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ABSTRACT 

Neurological signal compression is an area of digital signal processing that can be used to 

convert neurological signals into an efficient encoded representation which again can be decoded 

to produce a close approximation. In the field of neurology, common signals of interest are 

electrical potentials caused by firings of millions of neurons in the human brain during various 

mental activities. Many applications require acquisition, storage and automatic processing of 

Electroencephalogram (EEG) during an extended period of time. Our main aim of this work is to 

compress the recorded EEG. Efficient compression techniques are desired in order to effectively 

store or transmit the huge amount of EEG data. 

In this dissertation work, three compression techniques have been implemented for the 

purpose of compressing the EEG. These are Discrete Cosine Transform (DCT), Wavelet 

Transform and Linear Predictive Coding (LPC). Out of these three, Wavelet Transform based 

EEG compression is a new technique. Wavelets have been successfully used in myoelectric 

signals compression applications, but less attention has been paid towards its application in the 

field of the EEG compression. The aim of this dissertation work has been centered on the 

implementation and comparison of EEG compression techniques. Our comparative evaluation 

was based on the following parameters. 

I. Compression Ratio (CR) 

2. Compression Factor (CF) 

3. Signal to noise ratio (SNR) 
4. Percent Residual Difference (PRD) 

In this work, it is found that compression ratio in the case of LPC is not variable where as 

in the case of DCT and Wavelet transform based EEG compression, compression ratio is 

variable and quality is also good with respect to LPC. In the case of LPC expected results are not 

obtained and this coding is working only for few signals. It is also concluded that quality 

decreases by increasing the compression ratio. Quality and compression ratio is moderate in the 

case of DCT and Wavelet transform based EEG compression. Out of three techniques Wavelets 

have shown better results in all aspects of data compression. 
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Chapter - 1 

INTRODUCTION 

1.1 General Description 

Medical signal processing is a fast growing field of research that is producing 

increasingly sophisticated applications in today's high-tech medicine. Many applications in 

signal processing require the efficient representation and processing of data. The traditional 

approach to efficient signal representation is compression. Advances in digital signal 

processing; compression of biomedical signals has received great attentions for use in 

telemedicine applications. These studies were mainly focused on the applications of 

predictive coding or wavelet transforms for compression of ECG signals, EMG signals and 

of an integrated respiratory and swallowing sounds remote assessment tool, in which the 

sounds with a bandwidth of over 5 kHz have to be transferred online. Hence, compression of 

such data is of interest for a fast and reliable transmission. These compression techniques are 

capable of recording and processing long records of biomedical signals. 

Neurological signal compression is the technology of converting neurological signals 

into an efficiently encoded representation that can be later decoded to produce a close 

approximation of the original signal. The present dissertation is compression of neurological 

signals for telemedicine point of view means, higher compressions of the signals is the main 

goal of this dissertation. How it was achieved in this dissertaion is explained in this report. 

1.2 Motivation and Statement of Problem 

The motivation behind neurological signal compression is the fact that access to unlimited 

amount of bandwidth is not possible. Compression reduces the amount of data to be 

transmitted, thereby more efficiently utilizing the available communication bandwidth 

signals for better diagnosis of diseases and telemedicine purposes and also developing good 

communication between doctors and patients and hospital staff for better healthcare. 

Minimizing the storage space without loosing any clinically significant information 

characterizes the goal of a biomedical signal compression scheme. The storage problem can 

be overcome by properly modifying digital speech coding techniques which have been 

successfully utilized in speech. 
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Neurological compression is the act of transforming the neurological signals to a more 

compact form, which can then be stored with a considerably smaller memory. The main aim 

of the neurological compression in this dissertation work is to encode and decode the 

neurological signals. 

As part of this dissertation work DCT, Wavelet, LPC compression techniques were 

implemented on four varieties of EEG signals. These neurological signals are taken from the 

forty-five patients from standard website [26] and biomedical instrumentation laboratory of 

Electrical Engineering department, ITT Roorkee. 

1.3 A Brief History of Biomedical Signal Processing 

The field of medical instrumentation occurred primarily during the 1950's [11] and the 

results were often disappointing, for the experimenters soon learned that physiological 

parameters are not measured in the same way as physical parameters. During the next decade 

many instrument manufacturers entered the field of medical instrumentation, but 

development costs were high. Then a large measure of help was provided by the U.S. 

government, in particular by NASA (National Aeronautics and Space Administration). The 

Mercury, Gemini, and Apollo programs needed accurate physiological monitoring for the 

astronauts; consequently, much research and development money went into this area. The 

aerospace medicine programs were expanded considerably, both within NASA facilities, and 

through grants to universities and hospital research units. Some of the concepts and features 

of patient-monitoring systems presently used in hospitals throughout the world evolved from 

the base of astronaut monitoring. The use of adjunct fields, such as biotelemetry, also finds 

some basis in the NASA programs. 

Coming to neurological signal compression, In 1997 Zlatko sijercis invented the 

ADPCM (adaptive differential pulse code modulation) subband coding [5] in the EEG 

compression in his work he proved by using filter banks decomposing the EEG signals into 

time-frequency approach into different bands and coded each bank with different bit 

resolutions. Then after many researchers enter into this area and started working. In 2003 

perceptron predictors [6] for lossless EEG signal compression using neural networks was 

done by N.sriram, this is the area of lossless compression. Then after many works has carried 

out in [1] to [5] in the areas such as lossy and lossless. Now a days there are many working 

on this area because of interest of neurological signals, how it generates when man is doing 
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different tasks in his daily life, can we be able to control or process it for some other 

purposes? 

1.4 Applications of Biomedical Signals Compression 

Digital recording and compression of neurological signals 

(i) Enables the construction of large signal databases for subsequent evaluation and 

comparison. 

(ii) Makes the transmission of biomedical information feasible over telecommunication 

networks in real time or off line. 

(iii) Increases the capabilities of ambulatory recording systems such as the Holter recorders 

for ECG signals. In spite of the great advances in VLSI [5] memory technology the 

amount of data generated by digital systems may become excessive. For example, a 

Hotter recorder needs more than 200 Mbits/day of memory space to store 2-channel 

ECG signal sampled at a rate of 200 samples/second with 10 bit/sample resolution. 

(iv) Patient monitoring. 

(v) Packet network transmission (internet). 

(vi) Another application where biomedical signal compression is need is in digital storage. 

For a fixed amount of available memory, compression makes it possible to store longer 

datasets. 

1.5 Organization of the Dissertation 

The dissertation has been composed of seven chapters. The organization of this 

dissertation report is as follows. 

Chapter 1: In this chapter, introduction of the dissertation, statement of problem, 

history and applications of neurological signal compression have been explained. 

Chapter 2: In this chapter, physiological systems of the body such cardio vascular 

system respiratory system are explained. Then after origin of neurological signals, nervous 

system was explained. Then the main neurological signals are explained such EEG and 

EMG. At last other neurological signals EOG, EGG are briefly explained. 

Chapter 3: In this chapter, variety of signal compression techniques including lossless 

and lossy techniques is explained. Efficient coding techniques such that speech coders which 

are suitable for neurological signal compression has been explained. It has also been 
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explained briefly about the different coding methods based on neural networks based signal 

compression techniques such as perceptron predictors, TNLEO (teagers non linear energy 

operator), k-means clustering algorithm, compressed sensing frame works has also explained 

in this chapter. 

Chapter 4: In this chapter, implemented compression techniques in this dissertation 

work are given. DCT, Wavelet (basics wavelets, wavelet transform, about continuous 

wavelet transform, discrete wavelet transform and different steps involved in the 

implementation of wavelet transform based EEG compression are explained one by one) and. 

LPC coding methods are elaborately described. Quantization and Huffman coding has also 

been explained in this chapter. 

Chapter 5: In this chapter, signal acquisition and instruments used in the laboratory 

are explained and the databases from different physiological signal banks are explained and 

variety of diseases conditions also explained. 

Chapter 6: In this chapter, what ever the algorithms that are proposed in the present 

work, DCT, WT technique and LPC coding simulation results are tabulated. For the analysis 

purpose different neurological signals are taken form different persons. Comparative 

evaluation has been done on the basis of C.R, C.F, SNR and PRD. 

Chapter 7: In this chapter, conclusion of present work and some suggestions for 

future work have been given. 
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Chapter-2 

NEUROLOGICAL SIGNALS AND CLASSIFICATION 

2.1 Overview 

There is one vital advantage that biomedical engineering has over many of the other fields 

that preceded it. The fact that aimed keeping people healthy and helping to cure them when 

they are ill. The prefix bio-, of course, denotes something connected with life. One school of 

thought subdivides bioengineering into different engineering areas-for example, bio-

mechanics and bioelectronics. These categories usually indicate the use of that area of 

engineering applied to living rather than to physical components. Bioinstrumentation [11] 

implies measurement of biological variables, and this field of measurement is often referred 

to as biometrics, accurate instrumentation to measure vital physiological parameters, and the 

development of interdisciplinary tools to help fight the effects of body malfunctions and 

diseases are all a part of this new field. 

