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ABSTRACT 

With the increase in the seismicity of the region, as indicated by the upward 

increment in the zone factor by the current code of practice, alarming number of 

structures fall into the category of seismically deficient structures. Seismic 

retrofitting, if economical, for such structures provides the plausible solution to their 

seismic safety problem. One of the seismic retrofitting scheme which is gaining 

popularity now a days is provision of energy dissipation mechanism in a structure. 

This energy dissipation is achieved by providing external energy dissipation devices 

known as supplemental dampers. These dampers dissipates the input energy and 

reduces the demand, on the structural members. However, noting that excessive 

damping does not reduce the response beyond certain value and effectiveness of 

dampers depends upon the location in which they are installed in the structure, an 

attempt has been made to place available number of dampers in the optimal locations 

to get response reduction. Moreover, effects of soil-structure interaction on the 

response of the system and hence on the damper locations are studied. 
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Chapter I 
Introduction 

1.1 Prelude 

Rapid urbanisation and experience gained from the performance of structures 

during recent earthquakes worldwide has led to an increased awareness about the 

seismic safety of existing structures. The problem of seismic safety becomes more 

acute taking into account the enhanced understanding of the earthquake process and 

the seismicity of a region. In view of this, the structural response control presents 

itself as a means to enhance the seismic withstand capacities of existing structures. 

Aseismic design via response control is radically different from the conventional 

paradigm of earthquake resistant design, which is primarily based on the 

considerations of strength and ductility. In the conventional design, structures are 

proportioned for a fraction of the estimated seismic forces and structures are 

especially detailed to dissipate a part of imposed loads during an earthquake by means 

of inelastic deformations. These inelastic deformations in structural members reduce 

the effective stiffness of a member, and thereby, of the entire structural system. 

Every structure is designed and detailed to satisfy some performance criteria 

depending upon its usage and importance. Though it is possible to design a structure 

to remain elastic even during a severe earthquake, such a design is not economically 

viable for ordinary structures considering the f low probability of earthquake 

occurrence. However, critical structures like dams, hazardous plants, etc. are always 

designed for elastic behaviour. As the epistemic uncertainty regarding the seismic 

hazard at a site reduces with increasing database of ground motions and mapping of 

geological features, seismic zoning maps — representing average seismic hazard in a 

region — are subsequently revised. These revisions are, more often than not, always in 

the direction of increased perception of seismic hazard in the region. A direct fall-out 

of such a revision of perceived seismic threat is the increased seismic vulnerability of 

existing structures (designed for lower hazard levels). It is, generally, more 

economical and expedient to retrofit the existing structure instead of constructing it 

anew. Several different strategies for seismic retrofit of structures exist, such as, 

increasing member capacities, reducing demands on structural members, providing 
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alternate load paths, etc. A typical seismic retrofit solution would primarily depend on 

the functional requirements of the structure and structural deficiencies. A popular 

seismic retrofit solution consists of providing energy dissipation devices, called 

dampers, in the structure with little, or no down-time. In such cases, the demand on 

structural members is reduced as a part of the energy input due to ground vibrations is 

taken up by these dampers. The mechanism of energy dissipation in a damper can be 

very diverse, such as, yielding of metal, sliding friction, dashpot with viscous fluid, or 

viscoelastic action of polymeric materials. Apart from dissipating input energy, the 

dampers may also contribute to the structural stiffness. 

1.2 Optimal Placement of Dampers 

More and more of seismic retrofit solutions now employ the supplemental damping 

devices. However, the increase in system damping can be beneficial only upto a 

certain limit and thereafter, the additional dampers become ineffective. As shown in 

Fig. 1.1, the increase in damping beyond, say 20%, does not lead to any significant 

reduction in the spectrum ordinates. Moreover, the damping devices are generally 

very expensive , and therefore, it is imperative that the best possible use is made of 

the available number of damping devices. Several investigators have considered the 

problem of optimal location of dampers in structures in the past. A brief account of 

their findings is given in the following. 
1.4 
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Figure 1.1: Effect of damping on seismic response 
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Li and He (1992)' studied the torsional response of a tall building. The 

parameters of fluid viscous dampers were optimized to control the seismic response of 

the tall buildings. The additional dampers were assumed to be installed on each storey 

along the longitudinal (X) and transverse (Y) axes. Root mean square (RMS) of 

lateral displacements along X and Y directions and the rotational angle about vertical 

(Z) axis was taken as the objective function. This function was minimized subject to 

constraints on lateral displacements and rotations. For El-Centro (1940) earthquake 

excitation they found that not only the maximum lateral displacement but also 

torsional rotation- reduced by 30-35% by the optimal placement of dampers. 

Gluck and Reinhorn (1996)2  suggested a method for design of supplemental 

dampers (VED) for use in multistory buildings. Optimization was based on the 

principle of minimizing a .performance cost function that produces the most suitable 

minimal configuration of devices with the aim that they will maximize their 

(dampers') effect. The optimal linear control approach was used to determine the 

constant coefficients for the damping devices. They found that the structure without 

dampers has largest response and the response using design based on considering first 

mode only is almost identical to the optimal solution. They concluded that the single 

mode approach is suitable for tall structures subjected to earthquake load, for which 

the first mode is governing. They investigated the response of clustered supplemental 

dampers considering the possibility that it may not be feasible to provide damper at a 

particular floor/floors. 

Wu and Ping Ou (1997)3  studied the effects of torsional and translational 

responses which are not accounted in plane frame models and interstory drift. In the 

first case, translational response due to torsion was taken as the performance index for 

evaluating optimum number and location of supplemental dampers to control 

structural response. They employed transfer function matrix to construct the objective 

function. An iterative procedure was applied to evaluate optimum parameters. It was 

found that with the decrease in torsional response the maximum inter storey drift is 

also reduced. They also concluded that addition of excess dampers may not always 

results in better structural performance. Interstory drift caused by interstory 
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translational displacements of the mass centre and inter storey torsional response of an 

unsymmetrical structure has been taken as performance index. Optimal locations for 

damping devices correspond to the position where the relative displacements of the 

structure are largest. A sequential procedure was proposed to seek optimum device 

locations for 3-D shear building. They found that symmetric structure with 

asymmetrically located supplemental dampers is no longer symmetric and hence its 

response must be calculated using 3-D model instead of plane model. They concluded 

that to have a symmetric structure with asymmetric placement of dampers, it is 

necessary that they should be placed at the locations those are closest to the geometric 

centre of the structure to reduce the torsional effect to minimum degree. 

