral constant loads 

#include<stdio.h> 
#include<math.h> 
#define x 35 
#define y 35 
#define itmax 100 
#define EPS 0.00001 
#define BSMVA 15 
#define BSKV 23 
void main() 
{ 
FILE *fp, *fs, *fq, *fr, *frl, *fr2; 
int ii,count,tt,varl,aa[x],ml; 
int i,j,J,k,l, A[x][y],nbus,nlbus,m,n,nn,a[x],var,num; 
float P[x] ,Q(x)  , V [x] , G [x] ,H[x]   , GG [x] , HH [x] ,R[x]  , X [x] , c , cc, PP [x] , QQ [x] ; 
float 
t1;t2,t3,t4,t5,t6,z,z1,z2,z3,z4,z5,z6,RR,XX,P1oss,Qloss,VV[x],r[x],xl[x]; 
float pl [x] , ql [x] , P1 [x] , Q1 [x] , b, d, zz, zzl, zz2, zz3 , zz4, zz5, zz6, pp [x] , qq [x] ; 
float 
PLS, QLS, pls [x] , qls [x] , Pls [x] , Qls [x] , Req, Xeq, req, xeq, PP1 [x] , QQ1 [x] , p [x] , q [x] ; 
float iii,e,f,Pl1[x],Q11[x],z7,z8,temp,bb,dd; 
float zzz,zzzl,zzz2,zzz3,zzz4,zzz5,zzz6,Psload,Qsload,VS[x]; 
float ppp [x] , qqq [x] , Res,Xes, regs, xegs, PPP1 [x] , QQQ1 [x] ; 
for(i=1;i<=x;i++) 

{ 
P[i]=Q[i]=V[i]=R[i]=X[i]=P1[i]=Q1 [ii =PP[i]=QQ[i]=tl=t2=t3=G[i]=H[i)=0.0; 
VV[i]=t4=t5=t6=z=zl=z2=z3=z4=z5=z6=z7=z8=zz=zzl=zz2=zz3=zz4=zz5=zz6=0.0; 
Pis [i] =Qls [i] =pls [i] =qls [i] =req=xeq=Req=Xeq=pl [i] =ql [i] =Ploss=Qloss=0 .0; 
r [i] =xl [i] =PP1 [i] =QQ1 [i] =Pl1 [i] =Qll [x] =PPP1 [i] =QQQl [1) =0.0; 
//Res=Xes=Psload=Qsload=regs=xeqs=VS[x]=0.0; 
} 
for (i=1; i<=x; i++) 

a[i]=aa[i]=0; 

fp=fopen("newcl.dat","r"); 
fs=fopen.(.9newc2 .dat", "r") 
f r=fopen ("newc3 . dat'.' , "r") ; 
fr2=f open(".cc.dat","r"); 
fq=fopen("newr.res","w"); 
clrscrO; 

/* CHECKING THE CONNECTIVITY OF BUSES*/ 

fscanf (fp, "%d", &nbus) 
for(i=1; i<=nbus; i++) 

{ 
for(j=l;j<=nbus;j++) 

{ 
A[i] [j]=0; 

} 
for(i=1; i<=nbus; i++) 

{ 
A[i] [i] =1; 

51 



for (i=1;i<=nbus;i++) 
{ 

for(; ;) 
{ 

fscanf (fp, "%d" , &n) 
if(n==999) 
break; 
A[i] [n] =l; 

/* printf ("A[%d] [%d] =%d\n", i,n,A[i] [n]) ; */ 
} 

} 
/*SUMITION OF ALL THE LOADS*/ 

V [11=1.0; 
fscanf (fp,"%d",&var); 
for(i=l;i<=var;i++) 
fscanf (fp, "%d", &a [i]) 
fscanf (fp, "%d", &varl) 
for (i=1;i<=varl;i++) 
fscanf (fp, "%d",&aa[i]) 
fscanf(fp,"%d",&nlbus); 
for (i=1;i<=nlbus;i++) 

fscanf (fp, "%d %f %f", &m, &P1 [i] , &Q1 [i]) 
//printf (''**%f",P1 [31]) ; 
count=3; 
for (ii=l;ii<=1000; ii++) 
{ 

