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ABSTRACT 

An undamped stiff two degree of freedom system is 

considered for this study. The solution methods of equilibrium equation 

includes mode superposition and some popular time stepping methods. 

The time history for various time stepping methods are obtained by the aid 

of computer programming in C++. Due to inherent property of stiff system 

higher frequency is obtained of the order of 100 times greater than the 

fundamental frequency. This leads to the time history obtained in high 

frequency as well as low frequency region. An aim is to get the accurate 

response in low frequency mode. Another aim is to filter out response in 

high frequency mode in as few time steps as possible. 

The popular time stepping methods are studied with 

respect to stability of solution, accuracy in first mode response and 

damping characteristics for higher mode response. 

The solutions obtained by the popular time stepping 

methods for the two degree of freedom undamped system. are compared 

with the exact response obtained by mode superposition for the 

undamped case. 

The strengths and weaknesses of the time stepping 

methods studied in chapter 4. 
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A amplification matrix. 

Aid itn  mode corresponding to jth  frequency 
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K 	 : 'stiffness matrix of the system 
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CHAPTER 1 

INTRODUCTION 

Two principal procedures are used for the solution of the 

dynamic equilibrium equation: 

0O 

MU+KU = R 

The two procedures are mode superposition and direct 

integration method. ln'the mode superposition method the response in the 

lowest few modes is usually evaluated. The response in the higher modes 

is considered to be an artifact of the mathematical modeling of the 

structure and is usually not evaluated and is ignored. Moreover the 

method can be used only for linear analysis. 

Several time.  stepping schemes are popular for the direct 

integration method. These a.ra the Central difference method, the Houbolt 

method, the Wilson-theta method and the. Newmark family of methods 

including constant average acceleration (also called trapezoidal method) 

and linear acceleration method. These methods are reexamined in detail 

in this thesis. The desirable,  features of the time stepping methods are 

following: 
}- Unconditionally stable so that the time step size used is 

governed only by the time periods of the modes whose 

response is of interest and not by the time period of the 

highest mode present in the mathematical model. 

Y Accurate for obtaining the response in lower modes, i.e,for 

modes for which T (time period) is much greater than At (time 

step size). In other words At <_ T, / n where T, is the highest 

node of interest and ri>>1 may be 4,10 or 20 depending on 

accuracy. 



N 

r Must possess high numerical damping so that the responses 

in the modes higher than those of interest should be damped 

out. 

It is seen that using the central difference method, a time step At smaller 

than a critical time step to has to be used; but employing the other three 

integration schemes, a similar time step limitation is not required. Hence 

all the considered metnods except the Central difference method are 

unconditionally stable and meet the first desirable requirement. 

An undamped stiff two-degree of freedom model having 

the following specifications is considered for studying the second and third 

desirable features. 

m, 0 	rk, +k 2 — k2 U  

0 m, Lj2 + —k2 	k2 ][uj=[o]  
where, in, = in 2 =1 and k, =10000, k 2 =1 with initial conditions as, 

[u~]-~io~ a,a [Ul]-L0J 
The intent of two degree of freedom model considered is 

to represent the character of large system. The exact solution of the above 

equilibrium equation in chapter 2 shows that the first mode is intended to 

represent those modes of a large system that are physically important and 

must be accurately integrated. The second mode represents the high 
frequency mode of a large system in which significant response is not 
expected. It is desirable that the step by step integrator filters out these 
high modes from the system. 

An important observation was that the cost of direct 

integration analysis is directly proportional to the number of time steps 

required for the solution. it follows that the selection of appropriate time 

step size is of much importance. On one hand time step must be small 

2 



enough to obtain accuracy in the solution; but on the other hand time step 

must not be smaller than necessary because with such time step the 

solution is more costly than what is required. For this reason desired time 

step size At T, / 20 -& 5T2 to obtain accuracy in computation of response 

in first mode. The two fundamental concepts in selecting an appropriate 

time step At are stability qnd accuracy characteristics of integration 

methods, whichi discussed later on. 

Finally comparison study is done for damping out of 

higher modes by all integration methods and damping phenomenon by 

considering logarithmic damping. 

3 



CHAPTER 2 

MODE SUPERPOSITION METHOD 

2.1 GENERAL 

The response analysis by mode superposition method 
requires the following [10]: 

Y The solution of eigen values and eigen vectors of the 
problem. 

y The solution of the decoupled equilibrium equations and • 

Finally the superposition of the response in each eigen 

vectors. 

2.2 ANALYSIS 

An undamped stiff two degree of freedom system is considered 

for the analysis. 

MU+KU=0 
	

(2.1) 

The solution can be postulated to be of the form U = A sin. (cat+~ji).The 

following 	case 	is . . considered 	for 	the 	analysis: 

1 0 UI  10001 

0 1 °°
U2 

+ —•1 I1JrUz 
(2.2) 

with the initial conditions as, 

	

[U 1 U2 ]T ={i 1O]T 	U1 U2 T = [0 . 0]T 

General eigen value problem is obtained as K.A = w2MA. from which A,i.e., 
mode shapes and frequencies can be determined. Hence it can be written 
as, 

 

1  4 



10001—?.  —1  =0 	 (2.3) 
—1 	1-2 

which gives, 

(100014.)(1-?)— 1 = 0. 

2=1,10001 

where X = u2 and neglecting the negative sign, two values of co can be 

obtained as w3 = 1; CO2 = 100.005 and corresponding mode shapes are 

A21= 10000A11 and Al2 = -1000OA22 where A11 is the ith mode at jth 

frequency. By combining the above mode shapes U1 and U2 can be 

written as, 

U1 `All sin (wjt+y,1) + Al2 sin ((o2t+lp2) 

U2 = A21 sin ((oit+kVi) + A22 sin ((02t+W2) 

Unknowns are eliminated by the help of given initial conditions and hence 

the final response can be written as, 

	

U~ 	i.O -3 	 cost

UZ 	10 	10-4 Lcos(100.00St) 	
(2.4) 

~respo~se 
Hence 	of the system can be written as, 

[U2
_ I0 1 Ocost + 1 -4 cos(100.005t) 	(2.5) 

	

U 	L 1 	—10 

5 



CHAPTER 3 

TIME STEPPING METHODS 

3.1 GENERAL 

In time stepping methods, the equilibrium equations are 

integrated using . a 'numerical step by step procedure. Numerical 

integration is based on two ideas. First, instead of trying to satisfy the 

equilibrium equation at any time t, it is aimed to satisfy only at discrete 

time intervals Ot apart. The second idea is that a variation of 

displacements, velocities and accelerations within each time interval Ot is 

assumed [1]. 

The various time stepping methods considered for the 

analysis of dynamic equilibrium equation are following: 

The Centraldifference method. 

Y The ±Ioubolt method. 

). The Vark  families of methods including 

I. Constant average acceleration method. 

II. Linear acceleration method. 

Y The Wilson theta method. 

The derivation of each method is carried out for constant 

time interval At. 

3.2 CENTRAL DIFFERENCE METHOD 
Central difference method is a two step method. It is an 

explicit and only conditionally stable method [1,6]. In this method 

acceleration and velocity at time t can be written in terms of displacement 

at time t by the help of central difference. From figure 3.1 velocity in the 

middle of time interval can be written as, 

6 



	

t-A /2 

= t 

U
_t-Lt 

U 	
(3.1) 

At 

c+a i a o 	c+At U t T T 

U= 	V 	 (3.2) 
At 

Hence acceleration at time t can be written as, 

t+&/2t-/t/2   0    	0  

000 	U— 	U 
U= 

At 

00 
U  = (t+At U — 2.` U+t-otU) 	

(3.3) 
Ot Z  

Velocity at time t can be written as, 

t 	t+.tU_t-AtU) 
U=— 	 (3.4) 

2.At 

The displacement solution for time t+Ot is obtained by considering 

equilibrium equation at the beginning of step,i.e.,at time t, 

t  00 

	

M. U+K.`U=`R 
	

(3.5) 

Put-':ing the value of acceleration at time t from equation (3.3) in equation 

(3.5) and after rearranging it is written as, 

M  t+ot U=` R— K—  22  MU—_ M  t-°` U 	(3.6) 
At 	 At 	At 



Thus the calculation of t4 tU involves tU and ttU  t tU can be obtained 

by the above relationships as given in equation (3.3) and equation (3.4). 

t o 	t oo  

``U=`U= U Ot+ U Ot t  /2 
	

(3.7) 

Thus from equation (3.6), displacement at next time step can be 

determined. Moreover acceleration and velocity at that time step can be 

determined by the aid of equation (3.3) and equation (3.4) respectively. 

Hence the equilibrium is considered at time t to get the response of the 

system in the time step. 

