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ABSTRACT 

Identification is the determination of a system within a specified class of system, on the 

basis of inputs and outputs. Such determination means that some variables, characterizing the 

given system are chosen and some relation are defined in the form of formula or graphs. 

In this dissertation, a single layer ANN has been developed to identify the parameters of 

the linear dynamic system whose states and derivatives of states are given. Gradient descent 

algorithm has been used to learn the network. This algorithm made the learning very fast and 

provides global results. By this method, a non-linear system has also been identified in the form 

of a linear system about its operating point. Further, the effect of change in learning rate has been 

studied. This method has been successfully implemented on three sample systems and the results 

of identification of system parameter are reported 
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Chapter-1 

INTRODUCTION 

1.1 IDENTIFICATION 

System identification problem are found every where in the science, medicine, 

and engineering .In such a problem, fundamental properties of a system are to be 

determined from observed behaviour of that system 

A wide class of identification problems may be numerically resolved by the use of 

modern mathematical and conceptual methods and high-speed computers. Many direct 

problems may formulate in terms of systems of differential equations of the form 

X(t) = f (x, a) 

Here, t is independent variable, x is an n-dimensional vector whose components is the 

dependent variables, and a is the parameter of the system. When the parameter in f(.) 

and complete set initial conditions, 

X(0)=C, 

are known, a numerical integration produces the solution x(t) on the interval O<t<T.This 

initial value problem can be readily solved with a digital or on analog computer [2]. 

On the other hand, in identification problem, the quantity x(t) or some function of 

x(t) is approximately known at various times, while the parameters are not directly 

determinable. It is desirable to estimate the structure of the system as expressed by the 
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parameter vector a, and a complete set of initial conditions C. This may be regarded as 

the non linear boundary value problem in which the unknowns are some or all of the C's 

and a's. 

Problems, which do not naturally occur in the form of systems of ordinary 

differential equations, may be expressed in that form in an approximate representation. 

1.2 PURPOSE OF IDENTIFICATION 

When formulating and solving an identification problem it is important to have 

the purpose of the identification. In control problems the final goal is often to design 

control strategies for a particular system. There are situations where the primary interest 

is to analyse the properties of system. Determination of rate coefficients in chemical 

reactions, heat transfer coefficients of industrial processes and reactivity coefficient in 

nuclear reactors are typical examples of such a "diagnostic" situation. In such a cases 

determination of specific parameter values might be the final goal of the identification. 

Many problems of this type are also found in biology, economy, and medicine [1]. 

Though the purpose of the identification is to design a control system the 

character of the problem might vary widely depending on the nature of the control 

problem. A few examples are given below: 

Design a stable regulator. 

Design a control program for optimal transitions form one state to another. 

Design a regulator that minimises the variations in process variables due to 

disturbances. 
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In the first case it might be sufficient to have a fairly crude model of the system 

dynamics. The second control problem might require a fairly accurate model of the 

system dynamics. In the third problem it is also necessary to have a model o the 

environment of the system. Assuming that the ultimate aim of the identification is to 

design a control strategy for a system, what would constitute a satisfactory solution from 

a practical point of view? 

In most practical problems there is seldom-sufficient a priori information about a 

system and its environment to design a control system from a priori data only. It is often 

be necessary to make some kind of experiment, and observe the process while using 

perturbations as input signals and observe the corresponding changes in process 

variables. In practice there are severe limitations on the experiments that can be 

performed. In order to •get realistic models it is often necessary to carry out the 

experiments during normal operation. This means that if the system is perturbed, the 

perturbations must be small so that the production is hardly disturbed. It might be 

necessary to have several regulators in operation during the experiment in order to keep 

the process fluctuations within acceptable limits. This may have an important influence 

on the estimation results. 

When carrying out identification experiments of this type, there are many 

questions, which arise naturally: 

How should the experiment be planned? Should a sequential design be used, i.e. 

plan an experiment using the available a priori information, perform that experiment, plan 

a new experiment based on the results obtained, etc. When should the experimentation 

stop? 
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What kind of analysis should be applied to the results of the experiment in order 

to arrive at control strategies with desired properties? What confidence can be given to 

the results? 

What type of perturbation signal should be used to get as good results as possible 

within the limits given by the experimental conditions? 

If a digital computer is used what is suitable choice of the sampling interval? In 

spite of the large amount of work that has been carried out in the area of system 

identification we have at present practically no general answers to the problems raised 

above. Since the general problems discussed above are very difficult to formalise one 

may wonder if is a rational answers to them. Nevertheless, it is worthwhile to recognise 

the fact that the final purpose of identification is often the design of a control system, 

since this simple observation may resolve many of the ambiguities of an identification 

problem. A typical example is the discussion whether the accuracy of identification 

should be judged on the basis of deviations in the model parameters or in time response. 

If the ultimate purpose is to design control systems then it seems logical that the accuracy 

of identification should be judged on the basis of the performance of the control system 

designed from the results of the identification. 

1.3 RELATIONS BETWEEN IDENTIFICATION AND CONTROL 

Whenever the design f a control system for a practically known process is 

approached via identification it is an a priori assumption that the design can be divided 

into two steps: identification and control [1]. In analogy with the theory of stochastic 

control we refer to this assumption as the separation hypothesis. The approach is very 

natural, in particular if we consider the multitude of techniques which have been 
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developed for the design of systems with known process dynamics and known 

environments. It is seldom true that optimum solutions are obtained if a process is 

identified and the results of the identification are used in a design procedure, developed 

under the assumption that the process and its environment are known precisely. It can be 

necessary to modify the control strategy to take into account the fact that the 

identification is not precise. Conceptually it is known how these problems should be 

handled. In the extreme case when identification and control are done simultaneously for 

a system with time-varying parameters the dual control concept can be applied. This 

approach lead to more computation even for simple cases. 

It can also be argued that the problem of control process with unknown 

parameters can be approached without making reference to identification at all. As a 

typical example online tuning of PID regulators. In any case it seems to be a worthwhile 

problem to investigate rigorously under what conditions the separation hypothesis is 

valid. 

1.4 CLASSICAL IDENTIFICATION METHODS 

A number of methods have been proposed in the process identification literature. 

The conventional methods that are widely used in the industries are following [3]: 

Direct Sine-Wave Testing 

In this testing the input of the plant, which is usually a control -value position or a 

flow-controller set point, is varied sinusoidal at a fixed frequency w. After waiting for all 

transients to die out and for a steady state oscillation in the output to be established, the 

amplitude ratio and phase angle are found by recording input and output data. The data 
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point at this frequency is plotted on Nyquist, Bode, or Nichols plot. Then the frequency is 

changed to another value and a new amplitude ratio and phase angle is determined. Thus, 

the complete frequency-response curves are found experimentally by varying frequency 

over the range of interest. Approximate transfer functions can be fitted to the 

experimental curves. 

Pulse-Testing 

One of the most useful and practical methods for obtaining experimental dynamic 

data in many chemical engineering processes is pulse testing. It gives reasonably accurate 

frequency response curves and requires only a fraction of time that directs sine-wave-

testing takes. 

In this testing, the input pulse m (t) of arbitrary shape is applied to the process. 

This pulse starts and ends at the same value and is ofen just a square pulse. The response 

of the output is recorded. It yields reasonably accurate frequency - response curve and 

requires only a fraction of the time that direct sine wave testing takes. If m (t) is input and 

x (t) is output. By definition, the transfer function of the process is 

G(s) = X(s)/M(s) 

W 

= f x(t)e-s`dt / f -m(t)e-S'tdt 

0 	 0 

This testing does not work well on process that are highly non-linear because 

pulse tends to drive the process away from the steady state into a non-linear region unless 

the pulse height is made very small. If the load disturbances occur at the same time as the 
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pulse is being performed, then it creates problems. These other disturbances can effect 

the shape of the output response and produced poor results. 