Takewaki (1997) proposed an effective and systematic procedure for finding 

the optimal damper placement to minimize the sum of the transfer function evaluated 

at undamped fundamental natural frequency of a structural system subjected to a 

constraint on the sum of the damping coefficients of added dampers. A systematic 

algorithm for optimal damper placement was proposed for structural system with an 

arbitrary damping (proportional/non-proportional). The amplitude of the transfer 

function of an inter-storey drift evaluated at the undamped fundamental natural 

circular frequency was treated as the controlling quantity. It was found that the 

optimal dampers locations in a building, with uniform distribution of mass and 

stiffness properties, correspond to those storeys where the largest inter-storey drifts 

were attained in the initial design. 

Shukla and Datta (1999)5  studied the seismic response of multi-storey shear 

building with optimally placed VEDs. Optimal locations of dampers were determined 

with respect to a controllability index related to root mean square value of inter-storey 

drift of a multi-storey building. They argued that a passive controller is optimally 

located if it is placed at a position where the displacement response of the 

uncontrolled structure is largest i.e. best position for first damper is found from 

uncontrolled response to be the point with the maximum inter storey drift. They found 

that for optimally placed VEDs response reduction is not significant beyond certain 

number of VEDs. They also concluded that the choice of using more dampers of 
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small capacity instead of a small number of large capacity to achieve the economy is 

inferior.  

Takewaki et. al. (1999)6  proposed a procedure for finding the optimal 

locations of dampers in 3-D shear building. The inter-storey drift in an undamped 

fundamental mode of vibration was taken as the performance index, which was then 

minimized with a constraint on sum of the damping coefficients of supplemental 

dampers. Optimum positioning of supplemental dampers was determined using 

steepest direction search algorithm, to obtain damper position sequentially for gradual 

increase in the dampers capacity levels (sum of damping coefficients). They found 

that for a 3-D shear building, increase in number of additional dampers need not 

always reduce structural response. 

Zhang and Soong (1990) studied the seismic performance enhancement of a 

symmetric building associated with the application of visco-elastic dampers (VEDs). 

A sequential procedure for optimization of VED location based on the - concept of 

minimizing the performance index was proposed. The optimal location for placing a 

damper was supposed to be one where displacement response of the uncontrolled 

structure was maximum. It was found that addition of each damper modified the 

response of the structure and optimum locations were a function of the excitation. 

Singh and Moreschi (2002)8  studied the optimum placement of viscoelastic 

dampers to achieve desired performance of structure under the earthquake load. They 

used genetic algorithm to obtain the optimal size and location of supplemental 

dampers. The objective function for optimization was taken as 60% reduction in base 

shear, 50% reduction in floor acceleration and 65% reduction in storey drift and it was 

found that 72, 65, and 65 numbers of dampers are necessary to accomplish respective 

performance indices with totally different distribution throughout the structure. They 

found that, same numbers of dampers are obtained for nearly same percentage of 

reduction of acceleration and storey drift, indicating a strong correlation. 

Moreschi and Singh (2002)9  studied the utilization of the viscous or visco-

elastic dampers in an optimal manner to achieve the best response reduction in 

structures. A gradient-based approach was used for optimal design of VEDs. The 

RMS value of displacement response of a system was taken as the performance index 
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with the constraint to minimize the difference between the summation of coefficients 

of added dampers and total amount of damping distributed throughout the system. A 

40% reduction in objective function was achieved with a total of 37 dampers in a 24- 

storeyed building. 

Singh and Moreschi (2003)1°  carried out a study on optimal design of yielding 

metallic dampers (YMDs) and friction dampers. A methodology was presented to 

determine the optimal design parameters for the devices installed at different locations 

in a building for the desired performance objective. It was found that the optimal 

damping parameters were different for different storeys of a 10-storey example 

building. Moreover, it was found that the use of RMS value of floor acceleration as 

objective function to be minimized was more effective than a weighted sum of the 

RMS floor acceleration and inter-storey drifts. 

1.3 Scope and Organisation of Dissertation 

All of the above mentioned studies on optimal placement of dampers are aimed at 

determining the optimum number of dampers and their placement in a given structural 

system. However, it is often the case that only a limited number of dampers are 

available for use due to budgetary constraints and it is worthwhile to determine the 

best possible locations for a certain specified number of dampers. Moreover, the 

effects of. soil-structure interaction on the optimal damper placements need to be 

investigated for a more rational assessment of response reduction due to addition of 

dampers. These two issues form the thrust of the present dissertation. First, a problem 

for optimal location of a specified number of dampers is formulated for the simple 

test case of a multi-storey building. The problem formulation is described in Chapter 

2 on Modeling and Analysis. The effects of dynamic soil-structure interaction are also 

considered in the models developed in this chapter. The formulation of the optimal 

damper placement problem and the solution is discussed in Chapter 3 on 

Optimization. The results of the optimization procedure and their discussions are 

presented in Chapter 4 on Results and Discussions. Chapter 5 concludes the 

dissertation with the conclusions of this study. 



Chapter 2 

Modeling and Analysis 
2.1 Introduction 

The primary objective of this dissertation is to develop an optimization procedure for 

deriving maximum possible benefit from the placement of a given number of dampers 

in a structure for reduction in vibration response. In this regard, a 10-storey building 

has been considered as a typical structure for testing out the proposed optimization 

procedure. The choice of a multi-storey building as an example structure also helps in 

deriving some useful conclusions regarding enhancement in seismic withstand 

capacity of existing buildings by provision of supplemental dampers. 

