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ABSTRACT 

Speech compression is one area of digital signal processing that can be used to 

convert human speech into an efficient encoded representation that again can be 

decoded to produce a close approximation. Our main aim of this work is to compress 

the recorded speech. Speech coding is a lossy type of coding, which means that the 

output signal does not sound like the input. Now a days speech compression has many 

applications in the area of telecommunications such as digital cellular phones, voice 

mail and internet phones and also in high quality speech storage and message 

encryption. 

In this dissertation work three speech compression techniques has been 

implemented for the purpose of compressing the recorded speech. These are Adaptive 

Differential Pulse Code Modulation, Linear Predictive Coding and Wavelet 

Transform. Out of these three, Wavelet Transform Based Speech Compression is a 

new technique. Wavelets have been successfully used in image compression 

applications. But less attention has been paid towards its application in the field of the 

speech compression. The aim of this dissertation work has been centered around 

implementation and comparison of speech compression techniques. Our comparative 

evaluation was based on the following parameters. 

1. Compression Ratio 

2. Signal to Noise Ratio 

3. Peak Signal to Noise Ratio 

4. Normalized Root Mean Square Error 

In this work it is proved that compression ratio in the case of ADPCM and 

LPC is not variable where as in the case of wavelet transform based speech 

compression, compression ratio is variable and quality is also quite good with respect 

to ADPCM and LPC. It is also concluded that quality decreases by increasing the 

compression ratio. In the case of ADPCM compression ratio is less but the quality is 

good. In the case of LPC compression ratio is more but the quality is poor. Quality 

and compression ratio is moderate in the case of wavelet transform based speech 

compression. 
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Chapter —1 
INTRODUCTION 

1.1 Introduction 

Speech is one of the most important tools that people use to communicate ideas. 
Almost everyone uses speech daily, and we are so comfortable with speech that we 

take the ability to speak for granted. Speech compression is the technology of 
converting human speech into an efficiently encoded representation that can later be 
decoded to produce a close approximation of the original signal [1]. Speech 

compression has been and still is a major issue in the area of digital speech 
processing. Speech coding is the act of transforming the speech signal to a more 
compact form, which can then be stored with a considerably smaller memory. The 

main aim of the speech compression is to encode and decode the speech signal. The 
motivation behind speech compression is the fact that access to unlimited amount of 
bandwidth is not possible [1].  Compression reduces the amount of data to be 
transmitted, thereby more efficiently utilizing the available communication 
bandwidth. So there is a need to code and compress the speech signals. 

1.2 History of Speech Compression 
The first major development in the history of speech compression is the invention 

of the vocoder in 1939. Pulse code modulation (PCM) was first documented in detail 
in Cattermole's classic contribution in 1969. However, in 1967 it was recognized that 

predictive coding provides advantages over memory less coding techniques, such as 
PCM. Predictive techniques were analyzed in depth by Markel and Gray in their 
1976 classic treatise. This was followed shortly by the often cited reference by 

Rabiner and Schafer. The wave form coding of speech and video signals was 
comprehensively documented by Jayant and Noll in their 1984 monograph. Atal and 
Schroeder invented the code excited linear predictive principle during the 1980s. In 

1996 Johnson Ihyeh Agbinya invented the wavelet in the speech processing in his 

work he proved that wavelets concentrate speech energy into bands which 

differentiate between voiced or unvoiced speech. Before to Jhonson Ihyeh Agbinya 

W. Kinsner and A. Langi wavelets was introduced in speech as well as image 

compression and he proved that its performance in terms of the bit rates and signal 
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quality is comparable with other good techniques such as the discrete cosine 

transform for images and code excited linear predictive coding for speech, but with 

much less computational burden. In 2003 Abdul Mawla M. A. Najih, Abdul Rahman 

bin Ramli, V. Prakash, and Syed A. R applied different wavelets on speech 
compression. 

1.3 Mathematical Model of Speech Production System 
Before going to mathematical model of speech production system it is necessary 

to discuss briefly about the physical model of speech production system. Speech 

comes form our mouth due to air that has been pushed form the lungs through vocal 

tract. In the speech signal two types of sounds are there one is voiced sounds and 
another one is unvoiced sounds. Voiced sounds come when ever vocal cards vibrate. 
The rate at which the vocal cards vibrate determines the pitch of the voice. It differs 
form person to person and also it depends on the age [1]. In the case of women and 
young children tend to have high pitch that means fast vibration of vocal cards. Where 
as in the case of adult males tend to have low pitch that means slow vibration of vocal 

cards. For unvoiced sounds the vocal cards does not vibrate but that remain constantly 
opened. Different sounds can be produced by changing the shape of the vocal tract. 
The amount of air coming form the lungs determines the loudness of the voice signal. 

T- uh rod  

UJJ 
izrupvfl. trait : 
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Figure 1.1 Mathematical model of speech production system [1] 

The model shown in Figure 1.1 is often called the LPC model. The speech signal 

comes form the LPC filter and the input to the model is either a train of pulses or a 
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white noise sequence. In the case of physical model speech comes form vocal tract. 

Here vocal tract acts as a digital filter. 

Table 1.1 The relationship between the physical and the mathematical model 

of speech production system 

Physical Model Mathematical Model 

Vocal Tract H(z) (LPC filter) 

Air u(n) (innovations) 

Vocal Cord Vibration V (voiced) 

Vocal Cord Vibration Period T (pitch period) 

Fricatives and Plosives UV (unvoiced) 

Air Volume G (gain) 

1.4 Characteristics of Speech Signals 

Deterministic signals could be described with the help of analytical formulas. 

But speech signal is not a deterministic signal. It is a random signal [2]. It can't be 

described by analytical formulas. In the speech we have two types of sounds one is 

voiced sounds and another is unvoiced sounds. These sounds are coming due to air 

compression in the lungs. When generating voiced sounds the vocal cards vibrate and 

generate a high energy quasi periodic speech waveform. Where as in . the case of 

unvoiced sounds the vocal cards do not participate in the voice production and these 

unvoiced sounds behaves like noise. 

In comparison to audio signals, speech signals can be characterized by a rater low 

analogue bandwidth. In standard communications applications a telephone bandwidth 

of 0.3 — 3.4 kHz allows a digital representation at a sampling frequency of 8 kHz [2]. 

In the case of audio signals like music has bandwidth of about 15 — 20 kHz and thus 

require a sampling frequency of 32 to 48 kHz. In between, wideband speech signals 

(bandwidth 7 kHz, sampling rate 16 kHz) have been attracting an increasing interest 

with reference to high quality ISDN applications, such as comfort telephony or 

videoconferencing services [3]. The typical waveforms of speech signal, voiced and 

unvoiced frames are shown in the following Figures 2.4, 2.5 and 2.6 respectively. 
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Figure 1.2 Typical waveform of speech signal 

Figure 1.3 Typical waveform of voiced speech 

Figure 1.4 Typical waveform of unvoiced speech 

1.5 Applications of Speech Compression 

1. Speech compression is required in long distance communication. For 

example, in digital cellular technology many users need to share the same 

frequency bandwidth. So by utilizing speech compression makes it possible 
for more users to share the available system. 



2. Another application where speech compression is need is in digital voice 

storage. For a fixed amount of available memory, compression makes it 

possible to store longer messages. 

3. Fixed and mobile digital telephony. 

4. Packet network transmission (internet). 

5. Videoconferencing. 

6. Radio and television. 

7. Message encryption. 

1.6 Organization of the Dissertation Report 

The dissertation has been composed of seven chapters. The organization of 

this dissertation report is as follows. 

In chapter 2, classification of speech compression techniques has been given. 

Properties of speech coding methods such as quality, bitrate (compression), delay, and 

complexity of speech coders has been explained. It has also been explained briefly 

about the different coding methods such as waveform coding, vocoding, and hybrid 
coding. 

In chapter 3, waveform coding methods such as pulse code modulation, 

differential pulse code modulation and adaptive DPCM has been explained. 

Quantization and companding has also been explained in this chapter. 

In chapter 4, LPC coding method has been explained. In this LPC coding 

method LPC analysis, Levinson-Durbin algorithm, correlation of signals, and pitch 

detection methods has been described. 

In chapter 5, basics of wavelet transform has been explained. Different steps 

involved in the implementation of wavelet transform based speech compression are 
explained one by one. 

In chapter 6, what ever the algorithms that are proposed in the present work, 

LPC coding, ADPCM and WT technique, simulation results are tabulated. For the 

analysis purpose different speech signals are taken form different persons. 

Comparative evaluation has been done on the basis of compression ratio, SNR, 

PSNR, and NRMSE. 

Lastly, in Chapter 7, conclusion of present work and some suggestions for 

future work have been given. 
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Chapter —2 

SPEECH COMPRESSION TECHNIQUES 

2.1 Introduction 

The objective of speech is communication whether face to face or cell phone 

to cell phone. To fit a transmission channel or storage space, speech signals are 

converted to formats using various techniques [2]. This is called speech coding or 

compression. Theoretically speaking, speech coding can be achieved based on two 

facts. One is redundancy in speech signals, and another one is perception properties of 

human ears. In this chapter we will discuss about classification 'of speech compression 

techniques. 

Properties of speech coding techniques are discussed briefly one by one. 

Speech quality of compressed speech signal depends on compression ratio, 

complexity, delay, and bandwidth. These are nothing but the attributes of speech 

coders. So there is an interaction between all these attributes and that they can be 

traded off against each other. For example, in the case of low bit rate coders delay is 

more with respect to high bit rate coders and also complexity is more in the case of 

low bit rate coders and also quality is low in the case of low bit rate coders. 

Different coding methods are discussed briefly. Waveform coding methods 

does not use the properties of the speech production model. These methods try to 

reproduce the output as close as to the original signal, so these methods are having the 

high quality. In the case of vocoding methods these use the properties of the speech 

production model. These give less quality output but compression is more. Hybrid 

coding methods use the advantages in both waveform coding and vocoding, so these 

are moderate in both quality as well as compression. 

2.2 Classification of Speech Codecs 

Speech coding methods are classified into three categories [2], [4]. 

1. waveform coding 

2. vocoding 

3. hybrid coding 

The basic difference between speech codecs are shown in the Figure 2.1 [4]. In this 

speech quality versus bitrate performance of these codecs are shown. The bit rate is 



plotted on a logarithmic axis and the speech quality classes "poor to excellent" on 

another axis. 

SPEECH 
UALITY 

EXCELLENT 

WAVEFORM 
CODCES 

GOOD 	CODECS 

FAIR 
F COMPLEXTY 

VOCODERS 	 DELAY 

POOR 

1 2 4 6 16 32 64 

kbP)  

Figure 2.1 Speech quality vs. bitrate classification of speech codecs. 

2.3 Attributes of Speech Coders [2], [3] 

Speech quality of compressed speech signal depends on bit rate, complexity, 

delay, and bandwidth. These are nothing but the attributes of speech coders. So there 

is an interaction between all these attributes and that they can be traded off against 

each other. For example, in the case of low bit rate coders delay is more with respect 

to high bit rate coders and also complexity is more in the case of low bit rate coders 

and also quality is low in the case of low bit rate coders. 