Pl [count] =P1 [count] +0.01; 
P[11=0.0; 
Q [1] =0 . 0; 
for (i=1;i<=nlbus;i++) 
{ 
P [1] =P [1] +Pl [i] ; 
Q [1] =Q [1] +Q1 [i] 

} 
fclose(fp); 

Gil] =P [1] ; 
H[1]=Q[1]; 

for(k=l;k<=itmax;k++) 	//chota loop 
{ 
for(1=1;1<=nbus;l++) 

{ 
for(n=1+1;n<=nbus;n++) 
{ 

if (A [1] [n] ==1) 
{ 
fscanf (fs, "%f %f" , &R [n] , &X [n]) ; 

tl=2* (R [n] *P [1] +X [n] *Q [1]) 
t2= (R [n] *R [n] +X [n] *X [n]) * (P [1] *P [1] +Q [1] *Q [1]) 
t3= (Vii] *V [1] ) ; 
c=(t3-tl+(t2/t3)); 
V [n] =sgrt (c) ; 
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if (a [n] ==l) 
{ 	/*start of lateral loop */ 

fscanf (fr, 11%d", &nn) ; 

for(i=1;i<=nn;i++) 
{ 

pl[i]=ql[i]=0. 0; 
fscanf (fr, "%d", &num) 
//printf ("&&%f\n" ,P1  [17]) ; 

pl[i]=P1[num]; 
ql[i]=Q1[num]; 

} 
PP [i] =0.0; 
QQ [1] =0. 0; 
for(i=1;i<=nn;i++) 
{ 
PP [1] =PP [1] +pl [i] 
Q.Q[1]=QQ[1]+pl[i]; 

} 
GG[1]=PP[1]; 

HH [1] =QQ [1] ; 
W[1]=V[n]; .. 

for (j =1; j <=nn; j++) 

fscanf (fr, "%f%f", &r [j ] , &xl [j ]) 
t4=2* (r [j ] *PP [j ] +xl [j ] *QQ [j ]) ; 
t5=(r[j] *r[j]+xl[j] *xl[j])*(PP[j]*PP[j]+QQ[j]*QQ[j] ); 
t6= (W [j ] *W [j ]) ; 
cc=(t6-t4+(t5/t6)); 
J=j +1; 
VV[J]=sgrt(cc); 
PP[J]=PP[j]-r[j]*(PP[j]*PP[j]+QQ[j]*QQ[j])/(VV[j]*`V[j])-pl[j]; 
QQ[J]=QQ[j] -xl[j]*(QQ[j]*QQ[j]+PP[j]*PP[jl)/(W[j]*VV[jI)-ql[j]; 
pls[jI=r[j]*(PP[j]*PP[j]+QQ[j]*QQ[j])/(w[j]*VV[j]); 
qls[j]=x1[ j] * (QQ[J] *QQ[j]+PP[3]*PP[j])/(W[j]*W[j]); 

PLS=QLS=0.0; 
for(i=l;i<=nn;i++) 
{ 

PLS=PLS+pls [i] ; 
QLS=QLS+qls [i] ; 
} 
req=PLS/ (PP [l] *PP [1] +QQ [1] *QQ [1]) 
xeq=QLS/ (PP [1] *PP [1] +QQ [1] *QQ [1]) 
zz=req*req+xeq*xeq; 
zzl=2*xeq*xeq*GG [1] -2*req*xeq*HH [1] +req*w [1] *W [1] 
zz2=xeq*xeq*GG [1] *GG [11 +req*req*HH [1] *HH [1] - 
2*req*xeq*GG [1] *HH [1] +req*GG [1] *W [1] *W [1] 
zz3=sgrt(fabs(zzl*zzl-4*zz*zz2)); 

zz4=2*req*req*HH [].] -2*xeq*req*GG [1] +xeq*W [1] *W [1] 
zz5=req*req*HH [1] *HH [1] +xeq*xeq*GG [1] *GG [1] - 
2*req*xeq*GG [1] *HH [1] +xeq*HH [1] *W [1] *W [1] 
zz6=sgrt(fabs(zz4*zz4-4*zz*zz5)); 
pp [1] = (zzl-zz3) / (2*zz) ; 
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qq [1] = (zz4-zz6) / (2*zz) 