2.2 Model of Example Building 

A 10-storey shear building as shown in Fig. 2.1 has been considered for the 

parametric study. It is assumed that the center of stiffness (CS) and center of mass 

(CM) for all floors individually align in the same vertical line, i.e., the eccentricities at 

all floor levels are identical. There are 3 degrees of freedom at each floor, namely, the 

translations in X and Y directions and a rotation in the XY plane about the vertical 

axis passing through the center of mass. It is further assumed that the dampers can 

only be placed as diagonal 

Figure 2.1: Schmatic diagram of example 
building 
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braces along any of the building face at any floor. Thus the damper location can be 

uniquely specified by a combination of the face (North, South, East, or West) and 

storey level identifiers. This notation has some practical advantage in the formulation 

of optimization problem as discussed in the next chapter. The physical parameters of 

the example building are as follows: 

a) column sizes: 0.3m x 0.3m 

b) column height: 3.Om 

c) depth of floor slab: 0.25m 

d) plan dimensions: 3m x 3m 

e) 5% damping in all modes before. the installation of dampers 

A bi-directional excitation by ground acceleration, characterized by the 5% damped 

response spectrum for rocky site as specifed in IS-1893(Part 1):2002 has been 

considered. The inertia and stiffness matrices for a storey of the building can be 

formulated by using the equilibrium equations. The global matrices for inertia and 

stiffness may then be derived by a suitable assembly of storey-level matrices. The 

modal damping of 5% in each mode of vibration has been assumed and for this 

assumption an appropriate damping matrix can be formulated by using the undamped 

mode shapes, natural frequencies and the desired modal damping ratio. The equation 

of motion can then be written as 

MU+CU+KU=—Mru g  
where, M, C, and K represent the global inertia, damping and stiffness matrices, U 

represents the vector of degrees of freedom, r is the matrix of rigid body influence 

coefficients and u  denotes the vector of instantaneous ground acceleration values 
8 

in each of the two orthogonal directions in horizontal plane. Assuming a linear 

behaviour, the probable maximum value of any response quantity of interest may be 

estimated by the response spectrum method using mode-superposition. 

2.3 Soil-Structure Interaction 

The soil-structure interaction can significantly influence the dynamic response of 

strucutres. These effects can be very pronounced in cases where the superstructure is 

much rigid in comparison to the strata supporting the foundations, or when the 

structural foundations are very massive and rigid in comparison to the neighbouring 



soil. In both of these situations the vibrations of structure and soil present a complex 

interacting system, wherein the response of one sub-system affects the response of the 

other sub-system. This phenomenon, in which the vibrations of soil influence the 

dynamic response of structure and vice-versa, is referred to as soil structure 

interaction (SSI). The SSI effects can be broadly classified into two categories: 

a) Kinematic interaction: If the foundations are very massive and very rigid 

in comparison to the neighbouring soil deposits, deformations at the soil-

foundation interface are constrained as the foundation cannot deform by the 

same amount as the soil. Therefore, rigid foundations act as a low pass 

filter by averaging out the high frequency components in seismic motions 

due to kinematic constraints imposed by the rigid foundation. This 

modification of the motion at the soil-foundation interface is only due to 

kinematic constraints on the propagation of elastic waves in a elastic 

medium and dynamic response of structure has no role to play. The actual 

seismic input motion to the structural foundation is the result of kinematic 

interaction analysis considering only the geometry and stiffness properties 

of structural foundation and soil. This effect is significant only in the case 

of massive, rigid foundations embedded in soils. For surface footings these 

effects are generally negligible in comparison to the inertial effects. 

b) Inertial 	interaction: 	The other form 	of SSI effects 	involves  the 

deformations and stresses in the supporting soil induced due to • the 

vibrations of superstructure. The ensuing deformation of soil further leads 

to a modification of the dynamic response of structural system and thereby 

creating a dynamically interactive system. 

Only inertial interaction effects have been considered in this study. The parameters of 

the soil-foundation system considered in the analysis are as follows: 

a) Soil has been modeled as a visco-elastic halfspac& medium and is 

represented by equivalent frequency-independent translational and 

rotational springs and dashpots attached to the foundation basemat. The 

coefficients of soil springs and dashpots have been estimated from 

approximate analytical expressions for frequency-dependent impedance 

functions for circular footings resting on homogeneous halfspace. 
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b) Poisson ratio for the soil medium is 0.3. 

c) The flexibility of soil, as characterized by the shear wave velocity (VS), is 

varied from 300 m/s (soft) to 4000 m/s (very stiff) for parametric study. 

d) The basemat is assumed to be circular with radius 3.0 m and 0.45 m depth. 

e) The embedment ratio (E/R) is assumed to be 2.0. 

The analytical model for building including SSI effects is similar to the one developed 

for rigid base structure except that additional 3 degrees of freedom (related to 

translation and twist of the basemat) enter the formulation. The inertia properties of 

the basemat contribute to the inertia matrix for the foundation level while the stiffness 

contribution comes from the building columns and soil springs. These stiffness and 

damping parameters for soil have been derived from the values of the frequency 

dependent impedance functions (Pais and Kausel (1988);2) evaluated at the first mode 

frequency of the structure as a first order approximation. The real part of the 

impedance function contributes to the stiffness of soil spring, while the imaginary 

provides the damping coefficient. It may be noted that by augmenting the structure 

damping matrix by the damping terms contributed by soil dashpots, the system 

damping matrix can no longer be treated as of the classical form, i.e., the damping 

matrix can not be diagonalized by using the undamped mode shapes in mode-

superposition analysis. Therefore, the response spectrum method for non-classically 

damped system, as proposed by Singh (1980)" has been used for dynamic analysis. 