Neurological signals are the major part of human system, these signals are vital role 

in man functionality in every aspect, and without brain man doesn't exist similarly without 

neurons brain doesn't exist. The ongoing chapter explains complete knowledge about human 

system and functionality of neurological signals. 

2.2 Physiological Systems of the Body 

To obtain valid measurements from a living human being, it is necessary to have some 

understanding of the subject on which the measurements are being made. Within the human 

body can be found electrical, mechanical, thermal, hydraulic, pneumatic and chemical and 

various other types of systems, each of which communicates with an external environment 

and internally with the other systems of the body. By means of a multilevel control system 

and communications network, these individual systems are organized to perform many 

complex functions. Through the integrated operation of all these systems, and their various 

subsystems, man is able to sustain life, learn to perform useful tasks, acquire personality and 

behavioral traits, and even reproduce himself. 
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The human being as a whole (the highest level of organization) communicates with 

his environment in many ways. These methods of communicating could be regarded as the 

inputs and outputs of the black box and are illustrated in figure 2.1. 

INPUTS 

Vision 

Heating 

S+nelE 

Taste 

Inspired 
air 

Tactile 
sensation 

Liquid 
intake 

Food 
intake 

OUTPUTS 

Behavior 

Expired air 

Body 
moments 

Liquid 
wastes 

Solis! 
*tastes 

Figure 2.1 Communication of man with his environment [11 J 

In addition, these various inputs and outputs can be measured and analyzed in a 

variety of ways. Most are readily accessible for measurement, but some, such as speech, 

behavior and appearance, are difficult to analyze and interpret. Next to the whole being in the 

hierarchy of organization are the major functional systems [I1 ] of the body, including the 

nervous system, the cardiovascular system, the pulmonary system, and so on. 

Just as the whole person communicates with his environment, these major systems 

communicate with each other as well as with the external environment. These functional 

systems can be broken down into subsystems and organs, which can be further subdivided 

into smaller and smaller units. The process can continue down to the cellular level and 

perhaps even to the molecular level. 
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A brief engineering-oriented description of the major physiological systems is given 

as [11]: 

1. Biochemical System 

2. The Cardiovascular System 

3. The Respiratory System 

4. The Nervous System 

2.3 Nervous System 

The nervous system is the communication network for the body. Its center is a self-adapting 

central information processor or computer (the brain) with memory computational power, 

decision-making capability and a myriad of input-output channels. This computer is self 

adapting in that if a certain section is damaged; other sections can adapt and eventually take 

over (at least in part) the function of the damaged section. By use of this computer [11], a 

person is able to make decisions, solve complex problems, create art, poetry, music, feel 

emotions and integrate input information from all parts of the body and coordinate output 

signals to produce meaningful behavior. 

Almost as fascinating as the central computer are the millions of communication lines 

(afferent and efferent nerves) that bring sensory information into and transmit control 

information out of the brain. In general, these lines are not single long lines but often 

complicated networks with many interconnections that are continually changing to meet the 

needs of the system. By means of the interconnection patterns, signals from a large number 

of sensory devices, which detect light, sound, pressure, heat, cold, and certain chemicals, are 

channeled to the appropriate parts of the computer, where they can be acted upon. Similarly, 

output control signals are channeled to specific motor devices (motor units of the muscles), 

which respond to the signals with some type of motion or force. 

Feedback regarding every action controlled by the system is provided to the computer 

through appropriate sensors. Information is usually coded in the system by means of 

electrochemical pulses (nerve action potentials) that travel along the signal lines (nerves). 

The pulses can be transferred from one element of a network to another in one direction only, 

and frequently the transfer takes place only when there is the proper combination of elements 

acting on the next element in the chain. Action by some elements tends to inhibit transfer by 
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making the next element less sensitive to other elements that are attempting to actuate it. 

Both serial and parallel coding are used, sometimes together in the same system. In addition 

to the central computer, a large number of simple decision-making devices (spinal reflexes) 

are present to control directly certain motor devices from certain sensory inputs. A number of 

feedback loops are accomplished by this method. In many cases, only situations where 

important decision making is involved require that the central computer be utilized. 

2.4 Neurological Signals 

2.4.1 Sources of bioelectric potentials 

In carrying out their various functions, certain systems of the body generate their own 

monitoring signals, which convey useful information about the functions they represent. 

These signals are the bioelectric potentials associated with nerve conduction, brain activity, 

heartbeat, muscle activity, and so on. Bioelectric potentials are actually ionic voltages 

produced as a result of the electrochemical activity of certain special types of cells. Although 

measurement of individual action potentials can be made in cells, such measurements are 

difficult because they require precise placement of an electrode inside a cell. To measure 

bioelectric potentials, a transducer [11] capable of converting ionic potentials and currents 

into electric potentials and currents is required. Such a transducer consists of two electrodes, 

which measure the ionic potential difference between their respective points of application. 

The more common form of measured biopotentials is the combined effect of a large number 

of action potentials as they appear at the surface of the body, or at one or more electrodes 

inserted into a muscle, nerve, or some part of the brain potentials, instead of the potentials 

themselves. Part of the difficulty arises from the numerous assumptions that must be made 

concerning the ionic current and electric field patterns throughout the body. The validity of 

some of these assumptions is considered somewhat questionable. Regardless of the method 

by which these patterns of potentials reach the surface of the body or implanted measuring 

electrodes, they can be measured as specific bioelectric signal patterns that have been studied 

extensively and can be defined quite well. Through, the use of transducers capable of 

converting ionic potentials into electrical voltages, these natural monitoring signals can be 

measured and results displayed in a meaningful way to aid the physician in his diagnosis and 

treatment of various diseases such as epileptic seizures, paralysis. 



2.4.2 Electroencephalogram (EEG) 

Now we will discuss about significant bioelectric potentials related to neurological signals. 

The designation of the waveform itself generally ends in the suffix gram, whereas the name 

of the instrument used to measure the potentials and graphically reproduce the waveform 

ends in the suffix graph. For example, the electrocardiogram (the name of the waveform 

resulting from the heart's electrical activity) (ECG) is measured on an electrocardiograph (the 

instrument). 

The recorded representation of bioelectric potentials generated by the neuronal 

activity of the brain is called the electroencephalogram [11], abbreviated as EEG. The EEG 

has a very complex pattern, which is much more difficult to recognize than the ECG. A 

typical sample of the EEG is shown in figure 2.2. 

F]-A/ 

FB-42 

T~•At 

rs-n2 

Ty A2 

O,-A} 

Figure 2.2 Typical human electroencephalograms. The eight tracings indicate regions of the 
scalp from which each channel of EEG was measured with respect to one of two reference ear 
electrodes (Al and A2) 

As it can be seen, the waveform varies greatly with the location of the measuring 

electrodes on the surface of the scalp. EEG potentials, measured at the surface of the scalp, 

actually represent the combined effect of potentials from a fairly wide region of the cerebral 

cortex and from various points beneath. Experiments have shown that the frequency of the 

EEG seems to be affected by the mental activity of a person. 

The wide variation among individuals and the lack of repeatability in a given person 

from one occasion to another make the establishment of specific relationships difficult. There 

are, however, certain characteristic EEG waveforms that can be related to epileptic seizures 
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and sleep. The waveforms associated with the different stages of sleep are shown in the 

following figure 2.3. 
Voltage scales  

1 	l 
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Figure 2.3Typical human EEG patterns for different stages of sleep. In each case the upper 
record is from the left frontal regions of the brain and the lower tracing is from the right occipital 
region. (a) Awake and alert-mixed frequencies; (b) Stage!- subject is drowsy and producing large 
amount of alpha waves: (c) Stage 2-light sleep; (e) stage 4 deeper slow eave sleep; (f) paradoxical 
or raaid eve movement (REM) sleep 1111. 

a) Characteristics of EEG 

An alert, wide-awake person usually displays an unsynchronized high-frequency 

EEG, A drowsy person, particularly one whose eyes are closed, often produces a large 

amount of rhythmic activity in the range 8 to 13 Hz. As the person begins to fall asleep, the 

amplitude and frequency of the waveform decrease; and in light sleep, a large-amplitude, 

low-frequency waveform emerges; deeper sleep generally results in even slower and higher-

amplitude waves. At certain times, however, a person, still sound asleep, breaks into an 

unsynchronized high-frequency EEG pattern for a time and then returns to the low-frequency 

sleep pattern. 

The period of high-frequency EEG that occurs during sleep is called paradoxical 

sleep, because the EEG is more like that of an awake, alert person than of one who is asleep. 

Another name is rapid eye movement (REM) [I1 ] sleep, because associated with the high-

frequency EEG is a large amount of rapid eye movement beneath the closed eyelids. This 

phenomenon is often associated with dreaming, although it has not been shown conclusively 

that dreaming is related to REM sleep. 

The various frequency ranges of the EEG have arbitrarily been given Greek letter 

designations because frequency seems to be the most prominent feature of an EEG pattern. 