PP1 [n] =pp [1] ; 
QQ1[n]=qq[1]; 
}- 	 //end of lateral loop 

if (aa [n] ==1) 

fscanf (fr2, "%d%f%f", &ml, &Res, &Xes) 
Psload=Pl [ml] ; 
Qsload=Q1 [ml] 
//printf("*%f %f\n",Psload,Qsload); 

VS [1] =V [n] 
/*t7=2*(Res*Psload+Xes*Qsload); 
t8= (Res*Res+Xes*Xes* (Psload*Psload+Qsload*Qsload); 
t9= (Vs [1] *Vs [1] ) ; 
ccc=(t9-t7+(t8/t9)); 
Vs [2] =sqrt (ccc) ; 	*/ 
reqs=Res/ (VS [1] *VS [11) ; 
xeqs=Xes/ (VS [1] *VS [1]) ; 
zzz=reqs*reqs+xeqs*xeqs;  
zzz1=2*xegs*xeqs*Psl.oad-2*regs*xegs*Qsload+regs*VS[l]*VS[1]; 
zzz2=xegs*xegs*Psload*Psload+regs*regs*Qs load*Qsload-
2*regs*xegs*Psload*Qsload+regs*Psload*VS[1] *VS  [1],; 
zz3=sqrt(fabs(zzl*zzl-4*zz*zz2)); 
zzz3=sgrt(fabs(zzzl*zzzl-4*zzz*zzz2)); 
zzz4=2*regs*reqs*Qsload-2*xegs*regs*Psload+xegs*VS[l]*V3[1]; 
zz_z5=regs*regs*Qsload*Qsload+xegs*xegs*Ps load*Psload-
2*regs*xegs*Psload*Qsload+xegs*Qsload*VS[1]*VS[1]; 
zzz6=sqrt(fabs(zzz4*zzz4-4*zzz*zzz5)); 
ppp [1] = (zzzl-zzz3) / (2*zzz) ; 
qqq [1] = (zzz4-zzz6) / (2*zzz) 
PPP1 [n] =PpP  [1] 
QQQ1 [n] =qqq [1] ; 
} 

P11 [n] =P1 [n] +PP1 [n] +PPP1 [n] 
Q11 [n] =Q1 [n] +QQ1 [n] +QQQ1 [n] 
P[n]=P[1]-(R[n])*(P[1]*P[1]+Q[1]*Q[1])/(V[1]*V[1])-P11(n); 
Q [n] =Q [1] - (X [n]) * (P [1] *]P [1] +Q [1] *Q [1]) / (V [1] *V [1]) -Qll [n] ; 
Pis [1] =R [n] * (P [1] *P [1] +Q [1] *Q [1]) / (V [1] *V [1]) ; 
Qls [l] =X [n] * (P [1] *P [1] +Q [1] *Q [1]) / (V [1] *V [1]) 

} 

Ploss=Qloss=0.0; 
for(i=l;i<=nbus;i++) 

Ploss=Ploss+Pls [i] 
Qloss=Qloss+Qls [i] 
} 

Req=Ploss/ (P [1] *P [11+0(1] *Q [11); 
Xeq=Qloss/ (P [1] *P [1] +Q [1] *Q [1]) ; 
z=Req*Req+Xeq*Xeq; 
zl=2*Xeq*Xeq*G [1] -2*Req*Xeq*H [1] +Req; 
z2=Xeq*Xeq*G [1] *G [1] +Req*Req*H [1] *H [1] -2*Req*Xeq*G [1] *H [1] +Req*G [1] 
z3=sgrt(fabs(zl*zl-4*z*z2)); 
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z4=2*Req*Req*H[1]-2*Req*Xeq*G[1]+Xeq; 
z5=Req*Req*H [1] *H [l] +Xeq*Xeq*G [1] *G [1] -2 *Req*Xeq*G [l] *H [1] +Xeq*H [l] ; 
z6=sgrt(fabs(z4*z4-4*z*z5)); 
p[i] _ (zl-z3) / (2*z) 
q[l] _ (z4-z6) / (2*z) 
if (fabs (p [ll -P [11) <EPS) 
break; 
else 
{ 
P [1] =P [1] 
Q (1] =q [l] ; 

rewind(fs) ; 
rewind(fr); 
rewind(fr2); 