2.4 Dynamic Analysis of Non-classically Damped Systems 

If the system damping matrix is non-classical, the state-space formulation is used by 

transforming a system of N-coupled second order ordinary differential equations into 

a system of 2N coupled first order ordinary differential equations. For this, we define 

T 
a vector of generalized coordinates 	 1 and the equation of motion can 

y= U U]  

be transformed as 

Ay+By=f 

r1 	1 	 40where, A[0 
M 	B  C K , and f= 	- . The 

—MruB  

associated free vibration problem can be given by 
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for the ith mode. Here, p, 	p i A y(') + B yt i)= 0 and y~~~ respectively denote 

the complex eigenvalue and corresponding complex eigevector for the ith mode. The 

pair of complex conjugate eigenvalues of the first order system are related to the 

undamped natural frequency and modal damping ratio of the associated second order 

system by the following relations: 

w.=(a+b
2)o.5 

and ? ' ;=a;lw; 

where, a ; and b; respectively denote the real and imaginary parts of the complex 

eigenvalue p; of the ith mode of first order system, while w• and 	; represent the 

undamped natural frequency and modal damping ratio for the ith mode of vibration of 

the second order system. The response spectrum method of analysis for non-

classically damped systems as proposed by Singh (1980)11 has been used to estimate 

the maximum probable base shear and the maximum probable inter-storey drifts. 
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Chapter 3 

Optimization 

3.1 Introduction 

Optimization is the process of getting the best result under given 

circumstances. Ultimate goal of all managerial or technological decisions taken at 

several stages is to either minimize the effort required or maximize the desired 

benefit. In short, optimization is best possible allocation of available resources to 

achieve the feasible solution. Mathematically, optimization is defined as the process 

of finding the condition that gives the maximum or minimum value of the function. 

No single method of optimization is suitable for solving all optimization problems. 

Hence, a. number of optimization techniques have evolved for solving different types 

of problems over the years. 

Optimization methods are broadly categorized in two types viz, constrained 

and unconstrained methods of optimization. In constrained method, objective function 

is subjected to design and functional constraints. First type of constraints are the. 

restrictions those must be satisfied in order to produce an acceptable design and latter 

constraints represents the limitation on the behaviour or performance of the system. 

When minimization or maximization of objective function is carried out without any 

restrictions or constraints then applied optimization method is referred to as 

unconstrained. 

3.2 Objective function 

The conventional design procedures are aimed at finding an acceptable 

or adequate design.. There could be more than one acceptable design. The purpose of 

optimization is to choose the best out of the many acceptable designs available. Thus, 

some criteria has to be chosen to select the best design amongst the several alternate 

designs. The. criterion with respect to which the design is to be optimized when 

expressed as a function of the design variables is known as objective function. The 

choice of objective function for minimization/maximization depends upon nature of 

problem. It could be strength/serviceability or cost based. 

In some situations, there may be more than one criterion to be satisfied 

simultaneously. An optimization problem involving multiple objective functions is 
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known as a multi-objective programming problem. Thus if f i  (X) and f 2  (X) 

denote two different design criteria depending on the same set of design variables X, a 

composite objective function can be constructed as weighted sum of the two as: 
f (X)=c1 ft (X)+c2f2(X) 

where, c, and c. are suitable scaling parameters which can he appropriately selected to 

introduce a bias in the composite objective function, if so required. These parameters 

need to be selected carefully to avoid accidental dominance of one term over the 

other. 

Since the design of civil engineering structural systems is governed by 

the dual criteria of strength and seviceability conditions, a composite index 

accounting for both of these factors is considered to be a good choice for deciding the 

optimal locations of dampers. Therefore the objective function is taken to be a 

weighted sum of maximum base shear and maximum inter-storey drift in the building. 
V SD 

f=-+  + SDu 

where, V = maximum base shear in the structure after the placement of current 

damper in position, Vu = maximum base shear in the structure without any 

supplemental damper, SD = maximum inter-storey drift in the structure after the 

placement of current damper in position, and SDu = maximum inter-storey drift in the 

structure without any supplemental damper. 

3.3 Optimization technique 

The optimization procedure invloves the search for the best location for a 

damper in the structure. For automating the search process, an automated system of 

modification of the system damping matrix following the placement of a damper in a 

trial position is necessary. This is achieved by the use of a 2-dimensional damper 

location matrix with 4 rows and 10 columns. The row index corresponds to the face 

(North, South, East, or West) of the building and the column index corresponds to the 

building storey level. A value of 'I' at any location of this matrix indicates the 

presence of a damper in the corresponding storey and building face, whereas a '0' 

value indicates the absence of a supplemental damper in the designated location. A 

damping_ matrix with dampers installed in all possible locations is derived from the 

equilibrium considerations. An appropriate damping matrix for some arrangement of 

supplemental dampers can then be obtained by weighing the contributions of all 
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individual dampers with the respective entry in the damper location matrix. This 

damping matrix due to supplemental dampers is then added to the original damping 

matrix of the structure (derived for 5% modal damping). Thus the seismic response 

of structure with any arbitrary number of damper installations can be readily 

evaluated automatically as required for any optimization procedure. 

Since the optimization procedure now involves a discrete search amongst 

patterns of '0's and 'l's in the damper location matrix, none of the gradient-based 

optimization methods can be used. Moreover, to facilitate a sequential search of 

optimal locations for a given number of dampers, a sequential search algorithm like 

that of Hooke and Jeeves' method is well suited. The Hooke and Jeeves' method 

essentially consists of a sequence of two steps (i) to explore the objective function 

variation in a specific search direction in the local neighbourhood of the current 

configuration, and (ii) a search for the maximum step that can be taken in a favourable 

direction.as identified by the exploratory move in the first step (Rao (1996)1) . For 

the problem of optimal damper locations, the exploratory move involves repeated 

placement of a damper in various available feasible locations and investigating the 

variation in the objective function. The optimal damper location is one for which the 

objective function is the minimum of all pattern searches for the placement of current 

damper. There is, therefore, no scope for any pattern move and hence has been 

dispensed with in this study. Once a best possible location has been identified for a 

damper, the pattern of damper location matrix is preserved. In the next cycle, "for the 

search of optimal location of the next damper, only those location are considered to be 

feasible which have a '0' entry in the previously preserved damper location matrix. 