Step Testing 

A plant operator makes changes from time to time in various input variables such 

as feed flow rate, steam flow rate etc. from one operating level to a new operating level. 

This changes can be instantaneous or gradual. The step-response data are obtained by 

recording the variables of interest for a few hours or days of plant operation. 

These data are converted into frequency - response curves, by federating both 

input and output curves in the frequency domain. The process transfer function 

G(s)=X(s)/M(s). Since the numerical differentiation is used to get frequency response 

from step-test data, the results are less reliable than pulse test data. 

Least-Squares Method 

In this method, basic idea is to use a difference-equation model for the process in 

which the current output xn  is related to previous values of the output (x,, X2 , .....) and 

present and past values of input (m ,  m_1  , ..... ) . The relationship is linear, so classical 

least squares is used to solve for the best values of the unknown coefficients. 

xnm  = (a.mn  + Li mn-1  +....... aMmn-M) — ( b1xn-1 + b2 xn-2  +..........+bNxn-N ) 

State Estimators 

The main idea behind this method is to solve mathematical models of the system 

that are solved on-line. These models usually assume linear ODEs, but non-linear 
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equations can be incorporated. The actual measured inputs to the process are fed into the 

model equations, and the model equations are integrated. Then the variable measured 

output variables are compared with the predictions of the model. The differences between 

the actual measured output variables and the predictions of the model for these same 

variables are used to change the model estimates through some sort of feedback. When 

differences between the predicted and measured variables are zero, the model predictions 

of all the state variable are changed. 

1.5 ANN BASED IDENTIFICATION 

In these methods physical system is identified in the form of a transfer function. 

Though the transfer function model provides us with simple and powerful analysis and 

design techniques, it suffers from certain drawbacks, e.g., a transfer function is only 

defined under zero initial conditions. Further, it has certain limitations due to the fact that 

the transfer function model is only applicable to linear time-invariant systems and it is 

generally restricted to SISO (single-input-single output) systems, as this approach 

becomes highly cumbersome for use in N 1MO (multi-input multiple-output) systems. 

Another limitation of the transfer function technique is that it reveals only the system 

output for a given input and provides no information regarding the internal state of the 

system. There may be situations where the output of systems is stable and yet some of the 

system elements may have a tendency to exceed their specified ratings. It is observed that 

the classical design methods (root locus and frequency domain methods) based on the 

transfer function model are essentially trial and error procedures. Such procedures are 

difficult to visualise and organise even in moderately complex systems and may not lead 

to a control system, which yields an optimum performance in some defined sense [8]. 



Thus, the need of a more general mathematical representation of a system which, 

along with the output, yields information about the state of the system variables at some 

predetermined points along the flow of signals. Such considerations have led to the 

development of the state variable approach. It is a very powerful technique for the 

analysis and design of linear and non-linear, time-invariant or time-varying multi-input 

multi-output systems. 

But, this method is local in scope i.e., optimum point is in the neighbourhood of 

the initial conditions. From the above discussion, a somewhat unsettling conclusion can 

be drawn "conventional methods are not robust". The implications of robustness for 

artificial systems are manifold. If artificial systems can be made more robust, costly 

redesigns can be eliminated, If higher levels of adaptation can be achieved, existing 

system can perform their functions longer and better. 

Thus the desire for robust methods led the birth of non-traditional methods (one 

of them is, ANN), which have theoretically and practically proved to provide robust 

solution in the complex process identification. 

Narendra and Parthasarthy [5] have focused on the applications of neural 

networks for linear system identification. They proposed feed forward and recurrent• 

network for identification of a non-linear time-invariant dynamic system, by measuring 

the inputs, states and derivatives of states. However, for some problems, a globally 

optimal solution is not guaranteed by the network, the network computes locally 

optimum solution. In such cases it is not used, as it gives quite inaccurate results and is 

computationally complex. 
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Wang and Lin [11] have proposed Runge-Kutta neural network for identification 

of unknown dynamical systems described by ordinary differential equations. The 

proposed network precisely estimates the changing rates of the system states directly in 

their subnetworks based on space-domain interpolation instead of time-domain 

interpolation 

Elias and Marios [7] have proposed a discrete-time recurrent neural network 

models which stability depends on the modelling errors. In the case of no modelling 

error, the state error between the system and RHONN model converges to zero. 

Baldi and Hornik [9] have surveyed several learning algorithms for feed forward 

as well as recurrent neural networks. Many doubts have been answered regarding 

properties of error function, local connectivity and bias. 

Bhama and Singh [6] have proposed a gradient descent learning algorithm, which 

is also known as modified back propagation to train a single layer neural network 

(SLNN) for identifying the parameters of linear dynamic systems. An appropriately 

formulated least mean square error (LMSE) is used as a performance measure for the 

network proposed. 

The proposed network is simpler in structure and therefore less expensive in 

implementation. The structure is suitable for on-line computation because of the parallel 

nature. 
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1.6 ORGANISATION OF THE DISSERTATION 

The present chapter I introduces the definition of identification problem and its 

goal. The classical identification techniques and brief literature review is introduced 

Chapter II presents the concepts of neural network. Back propagation algorithm 

for multi layer neural networks has been developed. 

In chapter III, The dynamic system identification, problem formulation, and 

performance index has been discussed. An algorithm for the dynamical system parameter 

estimation has been developed. 

Chapter IV presents the structure of the neural networks, which has been 

developed in this dissertation. The gradient descent technique algorithm has been 

developed to train the Ann. 

In chapter V some selected practical examples has been solved using gradient 

descent algorithm, which has been developed in this dissertation. 

Chapter VI presents some conclusions and further scope of the dissertation. 
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Chapter-2 

NEURAL NETWORKS: AN OVERVIEEW 

2.1 HISTORICAL BACKGROUND 

The information processing principles of biological neural networks have been 

applied to building a computer system for solving difficult problems shoos solutions 

normally require human intelligence. Hebb (1949) proposed a learning law that explained 

how a network of neurons learned from the data. Other researchers pursued this notion 

through many years and Posenblatt is credited with the perceptron learning algorithm. 

Later, Minsky and Papert (1969) pointed out theoretical limitations of single-layer 

neural network model in their book "Perceptrons". Due to this negative projection, 

research on ANNs lapsed into an eclipse. Despite the negative atmosphere, some 

researchers still continued their research and came out with meaningful results. 

In the early 1980s, the neural network approach was resurrected. Hopfield (1982) 

introduced the idea of energy minimisation in physics into neural networks. His 

influential work endowed this technology with renewed momentum. 

In 1985s,Remelhart, Hinton, and Williams offered a powerful solution "back 

propagation learning algorithm" to training a multi layer neural networks and shattered 

the curse imposed on perceptions. 	 r 

Although the neural network approach rejects to notion of separating knowledge 

from the inference mechanism, it does not reject the important of knowledge in many 
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tasks that require intelligence. It just was a different way store and manipulates 

knowledge. 

2.2 INTRODUCTION 

The neural network contains a large number of simple neuron like processing 

elements and a large number of weighted connections between the elements. The weight 

on the connections encodes the knowledge of the network. A simple view of the network 

structure and behaviour is given in Fig. 2.1. Construction of a neural network involves 

the following task: 

• Determine the network properties: The network topology (connectivity), the types 

of connections, the order of connections, and the weight range. 

• Determine the node properties: The activation range and the activation function. 

• Determine the system dynamics: the weight initialisation scheme, the activation-

calculating formula, and the learning rule. 

2.2.1 Network Properties 

The topology of a neural network refers to its framework as well as its 

interconnection scheme. The framework is ofen specified by the umber of layers and the 

number of nodes per layer. The types of layer include: 

• The input layer: The node in it is called input unit's, which encode the instance 

presented to the network for processing. 
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• The hidden layer: The nodes in it are called hidden units, which are not directly 

observable and hence hidden. 

• The output layer: The node in it is called output units, which encode possible 

concepts to be assigned to the instance under consideration. 