Electroencephalographers do not agree on the exact ranges, but most classify the EEG 

frequency bands or rhythms approximately as follows: 
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Below 3 & 1/2 Hz 	delta 

From 3 & 1/2 Hz to about 8 Hz 	theta 

From about 8 Hz to about 13 Hz alpha 

From about 13 Hz to about 22 Hz beta 

Above 22 Hz 	gamma 

Figure 2.4 Typical delta waveform of EEG 

Figure 2.5 Typical theta waveform of EEG 

Figure 2.6 Typical alpha waveform of EEG 

Figure 2.7 Typical beta waveform of EEG 

Portions of some of these ranges have been given special designations, as they have 

certain sub bands that fall on or near the stated boundaries. Most humans seem to develop 

EEG patterns in the alpha range when they are relaxed with their eyes closed. This condition 

seems to represent a form of synchronization, almost like a "natural" or "idling" frequency of 

the brain. As soon as the person becomes alert or begins "thinking" the alpha rhythm 

disappears and is replaced with a "desynchronized" pattern, generally in the beta range. Much 

research is presently devoted to attempts to learn the physiological sources in the brain 

responsible for these phenomena, but so far nothing conclusive has resulted in this area. 



Experiments in biofeedback have shown that under certain conditions, people can 

learn to control their EEG patterns to some extent when information concerning their EEG is 

fed back to them either visibly or audibly. As indicated, the frequency content of the EEG 

pattern seems to be extremely important. In addition, phase relationships between. similar 

EEG patterns from different parts of the brain are also of great interest. Information of this 

type may lead to discoveries of EEG sources and will, hopefully, provide additional 

knowledge regarding the functioning of the brain. 

Another form of EEG measurement is the evoked response [11].  This is a measure of 

the `disturbance' in the EEG pattern that results from external stimuli, such as a flash of light 

or a click of sound. Since these `disturbance' responses are quite repeatable from one flash or 

click to the next, the evoked response can be distinguished from the remainder of EEG 

activity. 

2.4.3 Electromyogram (EMG) 

The bioelectric potentials associated with muscle activity constitute the electromyogram, 

abbreviated EMG. These potentials may be measured at the surface of the body near a 

muscle of interest or directly from the muscle by penetrating the skin with needle electrodes. 

Since most EMG measurements are intended to obtain an indication of the amount of activity 

of a given muscle, or group of muscles, rather than of an individual muscle fiber, the pattern 

is usually a summation of the individual action potentials from the fibers constituting the 

muscle or muscles being measured. 

As with the EEG, EMG electrodes pick up potentials from all muscles within the 

range of the electrodes. This means that potentials from nearby large muscles may interfere 

with attempts to measure the EMG from smaller muscles, even though the electrodes are 

placed directly over the small muscles. Where this is a problem, needle electrodes inserted 

directly into the muscle are required. As stated earlier, the action potential of a given muscle 

(or nerve fiber) has a fixed magnitude, regardless of the intensity of the stimulus that 

generates the response. Thus, in a muscle, the intensity with which the muscle acts does not 

increase the net height of the action potential pulse but does increase the rate with which each 

muscle fiber fires and the number of fibers that are activated at any given time. The 

amplitude of the measured EMG waveform is the instantaneous sum of all the action 

potentials generated at any given time. Because these action potentials occur in both positive 

and negative polarities at a given pair of electrodes, they sometimes add and sometimes 
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cancel. Thus, the EMG waveform appears very much like a random-noise waveform, with 

the energy of the signal a function of the amount of muscle activity and electrode placement. 

Typical EMG waveforms are shown in figure 2.8. 

. Figure 2.8 Typical electromyogram (EMG) waveform of normal "interference pattern" with full 

strength muscle contraction producing obliteration of the baseline. Sweep speed is 10 milliseconds per 

cm; amplitude is [ millivolt per cm. (Courtesy of the Veterans Administration Hospital, Portland) [11]. 

2.4.4 Other neurological signals 

In addition to the three most significant bioelectric potentials (ECG, EEG, and EMG), several 

other electric signals can be obtained from the body, although most of them are special 

variations of EEG, EMG, or nerve-firing patterns. Some of the more prominent ones as the 

following: 

1. Electroretinogram (ERG): A record of the complex pattern of bioelectric potentials 

obtained from the retina of the eye. This is usually a response to a visual stimulus. 

2. Electrooculogram (EOG): A measure of the variations in the corneal-retinal potential as 

affected by the position and movement of the eye. 

3. Electrogustrogram (EGG): The EMG patterns associated with the peristaltic movements 

of the gastrointestinal tract. 
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Chapter - 3 

SIGNAL COMPRESSION TECHNIQUES 

3.1 Introduction 

There are no separate special techniques existing for biomedical signal compression. The 

techniques adapted for biomedical signal compression are well defined speech compression 

techniques or neural network based compression techniques. Recently some of sensor based 

compression algorithms are also emerging in this field. This chapter will be going to explain 

some of fundamentals how the signals were compressed in these techniques based on time 

domain or frequency domain. Some of EEG compression algorithms are also explaining 

related to neural networks. 

3.1.2 Types of compression techniques 

Compression techniques are mainly classified into Lossless and lossy. Lossless compression 

techniques works on arithmetic or entropy coders which mainly focuses, coding the given 

signal in some encrypted format, but lossy techniques focuses the processing of the given 

signals, means by using the bit assigning per samples or redundancy removal of the signal 

and so on. These are elaborated as follows: 

3.2 Lossless Compression Techniques 

3.2.1 Recurrent neural network predictors 

Classical compression techniques which are available are mostly suitable for compressing 

images and speech signals where a slight loss of information may not pose a significant 

problem. In the case of EEG, however a small discrepancy between the original and 

recovered signals can be problematic. In the spectral analysis, for example, the low-amplitude 

high frequency components of the signal can be easily altered by using losssy compression 

leading to erroneous results. Lossy compression techniques are therefore unsuitable for EEG 

data. It is known that neural networks can be used as predictors [3] in a two-stage lossless 

compression scheme. A predictor is used in the first stage to decorrelate the source data, thus 

reducing the amplitude range of the data to almost white Gaussian. In the second stage, an 
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entropy encoder such as Huffman or arithmetic encoder is employed to decorrelate the 

residue stream produced by the predictor. 

3.2.2 Compressed sensing frameworks 

In recent years, there has been a new approach to compression at the sensing level. 

Compressed Sensing (CS) [1] can be used for signal sensing and compression. Compressed 

sensing (CS) is an emerging field which is based on the revelation that a small collection of 

linear projections of a sparse signal contains enough information for reconstruction. An 

application of compressed sensing in the field of biomedical signal processing is particularly 

electroencephalogram (EEG) collection and storage and efficient representation of 

multichannel, multiple trial EEG data. The proposed framework is based on the revelation 

that EEG signals are sparse in a Gabor frame. The sparsity of EEG signals in a Gabor frame 

is utilized for 'compressed. sensing of these signals. A simultaneous orthogonal matching 

pursuit algorithm is shown to be effective in the joint recovery of the original multiple trail 

EEG signals from a small number of projections. CS builds on the revelation that a signal 

having a sparse representation in one basis can be recovered from a small number of 

projections onto a second basis that is incoherent with the first. This revelation has a 

promising implication for applications for signal acquisition and compression. With no a 

priori knowledge of a signal's structure, a sensor node could simultaneously acquire and 

compress the signal, preserving the critical information. Some recent applications of this 

theory include the single pixel camera and compressed sensing for rapid MR (Magnetic 

resoning) imaging. This algorithm is as follows; they first show that EEG signals are sparse 

in a Gabor frame based on an empirical study using a large set of EEG data. Next, they apply 

the CS framework to compress single-trial EEG recordings using a few numbers of 

projections onto Gaussian basis. The reconstruction of the actual EEG signal from these 

projections is achieved using orthogonal matching pursuit algorithm. After the sparsity of 

individual EEG signals is established, they extend the CS framework to joint recovery of 

multiple signals using recent results in distributed compressed sensing. The joint sparsity of 

multiple EEG signals is shown and a simultaneous orthogonal matching pursuit algorithm is 

used to reconstruct multiple recordings simultaneously. 

3.2.3 Karhunenloeve transform (KLT) 

EEG signals are simply measured from different electrode positions on human scalp as 

shown in fi.g3.1. In order to compress EEG signals, several types of redundancies must be 
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taken into account. The temporal redundancy is successfully removed in many works. 

Antoiol et al [2] presented the survey on EEG lossless compression algorithms using 

predictive coding, transform coding vector quantization together with the entropy coding and 

compared with some well known lossless compression algorithms. Coming to next 

redundancy the neighboring channels of EEG signals usually have a high degree of similarity 

in their structures. In order to efficiently compress the multi-channel data, this inter-channel 

redundancy must be exploited. Although, these multi-channel signals are visually correlated, 

the correlation models of the signals are unpredictable. Hence data independent transforms 

such as DCT, or DFT usually fail to efficiently decorrelate them. This problem can be solved 

by employing an optimal transform that can decorrelate the signals by finding the 

eigenvectors of their correlation matrix. This optimal transform is known as karhuen Loeve 

transform (KLT). An efficient algorithm employing KLT to decorrelate the inter-channel 

redundancy of multi-channel signals has been applied to audio coding. In practice, the KLT is 

simply truncated yielding a non-reversible process. 