This cycle is repeated till either the given number of dampers, or the available feasible 

locations have been exhausted. 
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Chapter 4 

Results and Discussions 

A model 10-storeyed shear building has been considered to investigate the 

optimal location of a specified number (say, 5) of (fluid viscous) dampers for seismic 
response reduction. A detailed parametric study to investigate the effects of plan 

irregularities, as charaterized by eccentricities, and compliance of the soil-foundation 

system has been performed. The optimal placement of dampers in a symmetric 

building on rigid foundation is shown in Table 4.1. In this table a 'F in a cell 

represents the presence of an external damper in the corresponding storey and face of 

the building, on the other hand a '0' entry represents the absence of an external 

damper. A 37% reduction in the objective function was achieved in this case for the 

optimal placement of 5 dampers. Simlar results for the case of un-symmetrical 

building with eccentricies of (i) eX=O and e=0.05L, (ii) e,=0.075L and e,, =0, and (iii) 

ex=0.075L and e)=0.05L are shown in Tables 4.2-4.4. Here, L refers to the maximum 

plan dimension of the building. The maximum reduction in the objective funtions for 

5 optimal damper placements is found to be (i) 32.9%, (ii) 31.6%, and (iii) 29.2% for 
each of the three example cases of plan irregularity. 

Table 4:I: Damper location matrix for a I0-storeyed symmetric building 

Store 

y 1 2 3 4 5 6 7 8 9 10 

N 0 0 0 0 0 0 0 0 0 1 
S 0 1 0 0 0 0 0 0 0 0 
E 0 0 0 1 0 0 0 0 0 0 

W 0 1 1 0 0 0 0 0 0 0 

Table 4.2: Damper location matrix for ey=5%L 

Store 

y 1 2 3 4 5 6 7 8 9 10 

N 0 0 0 1 0 0 0 0 0 1 
S 0 .0 0 0 0 0 0 0 0 0 
E 0 1 0 0 0 0 0 0 0 0 
W .0 • 0 1 0 0 0 0 0 0 1 
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Table 4.3: Damper location matrix for ex  =7.5%L 

Store 

y 1 2 3 4 5 6 7 S 9 10 

N 0 .1 0 0 0 0 0 0 0 1 
S 0 0 1 0 0 0 0 0 0 0 
E 0 0 0 1 0 0 0 0 0 0 
W 0 0 0 0 0 0 0 0 0 1 

Table 4.4: Damper location matrix for ex  =7.5%L and ey=5%L 

Store 

y 1 2 3 4 5 6 7 8 9 10 

N 0 1 0 0 0 0 0 0 0 0 
S 0 0 0 1 0 0 0 0 0 1 
E 0 0 0 0 0 0 0 1 0 0 

W 0 0 1 0 0 0 0 0 0 0 

The dampers appear to be more effective in the lower storeys in the case of 

symmetric building, on the other hand, as the plan irregularities increase the 

effectiveness of dampers increases in the intermediate storeys. This shift in the 

optimal damper placement pattern is causcd due to the increased contribution of 

higher (torsional) modes in the seismic response of unsymmetric building. Figures 4.1 

and 4.2 show the variation of modal damping for the first three modes of the 4 

building types on rigid foundation and on soft soil (VS  =300 m/s). It can be seen that 

with placement of supplemental dampers in the building, the modal damping ratio 

increases and tends to saturate quickly as evident from the flattening of the damping 

ratio curve as the number of dampers increase in Fig. 4.1. Moreover, with saturation 

of modal damping in lower modes, further addition of dampers contributes to the 

increase in the modal damping in higher modes. 

The effect of flexible foundations on the optimal damper layout has been 

investigated for different foundation conditions as characterized by the shear wave 

velocity (Vs) of the soil strata, which in turn is idealized as a linear visco-elastic 

halfspace. A variation from 150 m/s to 4000 m/s of V, is considered to study the 

effect of different foundation compliance conditions on the optimal damper layout in 



all four cases, namely, (i) symmetric building, (ii) building with eccentricities e,=0 

and es,=0.05L, (iii) ex= 0.075L and e=-0, and (iv) e,=0.075L and ey=0.05L. The results 

of this parametric study have been summarized in Tables 4.5-4.8, respectively for 

each of the above mentioned cases. In all cases, it has been observed that the 

effectiveness of the supplemental dampers in reducing the seismic response 

diminishes with increasing foundation compliance. Moreover, the maximum number 

of dampers required to reach the saturation point (beyond which there is no significant 

reduction in objective function) also increases with increasing flexibility of the soil-

foundation system. Further, for a given number of dampers, the total response 

reduction in an unsymmetric building is always less than that in the case of symmetric 

building for all soil conditions. The effectiveness of dampers seems to reduce with the 

increase in plan irregularity as well as with increase in foundation compliance. It 

has also been found that the shift in the 

Table 4.5: Summary of results for a symmetric building 

Shear wave 
velocity (m/s) 

Number of 
available 
dampers 

% reduction in 
objective 
function 

Max. reduction 
in objective 
function till 

saturation (%) 

Max. number 
of dampers 

placed 

300 5 15.00 26.02 11 
600 5 17.95 32.72 10 
900 5 19.52 36.79 10 

1200 5 23.70 38.01 10C. 
1500 5 24.65 39.79 9 
2000 5 • 26.09 42.69 9 
2500 5 29.15 44.01 8 
3000 5 30.05 45.14 8 
3500 5 31.40 45.72 8 
4000 5 36.75 46.14 7 

0o Fixed 

Base 5 37.15 46.89 7 

optimal location of dampers from lower storeys in the case of symmetric building to 

the intermediate storeys storeys in the case of unsymmetric buildings is more 

pronounced in the case of flexible foundations (as infered from the optimal damper 

location patterns given in Table 4.9. 
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Table 4.6. Summary of results for a building with e,,=5%L 

Shear wave 
velocity in m/s 

Number of 
available 
dampers 

% reduction in 
objective 
function 

Max. reduction 
in objective 
function till 

saturation (%) 

Max. number 
of dampers 

placed 

300 5 13.95 18.42 10 

600 5 15.45 24.79 10 

900 5 16.30 27.02 10 

1200 5 18.45 31.45 10 

1500 5 22.85 34.89 9 

2000 5 25.15 36.02 9 

2500 5 26.60 39.78 9 
3000 5 29.20 41.82 8 
3500 5 31.25 43.79 8 
4000 5 32.30 44.27 8 

0o Fixed 

Base 5 32.90 44.79 8 

Table 4.7: Summary of results for a building with ex  =7.5%L 

Shear wave 
velocity in mis 

Number of 
available 
dampers 

% reduction in 
objective 
function 

Max. reduction 
in objective 
function till 

saturation (%) 

