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ABSTRACT 

Every physical system can be transformed into a mathematical model. 

The modeling procedure often leads to a comprehensive description of a process 

in the form of higher order differential equations, which are difficult to solve for 

analysis and design. These differential equations can be represented either in 

the form of a high order state space model in the form of first order differential 

equations or a high order transfer function. 

Model order reduction is significant for better understanding a system's 

behavior, simplifying controller structures, and reducing system analysis and 

design complexity. In reduced order modeling the high order transfer function 

model or the high state space model is required to be reduced in such a way that 

the reduced order model retains the important properties of the original high 

order system. 

In this dissertation continued fraction expansion (CFE) approach has been 

used for deriving the reduced order models using second Cauer form. The 

method is quite simple and attractive but it has a serious drawback of producing 

unstable (stable) models for stable (unstable) systems. To overcome this 

drawback a mixed method has been developed using Routh approximation, 

which has been extended for discrete time systems also. The method is having a 

unique feature, that it gives stable models for stable systems and matches the 

initial and final values of the responses. The methods discussed, has been tried 

to reduce single input single output (SISO) systems and extendable for multi-

input multi-output (MIMO) systems. 

Necessary computer programmes have been developed in 'C++,  

environment for CFE, bilinear transformation and computing a (Routh) quotients. 

The results of the original and the reduced models have been compared by 

plotting the unit step responses with the help of MATLAB software package. 
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Chapter-1 

INTRODUCTION 

1.1 NECESSITY OF MODEL REDUCTION 

Complex dynamic systems e.g. power system, communication system, 

transportation system, economic system etc. are frequently described by a large 

number of differential equations. When many such systems are interconnected, 

the resulting system size may be too large to be conveniently handled, even by 

the large computers. A typical example of this situation occurs in the dynamic-

stability studies of modern interconnected power systems. Dynamic stability of 

power systems is defined as the stability under infinitesimal disturbances with the 

action of the regulating devices taken into account. Under dynamic conditions, 

the system equations are linear, but the total number of differential equations that 

describe the system performance increases rapidly with the increase in the 

number of interconnected machines. Therefore, the need for techniques to 

produce lower-order dynamic equivalents of higher-order systems is apparent. 

In recent years, considerable attention has been given to the problem of 

approximating a linear dynamic system of high order by a model having a lower 

order. The time-domain methods of system simplification are usually based on 

the neglect of the non-dominant eigen values of the system or on the 

minimization of a functional of error between the output vectors of the reduced 

model and original system. On the other hand, the frequency-domain methods of 

system simplification usually consist of the determination of a transfer function 

whose frequency response is close to that of the system. 

A large number of methods of reduction are based on the retention of the 

dominant poles of the system in the reduced model. The most important feature 

of these methods is that the reduced order model is always stable if high order 
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system is stable. However most of these methods assume that the system is 

described in a state-vector form, and thus involve the computation of the eigen 

values and eigen vectors of the high order state matrix. This is computationally 

very cumbersome, and is known to fail when eigen values of the system are 

widely spread out. 

Some of the reasons for using reduced order models of high order linear systems 

could be: 

o The development of state space methods and optimal control techniques 

has made the design of a control system for high order multivariable 

system quite feasible when the order of the system becomes very high, 

special numerical techniques are required to carry out the calculations at a 

reasonable cost, on a digital computer. Hence the reduced order model 

reduces computational complexity, which leads to the saving in both the 

memory and time requirement of the computer. 

a A system of uncomfortably high order poses difficulties in its analysis and 

synthesis. Hence in dealing with such a high order system is to 

approximate it by a low order system such that characteristics of the 

original system, e.g., time constant, damping ratio, natural frequency etc. 

are similar. 

1.2 APPLICATION OF REDUCED ORDER MODELS 

The reduced order models and reduction techniques have wide 

application in the control engineering field. A few are discussed below: 

o Dynamic errors of high order systems can be calculated by using low 

order models. 

e Transient response sensitivity of high order systems can be predicted by 

using low order models. 
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• Provides guidelines for on-line interactive modeling. 

• In control system design and in designing reduced order estimators. 

• And many other applications like, sub-optimal controls, adaptive controls 
etc. 

1.3 STATEMENT OF MODEL REDUCTION PROBLEM 

1.3.1 CONTINUOUS TIME SYSTEMS 

Consider the linear time invariant dynamic system expressed in state 

space form as: 

x =Ax+Bu 
y = Cx 

.......(1.1) 

where x E R", u E R", y E RI'; with p < n, q <n and p < or >_ are state, control 

and output vectors; (A) n  * n  , (B) „ • q  , (C) p  • n  matrices. q is the number of inputs 

and p is the number of outputs. 

Alternatively (1.1) can be expressed in frequency domain as: 

Y(s) = G(s) * U(s) 

G(s) =C(sI — A)-' B = N(s) 
D(s) 

......(1.2) 

D(s) = det(sI—A)=s" +a,s"-' +a2s°- 2  + ....... 	 ......(1.3) 
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For single input single output (SISO) system (p = q = 1) and G(s) is the transfer 

function which can be put into the form: 

n-1 	a-2 	n-3 
G(s)= 

b1 s 	+b2 s 	+ba s 	+.......+b„s+b,, 
S „ + alsa-1 + a 2 s"-2  +....... + a„_,s + a,, 

......(1.4) 

In the time domain methods a reduced model of order r < n is given by 

the state equations: 

x,. = A,.xr  + Br u 

Yr = Cr Xr  
......(1.5) 

where, x r  E Rr, u e R', y,. E R '3 ; and Ar , Br , Cr  are constant matrices with 

dimensions compatible with x,.,u and yr  , such that for a specified set of inputs 

the reduced model response is a satisfactory approximation to the system 

response. 

In the frequency domain, for SISO systems, the reduced model of order 

r < n is represented by: 

	

G (s)  _ d1  sr_l  + Ll 2S r -2  + d3s 3  + ....... + d,._1 S  + dr  _ Nr(S) 	 (1.6) r 	 -I 	r -2 s +e,sr  +e2s 	+.......+e,._,s+er 	Dr (s) 

1.3.2 DISCRETE TIME SYSTEMS 

Dynamic systems [30] can be described by discrete state-space 

models or by input-output relationships in the z-transform domain. The purpose 
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here is to extend the ideas and methods of simplification by the continued 

fraction expansion to discrete time systems. This extension will serve to unify the 

existing theoretical basis and will allow to present techniques, which are 

applicable to a wider class of system models. By reviewing the basic system 

properties of discrete time models in contrast to continuous-time models. 

Let the discrete-time model be described by the difference equation: 

x [(k + 1)T] = Ax (kT) + B u (kT) 
(1.7) 

y (kT) = C x (kT)  

Where x (kT) E R" , u (kT) E Rm , Y (kT) c Rp are the state, input and 

output 	vectors 	respectively. The A, 	B and C are coefficient matrices of 

appropriate dimensions. 	The input output description of 	(1.7) is given by the 

z- transform transfer function: 

G(z) = C [zI - A]-' B 	 .......(1.8) 

We recall that the use of the relation z = est  transforms the s-

plane of the continuous time systems into the z-plane of the discrete systems. In 

particular: 

♦ The left- half of the s-plane is mapped into the unit circle in the z-plane where 

the points s = 0 and s = - co corresponds to z = 1 and z = 0 respectively. 

♦ The right-half of the s-plane is mapped into the region outside the unit circle 

in the z-plane where the point s = oo corresponds to the point z = co. 
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Therefore, (1.7) can alternatively described for SISO system in the form of 
nth  order transfer function: 

+ b2 z i-2  + b3 z"-3  + ....... + bi1-1  z + b,,  
G(Z) 	f + a,Z n-1 + a2Zs-2 +....... + a,,_,z + are 

.........(1.9) 

1.4 MODEL REDUCTION USING CONTINUED FRACTION EXPANSION (CFE) 

The basic philosophy which give rise the derivation of simplified models by 

CFE are based on expanding the original higher order system using continued 

fraction expansion. As quotients descend lower and lower they have less and 

less significance as far as the overall system performance is concerned. Hence, 

truncating.,the continued fraction after some terms, and inverting the truncated 

CFE results in a reduced order model. 

Consider the following rational transfer function: 

G(s) = A2 s" -'  + A2,,, ,sn-2  + ........ + A24s3  + A23s2  + A22 s + A21 
A,,,,+,s° + A, s"-' + ........ + A14s3  + A13 s2  + A,2 s + All  

.....(1.10) 

where A, are constants. 

Because a general control system is a low pass filter in nature, therefore 

in simplification, we take care of the steady state first and then the transient part. 

Hence we start Continued Fraction Expansion from the constant term, or arrange 

the polynomials in ascending power of 's'. 