~'(D- 

Fig 3.1 N-channel EEG [21 

In this algorithm, a lossless compression algorithm for multi-channel EEG signals 

exploiting an integer-to-integer mapping approximation of KLT is presented. Using the 

factorization, KLT is further parameterized by a ladder factorization, rendering a reversible 

structure under quantization of coefficients called IntKLT. It should be noted that the choice 

of selecting the permutation matrices for the factorization is important to the lossless coding 

application. Since the factorization of the KLT is not unique, each solution results in a 

different permutation and dynamic range of coefficient. Thus finding the best solution in the 
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sense of minimum dynamic range of coefficients is very difficult. An obvious approach is to 

compare all the possible factorization which minimizes the ladder coefficients. This however 

is impractical for a large scale r r ?= N matrix since the number of solution is of order 0 (N!) 

(N factorial). In order to minimize the ladder coefficients while maintaining the acceptable 

complexity, pivoting is also suggested. 

3.2.4 K-means clustering algorithm 

The automatic EEG analysis method presented in this algorithm involves 4 basic steps: 1) 

Segmentation — where the non- stationary multi-channel EEG data is broken into quasi-

stationary segments. The methodology as proposed uses adaptive segmentation of non-

stationary EEG into quasi-stationary segments (QSS) using the Teagers' non linear energy 

operator (NLEO) [4]. 2) Feature Extraction — segments are characterized with different 

features. The features to characterize the different QSS are extracted from the EEG. The QSS 

with similar features are grouped into eight clusters, using an iterative method based on the k-

means clustering algorithm [6]. To improve the performance, the artifact contaminated QSS 

were removed prior to clustering. The artifact or outlier removal method is a multilayered one 

that is applied at several stages of segmentation. 3) Self-organization —segments with similar 

features are grouped together. 4) Presentation — the compressed data is presented to assist the 

review of long-term EEG. 

In the literature many different features have been proposed to characterize the EEG. 

Some examples are amplitude, first and second order derivatives and amplitudes in different 

spectral bands. In some other work amplitude, dominant rhythm, and frequency-weighted 

energy (referred to as generic features) have been used. The absolute average amplitude of a 

channel in quasi-stationary segments (QSS) was used to describe the amplitude of the signal. 

The dominant rhythm was estimated using a second order auto regressive model. The 

frequency-weighted energy was based on the idea of non linear energy operator (NLEO). It 

was suggested that the resulting energy provides a combined frequency and amplitude 

measure of the EEG. The expectation is that if we could use more direct measures of the 

spectral content, such as power in the different spectral bands, then the performance of the 

system may improve. This is further exemplified by the work of Johnson et al [5]. They used 

spectral analysis to characterize the visually selected epochs from different sleep stages. 

Larson et al [7] evaluated these features with multiple regression and multiple discriminant 

analysis and concluded that spectral analysis can be used effectively to classify sleep EEG. 
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To calculate the proposed spectral features the EEG spectrum is divided into different 

spectral bands. Each epoch is described by the power in these bands. The classical band 

definitions in EEG are used - delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-15 

Hz), betal (15-24 Hz), beta2 (24-36 Hz). The power spectral density (PSD) for each QSS is 

calculated using the Fast Fourier transform (FFT) with mean removed. For each QSS, the 

power in each band is normalized by the total segment power. Each QSS has one frontal and 

one occipital channel with each channel described by six spectral features. Thus, twelve 

features are needed to describe each QSS. The generic features and the spectral features are 

evaluated in terms of their ability to classify and create homogenous clusters of the different 

pattern that may exist in the EEG. In this algorithm, they use the sleep EEG data, since the 

recurring sleep stages are example of the repetitive patterns occurring in the background 

EEG. The manually-scored Hypnogram gives information about the different homogeneous 

patterns (sleep stages) and their temporal profile. Most sleep laboratories divide the EEG into 

epochs of 20 or 30 seconds for stage scoring. They translate the clustering information based 

on QSS into clusters of 20 second epochs. This provides a Hypnogram-like temporal 

distribution of clusters of epochs. It is done by assigning to each epoch the number of the 

QSS clusters that occupies majority of the epoch. Each newly formed cluster of epochs 

represents a particular pattern occurring in the data set. The compressed data, thus obtained, 

can be assessed against the manually-scored Hypnogram. 

3.3 Lossy Compression Techniques 

Lossy compression techniques discussed hear are mostly speech compression techniques. 

Speech compression techniques described here are as it is related to speech only. How we 

will use these techniques for our work, we will discuss in next chapter. 

The objective of speech is communication whether face to face or cell phone to cell 

phone. To fit a transmission channel or storage space, speech signals are converted to formats 

using various techniques. This is called speech coding or compression. Theoretically 

speaking, speech coding can be achieved based on two facts. One is redundancy in speech 

signals, and another one is perception properties of human ears. In this we will discuss about 

classification of speech compression techniques. 

Properties of speech coding techniques are discussed briefly one by one. Speech 

quality of compressed speech signal depends on compression ratio, complexity, delay, and 

bandwidth. These are nothing but the attributes of speech coders. So, there is an interaction 
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between all these attributes and that they can be traded off against each other. For example, 

in the case of low bit rate coders delay is more with respect to high bit rate coders and also 

complexity is more in the case of low bit rate coders and also quality is low in the case of low 

bit rate coders. 

Speech coding methods are classified into three categories. 

3.3.1 Waveform coding 

The most basic waveform coders do not attempt to exploit any knowledge of the signal 

production process in the encoding of the input signal. Their aim, as the name implies, is to 

reproduce the original waveform as accurately as possible. As these coders are not speech 

specific they can cater for many non-speech signals, background noise and multiple speakers 

without difficulty. The penalty of a relatively high bit-rate, however, must be paid for this 

`acoustic robustness'. 

' In general, waveform coding techniques are designed to be signal independent. That 

means waveform coding techniques treats any signals as normal signal waveform. They are 

designed to map the waveform of the encoder into a facsimile-like replica of it at the output 

of the decoder. Because of this advantage, the waveform coding methods can also be used to 

encode secondary type of information such as signaling tones, voice band data, or even 

music. Because of the signal reproduction as accurately as possible the compression ratio is 

not good with respect to other coding methods. The coding efficiency can be improved by 

exploiting some statistical signal properties, if the codec parameters are optimized for the 

most likely categories of input signals, while still maintaining good quality for other types of 

signals as well. The waveform codec's can be further subdivided into time-domain waveform 

codec's and frequency-domain waveform codec's. 

a) Time domain waveform coding: The most well known representative of . signal 

independent time domain waveform coding [12] is the A-law companded pulse code 

modulation (PCM) scheme. A-law is a nonlinear type of companding. This results in near 

constant signal to noise ratio (SNR) over the total input dynamic range. The simplest and best 

known waveform encoding technique is pulse code modulation (PCM). When PCM employs 

non-uniform 8-bit quantization (A-law or µ-law) with 8 KHz sampling, very good quality 

speech is achieved at 64 kbps. The bit-rate required by waveform coders for speech encoding 

can be reduced by exploiting the correlation between adjacent samples, for example by 
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encoding the difference between successive samples rather than the samples themselves. One 

such scheme is known as differential pulse code modulation (DPCM). By adapting the 

quantizer step-size of a DPCM coder according to the short-term signal power, the signal 

coding technique known as adaptive differential pulse code modulation (ADPCM). 

b) Frequency domain waveform coding: In frequency domain waveform codec's, the 

input signal undergoes a more or less accurate short time spectral analysis. The signal is split 

into a number of sub bands, and the individual sub band signals are then encoded by using 

different numbers of bits in order to obey rate distortion theory on the basis of their 

prominence. Two well known representations of this class are sub band coding (SBC) and 

adaptive transform coding (ATC). Wavelet transform based signal compression comes under 

the waveform coding method and it is similar to subband coding [13]. 

c) Subband coding: The process of breaking the input signal into subbands via band pass 

filters and coding each band separately is called sub band coding. To keep the number of 

samples to be coded at a minimum, the sampling rate for the signals in each band is reduced 

by decimation. Since the band pass filters are not ideal, there is some overlap between 

adjacent bands and aliasing occurs during decimation. Ignoring the distortion or noise due to 

compression, Quadrature Mirror Filter (QMF) banks allow the aliasing that occurs during 

filtering and sub sampling at the encoder to be cancelled at the decoder. The codec's used in 

each band can be PCM, ADPCM, or even an analysis-by-synthesis method. The advantage of 

subband coding is that each band can be coded differently and that the coding error in each 

band can be controlled in relation to human perceptual characteristics. 

d) Transform coding: This method was first applied to still images but later investigated for 

signals. The basic principle is that a block of speech samples is operated on by a discrete 

unitary transform and the resulting transform coefficients are quantized and coded for 

transmission to the receiver. Low bit rates and good performance can be obtained because 

more bits can be allocated to the perceptually important coefficients, and for well-designed 

transforms, many coefficients need not be coded at all, but are simply discarded, and 

acceptable performance is , still achieved. Although classical transform coding has not had a 

major impact on narrowband signal coding and subband coding has fallen out of favor in 

recent years, filter bank and transform methods play a critical role in high quality audio 

coding, and at least one important standard for wideband speech coding (G.722.1) is based 

upon filter bank and transform methods. The distinction between transforms and filter bank 
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methods is somewhat blurred, and the choice between a filter bank implementation and a 

transform method may simply be a design choice. 