Max. number 
of dampers 

placed 

300 5 10.40 17.01 10 
600 5 16.15 22.72 10 
900 5 17.30 26.17 10 

1200 5 20.90 28.65 10 
1500 5 24.40 32.72 9 
2000 5 26.15 34.12 9 
2500 5 29.20 37.17 8 
3000 5 30.85 39.41 8 
3500 5 31.25 42.01 8 
4000 5 31.45 41.99 8 

oo Fixed 

Base 5 31.60 42.29 8 
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Table 4.8: Summary of results for a building with e,r=7.5%L, e,,=5%L 

Shear wave 
velocity in m/s 

Number of 
available 
dampers 

% reduction in 
objective 
function 

Max. reduction 
in objective 
function till 

saturation (%) 

Max. number 
of dampers 

placed 

300 5 9.87 14.56 11 
600 5 14.25 19.47 10 
900 5 16.20 22.97 10 
1200 5 18.87 26.65 10 
1500 5 21.26 29.12 10 
2000 5 23.47 31.82 9 
2500 5 26.20 36.17 8 
3000 5 29.52 37.89 8 
3500 5 30.04 39.69 8 

4000 5 30.88 40.72 8 
oo Fixed 

Base 5 31.02 41.02 8 

Table 4.9: Damper location matrix for e =7.5% , V=300 m/s 
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Figure 4.1: Modal damping variation in first three modes for a fixed base symmetric 
and unsymmetric buildings (First row: Symmetric, Second row: e,=7.5%L, Third row: 
e,=5%L, Fourth row: e,=7.5%L and ey=5%L, First column: First mode, Second 
column: Second mode, Third column: Third mode) 
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Figure 4.2: Modal damping variation in first three modes for symmetric and 
unsymmetric buildings on soft soil V5=300 m/s (First row: Symmetric, Second row: 
e,=7.5%L, Third row: e =5%L, Fourth row: e,=7.5%L and e)=5%L, First column: 
First mode, Second column: Second mode, Third column: Third mode) 
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Chapter 5 
Conclusions 

Based on the study conducted on a 10-storey model building with different plan 

irregularities and founded on different soil types to determine the optimal damper 

locations, the following conclusions can be drawn: 

1. Dampers are effective in reducing the seismic response of a symmetric building. Its 

effectiveness reduces as the plan irregularity increases. 

2. In a symmetric building, effectiveness of dampers is found to be maximum in the 

lower storeys and in intermediate storeys as unsymmetry increases. 

3. Reduction in seismic response with addition of supplemental dampers is not very 

significant for buildings resting on compliant soils. The effectiveness of 

supplemental dampers increases as the soil stiffness increases. 

Increase in number of dampers in a building beyond a certain limit does not lead to 

any further reduction in the seismic response of a building. This limiting number of 

dampers, however, depends on structural configuration and soil flexibility. 

~
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Appendix A 

System Matrix Formulation 

Degrees of freedom are assumed to be located at the center of mass. These degrees 

of freedom are as shown in Figure 2.1. The DOFs u and v are translational degrees of 

freedom and 0 is the torsional degree of freedom. 

Floor mass matrix: 

m 0 0 
M = 0 in 0 where 

0 0 to 

m is the mass of the floor and to is the mass moment of inertia about the Z axis. 

Floor Stiffness Matrix: 
z 

(K 1, +K 13 ) 

K=  0 

2 

2 (K1, _K3)(4) 

C 

2 

(Ki2+Kra) 

2 

(K,2 — K 14 ) .(-) 

2 
~+ 	L 

(Ks, — K.3)(——) 

2 
L 

2 (K12 _K14)(4) 

2 a  L2 

i=1)=t 

Eccentricities are implicitly accounted in this formulation in terms of stiffness. 

In order to produce eccentricity e in the building along an axis, the required total 

stiffness of columns on stiffer side can be derived in terms of the stiffness of columns 

on the side as, 

K = 
(50+e) 

S (50—e) f 

where, Ks is the total stiffness of columns on stiff side, and K f is the stiffness of 

columns on flexible side, and e is the eccentricity expressed in percent. 
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Damping Matrix: 

2 

(Cil + C i3) 
i=1 

C= 	0 

2 
L 

( C il -C 13)(2 ) 
i=1 

0 
2 	 UI 

LI 
(Ci1 -C13)() 

i1 
2 

(Ci2 — Ci4)( -) 
i=1 

0 

System Matrices for Soil-Structure Interaction: 

The spring stiffnesses are evaluated at fundamental natural frequency of undamped 

system. Expressions for soil spring stiffnesses as given by Pais and Kausel(1988) l2 

for a footing resting on the surface. 

Translational Springs:- 

E KY,=K;,(1+ -) 
o __ b'GR K" (2—v)  

Kj,=K;,(k+ia0 c) 

k = 1.0 

c =rr s K„  
( GR 

where, Kd H  is the dynamic stiffness of horizontal spring, KSH  is the static stiffness of 

horizontal spring, Vp  and VS  are P and S wave velocities in the soil, R is the radius of 

the foundation. G Shear modulus of the soil, v Poisson's ratio of the homogeneous 

half space, E/R is the embedment ratio, E being the depth of foundation 
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Torsional spring: 

KT=K~.(1+2.67 R) 

_ 16GR 3 o_ 
KT 	3 

KT=KT(K+ia o c) 

k=1.0— (0.35 a) 

(1.0+ao) 

K s 
C=—~ (1+4.0 R)aol[(b+aa ) (GR3) ~ 

1 
b= 	 E 0.67 

(0.37+0.87(-) 

where, 

Ktd and Kt' are respectively the dynamic and static stiffness of torsional spring, E and 

R are the embedment depth and radius of the foundation base mat. 

Stiffness matrix: 

Knowing the translational and torsional spring stiffnesses, a stiffness matrix 

corresponding to the soil-springs can be constructed as, 

IK ;' 0 0 
K= 0 K d 0 

0 0 K!.]  