HIDDEN 
LAYER 

Fig. 2.1: The neural network computational model 

{ 

Fig. 2.2: Step and Sigmoid function 
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According to the interconnection scheme, a network can be either feed forward or 

recurrent. 

+ Feed forward networks: All connections point in one direction (from the input 

toward the output layer). 

• Recurrent networks: There are feedback connections or loops. 

2.2.2 Node Properties 

The activation levels of nodes can be discrete (e.g. , 0 and 1) or continuous across 

a range (e.g. [0,1]) or unrestricted . This depends on the activation function chosen. One 

simple function that is appropriate for discrete neural networks is the step function, which 

is shown in Fig. 2.2 

F(Y) = 1 	 ,if Y>0  

=F(Y) 	,ifY=0 

_ -1 
 

if Y<0 

Where Y is the summation of the product of the incoming neurones activation and the 

synaptic weight of the connection: 

n 
Yj= o xi w ji 	 ...(2.1) 

=o 

Where, 

n is the number of incoming neurons 

x; is the activation of ith neurons. 

W~j is the vector of synaptic weights connecting the ith incoming neurones to the 

jth neurones we are examining. 
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Another popular class of function is the sigmoid or squashing function. An 

example of the sigmoid function, has been ,shown in fig.2.2 . 

2.2.3 System Dynamics 

The learning rule is one of the most important attributes to be specified for neural 

networks. The learning rule determines how to adopt connection weights in order to 

optimise the network performance. It indicates how to calculate the weight adjustment 

during each training cycle. However the rule is suspended after training is completed. 

The activation levels of input need not be calculated since they are given. Those of 

hidden and output units are calculated according to the activation function used. If it is a 

sigmoid function, the activation level (Oj) of unit j is calculated by 

Oj = 1 /(I + exp(—Yj — 6;  )). 	 ...(2.2) 

Where Yj is calculated from equation (2.1), and 6j the threshold on unit j. 

2.2.4 Function Classification 

Neural computational models can be categorised in terms of their applications: 

Classification: Assignment of the input data to one of a finite number of categories. 

Association: 

Auto association: retrieval of an object based on part of the object itself. 

Hetro association: retrieval of an object (memory) in one set using another object 

(memory) in different set. 
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Optimisation: Finding the best solution - often by minimising a certain cost function. 

Self-organisation: Organising received information using adaptive learning capabilities. 

2.3 BACK PROPAGATION 

The back-propagation network is a multi layer feed forward network with a 

different transfer function in the artificial neurone and a more powerful learning rule. The 

learning rule is known as back propagation, which is a kind of gradient descent technique 

with backward error propagation as shown in Fig.2.3. 

The back propagation network, in essence, learns the mapping from a set of input 

patterns to a set of output patterns. This network can be designed and trained to 

accomplish a wide variety of mappings. It is capable of approximating arbitrary 

mappings given a set of examples The sigmoid function grantees that the output is 

bounded between 0 and 1. 

2.3.1 Back Propagation Algorithm 

The algorithm of back propagation training for three layer network is given as 

follows: 

P training patterns are given: 	{zl,dl, z2,d2.........zp,dp} 

Where z; is the input and di is output of the i th pattern. 

Step 1: Initialisation: 

The learning rate lemda and error tolerance is chosen. Set all weight and node 

thresholds to small random numbers. 
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Step 2: Calculation of Activation: 

Input is presented and the output is computed. The activation level of an output 

unit is determined by the instance presented to the network. The activation level Oj of a 

hidden and output unit is determined by eqn. (2.2). 

Step 3: Calculation of Error: 

Ej112(d~-O)2 	, for j=1,2,...,k 	 ...(2.3) 

Step 4: Error gradient: The error gradient ö3 for both (hidden and output) layers are 

computed. 

For the output units S~ = O (1— O j )(d j —O)  - 	 ...(2.4) 

For the hidden units: 8. = O(1— O j )yk Bk Wk j 	 • • •(2.5) 

Where Sk is the error gradient at unit k to which a connection points from the 

hidden unit j. 

Step 5: Weight adjustment: 

Start at the output units and work backward to the hidden layer recursively. 

Adjust weight by, 

Wi; (n + 1) =  

Where Wji (n) is the weight from unit i to j at time n. 



HIDDEN 
LAYER 

INPUT 
LAYER 

0I 
L 

Step 6: Repeat steps 2 to 5 for all patterns. 

Step 7: Repeat iteration until convergence in terms of the selected error criteria satisfied. 

INPUT 

Fig. 2.3: Back Propagation network 
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Chapter-3 

IDENTIFICATION OF LINEAR SYSTEM 

3.1 INRODUCTION 

The term identification of a system implies in fact building of its 

mathematical model. This consists of writing a set of mathematical equations along with 

a set of boundary conditions and limitations posed on a system itself If the system to be 

identified is a linear dynamic system as shown in Fig. 3.1, then its mathematical model 

will be described by an ordinary differential equation (ODEs) of the type. 

Y(t)
(»)  + a(n-)Y(t)("-'.+ ...................+a1 Y(t)' + a0y(t)°  = u(t) 

	
(3.1) 

Where, 

y(t) is system output. 

u(t) is system input and 

ai is system parameter,which is identified. 

Dynamic system whose time-behaviour is described by an ordinary differential 

equations of the order n is a linear dynamic system of the same order n. It is called time-

invariant systems if its parameters (i.e. the coefficients ao, ai,...a„_,) are constant, 

otherwise it is a time variant system. In the modern system theory it is usual to describe 

the system in the state space form : 

X(t) =A(t) X(t)+b(t) u(t) 

Y(t)=C(t) X(t) 

Where, 
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X(t) is the state vector of order (k, 1) of the system, 

A (t) is system matrix of order (k,k) 

b (t) is control vector of order (k,p), 

u(t) is the control units of order (p,1), 

Y(t) is the output vector of order (l,m),and 

C(t) is observability or measurement vector of order (m,l), 

Our objective is to develop a neural network that an model on ODE system 

precisely whose right hand side function f(......) is unknown such that it can estimate 

system matrix A(t) and control vector b(t) . 

U(t) — 	
X(t)=A(t) X(t)+b(t) u(t) 	 C(t) X(t) 

Fig. 3. 1: State space system representation 

3.2 PERFOMENCE INDEX 

The analytical identification in which some criterion based on integrated history 

of the response of the entire system is used as a measure of performance. For example, 

either the minimisation of Mean-Square-Error (MSE) for a noisy system or the Integral-

Square-Error (ISE) for a noise-free case can be used as a performance criterion. Use of 

classical methods of the calculus of variations is made to minimise the criterion and to 

obtain consequently the compensating network. The system that minimises the 
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performance index is then said to be the 'best ' or 'optimal'.A number of such 

performance indices are used in practice, the most common being the ISE, given by 

Co 
ISE= f EZ  (t)dt 	 ...(3.2) 

4 

For higher order system, ISE is computed numerically. Since it is not practicable 

to integrate up to infinity, the limit infinity is replaced by T, which is chosen sufficiently 

large so that e (t) for t>T is negligible. 

3.3 PROBLEM FORMULATION 

Zadeh gave the following definition of the identification problem. "Identification 

is the determination, on the basis of input and output, of a system within a specified class 

of systems, to which the system under test is equivalent." Using Zadeh's formulation it is 

necessary to specify a class of system, a class of input signals, and the meaning of 

"equivalent", the system under test is called the process and the element of the system 

class is called models. Equivalence is often defined in terms of a criterion or a loss 

function that is a functional of the process output y and the model output ym  i.e., 

V=V (y, Ym). 

Two model ml  and m2  are said to be equivalent if the value of the loss function is 

the same for both models i.e. 