3.3.2 Vocoding 

Vocoders are nothing but voice coders. These use the properties of the speech production 

model. Vocoders make no attempt to reproduce the original waveform as like waveform 

coding. Vocoders derive a set of parameters at the encoder which can be used to control a 

signal production model at the decoder. The parameter set for the signal production model is 

relatively small and can be efficiently quantized for transmission. These give less quality 

output but compression is more. 

3.3.3 Hybrid coding 

Waveform coding methods are good with respect to signal quality and vocoding methods are 

good with respect to compression. By taking advantages in both waveform and vocoding 

techniques hybrid coding methods are formed. But hybrid coding methods have higher 

complexity. So every coding method formed by combining waveform coding and source 

coding. methods falls under this category. Hybrid coding improves the signal quality and 

reduces the compression. Hybrid coding methods are often referred to as analysis by 

synthesis coding methods. In the following figure 3.2* classifications of signal (speech) 

compression techniques has been given. 

Speech coding schemes 

Vocoders 	 I Hybrid I 	 I Waveform 
Coders (HC) 	 Coders 

___ Jr 	 ____ ___ __ 
RPELP 	I Sinusoidal 	 PCM,DM 

LPC, Homo- 	FC, Channel I 	MPLPC 	Harmonic 	 APCM 
morphic 	Vocoder 	CELP SELP DPCM 	SBC, DCT 

	

MBE, HC 	 ADPCM 

Figure 3.2 Classification of speech coding schemes [12]. 
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Chapter - 4 

IMPLEMENTED COMPRESSION TECHNIQUES 

4.1 Motivation 

The neurological signals selected in this dissertation work are Electroencephalogram (EEG) 

because of less work done on this area compared to other physiological variables such as 

ECG and EMG, and the work going in this area is amazing, for example the brain computer 

interface, controlling the EEG signals for various purposes mouse moment on computer 

monitor, teeth clinching, motor control and variety of activities. The compression techniques 

selected are easy to implement and better compression ratios with good signal quality. We 

will discuss about these techniques in this chapter. 

4.2 Discrete Cosine Transform based EEG Compression 

Discrete cosine transform (DCT) is signal independent based transform and it has two 

advantages. First one there is no imaginary part of the signal compared to FFT, so it can help 

easy quantization, second one is the entire power of the signal contained first few coefficients 

only, so we can concentrate on these first few coefficients means high resolution to this part 

can get good quality of synthesized signal. Huffman coding is also applicable to this 

technique. Its working procedure is taken from the reference [13]. 

4.2.1 Discrete cosine transform of the EEG signal 

The DCT [9] is closely related to the discrete Fourier transform. It can reconstruct a sequence 

very accurately from only a few DCT coefficients, a useful property for applications 

requiring data reduction. 

" 	 —1) 
y(k) = w(k)~ x(n) cos 

'-(2n —1)(k 	,k = 0........,N —1 	
4.1 

 
„=0 	 2N 

x is the input signal, y is DCT of the input signal 

Where; 	w(k)=---,k=0 
0 
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2 VN ,1<=k<=N 

N is the length of x, and x and y are the same size. 

4.2.2 Steps of DCT based EEG compression 

Conversion of 	DCT 	Uniform 
EEG files into 	of the EEG 	quantization 
sampled data 	signal 

Huffman 	Encoded 
encoding 	EEG data 

EEG 	Original 
Signal 	EEG signal 

data 

Fig4.1 Steps of DCT based EEG encoding 1131 

Encoded 
EEG data Huffman 	Uniform 

decoder 	dequantizer 

Inverse 
DCT 

transform 

Conversion of 
sampled data 
into EEG 

Fig4.2 Steps of DCT based EEG decoding 1131  

4.2.3 Uniform quantization 

Quantization is a process of mapping a set of continuously valued input data, to a set 

of discrete valued output data. In other words, the aim of quantization is to decrease the 

information found in the coefficients in such a way that this process brings perceptually no 

error [14]. The process of quantization is shown in figure 4.3. 

Figure 4.3 Sampling and quantization of the signal [141 
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The floating point DCT coefficients are quantized to integer values in this process. 

These quantized coefficients are the indices to the quantization table; for example the use of 

DCT serves to process the original signal but to this point no actual compression of data has 

yet occurred. It means that at quantization step, the compression actually starts; it explains 

that the DCT analysis does not actually compress a signal, which allows the data to be 

compressed by standard entropy coding techniques which is further part of the quantization. 

Once the quantization process is done, the quantized value will be fed into the next stage of 

compression. Quantization is applied for two coding techniques DCT and Wavelet in this 

dissertation work. 

4.2.4 Huffman encoding 

The quantized data contains redundant information. It is waste of storage space if we 

were to save the redundancies of the quantized data. One way of overcoming this problem is 

to use Huffman encoding [15]. In this the probabilities of occurrence of the symbols in the 

signal are computed. These symbols are the indices to the quantization table. We will sort 

these symbols according to their probabilities of occurrence in descending order and build 

the binary tree and codeword table. Due to limitation in the implementation of a binary tree 

with recursive ability, this encoder uses an array-based binary tree that encodes and decodes 

the data in a sequence manner. Such an approach incurs expensive computation time. This is 

the draw back in this coding. 

In the real time applications if we want to code any element we need to have 

minimum of 4 bits for any element in the binary coded decimal (BCD) numbering system. 

Even though our data is repeating for so many times then also we need to have 4 bits. So if 

we want to decrease the memory size or the bandwidth of the transmission line we have to 

represent the data with less number of bits. This could have been done by using Huffman 

coding. There are many different reasons for and ways of encoding data and one of these 

ways is Huffman coding. This is used as a compression method in digital imaging and video 

as well as in other areas. The idea behind Huffman coding is simply to use shorter bit 

patterns for more common characters, and longer bit patterns for less common characters. So 

it is necessary to know the probability of each data element in the data set. Once we know the 

data and corresponding probabilities it is possible to encode the data by using Huffman 

coding. The steps of Huffman coding [16]: 

1. Consider each of the elements as a symbol with its probability. 
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2. Find the two symbols with the smallest probability and combine them into a new 

symbol with both letters by adding the probabilities. 

3. Repeat step 2 until there is only one symbol left with a probability of 1 

4. To see the code, redraw all the symbols in the form of a tree where each symbol 

contain either a single letter or splits up into two smaller symbols. Label all the left 

branches of the tree with a `0' and all the right branches with a '1'. The code for each 

of the letters is the sequence of 0's and l's that lead to it on the tree, starting form the 

symbol with a probability of 1. 

(a) Example: If want to encode the letters A (0.12), E (0.42), 1 (0.09), 0 (0.30), U (0.07) 

listed with their respective probabilities. By applying the above steps we can get the 

following tree. 

0.30 

Figure 4.4 Huffman Coding Tree: An example [161 

From the above Huffman coding tree we can encode and decode the data. Example 

`UEA' can be represented as 10100100. Similarly 10110 can be decoded as `IE' and also any 

string of vowels can be written uniquely as well as each string of 0's and l's can be uniquely 

decoded. To reconstruct the EEG signal, we have to reverse the process for three stages. 

Those are Huffman decoding, dequantization and inverse DCT then we can get the 

reconstructed EEG. 
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4.3 Wavelet based EEG Compression 

4.3.1 Basics of wavelet transform 

The fundamental idea behind wavelets is to analyze according to scale. The wavelet analysis 

procedure is to adopt a wavelet prototype function called an analyzing wavelet or mother 

wavelet. Any signal can then be represented by translated and scaled versions of the mother 

wavelet. Wavelet analysis is capable of revealing aspects of data that other signal analysis 

techniques such as Fourier analysis miss aspects like trends, breakdown points, 

discontinuities in higher derivatives, and self-similarity. Furthermore, because it affords a 

different view of data then those presented by traditional techniques, it can compress or de-

noise a signal without appreciable degradation. Wavelets are functions that satisfy certain 

mathematical requirements and are used in representing data and other functions. However, 

in wavelet analysis, the scale that we use to look at data plays a special role. Wavelet 

algorithms process data at different scales or resolutions. If we look at a signal (or a function) 

through a large `window', we would notice gross features. Similarly, if we look at a signal 

through a small `window', we would notice small features. 