} 	 /*end of chota loop/ 
z7=4*pow((Xeq*p [l] -Req*q [1]) , 2) ; 
z8=4* (Req*p [1] +Xeq*q [1]) 
if((z7-z8)<=l) 
{ 

fprintf (fq, "SYSTEM IS VOLTAGE STABLE"); 

} 
else 
{ 

fprintf(fq,"SYSTEM IS NOT VOLTAGE STABLE"); 
goto out; 
} 

///printf("%f\n",Ql[31); 
//printf ("Ql [%d] = %f\n" , ii, Pl [count]) 

} //my loop end 
out: 
printf (I"') 

printf("Ql=%f\n",P1[count]); 
getch O ; 
} 
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Software for 31-bus with lateral voltage dependent loads 
#include<stdio.h> 
#include<math.h> 
#define x 50 
#define y 50 
#define itmax 10 
#define EPS 0.00001 
#define BSMVA 15 
#define BSKV 23 
void main() 
{ 
FILE*fp,*fs,*fq,*fr,*frl,*fr2; 
int ii,count,tt,varl,aa[x],mi; 
int i , j , J, k, l , A [x] [y] , nbus , nlbus , m, n, nn, a [x] , var, num; 
float P [x] ,Q[x]  , V [x) ,G[x]   ,H[x] , GG [x] , HH [x] ,R[x]  ,X[x] , c, cc, PP [x] , QQ [x] ; 
float 
tl,t2,t3,t4,t5,t6,z,zl,z2,z3,z4,z5,z6,RR,XX,Ploss,Qloss,VV[x],r[x],xl[x]; 
float pl (x] , ql [x] ,P1[x]  ,Ql[x] , b, d, zz, zzl , zz2 , zz3 , zz4 , zz5, zz6, pp [x] , qq [x] 
float 
PLS, QLS , pls [x] , qls [x] , Pls [x] , Qls [x] , Req, Xeq, req, xeq, PP1 [x] , QQ1 [x] , p [x] , q,[x] ; 
float iii,e,f,Pll[x],Qll[x],z7,z8,temp,bb,dd; 
float zzz,zzzl,zzz2,zzz3,zzz4,zzz5,zzz6,Psload,Qsload,VS[x]; 
float ppp [x] , qqq [x] ,Res , Xes , regs , xegs , PPP1 [x] , QQQ1 [x] , wl [x] ,w2 Lx]; 
float Pln [x] , Qln [x] , w3 [x] , w4 [x] ; 
for(i=1;i<=x;i++) 

{ 
P[i]=Q[i]=V[i]=R[i]=X [ii =P1[i]=Q1[i]=PP[i]=QQ[i]=tl=t2=t3=G[i]=H[i]=0.0; 
VV[i]=t4=t5=t6=z=z1=z2=z3=z4=z5=z6=z7=z8=zz=zzl=zz2=zz3=zz4=zz5=zz6=0.0; 
Pis [i] =Qls [i] =pls [i] =qls [i] =req=xeq=Req=Xeq=pl [i] =ql [i] =Ploss=Qloss=0 .0; 
r[i] =xl [i] =PP1 [i] =QQ1 [i] =P1l [i] =Qll [x] =PPP1 [i] =QQQ1 [i] =0.0; 
//Res=Xes=Psload=Qsload=reqs=xeqs=VS[x]=0.0; 

for (i=1;i<=x;i++) 

a [i] =aa [i] =0; 
} 

fp=fopen("newcl.dat","r"); 
fs=fopen("newc5.dat","r"); 
fr=fopen("newc4.dat","r"); 
//frl=fopen("clo.dat,, ,"r"); 
fr2=fopen("cc.dat","r"); 
fq=fopen("newr.res","w"); 
clrscr(); 

/* CHECKING THE CONNECTIVITY OF BUSES*/ 

fscanf (fp, "%d", &nbus) 
for (i=1;i<=nbus;i++) 

{ 
for (j=1;j<=nbus;j++) 

{ 
A[i] [j]=O; 

for (i=1;i<=nbus;i++) 
{ 
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A [i] [i] =1; 
/* printf("A[%d] [%d]=%d\n",i,i,A[i3 [ii) .*/ 

} 

for(i=1;i<=nbus;i++) 
{ 

for(; ; ) 
{ 

fscanf (fp, 1' %d" , &n) ; 
if (n==999) 
break; 
A[i] [n] =1; 