V (Y,Ym I )=V(y,ym2) 

There is a large freedom in the problem formulation, which is reflected in the 

literature of identification problems. The selection of the class models, the class of input 

signals and the criterion is largely influenced by the a priori knowledge of the process as 

well as by the purpose of the identification. 
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When equivalence is defined by means of a loss function the identification 

problem is simply an optimisation problem: find a model such that the loss function is as 

small as possible. In such a case it is natural to ask several questions: 

Is the minimum achieved? 

Is there a unique solution? 

Is the uniqueness of the solution influenced by the choice of input signals? 

If the solution is not unique, what is the character of the models that give the same 

value of the loss function and how should be restricted in order to ensure uniqueness? 

The formulation of an identification problem as an optimisation problem also 

makes it clear that there are connections between identification theory and approximation 

theory. 

Many direct problems may be formulated in the terms of systems ordinary 

differential equations of the form [6]: 

X(t) =A (t) X (t) + b (t) u (t) 

Or 	 X(t) =f(A(t),b(t),X(t),u(t)) 	 ...(3.3) 

Our objective is to develop a neural network that can model an ODEs system 

precisely whose right hand side function f (.......) is unknown, such that it can estimate 

system matrix A (t) and control vector b (t), where derivative of. the states and states are 

given. 

Let Ae(t) and be(t) be the estimated value of unknown parameters. Then 

estimated value of the derivative is given by 

Xe (t) = Ae (t)X(t) + b e(t)U(t) 	 ...(3.4) 

or 
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( 	 z 	 z d el \t) 	d ell 	ae12 	"" a 	x1  (t) 	(, 11 	t 
L 
2e12 	"" 

x e2(1) 	ae21 ae22 	"" ae2k 	
x2 (t)b

e21 	be22 	"" be2p 

.......... 
... 	. 	.... 	.... 	 .... 

xek (t) 	
aekl 	aek2 	""' aekk 	x k  (f) 	hekI  

...(3.5) 

Let 

E(t) = X(t) — Xe  (t) 

Where, E(t) is error vector of an order (k, 1). 

Differentiating eqn. (3.5) w. r. t t, and writing in matrix form, we have 

el (t) 1(t)  

e2 (t) 2 (t) *e2  (t) 

ek (t) Xk (t) Xek (t) 

From eqns. (3.4) and (3.6), we have 

e l (t) 	*1(t) 	acll 	a.12 	aelk 	Xl(t) 

e2(t) 	X 2( t) a e21 ae22 "" a e2k x2(t) 

ek (t) 	xk(t) a kl- auk2 ""' aekk Xk(t) 

bell b e12 "" 	v elp u1 (t) 
bc21 b.22 .... 	be2p u2(t) 

bekll bek2 """ 	bekp up(t) 

Considering the ith component of error derivative 

(3.6) 

...(3.7) 

...(3.8) 

G 1  (1) = xi (1 ) — [ aeil 	aei2 	""""' aeik ]X(t) — bell 	be12 	"'.... help  ]u(t) 

or 



k 	 p 
è1(t)=i(t)—  (aeijxj(t))—L(beimum(t))  

j=l 	m=1 

or 

...(3.11) 

Where, 

zT =[x1(t)  x2 (t) ..... . xk (t) u1(t) u2 (t) ....u (t)} 	 (3.12) 

WT = [aeii (j) crer2 (f) 	.. 	.. 	ae;x ( 1 ) 	h1(i) 	bei2 ( 1 ) 	.... 	. 	. 	bar (~)] 	...(3. 13) 

3.4 DYNAMIC SYSTEM PARAMETER ESTIMATION 

In the section 3.3 the error function is calculated and given in 

egn.(3.11).Performance index is defined as 

ISE=E[e; (t)] 	, average value of error function. 

or 

T 

E[e, (t)]=1/2T f (i (t) — xe, (t))2 dt 	 ...(3.14) 
0 

T 

=1/2T f .(e; (t))•2 dt 	 ...(3.15) 
0 

7' 

=1 /2TS.[er(t)] ,T [e;(t)]dt 	 ...(3.16) 
0 

T 

=Trace{1/2T J. e; (t.)[e r (t)].T dt} 	 ...(3.17) 
0 

Substituting the valve of e ; (t) from equation (3.10), we have 

T 

E[e,(t)]=Trace {1/2T J.jxi (t)"YYi T Z][xi (1)—I T Z].T dt) 	 ...(3.18) 
0 
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T 

=Trace (1121' f . ( x;  (i)x r  (t) + W.T  ZZ T  W. — 2x (t)Z T  W. )dt} 	(3.19) 
0 

The gradient of error function E[e;  (t)] can by found by differentiating eqn. (3.19) w. r. t 

Wi. 

V ; = cE l oW; 	 ... (3.20) 

T 

= I/2T f.(2 ZZT  W,. — 2Z x ;T  (t) )dt 	 ...(3.21) 
0 

In discrete form the equation is expressed as 

...(3.22) 

Where N is total no. of samples considered for the purpose of simulation. Setting gradient 

of error function equal to zero, i.e. satisfies the condition of optimisation. 

...(3.23) 

Under this condition, the obtained value of Wi will be the optimum. The updated weight 

is given as 

W,.(n+1)=W; (n)—),o; 	 ...(3.24) 

Where Wi are weight of the Nith network. 



Chapter-4 

ANN IMPLIMENTATION FOR LINEAR SYSTEM IDENTIFICATION 

Neural networks are rich in applications across large and growing number of 

discipline. Neural systems gained popularity over other methods as they are efficient in 

discovering similarities among large bodies of data and in synthesising distributed/fault 

tolerance models for non-linear, partly unknown, and noisy corrupted systems. 

4.1 DEVELOPMENT OF ANN MODEL 

A modular neural network has been developed to identify the system parameters. 

In this model, each module is a single layer feed forward neural network. Gradient 

descent algorithm along with adaptive learning rate )t, is used for training the neural 

network. The number of input nodes is equal to the number of state vector plus number of 

inputs variable. The number of output node is one. In modular network, even when the 

total number of parameters in all the modules exceeds the number of parameters in the 

non-modular network, the modular approach yields faster convergence and generalises 

equally well and sometimes better than a non-modular network. The modules of the 

modular neural network can be trained independently and in parallel. The block-diagram 

of the modular neural network is given in Fig. (4.1). The number of module in the 

modular neural network is equal to the number of the state vectors. 

4.2.1 Architecture of the Module 

As shown in Fig, 4.2, the module has (k+p) input nodes and one output node. If the 

target is 0.9, outputs greater than 0.9 are clamped to 0.9, Similarly, outputs smaller 
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Fig. 4.2: A Single layer feed forward ANN module 
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than 0.1 are clamped to 0.1 to reduce likelihood of the network getting stick in local 

minimum. 

The weights on the connection from the ith-input node of the module to the jth 

output nodes are w ;, . The collection of all weights of jth module is denoted as Wj = (w). 

4.3 TRAINING SET FOR A MODULE 

The training set T has IP number of patterns in wide range of variation. 

T={ (x1 ,1 ); 

j=1,2,...IP}.where xj is the input vector for jth patterns. 

4.4 NORMALISATION 

During training of a neural network, the higher valued input variables may 

tend to suppress the influence of smaller once. To overcome this problem, the neural 

networks are trained with normalised input data, leaving it to the network to learn weight 

associated without he connections emanating from these inputs. The raw data are scaled 

in the range (0.1-0.9) for use by neural networks to minimise the effects of magnitude 

between inputs. In case of output variables, if it assumes value close to unity or zero, it 

cause difficulty in training as the value unity or zero are practically never realised by the 

activation or threshold function. A way to overcome this difficulty is to normalise the 

variable (x) to keep its value between some suitable range (0.1 and 0.9). In present 

application, each input or output parameter xn is normalised as before being applied to 

the neural network according to eqn, 

xn  = ( 0.8 * (x — xmin ) / (xmax — xmin )) + 0.1 	 ...(4.1) 

Where xmax  and xm,n  are the maximum and minimum values of data parameter x. The 

input data are normalised between value 0.9 and 0.1. Similarly, output data (t) are 
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Fig. 4.3 Flow chart for normalising the data 
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can depend only on the local electrochemical environment of a given synapse. Obviously 

a single synapse does not know anything about the global tasks the organism is trying to 

learn. 