Compression ratio: It is important parameter in the case of speech compression 

because our main aim in speech compression is to reduce the size of the digital 

speech representation. Most speech coders operate at a fixed bit rate regardless of 

the input signal characteristics. Since multimedia speech coders share the channel 

with other forms of data so it is better to make the speech coder of variable bit 

rate. If the signal is declared speech, it is coded at the full fixed bit rate. If the 

signal is declared noise, it is coded at a lower bit rate. Sometimes no bits are 

transmitted at all. By using this type of algorithm we can reduces the bit rate 
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Delay: Delay of speech coding system is due to three reasons. One is due to 

processing of data frame of the speech coder. After process the speech parameters 

are updated and transmitted for every frame. Not only to analyze the data 

properly, it is necessary to analyze the data beyond the frame boundary. Hence, 

before the speech can be analyzed it is necessary to buffer a frame worth of data. 

Due to this, delay comes this delay is called an algorithmic delay. This type of 

delay we can't reduce in the implementation of the speech coder. So if we want 

to decrease the delay we have to go to other components of delay those depends 

on the implementation. It depends on the speed of the hardware used to 

implement the coder. The sum of the algorithmic and processing delays is called 

the one-way codec delay. The third component of delay is due to the 
communication delay, which is the time it takes for an entire frame of data to be 

transmitted from the encoder to the decoder. Total of these three delays are called 
as one way system delay. 

Complexity: speech coders are often implemented on digital signal processor 

chips. The speed of digital signal processor is measured in terms of millions of 

instructions per second (MIPS). If the speech coder takes less MIPS then we can 
say that our speech coder is of less complex. Depending upon MIPS we can say 

the speech coder is complex or not and that's range is 15 MIPS to 30 MIPS. 

Lower limit is corresponding to lower complexity and higher limit is 

corresponding to higher complexity. Depending on the complexity, cost and 

power usage differs. If the complexity more means it takes more power, so due to 

that weight increases because it uses large size batteries. So complexity is 

important factor to be considered in the case of speech coders. 

Quality: Even though our main aim is to compress the speech signal it is 

necessary to give the enough quality of speech. So compression and quality are 

equally important in the case of speech compression. In the case speech, ideal 

conditions may not get, that means in most of the cases speech contains noise. 

Noise may in the form of car noise, street noise, office noises like typing or 

phones ringing, air conditioning noise, music in the background, etc. Even in the 

case of noise conditions speech coder has to give enough quality of speech at the 

other end that means at the receiver end. 



2.4 Waveform Coding 

In general, waveform coding techniques are designed to be signal independent. 

That means waveform coding techniques treats speech signals as normal signal 

waveforms. Waveform coders then tries to obtain the most similar reconstructed s'(n) 

signal to the original one s(n) [2]. The objective of the waveform coding is to 

minimize the error e(n)=s'(n)-s(n). They are designed to map the waveform of the 

encoder into a facsimile-like replica of it at the output of the decoder. Because of this 

advantage, the waveform coding methods can also be used to encode secondary type 

of information such as signaling tones, voice band data, or even music. Because of the 

signal reproduction as accurately as possible the compression ratio is not good with 

respect to other coding methods. The coding efficiency can be improved by exploiting 

some statistical signal properties, if the codec parameters are optimized for the most 

likely categories of input signals, while still maintaining good quality for other types 

of signals as well. The waveform codecs can be further subdivided into time-domain 

waveform codecs and frequency-domain waveform codecs [4]. 

• Time domain waveform coding. The most well known representative of 

signal independent time domain waveform coding is the A-law companded 

pulse code modulation (PCM) scheme. A-law is a nonlinear type of 

companding. This results in near constant signal to noise ratio (SNR) over the 

total input dynamic range. 

• Frequency domain waveform coding. In frequency domain waveform 
codecs, the input signal undergoes a more or less accurate short time spectral 

analysis. The signal is split into a number of sub bands, and the individual sub 

band signals are then encoded by using different numbers of bits in order to 

obey rate distortion theory on the basis of their prominence. Two well known 

representations of this class are sub band coding (SBC) and adaptive 

transform coding (ATC). 

2.5 Vocoding 

Vocoders is nothing but voice coders. Vocoders make no attempt to reproduce 

the original waveform as like waveform coding. Vocoders derive a set of parameters 

at the encoder which can be used to control a speech production model at the decoder. 

The parameter set for the speech production model is relatively small and can be 



efficiently quantized for transmission. The simplest model of speech production used 

by vocoders is illustrated in mathematical model of speech production system in 

Figure 1.1. The voiced signal is modeled by an unipolar pulses of unit amplitude 

impulses at the required fundamental frequency: Here the fundamental frequency is 

nothing but the pitch frequency. For unvoiced sounds the unvoiced excitation is 

modeled as the output form a pseudorandom noise generator. The voiced/unvoiced 

switch selects the appropriate excitation and the gain term controls the level of the 

excitation. So from the vocal tract filter synthesized speech comes out. 

2.6 Hybrid Coding 

Waveform coding methods are good with respect to speech quality and 

vocoding methods are good with respect to compression. By taking advantages in 
both the techniques hybrid coding methods are formed [5]. But hybrid coding 
methods have higher complexity. So every coding method formed by combining 
waveform coding and source coding methods falls under this category. Hybrid coding 

improves the speech quality and reduces the compression. Hybrid coding methods are 

often referred to as analysis by synthesis coding methods. 

In the following Figure 2.2 classification of speech compression techniques 

has been given. But in this, classification of speech compression techniques has given 

differently [6]. In this classification frequency domain coding methods are 

categorized into hybrid coding methods. 

Speech coding schemes 

Vocoders 	Hybrid 	 I Waveform 
Coders 	 Coders 

PCM LPC 	F Cannel 	I APC 	SBC 	 DM Homo- f  Formant  I  RELP 	ATC 	 APCM morphic 	Phase 	f MPLPC 	Sinusoidal 	DPCM 
CELP I Harmonic 	 ADPCM SELP I MBE 

Figure 2.2 Classification of speech coding schemes 16]. 
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Chapter-3 
WAVEFORM CODING METHODS 

3.1 Introduction 

Waveform coding methods treats speech signals as normal signal waveforms. 

Then these methods try to obtain the most similar reconstructed signal to the original 

one. In general, waveform coding techniques are designed to be signal independent. 

Waveform coders then tries to obtain the most similar reconstructed s'(n) signal to the 

original one s(n). The objective of the waveform coding is to minimize the error 

e(n)=s'(n)-s(n). They are designed to map the waveform of the encoder into a 

facsimile-like replica of it at the output of the decoder. Because of this advantage, the 

waveform coding methods can also be used to encode secondary type of information 

such as signaling tones, voice band data, or even music. Because of the signal 

reproduction as accurately as possible the compression ratio is not good with respect 

to other coding methods. The coding efficiency can be improved by exploiting some 

statistical signal properties, if the codec parameters are optimized for the most likely 

categories of input signals, while still maintaining good quality for other types of 
signals as well. 

In this chapter we will discuss about pulse code modulation, differential pulse 

code modulation and adaptive differential pulse code modulation briefly. 

3.2 Pulse Code Modulation (PCM) 

PCM is a waveform coding method defined in the ITU—T G.711 specification 

[7]. The following are the different steps that are involved in the pulse code 

modulation and in this section we will discuss these steps one by one. 

3.2.1 Anti-aliasing Low Pass Filtering: 

The first step to convert the signal from analog to digital is to filter out the 

higher frequency component of the signal. In case of speech signals, about 1 % of the 

energy resides above 4 kHz and only a negligible proportion above 7 kHz. Even in the 

case of wide band speech systems the band limit is 7-8 kHz. Conventional telephone 

systems usually employ a bandwidth limitation of 0.3-3.4kHz, which results in a 

minor degradation, hardly perceptible by the untrained listener. So anti-aliasing low 



pass filtering is necessary in order to band limit the signal to a bandwidth of B before 

sampling. 

3.2.2 Sampling: 

The band limited speech is sampled according to the Nyquist Theorem. Which 

requires a minimum sampling frequency of fNyq,,,i3'l  =2 • B. This process introduces 

time-discrete samples. Due to sampling, the original speech spectrum is replicated at 

multiples of the sampling frequency. This is why the previous band limitation was 

necessary in order to prevent aliasing or frequency domain overlapping of the spectral 

lobes. If this condition is met, the original analog speech signal can be restored from 

its samples by passing the samples through a lowpass filter (LPF) with a bandwidth of 

B. in conventional speech systems, typically a sampling frequency of 8 kHz 

corresponding to a sampling interval of 125 u s is used. 

Einar y 
Speech 	 LPF 	 Sampling 	 Perallelto 	 Speech 

Quantisation 	 Scrim 
In 	 IB 	 2B 	 Converter 	 Bits 

Figure 3.1 Digitization of analogue speech signals [4]. 

3.2.3 Quantization and Coding 

Quantization is the process of converting each analog sample value into a 

discrete value that can be assigned a unique digital code word. All quantization 

intervals are equally spaced (uniform quantization) throughout the dynamic range of 

the input analog signal. Each quantization interval is assigned a discrete value in the 

form of a binary code word. The standard word size used is eight bits. If an input 

analog signal is sampled 8000 times per second and each sample is given a code word 

that is eight bits long, then the maximum transmission bit rate for Telephony systems 

using PCM is 64,000 bits per second. Each input sample is assigned a quantization 

interval that is closest to its amplitude height. If an input sample is not assigned a 

quantization interval that matches its actual height, then an error is introduced into the 

PCM process. This error is called quantization noise. Quantization noise is equivalent 

to the random noise that impacts the signal-to-noise ratio (SNR) of a voice signal. 

SNR is a measure of signal strength relative to background noise. The ratio is usually 
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measured in decibels (dB). If the incoming signal strength in microvolts is Vs and the 

noise level also in microvolts is V„ then the signal-to-noise ratio (SNR) in decibels is 

given by the formula S/N = 20 log10 (V,N,,). SNR is measured in decibels (dB). 

Higher the SNR better the voice quality. Quantization noise reduces the SNR of a 

signal. Therefore, an increase in quantization noise degrades the quality of a voice 

signal. 

Figure 3.2 Sampled and quantized analog signal [161. 
One way to reduce quantization noise is to increase the amount of quantization 

intervals. The difference between the input signal amplitude height and the 

quantization interval decreases as the quantization intervals are increased (increases in 

the intervals decrease the quantization noise). However, the amount of code words 
also need to be increased in proportion to the increase in quantization intervals. This 

process introduces additional problems that deal with the capacity of a PCM system to 

handle more code words. 
The difference between the uniform and nonuniform quantizer characteristics 

is shown in Figure 3.3. SNR (including quantization noise) is the single most 

important factor that affects voice quality in uniform quantization. Uniform 

quantization uses equal quantization levels throughout the entire dynamic range of an 

input analog signal. Therefore, low signals-have a small SNR (low-signal-level voice 

quality) and high signals have a large SNR (high-signal-level voice quality). Since 

most voice signals generated are of the low kind, having better voice quality at higher 

signal levels is a very inefficient way of digitizing voice signals. To improve voice 
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quality at lower signal levels, uniform quantization (uniform PCM) is replaced by a 

nonuniform quantization process called companding. 