/* printf("A[%d] [%d]=%d\n",i,n,A[i] [n]);*/ 
} 

/*Sum all the loads*/ 

V[1]=1.0; 
fscanf (fp, 11 %d", &var) ; 
for (i=1; i<=var; i++) 
fscanf (fp, "%d", &a [i]) 
fscanf (fp, '1 %d", &varl) 
for(i=1;i<=varl;i++) 
fscanf (fp, 11 %d 11 , &aa [i]) 
fscanf (fp, !~%du, &nlbus) 
for (i=1;i<=nlbus;i++) 

fscanf (fp, "%d %f %f", &m, &P1 [i] , &Q1 [I]); 
count=31; 
for(ii=l;ii<=1000; ii++) 
{ 
fprintf (fq, "iteration [%d] \n" , ii) ; 
Q1 [count] =Q1 [count] +0.01; 

P[11=0.0 ; 
Q [11=0.0; 

• for(i=1;i<=nlbus;i++) 
{. 

P[1]=P[1]+P1[i]; 
Q[1]=Q[1]+Q1[i]; 

} 
fclose (fp) 

G[1]=P[l] 
H [1] =Q [l] ; 

for(k=l;k<=itmax;k++) 	//chota loop 
{ 
for(1=1;1<=nbus;l++) 

{ 

for(n=1+1;n<=nbus;n++) 
{ 

if (A [1] [n] ==1) 
{ 
fscanf (fs, "%f%f%f%f" , &R [n] , &X [n] , &w3 [n] , &w4 [n]) ; 

t1=2* (R [n] *P [1] +X [n] *Q [1]) 
t2= (R [n] *R [n] +X [n] *X [n]) * (P [1] *P [1] +Q [1] *Q [1]) 
t3= (V [1] *V [1]) ; 
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c=(t3-tl+(t2/t3)); 
V [n] =sgrt (c) ; 

if (a [n] ==l) 
{ 	//printf ("%f\n" , Pl [31]) ; 

fscanf (fr, "%d" , &nn) 
for (i=1;i<=nn;i++) 
{ 

pl [i] =ql [±1=0.0; 
fscanf (fr, "%d" , &num) 
/ /printf ("%d\n" , num) ; getch O 

pl [i] =P1 [num] ; 
ql[i]=Q1[num]; 

} 
PP [1] =0 . 0; 
QQ [1] =0 .0; 
for (i=1;i<=nn;i++) 
{ 
PP [1] =PP [1] +pl [i] 
QQ[1]=QQ[17+pl[i]; 

} 
GG [1] =PP [1] 

/*start of lateral loop */ 

HH [1] =QQ [1] 
VV[1] =V[n] ; 

for (j=1;j<=nn;j++) 
{ 

fscanf (fr, "%f%f%f%f" , &r [j ] , &xI [j ] , &wl [j ] , &w2 [j ]) ; 
t4=2* (r [j ] *PP [j ] +xl [j ] *QQ [j ]) 
t5=(r [ii *r[j]+xl[j] *xi  [j])* (PP [j]*PP[j]+QQ[j]*QQ[j]) 
t6= (VV[j] *VV[j]) ; 
cc= (t6-t4+(t5/t6)); 
J=j +1; 
VV [J] =sgrt (cc) ; 
pl[j]=Pl[j]*(pow(VV[J],wl[j])); 
ql [j ] =ql [j ] * (pow (w [J] , w2 [j ])) ; 
PP[J]=PP[j]-r[jl*(PP[j]*PP[j]+QQ[j]*QQ[j])/(VV[j]*VV[j]) -pl[j]; 
QQ[J]=QQ[ j] -xl[ j]*(QQ[j]*QQ[jI+PP[j]*PP[j])/(VV[j]*VV[j]) -gl[j] 
pls[j]=r[j]*(PP[j]*PP[j]+QQ[jl*QQ[j])/(VV[j]*VV[j]); 
qls[jl=xl[ j]*(QQ[ j]*QQ [jI +PP[j]*PP[j])/(W[j]*VV[j]); 