4'.-___ 
	3' 	\2, 	 i 

Fig 4.4 Steepest descent directions 

Synaptic modifications and global tasks belong to two very distinct levels of brain 

bierarchy. Therefore, the fundamental question of learning is what are the principles 

according to which local synaptic changes are organised in order to yield global learning 

of complex behaviours for the organism? This puzzling question remains largely 

unanswered. There are many basic ideas in the theoretical literature, which have shed 

some light on this question. 
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Fig. 4.3 Flow chart for normalising the data 
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normalised for each pattern between 0.9 and 0.1.It's flowchart implementation is shown 

in fig (4.3). 

4.5 GRADIENT OF A FUNCTION 

The partial derivatives of function f(x), with respect to each of the n variables are 

collectively called the gradient of the function and is denoted by : 

w, = ~ ....... 

The gradient is a n-component vector and it has a very important property. If we 

move along the negative of gradient direction from any point in n-dimensional space, the 

function value decreases at the fastest rate, which has been proved in appendix A. Hence 

this gradient direction is called the direction of steepest descent. Unfortunately, the 

direction of steepest descent is a local property and not a global one. 4 line along the 

directions 11, 22, 33, and 44 respectively. Thus the function value decreases at the fastest 

rate in direction 11' at point 1, but not at point 2. Similarly, the function value at point 

3(4). In other words, the direction of steepest descent generally varies from point, and if 

we make infinitely small moves along the direction of steepest descent, the path will be a 

curved line like the curve 1 2 3 4 as shown in the Fig.(4.4) 

Since the gradient vector represents the direction of steepest ascent, the negative 

of the gradient vector denotes the direction of steepest descent. 

4.5.1 Gradient Descent Learning 

Learning in biological systems is widely believed to result from progressive 

modifications occurring at the level of synopses connecting neurones. Such modifications 
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can depend only on the local electrochemical environment of a given synapse. Obviously 

a single synapse does not know anything about the global tasks the organism is trying to 

learn. 

4' 	3' 	`2' 

Fig 4.4 Steepest descent directions 

Synaptic modifications and global tasks belong to two very distinct levels of brain 

bierarchy. Therefore, the fundamental question of learning is what are the principles 

according to which local synaptic changes are organised in order to yield global learning 

of complex behaviours for the organism? This puzzling question remains largely 

unanswered. There are many basic ideas in the theoretical literature, which have shed 

some light on this question. 
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Gradient descent is the one idea in the theory of learning, which precisely 

attempts to offer a simple guiding principle for the overall organisation of synaptic 

changes across networks. 

Considering the learning problem for N-dimensional dynamical system of the 

form 

x = f (x, u, w) 

with initial condition u(to) . In this relation, the k-dimensional vector x represents the 

state variable of. the system, w an array of adjustable parameters, and u a vector-  of 

external inputs, the vector x is used to represent particular target values for some of the x 

variables. 

The learning problem consists of adjusting the parameter w so the trajectories of f 

have certain specified properties. Gradient descent learning requires that, at any time, the 

performance of the dynamical system be assessable through a certain error function E 

that measures the discrepancy between the trajectories of the dynamical system and the 

desired behaviour. 

5.6 ALGORITHM 

Stepwise procedure for identify the dynamic system is as follows 

Step 1: Pattern selection: 

p training patterns are given: 	{ti,dl, 	t2,d2,........tp, di,) 

Where t; is the input and d; is output of the i th pattern. 

Step 2. Normalisation: 

Normalise the input data, as higher valued input variables tend to surpass the 

influence of smaller ones. Scale each input parameter Z in the range of 0.1-0.9 for 
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use by neural networks to minimise the effects of magnitude between inputs, 

according to eqn.(4. 1). 

Step 3: Initialisation: 

The learning parameter lemda, number of states, number of inputs, maximum 

number of cycles to train the networks and error tolerance is chosen. Set all 

weight and node thresholds to small random numbers. 

Step 4: Reset: 

Set ERROR=O, and 

GRAD ERROR=O. 

Step 5: Select one pattern from the patterns. 

zi Ft; 

Step 6: Calculation of Activation: 

The activation level of an output unit is determined by the instance presented to 

the network. The activation level Ys of the output unit is determined by eqn. 

n 

Yj= y' zi w ji  
=o 

Step 7: Error function: 

E~= 1/2(d~-YY)2 	 ...(4.3) 

Step 8: Error gradient:  

Calculate the gradient of the error function E~ w.r. to weights, 

(4.4) 

Step 9: Sum of error and error gradient: 

(ERROR)j== (ERROR)1+ Ej . 	 (4.5) 
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(GRAD_ERROR)j = (GRAD _ERROR), + VE 3 	... (4.6) 

Step 10: Repeat steps 5 to 9 for all patterns. 

Step 11: Mean Square of error. 

E; = square root of((ERROR)j/p), and 	 ...(4.7) 

Average error gradient 

b ~ = ((GRAD_  ERROR) .r/p). 	 ...(4.8) 

Step 12: Search direction: 

Calculate the direction of the descent vector Sj that points in a downhill direction 

for using equation; 

n 

S~°-b~/YS2i 	 ...(4.9) 

Step 13 : Weight adjustment: 

Calculate the new weights by equation; 

W; (n + 1) = W i (n) + XS ~S 3 	 ...(4.10) 

Where Wei (n) is the weight from unit i to j at time n. 

Step 14: Error Criteria 

Repeat steps 4 to 13 until convergence in terms of the selected error criteria 

satisfied. 
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calculate total_error using eqn 
(4.5) and total gradient of error 

using eqn (4.6) 

No 	Is EOF 

Yes 

compute average error using 
eqn(4.7) and average gradient of 

error using eqn(4.8) 

compute search direction using 
eqn(4.9) 

modify the weights to minimize 
error using egn(4.10) 

IT=lT+1 

A 

Fig. 4.5 Flow chart of gradient descent algoritharn 



Chapter-S 

RESULTS AND DISCUSSION 

5.1 	INTRODUCTION 

The method discussed in the previous chapter for identification of dynamical 

systems has to be applied to identify the parameters of the problems. The chemical and 

biological problems have been considered from practical applications. In this section, the 

examples and their response behaviour are described. An important by-product resulted 

during the work was the ability to solve system of non-linear differential equation. 

5.2 TWO INPUT SYSTEM 

The two input systems are commonly considered in the control-plant problem. 

5.2.1 Problem Formulation 

The example considered has no physical significant, it is purely numerical and the 

system model is [4] by 

X~(t) = w„x, +w12x 2 +b~,u, +b12u2 

k 2 (t) = w2,x, +w22x 2 +b21u, +b22u2 

Where, 

x1, x2 are system states. 

ul,u2 are the inputs to the system. 

w11,w12,w21, and w22 are elements of system matrix. 

b11,b12,b21, and b22 are elements of control matrix. 
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5.2.1 Experimental data: 

The input ul is a step unit, and u2 is a ramp of slope 0.2 i.e., 	u~=1.0, and 

u2=0.2*t. 

Where time t is an independent variable. Initially, the constants are assumed The initial 

values of constants are follows: 

w„=a.0 	w,2=1.0 	 b11=0.0 	b12=1.0 

W21=-0.14 	w12=-1.0 	b11=1.0 	b12=0.70 

System eqns. are simulated for 5 seconds on digital computer to obtain the values of 

states and derivative of states. In this way 50 patterns are generated for the learning of 

neural network, which has been given in table 5.1. 

5.2.2 Results 

Gradient descent algorithm (modified-back-propagation), which has been 

discussed in the chapter 4, is used to identify the system parameters. The number of input 

and output to the ANN is 4 and 2 respectively i.e., the structure of the network is (4-2). 