Figure 3.3 Uniform and nonuniform quantizer characteristics 

3.2.4 Companding 
Companding refers to the process of first compressing an analog signal at the 

source, and then expanding this signal back to its original size when it reaches its 

destination. The term companding is created by combining the two terms, 

compressing and expanding, into one word. At the time of the companding process, 

input analog signal samples are compressed into logarithmic segments. Each segment 

is then quantized and coded using uniform quantization. The compression process is 

logarithmic [4]. The compression increases as the sample signals increase. In other 

words, the larger sample signals are compressed more than the smaller sample signals. 

This causes the quantization noise to increase as the sample signal increases. A 

logarithmic increase in quantization noise throughout the dynamic range of an input 

sample signal keeps the SNR constant throughout this dynamic range 

3.2.5 A—law and p —law Companding 

Two practical logarithmic companders are one A-law compander and another one 

is p -law compander. A-law and a -law are audio compression schemes (codecs) 

defined by Consultative Committee for International Telephony and Telegraphy 
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(CCITT) G.711 which compress 16—bit linear PCM data down to eight bits of 

logarithmic data [8]. 

• 	The p -law compander : This companding characteristic is given by: 

y = C(x) = ym 	ln[l + 	(I x I / xmax )] sgn(x) ............... 3.1 

	

~` 	ln(1 +,u) 

upon inferring form the log(1 +z) function that 

log(1+z) 	z 	if z<< 1, 	 .....................3.2 
in the case of small and large signals, respectively, we have from the equation 3.1 

that: 

	

In p 	"m ax 
ln[,u (I x I I x.. )] 	I 

Inp
.................3.3 

which is a linear function of the normalized input signal x / xmax for small signals and 

a logarithmic function for large signals. The ,u • (I x I / xmax ) =1 value can be 

considered to be the breakpoint between the small- and large-signal operation, and the 

I xl = xm. /p is the corresponding abscissa value. In order to emphasize the 

logarithmic nature of the characteristic, u must be large, which reduces the abscissa 

value of the beginning of the logarithmic section. The optimum value of ,u may be 

dependent on the quantizer resolution R, and for R=8 the American standard pulse 

code modulation (PCM) speech transmission system recommends u =255. 

• The A-law compander: Another practical logarithmic compander 
characteristic is the A-law compander. 

Ymax 	 x I/x~, ) sgn(x); 	0< IxI < 1 

...3.4 
y(x)_ 	

Ixl 
1+1nA 	 xm. = 

C, 	 A . 	............... 

	

1+ln[A(Ixl/X max )] 	1  
ym 	 • sgn(x); — < 	<1 

	

1+ln A 	 A x,,,ax 

where A=87.56. Similarly to the p -law characteristic, it has a linear region near the 

origin and a logarithmic section above the breakpoint Ixi = x,,,ax /A.  Note, however, 
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that in case of R=8 bits A<,u , hence, the A-law characteristic's linear-logarithmic 

breakpoint is at a higher input value than that of the ,u -law characteristic. 

3.3 Differential Pulse Code Modulation 

At the time of the PCM process, the differences between input sample signals 

are minimal. Differential PCM (DPCM) is designed to calculate this difference and 

then transmit this small difference signal instead of the entire input sample signal [9]. 

Since the difference between input samples is less than an entire input sample, the 

number of bits required for transmission is reduced. This allows for a reduction in the 

throughput required to transmit voice signals. Using DPCM can reduce the bit rate of 

voice transmission down to 48 kbps. 

How does DPCM calculate the difference between the current sample signal 

and a previous sample? The first part of DPCM works exactly like PCM (that is why 

it is called differential PCM). The input signal is sampled at a constant sampling 

frequency (twice the input frequency). Then these samples are modulated using the 

PAM process. At this point, the DPCM process takes over. The sampled input signal 

is stored in what is called a predictor. The predictor takes the stored sample signal and 

sends it through a differentiator. The differentiator compares the previous sample 

signal with the current sample signal and sends this difference to the quantizing and 

coding phase of PCM (this phase can be uniform quantizing or companding with A-

law or µ-law). After quantizing and coding, the difference signal is transmitted to its 

final destination. At the receiving end of the network, everything is reversed. First the 

difference signal is dequantized. Then this difference signal is added to a sample 

signal stored in a predictor and sent to a low-pass filter that reconstructs the original 

input signal. 

DPCM is a good way to reduce the bit rate for voice transmission. However, it 

causes some other problems that deal with voice quality. DPCM quantizes and 

encodes the difference between a previous sample input signal and a current sample 

input signal. DPCM quantizes the difference signal using uniform quantization. 

Uniform quantization generates an SNR that is small for small input sample signals 

and large for large input sample signals. Therefore, the voice quality is better at higher 

signals. This scenario is very inefficient, since most of the signals generated by the 
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human voice are small. Voice quality needs to focus on small signals. To solve this 

problem, adaptive DPCM is developed. 

3.4 Adaptive Differential Pulse Code Modulation 

Adaptive differential pulse code modulation (ADPCM) codecs are waveform 

codecs which instead of quantizing the speech signal directly, like PCM codecs, 

quantize the difference between the speech signal and a prediction that has been made 

of the speech signal. If the prediction is accurate then the difference between the real 

and predicted speech samples will have a lower variance then the real speech samples, 

and will be accurately quantized with fewer bits than would be needed to quantize the 

original speech samples [9]. At the decoder the quantized difference signal is added to 

the predicted signal to give the reconstructed speech signal. 

UP 
Pulse code 	signal 
modulated 
speech signal 

Difference 
signal Adaptive 

+ 	quantizer 

Coded 
output 

Inverse 
adaptive 
quantizer 

Adaptive 
predictor 	

difference 
signal 

Figure 3.4 Detailed ADPCM encoder schematic. 

In the ADPCM technique ADPCM adapts the quantization levels of the 

difference signal that generated at the time of the DPCM process. How does ADPCM 

adapt these quantization levels?. If the difference signal is low, ADPCM increases the 

size of the quantization levels. If the difference signal is high, ADPCM decreases the 

size of the quantization levels. So, ADPCM adapts the quantization level to the size of 

the input difference signal. This generates an SNR that is uniform through out the 

dynamic range of the difference signal. So by using ADPCM we can reduce the size 

of the input speech signal. 
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Figure 3.5 Detailed ADPCM decoder schematic. 

ADPCM is the advancement of DPCM coding intern advanced to the PCM. 
So pulse code modulated speech signal is given as an input to the differentiator. So 
the input signal's estimate produced by the adaptive predictor is subtracted form the 
input in order to produce a difference signal having a lower variance. This lower 

variance difference signal can then be adaptively quantized with lower noise variance 
than the original signal with the help of lower bits than that of direct PCM method. 
This encoded speech signal is then transmitted to the decoder part of ADPCM. 
Furthermore, it is locally decoded, using the inverse adaptive quantizer to deliver the 
locally reconstructed quantized difference signal. This signal is added to the previous 
signal estimate in order to yield the locally reconstructed signal. Based on the 

quantized difference signal and the locally reconstructed signal, the adaptive predictor 
derives the subsequent signal estimate, and so on. 



Chapter —4 

VOCODERS 

4.1 Introduction 

A second form of source coding for speech compression is provided by 

vocoders. These devices extract the characteristic parameters of human speech, by 

analyzing the mechanisms of speech formation, to derive an algorithm for providing 

additional compression of the data to be transmitted to the receiver. Recent results 

showed that the data rate of speech could be compressed to less than 2.4 kbps by 

using linear predictive coding (LPC) vocoders [10]. We know that air compressed by 

the lungs excites the vocal cords in two typical modes. The excitation signal denoted 

by E(z) in z-domain is then filtered through the vocal apparatus, which behaves like a 

spectral shaping filter with a transfer function of H(z)=1/A(z) that is constituted by 

the spectral shaping action of the glottis, vocal tract, lip radiation characteristics, and 

so on. 

Accordingly, instead of attempting to produce a close replica of the input 

signal at the output of the decoder, the appropriate set of source parameters is found in 

order to characterize the input signal sufficiently closely for a given duration of time. 

First, a decision must be made as to whether the current speech segment to be 

encoded is voiced or unvoiced. Then the corresponding source parameters must be 

specified [11]. In the case of voiced sounds, the source parameter is the time between 

periodic vocal tract excitation pulses, which is often referred to as the pitch p. In the 

case of unvoiced sounds, the variance or power of the noise-like excitation must be 

determined. The parameters are quantized and transmitted to the decoder in order to 

synthesize a replica of the original signal. Vocoder schematic is shown in the Figure 

4.1. The encoder is a simple speech analyzer, determining the current source 

parameters. After initial speech segmentation, it computes the linear predictive filter 

coefficients a1  i=1....p, which characterize the spectral shaping transfer function 

H(z). A voiced/unvoiced decision is carried out, and the corresponding pitch 

frequency and noise energy parameters are determined [2]. These are then quantized, 

multiplexed, and transmitted to the speech decoder, which is a speech synthesizer. 
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Figure 4.1 Vocoder schematic. 

The associated speech quality of this type of systems may be predetermined by 

the adequacy of the source model, rather than by the accuracy of the quantization of 

these parameters. In linear predictive coding (LPC), often more complex excitation 

models are used to describe the voice-generating source. Once the vocal apparatus has 

been described by the help of its spectral domain transfer function H(z), the central 

problem of coding is to decide how to find the simplest adequate excitation for high 

quality parametric speech representation. 

4.2 LPC Analysis 
In the linear prediction signal is modeled as a linear combination of its past 

values and present and past values of a hypothetical input to a system whose output is 

the given signal [12]. Linear predictive coding is a standard model for speech coders. 

In this model all-pole model is used to describe the transfer function of the vocal tract. 

Here it is showing the procedure to get the synthetic speech [12]. Assume that the 

present sample of the speech is predicted by the past P samples of the speech such 

that 
P 

S (n) _ 	a; S(n — i) 	 .....................4.1 

where S' (n) is the prediction ofS (n), S (n-k) is the kt" step previous sample, and 

{ a;  } are the linear prediction coefficients. The residual error between the actual 

sample and the predicted one can be expressed as 
P 

e(n)= S (n)- S' (n) = S (n)- 	a;S(n — i) 	................ 4.2 

S(z) 
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The sum of the squared error to be minimized is expressed as 

P 	 2  

E= 	e2(n)=Z S(n)—Pai S(n—i) 	................ 4.3 
n 	 n 	 i=1 

We would like to minimize the sum of the squared error. By setting to zero the 

derivative of E with respect to a;  , one obtains 

P 

21] S(n - k) S(n) - aiS(n - i) = 0 
n 	 i=1 

for k=1,2,3 .....p 	 ............... 	4.4 
P 

	

E{S(n)S(n — k)} = E 2] a; S(n — i)S(n — k) 	 4.5 
r=1 

Upon exchange the order of the summation and expected value computation at the 

right hand side of equation 4.5 we get following equation. 
P 

E{S(n)S(n — k)} = Ea; E{S(n — i)S(n — k)} k=1,... p 	............4.6 

By observing the above equation 

C(k,i) = E{S(n — k)S(n — i)) 	 ...........4.7 

Equation 4.7 represents the input signal's covariance coefficients. The covariance 

coefficients C(k, i) are now computed form the following short-term expected value 

expression: 
L. +P-1 	 k=1.....p, 

C(k,i) = Z S(n — k)S(n — i), 	 ...............4.8 
i=1,..... p. 

n=0 

Upon setting m=n-k, equation 3.8 can be expressed as 
La  -1-(k-i) 

C(k, i) _ I S(m)S(m + k — i) 	 ..............4.9 
m=0 

P 

Z a1C(k, i) = C(i 3O) i=1.........p 	 ..........4.10 
i=1 

Which suggests that C(k,i) is the short-time autocorrelation of the input signal s(m) 

evaluated at a displacement of (k-i), giving: 

C(k,i)=r(k-i), 	 ...........4.11 

Where 
L p-1-j 	 La -1 

r(j) = Z S(n)S(n + j) = 	S(n)S(n — j) 	 ...........4.12 
n=O 	 n=j 
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Where r(j) represents the speech autocorrelation coefficients. Then the set of p 

equations 0 can now be reformulated as 
P 

1 a;r(I k — ij) = r(i) k=1.....,p 	................4.13 

Equation (4) results in P unknowns in P equations. 