Transform based techniques such as the discrete Fourier transform (DFT) or discrete 

cosine transform (DCT), and subband techniques such as the conjugate quadrature-mirror 

filter bank (QMF) are suitable for stationary signal analysis. However, they are not suitable 

for analysis of non stationary signals such as speech and audio (time frequency) or images 

(space-frequency), or video (time-space frequency), and for nonlinear perceptual distortion 

criteria. Consequently, these techniques have recently been extended to QMF trees with 

unequal-bandwidth branches and subband-DFT hybrids. A much more promising approach 

to time-frequency analysis is offered by wavelets [17]. 

a) Fourier analysis: 

  

F 
Fourier 

Transform 

11+ 	'H 
Frequency 

(a) Fourier transform [17] 
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Figure 4.5 (c) shows a WFT, where the window is simply a square wave. The square 

wave window truncates the sine or cosine function to fit a window of a particular width. 

Because a single window is used for all frequencies in the WFT, the resolution of the 

analysis is the same at all locations in the time frequency plane. The drawback is that once 

choose a particular size for the time window, that window is the same for all frequencies. 

Many signals require a more flexible approach — one where we can vary the window size to 

determine more accurately either time or frequency. 

c) Wavelet analysis: 

Like Fourier analysis the wavelet transform can be viewed as transforming the signal form 

the time domain to the wavelet domain [18]. This new domain contains more complicated 

basis functions called wavelets, mother wavelets or analyzing wavelets. 

Wavelet analysis represents the next logical step: a windowing technique with variable-

sized regions. Wavelet analysis allows the use of long time intervals where we want more 

precise low-frequency information, shorter regions where we want high-frequency 

information. It is shown in figure below. 
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(d) wavelet transform [17] 
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Fourier analysis breaks down the signal into constituent sinusoids of different 

frequencies. So these sines and cosines are the basis functions and the elements of Fourier 

synthesis. It is nothing but, it transforms the time based signal into frequency based signal 

[18]. Fourier analysis has a serious drawback. In transforming to the frequency domain, time 

information is lost. When looking at a Fourier transform of a signal, it is impossible to tell 

when a particular event took place. 

b) Short-time Fourier analysis: 

In an effort to correct this deficiency Fourier analysis, Dennis Gabor (1946) adapted the 

fourier transform to analyze only a small section of the signal at a time — a technique called 

windowing the signal. Gabor's adaptation, called the Short-Time Fourier Transform (STFT), 

maps a signal into a two-dimensional function of time and frequency. 

window 

	

' 	 Short 

1 	 Time 

Fourier 

	

Time 	 Lorrn 
	

Time 

(b) short term Fourier transform [17] 

The STFT represents a sort of compromise between the time and frequency based 

views of a signal. It provides some information about both when and at what frequencies a 

signal event occurs. However, you can only obtain this information with limited precision, 

and that precision is determined by the size of the window. This is called the Windowed 

Fourier Transform (WFT). WFT gives information about signals simultaneously in the time 

domain and in the frequency domain. To illustrate the time-frequency resolution consider the 

following figure 4.5(c) [17]. 

Frequency 

Time 

(c) Fourier basis functions and WFT 'resolution [17] 
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The above figure shows the difference between all the four methods discussed above those 

are time domain, Fourier analysis, short time Fourier analysis, and wavelet analysis [17, 18]. 

4.3.2 Continuous wavelet transform 

Fourier 

Transform 

/ \ 	
i 	

i.. - !_( '~ ,t 	% j r  '~  
14j~ 	~tY 

Signal 	 Constituent sinusakfs of different frequencies 

(a) Fourier Transform [181 

Mathematically, the process of Fourier analysis is represented by the Fourier transform [17]: 

00 
F(w) = f .f (t)e 1w`dt 	 4.2 

Which is the sum over all time of the signal f (t) multiplied by a complex exponential. The 

results of the transformation are the Fourier coefficients F (0)), which when multiplied by a 

sinusoid of frequency of co yields the constituent sinusoidal components of the original 

signal. Graphically, the process looks like similarly, the continuous wavelet transform 

(CWT) is defined as the sum over all time of the signal multiplied by scaled, shifted versions 

of the wavelet function `Y [18]: 

C(scale, position) = f f (t)ir(scale, position, t)dt 	 4.3 

The results of the CWT are many wavelet coefficients C, which are the function of scale and 

position. Multiplying each coefficient by the appropriately scaled and shifted wavelet yields 

the constituent wavelets of the original signal. Refer figure below: 

wavelet 

I '~,  

—, 
 Transform 	"~—`~ Jam'', r ,  

.4. 
Signal 	 Constituent wavelets of different sc&es and positions 

(b) Wavelet Transform [181 
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The basis functions in both Fourier and wavelet analysis are localized in frequency 

making mathematical tools such as power spectra useful at picking out frequencies and 

calculating power distributions. The most important difference between these two kinds of 

transforms (FT&WT) is that individual wavelet functions are localized in space. In contrast 

Fourier sine and cosine functions are non-local and are active for all time t. This localization 

feature, along with wavelets localization of frequency, makes many functions and operators 

using wavelets sparse when transformed it to the wavelet domain. This sparseness, in turn 

results in a number of useful applications such as data compression, detecting features in 

images and de-noising signals. To illustrate the time-frequency resolution differences 

between the Fourier transform and the wavelet -transform I considering the following Figure 

4.6 [17]. 

Time 

Figure 4.6 Daubechies wavelet basis functions and wavelets resolution f 171. 

Figure 4.6 shows a time-scale view for wavelet analysis rather than a time frequency 

region. Scale is inversely related to frequency. A low-scale compressed wavelet with rapidly 

changing details corresponds to a high frequency. A high scale stretched wavelet that is 

slowly changing has a low frequency. The figure 4.7 below illustrates four different types of 

wavelet basis functions. 
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An advantage of wavelet transform is that the windows vary. Wavelet analysis allows 

the use of long time intervals where we want more precise low-frequency information, and 

shorter regions where we want high frequency information. A way to achieve this is to have 

short high-frequency basis functions and long low-frequency ones. The different families 

make trade-offs between how compactly the basis functions are localized in space and how 

smooth they are. Within each family of wavelets are wavelet subclasses distinguished by the 

number of filter coefficients and level of iteration. Wavelets are most often classified with in 

a family by the number of vanishing moments. This is an extra set of mathematical 

relationships for the coefficients that must be satisfied. The extent of compactness of signals 

depends on the number of vanishing moments of the wavelet function used. A more detailed 

discussion is provided in the next section. 

4.3.3 Discrete wavelet transform (DWT) 

Calculating wavelet coefficients at every possible scale is a fair amount of work, and 

it generates lot of data. If we choose scales and positions based on powers of two, then our 

analysis will be much more efficient and accurate. We obtain such an analysis from the 

DWT. The mother wavelet is rescaled or dilated by powers of two and translated by integers. 

Specifically, a function f (t) = L2 (R) (defines space of square integral functions) can be 

represented as: 

r o 	 oo 

 d(j, k)VV (2 .~ t — k) + E a(L, 	k)O(2-̀  t — k) 	.. . . .. . . . . 4.4 
j=1k=-m 	k=-w 

The function w (t) is known as the mother wavelet, while 0 (t) is the scaling function. The set 

of functions { 2-̀  O(2-̀ ' t — k), 2-' Vr(2-'t — k) l j <_ L, j, k, L E Z }, where Z is the set of 

integers, is an orthonormal basis for Lz (R) . The numbers a(L, k) are known as the 

approximation coefficients at scale L, while d(j, k) are known as the detail coefficients at 

scale j. The approximation and detail coefficients can be expressed as: 

w 
a(L, k) = 1 	f (t)O(2-L t — k)dt 

2c 

CO 

d(j, k) =  	ff  (t)yi( 2-'t - k)dt 

.4.5 

.4.6 
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To provide some understanding of the above coefficients consider a projection fi (t) of 

the function f (t) that provides the best approximation (in the sense of minimum error energy) 

to f (t) at a scale 1. This projection can be constructed form the coefficients a (L, k), using the 

equation 

~r (t) _ 	k)0(2-'t — k) 	 .4.7 
k— oo 

As the scale l decreases, the approximation becomes finer, converging to f (t) as l-*0. 