Mass matrix: 

m 0 0 
M= 0 m- 0 

0 0 to 

where na and Io are the appropriate mass and mass moment of inertia about vertical 
axis passing through the center of mass of base mat. 
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Appendix B 

Response Spectrum Analysis for Non-classically Damped Systems 

Response Spectrum Analysis for a System with Classical Damping Matrix: 

Governing equation of motion for a multi degree freedom system subjected 

to the ground motion is given by, 

MU(t)+CU(t)+K U(t)=—MrUg(t) 
	 (B1) 

where, 

M, C and K are system mass, damping and stiffness matrices respectively and r is the 

static coefficient vector. 

Eigenvalue problem: 

Expressing design response U as, 

U=OV 
(B2) 

where, 

0 is the function of space and V is the function of time 

Eigenvalue problem for undamped MDOF system is formulated as, 

A ; M = K O 	 (B3) 

A is the spectral matrix and 0 is the modal matrix 

Knowing the time period of vibration of a structure and modal damping ratio in each 

mode, pseudo spectral acceleration can be obtained from the given design response 

spectrum. 

Peak displacement of a structure in ith mode can be calculated as, 

(B4) 

where, 	~ 
	2 w; 

X, = (c~' 
Mr) 

is the modal participation factor in ith mode of vibration. 
((hr Mot) 

Similarly, knowing the mode shapes, peak displacement can be computed and 

combined appropriately by SRSS method to get the design response. 

Response Spectrum Analysis of a Non-Classically Damped System: 

A modal damping ratio prior to installation supplemental damper is assumed to be 

constant in each mode of vibration. 
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Formulation of a structural damping matrix: 

Assuming that the damping matrix C is a classical damping, matrix, 

we have from modal analysis, 
2M1w1'1 	0 	0 

C =cT  C0= 	0 	2M ; w 	0  
0 	0 	2Mnw,, 

(B5) 

where, 0 is the modal matrix. 

knowing the natural frequency of vibration in each mode( w;  ) and taking constant 

modal damping ratio ( 	) as 5% in each mode C matrix thus obtained is easily 

used to compute the structural damping matrix c as, 

c _(T)-IC-I 

this structural damping matrix when added to damping matrix formulated for added 

supplemental dampers gives total damping matrix. This damping matrix is often 

found to be non-classical Lee it cannot be diagonalized by undamped mode shapes. 

Hence, Response Spectrum Method of analysis for a non-classical damping matrix 

given by Singhrr  is used. Various steps involved in the analysis are summarized 

below: 

State Space Formulation: 

Governing equation of motion for a system with a non-classical damping subjected to 

the ground motion is given by equation A. 1 

A state-space formulation is used to transform a system of N-coupled second order 

ordinary differential equation into 2N- coupled first order ordinary differential 

equation. 

U 
Defining generalized co-ordinates Y = 

TT 

A y+ B y= f 	 (B6) 

where, 

0 

A- 0 0 	B  C K and .f = 	 (B7) 
—MrUg 

34 



in which I is the N x N size identity. matrix and A, B are the matrices of size 2N x 2N 

(where N is the generalized degrees of freedom of the system) and f is the a vector 

of size N x 1. 

Free vibration solution of Eq. A.6 yields eigenvalues and eigenvectors of second 

order system. This requires the solution of following 2Nx 2N dimension eigenvalue 

problem, 

p ; AyM'M+By(0=0 

Here, p; and yC`t denote the complex eigenvalue and complex eigenvector 

respectively in ith mode of vibration. 

The pair of complex conjugate eigenvalues of the first order system are related to the 

undamped natural frequency and modal damping ratio of second order system by 

following relation, 

co ; = (a ? + b? )0.5 and 	where a 1 and b; are respectively the real and 
w; 

imaginary parts of complex eigenvalue p; of first order system while w ; and 

respectively denotes the ith undamped natural frequency and modal damping ratio. 

Using following transformation, 

y = fi z where 0 is the modal matrix. Using the orthogonal property of the 

eigenvectors with respect to matrices A and B, equation A. 1 can be transformed into a 

decoupled set of equations as follows: 

A x Z+B x Z=—OT f where, 

Ax = 4T A 0 and Bx =OT B are the diagonal matrices. 

SRSS Response spectrum method of analysis: 

The formulation of SRSS method of analysis suggested by Singh(1980)" is given in 

the following. 

2 

j =n 	
(11(w1)) 

R'(u)= > 4[a~F(w j )+A~]  

j= 1 	 wi 
j=n 	rs 	

1C 	 (j ( 	)) 	 ( 1 ( wk)) 
+ 2 Z Z[ 2+F(w!)] 	w' +[S+F(w k )R] ' 2 	(B9) 

!=1 k=i+1 r 	 W 1 	 wk 

in which 
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Rx-('u) is the design response; r =-- and a; and bi are the real and imaginary 
Wk 

parts off vector. 

j1(wi) _ (R2(w3)) 	 (Inccwj—Into,) 2 ; 
(1+4 2)(lnwU —lnw,) Ag 

{I2(wJ)) 
F (wi) _ { I {u~' )) where Ag is the maximum ground acceleration 

is the control frequency at which the ground spectra starts to drop 

„ is the frequency beyond which there is no spectral amplification of the ground 

motion 

Constants P. Q, R and S are obtained from the solution of the following simultaneous 

equations: 

1 0 1 0 y W1 
u is 1 Q_ W 2 
v u t s R 	W 3 
0 v 0 t S 	ly 

where, the terms u, v,s,t, and W,, W2, W3, and W4 are defined as follows: 

t= r4 ; 	u=--2r 2 (1-28x); v=1; 

C,= —(1+r2-40 j Okr) ; 	C2=r 2 ; 	 D,=4ai a k 

D~=4r(ajakF'j~k+~jvk 1— F'~ 1— Yk — aj~k0k 1— F'~ — vfakYj 1— F~k) ; 

Ez= -8 (ojr — ok)[ajak(Ok —gjr)— (ajbk 1— Yk — ~j a k l 1— ~;)) 

E3= -8 r($kr -8i)[ajak($k — flir) — (aJbk 1— f3 — biakr 1 — f;)J 

W,=D, ; W 2 =C 1 D 1 +D2 +E 2 ; W 3=C,D2 +C 2 D,+E 3 ; W 4 =C 2 D 2 
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Appendix C 
A Parametric Study 

The physical parameters of example symmetric building are as follows: 
1. Column size 0.3m x 0.3m 
2. Column height 3.Om 
3. Floor thickness 0.15m 
4. Plan dimensions 3m x 3m 
5. Damping coefficient C = 1.55e5Ns/m for fluid viscous dampers 
6. 5% damping in all modes before the installation of dampers 
A bi-directional excitation by ground acceleration, characterized by the 5% damped 
response spectrum for rocky site as specified in IS-1893(Part I):2002 has been 
considered. 