The value of learning rate A has been taken as 0.2. The trajectories of the various 

parameters as obtained by the neural network training are shown in fig.5.1 and fig. 5.2. 

From the graphs, the values of the constants are 

w11=0.0140 	w12=1.014 	b11=0.0019 	b12=0,937 

w2i=-0.142 	W22=-0.980 	b21=0.9913 	b22=0.687 

These values are very close to the initial values, which we have assumed. 



TABLE 5.1 

xl x2 U1 U2 x1  x 2  

0.0114 0.1324 1,0000 0.0280 0.1604 0.8937 

0.0131 0.1413 1.0000 0.0300 0.1713 0.8866 

0.0148 0.1502 1.0000 -0.0320 0.1822 0.8795 

0.0167 0.1589 1.0000 0.0340 0,1929 0.8724 

0.0187 0.1676 1.0000 0.0360 0.2036 0.8654 

0.0208 0.1762 1.0000 0.0380 0.2142 0.8584 

0.0230 0.1848 1.0000 0.0400 0.2248 0.8515 

0.0253 0.1933 1.0000 0.0420 0.2353 0.8447 

0.0277 0.2017 1.0000 0.0440 0.2457 0.8379 

0.0302 0.2100 1.0000 0.0460 0.2560 0.8312 

0.0328 0.2183 1.0000 0.0480 0.2663 0.8245 

0.0355 0.2265 1.0000 0.0500 0.2765 0.8178 

0.0383 0.2347 1.0000 0.0520 0.2867 0.8112 

0.0412 0.2427 1.0000 0.0540 0.2967 0.8047 

0.0443 0.2507 1.0000 0.0560 0.3067 0.7982 

0.0474 0.2587 1.0000 0.0580 0.3167 0.7917 

0.0506 0.2666 1.0000 0.0600 0.3266 0.7853 

0.0539 0.2744 1.0000 0.0620 0.3364 0.7790 

0.0573 0.2822 1.0000 0.0640 0.3462 0.7727 

0.0608 0.2899 1.0000 0.0660 0.3559 0.7664 

0.0644 0.2975 1.0000 0.0680 0.3655 0.7602 

0.0681 0.3051 1.0000 0.0700 0.3751 0.7540 

0.0719 0.3126 1.0000 0.0720 0.3846 0.7479 

0.0758 0.3200 1.0000 0.0740 0.3940 0.7418 

0.0798 0.3274 1.0000 0.0760 0.4034 0.7358 

0.0839 0.3347 1.0000 0.0780 0.4127 0.7298 

Continue 
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X1 X2 U1 U2 X 1  X 2  

0.0881 0.3420 1.0000 0.0800 0.4220 0.7239 

0.0923 0.3492 1.0000 0.0820 0.4312 0.7180 

0.0967 0.3564 1.0000 0.0840 0.4404 0.7122 

0.1012 0.3635 1.0000 0.0860 0.4495 0.7064 

0.1057 0.3705 1.0000 0.0880 0.4585 0.7006 

0.1103 0.3775 1.0000 0.0900 0.4675 0.6949 

0.1150 0.3844 1.0000 0.0920 0.4764 0,6892 

0.1198 0.3913 1.0000 0.0940 0.4853 0.6836 

0.1247 0.3981 1.0000 0.0960 0.4941 0.6780 

0.1297 0.4048 1.0000 0.0980 0.5028 0.6724 

0.1348 0.4115 1.0000 0.1000 0.5115 0.6669 

0.1400 0.4182 1.0000 0.1020 0.5202 0.6615 

0.1452 0.4247 1.0000 0.1040 0.5287 0.6560 

0.1505 0.4313 1.0000 0.1060 0.5373 0.6506 

0.1559 0.4378 1.0000 0.1080 0.5458 0.6453 

0.1614 0.4442 1.0000 0.1100 0,5542 0.6400 

0.1670 0.4506 1.0000 0.1120 0.5626 0.6347 

0.1727 0.4569 1.0000 0.1140 0.5709 0.6295 

0.1784 0.4631 1.0000 0.1160 0,5791 0.6243 

0.1843 0.4694 1.0000 0.1180 0.5874 0.6192 

0.1902 0.4755 1.0000 0.1200 0.5955 0.6140 

0.1962 0.4816 1.0000 0.1220 0.6036 0.6090 

0.2023 0.4877 1.0000 0.1240 0.6117 0.6039 

0.2084 0.4937 1.0000 0.1260 0.6197 0.5989 
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5.3 BLOOD GLUCOSE REGULATION 

The physiology of the blood glucose regulation process is extremely complex. As 

the model of the process increase in complexity, the estimation of the parameters 

becomes more difficult 

The blood glucose concentration in normal mammals is finely regulated. The 

administration of glucose, orally or in vein, results in a brisk, precipitous rise in the 

plasma insulin concentration due to a direct effect of the rising blood sugar upon the beta 

cells of the pancreas. The insulin, in turn, accelerates the 40rate of disappearance of 

glucose from the plasma compartment and the blood sugar quickly returns to a normal 

value of 80-100 mg/100 ml. 

In certain metabolic disease, e.g., juvenile diabetes mellitus, the responsiveness of 

the beta cells of the pancreas may be severely diminished, resulting in a failure of the 

blood glucose to return quickly to its normal value. In an alternative form of the disease, 

i.e., maturity onset diabetes, the pancreatic sensitivity to glucose may be normal, or 

supernormal, but the sensitivity of glucose uptake by peripheral tissues to the elevated 

insulin concentration may be obtained. The altered time course of the blood glucose 

concentration following a glucose load may be similar, but traditional clinical tests (such 

as the glucose tolerance test) lack the ability to discriminate effectively between various 

forms of diabetes. 

5.3.1 Problem formulation 

The system model is the linear two-compartment model [2] introduced by Bolie 

and is given by 
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xl(t) = wlixi +u'12 x2 

±2(t) = w21xI  + w22x2 

Where, xt  is the deviation of the extracellular insulin concentration from the 

mean, mU/ml, and x2  is the deviation of the extracellular glucose concentration from the 

mean, mg/100 ml. The parameter w12  is most interesting because it determines the rate 

of insulin production. For diabetic dogs it is expected that this parameter will be 

considerably different from that for the average normal dog. 

5.3.2 Experimental data 

A glucose tolerance test was performed on two different conscious, intact dogs. 

9gm of glucose were injected intravenously into a 66-lb dog over a time interval of 1-

mm. Measurements of the plasma glucose and insulin concentrations were made every 

2.5-min for the first 20 min and every 5 min thereafter for an additional 70 min. The first 

measurements were made 2.5 min after the start of the glucose injection. The 

measurement deviation from the mean levels has been given in Table 5.2 The insulin 

response appears to be somewhat oscillatory for approximately the first 15 min. This is to 

be expected since it is well known that a step input of glucose causes a biphasic insulin 

response. 

Glucose was measured by the glucose oxidase technique using a Beckman 

glucose analyser. Insulin was determined by radiommunoassay using the dextran 

charcoal separation technique. 

5.2.3 Results 

Gradient descent algorithm (modified back algorithm) has been discussed in 

chapter 4, is used to identify the system parameters. The number of input and output to 
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the ANN is 2 and 2 respectively i.e., the structure of the network is (2-2). Total number 

of patterns is 24.The value of learning rate a, has been varied from 0. I to 0.7 with an 

increment of 0.2. The trajectory of various parameters is shown in figs 5.3, 5.4, 5.5, and 

5.6. By viewing the graphs, it is analysed that convergence is achieved for all value of .Q. 

However, the number of iterations has increased with the decrease in value of learning 

rate ,, , which is expected. 