3.3 HOUBOLT.METHOD 

The Houbolt method is a three step method. In this 

method the acceleration and velocity at the end of the step is 

approximated in terms of displacements in the previous three steps. To 

derive the required relationship a cubic function of displacement is 

assumed passing through the four points as shown in figure 3.2. Hence 

displacement at any time is written as, 

U(t) = ao  +a,t+a 2 t 2  +a,t3 	 (3.8) 

Where a0, a1, a2 ,a3  are constants to be determined. 

velocity at any time t is written as, 
0  

U(t)=a + 2a2 t +3a jt 2 	 (3.9) 
and acceleration at any time is written as, 

U(t) = 2a2' + 6a. t 	 (3.10) 

Considering the current displacement at t = 0, displacements in the next 

step and previous two steps can be written as 

8 



`U = U(0) = a. 
t+°` U = U(At) = a,, + a1 At + a,it 2  + a,At3  

`-°` U = U (—Ot) = a,, — a, At + a4t2  — a3 At3  
U = U(-2At) = ao  — 2a,At + 4a24t2  — 8a3t\t3  

The four constants can be determined by solving the above four 

equations, thus 

a. =`U 

a, = (2`+" U +3` U —6 -̀A` U+ -̀ À̀ U) / 6At 
a2  = (`+o`U  _2` U +`-o`U)/2At2 
a3  = (`+`U —3` U +3`-0` U_`-2o`U)/ 60t3 

Hence acceleration and velocity can be written as, 

l+6l 00 

(3.11) 

which follows, 

t+At 

U = (l 1t+°̀  U —18` U +9'-At U —2 -̀2  t U) / 6At 	 (3.12) 

t1- t 

U = (6At U+ 18 U —9 -̀°̀  U +2t-2°̀  U) / 11 	 (3.13) 

In order to obtain the displacement at time t, dynamic equilibrium. equation 

at time t+At is considered,i.e;  

t+At 0„ 

M U+K`+o`U=`+AtR (3.14) 

Substituting the values of acceleration as obtained above in equation 
(3.11) in equation (3.14) we get, 

(--M + K)t+A'U=t+QtR  + 	Mt U  — 	M t-otU  +  1  Mt-za;U  
At` 	 At e 	Ate 	Ate  

(3.15) 

9 



Thus it is,observed that to get the displacement at next step, in addition to 

displacement at present step the displacements at previous two steps are 

also required. In other words a special starting procedure is to be 

employed. 

Features of the Houbolt method: 

• It is an unconditionally stable method. 

• It is an implicit method. 

• A special starting procedure is required. 

• It is a stiffly stable as well as A-stable method [6]. 

3.4 Newmark family of methods. 

The Newmark methods are single step methods. The two 

methods considered under this family are Constant average acceleration 

method and linear acceleration method. 

3.4.1 Constant average acceleration method 
The acceleration is assumed to be constant and equal to 

the average of two accelerations in consecutive time steps. From figure 

3.3 acceleration at any time can be written as, 

00 	00 

U(t)  =  U+ U 	 (3.16) 
2 

By successive integration velocity and displacement at any time t can be 

obtained respectively. 

t  00 	t+At OQ 	 t  00 	t+At 00 

0 	t Q t  O 

U(t)= U+ U+ U t 	U(t)=tU+ U t + U+ 	t2  
2 	 4  

Hence velocity and displacement at time t+At can be written as, 

t O0 	t+At 00• 

t+pt , 	t U+ U 
U= U+ 

	At 

2 
I0 

(3.17) 



t QO 	t+°t 00 t O  U t+°tU=`U+ UAt+ U+ 	At 
4 

(3.18) 

3.4.2 Linear Acceleration method. 

The linear variation of acceleration with respect to time is 

shown in figure 3.4. Thus acceleration at any time t can be written as, 

t+°t 00 	t 00  

00 	t  00 

U(t)= U+ U— U  t 	 (3.19) 
At 

by integrating the above equation velocity can be written as, 

t+At 00 	t 00  

(1 	O00 

U(t)= U+t  U t +  . U- U  t2 	 (3.20) 
2At 

Further integration gives displacement, 

t+at00 t00 

U(t)=`U+ U t+ U—+ U— U  t3 	 (3.21) 
2 	6At 

Hence velocity and displacement at time ti-it can be written as, 

t+At 00 	t ,),) 
t+°t , 	t ) 

U= U+ U+ U  At 	
(3.22) 2 

t 0 	t+At 00  'At 2 t 00  At  2 

`}°` U=`U+ UAt+ U 6 +  U 
3 	

(3.23) 

ii 



In order to obtain the displacement at time t, dynamic equilibrium equation 

at time t+At is considered, i.e., 

t+°S 0O  
M U+K +̀6tU=`+°̀ R 	 (3.24) 

Putting the value' of acceleration at time t+At in equation (3.24) from the 

equation (3.16) and equation (3.19) displacement at time t+At can be 

determined by constant average acceleration and Linear acceleration 

method respectively. 

( 42  M + K) t+°t U=t+°t R + 
Ot 

	

4 	4 t o  [ 

2 	At  MtU + M U+M U 

	

At 	At 
(3.25) 

And 

(  02  M + K) t+°`U= +̀°̀ R + 02  M`U + 6 M U+ 2M U 
At 	 At 	At 

(3.26) 

Thus by knowing the displacement, velocity and acceleration at time t, 

displacement can be determined at next time step t+dt. Moreover first 

acceleration and then velocity in next time step can be determined . 

Features of Newmark family of methods: 

• Constant average acceleration method is an 

unconditionally stable method. 

• Linear acceleration method is a conditionally stable 

method. 

• Both are implicit methods. 

3.5 The Wilson theta method 

The Wilson theta method is essentially an extension of the 

Linear acceleration method, in which rather a linear variation of 

acceleration from time t to time t+8At is assumed, where 8 >_1.0. When 

12 



0 =1.0, it reduces to Linear acceleration method. But for unconditional 

stability we need to use 0 =1.4. 

From figure 3.5 acceleration at any time t can be written as, 

	

t+OAt 00 	t 00 
00 00 

U(t)=t  U+ 	U— U  t 	 (3.27) 
eAt 

By successive integration velocity and displacement at any time t can be 

obtained. 

t+eAt 00 	. t 00  

0 r 	r 00 

U(t)= U+ U t + U— U  t2 

2eot 
t+OAt np 	t 0O  

U—U U(t)=`U+ U t+ U—+  
+ 69At 

t3 

Hence velocity and displacement at time t+90t can be written as, 

t+OAt 0O 	t 00  
t+oAt 0 	I 0  

U= U+ 	U+ U  eAt. 	
(3.28) 2. 

	

t+OAt 00 	t 00  

`0 	U+2 U 

	

t+aot U=t U+ U 6L\t + 	6 	92At2 	 (3.29) 

To obtain the solutions for the displacements, velocities and accelerations 

at time t+4t, the equilibrium equation is considered at time t+O t. 

00 

M 	U+K `+O t U=t+soc R  

Where, 

(3.30) 

t+eotR
=tR + 8(t+otR_tR) 

13 



Putting the value of acceleration at time t+O t in equation (3.30) as 

derived in equation (3.29) displacement in th.e next time step can be 
obtained. 

66 	 o 	t no 

(2 2 M+K) +̀e°`U=t  tR+ 2  ZM`U+ 
6 
 M U+2M U 	(3.31) 

•e of 	 e At 	OAt 

Further velocity and acceleration in the next time step can be determined 

with the help of equation (3.28) and equation (3.29) respectively. 

Features of Wilson theta method: 

• It is an unconditionally stable method when 0 >_ 1.37. 

• 'It is an implicit method. 

14 



CHAPTER 4 

STABILITY,-  ACCURACY AND DAMPING 
CHARACTERISTICS 

4.1 STABILITY ANALYSIS [1,4] 

Stability of an integration method means that the 

response in the higher modes i.e modes with large At/T ratio must not be 

amplified by the method and thus render worthless any accuracy in the 

integration of the lower mode respgnse. It also means that any initial 

condition at the beginning of the time step given by errors in the 

displacements, velocities and accelerations which may be due to round off 

in the computer, do not-grow in the integration. Stability is ensured if the 

time step is small enough to integrate accurately the response in the 

highest frequency component of the system. In the derivation of various 

time stepping methods, behavior of system is considered at discrete time 

interval. Then for specific time stepping method considered, we aim to 

establish the following recursive relationship, 

= A'X +L`+vr 
	 (4.1) 

where t+etX  . and tX are vectors storing the solution 

quantities, i.e,,displacements, velocities and accelerations. t+"r is the load 

at time t+v. v may be 0, At or OAt for the central difference method, the 

Houbolt method or the Newmark methods and Wilson theta method 

respectively. The matrix A and vector L are the amplification matrix and 

load 	G~a t rreespectively. 

15 



4.2 DERIVATION OF MATRICES AND VECTORS CORRESPONDING 

TO DIFFERENT TIME STEPPING METHODS[1,4] 

Variables to be considered in the stability analysis of the 

time stepping methods are only At and w and not all elements of the 

stiffness and mass matrices,. Furthermore, because all n equations are 

similar we only need to study the integration of one typical row, which may 

be written as 
00 

x+w2x = r 	 (4.2) 

4.2.1 The Central Difference Method: 

In the Central difference method acceleration and velocity are 

approximated at time t. Also equbrium equation is considered at time t. 
I ) 

x+ W `x `r 	 (4.3) 

M 
X=  (t-°` 2`x+x) 	 (4.4) 

t o 

x = ( x+ x) 	 (4.5) 

substituting equation (4.4) in equation (4.3) and solving for t+°tx, we obtain 

t+At 	 2 	2 r 	c—Dc 	2 c x=(2—co at) x— x+L\t r 

The solution can be writen in the form 

~
t+o x 

	x 

L
t x = 1:x +Ltr 

where 

A= 2—w2&2 —1 and L= At, 
1 	0 	0 

(4.6) 

16 



4.2.2 The Houbolt method 

In the Houbolt method the equilibrium equation is•

considered at time t+Ot. The acceleration and velocity at time t+At can be 

written as derived before. 
t+L pp 

	

x+o t `x2-- `r 	 (4.7) 

x = 

 

1 
	 (4.g) 

at 
t+~ o 

x=1(1f'x-18x-axZ'x) 	 (49) 
6~t 

by rearranging the above equations it can be written in the matrix form as, 
t+ax 	tx 

`x =A `x +L`'r 	 (410) 
2~x. 

where,. 