} 
PLS=QLS=0.0; 
for(i=1;i<=nn;i++) 
{ 

PLS=PLS+pls [i] 
QLS=QLS+qls [i] 
} 
req=PLS/ (PP [1] *PP [1] +QQ [1] *QQ [1] ) 
xeq=QLS/ (PP [1] *PP [1] +QQ [1] *QQ [1] ) 

zz=req*req+xeq*xeq; 
zzl=2*xeq*xeq*GG [1] -2*req*xeq*HH [1] +req*VV [1] *VV [1] 
zz2=xeq*xeq*GG [1] *GG [1] +req*req*HH [1] *HH [1] - 
2*req*xeq*GG [1] *HH [1] +req*GG [1] *VV [1] *VV  [1] ; 
zz3=sqrt(fabs(zzl*zzl-4*zz*zz2)); 
zz4=2*req*req*HH [l]2*xeq*req*GG [1] +xeq*VV [1] *VV [l] 
zz5=req*req*HH [1] *HH [1] +xeq*xeq*GG [1] *GG [1] - 
2*req*xeq*GG [1] *HH (1] +xeq*HH [1] *VV [1] *VV [1] ; 
zz6=sgrt(fabs(zz4*zz4-4*zz*zz5)); 



pp [1] = (zzl-zz3) / (2*zz) 
qq [1] = (zz4-zz6) / (2*zz) 

PP1(n]=Pp[1]; 
QQ1[n]=qq[1]; 
} 	//end of lateral loop 

if (aa [n] ==1) 

fscanf (fr2, "%d%f%f", &ml, &Res, &Xes) 
Psload=P1 [ml] ; 
Qsload=Q1 [ml] ; 
//printf (h'*%f %f\n",Psload,Qsload) 

VS [I] =V [n.] ; - 
/*t7=2*(Res*Psload+Xes*Qsload); 
t8=(Res*Res+Xes*Xes*(Psload*Psload+Qsload*Qsload); 
t9= (Vs [1] *Vs [1]) ; 
ccc=(t9-t7+(t8/t9)); 
Vs [2] =sgrt (ccc) ; 	*/ 
reqs=Res/ (VS [1] *VS [11); 
xeqs=Xes/ (VS [1] *VS [1]) ; 

zzz=reqs*reqs+xeqs*xeqs; 
zzzl=2*xegs*xeqs*Psload-2*regs*xegs*Qsload+regs*VS[l]*VS[l]; 
z.zz2=xegs*xegs*Psload*Psload+regs*regs*Qsload*Qsload- 
2*regs*xegs*Psload*Qsload+regs*Psload*VS[1]*VS[1];. 
zzz3=sgrt(fabs(zzzl*zzzl-4*zzz*zzz2)); 
zzz4=2*regs*reqs*Qsload-2*xegs*regs*Psload+xegs*VS[1]*VS[I]; 
zzz5=reqs*reqs*Qsload*Qsload+xeqs*xeqs*Psload*Psload_ 
2*reqs*xeqs*Psload*Qsload+xeqs*Qsload*VS Eli *VS [ii; 
zzz6=sgrt(fabs(zzz4*zzz4-4*zzz*zzz5)); 
ppp [1] = (zzzl-zzz3) / (2*zzz) ; 
qqq [1] = (zzz4-zzz6) / (2*zzz) 
//printf ("**%f %f\n",ppP [i] , qqq [l]) 
PPP1 [n] =PPP [1] ; 
QQQ1 [n] =qqq [1] ; 
//printf ("-Wf %-f\n" , PPPl [n] , QQQ1 [nl) ; 
} 

P11 [n] =P1 [n] +PP1 [n] +PPP1 En]; 
Q11 [n] =Ql [n] +QQ1 [n] +QQQ1 [n); 
Pin [n] =Pll [n] * (pow (V [nl , w3 [n])) 
Qln [n] =Qli [n] * (pow (V [n] , w4 [n])) ; 
P [n] =P [1] - (R [n]) * (P [l] *P [1] +Q [1] *Q [1]) / (V [1] *V [1]) -Pll [nl ; 
Q[n] =Q [l] - (X [n]) * (P [1] *P [1] +Q [1] *Q [1] ) / (V [1] *V[1]) -Q11 [n] ; 
Pls [1] =R [n] * (P [1] *P [1] +Q [1] *Q [1]) / (V [1] *V [1]) , 
Qls [1] =X [n] * (p [1] *P [1] +Q [1] *Q [1]) / (V [1] *V [1]) ; 