The speech signal is divided into segments each with N samples. If the length of each 

segment is short enough, the speech signal in the segment may be stationary. In other 

words, the vocal tract model is fixed over the time period of one segment. If there are 

N samples in the sequence indexed from 0 to N-1 such that 

{ S(n)} = { S(0), S(1), S(2), .....S(N — 2), S(N —1)} , Equation 0 can be expressed in 

terms of matrix equation. 

r(0) 	r(1) • • • • r(p-1) al  r(1)  
r(1) 	r(0) .... r(p-2) a2  r(2)  

r ( p  —1) r( p  — 2) 	.... r(0) aP  r(P) 

R 	a = r 	 ........... 4.14 
N—I—k 

where 	 r(k) _ Z S(n)S(n — k) 	 .............. 4.15 
n=0 

to solve the matrix equation 3.13 any of the following methods are used [l}. 

o The Gaussian elimination method. 
o Any matrix inversion method (MATLAB). 
o The Levinson-Durbin recursion. 

out of those three algorithms Levinson-Durbin algorithm gives better results. Here the 
Levinson-Durbin algorithm has been given. 

E(0) = r(0) 

For k=1 top do 

k-[ 
Ik _[ r(k) — y a  Jk-i)r(k — J) / E(k —1) 	 ..............4.16 

(k) 
ak = 1k 
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For j=1 to k-1 do 

a(k) = a(k-1) —i a(k-I) 
~ 	k k ,/ 

E(i) = (1— ik)E(k —1). 

The final solution after p iterations is given by: 

a1 = ai 	j=1........, p. 

Figure 4.2 Flow chart of levenson algorithm [2]. 

4.17 

4.18 

4.19 
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Once the linear prediction coefficients I a;  I are computed, equation 4.2 can be 

used to compute the residual error sequence e(n). The implementation of equation 4.2, 

where s(n) is the input and e(n) is the output, is called the analysis filter and is shown 

in Figure 4.3 

s(n) 	 A(z) 	 e(n) 

Fig. 4.3 Speech analysis filter 

The transfer function is given by 
P 

A(z) =1— 	a,z-' 	 .................. 4.20 

Because e(n) has less standard deviation than speech itself, smaller number of bits is 

needed to quantize the error sequence. 

Equation 4.2 can be rewritten as the difference equation of a digital filter whose input 

is e(n ) and output is S(n) such that 
P 

S(n) _ 	a;S(n — i) + e(n) 	 .............4.21 

the implementation of Equation 4.21 is called the synthesis filter and is shown in 

Figure 4.4. 

e(n) 	 s(n) 
1/A(z) 

Fig. 4.4 Speech synthesis filter 

If both the linear prediction coefficients and the error sequence are available, the 

speech can be reconstructed using the synthesis filter [15]. 

4.3 Correlation 

The correlation is one of the most common and most useful statistics. A 

correlation is a single number that describes the degree of relationship between two 

variables. Correlation between groups of data implies that they move or change with 

respect to each other in a structured way. In the case of signals, signals have to be 
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digitized and that therefore form groups of data. For N pairs of data {x(n), y(n)}, the 

coefficient is defined as 
N 	_ 	_ 

{x(n) — x} { y(n) — y} 

	

rXy  = 	n-1 	 .......... 	4.22 N 	_ N 	_ 
{x(n) _x}2   L {y(n) — y} z 

"=1 	 n=1 

If the finite length signals are to be analyzed, then the definition of the 

crosscorrelation function of the two signals is as follows. 
N 	_ 	 _ I {x(n) - x} { y(n + k) - y} 

	

r" (k) _ 	"_` 	 ........... N 	 4.23 
N 	_  

{x(n) — x} 2  { y(n) — y} 2  
n=1 	 n=1 

In the case when the two input signals are the same, the crosscorrelation 

function becomes the autocorrelation function of that signal. Thus, the autocorrelation 

function is defined as 
N 	_ 	 _ 

I {x(n)-x}{x(n+k)-x} 
r (k) =  n=1 	N 	 .........4.24 

{ x(n)_ x }2  
"=1 

Autocorrelation is useful to determine the pitch period of the speech signals 

and also this is useful in the determination of voiced and unvoiced frames in the 

speech signals. 

4.4 Pitch Detection 
Pitch period is important factor in the case of voice coding methods. Accurate 

estimation of the pitch period or the lag in the pitch filter is very important. It is 

difficult to measure exact pitch period due to the following reasons [6]: 

• The glottal excitation waveform is not a perfect train of periodic pulses. 

Although finding the period of a perfectly periodic waveform is 

straightforward, measuring the period of speech waveform, which varies both 

in period and in the detailed structure of the waveform within a period, can be 

quite difficult. 

• In some instances, the formants of the vocal track can alter significantly the 

structure of the glottal waveform so that the actual pitch period is difficult to 

detect. Such interactions generally are most deleterious to pitch detection 
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during rapid movements of the articulators when the formants are also 

changing rapidly. 

• The reliable measurement of pitch is limited by the inherent difficulty in 

defining the exact beginning and end of each pitch period during voiced 

speech segments. 

• Another difficulty in pitch detection is distinguishing between unvoiced 

speech and low level voiced speech. In many cases, transitions between 

unvoiced speech segments and low level voiced speech segments are very 

subtle, and thus are extremely hard to pinpoint. 

• In practical application, the background ambient noise can also seriously 

affect the performance of the pitch detector. This is especially serious in 

mobile communication environments where a high level of noise is present. 

Pitch diction methods can be classified in the following categories [6]: 
I. Pitch detectors which utilize the frequency domain properties of speech 

signals. 

II. Pitch detectors which utilize the time domain properties of speech 

signals. 

III. Pitch detectors which utilize both the frequency and time domain 

properties of speech signals. 

In this dissertation work we are mainly interested in pitch detectors which 

utilize the time domain properties of speech signals. One major property of periodic 

signals is that the distant similarity of the waveform in time domain. The main 

principle of pitch detection algorithms (PDAs) which rely on waveform similarities is 

to find the pitch by comparing the similarity between the original signal and its shifted 

version. If the shifted distance is equal to the pitch, the two signal waveforms should 
have the greatest similarity. The majority of existing PDAs are based on this concept. 

Among them, the auto-correlation (AC) method and the average magnitude difference 

function (AMDF) are the two most widely used. Out of these two we are 

concentrating on only auto-correlation method. 

The key problem of PDAs which are based on the waveform similarity 

methods is the quantitative definition of similarity [6]. There are a number of different 

similarity measures which result in different PDAs and performance. They are mainly 

based on the minimization of a quadratic cost function. The direct distance 
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measurement is the most popular criterion, examining the similarity between two 

waveforms which can be expressed as 
1 N-1 

E(z) = —21 [s(n) – s(n + z)] 2 	 .........4.25 
N n=0 

where N is the analysis frame length and r is the shifted distance. The above equation 

assumes that the average signal level is fixed. The assumption in the case of auto-

correlation method is that the signal is stationary. The error criterion of equation 

(4.25) can be rewritten as 

E(r) = [R(0) – R(r)] 	 ..........4.26 

where 
N-1 

R(r) _ 	s(n)s(n + r) 	 .........4.27 
n=0 

The minimization of the estimation error, E(i), in equation 4.26 is equivalent to 
maximizing the auto-correlation R(r). The variable i is called lag or delay, and the. 

pitch is equal to the value of r, which results in the maximum R(r). 

Figure 4.5 Illustration of pitch period 

In the above Figure 4.5 has been shown that the pitch period (T) of the speech 

signal. Pitch period is a variable parameter. Its value changes from person to person's 

speech signal. In the case of women and young children the value of pitch period is 

more than that of men. Vocal card vibration determines the pitch period of the speech 

signal. So in the case of women and young children vibration of vocal card is faster 

than that of males. 
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4.5 Voiced/ Unvoiced Decision 
By calculating the auto correlation coefficient we can say that the particular 

frame is voiced or unvoiced. Auto correlation coefficient can be calculated by using 
the equation (4.27). If the auto correlation coefficient is maximum only once in a 
frame then we can say that, that frame is unvoiced. If the auto correlation coefficient 
is giving maximum value repeatedly with particular interval then we can say that the 
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Figure 4.6 Voiced/Unvoiced Decisions [1] 
frame is voiced with pitch period of T. Detection of voiced, unvoiced and pitch period 
is showing in the Figure (4.6). 



Chapter —5 

SPEECH COMPRESSION USING WAVELETS 

5.1 Introduction 

The fundamental idea behind wavelets is to analyze according to scale. The 

wavelet analysis procedure is to adopt a wavelet prototype function called an 

analyzing wavelet or mother wavelet. Any signal can then be represented by 

translated and scaled versions of the mother wavelet. Wavelet analysis is capable of 

revealing aspects of data that other signal analysis techniques such as Fourier analysis 

miss aspects like trends, breakdown points, discontinuities in higher derivatives, and 

self-similarity. Furthermore, because it affords a different view of data then those 

presented by traditional techniques, it can compress or de-noise a signal without 

appreciable degradation. Wavelets are functions that satisfy certain mathematical 

requirements and are used in representing data and other functions. However, in 

wavelet analysis, the scale that we use to look at data plays a special role. Wavelet 

algorithms process data at different scales or resolutions. If we look at a signal (or a 

function) through a large "window", we would notice gross features. Similarly, if we 

look at a signal through a small "window", we would notice small features. 

In this chapter we will discuss some background information on wavelets and 

wavelet transforms. About continuous wavelet transform and discrete wavelet 

transform will discuss. Different steps that are involved for the implementation of 

speech compression using wavelets will discuss. 