5R — 43 13 
Gu2At2 w2At2 Co 20t 2 

A= 1 0 0 
0  1  0 

z 
where0=(1+ 2 Y'andL= 0 

~ZOtz 	
0 

4.2.3 The Wilson theta method 

The basic assumption in the Wilson theta method is that 

the acceleration varies linearly over the time interval from t to t+OAt, where 

0 ? 1. Let r denote the increase in time from t, where 0 <_ z <_ 9t then 

acceleration, velocity and displacement in this time interval can be written 

as, 

17 



l " T i„, 	1.k, 	11nli.L1 	t .n, 	.{ 

x= x+( 	x— x) 
At 

(4.11) 

t+t Q 	t Q 	t oo 	t+°t 00 	t oo 	Z 

x= x+ x ti +( 	x— x) 
2A

t (4.12) 

t o 	1 ton 	too 	~3 

x i +- x tie 	x— x) (4.13) 
6At 

At tenet + At wehave 
t+°t 0 	t+At V0 	t 00 	At  

x= x+( 	x+ x) 2 (4.14) 

t „ 	t+°l 00 	t 0,) 	At2 
 

x=t x+ x At +( 	x+2 x) (4.15) 
6, 

In the Wilson theta method the equilibrium is considered 

at time t+OAt, 

t+(3°t 

X+ (0 t+ont X=t ~t r 
(4.16) 

By rearranging the above equations the following relationship can, be 

established as, 
t+°t p,) t ,)„ 

x x 
t+°t 0 t o 

x = A. x +Lt+B°tr (4.17) 
t+°t x t x 

L 
where, 

• (1 _ Re2 _ 1) 	— 1 	— R 
3 	0 	At 	At? 

R 
w2At2 

A= 
2 

At(1— 1 — Re ) 	1—Re 	—R ' and L= 
2&At 20 	6 	2 	2At 

At2 (1 -- I _ - 	) 	At(1—P_) 	1—R a2 
2 	60 	I8 	6 	6 6 

18 



4.2.4 The Newmark method 

In the Newmark method the equilibrium is considered at 

time t+Lt. 

t+At 00 

M U+KtU=tR 
	

(4.18) 

The expression for velocity and displacement at time t+At can be written 

as, 

• t+13t 0 c 0 	 t 00 	[+At 00 

x= x+ (1- 8) x+8 x At 	 (4.19) 

t+°̀  x=`x+t x At + (1- a)~ x+a +~ x Atz 	 (4.20) 
2 

By rearranging the above equations in the matrix form, 

t+& 00 t 00 

x 
t+At 0 

x =A 
Ix 

[ p 

x +Lt+°̀  r (4.21) 
x x 

where, 

-(1-a) -R 	-R _ 
2 At  At w At

2 
 

A= At 1-8-(1 -a)80 1-(3S  and L= 	RS 
2 At  w2At 

At(1-43) 	1- a.(3 
aR 
C2 

2  2 

where c2I 
 A

2
t 

The stability of an integration method is therefore 

determined by examining the behavior of the numerical solution for 

arbitrary initial conditions [1]..  
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Therefore we consider the integration of equation (4.1) 

when no load is present, i.e rl0. Hence 

	

t+AtX = A tX 	 (4.22) 

the stability of the system can be explained by the eigen value 

problem as IA- A =0.  let p(A) be the spectral radius of matrix A which is 

defined as, 

	

p(A) = nia2 	 (4.23) 

Then stability criterion is that 

• If all eigen values are distinct, we must have p(A)<_ 1,whereas 

• If A contains multiple eigen values, we require that all such 

eigen values in absolute magnitude be smaller than 1. 

Thus the stability of time stepping methods depends only 

on the time ratio At/T and the integration parameters used. Therefore, for 

given At/T, it is possible in the Wilson theta method and in the Newmark 

method to vary the parameters 0 and a,, respectively to obtain stability . 

characteristics. We will see. later that that it is also true for accuracy 

analysis. Now the stability analysis of the Central difference method is 

considered. The eigen value problem to be solved is 

A-=0. 

Where 

A_ 2-W At'` -1 

1 

by solving the two values of 2 are obtained as, . 

2-t At2 + (2-cl~2At2 )2 -1 

~" 2 - 	2 	- 	4 
(4.24) 

for stability we need that the'absclute value of X1 and X2 be smaller than 

or equal to 1 and this gives the condition At/T <_1/II. 

Hence the central difference method is stable provided that 



At <_ Atcr where Ater = Tnjri.. By the .same procedure as employed above 

the Wilson theta, Newmark and Houbolt methods can be analyzed for 

stability using the corresponding approximation operators. It is noted that 

central difference, method is only conditionally stable and the other three 

methods are unconditionally stable. Figure 4.1 shows the plot of spectral 

radius of amplification matrix of different methods with respect to ratio of 

time step. Moreover in order to obtain the optimum value of 9 for the 

Wilson theta method, the variation of the spectral radius of approximation 

operator with respect to 0 is plotted as in figure 4.2. It is seen that 

unconditional stability is obtained when 0 > 1.37. Considering the 

Newmark method, it is unconditionally stable when S > 0.5 and a >_ 0.25 

(5+0.5)2 

4.3ACCURACY ANALYSIS [1,4,61 

The choice of particular time stepping method depend 

upon the cost of analysis which in turn depends upon the number of time 

steps required in the integration. In the case of conditionally stable method 

like the Central difference method where the time step is determined by 

the critical time step, not much choice is available. However, using an 

unconditionally stable method, the step has to be chosen to yield an 
accurate and effective solution. 

Let us consider for a simple accuracy analysis the solution 

of the initial value problem defined by 
00 

x+~2x=o 	 (4.25) 

° 0 

 

0 00 
and°x=1.a, x=o.a, x=-~2 

The above equation has the exact solution as x = cos c,)t. 

The Newmark and Wilson theta methods can be used directly however in 

the Houbolt method, the initial conditions are defined only by _ initial 

displacements, and in the following study the exact displacement values 

for °tx and 2'x are obtained using the solution of x = cos cot, 
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The numerical solution - of equation (4.25) using the 

different integration methods show that the errors in the integration can be 

measured in terms of period elongation and amplitude decay. Figure 4.3 

shows the percentage period• elongation and amplitude decay as a 

function of Ot/T. the curves in figure 4.3 shows that the methods are 

accurate when Mt/T is smaller than about 0.01. However when Ot/T is 

larger, the various time stepping methods exhibit quite different 

characteristics. For a given -.tJT, the Wilson theta method with 0 = 1.4 

introduces less amplitude decay and period elongation than the Houbolt 

method, and the Newmark's constant average acceleration method 

introduces only period elongation and no amplitude decay. 

The response calculated by the four methods in 

fundamental and higher modes reveals that the amplitude decay caused 

by the numerical integration effectively filters the high mode response out 

of the solution in the Wilson. theta and Houbolt method. Whereas, when 

constant average acceleration is employed the frequency response is 

retained in the solution as it does nct introduce amplitude decay. In order 

to obtain amplitude decay using the Newmark method,it is recommended 

that ö> 0.5 and correspondingly a = 0.25(8+0.5)2  as Damped newmark's 

response spectra is obtained by 6 = 0.6 and a = 0.3025. 

4.4 NUMERICAL DISSIPATION [4,6] 

In many structural dynamics application only low mode 

response is of interest. For these cases the use of implicit unconditionally 

stable algorithms are generally preferred over conditionally stable 

algorithm. The reason is that, in conditionally stable algorithm the size of 

time step employed is inversely proportional to the highest frequency of 

the discrete system. In practice this is a severe limitation as accuracy in 
the lower mode can be attained with the time steps, which are very large 

compared with the period of the highest mode. In unconditionally stable, 

when only low mode response is of interest it is often advantageous for an 
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algorithm to posses some form of numerical damping to damp out any 

participation of higher modes. Algorithm commonly used in structural 

dynamics which (posses, these properties are the Houbolt method, the 

Wilson theta method and the Newmark family of methods restricted to 

parameters with value of 5>1/2 and a >_ 0.25 6 (6+0.5)2 

The Newmarkfamily of method allows the amount of 

dissipation to be continuous{y controlled by a parameter other than the 

time step. For example set a=0.25(5+0.5)2 and 6>1/2, then the amount of 

dissipation,, for .a fixed time step is increased by increasing 6. On the other 

hand dissipative property of this family is considered to be inferior, since 

lower modes are affected too strongly. In Wilson theta method 0 must be 

selected greater than or equal to 1.37 to maintain unconditional stability. It 

is recommended that 0 =1.4 be employed as further increasing 0 reduces 

accuracy and further increases dissipation. Houbolt method is even more 

dissipative than Wilson theta method. Since it seemed that the commonly 

used unconditionally stable, dissipative algorithm of structural dynamics all 

possessed some drawbacks, a research work was undertaken to see if an 

improved one -step method could be constructed. In the Newmark family a 

new form of dissipation called a-dissipation, was introduced. [4,6], which 

could not be included in this dissertation. 