So first rewrite the polynomials in ascending order: 
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A21 + A22s + A23s2 + .......... + AZ,n-►s
~,-Z + Az ,'s „-1 

G(s) 	A„ + Al2s + A13 s 2 +.......... + Asn-I + Al,,I+Is
,t 

The continued fraction proposed by Chen and Shieh [1], which is equivalent to a 

Taylor series expansion about s = 0 is [2] obtained as: 

1 G(s) =  A, l +S, A31 +A32s+..... 

A21 	A2 +  42s+ 

1 

A11+ 	s 
A21 	"21 + A41 +A42s+....... 

s 
A31 	A31 + A32S ....... 

........(1.12a) 

1 

S 
111 + 

h2 +  S 
S 

h3 + 
S 

.......(1.12b) 

where, 

A31 = Al2 — h1 A22 
	

A41 = A22 — h2A32 

A3,n-1 = Al n — h1 A2n 
	

A4,n-1 = A2n — h2A3n 

A3,n = A1+1 
	 A4,n = A2n+1 

And 

h1 = A11/A21 , 	h2 = A21/A31........ 	h; = A1,1/A~+i,1...... 



In order to find a rth  order reduced model it is necessary to keep the first 2r 

quotients in (1.12) and reconstruct Rr(s) from it. Most important properties of the 
CFE are: 

♦ It contains most of the essential characteristics of the original model in the 

first few terms. 

+ It converges faster than other series expansion. 

♦ It does not require any knowledge of the model eigen spectrum. 

♦ Since the denominator coefficients of the simplified model depend on both 

the numerator and denominator coefficients of the original model. Hence 

the continued fraction, like the time moments and Pade approximation, 

often gives unstable reduced models for stable full models. 



Chapter-2 

LITERATURE REVIEW 

In any modeling/ model reducing task, two often conflicting factors prevail-

"simplicity" and "accuracy". Therefore a great deal of experience is needed for a 

sound compromise between accuracy and simplicity. The common practice has 

been to work with simple and less accurate models. There are two motivations 

for this practice: 

♦ The reduction of computational burden for system simulation, analysis and 

design; and, 

♦ the simplification of control structures resulting from a simplified model. 

It should be emphasized that these motivations are distinct in the sense 

that one does not necessarily imply the other. 

The very old technique of model reduction is Aggregation Method [13]. 

The treatment of aggregation in modern time is probably due to Malinvaud 

(1956). Aggregation of large-scale linear time invariant systems is not merely a 

model reduction scheme but more importantly, a conceptual basis for other 

approximation techniques, including the modal aggregation (Davison, 1966, 

1968) which retains the dominant modes of the original system. 

One of the more popular methods for large-scale systems order reduction 

has been the "Continued Fraction" technique first introduced by Chen and Shieh 
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[1] and extended by many others. The original technique is based on a Taylor 

series expansion of the system's closed-loop transfer function about s = 0. 

This method [1] has been modified and applied to multi input multi output 

systems and mixed with other methods by others (Chen and Haas,1968; 
Chuang, [2],1970; Chen and Shieh [4](1970). Various modifications and 

extensions to continued fraction expansion (CFE) have since been presented by 

Chen and Shieh [3,4]; Chen and Huang and many others. As pointed out by 

Wilson, Chen's results are probably the best that have been obtained, although 

the method is only applicable to single input single out put systems. 

One of the better modifications of the original CFE is due to Chuang [2] 

which has carried out a Taylor series expansion for both s = 0 and s = 00. This 

would, in effect, mean that the expansion begins from the constant term and then 

from the highest order term. Shieh and Goldman [5] have shown that a mixture of 

the first and second Cauer forms give good approximations. Bosley and Lees [6] 

have compared the step responses of Chen and Shieh's reduced model and 

original system and have found very little error. Shieh et al. have shown that 

the first, second and third Cauer form formulations for order reduction gives good 

approximations in the transient, steady state and overall region of the response 

curve respectively. Chen (1972,1974), Calfe and Healey (1974) have extended 

the method to the multivariable systems. Wright (1973), Davidson and Lucas 

(1974) have proposed general expansion in place of original Cauer's 

expansion.These later results, although sound, have less attractive 

computational features as mentioned by Parthasarthy and Singh (1975). A 

potentially attractive method from the view of stability and computational efforts is 

the mixed Cauer expansion of Shieh and Goldman [5]. 

The relationship between the inputs and outputs of multiport networks or 

multivariable control system is often expressed in terms of transfer function 

matrices. Expansion of transfer function matrices into a matrix continued fraction 
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and the inversion of a matrix continued fraction to a transfer function matrix 

represents two basic operations in multiport network analysis and synthesis. 

One difficulty with the CFE approach is that the stability of the model is not 

guaranteed, even though the original system is stable Chuang [2] modified the 

original techniques to have expansions about s = 0 and s = oo alternatively, 

thereby showing good agreement in both the transient and steady state region. 

The very recent published papers are in the direction of model reduction 

include, reduction of unstable systems [28] and continuous time, time invariant 

stochastic systems [29]. 
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Chapter-3 

REDUCTION OF CONTINUOUS TIME LINEAR SYSTEMS BY 
CONTINUED FRACTION EXPANSION 

The model order reduction using CFE approach involves two basic 

operations viz., expansion and truncation. These operations for various Cauer 
forms are given below. 

3.1 CA UER FORMS OF CFE 

For the system whose transfer function is in the form of (1.10) can be 

expanded into the following three different Cauer form,  representation. 

3.1.a. THE CAUER FIRST FORM 

G(s) = 	 I 
H i s + 	1  

HZ  + 	1  

	

H a s + 	1  
H 4 + 1  

(3.1a) 
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3.1.b. THE CAUER SECOND FORM: 

G(s) = 	 1  
1  h1 +  

1  h 2 /s+  
h3  +  

h4 /s+--- 

3. 1.c. THE CAUER THIRD FORM: 

........(3.1 b) 

G(s)= 
h, +H,s4 

1 
1 

h 2 /s+H 2 + 	 1  
h,+H 3s+ 	1  

h 4  / s + H4  +  

......(3.1 c) 

Equation (3.1 c) is a combination of the Cauer first and second forms in 

such a way that if we let the h or H in (3.1 c) approaches zero, then it will be 

identical with (3.1 a) or (3.1 b), respectively. The Cauer second form has been 

successfully applied by Chen and Shieh [4] to control system design and system 

identification. 

Shieh and Goldman [5] developed the algorithm which is generalized 

Routh's algorithm for Cauer third form CFE , as follows: 

3.2 EXPANSION BY GENERALIZED ROUTH'S ALGORITHM 

Performing the long division in equation (1.11) we have 

14 



G(s) _ 

A11 + A1,11+1 s+ 
A21 	A2„ 

( Al2 - A
~ IA22 

- A',' AZ' )s + (A13 - AI IA23 A" ~' A22 
)s 2 + .... 

A21 	 A21, 	 A21 	A2,, 

AZ , + A22 s + A23 s 2 + ...... 

	

+ A - A~ A2„ _ A1,11+1 A2,1,-1 	s „-1
1 

A21 	A2„ 
+ a„ 

........(3.2) 

define 

A1, 

H _ A~,.,,+z-n 

AP+i.,,+I-n 

p = 1,2,3,....,n 	 ........(3.3) 

p = 1,2,3,....,n 	 .........(3.4) 

where hp ~ 0, Hp ~ 0, and substitute (3.3) and (3.4) into (3.2) and we have 

G(s) = 	 1 
h +H s+

(A'2 —h1 A22 —H , A2,)s+(A,3 —h, A23 —HIA22)s2 +..... 

' 	' 	
Az, + A22 s + A23 s z +...... 

+(A11, — h~ AZ„ — H1 Az,,,-j )s 

+ A s -' z.. ”  

........(3.5) 
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in which (Al2 —  h1 A22 -H1A21), (A13 — h1 A23 — H1A22 ),.... A1n — h1 2n — H1 A2,n-1 ) 

can be written as A31,  A32......., A3, 1, respectively. Therefore we have: 

G(s) = 1 
A31s + A32 s 2  +.....+ 

h ]  +H,s+  AZ , + A22  s + .... + 

.........(3.6) 

Dividing again, we have the expression 

G(s) = 
h, +H ] s+ 
	 1 	

1 
	 ......(3.7) 

h2  / s + H2  +  

h3  +H3 s+ 	1  
h4  /s+H4  +  

The quotients in expansion of (3.7) can be obtained by the following 

generalized Routh algorithm and the modified Routh array. 