5.2 Basics of Wavelet Transform 
Transform techniques such as the discrete Fourier transform (DFT) or discrete 

cosine transform (DCT), and sub band techniques such as the conjugate quadrature-

mirror filter bank (QMF) are suitable for stationary signal analysis. However, they 

are not suitable for analysis of non stationary signals such as speech and audio (time 

frequency) or images (space-frequency), or video (time-space frequency), and for 

nonlinear perceptual distortion criteria. Consequently, these techniques have recently 

been extended to QMF trees with unequal-bandwidth branches and sub band-DFT 

hybrids. A much more promising approach to time-frequency analysis is offered by 

wavelets [14]. 
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Fourier analysis: 

Fourier analysis break downs the signal into constituent sinusoids of different 

frequencies. So these sines and cosines are the basis functions and the elements of 

Fourier synthesis. It is nothing but, it transforms the time based signal into frequency 

based signal [15]. 

Fourier analysis has a serious drawback. In transforming to the frequency domain, 

time information is lost. When looking at a Fourier transform of a signal, it is 

impossible to tell when a particular event took place. 

Short-time Fourier analysis: 

In an effort to correct this deficiency Fourier analysis, Dennis Gabor (1946) 

adapted the Fourier transform to analyze only a small section of the signal at a time -  
a technique called windowing the signal. Gabor's adaptation, called the Short-Time 

Fourier Transform (STFT), maps a signal into a two-dimensional function of time and 
frequency. 

wnclow 
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The STFT represents a sort of compromise between the time and frequency 

based views of a signal. It provides some information about both when and at what 

frequencies a signal event occurs. However, you can only obtain this information with 

limited precision, and that precision is determined by the size of the window. While 

the STFT compromise between time and frequency information can be useful, the 

drawback is that once you choose a particular size for the time window, that window 

is the same for all frequencies. Many signals require a more flexible approach — one 

where we can vary the window size to determine more accurately either time or 

frequency. 
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Wavelet analysis [12]: 

Like Fourier analysis the wavelet transform can be viewed as transforming the 

signal form the time domain to the wavelet domain [ 15]. This new domain contains 

more complicated basis functions called wavelets, mother wavelets or analyzing 

wavelets. 

Wavelet analysis represents the next logical step: a windowing technique with 

variable-sized regions. Wavelet analysis allows the use of long time intervals where 

we want more precise low-frequency information, shorter regions where we want 

high-frequency information. 

Time 

The following figure shows the difference between all the four methods discussed 

above those are time domain, Fourier analysis, short time Fourier analysis, and 

wavelet analysis [14, 15]. 
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5.3 Continuous Wavelet Transform 

Mathematically, the process of Fourier analysis is represented by the Fourier 

transform [14]: 
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00 

F(w) = f f (t)e-1''dt 	 ............ 	5.1 
-CO  

which is the sum over all time of the signal f(t) multiplied by a complex exponential. 

The results of the transformation are the Fourier coefficients F(ao), which when 

multiplied by a sinusoid of frequency of co yield the constituent sinusoidal 

components of the original signal. Graphically, the process looks like 

Fourier 

Transform 9 

Signed 	 Con t lent amuse ds of farerat frequencias 

Similarly, the continuous wavelet transform (CWT) is defined as the sum over all 

time of the signal multiplied by scaled, shifted versions of the wavelet function. q' 
Q 

[15]:  

C(scale, position) = Jf (t)tr(scale, position, t)dt 	...................5.2 

Which is the sum over all time of the signal multiplied by scaled and shifted version 

of the wavelet function W. The results of the CWT are many wavelet coefficients C, 

which are the function of scale and position. Multiplying each coefficient by the 

appropriately scaled and shifted wavelet yields the constituent wavelets of the original 

signal. The basis functions in both Fourier and wavelet analysis are localized in 

frequency making mathematical tools such as power spectra useful at picking out 

frequencies and calculating power distributions. 
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The most important difference between these two kinds of transforms is that 

individual wavelet functions are localized in space. In contrast Fourier sine and cosine 
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functions are non-local and are active for all time t. This localization feature, along 

with wavelets localization of frequency, makes many functions and operators using 

wavelets sparse when transformed it to the wavelet domain. This sparseness, in turn 

results in a number of useful applications such as data compression, detecting features 

in images and de-noising signals. 

The major draw back of Fourier analysis is that in transforming to the 

frequency domain, the time domain information is lost. When looking at the Fourier 

transform of a signal, it is impossible to tell when a particular event took place. In an 

effect to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform 

to analyze only a small section of the signal at a time- a technique called windowing 

the signal. This is called the Windowed Fourier Transform (WFT). WFT gives 

information about signals simultaneously in the time domain and in the frequenc.y 

domain. To illustrate the time-frequency resolution differences between the Fourier 

transform and the wavelet transform consider the following Figures 5.1 and 5.2 [14]. 

Frequency  t 

Time 

Figure 5.1 Fourier basis functions and WFT resolution. 

Figure 5.1 shows a windowed Fourier transform, where the window is simply 

a square wave. The square wave window truncates the sine or cosine function to fit a 

window of a particular width. Because a signal window is used for all frequencies in 

the WFT, the resolution of the analysis is the same at all locations in the time 

frequency plane. An advantage of wavelet transform is that the windows vary. 

Wavelet analysis allows the use of long time intervals where we want more precise 

low-frequency information, and shorter regions where we want high frequency 

information. A way to achieve this is to have short high-frequency basis functions and 

long low-frequency ones. 
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Time 

Figure 5.2 Daubechies wavelet basis functions and wavelets resolution. 
Figure 5.2 shows a time-scale view for wavelet analysis rather than a time 

frequency region. Scale is inversely related to frequency. A low-scale compressed 

wavelet with rapidly changing details corresponds to a high frequency. A high scale 

stretched wavelet that is slowly changing has a low frequency. The figure 5.3 below 

illustrates four different types of wavelet basis functions. 
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Figure 5.3 Different Wavelet Families [14] 
The different families make trade-offs between how compactly the basis 

functions are localized in space and how smooth they are. Within each family of 

wavelets are wavelet subclasses distinguished by the number of filter coefficients and 

level of iteration. Wavelets are most often classified with in a family by the number of 

vanishing moments. This is an extra set of mathematical relationships for the 

coefficients that must be satisfied. The extent of compactness of signals depends on 

the number of vanishing moments of the wavelet function used. A more detailed 

discussion is provided in the next section. 
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5.4 Discrete Wavelet Transform 

Calculating wavelet coefficients at every possible scale is a fair amount of 

work, and it generates lot data. If we chose scales and positions based on powers of 

two then our analysis will be much more efficient and just as accurate. We obtain 

such an analysis from the discrete wavelet transform (DWT). The mother wavelet is 

rescaled or dilated by powers of two and translated by integers. Specifically, a 

function f(t) = L2 (R) (defines space of square integrable functions) can be 

represented as 
L w  o0 

f(t) = I I d(j, k)yr (2-'t — k) + I a(L, k)O(2 -L t — k) 	............ 5.3 
l=t k=—°o 	 k=—co 

The function i1r(t) is known as the mother wavelet, while 0 (t) is the scaling 

function. The set of functions {J O(2-f- t — k), 2-i yr(2-i t — k) j — L, j, k, L E Z }, 

where Z is the set of integers, is an orthonormal basis for L2 (R) . The numbers a(L, k) 

are known as the approximation coefficients at scale L, while d(j, k) are known as the 

detail coefficients at scale j. the approximation and detail coefficients can be 

expressed as: 

a(L, k) =1 L ff(t)0(2-L t — k)dt 

d(j, k) = 1 ff(t)V/(2 t — k)dt 
2J -. 

......................5.4 

......................5.5 

To provide some understanding of the above coefficients consider a projection 

fl(t) of the function f(t) that provides the best approximation (in the sense of minimum 

error energy) to f(t) at a scale 1. This projection can be constructed form the 

coefficients a(L, k), using the equation 
oo 

fr (t) = I a(l, k)O( 2-r t — k) 	.........................5.6 

As the scale 1 decreases, the approximation becomes finer, converging to f(t) as 1-)'0. 

The difference between the approximation at scale 1 + 1 and that at 1, f1+1(t) —fi(t), is 
completely described by the coefficients d(j, k) using the equation 

f+1 (t) — f,(t) = ~d(l,k)yu(2-'t — k) 	.................... 5.7 
k=—co 
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Using these relations, given a(L, k) and {d(j, k) f j < L}, it is clear that we can build 

the approximation at any scale. Hence the wavelet transform breaks the signal up into 

a coarse approximation fL(t). As each layer of detail is added, the approximation at the 

next finer scale is achieved. 

5.4.1 Vanishing Moments 

The number of vanishing moments of a wavelet indicates the smoothness of 

the wavelet function as well as the flatness of the frequency response of the wavelet 

filters. Typically a wavelet with p vanishing moments satisfies the following equation. 

f t"'w(t)dt  = 0 
	

for m=0......., p-1, 	.............. 5.8 

or equivalently, 

(-1)k  kmc(k) = 0 
	

form=0.......,p-1 	.............. 5.9 
k 

For the representation of smooth signals, a higher number of vanishing moments leads 

to a fast decay rate of wavelet coefficients. Thus, wavelets with a higher number of 

vanishing moments lead to a more compact signal representation and are hence useful 

in coding applications. However, in general, the length of the filters increases with the 

number of vanishing moments and the complexity of computing the DWT 

coefficients increases with the size of the wavelet filters. 

5.5 The Fast Wavelet Transform Algorithm 
The Discrete Wavelet Transform (DWT) coefficients can be computed by 

using Mallat's Fast Wavelet Transform algorithm [14]. This algorithm is sometimes 

referred to as the two-channel sub-band coder and involves filtering the input signal 

based on the wavelet function used. 

To explain the implementation of the Fast Wavelet Transform algorithm 

consider the following equations: 

0(t) = E c(k)q5(2t — k) 
k 

if(t) = I(_1)k  c(1— k)O(2t — k) 
k 

I Ck Ck-2m = 2SO,m 
k 

.......... 5.10 

...........5.11 

...........5.12 
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The first equation is known as the twin-scale relation (or the dilation equation) and 

defines the scaling function 0.  The next equation expresses the wavelet y1 in terms of 

the scaling function function 0.  The third equation is the condition required for the 

wavelet to be orthogonal to the scaling function and its translates. The coefficients 

c(k) or fco. ...... c2N_1 } in the above equations represent the impulse response 

coefficients for a low pass filter of length 2N, with a sum of 1 and a norm of  1  The 

high pass filter is obtained form the low pass filter using the 

relationship gk  = ( -1)k  c(1— k) , where k varies over the range (1-(2N-1)) to 1. the 

equation (5.10) shows that the scaling function is essentially a low pass filter and is 

used to define the approximations. The wavelet function defined by the equation 

(5.11) is a high pass filter and defines the details. Starting with a discrete input signal 

vector s, the first stage of the FWT algorithm decomposes the signal into two sets of 

coefficients. These are the approximation coefficients cAl  (low frequency 

information) and the detail coefficients cDi (high frequency information), as shown in 

the figure below. 

Low- isamole 
Approximation 

coefficients 
cAl  

s 

cDl  

High-pass filter 	downsample 

Where: 	X 	Convolve with filter X. 

	

2 	Keep the even indexed elements. 

Figure 5.4 Filtering operation of DWT 

Detail 
coefficients 
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The coefficient vectors are obtained by convolving s with the low-pass filter 

Lo_D for approximation and with the high-pass filter Hi_D for details. This filtering 

operation is then followed by dyadic decimation or down sampling by a factor of 2. 