A close study of the plot in figure 4.1 reveals that no 

dissipation is present in the Constant average acceleration method and 

Houbolt method possesses the strongest dissipation 

4.5 LOGARITHMIC DAMPING 

It is noted that the logarithmic decrement which is given by 

u(t~) 	2 I-1 l 

Lktn*m) 1yi_2 
(4.26) 
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is commonly used measures of algorithmic dissipation. m indicates the 

number of s s Following table shows logarithmic decrement with 

different values of damping ratios and at different number of  c 	. 

TABLE 4.1 

No. of 1 10 100 1000 

0.001 0.9937 0.9391 0.5335 1.9x 10 

0.01 0.9391 0.5335 1.9x10 5.1 x 10 

0.02 0.8819 0.2845 3.5x10°  2.6 x 10 

0.03 0.8281 0.1517 6.5x10 1.3x10 

0.04 0.7776 0.0808 1.2x10 0 

0.05 0:7301 0.0430 - 	2.2 x 10.14 0 

0.1 0.5318 1.8x'0,  3.8x10' 0 

0.2 0.2773 2.7 x 10 2.0 x 10" 0 

The above quantities in the table is plotted in figure 4.5. 

The study of Table 4.1 reveals that logarithmic decrement tends to zero 

even in ten steps having = 0.2 and in hundred steps having = .0.02, 

which is not obtained by any algorithms, not even by the Houbolt method 

which possesses highest damping among the methods discussed. 
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• CHAPTER 5 

STUDY OF RESPONSE HISTORY 

5.1 General 

As it is seen in mode superposition method that the 

response contains low frequency modes as well as high frequency modes. 

In the problem that we have considered it can be written as, 
4 U , _ 10 - 	1  10 cos t + 	_4  cos 100 .005 t 	(5.1) 

U 2 	1 	 —10 

the first part contains low frequency and second part high frequency 

component. In other words U1 represents higher modes and U2 represents 

lower modes. It represents the sinusoidal wave with maximum amplitude 

as 1 for U1 in high frequency component and 10 for U2 in low frequency 

component. From the above equation velocity can be written as, 

[i

o 	 _4 

i = _[i 0 10 sin t — 	1 —10_4 
 100.005 sin 100.005t 	(5.2) 

U2 	1  

it represents the sinusoidal wave with maximum amplitude multiplied by 

100.005 and 1 respectively. By extending the same operation it is obvious 

that acceleration response is further multiplied by 100.005 and 1 

respectively. With this background now we try to analyze the response 

history obtained by all methods individually. 

5.2 Central difference method. 

It shows the beating phenomenon for response in the high 
( 	•+.SS•1,s•2 AV)q s•3) 

frequency region Also response in the low frequency region is not able to 

complete even one cyclex;.It is due to the smaller time step considered as it 

is conditionally stable method. The time step considered in this case is 

0.01999 in place of conventional time step as 0.314159. Moreover in high 
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frequency response peak is obtained after more than 20 cycles which is 

due to elongation of time period. 

5.3- Trapezoidal method. 

It also shows the beating phenomenon in the high 
Cr-1wres 5.1,5.8 a'43.9~ 

frequency region,a but in the low frequency region exact response is 
(FrgM 5. w,.S e.,j S. 12) 

obtained with very small damping in the higher time steps.As maximum 

amplitude of the response is concerned, it gives the exact figure as 

discussed above. In this case also period elongation is observed. Wrinkles 

occur in the acceleration response because high frequency component of 

acceleration response is not damped out, which adversely affects the 

acceleration response in low frequency region. But it is not going to affect 

the displacement and velocity response as smooth curves are obtained. 

This phenomenon can be better understood by the response expression 

as written in equation (5.1). 

U 2 = 10 cost ( displacement response in low frequency region) 

U2 =10-4 cos100.005t (contribution from high frequency region) 

0 

U 2 = 10 sin t (velocity response in low frequency region) 

U2 = 10-2 sin 1 00.005t (contribution from high frequency region) 

Obviously contribution from high frequency region is negligible. 

But 
00 

U2 =10 cost ( acceleration respone in low frequency region) 
uo 

U2 = cos100.005t (contribution from high frequency region) 

It shows that contribution from high frequency component is one-tenth of 

low frequency component due to which acceleration response in low 

frequency region is affected. 

5.4 Damped Newmark method. 
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It is able to damp out responses in both frequency 
(figWr~65•[,5•I4friP 5•IS•) 	 ~tyc~4 	$•16b"•I9a'~P9•1g) 

regionss,.Although damping is small in low frequency region,ait completely 

damps out responses in high frequency region in higher time steps. 

Moreover in the lower time steps also, damping is prevalent particularly in 

high frequency region Smooth curves are obtained for all three quantities 

in low frequency region, except for initial wrinkles in acceleration 

• response, because as it is 'clear from the response in high frequency 

region that although acceleration response is damped out in higher time 

• steps, it is present in lower time steps. 

5.5 Wilson theta method 

Although it is able to damp out responses rapidly as 
Cr±~qu~ 5.25 5.26 aryls•: 

compared to previous method in the . high frequency region, but the 

responses amplitude in the lower time steps exceeds the value that 

discussed above. The responses in the low frequency region is okay in a 

sense that exact figure is obtained with smoothness except for initial 

wrinkles in the acceleration, response and very small damping in the 

higher time steps, (`F 	,s•~9 aPO 5,-30) 

5.6 Houbolt method. 

The damping of responses in high frequency region is 

even fast as compared to previous method, or in other words it is fastest in 
(Fi9urea 6 ~9i 5• ~ a~►d '.-1) 

all the methods discussed,Awhich is desirable and moreover damping is 
CFY urea rG .ss.,5. 	A~QQ ~• 

small in low frequency region.,.Since acceleration response is totally 

damped out in just few steps, smooth curves are obtained for all quantities 

in low frequency region. 
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CONCLUSIONS 

• The study of. various time stepping methods reveals that 
the Central difference method and Newmark's linear acceleration method 
are conditionally stable methods. This is a stringent condition leaving no 
choice in selecting the time steps. Naturally unconditionally stable 
methods are our choice. Among other unconditionally methods discussed 
the best method identified is the Houbolt method. The aim is to obtain the 
exact response in lower frequency region which can be obtained by 
filtering the high frequency 'response. It is evident from the response 
spectra obtained by the Houbolt method that the smooth curves with very 
small.damping is observed in the low frequency region. It is due to the fact 
that responses of the quantities in high frequency region is damped out in 
just few steps, which renders the desired response unaffected. 

The superiority of the Houbolt method is further supported 
by studying the damping phenomenon of different time stepping methods 
in the plot of spectral radius vs ratio of time steps. The spectral radius for 
the Houbolt method goes to the minimum value as compared to the other 
methods. 

As we compare the plot of spectral radius vs.ratio of time 
steps with the plot of displacement decrement vs. damping values and 
number of. time. steps, the Houbolt method although having the largest 
damping properties, doesn't damp the response in the high frequency 
region as it should damp as -seen in the plot of logarithmic damping with 
comparable damping value and comparable number of time steps. 
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SCOPE FOR FURTHER STUDY 

In present study we investigated undamped systems only. 
However, a more descriptive behavior of system can be obtained by 

considering the damping in the system. This dissertation would be helpful 

in generalization-for damped cases also. 
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Figure 3.2 Displacement vs Time [Houbolt method] 
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Figure 3.3 Acceleration vs Time [Constant Average Acceleration method] 

Figure 3.4 Acceleration vs Time [Linear Acceleration method] 
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Figure 3.5 Acceleration vs Time [Wilson 0 method] 
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• TIME HISTORY PLOT FOR DISPLACEMENT, 
VELOCITY AND ACCELERATION 

CENTRAL DIFFERENCE METHOD 
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TRAPEZOIDAL METHOD 
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DAMPED NEWMARK METHOD 
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HOUBOLT METHOD 
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WILSON THETA METHOD 
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APPENDIX 
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********CENTRAL DIFFERENCE METHOD******** 

#include<fstream.h> 
#include<iomanip.h> 
#include"central.h" 
#include<math.h> 
#include<conio.h> 

void main( ) 
{ 
clrscr( ); 

•int nr,nc; 
float K[2][2],M[2][2],R[21[2],uo[2][2],ul[2 ][21,v0121[21,accO[21[2]; 
float u[ 100] [2] [2],v[ 100] [21 [2],acc[ 100] [2l [2]; 
float m[2]121,k[2l[2l,mi[2][2] M1[2l[2l; 
float t=0.01999,aO=1/(t*t),al=1/(2*t),a2=2*a0,a3=1/a2; 

// ENTER NO.OF ROWS & COLS. FOR MASS MATRIX & STIFF. MATRIX 
fin>>nr>>nc; 

getrnat(M,nr,nc); 
fout<<"MASS MATRIX FOLLOWS----"<<end1; 

printmat(M,nr,nc); 
fout<<"NEW MASS MATRIX FOLLOWS----"<<endl; 

nmassmat(M,nr,nc,a0,m); 

getmat(K,nr,nc); 
fout<<" STIFFNESS MATRIX FOLLOWS----"«end1; 

printmat(K,nr,nc); 
fout<<"NEW STIFFNESS MATRIX FOLLOWS----"<<eudl; 

nstiffmat(nr,nc,a2,lc,M,K); 