The difference between the approximation at scale I + 1 and that at 1, fi+l(t) —fi (t), is 

completely described by the coefficients d (j, k) using the equation- 

.f1+1 (t) — fi (t) _ 	k)(2-r t — k) 	 .4.8 

Using these relations, given by a (L, k) and {d (j, k) I j < L}, it is clear that we can build the 

approximation at any scale. Hence the wavelet transform breaks up the signal into a coarse 

approximation fL (t). As each layer of detail is added, the approximation at the next finer 

scale is achieved. 

a) Vanishing Moments 

The number of vanishing moments of a wavelet indicates the smoothness of the wavelet 

function as well as the flatness of the frequency response of the wavelet filters. Typically a 

wavelet with p vanishing moments satisfies the following equation. 

f trny(t)dt  = 0 	for m=0... p-1, 	 .4.9 

Or equivalently, 

for m=0... p-1 	 .4.10 
k 

For the representation of smooth signals, a higher number of vanishing moments 

leads to a fast decay rate of wavelet coefficients. Thus, wavelets with a higher number of 

vanishing moments lead to a more compact signal representation and hence are useful in 

coding applications. However, in general, the length of the filters increase with the number of 

vanishing moments and the complexity of computing the DWT coefficients increase with the 

size of the wavelet filters. 
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4.3.4 The Fast Wavelet Transform Algorithm 

The Discrete Wavelet Transform (DWT) coefficients can be computed by using 

Mallat's Fast Wavelet Transform algorithm [17]. This algorithm is sometimes referred to as 

the two-channel sub-band.coder and involves filtering the input signal based on the wavelet 

function used. Consider the following equations: 

0(t) = I c(k)q$(2t — k) 	 .4.11 
k 

,u(t) = I (-1)k c(1 — k)O(2t — k) 	 .4.12 
k 

I C k Ck-2m = 280,n, 	 .4.13 
k 

The first equation is known as the twin-scale relation (or the dilation equation) and defines 

the scaling function 0. The next equation expresses the wavelet 41 in terms of the scaling 

function 0. The third equation is the condition required for the wavelet to be orthogonal to 

the scaling function and its translates the coefficients c (k) or {co, ...... c2N_1} in the above 

equations represent the impulse response coefficients for a low pass filter of length 2N, with 

a sum of 1 and a norm of j . The high pass filter is obtained from the low pass filter using 

the relationship g k = (-1)k c(l — k) , where k varies over the range (1-(2N-1)) to 1. The 

equation (4.11) shows that the scaling function is essentially a low pass filter and is used to 

define the approximations. The wavelet function defined by the equation (4.13) is a high pass 

filter and defines the details. Starting with a discrete input signal vector s, the first stage of 

the FWT algorithm decomposes the signal into two sets of coefficients. These are the 

approximation coefficients cAl (low frequency information) and the detail coefficients cD1 

(high frequency information), as shown in the figure below. 

The coefficient vectors are obtained by convolving s with the low-pass filter Lo—D 

for approximation and with the high-pass filter Hi_D for details. This filtering operation is 

then followed by dyadic decimation or down sampling by a factor of 2. Mathematically the 

two-channel filtering of the discrete signal s is represented by the expressions: 

cA1 = LC k S21-k , 	CDC _ ~gkS21-k 	 .4.14 
k 	 k 
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Coefficients 
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downsample 

Coefficients 

Convolve with filter X (Lo_D, Hi_D). 

Keep the even indexed elements. 

Figure 4.8 Filtering operation of DWT 

These equations implement a convolution plus down sampling by a factor 2 and give 

the forward fast wavelet transform. If the length of the each filter is equal to 2N and the 

length of the original signal s is equal to n, then the corresponding lengths of the coefficients 

of cA1 and cDi are given by the formula: 

floor( n2 1 )+N 	 .4.15 

This shows that the total length of the wavelet coefficients is always slightly greater than the 

length of the original signal due to the filtering process used. 

a) Multilevel decomposition 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 
components. This is called the wavelet decomposition tree [18]. 

The wavelet decomposition of the signal s analyzed at level j has the following 

structure [cA1, c]I~, cDt]. 

34 



Figure 4.9 (a) Decomposition of DWT coefficients [17] 
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Figure 4.9 (b) Level 3 decomposition of sample signal [18] 

Since the analysis process is iterative, in theory, it can be continued indefinitely. In 

reality, the decomposition can only proceed until the vector consists of a single sample. 

Normally, however, there is little or no advantage gained in decomposing a signal beyond a 

certain level. The selection of the optimal decomposition level in the hierarchy depends on 

the nature of the signal being analyzed or some other suitable criterion, such as low pass 

filter cut off. 

4.3.5 Signal Reconstruction 

The original signal can be reconstructed or synthesized using the inverse discrete 

wavelet transform (IDWT). The synthesis starts with the approximation and detail 

coefficients cA~ and cDi, and then reconstructs cA1 by up sampling and filtering with the 

reconstruction filters. 
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The reconstruction filters are designed in such a way to cancel out the effects of 

aliasing introduced in the wavelet decomposition phase. The reconstruction filter (Lo_R and 

Hi_R) together with the low and high pass decomposition filters forms a system known as 

quadrature mirror filters (QMF). For a multilevel analysis, the reconstruction process can 

itself be iterated producing successive approximations at finer resolutions and finally 

synthesizing the original signal. 

Upsample 	 Low-pass filter 

cAj 

cDj 

level j 	Upsample 	 High-pass filter 	level j-1 

Where: 	2 	Insert zeros at odd-indexed elements. 

Convolve with filter X (Lo_R, Hi_R). 

Figure 4.10 Wavelets Reconstruction 

For many signals, the low-frequency content is the most important part. The high 

frequency component on the, other hand imparts noise. Consider the human voice. If we 

remove the high frequency components, the voice sounds different, but we can still tell 

what's being said. However, if we remove the low frequency components, you hear 

gibberish. In wavelet analysis often speak of approximations and details. The approximations 

are the high-scale, low frequency components of the signal. The details are the low scale, 

high frequency components. The original signal passes through two complementary filters 

and emerges as two signals. 

The original and reconstructed approximations are shown in figure 4.11 
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Figure 4.11 Original signal and reconstructed approximations 

a) Optimal decomposition level in wavelet transforms 

The figure above shows a simple EEG signal and approximations of the signal, at five 

different scales. These approximations are reconstructed form the coarse low frequency 

coefficients in the wavelet transform vector [19]. Figure 4.11 is showing that by keep on 

increasing the level of decomposition the energy in the approximation part of the signal is 

decreasing. 

b) Retained Energy in First N/2 Coefficients 

A suitable criterion for selecting optimum mother wavelets is related to the amount of energy 

a wavelet basis function can concentrate into the level 1-approximation coefficients. An EEG 

signal is divided into frames of size 600 samples and then analyzed using different wavelets. 

The wavelet transform is computed to scale 5. The signal energy retained in the first N/2 

transform coefficients are given in the table given below. This energy is equivalent to the 

energy stored in the level 1-approximation coefficients [19]. 

Table 4.1 Average energy concentrated by different wavelets in N/2 coefficients 

Wavelet Avg signal energy retaine 

Haar 92.57 

Db4 83.16 

Db6 96.74 

Db8 96.81 

Db 10 96.76 
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4.3.6 Steps of Wavelet Speech Compression 

The following Figures 4.12 and 4.13 represents the encoding and decoding blocks of wavelet 

EEG compression.- 

Conversion of 	Wavelet 	 Threshol 	Uniform 	I 	Huffman 
EEG files into 	decomposition 	ding 	 quantization 	ii encoding 
sampled data 

Encoded 
EEG signal 	I Original 	I 	 EEG data 

EEG data 	Figure 4.12 Encoding block diagram of wavelet EEG 

Huffman 	Uniform 	Inverse 	 Conversion 
decoder 	dequantizer 	wavelet 	 of sampled 

Encoded 	
transform 	data into 	Reconstruc 

EEG data 	
EEG 	ted EEG 

Figure 4.13 Decoding block diagram of wavelet EEG compression 

The process of compressing an EEG signal using wavelets involves the following 

steps [9], [14]: 

a) Wavelet Decomposition 

The choice of the mother-wavelet function used in designing high quality EEG coders is of 

prime importance. Choosing a wavelet that has compact support in both time and frequency,  

in addition to a significant number of vanishing moments is essential for an optimum wavelet 

EEG compressor [20]. Several different criteria's can be used in selecting an optimal wavelet 

function. The objective is to minimize reconstructed variance and maximize quality. In 

general optimum wavelets can be selected based on the energy conservation properties in the 

approximation part of the wavelet coefficients. 

In [20], it was shown that the Battle-Lemarie wavelet concentrates more than 97.5% 

of the signal energy in the approximation part of the coefficients. This is followed very 

closely by the Daubedhies D20, Dl 2,  D10, D8 wavelets, all concentrating more than 96% of 

the signal energy in the level one approximation coefficients. By comparing all wavelets 

"Db10" is used in this dissertation work. 
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Figure 4.14 Approximation and detail parts of the EEG signal 

Wavelets with more vanishing moments provide better reconstruction quality, as they 

introduce less distortion into the processed EEG and concentrate more signal energy in a few 

neighboring coefficients. However the computational complexity of the DWT increases with 

the number of vanishing moments and hence for real time applications it is not practical to 

use wavelets with an arbitrarily high number of vanishing moments [20]. Wavelets work by 

decomposing a signal into different resolutions or frequency bands, and this task is carried 

out by choosing the wavelet function and computing the Discrete Wavelet Transform 

(DWT). Signal compression is based on the concept that selecting a small number of 

approximation coefficients (at a suitably chosen level) and some of the detail coefficients can 

accurately represent regular signal components. Choosing a decomposition level for the 

DWT usually depends on the type of signal being analyzed or some other suitable criterion 
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such as entropy. For the processing of EEG signals decomposition up to scale five is 

adequate [20], with no further advantage gained in processing beyond scale 5. 

b) Thresholding 

After calculating the wavelet transform of the EEG signal, many of the wavelet coefficients 

are close to or equal to zero. Thresholding can modify the coefficients to produce more zeros. 