Mathematically the two-channel filtering of the discrete signal s is represented by the 

expressions: 

CAl  = I C k S2t-k  , 	CD1 = I gk'S2t-k 
k 	 k 

These equations implement a convolution plus down sampling by a factor 2 and give 

the forward fast wavelet transform. If the length of the each filter is equal to 2N and 

the length of the original signal s is equal to n, then the corresponding lengths of the 

coefficients of cAl  and cDl  are given by the formula: 

floor( n 2  1 )  + N 	 ............5.13 

This shows that the total length of the wavelet coefficients is always slightly greater 

than the length of the original signal due to the filtering process used. 

5.5.1 Multilevel Decomposition 

The decomposition process can be iterated, with successive approximations 

being decomposed in turn, so that one signal is broken down into many lower 

resolution components. This is called the wavelet decomposition tree [15]. 

Figure 5.5 Decomposition of DWT coefficients 

The wavelet decomposition of the signal s analyzed at level j has the following 

structure [cA', cD , ........ , cD, ]. Looking at a signals wavelet decomposition to level 

3 of a sample signal S. 
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Figure 5.6 Level 3 decomposition of sample signal 

Since the analysis process is iterative, in theory it can be continued 

indefinitely. In reality, the decomposition can only proceed until the vector consists of 
a single sample. Normally, however there is little or no advantage gained in 
decomposing a signal beyond a certain level. The selection of the optimal 
decomposition level in the hierarchy depends on the nature of the signal being 
analyzed or some other suitable criterion, such as low pass filter cut off. 

5.6 Signal Reconstruction 
The original signal can be reconstructed or synthesized using the inverse 

discrete wavelet transform (IDWT). The synthesis starts with the approximation and 
detail coefficients cA~ and cDi, and then reconstructs cA~_1 by up sampling and 
filtering with the reconstruction filters. 

The reconstruction filters are designed in such a way to cancel out the effects 
of aliasing introduced in the wavelet decomposition phase. The reconstruction filter 

(Lo_R and Hi_R) together with the low and high pass decomposition filters forms a 
system known as quadrature mirror filters (QMF). 

For a multilevel analysis, the reconstruction process can itself be iterated 

producing successive approximations at finer resolutions and finally synthesizing the 
original signal. 
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cAj 

cDj 

cAj_1  

level j 	upsample 	 High-pass filter 	level j-1 

Where: 	
2 	

Insert zeros at odd-indexed elements. 

X 	Convolve with filter X. 

Figure 5.7 Wavelets Reconstruction 

For many signals, the low-frequency content is the most important part. The 

high frequency component on the other hand imparts noise. Consider the human 
voice. If we remove the high frequency components, the voice sounds different, but 
we can still tell what's being said. However, if we remove the low frequency 
components, you hear gibberish. In wavelet analysis, we often speak of 

approximations and details. The approximations are the high-scale, low frequency 
components of the signal. The details are the low scale, high frequency components. 
The original signal passes through two complementary filters and emerges as two 

signals. 

5.6.1 Optimal Decomposition Level in Wavelet Transforms 
The figure below shows a simple speech signal and approximations of the 

signal, at five different scales. These approximations are reconstructed form the 

coarse low frequency coefficients in the wavelet transform vector [20]. Figure 5.9 is 

showing that by keep on increasing the level of decomposition the energy in the 

approximation part of the signal is decreasing. 



Figure 5.8 Original speech signal and reconstructed approximations 

5.6.2 Retained Energy in First N/2 Coefficients 

A suitable criterion for selecting optimum mother wavelets is related to the 

amount of energy a wavelet basis function can concentrate into the level 1-

approximation coefficients. A speech signal is divided into frames of size 1024 

samples and then analyzed using different wavelets. The wavelet transform is 

computed to scale 5. The signal energy retained in the first N/2 transform coefficients 

are given in the table given below. This energy is equivalent to the energy stored in 

the level 1-approximation coefficients [20]. 

Wavelet Avg signal energy 

retained 

Haar 92.57 

Db4 83.16 

Db6 96.74 

Db8 96.81 

Db 10 96.76 

Table 5.1 Average energy concentrated by different wavelets in N/2 coefficients 
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5.7 Steps of Wavelet Speech Compression 
The following Figures 5.9 and 5.10 representing the encoding and 

decoding blocks of wavelet speech compression. 

	

conversion of I 	I wavelet 	 uniform 	Huffman sound file into 	decomposition 	thresholding 	quantization 	encoding sampled data 

original I 	 encoded 
speech 	speech 	 speech 
signal 	 data 	 data 

Figure 5.9 Encoding block diagram of wavelet speech compression 

encoded 	 reconstructed 
data 	 uniform 	 inverse 	conversion speech 

	

Huffman 	dequantizer 	wavelet 	of sampled 

	

decoder 	
inverse 

 into 
sound 

Figure 5.10 Decoding block diagram of wavelet speech compression 
The process of compressing a speech signal using wavelets involves the 

following steps [211: 

5.7.1 Wavelet Decomposition 
The choice of the mother-wavelet function used in designing high quality 

speech coders is of prime importance. Choosing a wavelet that has compact support in 

both time and frequency in addition to a significant number of vanishing moments is 

essential for an optimum wavelet speech compressor [22]. Several different criteria 

can be used in selecting an optimal wavelet function. The objective is to minimize 

reconstructed variance and maximize quality. In general optimum wavelets can be 

selected based on the energy conservation properties in the approximation part of the 

wavelet coefficients. 
In [22] it was shown that the Battle-Lemarie wavelet concentrates more than 

97.5% of the signal energy in the approximation part of the coefficients. This is 

followed very closely by the Daubedhies D20, D12, D10, D8 wavelets, all 

concentrating more than 96% of the signal energy in the level one approximation 

coefficients. 
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Figure 5.11 Approximation and detail parts of the speech signal 

Wavelets with more vanishing moments provide better reconstruction quality, 

as they introduce less distortion into the processed speech and concentrate more signal 

energy in a few neighboring coefficients. However the computational complexity of 

the DWT increases with the number of vanishing moments and hence for real time 

applications it is not practical to use wavelets with an arbitrarily high number of 

vanishing moments [22]. Wavelets work by decomposing a signal into different 

resolutions or frequency bands, and this task is carried out by choosing the wavelet 
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function and computing the Discrete Wavelet Transform (DWT). Signal compression 

is based on the concept that selecting a small number of approximation coefficients 

(at a suitably chosen level) and some of the detail coefficients can accurately 

represent regular signal components. Choosing a decomposition level for the DWT 

usually depends on the type of signal being analyzed or some other suitable criterion 

such as entropy. For the processing of speech signals decomposition up to scale five is 

adequate [23], with no further advantage gained in processing beyond scale 5. 

5.7.2 Threshold 
After calculating the wavelet transform of the speech signal, many of the 

wavelet coefficients are close to or equal to zero. Thresholding can modify the 

coefficients to produce more zeros. We have two types of thresholding one is level 

dependent thresholding and another is global thresholding. Level dependent 

thresholds are calculated using the Brige-Massart strategy [21]. This thresholding 

scheme is based on an approximation result from Brige and Massart and is well suited 

for signal compression. This strategy keeps all of the approximation coefficients at the 

level of decomposition J. The numbers of detail coefficients to be kept at level i 

starting form 1 to J are given by the formula: 
ni = M / (J+2-i) a 

a is compression parameter and its value is typically 1.5. The value of M denotes the 

how scarcely distributed the wavelet coefficients are in the transform vector. If L 

denotes the length of the coarsest approximation coefficients then M takes on the 

values in table, depending on the signal being analyzed. For high scarceness M value 

is L, for medium scarceness M value is 1.5*L and for low M value is 2*L thus this 

approach to thresholding selects the highest absolute valued coefficients at each level. 

Where as in the case of global thresholding we select the threshold value in between 0 

to Cmax, where Cmax is the maximum coefficient in the decomposition. However 

this value comes from the final approximation sub signal, and increases the level of 

decomposition [18]. 

5.7.3 Uniform Quantization 

Quantization is a process of mapping a set of continuously valued input data, 

to a set of discrete valued output data. In other words, the aim of quantization is to 

decrease the information found in the wavelet coefficients in such a way that this 



process brings perceptually no error [21]. The process of quantization is shown in the 

figure 4.4. The use of wavelets and thresholding serves to process the original signal, 

but to this point, no actual compression of data has yet occurred. This explains that 

the wavelet analysis does not actually compress a signal, which allows the data to be 

compressed by standard entropy coding techniques. 

Figure 5.12 Sampling and quantization of the signal 

The floating point wavelet coefficients are quantized to integer values in this 

process. These quantized coefficients are the indices to the quantization table. Once 

the quantization process is done, the quantized value will be fed into the next stage of 

compression. 

5.7.4 Huffman Encoding 
The quantized data contains redundant information. It is waste of storage 

space if we were to save the redundancies of the quantized data. One way of 

overcoming this problem is to use Huffman encoding [23]. In this the probabilities of 

occurrence of the symbols in the signal are computed. These symbols are the indices 

to the quantization table. We will sort these symbols according to their probabilities of 

occurrence in descending order and build the binary tree and codeword table. Due to 

limitation in the implementation of a binary tree with recursive ability, this encoder 

uses an array-based binary tree that encodes and decodes the data in a sequence 
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manner. Such an approach incurs expensive computation time. This is the draw back 

in this coding. 

In the real time applications if we want to code any element we need to have 

minimum of 4 bits for any element in the BCD numbering system. Even though our 

data is repeating for so many times then also we need to have 4 bits. So if we want to 

decrease the memory size or the bandwidth of the transmission line we should have to 

represent the data with less no of bits. This could have been done by using Huffman 

coding. There are many different reasons for and ways of encoding data and one of 

these ways is Huffman coding. This is used as a compression method in digital 

imaging and video as well as in other areas. The idea behind Huffman coding is 

simply to use shorter bit patterns for more common characters, and longer bit patterns 

for less common characters. So it is necessary to know the probability of each data 

element in the data set. Once we know the data and corresponding their probabilities 

it is possible to encode the data by using Huffman coding. 

The steps of Huffman coding [24]: 

1. Consider each of the elements as a symbol with its probability. 

2. Find the two symbols with the smallest probability and combine them into a 

new symbol with both letters by adding the probabilities. 

3. Repeat step 2 until there is only one symbol left with a probability of 1 

4.To see the code, redraw all the symbols in the form of a tree where each 

symbol contain either a single letter or splits up into two smaller symbols. Label all 

the left branches of the tree with a 0 and all the right branches with a 1. The code for 

each of the letters is the sequence of 0's and 1's that lead to it on the tree, starting 

form the symbol with a probability of 1. 

Example 

If want to encode the letters A(0.12), E(0.42), I(0.09), 0(0.30), U(0.07) listed 

with their respective probabilities. By applying the above steps we can get the 

following tree. 



0.30 

Figure 5.13 Huffman Coding Tree 

From the above Huffman coding tree we can encode and decode the data. Ex, 

UEA can be represented as 10100100. Similarly 10110 can be decoded as IE and also 

any string of vowels can be written uniquely as well as each string of 0's and 1's can 
be uniquely decoded. 