Learning rate Cycles wll W12 W21 W22 

0.1 70 0.1852 0.3417 0.0349 0.0263 

0.3 36 0.1852 0.3417 0.0263 0.0349 

0..5 21 0.1851 0.3420 0.0263 0.0349 

0.7 19 0.1851 0.3419 0.0263 0.0349 
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Table 5.2 

Insulin (xl) Glucose( x2) X~ x2 

34.0000 143.0000 55.1960 4.9475 
166.0000 118.0000 71.0660 8.8968 
123.0000 100.0000 56.9550 6.9227 
149.0000 75.0000 53.2150 7.1726 
89.0000 72.0000 41.0890 4.9997 

202.0000 61.0000 58.2320 8.6541 
170.0000 46.0000 47.1820 7.1428 

83.0000 32.0000 26.2990 3.7383 

59.0000 22.5000 18.6100 2.6509 
35.0000 13.0000 10.9210 1.5634 
26.0000 6.0000 6.8620 1.0652 
.17.0000 -1.0000 2.8030 0.5670 

7.0000 -1.5000 0.7820 0.2049 
0.0000 -11.0000 -3.7620 -0.2893 
10.0000 -7.0000 -0.5440 0.1649 
0.0000 -7.0000 2.3940 -0.1841 
10.0000 0.0000 1.8500 0.3490 
-3.0000 1.0000 -0.2130 -0.0784 
-3.0000 0.0000 -0.5550 -0.1047 
0.0000 5.0000 1.7100 0.1315 
12.0000 6.0000 4.2720 0.5766 
0.0000 1.0000 0.3420 0.0263 
2.0000 1.0000 0.7120 0.0961 
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5.4 BATCH REACTOR 

Batch processes offer the most interesting and challenging problems in chemical 

systems modelling and control because of their inherent dynamic nature [1]. Although 

most large-scale chemical processes have been operated in continuos fashion, but many 

batch processes are still used in smaller volume production. The wide use of digital 

process control computers has permitted automation and optimisation of batch processes 

and made them more efficient and less labour intensive. 

The batch reactor is sketched in fig 5.7. Reactant is charged into the vessel. Steam 

is fed into the jacket to bring the reaction mass up to a desired temperature then cooling 

water is added to the jacket to remove the exothermic heat of reaction. First-order 

consecutive reactions take place in the reactor as time proceeds 

A----k l -----) B----k2---- C 

Let the component B is the desired product. If we let the reaction go on too long, too 

much of B will react to form undesired C; that is the yield is low. If we stop the reaction 

too early, too little A will have reacted; i.e., the conversion and yield will be low. 

Therefore, there is an optimum batch time when reaction is stopped. For this the control 

of batch reactor is necessary. 

If the temperature dependence of the specific reaction rates kl and k2 are same, 

then reaction run at the highest possible temperature to minimise the batch time. 

If kl is more temperature-dependent than k2, then reaction run at the highest 

temperature to favour the reaction B. 

If kl is less temperature-dependent than k2, then reaction run at the highest 

temperature to favour the reaction B, but then drops to prevent the loss of too much B 
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Fig. 5.7: Batch Reactor 
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5.4.1 Problem formulation 

The equations for the reaction liquid inside the tank are given as 

CA = —k,C A 

CB = k,CA — k 2CB 

I' _ (—?. /2Cp )k,CA +(X 2 /2Cp )k 2C B —Q M /WCP 

Q M =h; A l (T—TM ) 

TM = (QM - `<J)/ ~MCM VM 

Where, Ca 	the concentration of component A 

Cb 	the concentration of component B 

T 	the temperature inside the reactor. 

Tm 	the maximum temperature, and 

Tj 	the temperature of water jacket. 

The output signal of the temperature controller goes to two split-ranged valves, a steam 

valve and a water valve. The instrumentation is all-pneumatic, so the controller output 

pressure goes from 3 to 15 psig. The valve will be adjusted so that the steam valves is 

wide open when the controller output pressure is at 15 psig and closed at 9 psig. The 

water valve will be closed at 9 psig and wide open at 3 psig. we have identified the batch 

reactor in the cooling mode. The equations of water jacket during the cooling are:'  

VJ = Fwo 

VJT1 =FwOTJO — FwOTJ +Q J /t J CJ 

QJ =howAo(TM — Tr) 

Fwo = CvwXw(20)'i2 
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5.4.2 Experimental data 

The required data are given in table 5.3, ,. " '  ' . _ 	 _n°--  

TABLE 5.3 

C A  CB T TM Tj XW C A  C B  T T M  T J  
0.8518 0.1537 0.6986 0.9000 0.8731 0.1525 0.4502 0,5583 0.7657 0.1826 0.8920 

0.8402 0.1641 0.7490 0.8715 0.8059 0.3623 0.3679 0.6412 0.7387 0.1710 0.8920 

0.8287 0.1765 0.7881 0.8240 0.6669 0.5459 0.2977 0.7112 0.6960 0.1159 0.8920 

0.8152 0.1910 0.8273 0.7765 0.6221 0.7951 0.2220 0.7864 0.6567 0.1423 0.8920 

0.7863 0.2220 0.8832 0.4724 0.1538 0.8738 0.1079 0.8973 0.3692 0.1000 0.8920 

0.7535 0.2571 0.8944 0.3489 0.1090 0.9000 0.1000 0.9000 0.2437 0.2055 0.8920 

0.7207 0.2902 0.9000 0.3204 0.1018 0.9000 0.1064 0.8885 0.2102 0.2334 0.8920 

0.6899 0.3233 0.9000 0.3157 0.1000. 0.8869 0.1255 0.8644 0.1983 0.2373 0.8920 

0.6590 0.3543 0.9000 0.3157 0.1000 0.8738 0.1446 0.8406 0.1909 0.2373 0.8920 

0.6282 0.3853 0.8944 0.3109 0.1009 0.8607 0.1765 0.8046 0.1764 0.2420 0.8920 

0.5993 0.4142 0.8888 0.3109 0.1018 0.8213 0.2063 0.7711 0.1673 0.2412 0.8920 

0.5723 0.4432 0.8832 0.3109 0.1027 0.7951 0.2342 0.7396 0.1591 0.2404 0.8920 

0.5453 0.4680 0.8720 0.3109 0.1063 0.7426 0.2728 0.6990 0.1491 0.2404 0.8920 

0.5202 0.4948 0.8608 0.3062 0.1090 0.6902 0.3086 0.6611 0.1358 0.2451 0.8920 

0.4971 0.5176 0.8497 0.3062 0.1125 0.6377 0.3419 0.6263 0.1281 0.2451 0.8920 

0.4740 0.5403 0.8385 0.3062 0.1175 0.5721 0,3738 0.5932 0.1211 0.2462 0.8920 

0.4528 0.5610 0.8217 0.3062 0.1242 0.4934 0.4125 0.5544 0.1144 0.2474 0.8920 

0.4335 0.5796 0.8049 0.3062 0.1336 0.4279 0.4482 0.5190 0.1090 0.2509 0.8920 

0.4161 0.5982 0.7881 0.3014 0.1480 0.3492 0.4811 0.4867 0.1004 0.2641 0.8920 

0.3988 0.6147 0.7713 0.3062 0.1695 0.2705 0.5121 0.4564 0.1021 0.2726 0.8920 

0.3814 0,6313 0.7545 0.3062 0.2008 0.1918 0.5414 0.4280 0.1000 0.2951 0.8920 

Continued 
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C A C„ T TM T., X~v C A C 13 "C TM T1 
0.3660 0.6457 0.7378 0.3109 0.2501 0.1393 0.5682 • 0.4020 0.1.038 0.3277 0.8920 