// ENTER NO.OF ROWS & COLS. FOR LOADING MATRIX 
fin>>nr>>nc; 
getmat(R,nr,nc); 

• fout<<"LOADING MATRIX FOLLOWS----"<<endl; 
printmat(R,nr,nc); 

H. ENTER NO. OF ROWS FOR DISPL, AND VELOCITY MATRIX 
fin>>nr>>nc; 

getmat(u0,nr,nc); 
fout«"INITIAL DISPLACEMENT MATRIX FOLLOWS----"<<endl; 

printinat(uO,nr,nc); 

getmat(vO,nr,nc); 
fout<<"INITIAL VELOCITY MATRIX FOLLOWS----"<<endl; 

printmat(vO,nr,nc); 

fout<<"INITIAL ACCELERATION MATRIX FOLLOWS----"<<endl; 
inverse(MI,M); 
accmat(K,uO,accO,MI,R); 
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fout<<"u(-t) MATRIX FOLLOWS----"<<endl; 
u Imat(u0,nr,nc,a3,acc0,u 1); 

fout<<"FINAL RESPONSE FOLLOW---"<<endl; 
inverse(ini,m); 
displmat(aO,a 1,R,k,m,u,uO,vO,accO,u I,mi,v,acc); 

fin. c lose 0; 
fout.close0; 

********************HEADER FILE"""*""**"".**""""**"""" 

ifstream fin("central.dat"); 
ofstreani fout("central. out"); 

// FUNCTION DEFINITION 
void getniat(float a[2][21,int nr,int uc) 

for(int i=0;i<iu-;i++) 
{ 
for(int j=0;j<nc;j++) 

{ 
fin>>a[i]U]; 

void printmat(float a[2] [2],int nr,int tic) 
{ 
for(int i=0;i<nr;i++) 

r { 
for(int j=0;j<nc;j++) 

fout<<" "<<a[iJ[J]; 
I 

fout<<endl; 
} 

void nnasstnat(float a[2][2],int nr,int nc,float aO,float m[2][21) 

int i,j; 
for(i=0;i<iv;i++) 

{ 
for(j=0;j<nc;j++) 

{ 
m[i]U]=a0*a[iIU]; 
fout<<" ,"<<m[ilb]; 

fout<<endl; 
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void nstiffrnat(int nr,int nc, float a2,float k[2]E21, 
float M[2][2],float K[2]121) 
{ 
for(int i=O;i<nr;i++) 

{ 

for(int j=O j<nc;j++) 
{ 

k[il~i1=K[ilUl-a2*M[ijb]; 
fout<<" „« k[i]fl1; 
} 

fout<<endl; 
} 

void accmat(float K[2][2],float uO[2][2],float accO[2][2], 
float MI[2][2],float R[2][2l) 
{ 
float d[5][5]: 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<1 j++) 

{ 
d[i] [11=0; 
for(int 1=0;1<2;1++) 

{ 
d[i] [j]=d[i] [j]+K[i] [1]*uO[1] [j]; 

for(int i=0;i<2;i++) 
{ 
for(int j=0;j<I j++) 

{ 
accO [i] [j]=0; 
for(int 1=0;1<2;1++) 

{ 
acc0[i](j]=accO[il[jlfMI[il[l]*(~d[lll_i])+MI[i][1]*R[11Li1; 
] 
fout<<" "<<accO[i][j]; 
} 

fout<<endl; 
} 

void ulmat(float uO[2][21,int nr,int nc,float a3, 
float accO[2][2],float ul[2][21) 
{ 
for(int i=0;i<iir;i++) 

{ 

• for(int j=0;j<nc;j++) 
{ 

ui[i][j]=u0[i](j]+a3*acco[i]L I; 



fout<<" "«ul[i]U]; 
} 

fout<<eiidl; 
} 

} 

void inverse(float bl[2][21,float a1[2]121) 
{ 

float c; 
c=1.0/(al[01[01*al[1][1]-al[0][1]*al[11101); 
bl[0][0]=al[1][1]*c; 
bl[0][1]=-a110][1] 
bl[1][0]=-aI[1][0]*c; 
bl[1][1]=a1[0][0J*c; 

for(int i=0;i<2;i++) 
{ 

for(int j=0;j<2j,++) 

bl[ilUI; 
•} 

} 

void displinat(float aO,float al,float R12][21,float k[21[21, 
float m[2][2],float u[100][2J[2],flot u0[2][2],float vO[21[2], 
float accO[2][2],float. ul[2][2J,float b1[2][2], 
float v[ 100] [2] [2],float acc[ 100] [2l [2] ) 
{ 

float A[100][2][2],B[1001[2]12],R1[100][2][2]; 
for(int p=  1 ;p<= 100;p++)  

{ 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<1;j++) 

{ 
A[p] [i] [J]=0.0; 
B[p-1l[i][j]=0.0; 
u[P+1J[i][j]=0; 
for(int 1=0;1<2;1++) 

ul11111Hl=uo[1]U]; 
u[0l[1][]=ul[1][ll; 
A[p11ilG1=A[p][1][jl+k[i.]Il]*ufplfl][Jl; 
Blp-1I[ ][J'=B[p-1][i]U]+nt[i][1]*u[p_1][1][j]; 
Rl [p1 Ii] U]=R[il UI-A[p][i]U]-B[p-11[i] U]; 

}}} 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<l;j++) 

{ 
for(int 1=0-,1<2;1++) 

{ 
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u[p+1]Ii1[11 —ti[p+l][i][1]--b1Ii][1]*R1 [p][il[Jl; 
} 

vip][il[]]= a1*( uLp-1]1i][Jl+uip+1][il[l]); 
acc[pl[i]Ij]=aO*(u[p_1llilU]-2*tl[pl[il[ii 

+u[p±1][i1[l]); 

for(int p=0;p<=100;p++) 
I 
for(int i=0;i<2:i++) 

f 
• for(in'_ j-0;<1j++) 

{ 
fout<<setiosflags(ios: : fixed)<<setiosfiags(ios: : showpoint) 

<<setpreeision(4) <<setw(20)<<uu [p+1 ] Ii ] [j ] ; 

} 
fout<<endl; 

fout<<endl<<endl; 
for(int p=0;p<=100;p++) 

{ 
for(int i=O;i<2;i++) 

4 
for(int j=0;j<1j++) 

I 
v[11.[il U1=vo[i] Lit: 

fout<<setiosflags(i os:: fixed)<<setiosflags(ios:: showpoint) 
<<setprecision(4)<<setw(20)<<v[p+1 ] [i] [i]; 

} 
fout<<endl; 

} 
fout<<end1<< d1: 
for(int p= 0;p<:— I OO;p++) 

{ 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<l;j++) 

{ 
acc[II[ilUl=acc0[iIUl; 

font<<setiosflags(i os::fixed)<<setiosflags(i Os: : showpoint) 
<<set.precision(4)<<setw(20)<<acc[p+1] [t (j]; 

} 

foul<<endl; 

6 
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******************INPUT-DATA FILE******************** 

2 
2 

0 
0 

0 
0 
2 
1 
1 
10 
0 
0 
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THE NEWMARK METHOD(TRAPEZOLDAL RULE) 

#include<fstream,h> 
#include<iomanip.h> 
#include"newmark.h" 
#include<math.h> 
#include<conio.h> 

void main( ) 
f 
clrscr( ); 

int nr,nc; 
float K[2][2],M[21[2],R[21[2];uO[2][21,vO[21[2]>acc0 L 2][2]; 
float u[ 100][2][2],v[ 100][2][2],acc[ 1001[2][2]; 
float ml[2][2],m2[2][2],m3[2][2],k[2][2],ki[2][21,MI[21[2]; 
float t=0.314159,x=0.25,y=0.50,aO=1/(x*t*t),a2=1/(x*t), 

/* Take x=0.3025; y0.6 [ FOR DAMPED NEWMARK METHOD]*/ 

a3=(1/(2*x))-1,a6=t*(1-y),a7=y*t; 
float al=y/(x*t),a4=y/x-1,a5=(t/2)*(y/x-2); 

//ENTER. NO.OF ROWS & COLS. FOR MASS MATRIX & STIFF. MATRIX 
fin>>nr>>nc; 

getmat(M,nr,nc), 
fout<<"MASS MATRLX. FOLLOWS----"<<endl; 

printmat(M,nr,nc),, 
fout<<"FIRST NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass I mat(M,nr,nc,a0, ml); 
fout<<"SECOND NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass2mat(M, nr,nc, a2, in2); 
font<<"THIRD NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass3 mat(M,nr,nc,a3, m3): 

getmat(K,nr,nc); 
fout<<"STIFFNESS MATRIX FOLLOWS----"<<endl; 

printmat(K,nr,nc); 
fout«"NEW STIFFNESS MATRIX FOLLOWS----"<<endl, 

nstiffinat(nr,nc,a0,k,M,K); 

//ENTER NO.OF ROWS & COLS. FOR LOADING MATRIX 
fin>>nr>>nc; 
getmat(R,nr,nc); 

foot<<"LOADING MATRIX FOLLOWS----"<<endl; 
printmat(R,nr,nc); 