The coefficients in (1.10) can be expressed by the following double-

subscript notation: 

All Al2 A13..... A1 	A1,+1 	 .........(3.8) 

A21 A21 A22 A23 • • • • • A2n 

And the elements of third, fourth and subsequent rows can be evaluated from the 

following algorithm: 

16 



Ai,k = A1-2, k+1 — hJ 2 Aj-1. k+1 - Hj-2 Aj-1,k , 

F1;t.`l 

j=3,4,.....,n+1, 	k= 1,2,....... 

hn = A p.i 	Hv = 	, p=1,2,3  

p+1.1 	 A +11,+1_ 

(3.9) 

(3.10) 

The The complete array is 

A11 Al2 A13 ........A1 	A1,+1 

h1 h1 = ~11 

A21 

A21 	A22 	A23 • • • • • •.. A2n 

h2= Azl 	 H2 = A2,,, 

A31 

A31 	A32 	.. A3,n -1 

h3 _ A3t 	 H3 =  
A4  

A41 ........ 	Aq,n -2 

............................................................................. 
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An -1,1  An –1,2 An –1,3 

hn-1= A,, 1 1 	 Hn1= A ,,-1,3 

A,,.I 
	 A,,,2 

An,1 
	

An,2 

h = 	A,,.I 
~ 

A,,+I.I 
Hn = A,,.2 .......(3.11) 

An+1,1 

The triangular pattern in the formulation of (3.11) is called the modified Routh 

array. 

Equation (3.9) is generalized Routh algorithm. If all H are zero, (3.9) is 

simplified as: 

Aj,k = Aj-2, k+1 - hj-2 Aj-1, k+1, 

j =3,4......,n +1, 	k= 1,2,.... 	 ........(3.12) 

Equation (3.12) is a regular Routh algorithm which is commonly used to 
obtain the quotients of the Cauer second form. On the other hand, if all h are 
zero, (3.9) is simplified as: 

Bjk= Bj-2,k+1— Hj-2 Bj-1,k+1, 

j = 3,4,....., 	k= 1,2,.... 	 .......(3.13) 
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where 

B1 ,;  = Al , n+2_;, 	i = 1,2,.... ,nH 

and 

B2,1= A2,+1, 	j = 1,2,....,n 

Equation (3.13) is a regular Routh algorithm, which is used to evaluate the 

quotients of the Cauer first form. Either formulated pattern by the algorithms 

shown in (3.12) or (3.13) will be a zigzag pattern. It is noted that the elements AJ,k, 

j = 3,4,.... and k = 1,2,...., in (3.12) or (3.13) do not have the same values as 

those elements of (3.11). 

3.3. CAUER MODIFIED FORM 

One of the better modification of the original continued fraction expansion 

is carried out by Chuang (1970) which has carried out a Taylor series 

expansion for both s = 0 and s = oo. This would in effect mean that the expansion 

begins from the constant and then from the highest-order term. 

Shieh and Goldman [5] have shown that a mixture of the first and second 

form give good approximations for both the transient and steady state responses. 

The Cauer modified form is 
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G», (s) = 	
1 

lip + 	S 
H, + 	1 

S 
hZ + 	1 

HZ + ---- 

......(3.14) 

The transfer function Gm(s) is expanded into Cauer type CFE about 
s = 0 and s = oo. h1', h2' ........, and H1 ',H2' ........., are evaluated by modified 

Routh array [7]. 

a„ a12 .........a1 ,, 1 	a1,, 	1 
aE1 = 
b„ 

b„  b12......... b~~ 	bill 

H; =b,, 

a21 

• a2, 

h 

_

2 
	

1221 

b2, 

a„i 

a,,,  

b,,,  

2 

a22 ......... a2.»-I 	I 

b22 .........bz ,,,-i 

1 

H;, =12,,, 

II; = bz,,,-i 

where 

	

aj+l.k = aj,k+1 - h)' bJ,k+1 
	 j=1,2,....n-I 

	

bj+1.k = bj,k - Ha  +1k 
	 k=1,2,....n—i 
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and 

3.4 CONTINUED FRACTION INVERSION 

If the quotients of a Continued Fraction of the Cauer third form are given, 

or all h and H are known, what is the corresponding transfer function ? This is the 

problem of Continued Fraction Inversion. 

Derivation of the transfer function, directly from the continued fraction 

representation, is tedious and involves many multiplication's. It is desirable to 

have computerized algorithm to implement the continued fraction inversion. 

Various simple algorithm for developing the entire Routh array and the 

corresponding transfer function from the known continued fraction coefficients, 

are being described below. 

Method no. 1: 

The algorithm was given by Shieh and Goldman [5]. 

From (3.11) it is noted that 

An  1 = hn  An +1,1 

An -1,1 = h 	An, 1 = hn -1 hnAn+1, 1 

An -2,1 = hn -2 An -1, 1 = h_2 hn1An+1, 1 

A31 = h3 A41 = h3 h4 ..... hn  An+1, 1 



A21 = h2 A31 = h2 h3 ..... h, A,+1, 1 

All  = h1 A21 = h1 h2 .....h  An+1,1 	 ........(3.14) 

An.2 = Hn A+11 

A1,3 An-1,3 = Hn -1An,2 = Hn —1 Hn A+1,1 

A2, A2,n  = H2 A3,n-1 = H2 H3.... Hn A+1,1 

A1, A1,n  =H1 A2n  = H1 H2.... Hn  An+1,1 	 .........(3.15) 

Equation (3.14) and (3.15) can be written as the following general 

equation. 

Let An+1,1 =1, then 

Aj, ;  = 11h1,, 	p = j, j + 1,....,n 	 .........(3.16) 

And 

,7 

A1,n+2-i= {JHP , 	p = j, j + 1,....,n 	 .........(3.17) 
n=.i 

Where j is the row number in the modified Routh array. The intermediate terms 

can be evaluated from (3.12), starting from the element in the last row of the 

modified Routh array and ending up at the elements in the first row. Or if we 

substitute j = n + 1 and k = 1, then (3.12) yields: 
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An +1,1  = An  -1,2 - hn -1 An, 2 — Hn -1An _1 	 ........(3.18) 

Likewise, if we rearrange the order of (3.18), we have 

An -1,2 = An +1,1 + hn -1 An,2+ Hn -1An-1 

If we perform the same procedures on other elements, we have 

An -2,2  = An,1 + hn -2 An -1, 2 + Hn -2An —1, 1 

An-2,3 = An,2 + hn-2 An-1,3+ Hn-2An -1, 2 

•  A1n = A3, n -1 + h1 A2n + H 1A2,n -1 	 ........(3.19) 

The general form for (3.19) is 

Aj,k=Aj+2, k-1 — hj Aj +1, k + Hj Aj +1, k-1, 

j = n —1, n —2,....,1, k = 2,3, ....,n +1-j 	 .........(3.20) 

Equations (3.17), (3.18), and (3.19) are used to obtain the continued 

fraction inversion. 

Method no. 2: 

The algorithm was given by Rao and Lamba [8]. 

Let the truncated transfer function be represented by 
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G(s) = 	 1  
1 H' +

H2+  

S H 3 +— 

........(3.21) 

where H1 through H2  are called " partial coefficients." 

The continued fraction inversion of (3.21) can be represented as: 

A21  + A22s + A23s 2  + A24s 3  + .... + 4,,1s  	+ A2 „s't-' 

G(s) 	A„ + Al2s + A13 s 2  + A14s3  + .... + A1,11s„-' + s,. 	 (3.22) 

The constants All-A1,,, and A21-A2,,, are to be evaluated from the partial 

coefficients H1-H2. It is easy to see that for the type of continued fraction form 

shown in (3.21), the coefficient of sn  in (3.22) is always equal to unity and that the 

order of the numerator cannot be greater than (n -1). 

The first and second rows of Routh table (3.23) are written by copying the 

coefficients of the denominator and numerator of (3.22), respectively. The 

subsequent rows are developed by using Routh algorithm. 

Routh table: 

All 	Al2 	A13 ... ... A1,n  1 

A21 	A22 	A23 ... ... A2,, 0 

A31 	A32 	A33 ... ... 1 

1 

1 
H 21, 

S 
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A41 	A42 	A43 • • . ... 	0 

A51 	A52 	A53 ... 	1 

A61 	A62 	A63 ... 	0 

A2n_1,1 1 

A2,1 	1 

1 	 .........(3.23) 

If the last two elements of the first rows of the Routh table are as shown 

then last element of the first column is equal to unity. 

That is 

A2„+1,1 = 1. 	 .........(3.24) 

The partial coefficients are related to the first column of Routh table by the 

following equations. 

HI = A, , 	p = 2n,2n-1,...,1, 	Hp ~ 0. 	.........(3.25) 
A,,+i.i 

Once we know the partial coefficients H1 — H2n, the first column of (3.23) 
can be evaluated with the help of (3.24) and (3.25), starting from the bottom of 

the table. 
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The recursive relationship between the other elements of the Routh table 

is given by 

A J-2,k+I = A.;~ + 	 ........(3.26) 
Ai-U,i 

for 

j = 2n, 2n-1, ....,3 

k = 1,2, ...., n-1 

with 

A2,k = 0 

A3,k = 0, 	fork >_ n+1 

A4,k = 0 

A5,k = 0, 	fork >_ n 

A2,k = 0 

A2„ +1 ,k = 0, 	for k ? 2 	 .........(3.27a) 

:s. 