To reconstruct the speech signal, we have to reverse the process for three 

stages. Those are wavelet transform, quantization and Huffman coding then we can 

get the reconstructed speech. 
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Chapter-6 

RESULTS AND DISCUSSION 

6.1 Recording of Speech Patterns 

The work is carried out on a Pentium IV PC operating at 2.88 GHz clock with 

an 8-bit sound card. In this work Matlab 7.0.1 is used for the implementation of 

speech compression techniques. The speech signals are recorded from software called 

"jet audio" by using a microphone at a frequency of 44.1 kHz sampled at 16 bits. 

Signals form five persons has been taken and tested with the three algorithms. Each 

person had spoken four sentences. All the tested speech signals results are tabulated. 

Some of the waveforms of recorded speech are shown as below. 

The below two waveforms shown in Figure 6.1(a)-(b) represent the same 

sentence "digital signal processing" that has been spoken by two persons. 

(a)  

(b)  

Figure 6.1 Speech waveforms for the sentence "digital signal processing" 



Similarly, the two waveforms shown in Figure 6.2(a)-(b) represent the "signals 

and systems" spoken by the same persons as before. 

(a)  

(b)  

Figure 6.2 Speech waveforms for the sentence "signals and systems" 

6.2 Parameters for Comparative Evaluation 

The following are the parameters for the comparative evaluation of the speech 

compression techniques that has been implemented in this dissertation work. 

I. Compression Ratio 

2. Signal to Noise Ratio 

3. Peak Signal to Noise Ratio 

4. Normalized Root Mean Square Error 



The above quantities are calculated using the following formulae: 

1. Compression Ratio 

Memory required for sampled original data 

C 	Memory required for encoded data  

&3. I3ca 1 L1 ° 0, • 
2. Signal to Noise Ratio [25] ~~.,,_ 

62 SNR =101oglo ( 2) 	44 
0 e 	 . tea 

o is the mean square of the speech signal and 6e is the mean square 

difference between the original and reconstructed signals. 

3. Peak Signal to Noise Ratio [25] 

PSNR =101og,o NX 2 

Ix 
II 

N is the length of the reconstructed signal, X is the maximum absolute square 

value of the signal x and IIx — x' II is the sum of the square of the difference 

between the original and reconstructed signals. 

J

( x(n)_ x'(n))2 
n-~ 

4. Normalized Root Mean Square Error [25] 

NRMSE _ 
	,(x(n) — x' (n)) 2 

,an (x(n) — ,ux (n))2 

x(n) is the speech signal, x' (n) is the reconstructed signal, and ,u„ (n) is the 

mean of the speech signal. 

N 

x(n) 

pn (n) = n= I N 
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6.3 Results for LPC Coding 

Results of LPC technique are shown in the following four tables from Table 

6.1 to Table 6.4. This has been obtained on five speech patterns of same sentence 

spoken by five different persons. Speech compression has been calculated by storing 

the original signal data and encoded speech signal data. Original speech signal data 

and encoded speech signal data are stored in the `.mat' file. The size of the original 

and reconstructed speech signal data that has been represented in the result tables are 
in "kbits". 

Table 6.1 Performance index for speech signal 1 ("signals and systems") using 
LPC coding 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 165 12.2 13.52 0.5085 1.2499 1.0828 
2 173 15.1 11.456 0.0919 -4.8104 2.3732 
3 126 9.94 12.696 0.1500 7.4165 1.2711 
4 135 10.6 12.7358 0.1451 -0.3513 1.4416 
5 148 10.6 13.960 2.2423 11.4749 1.2033 

Table 6.2 Performance index speech signal 2 ("comnression") using LPC endinu 
Person Original 

signal size 
Size of 

encoded 
data 

Compression 
ratio 

SNR PSNR NRMSE 

1 84.4 6.84 12.34 0.1520 2.7541 1.0701 
2 86.6 7.72 11.217 0.0630 3.9559 1.8940 
3 84.5 6.79 12.444 0.0738 11.2231 1.1988 
4 80.2 6.80 11.794 0.0553 15.2001 1.1502 
5 114 9.09 12.541 0.2313 20.7295 1.0385 

Table 6.3 Performance index for speech signal 3 ("pulse code modulation") using 
LPC coding 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 171 12.8 13.359 0.1347 8.8457 11.0362 
2 151 12.2 12.37 0.0647 6.9544 1.2889 
3 123 9.06 13.576 0.1343 13.4310 1.1513 
4 129 9.96 12.951 0.0503 0.2796 1.5488 
5 149 11.3 13.1858 1.1269 18.0742 1.1455 
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Table 6.4 Performance index for speech signal 4 ("digital signal processing") 
using LPC coding 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

I 	SNR PSNR NRMSE 

1 171 12.8 13.36 0.3016 4.8623 1.0520 
2 162 12.8 12.656 0.0764 6.5803 1.3573 
3 147 11.2 13.125 0.1750 8.8471 1.-1791 
4 158 12.2 12.956 0.1665 4.0152 1.2777 
5 142 10.6 13.396 1.1816 1.6001 1.1755 

The average speech compression in the case of LPC coding is obtained as 

12.7809. Average SNR, PSNR, and NRMSE are 0.2062, 7.1166, and 1.2968, 
respectively. Small variation is there in compression ratios from person to person. 
The waveforms shown in Figure 6.3 (a)-(e) are the speech patterns obtained before 

and after compression of speech. On the basis of observations we can say that LPC 
coding generates more distortion in the wave pattern i.e. quality is poor in the case of 
LPC coding. This is also proved by SNR, PSNR, and NRMSE measures. 

Figure 6.3(a) Original and reconstructed speech signals ("signals and systems") 
of person 1 using LPC coding 
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Figure 6.3(b) Original and reconstructed speech signals ("signals and systems") 
of person 2 using LPC coding 

Figure 6.3(c) Original and reconstructed speech signals ("signals and systems") 
of person 3 using LPC coding 
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Figure 6.3(d) Original and reconstructed speech signals ("signals and systems") 
of person 4 using LPC coding 

Figure 6.3(e) Original and reconstructed speech signals ("signals and systems") 
of person 5 using LPC coding 
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6.4 Results for ADPCM Technique 

Results for ADPCM technique are shown in the following four tables from 

Table 6.5 to Table 6.6. This has been obtained on four speech signals spoken by five 

different persons. Speech compression has been calculated by storing the original 

sampled speech signal data and encoded speech signal data. Original sampled speech 

signal data and encoded speech signal data are stored in the `.mat' file. The size of the 

original and decoded speech signal data that has been represented in the result tables 

are in "kbits". 

Table 6.5 Performance index for speech signal 1 ("signals and systems") using 
ADPCM technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 165 36.0 4.583 33.7240 29.3780 0.0426 
2 173 45.4 3.810 32.7744 30.5810 0.0405 
3 126 28.9 4.359 41.9645 40.5594 0.0281 
4 135 31.1 4.340 32.1297 30.8879 0.0398 
5 148 31.9 4.639 26.8942 34.2395 0.0881 

Table 6.6 Performance index for speech signal 2 ("compression") using ADPCM 
technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 84.4 20.7 4.0773 28.1990 33.4699 0.0313 
2 86.6 22.7 3.814 33.0659 39.6547 0.0312 
3 84.5 20.2 4.183 39.5300 47.6534 0.0184 
4 80.2 20.2 3.976 34.4465 37.2802 0.0222 
5 114 27.6 4.130 34.6569 51.3456 0.3010 

Table 6.7 Performance index for speech signal 3 ("pulse code modulation") using 
ADPCM technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 171 38.5 4.441 33.7860 41.6189 0.0239 
2 151 35.4 4.265 39.9855 43.5599 0.0191 
3 123 26 4.730 34.1032 47.1637 0.0240 
4 129 28.1 4.590 43.1290 52.8916 0.0151 
5 149 34.3 4.344 27.0541 42.7272 0.0677 
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Table 6.8 Performance index for speech signal 4 ("digital signal processing") 
using ADPCM technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 171 38.6 4.43 29.4003 34.2459 0.0359 
2 162 37.8 4.285 36.0512 42.5732 0.0216 
3 147 33.3 4.414 32.5476 42.0508 0.0260 
4 158 35.4 4.463 56.5396 36.6777 0.0298 
5 142 31.8 4.465 33.4364 26.9141 0.0642 

The average speech compression in the case of ADPCM technique is obtained 

as 4.317. Average SNR, PSNR, and NRMSE are 35.5209, 39.273, and 0.0485, 
respectively. Small variation is there in compression ratios from person to person. The 
waveforms shown in Figure 6.4 (a)--(e) are the waveforms that have obtained before 
and after compression of speech. On the basis of observations form Figure 6.4 we can 
say that the distortion is less in the case of ADPCM technique, i.e. it gives better 
quality output. It is also evident by SNR, PSNR, and NRMSE measures. 

Figure 6.4(a) Original and reconstructed speech signals ("signals and systems") 
of person 1 using ADPCM technique 
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Figure 6.4(b) Original and reconstructed speech signals ("signals and systems") 
of person 2 using ADPCM technique 

Figure 6.4(c) Original and reconstructed speech signals ("signals and systems") 
of person 2 using ADPCM technique 
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Figure 6.4(d) Original and reconstructed speech signals ("signals and systems") 
of person 4 using ADPCM technique 

Figure 6.4(e) Original and reconstructed speech signals ("signals and systems") 
of person 5 using ADPCM technique 
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6.6 Results for Wavelet Transform Based Speech Compression. 

In wavelet transform based speech compression different wavelets are used 

like `Db10', `Haar', 'Db4', 'Db6', and 'Db8'. The following tables show that the 

compression ratio is a variable factor and can be varied by varying the decomposition 

level. A small variation is also experienced in compression ratio form wavelet to 

wavelet. The following results are for speech signal 1. 

Table 6.9.1 Performance index for speech signal 1 ("compression") 
(Type of wavelet used: Db10) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 112 16.3 6.871 12.3464 29.9411 0.1248 
2 112 12.4 9.032 13.7777 28.7322 0.0906 
3 112 9.85 11.37 15.1273 31.3083 0.0673 
5 112 5.39 20.779 13.4857 22.5885 0.1835 
7 112 3.00 37.333 7.6968 14.9579 0.4418 

Table 6.9.2 Performance index for speech signal 1 ("compression") 
(Type of wavelet used: Haar) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 112 17 6.588 12.2345 8.9396 0.8834 
2 112 14.1 7.943 13.7118 5.5771 1.3010 
3 112 11.1 10.09 14.4993 4.1660 1.5305 
5 112 5.69 19.368 11.6896 4.8200 1.4195 
7 112 3.02 37.086 6.488 7.8135 1.0057 

Table 6.9.3 Performance index for speech signal 1 ("compression") 
(Tune of wavelet used: Db41 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 112 16.4 6.829 12.4107 10.6389 0.7264 
2 112 12.8 8.75 13.7792 6.5960 1.1570 
3 112 10 11.2 14.8908 4.5852 1.4584 
5 112 5.52 20.289 13.6031 5.1451 1.3673 
7 112 3.01 1 	37.209 7.267 3.216 0.1835 
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Table 6.9.4 Performance index for speech signal 1 ("compression") 
(Type of wavelet used: Db6) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 112 16.3 6.871 12.2830 12.9139 0.5590 
2 112 12.6 8.888 13.8817 8.0620 0.9773 
3 112 9.9 11.313 14.8846 5.4309 1.3231 
5 112 5.41 20.702 13.6261 3.6946 1.6158 
7 112 3.01 37.209 6.738 7.8111 0.5305 

Table 6.9.5 Performance index for speech signal 1 ("compression") 
(Type of wavelet used: Db8) 

Level 
Of 

edecom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 112 16.3 6.871 12.3216 17.5710 0.3270 
2 112 12.4 9.032 13.8247 10.6419 0.7262 
3 112 9.79 11.44 15.6156 7.0355 1.0999 
5 112 5.41 20.70 13.7065 3.8861 1.5806 
7 112 3.02 37.086 6.8831 5.4309 1.3231 

On the basis of observation in Table 6.9.1 to Table 6.9.5 it is evident that the 

compression ratio increases by increasing the level of decomposition. Further, overall 

observation emphasizes that Db 10 wavelet gives the highest compression ratios while 

the Haar wavelet produces the least compression ratio. Other wavelets give almost 

same compression ratio. Quality is also better in the case of Db 10 filter. 