//ENTER NO. OF ROWS FOR DISPL. AND VELOCITY MATRIX 
fin>>nr>>nc; 
get.mat(u0,nr,nc); 

fout<<"INITIAL DISPLACEMENT MATRIX FOLLOWS----"<<endl; 
printmat(u0,nr,nc); 
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getmat(v0,nr,nc); 
foot<<"INITIAL VELOCITY MATRIX FOLLOWS----"«end1; 

p rintlnat(vO , tu-, nc) ; 

foot<<"INITIAL ACCELERATION MATRIX FOLLOWS----"<<endl; 
inverse(M1,M); 
accmat(K,u0, acc0,MI,R);. 

fout<<"FINAL RESPONSE FOLLOW---"<<endl; 
inverse(ki,k); 
displmat(aO,a2,a3,a6,a7,R,m I ,m2,m3,u,uO,v,vO,acc,accO,ki); 

fin.closeO; 
fout.closeO; 

*********************HEADER FILE 	* 	* 

ifstrealn fin("newmark.dak"); 
ofstream fout("uewmark.out."); 

//FUNCTION DEFINITION 
void getniat(float a[2][2],int nr,int nc) 
{ 
for(int i=0;i<nr;i++) 

{ 
for(int j=0;j<nc;j++) 

{ 

fin>>a[i][j]; 
} 

void printlnat(float a12]12),int nr,int nc) 
{ 
int ij; 
for(i=O,i<nr;i++)  

{ 
for d=0 j<nc;j++) 

{ 
foot«„ „<<a[i][J]; 

fout<<endl; 

void nnlass 1 mat(float M[2] [2],int nr,int nc,float a0,float ml [2] [2]) 
{ 
for(int i=0;i<nr;i++) 
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{ 
for(int j=0;j<nc;j++) 

{ 
ml [i][j]=aO*M[i] [j]; 
foot<<" .  "<<ml[i]Li]; 
} 

fout<<endt; 
) 

void nmass2mat(float M121[2],mnt nr,int nc,float a2,float m2 [2]121) 
{ 
for(int i=0;i<nr;i++) 

{ 
for(int j=O j<nc;j++) 

{ 
m2[i][j]=a2*M[i]UL: 
fout<<" "<<m2[i][j]; 
I 

fout<<endl;. 
I 

} 
void nniass3ma.t(float M[2][2],int n.r,int. nc,float a3,float m3[2][2]) 
{ 
for(int i=O;i<nr;i++) 

{ 
for(int j=O;j<nc;j++) 

• m3[i]Lj]=a3*M[i]jj]; 
fout<<' ,o«m3[i][j]; 
} 

fout<<endl; 
I.  

void nstiffmat(int nr,int nc, float aO,float k[2] [2],float M12] [2], 
float K[21[2]) 
{ 
for(int i=0;i<nr;i++) 

{ 
for(int j=0;j<nc;j++) 

{ 
k[1]U1=K[i1[Jl+aO*M[i][ii; 
fout<<" "<<k[i]bl; 
I 

fout<<endl; 

} 

void accmat(float K[2][2],float uO[2][2],float accO[2][2], 
float MI[2] [2],float R[21[21) 
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float d[21[21; 
for(int i=0;i<2;i++) 

for(int j=0;j<1;++) 
r 

d[i]U1=0; 
for(int 1=0;1<2;1++) 

{ 

d[iiU]=d[i][j]+K [ii  [1]*u0[11U1; 
;,r 

for(int i=0;i<2;i++) 
{ 
for(int. j=0;j<l;j++) 

acc0[i]U]=0; 
for(int 1=0;1<2;1++) 

{ 
accO[i][j]=acc0[i](jJ+ IJ[i][11*(-d[1]U])+MI[i][l]*R[1][j]; 
} 
fout<<" "<<acc0[i][jl; 
t 

fout<<endl; 

void inverse(float b 1.121   [21,float a [21121) 
{ 

float c; 
c=1.01(al[0][0]*al[1][1]-al[0][1]*al111[0]); 
bl[0][0]=al[11[11*c; 
b1[0][I]=-a1[0][1J*c; 
bl[1][0]=-al[IJ[0]*c; 
bl[I][1]=al[0][0j*c; 

for(int i=0;i<2;i++) 

for(int j=0;j<2;j+) 
{ 
bl[i][j]; 
} 

void disphnat(float aO,float a2,float a3,float a6,float a7, 
float R[21[21,float  in 1 [21 [2],float zn2 [21 [2l,float m3[2][21, 
float u[ 1001 [21 [21,float u0[2][2],float v[ 1001[2][2],float v0121[21, 
float acc[100][2][2],float acc0[2][2],float b1[2][2]) 
{ 

float A[100][2][2],B[100][2][Z.i,C[100I[2][2],R1[100.][21[2]; 
for(int p= 1;p<= I00;p++) 

{ 
for(int i=0;i<2;i++) 

55 



for(int ,j=0,j<1 j++) 
r 

A[p] [i] [j]=O.o; 
B[p] [i] Gl=o.o; 

.C[p][i]U1=o.o; 
u[p+11[i][]=o.o; 
for(int 1=0;1<2;1++) 

{ 
u[11[1]Ul=uo[1]Lil; 
v[II[1l[11=v0[11u]; 
acc[ 1] [1] [j]=accO[1] [ii; 
A[p] [i] [j]=A[p] [i] Gl+m l[i]  [ll*u[p] [l] Gl; 
B[pl[i]U]=B[pl[iIUI+m2[i][1]*v[p][1](Jl; 
C[p]li]G]=C[p][i][j]-i-m3 [i][1]*acc[pl [fl UI; 
R1 [p][il [j]=R[i] UI+A[P][i][1]+B[p][il[UI+C[p] [i]U]; 

for(int i=0;i<2;i++) 
{ 
for(int j=0;j<1 j++) 

{ 
for(int 1=0;1<2;1++) 

{ 
u[p+11[i][Jl=u[p+l][i][JI+b1[i][1]*R1[p1[11G1; 
acc[p+1I[i]U1=aO*(u[p+l]lil[il-u[pl[iIUI) 

-a2*v[p]lil[J1-a3*acc[pl[il[►1; 
v[p+1][il j]=v[p][i]bl+a6*acc[p][it[il 

+a7*acc[p+1][i][j]; 
}}}} 

for(int p=O;p<=100;p++) 
{ 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<1;j++) 

foutc<setiosflags(ios::fixed) 
<<setiosflags(ios:: showpo int)<<setprecision(4)<<setw(20) 
<<u[p+l][i][ll; 

fout<<endl; 

fout<<endl<<endl; 
for(int p O;p<=100;p++) 

{ 
for(int i=O;i<2;i++) 

{ 
for(int j=O j<l;j++) 

{ 
fout<<setiosflags(ios: fixed) 

<<setiosflags(ios: sliowpoint)<<setprecision(4)<<setw(20) 
<<v[p+1][ilul; 

56 



fout<<endl; 
} 

fout<<endl<<endl; 
for(int p=0;p<=100;p++) 

{ 
for(int i=0;i<2;i++) 

{ 
for(int j=O j<l j++) 

{ 
fout<<setiosflags(ios::fixed) 

<<setiosflags(ios: : showypoint)<<setprecision(4)<<setw(20) 
<<acc[p l][i]Ul; 

z 
t 

fout<<endl; 

} 

********************INPUT DATA FILE***************** 

2 
2 
1 
0 
0 
1 
10001 
-1 
-1 
1 
2 
1 
0 
0 
2 
1 
1 
10 
0 
0 
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*************** HOUBOLT METHOD ************* 

#include<fstream.h> 
#include<iomanip.h> 
#include"houbolt.h" 
#include<math.h> 
#include<conio.h> 

void main( ) 
{ 
clrscr( ); 

int nr,nc; 
float.K[2J [2J,M[2] j2],MI[2][2],u0[2][2J,R[2] [2],vO[2] [21,acc0[2] [21; 
float u[ 100] [2] [21,v[ 100] [2] [2J,acc[ 1001 [2] [2]; 
float ml[2][2],m2[2][2J,m3[2J[2],k[2][2],ul[2][2],u2[2][2],ki[2J[2]; 
float t=0.314159,a0=2/(t*t),al=11/(6*t),a2=5/(t*t),a3=3/t,a4=2*a0, 
a5=-0.5 *a3,a6=0.5 *aO,a7=a3/9.0; 

//ENTER NO. OF ROWS & COLS. FOR MASS & STIFFNESS MATRIX 
fin>>nr>>nc; 

getmat(M,nr,nc); 
fout<<"MASS MATRIX FOLLOW S----"<<endl; 

printmat(M,nr,nc); 
fout<<"FIRST NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass Imat(M,nr,nc,a2,m 1); 
fout<<"SECOND NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass2mat(M,nr,nc, a4, m2) ; 
fout<<"THIRD NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass3 mat(M,nr,nc,a6, m3 ); 

getmat(K,nr,nc); 
fout<<"STIFFNESS MATRIX FOLLOWS----"<<endl; 
• printmat(K,nr,nc); 

fout<<"NEW STIFFNESS MATRIX FOLLOWS----"«endl, 
• nstiffmat(nr,nc,a0,k,M,K); 