A1,n+1 = A3,,, = A5,n-1 = .... = A2n_1 ,2 = 1 	 .........(3.27b) 

With the help of (3.26) and (3.27), all the elements of the Routh table 

other than first column are evaluated. The transfer function corresponding to the 
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continued fraction expansion (3.21) can be written from the first two rows of the 

Routh table (3.23). 

Method no. 3: 

The following algorithm was given by Parthasararathy & H. Singh [9].In 

method no. 2 Rao and Lamba have proposed a simple algorithm for developing 

the Routh array and thereby converting a continued fraction into a rational 

transfer function. This technique is limited to case where the continued fraction is 

in the Cauer second form. But there are many cases where the continued 

fraction expansion is available only in the Cauer first form. 

This method gives an algorithm for inverting a continued fraction given in 

the Cauer first form in the light of the method presented by Rao and Lamba[8]. 

Let the transfer function be represented by equation (3.22), which 

generates the continued fraction in Cauer first form represented by 

equation(3.1 a), where H1  to Hen  are known as the " partial coefficients." 

Without loss of generality the coefficient of sr  in (3.22) can always be 

taken as unity and numerator is at least one degree lower than the denominator. 

The problem is to evaluate the constants Al2  to A1 ,n+1  and A21 to A2,n. From the 

knowledge of the partial coefficients H1  to Hen  and construct the transfer function 

of the form shown in (3.22). 

Al2 	A13 ... ... A1,n  A1,n+1 

A21 	A22 	A23 ... ... A2,n 0 

A31 	A32 	A33 ... ... A3,n 

A41 	A42 	A43 ... ... 0 



A2n-1,1 	A2n-1,2 

A2n,1 	0 

A2n+1,1 	 .........(3.28) 

It is to be noted that 

A1, =1 	 .........(3.29) 

And the end elements of all the odd rows will be the constant equal to A2n+1,1 (the 
last element of the array) and those of the even rows will be zeros. 

The authors later [12] pointed out that the generalized algorithm given by 
Chao K.S. et al. based on a backward expansion of the Routh array, can be 
applied as well to the inversion of the continued fraction in Cauer first form which 
is represented by (3.1 a). 

3.5 ILLUSTRATIVE EXAMPLES 

The method of reducing the large scale transfer function by continued 
fraction expansion can be illustrated by taking examples as below. The algorithm 
for deducing the reduced order model is explained in the following steps. 

Step 1: 

Find out the coefficient h1, h2, h3,.....for Cauer second form by the 
developed computer programme as given in appendix. 

28 



Step 2: 

Substituting these values of h1, h2, h3,... in the Cauer second form as 

given in (3.1 b). After performing the algebraic calculation the required reduced 

order model R(s) is obtained. 

This method is illustrated with the help of following example: 

Example 3.5.1 

The original system [11] is described as: 

G(s)- 8s2 +6s+2 
s3 +4s z +5s+2 

Coefficients for Cauer second form are computed as - 

h1  =1, 	h2  = -2, 	h3  = 0.5, 	h4  = 0.22 

With the help of equation (3.1 b) the following second order reduced model is 

obtained. 

R2 (s) = 
—1.78s2  1 	— 0.22s 

s — 0.68s — 0.22s 

The negative coefficients in the denominator of R2(s) shows that the poles fall in 

the right half of s-plane, which explains that the reduced order system R2(s) is 

unstable. 
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Example 3.5.2: 

The original system [14] is described as: 

G(s) = 28s
3  + 496s 2  + 1800s + 2400 

2s4  +36s3  +204s 2  +360s+240 

Coefficients for Cauer second form are computed as - 

h, = 0.1, 	h2  = 13.33333, 	h3  = - 0.695876, 	h4  = -1.350645 

With the help of equation (3.1 b) the following second order reduced smodel is 

obtained. 

Rz (s)  _ 11.979355s +12.528619 
s

Z 

 +2.1377495s +1.2528619 

The comparison of unit step responses of G(s) and R2(s) is shown in fig. (3.5.2). 

Example 3.5.3: 

The original system [15] is described as: 

G(s) = 8169.13375s 3  +50664.96749s 2   +9984.32343s+500 
100s 4  +10520s 3  +52101s 2  +10105s+500 
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Coefficients for Cauer second form are computed as - 

h1  = 1, 	h2  = 4.1433, 	h3  = 0.029912, 	h4  = 19.039186 

With the help of equation (3.1 b) the following second order reduced model is 

obtained. 

R(s) 	
23.182486s + 2.3596099 

s 2  + 23.751986s + 2.3596099 

The comparison of unit step responses of G(s) and R2(s) is shown in fig. (3.5.3.) 
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Chapter-4 

STABILITY BASED REDUCED ORDER MODEL USING 
CONTINUED FRACTION EXPANSION 

4.1 ROUTH APPROXIMATION METHOD 

Hutton and Friedland [16] introduced this well-known method for 

obtaining stable models of asymptotically stable continuous time systems. The 

Routh approximation is a novel method for reducing the order, based on the idea 

of truncating the well-known Routh table used to determine stability. The Routh 

approximants can be computed by a finite recursive algorithm that is suited for 

programming on a digital computer. 

reciprocal transfer function G 	1 	1 
p 	 () _ =G(—) i Here the reci 	 G(s) 	expanded in the 

S S 

alpha — beta canonical form that is truncated after r terms and reciprocated back 

to give a desired model of order r. 

A higher order SISO system may be described by the nth-order transfer 

function as: 

G(s)= b's 	+  b2s 	+bas 	+.......+b„ 
I,  n aos +Cllr 	+a2Sn 2 

 +.........+a„ 
...........(4.1) 

It is required to reduce the form (4.1) to r h̀  order given by - 
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+ b~ s r -2 + 
U 
y.r Sr-3 + 	. + b 

Rr 	
Ul  	 "".'  

= 	
r 	

... (4.2) 
a,, s +a1 s 	+a2 2S 	+.........+a 

Alpha — Beta Expansion 

Hutton and Friedland introduced this expansion for a transfer function of 
the form (4.1) that is asymptotically stable can always be expanded in the 
following canonical form [13]: 

G(s) = 131F1 (S) + P2F1 (S)F2 (S) +• + 1nI13 (S)F2 (S) ... Fn (S) 
11 	 . (4.3)_ 	R~ f FF (s)   

where (3;,( i = 1,2........,n) are constants and the Fr (s) for r = 2,3.......,n 

are defined by the continued fraction expansions. 

F,r (s) = 	
1 

1 
ar s+ 	 l 

+ 
a„s 

For Fi(s), definition (4.4) is modified slightly, the first term of the continued 
fraction expansion is (1+ ais) instead of ais. 
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F,(s) _ 
1 

1+ais 
..........(4.5) 

The canonical form (4.3) is referred to as the alpha—beta expansion of 

G(s) and plays a fundamental role in the theory of Routh approximations. 

The n parameters a;  , (i =1,2 --------,n) appearing in the alpha — beta 

expansion can be computed by using the classical Routh table in the following 

fashion: 

Alpha (Routh)Table 

a00 	ao 

a0'=a, 

a20  = a2  

a21 =a3  

a40  = a4  

a4I  = a5  

a6 = a6.. 

ai=ao° /ao' ao2 =a20 -aia2' a22 =a40 -a, a4' a42  = a60  —a1a61  ....... 

a2 = a01/ a02  a03  = a21  - a2 a22  a23  = a21  - a2 a42  ....... 

a3 = apt  / a03  a04  = a22  - a3 a23  a24  = a42  - a3 a43  ..... . 

c(4= a03 /a04  a05  = a23 - a4 a24  ....... 

a5 = ao4  / ao5  .......... 

5 	6 ag = ap / ap 

The first two rows of the table are formed from the coefficients of the denominator 

of G(s). 

The F '  parameters can be similarly obtained using the coefficients of the 

numerator. 
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b~, j =1,2--------,n , as shown in (4.1). 

Beta (Routh) Table 

B0 =b1 	b 2 

'o -b2 

=b3 

b2 2=b4 

b4 =b5 

b4 	2=b6 

.... 

....... 