0.3525 0.6581 0.7210 0.3204 0.2905 0.1000 0.5930 0.3785 0.1134 0.3471 0.8920 

0.3390 0.6726 0,7098 0,3347 0.3263 0.1000 0.6102 0.3616 0.1276 0.3587 0,8920 

0.3275 0.6829 0.7042 0.3632 0.3577 0.1000 0.6202 0.3516 0.1.554 0.3517 0.8920 

0.3140 0.6953 0.7042 0.3964 0.3801 0.1000 0.6248 0.3460 0.1867 0.3331 0.8920 

0.3024 0.7078 0.7098 0.4249 0.3577 0.1131 0.6230 0.3464 0.2125 0.2827 0.8920 

0.2889 0.7202 0.7154 0.4487 0.3084 0.1656 0.6218 0.3458 0.2332 0.2144 0.8920 

0.2773 0.7305 0.7210 0.4724 0.2681 0.1918 0.6200 0.3459 0.2542 0.1539 0.8920 

0,2639 0.7429 0.7322 0.4724 0.2457 0.2049 0.6131 0.3502 0.2502 0.1376 0.8920 

0.2523 0.7553 0.7322 0.4487 0.2501 0.1918 0.6175 0.3449 0.2247 0.1687 0.8920 

0.2388 0.7656 0.7266 0.4154 0.2681 0.1525 0.6282 0.3343 0.1.903 0.2206 0.8920 

0.2272 0.7780 0.7210 0,3917 0.3039 0.1262 0.6381 0.3243 0.1659 0.2773 0.8920 

0.2157 0.7884 0.7098 0.3822 0.3398 0.1000 0.6532 0.3104 0.1571 0.3160 0.8920 

0.2041 0.7987 0.7042 0.3869 0.3667 0.1000 0.6623 0.3013 0.1615 0.3323 0.8920 

0.1945 0.8090 0.7042 0.4059 0.3667 0.100O 0.6657 0.2972 0.1792 0.3106 0.8920 

0.1829 0.8194 0.7042 0.4297 0.3443 0.1262 0.6696 0.2925 0.2013 0.2641 0.8920 

0.1713 0.8276 0.7098 0.4534 0,3084 0.1525 0.6685 0.2921 0.2219 0.2074 0.8920 

0,1617 0.8380 0.7154 0.4677 0.2860 0.1787 0.6669 0.2921 0.2334 0.1733 0.8920 

0.1501 0.8483 0.7154 0.4629 0.2815 0.1656 0.6710 0.2872 0.2269 0.1749 0.8920 

0.1405 0.8669 0.7154 0.4392 0.2950 0.1525 0.6743 0.2825 0.2021 0.2136 0.8920 

0.1308 0.8752 0.7098 0.4202 0.3174 0.1262 0,6827 0.2747 0.1831 0.2532 0.8920 

0.1270 0.8835 0.7042 0.4059 0.3487 0.1000 0.6887 0.2690 0.1700 0.2951 0.8920 

0.1096 0.8917 0.6986 0.4107 0.3711 _ 0.1000 0.6992 0.2589 0.1736 0.3075 0.8920 

0.1000 0.9000 0.6930 0.4202 0.3756 0.1131 0.7069 0.2517 0.1834 0.2990 0.8920 

0.1000 0.9000 0.6930 0.4202 0,3756 0.1131 0.7069 0.2517 0.1834 0.2990 0.8920 
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5.4.3 RESULTS 

Gradient descent algorithm (modified back algorithm) has been discussed in 

chapter 4, is used to identify the system parameters. The number of input and output to 

the ANN is 6 and 5 respectively i.e., the structure of the network is (6-5). Total number 

of patterns is 46.The value of learning rate A has been taken as 0.1. The trajectory of 

various parameters is shown in figs 5.8, 5,9, 5.10, 5.11 and 5.12. By viewing the graphs, 

it is analysed that convergence is achieved. The values of the parameters are: 

i 	wil wit wi3 wi4 wi5 wi6 

1 	11.7054 5.2651 -26.9313 -3.5183 -7.6111 18.5117 

2 	1.7212 0.4900 -2.9491 -0.5031 -0.8376 2.4826 

3 	0.1566 -0.0420 -0.2260 0.8156 0.0.164 0.2413 

4 	0.4003 0.3896 0.2593 -2.5433 2.4736 -0.0690 

5 	0.1662 0.1891 0.0253 -0.0210 0.0483 0.0004 
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Chapter-6 

CONCLUSION AND FUTURE SCOPE 

6.1 CONCLUSIONS 

The solution of the problems suggests the effectiveness of the ANN 

implementation for the system identification problems. Some of the important 

conclusions derived in the dissertation work are given below. 

The identification of system by analytical methods is quite complex. Substantial 

benefits are gained by using neural network in such cases. In the neural network 

approach, the parameters are adjusted dynamically which are not possible using 

conventional techniques. A neural network is able to identify the linear dynamic system 

very accurately and quickly. 

From example one (section 5.2) it is observed that SLNN using the gradient 

descent technique (Modified back-propagation) as learning algorithm provides more 

accurate estimation than SLNN using back error-propagation, and learning is observed to 

be much more faster as compared to single-layer feed-forward ANN for the same error 

performance. The learning of SLNN (using GD algorithm) is found to be more than 50 

times faster as compared to SLNN (back-error-propagation). 

From example two (section 5.3) it is observed that the large learning rate [0,1] in 

weight modification equation resulted slow convergence of error performance. The value 

of learning constant should be appropriately selected in accordance to the error value. 



From the example three (section 5.4) it is observed that a non-linear system can 

be identified in the form of a linear system at the operating conditions 

6.2 FUTURE SCOPE 

The field of identification is at the moment bewildering even for experts. Many 

different methods and techniques are being analysed and treated, "new methods" are 

suggested en masse, and on the surface, the field appears to look more like a bag of 

tricks, rather than a unified subject. I would like to point out a few facts that have struck 

us 

• The learning rate should be determined dynamically. 

• More powerful optimisation technique should be used for learning the neural 

networks. 

• Learning procedure should be developed for noisy inputs. 
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APPENDIX A 

THEOREM 1: The gradient vector represents the direction of steepest ascent. 

Proof: From any arbitrary point X in n-dimensional space, take a small step dr. such that 

drT = {dx,...dx2 ......dx n 

dr Tdr = (ds)2 = 

Where dxl , dx2 ..., , dx„ represent the components of the vector dx, and ds denotes the 

magnitude of the vector dr. If f is the value of the objective function at the base point, the 

change in f (df) associated with the change in the coordinates dxi is given by 

n 

df = I(c?f /ax,)dxi = Of Tdr 

If u denotes the unit vector along the direction dr, we can write 

dr = uds 

The rate of change of the function with respect to the step length ds is given by Eq. (6.56) 

as 

n 

d/ds = (?f /ox~)(dx; /ds) = Of T (d/ds) = Vf Tu 

The value of (df / ds) will be different for different directions and we are interested in 

finding the particular step dr along which the value of (df / ds) will be maximum. This 

will give the direction of steepest ascent. 



By denoting the ith component of f and u as bi and ui respectively, Eq. can be 

written as 

n 

df/ds=Ylbiui 
i=1 

In this equation, ui are the variables whose magnitudes will depend on the 

direction of dr. Selecting the set u1 ,u 21....u, which makes (df/ds) as maximum subject to 

the condition. 

n 

I u 12 = 	u i2 =1 
i=1 

Thus the problem of finding the direction of steepest ascent can be posed as a 

maximization problem subject to an equality constraint. This problem can be solved by 

the LaGrange multiplier method where the LaGrange function is given by 

L(u,?~) = df /ds+ %(1— ~ui2 ) 

Where ? is the LaGrange multiplier to be determined. By setting the partial derivatives 

of L with respect to ui and 7 equal to zero, we obtain the necessary conditions as 

cL/öui =0 
at. /a%=0 

Or 

bi — 2%ui =0 
n 

2 = 0 

These equations give us 

u i =b1/2X 



And 

n 
YI(bi /22)2 =1 

From which the value of ? can be obtained as 

n 

2X = (yb 2)~'2 _] Vf 

With the help of Eq. (6.66) Eq. (6.64) can be written as 

u ; =(b; /IVf 1)=(of/ax ; )/I of 

This result shows that the direction of steepest ascent is nothing but a vector 

pointing in the direction of the gradient. 
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