//ENTER NO. OF ROWS & COLS. FOR LOADING MATRIX 
• fm>>nr>>nc;. 

getmat(R,nr,nc); 
fout<<"LOADING MATRIX FOLLOWS----"<<endl; 

printmat(R,nr,nc); 

//ENTER NO.OF ROWS & COLS. FOR DISPL.& VELOCITY MATRIX 
fin>>nr>>nc; 
getmat(u0,nr,nc); 

fout«°DISPLACEMENT MATRIX UO FOLLOWS----"«endl; 
printmat(u0,nr,nc); 

getmat(vO,nr,nc); 
fout<<"VELOCITY MATRIX VO FOLLOWS----"«endl; 

printmat(vO,nr,nc); 
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Pout<<"INITIAL ACCELERATION MATRIX FOLLOWS----"«endl; 
inverse(NII,M); 
accmat(K,uO,accO,MI,R); 

//FIRST TWO DISPL. MATRIX AS OBTAINED BY TRAPEZOIDAL METHOD 
getinat(u I,nr,nc); 

fout<<"DISPLACEMENT MATRIX U1 FOLLOWS----"<<endl; 
printlnat(u l,nr,nc); 

getmat(u2,nr,nc); 
fout<<"DISPLACEMENT MATRIX U2 FOLLOWS----"<<endl; 

printnlat(u2,nr,nc); 

fout<<"FINAL RESPONSE FOLLOW---"<<endl; 
inverse(ki,k); 
displmat(aO,a I,z2,a3,a4,a5, a6,a7,R,m I,m2,m3,u,uO,u I,u2,vO,accO,v,acc,ki); 

ful.close(); 
fout.closeO; 

*********************HEADER FILES**""***"*""**""""""* 

ifstrealn fin('thoubolt.dat"); 
ofstream fout("houbolt.out"); 

//FUNCTION DEFINITION 
void getinat(float a[2][2],int lir,int tic) 
{ 
for(int i=0;i<nr;i++) 

{ 
for(int j=0;j<nc;j++) 

{ 
fin>>a[i] [j]; 

void printnlat(float a[2][2],int nr,ilit nc) 

lilt i j; 
for(i=0;i<1r;i++) 

• 
{ 
for(j=0;j<nc;j++) 

{ 
fout<<" "<<a[i1L11; 
} 

fout<<endl; 
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void nmasslniat(float a[2}[2];int nr,int nc,float a2,float ml[2][2]) 
{ 
for(int i=O;i<nr;i++) 

{. 
for(int j=0;j<nc j++) 

{ 

nil [i] []]=a2*a[i] X11; 
foot<<, ,"<<ml[i][J], 
} 

fout<<endl; 
} 

} 

void nmass2mat(float a[2](2],int nr,int nc,float a4,float m2[2][2]) 
{ 
for(int i=O;i<nr;i++) 

{ 

for(int j=O;j<nc~j4-+) 

m2[i][.l]=a4*a[i] [J]; 
foot<<, "<<m2[i][J]; 
} 

fout<<endl; 
} 

} 
void nmass3mat(float a[2] [2],int nr,int nc,float a6,float m3 [2] [2]) 
{ 
for(int i=O;i<nr;i++) 

{ 
for(int j=0;j<nc;j++) { 

m3.[ilU]=a6*a[i] Ul; 
•font«° °«m3[i]L1]; 
} 

fout<<endl; 

I 

void nstiffmat(int nr,int nc, float aO,float k[2] [2], 
float M[2][2],float K[2]121) 
{ 
for(int i=O;i<nr;i++) 

{ 

for(int j=0 j<nc;j++) 
{ 

k[i] [l]=K[i] Ll]+aO*M[i] Gl; 
fout<(" °« k[i]{jl; 
} 

fout<<endl; 
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} 

} 

void accmat(float K[2][2],float uO[21[2J,float accO[2][2], 
float MI[2] [2l,float. R121 [2]) 
{ 
float d[5][5]; 
for(int i-(J;i<2;i++) 

{ 
for(int j=0;j<1;j++) 

{ 

d[i][j]=O; 
for(int 1=0;1<2;1++) 

{ 

d[ijUJ=d[ijUj+K[i][1]*u0[11G1; 
ff} 

for(int i=Q;1<2;i ) 

for(int j=0;j<1;j++) 

acc0[i] [5]=0; 
for(int 1=0;1<2;1++) 

accOli] [j]=accOli][j]+MI[i][1]*(-d[1](j])+MI[i][1]*R[l][ i; 
} 

• fout<<" "<<acc0[ij[j]; 
r 

fout<<endl; 
r 

void inverse(float b 1 [2][2],float a 1 [2] [2]) 
f t 

float c; 
c=1.0/(al[O][O1*al[1][1]-al[OJ[1J*al[1][0]); 
bl[O][O]=a111][1]*c; 
bl[0][1]=-al[0][1l*c; 
b1[1J[0]=-a1[1][OJ*c; 
bl[1J[1]=al[0][0]*c;. 

for(int i=0;i<2;i++) 
f 

for(int j=O;j<2;j++) 
f 
bl [i][J];. 

} 
} 
void displmat(float aO,float al,floaz a2,float a3,float a4, 
float a5,float a6,float a7,float R[2][2],float ml[2]12], 
float m2[2][2],float m3[2][2],float. u[ 100][2][2],floatu0[2][2], 
float ul[2][2l,float u2[2][2J,float v0[21[21,float accO[21[21, 
float v[ 100][2] [2J,float acc[100] [2] [2J,float b1121[2]) 
{ 
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float A[100][2][21,B[100][2][2],C[100}[2][2],R1[100][2][2]; 
for(int p=2;p<=100;p++) 

{ 
for(int i=0;i<2;i++) 

{ 
for(int j=Oj<1;j++) 

{ 

A[p] [il [J]=0.0; 
B[p-1][i][i]=o.o; 
C[p-2][i]U]=O O; 

• for(int 1=0;1<2;1++) 
{ 
u[21I1] [i]=u2[l]iil; 
U[1][1l[l=u1[1][]; 

• u[ol[1][i]=uo[1]Ul, 

• ►[p][ilU]A[p][i][j]+ml[iJ[1]*u[p] [Ii  [1]; 
• B[p-1] [i][j]B[p-1] [i] (!]+in2[i] [11*u[p-1  ] [1] L1]; 

C[p-2]Ii][]=C[p-2] [i] [j]+m3 [i] [1]*u[p-2] [l] [j]; 
R1  [p] [i] [l]=R[i] G]+A[p] [ii  Lil-B  [p-1  ] [i] L1l+C[p-2] [i] UJ; 
}}} 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<l;j++) 

{ 

u[p+l][il[J]=0.0; 
for(int 1=0;1<2;1++) 

u[p+lJ[iJJj]=u[p+ l l[iJ[l]+bl[1][1J*R1  [plfl][il; 
} 

v[p+l] [i] Ul=a1 *ii[p+l  l [ii [1]-a3*u[p][i] L)l 
. 	_a5*u[p-ll [ii [iJ-a7*u[p-2][iii]; 

• acclp+l][i][Jl=aO*u[p+1][i][J]-a2*u[p] [ii [ii 
-a4*u[p-1][i][j]-a6*u[p-21[i]U]; 

for(int p=o;p<=100;p++) 
{ 
for(int i=0; <2;i++) 

{ 

for(int j=0;j<1;j++) 
{ 
fout<<setiosflags(ios! :fixed) 

<<setiosflags(ios:: showpoint)<<setprecision(4) 
<<setw(20)<<ulp] [i] Ii]; 

} 
• Pout<<endl; 

} 
fout<<endl<<endl; 

for(int p=0;p<=100;p++) 
{ 
for(int i=0;i<2;i++) 

{ 
for(int.j=0;j<l;j++) 

{ 
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v[2J[i]LI]=vO[iJU]; 
fout<<setiosflags(i os:: fixed) 

<<setiosflags(ios: :showpoint) 
<<setprecision(4)<<setw(20)<<v[p+21[iJ UI; 

} 

} 
fout<<endl; 

} 
fout<<endl<<endl; 
for(iirt p=0;p<100;p++) 

{ 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<1;j++) 

f 

acc[2][i][j]=acc0[i][j]; 
fout<<setiosflags(ios::fixed) 

<<seti osflags(ios:: showpoint) 
<<setprecisiou(4)<<setw(20)<<acc[p+2J[i] [jJ; 

foul <endl; 

0 

*******************INPUT DATA FILE******************* 
2 
2 
1 
0 
0 
1 
10001 
-1 -1  

1 
2 
1 
0 
0 
2 

1 
10 
0 
0 
-0.99 
9.5186 
0.9677 
8.1202 
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*************WILSON THETA METHOD*********** 

#include<fstrevn.h> 
#include<iomanip.h> 
#include"Wilson.h" 
#include<math.h> 
#include<conio.h> 

void main() { 

clrscr( ); 

int nr,nc; 
float K[2][2],M[2][2],R[2][2],uO[2][2l,vO[2][2],accO[2][2]; 
float u[ 100] [21 [2],v[ 100] 12] [2],acc[ 100] [2] [2]; 
float in! [2][2J, 	[2][2],m3[2][2],k[2J[2J,ki[21[2],MI[2][2]; 
float t=0.314159,h=1.40,aO=6/(h*h*t*t),a l=3/(h*t),a2=2*a 1; 
float a4=a0/h,a5=-a2/h,a6=1-(3/h),a7=0.5*t,a8=(t*t)/6; 
//float a3=0.5*h*t; 