131 = b01 /a01 B03=b21 -R1a21 b23=b41 -R1a41 

R2 - b02/a02 B04-b22 -132a22 b24-b42 -132a42 

R3 - b03 /a03 B05-b23 -R3a23 

R4 = b04Ia04 B06-b24 -134a24 

135 = b05/ap5 

Rg = b06/a06 

The recursive formula to compute the entries of alpha and beta tables can be 

obtained from the following 

a;+' = 
a4 
;.' _ a

i a' 2  4 

a;-2 =a ~; — a;a~,-; 	i = 1,2,......,n-1 	 (4.6) 

for (n -i) odd, the last equation in (4.6) is replaced by 
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i+l 	i-I 
ani+I 	 ......... (4.7) 

The a; are marginal entries given by 

The coefficients R; appearing in the canonical form can also obtained by use 

of a tabular algorithm as shown in beta table. The first two rows of the beta table 

are obtained from the coefficients of the numerator of G(s).The remaining entries 

are computed from entries in the Routh table, using the following recursive 
formula : 

b' 0 

ao  
i = 1,2............,n 

and 

bj-z = b; — R+al 

 

 

j=2,4.......,n-i for n - i even. 

j = 2,4........, n—i-1 for n-i odd 

i=1,2.......,n-2. 	 ......(4.9) 

The rt" Routh reduced model using alpha-beta expansion Rr(s) for the full 
model G(s) is found by truncating the expansion (4.3) and rearranging the 

retained terms as a rational transfer function.Truncating the continued fraction 
(4.4) after the rth  term and denoting it by gj,r(s), the reduced model transfer 
function Rr(s) is similar to (4.3): 
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r 	i 

R,- (s ) 	I /3, fl gJ.r (s) 	 ......... (4.10) 

Where 

g.j.r (s) = 	1  t ......... (4.11) 
a's + 	+ 

as+ 

ai _,s+ 1 
as 

Denote the numerator and denominator of Rr(s) by N1(s) and Dr(s), 

respectively,defined below: 

Ni(s) = R,, 	 D1(s) = 1+ a1s. 

N2(s) = 132 + a2131S, 	 D2(s) = 1 + a2 S + a1a2S2  

N3 (S) = (Ri + Rs) + a3132s + a2a3131s2, 	D3(s) = 1 + (a1+a3) S +a2a3 S2  +ala2a3 S3  

(4.12) 

And in general 

Nr(S)=arSNr-1(S)+Nr-2(S) + (3r 	 ..........(4.13) 

Dr(S)=arSDr-1(S)+Dr-2(s) 
	 ...........(4.14) 

For, r =1,2...........and 
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N-1(s) = No(s) = 0, 	D-1(s) = Do(s) = I 	 ...........(4.15) 

The relation (4.13) — (4.15) along with the a-R tables are sufficient to find 

a rth —order reduced model. Hutton and Friedland (1975) mention that this 

reduced model preserves high-frequency characteristics, and for control 

application it is preferable to use reciprocal transfer function defined by - 

G(s) 	G(1) = b,,s„ 1 + .........b2 s + b, 
S 	S 	a,,s +...........a,,s+a. 

...........(4.16) 

Which, if compared with (4.1), is simply G(s) with a;, b1 coefficients reversing their 
orders. 

4.2 ROUTH - HURWITZ ARRAY METHOD 

A more direct approach to derive the Routh approximants of the transfer 

function was suggested by Krishnamurthyand Seshadri [17,18]. The proposed 

technique consists of obtaining the numerator and the denominator polynomial of 

the reduced order model respectively from the numerator and the denominator 

polynomial of the system by forming the Routh - Hurwitz stability arrays for the 

numerator and the denominator polynomial of G (s) = N (s) /D (s) where, 

N(S) = n11 Sm + n21 5m -1 ~ n12 Sm 2 
+n22 Sm 3 . ...... 	 .......(4.17a) 

D(s) = d11 sn + n2, Sn-1 + n12 Sn-2 +n22 Sn 3 + ...... 	 .......(4.17b) 
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By using the conventional Routh algorithm given by 

2, i+l — `n1-2,1 * ni-1 J+1 )/ ni -1, 1 / 
........(4.18) 

dti = 1i-2,j+1  - 	2,1 * d  1.i+i)/ t'd r -1. i ) 

fori >_3 and 1<_j<_[(m—i+3)/2 or[(n—i+3)/2]where[*]standsforthe 

integral part of the quantity and m & n are degrees of the numerator and 

denominator polynomials respectively. The stability arrays are given below. 

Numerator stability Array Denominator stability Array 

nil n12 n13 n14 d11 d12 d13 d14 

n21 n22 n23 n24 d21 d22 d23 d24 

n31 n32 n33 d31 d32 d33 

n41 n42 n43 d41 d42 d43 

.... .... .... .... .... .... 

nm,1 dn,1 

m+1,1 do +1,1 

A reduced order r <_ n can easily be constructed with (m + 2 - r)th  and (m + 3 - r)th 

rows of numerator stability array and (n + 1 - r)th  and (n + 2 - r)th  rows of 

denominator stability and is given by: 



I 	 R(s) = 
r-I 	r-2 

l2n,+2 r .I  S 	+ 11 ,mf3-r.l  S 	......... 
,.-I 

d,.+ t-, i s 	+ cl„+2-,.1  S 	.+ ............... 
........(4.19) 

For r > (m+1), the first two rows of numerator stability array should be used for 

numerator polynomial while, for r = 1 last two rows should be used. 

4.3 MIXED METHOD USING CAUER SECOND FORM OF CONTINUED 
FRACTION EXPANSION 

The major problem of continued fraction expansion technique [1,5] often 

leading to unstable models, has been solved by many authors [1,19,20]. 

Shamash [21] has shown that for systems dominated by large magnitude poles, 

such methods [1,19,20,21] may approximate the poles with small moduli and 

thus show poor matching during transient period. 

A computationally attractive algorithm for SISO systems is developed that 

overcomes these drawbacks. Comparison of the original system and reduced 

order system are made through examples. In this method, the denominator 

polynomial of the reduced model is found by the Routh Approximation method 

[16,18] and the numerator polynomial by matching the quotients of the second 

form of continued fraction expansion. 

Consider the nth  order system transfer function G(s) and its rth  order 

reduced equivalent R(s) be represented as: 
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a2 is. %-1 

G(s) _ .l=' D(s) 
.......(4.20) 

1 
1 h' + h2+ 	1 

S 
h3+ h 
	' 

a + 

S 

bz js. i—~ 
R(s) = 	i=~ 	 .........(4.21) 

D,. (s) 

where 

fl 4-1 

D(s) = Z a, . s'-' 
.i=' 	 ........ (4.22) 

and Dr (s) is the denominator polynomial of degree r. Equation (3.1 b) 

gives the second Cauer CFE of the original system transfer function G(s). The 

first 2r quotients h; are retained and truncated continued fraction is inverted to 

obtain the rth order reduced model Rr(s). 

The procedure, as proposed here, is to find denominator polynomial Dr(s) 

in equation (4.21) using the Routh approximation method discussed at (4.10) and 

the numerator polynomial b2„ matching the second Cauer CFE quotients with the 

Dr(s) quotients. The method consists of the following steps: 
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Step 1: 

The denominator polynomial D(s) is first written with inverted coefficients 

as D(s) , form the alpha (Routh) table as given at (4.1.-'.) and find the ai 

(i = 1,2,3,......,r). The Dr  (s) polynomial quotients are determined with the help of 

equation (4.14). 

Step 2: 

Evaluate the quotients h;  , (i = 1,2,3........r) of second Cauer CFE 

quotient in equation (4.20) by using the developed computer programme on the 

basis of Routh algorithm equation (3.12). 

Step 3: 

Match the quotients h; with Dr  (s) coefficients to determine the numerator 

coefficients Nr(s). 

4.4 ILLUSTRATIVE EXAMPLES 

The above given algorithm is illustrated with the help of following examples- 

Example 4.4.1 

Consider the original transfer function as in example (3.5.1) 

Step 1: 

For second order reduced model (r = 2), the values of a, and a2 are 
r 

evaluated as: 

ai = 0.4 

a2 = 1.3888 
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Step 2: 

With equation (4.14) and above values D2  (s) is evaluated: 

D2 (s) = s2  + 1.38885s + 0.5555 	 .........(4.23) 

Step 3: 

The second cauer quotients h, , i = 1,2 are evaluated and matched with 
D2  (s) in equation (4.23), to evaluate N2 (s) as: 

h1  = 1 

h2  = -2 

N2  (s) = 1.111212s + 0.5555 

Hence, second order reduced model is written as - 

R2 (s)= 1.111212s+0.5555 
s2  + 1.38885s + 0.5555 

Comparison of unit step responses of G(s) and R2(s) plotted with the help 

of mat lab. is shown in Fig. (4.4.1). The same model when reduced by Cauer 

second form CFE in chapter-3 gave unstable model. 