Similar to speech signal 1 results for speech signal 2 are also summarized in 
tables 6.10.1 to 6.10.5 

Table 6.10.1 Performance index for speech signal 2 ("compression") 
(Tune of wavelet used: Db10) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 137 18.4 7.445 13.2758 30.9791 0.1093 
2 137 14.2 9.6478 14.2958 33.2706 0.0840 
3 137 11.2 12.232 15.5044 35.6874 0.0636 
5 137 6.2 22.069 113.7321 32.1437 0.0961 
7 137 3.65 37.534 8.5271 21.599 0.3220 



Table 6.10.2 Performance index for speech signal 2 ("compression") 
(Type of wavelet used: Haar) 

Level 
Of 

decom- 
position.  

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 137 19.3 7.098 13.2610 14.7356 0.7096 
2 137 15.7 8.726 14.3148 10.1060 1.2092 
3 137 12.3 11.138 15.2233. 8.2583 1.4958 
5 137 6.69 20.478 12.6689 8.8147 1.4030 
7 137 3.68 37.228 8.2746 11.7809 0.9971 

Table 6.10.3 Performance index for speech signal 2 ("compression") 
(Type of wavelet used: Db4) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 137 18.5 7.405 13.3607 16.4578 0.5820 
2 137 14.6 9.383 114.2655 11.7341 1.0025 
3 137 11.3 12.123 15.4043 8.6145 1.4357 
5 137 6.4 21.406 13.2791 7.8129 1.5745 
7 137 3.66 37.4316 9.3288 5.6671 1.8983 

Table 6.10.4 Performance index for speech signal 2 ("compression") 
(Type of wavelet used: Db6) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 137 18.4 7.445 13.2630 18.4546 0.4624 
2 137 14.4 9.514 14.3329 13.7028 0.7992 
3 137 11.1 12.342 15.4213 9.9936 1.2249 
5 137 6.41 21.373 13.2791 7.8129 1.5745 
7 137 3.66 37.4316 8.3542 7.0591 1.1861 

Table 6.10.5 Performance index for speech signal 2 ("compression") 
(Type of wavelet used: Db8) 

Level 
Of 

decom- 
position 

Original 
signal size 

In kbits 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 137 18.5 7.405 13.3233 22.7200 0.2830 
2 137 14.6 9.383 14.2989 16.3290 0.5907 
3 137 11.5 11.913 15.5745 12.5015 0.9177 
5 137 6.42 21.339 13.5835 8.0648 1.5295 
7 137 3.67 37.3297 8.6384 7.0597 1.9639 

61 



An observation on Table 6.10.1 to Table 6.10.5 reveals that the compression 

ratio increases by increasing the level of decomposition. For the speech signal 2 also 

Db10 wavelet gives the highest compression ratios while Haar wavelet produces the 

least value of compression. All other wavelets produce approximately same 

compression ratio. Quality is also better in the case of `Db10' wavelet. 

Figure 6.5 speech signal 1 before and after compression, speech signal 2 before 

and after compression obtained form Db10 wavelet at decomposition level 3. 
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The Figure 6.5 shows the waveforms that have been obtained for wavelet 

transform based speech compression technique. The waveforms presented are original 

and reconstructed speech signals at decomposition level 3 from `Db10'. By observing 

the Figure 6.5 it is clear that the distortion is less. 

The Tables 6.11-6.14 present the summarized results for wavelet transform 

based speech compression using `Dbl0' wavelet at level 3 decomposition for various 

speech patterns of different persons. 

Table 6.11 Performance index for speech signal 1 ("signals and systems") using 

WT technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 165 17.1 9.649 22.4858 19.1364 0.1385 
2 173 13.4 12.910 12.7169 19.5538 0.1443 
3 127 13.3 9.548 15.3050 31.1091 0.0834 
4 135 13.7 9.854 14.4309 22.7079 0.1021 
5 148 16.5 8.969 12.5653 24.9766 0.2561 

Table 6.12 Performance index for speech signal 2 ("compression") using WT 

technique 

Person Original 
signal size 

I 	Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR I NRMSE 

1 84.4 8.09 10.432 16.1730 26.2045 0.0724 
2 86.6 8.10 10.691 13.4488 31.0362 0.0842 
3 84.5 10 8.45 15.9875 39.3480 0.0478 
4 80.2 7.87 10.190 14.2175 27.8808 0.0656 
5 114 12.51 9.110 15.7230 29.2417 0.0522 

Table 6.13 Performance index for speech signal 3 ("pulse code modulation") 
using WT technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 171 17.6 9.715 21.9355 34.4231 0.0548 
2 151 15.3 9.869 15.7762 34.8348 0.0522 
3 123 13.0 9.411 14.8593 36.4426 0.0714 
4 129 13.8 9.351 17.3576 28.5211 0.0628 
5 149 16.1 9.250 26.0456 40.4920 0.0876 
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Table 6.14 Performance index for speech signal 4 ("digital signal processing") 
using WT technique 

Person Original 
signal size 

Size of 
encoded 

data 

Compression 
ratio 

SNR PSNR NRMSE 

1 171 17.8 9.609 23.5541 26.2899 0.898 
2 162 14.5 11.160 18.4971 19.3461 0.3254 
3 147 14.6 9.541 16.3425 16.5732 0.1732 
4 158 16.0 9.854 17.2574 25.9342 0.2245 
5 142 13.8 10.289 21.5641 18.8945 I  0.1617 

The average speech compression in the case of WT technique is obtained as 
9.9587. Average SNR, PSNR, and NRMSE are 17.1575, 28.349, and 0.2424, 

respectively. Small variation is there in compression ratios from person to person. 
The waveforms shown in Figure 6.6 (a)-(e) are obtained before and after compression 

of the speech. On the basis of the observations it can be said that the distortion is less 
in the case of WT technique at level 3 decomposition using `db10' wavelet, i.e. it 
gives good quality output which is also proved by SNR, PSNR, and NRMSE measure. 

Figure 6.6(a) Original and reconstructed speech signals ("signals and systems") 
of person 1 using WT technique 



Figure 6.6(b) Original and reconstructed speech signals ("signals and systems") 

of person 2 using WT technique 

Figure 6.6(c) Original and reconstructed speech signals ("signals and systems") 

of person 3 using WT technique 
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Figure 6.6(d) Original and reconstructed speech signals ("signals and systems") 

of person 4 using WT technique 

Figure 6.6(e) Original and reconstructed speech signals ("signals and systems") 

of person 5 using WT technique 



Comparative tables of different parameters in the case of different 

compression techniques are shown in Table 6.15. 

Table 6.15 Quantitative comparison of speech compression techniques 

Technique LPC coding ADPCM WT 

Comp Ratio (C) 12.7809 4.3169 9.9587 

SNR 0.2062 35.5209 17.1575 

PSNR 7.1166 39.273 28.349 

NRMSE 1.2968 0.0485 0.21423 

In the Table 6.15 values of the parameters that are shown are the average. It is evident 

that wavelet Transform technique SNR, PSNR, and NRMSE has values in middle of 

LPC and ADPCM techniques. 
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Chapter-7 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

7.1 Conclusions 

In this dissertation work three types of compression techniques namely LPC 

coding, ADPCM and Wavelet Transform has been implemented. This work mainly 

concentrated on compression of recorded speech signals with out significant loss of 

quality. Comparative evaluation was performed with respect to compression ratio, 

SNR, PSNR, and NRMSE. These three algorithms are tested on different speech 

signals spoken by different persons. 

In this implementation LPC coding technique gives the average compression 

ratio of 12.7809 and with very less variation in compression ratio but more waveform 

distortion is seen. The SNR and PSNR are less with respect to other two techniques 

while NRMSE is more. This indicates poor quality of output speech for LPC coding. 

The ADPCM technique produces average compression ratio of 4.317 and less 

variation of compression ratio. Waveform distortion is low in the case of ADPCM 

technique. The SNR and PSNR are more with respect to other two techniques and 

NRMSE is less. This indicates better quality output speech from this technique. 

In wavelet transform based speech compression different wavelets like 

`Db10', `Haar', 'Db4', 'Db6', and 'Db8'are used for the analysis purpose. In the 

analysis it had shown that 'Db 10' gives more compression ratio than that of all other 

wavelets. `Haar' wavelet produces least compression ratio. In all other cases 

compression ratio is nearly equal for particular level of decomposition. Quality is 

more in the •case of `Db 10' wavelet and less in the case of `Haar' wavelet. The 

compression ratio can be changed in the case of wavelet transform based speech 

compression by changing the level of decomposition. At decomposition level 5 this 

technique is giving compression ratio of about 21 and at level 7 it is giving 37. But 

there is drastic change in the quality after level 3. Thus, for the comparative 

evaluation purpose `db10' wavelet has been used at decomposition level 3 

considering quality as an important factor. 

A significant advantage of using wavelets for speech compression is that the 

trade off between compression ratio and quality can be achieved while for other two 



techniques LPC coding and ADPCM compression ratio is nearly fixed with fixed 

quality. In the case of wavelet transform based speech compression quality is also 

nearly equal with respect to ADPCM and better with respect to LPC coding. One 

disadvantage in the wavelet transform based speech compression is that, with respect 

to other two techniques this is because of much more computation involved in the 

wavelet transform. 

7.2 Scope For Future Work 

In this dissertation work speech compression techniques like LPC coding, 

ADPCM technique, and Wavelet transform has been implemented and compared with 

respect to compression ratio. The work can be further extended to any one of the 

directions: 

1. For better compression ratios, further data compression ratio is possible by 

exploiting the redundancy in the encoded transform coefficients. 

2. Implementation of the algorithms can be done by using the higher level 

languages like C, C++ for faster processing. 

3. Wavelet transform based implementation can be done on DSP kit for real 

time application for speech transmission purpose. 

4. In this work objective quality measuring methods like SNR are used for 

the comparative evaluation a subjective quality measuring methods like 

mean opinion score, diagnostic acceptability measure and diagnostic 

rhyme test can also be tried for comparison purpose. 
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