//ENTER NO. OF ROWS & COLS. FOR MASS & STIFFNESS MATRIX 
fin>>nr>>nc; 

getmat(M,nr,nc); 
fout<<"MASS MATRIX FOLLOWS----"«endl; 

printmat(M,nr,nc); 
fout<<"FIRST NEW MASS MATRIX FOLLOWS----"<<endl; 

nmass 1 mat(M,nr,nc,aO,m 1); 
font«"SECOND NEW MASS MATRIX FOLLOWS----"<<endl; 

mnass2mat(M,nr,nc,a2,m2); 
fout<<"THIRD NEW MASS MATRIX FOLLOWS----"<<endl; 

nma s s 3 mat(M, nr, n c, m 3 ); 

getmat(K,nr,nc); 
fout<<"STIFFNESS MATRIX FOLLOWS----"<<endl; 

printmat(K,nr,nc); 
font«"NEW STIFFNESS MATRIX FOLLOWS----"<<endl; 

nstiffinat(nr,nc,a0,k,M,K); 

//ENTER NO. OF ROWS & COLS. FOR LOADING MATRIX 
fin>>nr>>nc; 
getmat(R,nr,nc); 

foot<<"LOADING MATRIX FOLLOWS----"<<endl; 
printmat(R,nr,nc); 

//ENTER NO. OF ROWS & COLS. FOR DISPL. AND VELOCITY MATRIX 
fin>>nr>>nc; 

getmat(u0,nr,nc); 
fout<<"DISPLACEMENT MATRIX UO FOLLOWS----"<<endl; 

printmat(u0,nr,nc); 
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getluat(v0,nr,nc), 
fout<<"VELOCITY MATRIX VO FOLLOWS----"<<endl; 

printlnat(v0,nr,nc); 

fout<<"INITIAL ACCELERATION MATRIX FOLLOWS----"<<endl; 
inverse(MI,M); 
acc mat(K,u0,acc0,NII,R); 

fout<<"FINAL RESPONSE FOLLOW---"<<endl; 
inverse(ki,k); 
displmat(a4,a5,a6,a7,a8,t,R,m 1,m2,nz3,u,uO,v,vO,acc,accO,ki); 

fin.closeO; 
fout. closeO; 

} 

**********************HEADER FILE******************** 

ifstream fin("wilson.dat"); 
ofstream fout("wilson.out"); 

//FUNCTION DEFINITION 
void getlnat(float a[2][2],int nr,int nc) 

for(int i=0;i<IU;i++) 
r i 
for(int j=0;J<nc;j++) 

1 
fin>>a[i][j]; 
} 

void printlnat(float a[2][2],int nr,int nc) 
{ 
for(int i=0;i<nr;i++) 

{ 
for(int j= 0;j<nc;j++) 

fout<<" "<<a[ilU1; 
} 

fout<<endl; 
} 

} 
void nlnasslnmat(float M[2][2],int nr,int nc,float Afloat in1[2][2]) 

for(int i=0;i<nr;i++) 

for(int j=0;j<nc;j++) 
{ 
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ml [i][j]=a0*M[i][j]; 
fout«„  "<<m l [i][1]; 
) 

fout<<endl; 
} 

void nmass2mat(float M12][21,int nr,int nc.float a2,float m2[2][2]) 
{. 
for(int i=0;i<nr;i++) 

{ 
for(intj=Oj<ncj++) 

{ 
m2[i]Ul=a2*M[i] fl]; 
fout<< °«In2[il[j]; 
} 

fout<<endl; 
} 

} 
void nmass3mat(float M[2][2],int nr,int. nc,float m3[2][21) 
{ 
for(int i=0;i<nr;i++) 

{ 
for(int j=0;j<nc;j++) 

{ 
m3 [i](JI=2.0*M[i][il; 
fout<<" °«m3 [ii Li]; 
a 

Pout<<ends; 
} 

void nstiffmat(int nr,int nc, float aO,float k[21[21, 
float M[2][2],float K[2][21) 

for(int i=0;i<nr;i++) 
I i 
for(int j=0;j<nc;j++) 

f 
k[i] [}]=K[i] [j]+a0*M[i] [)1; 
fout<< "<<k[i][j]; 
} 

fout<<endl; 
a 

void accmat(float K[2][2],float u012][2],float accO[2][2], 
float MI[2][2l,float R[2][2]) 

float d[2] [2]; 
for(int i=0;i<2;i±+) {, 
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for(int j=OLj<1,j++) 

d[i]U1-0; 
for(int 1=0;!<2;1++) 

1 
r 	' 

d[iJ[j =d[i][j]+K[i][1]*u0[1]U1; 
,;i 

for(int i=0;i<2;i++) 
{ 
for(int j=0;j<1 j++) 

{ 
acco[i] GI=0; 
for(int 1=0;1<2;1++) 

{ 
accO[1]U1=acc0[iIUI+MI[i] f1]*-dU]UI+MI[i][1]*R[1]UI; 

fout<<" "<<acc0[il[j]; 
} 

fout<<endl; 
} 

void inverse(float bl [2][2],float al[2][21) 

float c; 
c= 1.0/(a1[0][0]*a1[1][1]-a1[0][1]*a1[1][01); 
bl[0][0]=al[1][1]*c; 
bl[0][1]=-al[0][1]*c; 
bl[11[0]=-al[1][01*c; 
bl[1][1]=al[0][0]*c; 

for(int i=0;i<2;i++) 

for(int j=0;j<2;j++) 
{ 
bl[i][j]; 

void dispt mmat(float a4,float a5,float a6,float a7,float a8,float t, 
float R[2][2],float nil[2][2],float tn2[2][2],float m3[2][2], 
float u[ 1001 [2] [2],float uO [21 [2],float  v[ 100112112],float vO[2][2], 
float acc[1001[2][21,float acc0[2][2],float bl[2][2]) 

float A[100]12][2],B[100]I2]12],C[100][2][2],R1[100][2]12I; 
for(int p=1;p<=100;p+±). 

for(int q=1; q<=101;q++) 
{ 
for(int p=1;p<=100;p++) 

{ 
for(int i=0;i<2;i++) 

{ 
for(int j=0;j<1;j++) 
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A[pl[il[jJ=0.0; 
B[p][i] [j]=0.0; 
C[p]Ii]Ul=o:0; 
for(int 1=0;1<2;1++) 

u[1][1]G]u0[1]G];. 
v[1][1][i]v0[1][j]; 
acc[ 11 [1] (jl=accO [l] [j J; 
A [p] Ii] G 1=A[pl [i] 11l+in 1  [i] [ 1] *u [p] [1] Li]; 
Bp [i]Ul=B[p][i]Gl±n>2[i][l]*v[p][1][l; 

• C[p] [i]Ljl=C[p][i][jl+m3li][1]*acc[p][1] Li]; 
R1 [q][i] [j]=R[i] [j]+A[pl [i] [1]±B[p] [i] Lj]+C[p] [1] Iii; 

• for(int i=0;i<2;i++) 
{ 
for(int j=0;j<l j++) 

u[cij[i][j]=0.o; 
for(int 1=0;1<2;1++) 

{ 

u[t1] Iii  Ul="[N Iii] Ljl+bl[i][1]*R1[N[1]L1]; 

acc[p+ll [ii Lil=a4*(u[N[i][il-u[p][i]G]) 
+a5*v[p] [i] [j]+a6*acc[p] [i] [j];  

v[p+.l]li]Ljl=v[p][i]Lil+a7*(acc[p+l][i]Lj] 
+acc[pl[i]Li]); 

u[p+l ] [i] L[]=u [p] [i] [?]+t.*v[P] [i ] U] 
+a8*(acc[p+l] Iii] [j]+2*acc[p][i][j]); 

for(int p=0;p<=100;p++) 
{ 
.for(int i=.0;i<2;i++) 

{. 
for(int j=0;j<l;j++) 

fout<<setiosflags(ios::fixed) 
<<setiosflags(ios::showpoint) 
«Setprecision(4)<<setw(20)<<u[p+ 1 ] li] [j]; 

fout<<endl; 

fout<<endl<<endl; 
for(int p=0;p<=100;p++) 

for(int i=0;i<2;i++) 
{ 
for(int j=0;j<l;j++) 

{ 
fout<<setiosflags(ios: :fixed) 

<<setiosflags(ios:: showpoint) 
<<setprecision(4)<<setw(20)<<v[p+l ] [1] Ii]; 
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} 

} 
fout<<endl; 

} 
fout<<endl<<endl; 
for(int p=0;p<=100;p++) 

{ 
for(int i=O;i<2;i++)  

{ 
for(int j=0;j<1;j++) 

{ 
foot<<setiosflags(ios::fixed) 

<<setiosfl ags(ios:: showpoint) 
<<setprecision(4)<<setw(20)<<acc[p+l] [iJ[j ]; 

} 
fout<<endl; 

} 

"*""""""*""*******INPUT DATA FILE******************* 

2 
2 
1 
0 
0 
1 
10001 
-1 
-1 
1 
2 
1 
0 
0 
2 
1 
1 
10 
0 
0 
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