Example 4.4.2: 

Consider the original transfer function [17] 
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G(s)  =  N(s)  
D(s) 

N (s) = 35s7  + 1086s6  +13285s5  + 80402s4  + 23837s3  + 511812s2  + 482964s 

+194480 

D(s) = s8  + 33s7  +437s6  +3017s5  + 11870s4  + 27470s3  + 37492s2  + 28880s + 

9600 

Step 1: 

For third order reduced model (r = 3), therefore, values of a, and a2  and a3 

are evaluated as - 

ai = 0.332410 

a2 = 1.018311 

a3  = 1.728900 

Step 2: 

With equation (4.14) and above values, D3 (s) is evaluated - 

D3 (s) = s3  +2.06131s2 +  1.7605579s+0.585227 	.........(4.24) 
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Step 3: 

The second cauer quotients h, , i = 1,,2,3 are evaluated and matched 
coefficients of D3 (s) equation (4.24), to evaluate N3 (s) as - 

h1  = 0.049362 

h2  = 38.589317 

h3 = 0.453857 

N3  (s) = 26.657933s2  + 29.442228s + 11.85582 

Hence, third order reduced model is written as - 

R2  (s)= 26.657933s2  + 29.442228s + 11.85582 

s3  + 2.06131s2  + 1.7605579s + 0.585227 

Comparison of unit step responses of G(s) and R3(s) plotted with the help 

of mat lab. is shown in figure (4.4.2). 
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Chapter-5 

REDUCTION OF DISCRETE TIME SYSTEMS USING 
CONTINUED FRACTION EXPANSION 

5.1 INTRODUCTION 

For discrete time system also the same arguments as for continuous 

systems hold as far as the need for reduced order modeling is concerned. 

Moreover, the fast development and usage of small digital computers and the 

processor in the design and implementation of control system have increased the 

importance of reduced order modeling methods for discrete systems. In this 

chapter the CFE technique for continuous systems are extended to the discrete 
time systems. 

The use of bilinear transformation [25] plays an important role to extend 

CFE methods for continuous time systems to reduce discrete time systems i.e., 

z-transfer function in the 'w' domain. 

5.2 MATHEMATICAL FORMULATION 

Let the n order discrete time stable SISO system Go(z) = No  (z) / Do  (z) 
and its rth  order model Rr  (z) = Nr  (z) / Dr  (z) be 

given by: 

N0 (z) = a{, +a,z+a2 z 2  +.......+a„z" 
Do  (z) = b0  +b,z +b2 z .........+ b„z” 

(5.1) 

r< n 
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N,.(z) = a*  +a-  z+a2 z 2  +.......a, 1 Z r-1  

Dr (Z)=b +biz+b;z2  +.......b zr 

The direct substitution of the bilinear transformation [25], 

z = (1 + w)/(1 — w) in Go  (z) gives Go (w) in w-domain which can be simplified as: 

G0(z) _ Iz=t3+,V) I(I -,V) 	= G0 (w) = k + G(w) 	 ........(5.3) 

where k_— Go(w)I, 	 .......(5.4) 

and 

G'  (w ) _ J  0  + f1 w + f2 wz  + 	+ f„-,  w”'

J 	g0 +g1 w+g2w2  +......g,,w „ 	 ......(5.5) 

G1 (w) can be simplified by continued fraction expansion method. This 
gives an rth  order reduced model R1  (w) in w-domain of G1(w), which can be 

written as: 

Rr (W)=k± Ri ,. (w) 	 .......(5.6) 

Rr  (w) is then transformed back to the `z' domain by using the reverse bilinear 

transformation w = (z — 1)/(z +1) as: 
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R,. (z) = R,. (w) 	= c= 	+ i 	 . (5.7) 

The reduced order model obtained by the above steps gives a stable 

model if, the original system is stable. But the initial value of the step response of 

reduced order model will not be zero even if the initial value of the original 

system is zero. To overcome this drawback the numerator and denominator 

polynomials of the original system are expressed as a function of the bilinear 

transformed variable 'w', i.e. by writing No (z) & Do(z) as: 

No (z) Z =(I+w) /(I-w) 	= N(w) 1(1 — w) 	= 0 

~ 	 .(5.8) 
Do(z)(Z=ci+~v> icy- ,v) 	= D(w)/(1 - w) 	 =0 	

...... 

Which gives 

G(w)= N(w) = CO +c,w + c2w2 ........+c„_1 Wn-I 
	

........(5.9) 
D(w) 	do +dlw+ d2 w.........+ 

In this case the rank of G(w) remains the same as that of Go (z)and 

G(w) ,v-).0 = k = 0 	 .......(5.10) 

Hence the step response of Go(z) and reduced order model will match at 
t = 0. G(w) can be simplified by continuous time methods to give an rth order 
model Rr (w) which by using the reverse bilinear transformation separately in the 

numerator and denominator may be converted in the 'z' domain as in 
equation (5.8). 
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N,.(w)Iw =(z-1) /(z+l) = N,.(z)/(z+l) r-1  =0 	
.......(5.11) 

Dr (w) w_ (Z-1) (Z+l) = Dr (Z)/(Z + l) r  = 0 

The above scheme is used in developing the following method for the 

reduction of discrete time SISO systems. 

5.3 MIXED METHOD USING ROUTH APPROXIMATION 

The complete scheme of the method is carried out in the following steps: 

Step 1: 

Convert G(z) to G(w) by using bilinear transformation as in (5.8). 

Step 2: 

Compute second Cauer form quotients CFE, h;  (i= 1,2,...r) of D(w) by 

developed computer programme given in appendix. 

Step 3: 

Compute x , i =1,2,....r, of D(w) by alpha (Routh) table as given in 

chapter-4 then Dr  (w) is obtained with equation (4.14). 

Step 4: 

Obtain Nr  (w) by matching the quotients h; with the coefficients of Dr  (w). 

Step 5: 

Obtain Rr  (z) by applying the reverse bilinear transformation in R(w). 
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Step 6: 

To remove any steady state error between. the original system and model 
output (for a unit step input) multiply the numerator of the reduced order model 

with gain correction factor kg obtained as: 

k g = R~~~ . Z= , 	 .......(512) 

5.4 ILLUSTRATIVE EXAMPLES 

The above given algorithm is illustrated with the help of following 
examples- 

Example 5.4.1: 

Consider the 8th order system [26]: 

G(z) = N(z) /D(z) 

N(z) = 1.682z7 + 1.116z6 — 0.21z5-'- 0.152z4 — 0.516z3 — 0.262z2 +, 0.044z 

—0.006 

D(z) = 8z8 —5.046z7 — 3.348z6 + 0.63z5 — 0.456z4 + 1.548z3 + 0.786z2 

0.132z + 0.018 

Step 1: 

By applying the bilinear transformation, G(w) is obtained as: 

G (w) = N (w)/D(w),where 

N(w) _ -1.525879e-05w7 + 4.879944w6 +27.856186w5 + 54.127853w4 + 

62.176041w3 + 46.255997w2 + 18w + 2 
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D(w) = 8w8  + 78.64w7  +292.928w5  + 526.818w5  + 584.144w4  + 400.24w3  

+ 139.232w2 -'-16w+2 

Step 2: 

Second Cauer quotients h; , for r=2 of G(w) are evaluated as - 

h1  = 1 

h2 =-1 

Step 3: 

From D(w) of G(w), compute a; (for r=2) as - 

ai = 0.125 

a.2  = 0.1793681 

Compute D2  (w) by equation (4.14). 

D2  (w) = W2  + 0.1793681 w + 0.022421 

Step 4: 

Match h;  with coefficients of D2 (w), to obtain N2 (w). 

N2 (w) = 0.201789w+0.022421 

Express, R2  (w) = N2 (w) _ 

D, (w) 

0.201789w + 0.022421 

w2  + 0.1793681w+ 0.022421 
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Step 5: 

Convert R2(w) in R2(z) by reverse bilinear transformation. 

R2(z) = 
N2  (z)  = 	0.22421z — 0.179368 
D2  (z) 	1.2017891z 2  —1.955158z+0.8430529 

Step 6: 

Compute the correction factor k9  by equation (5.12) and multiply in N2(z). 

We have, kg  = 2 

The corrected N2(z) is obtained as - 

N2(z) = 0.44842z — 0.358736 

The final reduced order model is expressed as - 

0.44842z — 0.358736 
R2(z) —  

1.20178912 —1.955158z + 0.8430529 

The unit step responses of G(z) and R2(z) is compared as shown in figure (5.4.1) 

Example 5.4.2 

Consider the 5th  order system [27]: 
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G(z) = N(z) /D(z),where 

N(z) = 3z4  — 8.886z3  + 10.0221z2  - 5.091975z + 0.981112 

D(z) = z5  — 3.7z4  + 5.47z3  - 4.037z2  + 1.4856z - 0.2173 

Step 1: 

By applying the bilinear transformation G(w) is obtained as: 

G (w) = N (w)/D(w),where 

N(w) = 27.981188w4  + 15.663599w3  + 3.842474w2  + 0.487501 w 

+0.025238 

D(w) = 15.909901w5  + 11.989698w4  + 3.5302w3  + 0.532201 w2  +0.0367w 

+ 0.0013 

Step 2: 

Compute second Cauer quotients h;  for (r = 2) of G(w) as - 

h1 = 0.05151 

h2 = 2.177754 

Step 3: 

From D(w) of G(w), compute a; (for r=2) as - 

al = 0.035422 

a2 = 0.090138 

Compute D2  (w) by equation (4.15). 

D2 (w) = W2  +0.090138w + 0.00319286 



Step 4: 

Match h;  with coefficients of D2  (w), to obtain N2  (w). 