} 

Ploss=Qloss=0.0; 
for(i=1;i<=nbus;i++) 
t 
Ploss=Ploss+Pls[1]; 
Q1oss=Qloss+Qls[i); 
} 

//fprintf(fq,"~f %f\n",Ploss,Qloss); 
Req=Ploss/ (P [I] *P [1] +0(11 *Q [1] ) 
Xec=Q1oss/(P[I]*P[1]+Q[]]*Q[1]) 

59 



z=Req*Req+Xeq*Xeq; 
zl=2*Xeq*Xeq*G [1] -2*Req*Xeq*H [1] +Req; 
z2=Xeq*Xeq*G [1] *G [1] +Req*Req*H [1] *H [1] -2*Req*Xeq*G [1] *H [1] +Req*G [l] 
z3=sgrt(fabs(z1*zl-4*z*z2)); 

//fprintf (fq, "\n%f %f %f %f", z, zl, z2, z3) 
z4=2*Req*Req*H[1]-2*Req*Xeq*G[1]+Xeq; 
z5=Req*Req*H [1] *H [1] +Xeq*Xeq*G [1] *G [1] -2*Req*Xeq*G [1] *H [1] +Xeq*H [1] 
z6=sgrt(fabs(z4*z4-4*z*z5)); 
p [l] = (zl-z3) / (2*z) 
q[l] = (z4-z6) / (2*z) 

fprintf (fq, "\np [l] =%f q [1] =%f\tReq=%f Xeq=%f \n", p [l] , q [l] , Req,Xeq) ; 
if (fabs (p [1] -PD.]) <EPS) 
break; 
else 
{ 
P [1] =P [1] ; 
Q[1]=q[1] ; 
} 
rewind(fs); 
rewind(fr) ; 
rewind(fr2); 

} 	 /*end of chota loop*/ 
fprintf (fq, "\np [1] =%f q [l] =%f\tReq=%f Xeq=%f\n".p [1] , q [1] ,Req,Xeq) ; 

z7=4*pow ((Xeq*p [1] -Req*q [1]) , 2) 
z8=4* (Req*p [1] +Xeq*q [1]) 
if ( (z7-z8) <=1) 
{ 

//fprintf(fq, "SYSTEM IS VOLTAGE STABLES"); 
} 
else 
{ 

//fprintf(fq,"SYSTEM IS NOT VOLTAGE STABLE"); 
goto out; 
} 
printf ("Q1 [%d] =%f\n,,  , ii, Q1 [count]) ; 

} //my loop end 
out: 
printf (" ") 
printf("P1[%d] =%f\n",count,Ql[count]); 
getchO; 

} 



Software. for Solving nonlinear equation of voltage dependent 

loads 
#include<stdio.h> 
#include<math.h> 
#include<conio.h> 
#define x 2 
#define y 2 
#define itmax 100 

void main() 

FILE *fp; 
int i,j,k; 
float R,X,s,m,a[2][2],z,zl,tl,t2,t3,t4,t5,t6,t7,t8,t9,tlO,tll,Fl,e; 
float z2,z3,yl,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,F2, f1; 
float A,B,C,D,E,F,Temp,Templ,Temp2; 
float el,f,P,Q; 
clrscr(); 
fp=f open ("nl . res" , "w'l) 
e=0 .5; 
f=0.5; 
for(k=l;k<=itmax;k++) 
{ 	//iteration loop start 

P=Q=0.0; 
R=X=s=m=z=zl=tl=t2=t3=t4=t5=t6=t7=t8=t9=t10=tll=0.0; 
z2=z3=yl=y2=y3=y4=y5=y6=y7=y8=y9=ylO=yll=F1=F2=0.0; 
A=B=C=D=E=F=Temp=Templ=Temp2=el=fl=0.0; 
a[i] [1] =a [1] [2] =a [2] [1] =a [2] [2]=0.0; 
P=2.954610; 
Q=1.000000; 
R=0.017992; 
X=0:0-22725; 
s=0; 
m=0; 

fprintf(fp,"\n\nno. of iteration[%d]",k); 
zl=P*(R*R+X*X); 
z=log(zl/R); 
tl=2*R*R* (2-s) 
t2=12*R*R*(s-1); 
t3=2*R*R*(2*z+9-12*s); 
t4=4*R*R*(5*s-4-2*z); 
t5=(6*R*R-6*s*R*R+4*z*R*R); 
t6=(2*f*f*s*R*R-4*f*X*R-4*f*f*R*R); 
t7=(4*f*X*R-4*R*R*s*f*f+4*f*f*R*R); 
t8=(2*R*R*s*f*f-R*R*s*f*f*f*f+2*f*f*X*X+2*f*f*f*f*R*R+4*f*f*f*R*X) 