To study the effect of compliant soils on the response of a system and hence on 
optimal location of dampers, in addition to above parameters mentioned for a fixed 
based symmetric building following parameters are assumed. 
1. Poisson ratio for the soil medium is 0.3 
2. Flexibility of the soil, as reflected by the shear wave velocity (V5) is varied from 

300 m/s to 4000 m/s. 
3. Average safe bearing capacity of the soil is assumed to be 450 KN/m2. 
4. Base mat assumed to be a circular with radius 1.2m. and depth 0.25,m 
5. Embedment ratio (E/R)=0 

Results: 

Table 1:Darnping location matrix for a fixed base symmetric building 

Face Storey 

1 2 3 4 5 6 7 8 9 10 

N 0 0 1 0 0 0 0 0 0 1., 
S 0 1 0 0 0 0 0 0 0 0 
E 0 0 0 0 0 0 0 0 1 0 
W 0 1 0 0 0 0 0 0 0 0 

Table 2:Damping location matrix for a fixed base rntsymmetric building with eX  
=5%L 

Face Stoery 

1 2 3 4 5 6 7 8 9 10 

N 0 1 0 0 0 0 0 0 •0 1 
S 0 0 0 0 0 0 0 0 0 0 
E 0 0 1 1 0 0 0 •0 0 0 
W 0 0 0 0 0 0 0 0 0 1 
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Table 3:Damping location matrix for a fixed base unsyrnrnetric building with e,= 
7.5%L 

Face Storey 

1 2 3 4 5 6 7 8 9 10 

N 0 0 0 0 0 0 0 0 0 1 

S 0 0 0 1 0 0 0 0 0 0 

E 0 1 0 0 0 0 0 0 0 0 

W 0 0 1 0 0 0 0 0 0 1 

Table 4:Damping location matrix for a fixed base unsymmnetric building with es  
=5%L and e„=7.5%aL 

Face Storey 
1 2 3 4 5 6 7 8 9 10 

N 0 1 0 0 0 0 0 0 0 1 
S 0 0 1 0 0 0 0 0 0 0 

E o o 0 0 0 0 0 1 0 0 
W 0 0 0 1 0 0 0 0 0 0 

Table 5: Summary of results for a symmetric building 
Shear 	wave 
velocity mis 

Number 	of 
available 
dampers 

% reduction in 
objective 
function 

Maximum 
response 
reduction 	till 
saturation(%) 

Saturation limit 

300 5 16.72 29.14 11 
600 5 20.05 35.1 11 

900 5 22.29 38.01 10 

1500 5 27.69 42.69 10 

2000 5 34.98 44.01 9 

4000 5 40.06 48.35 8 

Infinity 5 40.24 48.59 8 



Table 6: Summary of results for a unsymmetric building with es  =5% L 
Shear 	wave 
velocity m/s 

Number 	of 
available 
dampers 

% reduction in 
objective 
function 

Maximum 
response 
reduction 	till 
saturation (%) 

Saturation limit 

300 5 14.89 18.42 11 

600 5 18.72 24.79 10 

900 5 21.58 27.02 10 

1500 5 25.68 34.89 9 

2000 5 31.89 36.02 9 

4000 5 36.45 44.98 8 

Infinity 5 36.72 45-.02 8 

Table 7: Summary of results for an unsymrnetric building with ey  = 7.5%L 
Shear 	wave 
velocity m/s 

Number 	of 
available 
dampers 

% reduction in 
objective 
function 

Maximum 
response 
reduction 	till 
saturation (%) 

Saturation limit 

300 5 12.03 16.58 11 

600 5 16.15 22.72 11 

900 5 19.84 24.2 10 

1500 5 24.40 31.52 10 

2000 5 28.96 35.01 9 

4000 5 35.59 42.58 8 

Infinity 5 35.79 42.58 8 
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Table 8: Summary of results for an unsymrnetric building with e. = 5%L and e,. _ 
7.5%L 
Shear 	wave 
velocity m/s 

Number 	of 
available 
dampers 

% reduction in 
objective 
function 

Maximum 
response 
reduction 	till 
saturation (%) 

Saturation limit 

300 5 10.87 16.08 12 

600 5 13.99 21.35 11 

900 5 17.89 22.98 10 

1500 5 22.98 30.01 10 

2000 5 26.12 33.9 10 
4000 5 32.59 41,68 9 

Infinity 5 32.79 41.72 9 

Table 9:Damping location matrix for a unsymmetric building resting on a soil 
with ea  =5%L with VS  = 300 mis 

Face Storey 

0 1 2 3 4 5 6 7 8 9 10 

N 0 0 1 0 0 0 0 0 0 0 0 

S o 0 0 0 0 0 0 0 0 0 1 

E 0 1 0 0 1 0 1 0 0 0 0 

W 0 0 0 0 0 0 0 0 0 0 0 
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Figure 2: Modal damping variation in first three modes for a fixed base symmetric 
and unsymmetric buildings (First row: Symmetric, Second row: ex = 5%L, Third 
row: e,=7.5%L and Fourth row: ex =5%L and e y=7.5%L. First column: First mode, 
Second column: Second mode and Third column: Third mode) 
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Figure 3: Modal damping variation in first three modes for a a symmetric and 
unsym/uetric building resting on a soil wit/i V3 =300 m!s (First row: Symmetric, 
Second row: ex = 5%L, Third row: ey=7.5%L and Fourth row: e1=5%L and 
e =7.5%L. First column: First mode, Second column: Second mode and Third 
column: Third model 
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