N2(w) = 1.1973514w + 0.061984 

Express, R (w) =  N2 (w)  — 	1.1973514w+0.061984 

z 	D2  (w) 	w2  +0.090138w+0.00319286 

Step 5: 

Convert R2(w) in R2(z) by reverse bilinear transformation. 

R2 (z) = 
N2(z)  _ 
D2  (z) 

1.2593354z —1.1353674 

1.0933308z 2  —1.9936144z + 0.9130548 

Step 6: 

Compute the correction factor kg  by equation (5.12) and multiply in N2(z). 

We have, kg  = 1.9999 

The corrected N2(z) is obtained as - 

N2(z) = 2.5186424z-2.2707092 
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The final reduced order model is expressed as - 

R2  (z) = 
2.5186424z - 2.2707092 

1.0933308z 2  - 1.9936144z + 0.9130548 

The unit step responses between G(Z) and R2(Z) is as shown in Fig. 

(5.4.2). 
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Chapter -6 

CONCLUSIONS AND FUTURE SCOPE OF WORK 

Reduction of linear dynamic systems has been an active area of research 

during the last few decades. The work included here in deals with the reduction 

of linear dynamic systems using continued fraction expansions. This concluding 

chapter is primarily devoted to summarising the main contributions of the work 

done and scope of future work in this field. 

The continued fraction expansion approach is an algebraic method for 

deriving the reduced order models using various Cauer forms. The method is 

quite attractive and simple but it has a serious drawback of producing unstable 

(stable) models for stable (unstable) system, this has been shown in chapter-

3.To overcome this drawback a mixed method has been proposed in chapter - 4 

which has been extended for discrete time systems in chapter-5. The mixed 

method utilizes the advantages of continued fraction expansion, bilinear 

transformation and Routh approximation. The unique feature of this method is 

that it gives stable models for stable systems and matches the initial and final 

values of the responses. The methods included here are illustrated for SISO 

systems only however, these are extendable for multiinput - multioutput (MIMO) 

systems. 

The future scope of the work include extension of these methods for 

MIMO systems. The other possibility may be developing new mixed methods 

using Cauer first and third forms of CFE coupled with other stability based 

reduction methods. These methods can also be tried for the design of controller. 
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Appendix 

//********************************* SOURCE CODE FOR *****************************// 

BILINEAR TRANSFORMATION ***********************// 

#include<iostream.h> 

#include<fstream.h> 

#include<conio.h> 

#include<math.h> 

#include<stdio.h> 

void main(void) 

{ 

int i,j,k,n,I; 

float a[20],b[20]; 

- char* str; 

cout<<"\n Enter output file for results\n"; 

cin>>str; 

ofstream outfile(str,ios::out); 

cout<<"\n BILINEAR TRANSFORMATION OF POLYNOMIALS"; 

cout<<"\n ENTER THE POLYNOMIAL DEGREE n: "; 

cin>>n; 

cout<<"\n ENTER THE COEFFICIENT IN DECREASING ORDER \n"; 

outfile<<"\n THE COEFFICIENT IN DECREASING ORDER \n"; 

=n+1; 

for(j=1;j<=1;j++) 

{ 

cout<<"\n a["<<I-j<< "] = It; 
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cin>>a[j]; 

outfile<<"\n a["<<I-j<<"] = "<<a[j<<endl; 

} 

b[1] = a[1]; 

for(j=1 ;j<=n;j++) 

{ 

k=1+1 -j; 

for(i=2;i<=k;i++) 

{ 

b[i]=a[i]+b[i-1 ]; 

II 

for(i=2;i<=k;i++) 

{ 

a[i]=b[i]; 

} 

} 

cout<<"\n TRANSFORMED POLYNOMIAL "; 

outfile<<"\n TRANSFORMED POLYNOMIAL "; 

cout<<"\n HIGHEST POWER COEFFICIENT FIRST"; 

outfile<<"\n HIGHEST POWER COEFFICIENT FIRST"; 

for(j=1 ;j<= 1;j++) 

{ 

b[J]=a[i]; 
} 

for(j=2;j<=I;j++) 

{ 

a[j]=b[j]*pow(2,(j-1 )); 

} 

CIA 



for(j=1 ;j<=n;j++) 

{ 

k=1+1 -j; 

for(i=2;i<=k;i++) 

{ 

b[i] = a[i-b[-1 ]; 

} 

for(i=2;i<=k;i++) 

{ 

a[i]b[i]; 

} 

} 

cout<<"\n"; 

outfile<<"\n"; 

for(j=1;j>O;j--) 

{ 

Gout<<"\t"<<b[J]; 

outfile<<"\t"<<b[]; 

} 

getch(); 

} 
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SOURCE CODE FOR *********************************// 

//**************CONTIN U ED CAUER FRACTION EXPANSION ********************// 

#include<iostream.h> 

#include<fstream.h> 

#include<conio.h> 

#include<graphics.h> 

#include<dos.h> 

void main() 

{ 

float a[20][20],h[20],H[20]; 

.. 	int i,j,k,n,r; 

ofstream outfile("output.dat",ios::out); 

clrscrO; 

cout<<"Enter the order of the transfer function ri:"; 

cin>>n; 

Gout«"Enter the order of the reduced order system r:"; 

cin>>r; 

cout<<"Enter the numerator coefficients:"<<endl; 

outfile<<"The numerator coefficients:"<<endl; 

for(i=0;i<=n-1;i++) 

{ 
cout«„a2[ <<i«„] = II; 

cin>>a[2][i+1]; 

outfile«°a2["<<i<<”] = "<<a[2][i+1 ]<<endl; 

} 

cout<<"Enter the denominator coefficients:"<<endl; 

outfile<<"The denominator coefficients:"<<endl; 
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for(i=0;i<=n;i++) 

11 
cout«„a 1 [„«i<<”] = "; 

cin>>a[1][i+1]; 

outfile<<"a 1 [n«i<<"] = "<<a[1 ][i+1 ]<<endl; 

} 

h[1] = a[1][1]/a[2][1]; 

H[1] = a[1 ][n+1 ]/a[2][n]; 

for(j=3;j<=n+1;j++) //n+1 

{ 

for(k=1;k<=n+2-j;k++) 

{ 

a[j][k] = a[j-2][k+1] - H[j-2]*a[j-1][k]; 

} 

H[j-1] = a[j-1][n+3-j]/a[][n+2-j]; 

11 

cirscrO; 

cout<<"\t"<<"Coefficients for the Cauer First Form are as follows:"<<endl; 

outfile<<"\t"«"Coefficients for the Cauer First Form are as 

follows:"<<endl; 

for(i=1;i<=n;i++) 

{ 

cout<<"\t\t"<<"H["<<i<<"] = "<<H[i]<<endl; 

outfile<<"\t\t"<<"H["<<i<<"] = "<<H[i]<<endl; 

} 

coat<<"\t"<<"Coefficients for the Cauer Third Form are as follows:"<<endl; 

outfile<<"\t"<<"Coefficients for the Cauer Third Form are as 

follows:"<<endl; 
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for(j=3;j<=n+1;j++) 

{ 
for(k=1;k<=n+2-j;k++) 

{ 
a[J][k] = (a[J-2][k+1]) - (h[j-2]*a[j 1][k+1]) - (H[j-2]*a[J-1][k]); 

} 
h[j-1] = a[j-1][1]/a[J][1]; 

H[j-1] = a[j-1][n+3  j]/a[J][n+2-j]; 

Ej 

for(i=1;i<=n;i++) 

{ 
tout<<"\t\t"<<' h["<<i<<"] = 'o«h[i]«\tol«I'l--I[11«i<<"I _ 

"<<H[i]<<endl; 

outfile<<"\t\t"<<"h["<<i<<"]  

"<<H[i]<<endl; 

} 

for(j=3;j<=2*n+1;j++) 

{ 
for(k=1;k<=n;k++) 

a[][k] = ((a[j-1][1] * a[j-2][k+1]) - (a[j-21[1 ] * a[j-1][k+1])) 

/a[j-1][1]; 

} 
if(j%2==0) 

a[j][n+2-j/2] = 0; 

} 
cout<<"\t"<<"Coefficients for the Cauer Second Form are as 

follows:"<<endl; 
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outfile<<"\t"<<"Coefficients for the Cauer Second Form are as 

follows:"<<endl; 

for(j= 1;j<=2*r;j++) 

{ 

h[J] = a[j][1]/a[j+1][1]; 

cout<<\t"<<"\t"<<"h["<<j<<"] = "<<h[j]<<endl; 

= '<<h[j]<<endl; 

} 

outfile. close 0; 

getch(); 

0 
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//****************************** SOURCE CODE FOR **************************// 

//*********ROUTH APPROXIMATION FOR ALPHA COEFFICIENTS ************// 

#include<stdio.h> 

#include<iostream. h> 

#include<conio.h> 

#include<math.h> 

#include<ctype.h> 

#include<dos.h> 

#include<graphics.h> 

#define M 10 

#include<stdlib.h> 

void routh(); 