.t9=R*R*s*f*f*f*f; 
tlO=2*R*R*e*e-s*R*R*e*e+2*R*R*s*e-s*R*R; 
tll=e*e*(s*R*R*e*e-2*R*R*e*e-2*R*R*s*e+2*R*R*e+R*R*s*e*e+X*X*e*e); 
z2=Q*(R*.R+X*X); 
z3=log(z2/X); 
y1=2*X*X*(2-m); 
y2=12*X*X*(m-1); 
y3=2*X*X*(2*z3+9-12*m); 
y4=4*X*X*(5*m-4-2*z3); 
y5=2*X*X*(2*z3+3-3*m); 
y6=(2*m*X*X*f*f-4*f*f*X*X+4*f*R*X); 
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y7=4*f*X*(f*R-m*X*f-R); 
y8=f*f*(2*X*X*m-f*f*X*X*m+2*R*R+2*f*f*X*X-4*f*R*X); 
y9=X*X*m*f*f*f*f; 
y10=2*X*X*e*e-m*X*X*e*e+2*m*X*X*e-m*X*X; 
yll=e*e*(e*e*m*X*X-2*X*X*e*e+2*X*R*e-2*m*X*X*e+X*X*m-R*R); 
/*printf("*%f",f);*/ 

F1=tl*pow(e,8)+t2*pow(e,7)+t3*pow(e,6)+t4*pow(e,5)+t5*pow(e,4)+t6*pow(e,4)+t7*  

pow (e, 3) +t8*pow (e, 2) +t9* (2*e-1) ; 

F2=yl*pow(e,8)+y2*pow(e,7)+y3*pow(e,6)+y4*pow(e,5)+y5*pow(e,4)+y6*pow(e,4)+y7*  

pow(e,3)+y8*pow(e,2)+y9*(2*e-1); 
/* 	printf ("**%f", f) ; */ 

//fprintf(fp,"\n%f %f",Fl,F2); 

A=a [1] [1] =8*tl*pow (e, 7) +7*t2*pow(e, 6) +6*t3*pow(e, 5) +5*t4*pow(e, 4) +4*t5*pow (e, 3 
)+4*t6*pow(e,3)+3*t7*pow(e,2)+2*t8*e+2*t9; 

B=a [1] [2] =4*f*f*f*tlO+12*f*f*R*X*e*e+4*f*tll+4*X*R*e*e*e* (1-e) ; 

C=a[2][1]=8*yl*pow(e,7)+7*y2*pow(e,6)+6*y3*pow(e,5)+5*y4*pow(e,4)+4*y5*pow(e,3  

+4*y6*pow(e,3)+3*y7*pow(e,2)+2*y8*e+2*y9; 
D=a[2][2]=4*f*f*f*ylO-12*f*f*R*X*e*e+4*f*y11+4*X*R*e*e*e*(1-e); 

//fprintf(fp,"\n%f %f %f %f",a[1] (1],a[1] [2],a[2] [1],a[2] [2]); 
E=-1*F1; 
F=-1*F2; 
//fprintf(fp,"\n%f %f",E,F); 
Temp=A*D-B*C; 
//fprintf (fp, "\nTemp=%f'l ,Temp) 
Tempt=D*E-B*F; 
Temp2=A*F-C*E; 
//fprintf(fp,"\nTempl=.%f Temp2=%f",Templ,Temp2); 
el=Templ/Temp; 
fl=Temp2/Temp; 
//fprintf (fp, "\net=%f fl=%f",el, fl) ; 
if (tabs (Fl) <=0.000001 && fabs (F2) <=0.000001) 
break; 
else 
{ 
e= (e+el) ; 
f= (.f+f1) ; 
} 
fprintf(fp,"\n\ne=%f f=%f",e,f); 

} //iteration loop end 
fprintf(fp,"\nFINAL VALUE %f %f",e,f) 
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