FILE *fpl; 

void main() 

{ 
char c,t; 

int i; 

int gdriver=DETECT,gmode; 

fpl =fopen("output.dat","w"); 

textbackground(3); 

textcolor(B LACK); 

in itgraph(&gdriver,&gmode,"c:\\tc\\bgi"); 

cirscr(); 

routh(); 
setgraphmode(gmode); 

cleardeviceO; 
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setbkcolor(7); 

} 

typedef struct 

{ 

int n; 

double x[M]; 

}poli; 

void tini_1_dim(double a[M]); 

void tini_2_dim(double a[M][M]); 

void routhO 

{ 

int i,j,n; 

double A[M],B[M],a[M][M],b[M][M],aIpha[M],beta[M]; 

tini_1—dim(A); 

tin i_1_dim(B); 

tini_1—dim(alpha); 

tin i_1_dim(beta); 

tini_2_dim(a); 

tini_2_dim(b); 

clrscrO; 

cout<<"\n\n\t\tENTER ORDER OF DENOMINATOR : "; 

cin>>n; 

T 



cout<<"\n\t\tEnter Coefficients of Denominator in Decending Powers of s"; 

cout<<endl; 

for(i=0;i<=n;i++) 

{ 

cout<<"\t\t"; 

cin>>B[i]; 

} 

/*cout<<"\n\t\tEnter Coefficients of Numerator in Decending Powers of s"; 

cout<<endl; 

for(i=n;i>=1;i--) 

ii 
cout<<"\t\t"; 

cin>>A[i]; 

} 	*/ 

clrscrO; 

int k; 

i=0; 

for(j=0;j<=n;j+=2) 

{ 

• k=n-j; 

if( k<0) 

b[i][j]=0; 

else 

b[i][j]=B[k]; 

} 

++i; 

for(j=0;j<=n;j+=2) 

{ 

k=n-j-1; 
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if(k<O) 

b[i][j]=0; 

else 

b[i][j]=B[k]; 
} 

for(i=1 ;i<n;i++) 

{ 

alpha [ii =b[i-1 ][O]/b[i][0]; 

for(j=0;j<n;j+=2) 

{ 

b[i+1  ]Ul=b[i-1  ][j+2]-alpha[i]*b[i][j+2]; 

} 

} 

. b[n][O]=1 ; 

alpha[n]=b[n-1 ][0]; 

cout<<"\n\n\t\tAlpha Table ................"<<endl; 

fprintf(fp'l ,"\n\t\Routh's Approximation:"); 

fprintf(fp'l ,"\n\n\t\Alpha Table...........:\n"); 

for(i=1 ;i<=n;i++) 

{ 

printf("\t\t%lf\n",alpha[i]); 

fprintf(fpl ,"\t\t%lf\n",alpha[i]); 

} 

gotoxy(50,23);puts("Hit Any Key To Continue.."); 

getch(); 

cl rscr(); 

} 

void tini_2_dim(double x[M][M]) 

78 



{ 

int i,j; 

for(i=0;i<M;i++.) 

[1 
for(j=0;j<M;j++) 

{ 

x[i]fjl=O; 

} 

P 
} 

void tini_l_dim(double alpha[M]) 

int ij; 

for(i=0;i<M;i++) 

{ 

alpha[i]=O; 

11 

void impengy() 

{ 

int i,j,k,s,t,n; 

float a[M][M][2],b[M][M][2],alpha[M],beta[M],imp[M],A[M][M][2],B[M][M][2]; 

for(i=0;i<M;i++) 

{ 

fo r(j =0 ;j < M ;j+ +) 
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R 
for(k=0; k<2; k+-f-) 

{ 

a[i][j][k]=O; A[i][j][k]=0; 

b[i]U][k]=0; B[i]U][k]=O; 

} 

} 

} 

for(i=0;i<M;i++) 

{ 

alpha[i]=0; 

beta[i]=O; 

imp[i]=O; 

printf("\n\n\tenter order of the System\n"); 

scanf("%d",&n); 

printf("\n\tEnter den coff in ascending powers of s\n"); 

for(i=1 ;i<=n+1 ;i++) 

{ 

printf("a[1 ][%d]1t",i); 

scanf("%f', &a [1 ] [i] [0] ); 

} 

printf("1n\tEnter num coff in ascending powers of s\n"); 

for(i=1 ;i<=n;i++) 

{ 

printf('b[1 ][%d]1t",i); 

scanf("%f',&b[1 ][i][0]); 

} 

alpha[1 ]=a[1 ][1 ][O]/a[1 ][2][0]; 



beta[1 ]=b[1 ][1 ][0]/a[1 ][2][0]; 

t=2; 

for(i=1 ;i<=n;i+=2) 

11 

a[1  ][i][1  J=a[1  ][t][0]; 

b[1  ][i][1  ]=a[1  ][t][0]; 

t+=2; 

} 

for(i=2;i<=n;i++) 

{ 

for(j=1;j<=n;j++) 

{ 

a[i][I][O]=a[i-1  ][J+1  ][O]; 

} 

else 

{ 

a[i][1][0]=a[i-1  ][j+1 ][O]-alpha[i-1 ]*a[1-1  ][1+2][0]; 

} 

} 

alpha[i]=a[i][1 ][O]/a[i][2][O]; 

t=2; 

for(j=1;j<=n;j+=2) 

{ 

a[i][1][1  ]=a[i][t][0]; 

t+=2; 

} 

} 

/* N table*/ 

for(i=2;i<=n;i++) 
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for(j=1 ;j<=n;j++) 

{ 

b[iJ[f][OJ=b[i-1 ][j+1 ][0]; 
} 

else 

{ 

b[7[][O]=b[i-1 ][j+1 ][0]-beta[i-1 l*a[i-1 ]G+2][0]; 
} 

} 

beta {i}=b[i] [ 1 ] [0]/a [i] [2] [0]; 
t=2; 

for(j=1;j<=n;j+=2) 

{ 

b[i][t][1  ]=a[i][t][OJ; 
t+=2; 

} 

} 

clrscrO; 

printf("\n\n\t\tN table\n\n"); 

fpri ntf(fp 1, "\n\n\t\tN to ble\n\n"); 
for(i=1;i<=n;i++) 

{ 

for(k=0;k<=1;k++) 

{ 

for(j=1;j<=n;j++) 

{ 

0 
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p ri ntf("%f\t", b[i] U] [k] ); 

fpri ntf(fp 1,"%fAt", b[i]  [j]  [k] ); 
} 
printf("\n"); 

fprintf(fpl ,".1n"); 

} 
printf("\n"); 

fprintf(fp1,"\n"); 

} 
getch(); 

printf("\n Enter order of reduced system"); 

scanf("%d",&k);. 

for(i=1; i<=n;i++) 

{ 
A[2][i][0] = a[n-k+2][7[0]; 

A[2][i][1] = a[n-k+2][i][1]; 

A[1][i][1] = a[n-k+1][7[1]; 

B[2][i][0] = b[n-k+2][i][0]; 

B[2][i][1] = b[n-k+2][i][1]; 

B[1][i][1] = b[n-k+1][i][1]; 

} 
for(i=1;i<=k;i+=2) 

{ 
A[1  ][i+1  ][0] = A[1  ][i][1  ]; 

B[1][i+1][0] = B[2][i][0]; 

} 
A[1][1][O] = A[1][1][1]*alpha[1]; 

B[1][1][O] = A[1][1][1]*beta[1]; 

for(i=3;i<=k;i-3-+) 

{ 
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A[1 ][][O] = A[2][i-1][0]+alpha [1]*A[1][i+1][O]; 

B[1  ][i][0] = B[2][i-1 ][0]+beta[1 ]*A[1  ][i+1  ][OJ; 
} 

getch(); 

clrscrO; 

printf("REDUCED ORDER SYSTEM\n"); 

printf("\n\n\tNUM IN ASCENDING POWERS OF s\n\n\t"); 

fprintf(fpl ,"\n\n\tREDUCED ORDER NUMERATOR 

POLYNOMIAL'S COEFFICIENTS \n\n\t IN ASCENDING 

POWERS OF s\n"); 

for(i=1;i<=k;i++) 

{ 

printf("%f\t", B [1 ][i][O]); 

fprintf(fpl ,"%f\t", B [l ] [i] [0] ); 

} 

printf("\n\n\tDEN IN ASCENDING POWS OF s\n\n\t"); 

fprintf(fpl ,"\n\n\t REDUCED ORDER DENOMINATOR 

POLYNOMIAL'S COEFFICIENTS\n\n\t IN ASCENDING 

POWERS OF s\n"); 

for(i=1;i<=k+1;i++) 

{ 

printf("%f\t",A[l ][i][0]); 

fprintf(fpl ,"%f\t",A[1 ][i][0]); 

} 

getch{); 

fclose(fpl); 
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