We have two types of thresholding one is level dependent thresholding and another is global 

thresholding. Level dependent thresholds are calculated using the Brige-Massart strategy 

[18]. This thresholding scheme is based on an approximation result from Brige and Massart 

and is well suited for signal compression. This strategy keeps all of the approximation 

coefficients at the level of decomposition J. The numbers of detail coefficients to be kept at 

level I starting form 1 to J are given by the formula: 

n; = M / (J+2-i) a 	 .4.16 

Where a; is compression parameter and its value is typically 1.5. The value of M denotes the 

how scarcely distributed the wavelet coefficients are in the transform vector. If L denotes the 

length of the coarsest approximation coefficients then M takes on the values in table, 

depending on the signal being analyzed. For high scarceness M value is L, for medium 

scarceness M value is 1.5*L and for low M value is 2*L thus this approach to thresholding 

selects the highest absolute valued coefficients at each level. In the case of global 

thresholding we select the threshold value in between `0' to Cmax, where Cmax is the 

maximum coefficient in the decomposition. However, this value comes from the final 

approximation sub signal, and increases the level of decomposition [15]. 

The use of wavelets and thresholding serves to process the original signal but to this 

point no actual compression of data has yet occurred. This explains that the wavelet analysis 

does not actually compress a signal, which allows the data to be compressed by standard 

entropy coding technique. The floating point Wavelet coefficients are quantized to integer 

values in this process. These quantized coefficients are the indices to the quantization table. 

Once the quantization process is done, the quantized value will be fed into the next stage of 

compression. The next step is the Huffman coding which has been explained in DCT 

technique. To reconstruct the EEG signal, we have to reverse the process for three stages. 

Those are Huffman decoding, dequantization and inverse WT then we can get the 

reconstructed EEG. 



4.4 LPC based EEG Compression 

4.4.1 LPC Analysis 

A second form of source coding for EEG [7, 8].compression is provided by vocoders. 

These devices extract the characteristic parameters of EEG, by analyzing the mechanisms of 

EEG formation, to derive an algorithm for providing additional compression of the data to be 

transmitted to the receiver. 

Accordingly, instead of attempting to produce a close replica of the input signal at the 

output of the decoder, the appropriate set of source parameters is found in order to 

characterize the input signal sufficiently closely for a given duration of time. First, a decision 

must be made as to whether the current EEG segment to be encoded is stable or unstable. 

Then the corresponding source parameters must be specified. In the case of unstable EEG, 

the source parameter is the time between periodic excitation pulses, which is often referred to 

as the pitch P. In the case of stable EEG, the variance or power of the noise-like excitation 

must be determined. The parameters are quantized and transmitted to the decoder in order to 

synthesize a replica of the original signal. Vocoder schematic is shown in the figure 4.16. 

The encoder is a simple EEG analyzer, determining the current source parameters. After 

initial EEG segmentation, it computes the linear predictive filter coefficients a. i=1....p, 

which characterize the spectral shaping transfer function H (z). A stable/unstable decision is 

carried out, and the corresponding pitch frequency and noise energy parameters are 

determined [21]. These are then quantized, multiplexed, and transmitted to the EEG decoder, 

which is an EEG synthesizer. 

PULSE p8E 	 PITCH 
CALLCUL H I 	I 	TRAIN 

Segment 	SPECTRAL 	M 	 S/us 	 SYNTHESIS 	S(z) 

of EEG 	
ANALYSIS 	 CHANNEL 	DM 	 . 	FILTER 

A z 	 i 	H(z)m4/A(z) 

S/US 	 NOISE 
GEN ER. 	 FILTER 

COEFFICIENTS 

Figure 4.15 Vocoder schematic 1211. 
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The associated EEG quality of this type of systems may be predetermined by the 

adequacy of the source model, rather than by the accuracy of the quantization of these 

parameters. In linear predictive coding (LPC), often more complex excitation models are 

used to describe the generating source. Once the tract apparatus has been described by the 

help of its spectral domain transfer function 11(z),  the central problem of coding is to decide 

how to find the simplest adequate excitation for high quality parametric EEG representation. 

In the linear prediction signal is modeled as a linear combination of its past values 

and present and past values of a hypothetical input to a system whose output is the given 

signal [12]. Linear predictive coding is a standard model for speech coders. In this model all-

pole model is used to describe the transfer function of the vocal tract. Here it is showing the 

procedure to get the synthetic EEG [22]. Assume that the present sample of the EEG is 

predicted by the past P samples of the EEG such that 

n 
S (n) = ~ a1 S(n - i) 	 .4.17 

=1 

Where S' (n) is the prediction of S (n), S (n-k) is the kth step previous sample, and { a; } are 

the linear prediction coefficients. The residual error between the actual sample and the 

predicted one can be expressed as 

r 
e (n) = S (n)- S (n) = S (n) - 	a; S(n - i) 	. 

The sum of the squared error to be minimized is expressed as 

P 	2 

n 	n 	i=1 

We would like to minimize the sum of the squared error. By setting to zerc 

E with respect to a; , one obtains 

n 
21 S(n — k) S(n) — j a;S(n — i) = 0 	 . .4.20 

n 	1=1 	
I, 

for k=l, 2, 3 ..... p 
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P 

E{S(n)S(n — k)} = E I a;S(n — i)S(n — k) 	 4.21 
=l 

Upon exchange the order of the summation and expected value computation at the right hand 

side of equation 4,21 we get following equation. 

P 
E{S(n)S(n — k)} = Y a; E{S(n — i)S(n — k)} k=1, p 	.. .. .. .. .. .4.22 

=l 

By observing the above equation 

	

C(k, i) = E{S(n — k)S(n — i)} 	 .4.23 

Equation 4.20 represents the input signal's covariance coefficients. The covariance 

coefficients C (k, i) are now computed form the following short-term expected value 

expression: 

L+P-I 	 k=1,  ....P, 
C(k, i) _ Y S(n — k)S(n — i), k-t P 

n=o 

Upon setting m=n-k, equation 3.8 can be expressed as 

L, -1-(k-i) 

C(k, i) = I S(m)S(m + k — i) 
n=0 

P 
I a;C(k, i) = C(i3O) i=1...p 

Which suggests that C (k, i) is the short-time autocorrelation of the input signal s (in) 

evaluated at a displacement of (k-i), giving: 

C (k, i) =r (k-i) 	 .4.27 

Where 

L~-1 

r(j) = I S(n)S(n + j) = Z S(n)S(n — j) 	 .4.28 
n=0  n=j 

Where r (j) represents the EEG autocorrelation coefficients. Then the set of p equations can 

now be reformulated as 

.4.24 

.4.25 

.4.26 
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P 

)'a,.r(k—i)=r(i) k=1...p 	 . .4.29 
=1 

Equation (4) results in P unknowns in P equations. 

The EEG signal is divided into segments each with N samples. If the length of each segment 

is short enough, the EEG signal in the segment may be stationary. In other words, the vocal 

tract model is fixed over the time period of one segment. If there are N samples in the 

sequence indexed from 0 to N-1 such that { S(n)} = { S(0), S(1), S(2), .....S(N — 2), S(N —1)} , 

Equation can be expressed in terms of matrix equation. 

r (0) 	r (1) .... r(p-1) al r(1)  
r (1) 	r (0) .... r(P — 2 ) a2 r(2)  

r ( p —1) r ( p — 2) 	.... r(0 ) a~ r(p) 

[R] [a] = r 	 .4.30 

N-1-k 
Where; 	 r(k) _ 	S(n)S(n — k) 	 .4.31 

n=0 

To solve the matrix equation 4.30 any of the following methods are used [25]. 

o The Gaussian elimination method. 
o Any matrix inversion method (MATLAB). 
o The Levinson-Durbin recursion. 

Out of those three algorithms Levinson-Durbin algorithm gives better results. Here the 

Levinson-Durbin algorithm has been given. 

E(0)=r(0) 

For k=1 top do 

k-1 

ik = r(k) — l a(k 1) r(k — J) / E(k —1) 
=1 

.4.32 

(k) 
ak = lk 

For j=l to k-1 do 
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a(k) = — ik  ask-')  k-j 	 .4.33 

E(i) _ (1— ik )E(k — 1). 	 4.34 

The final solution after p iterations is given by: 

J=1,......, P. 	 4.35 

FLOW CHART OF LEVINSON ALGORITHM 

Figure 4.16 Flow chart of levinson algorithm [211. 
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Once the linear prediction coefficients {a, } are computed, equation 4.15 can be used 

to compute the residual error sequence e (n). The implementation of equation 4.15, where s 

(n) is the input and e (n) is the output, is called the analysis filter and is shown in figure 4.18 

s(n) 	> 	A(z) 	 e(n) 

Fig. 4.17 EEG analysis filter 
The transfer function is given by 

P 

A(z)=1—Ya1z-' 	 4.36 

Because e (n) has less standard deviation than EEG itself, smaller number of bits is needed to 

quantize the error sequence. 

Equation 4.15 can be rewritten as the difference equation of a digital filter whose input is 

e (n) and output is S (n) such that 

P 
S(n) _ 	a;S(n — i) + e(n) 
	

4.37 

the implementation of Equation 4.35 is called the synthesis filter and is shown in Figure 4.19. 

e(n) 	 s(n) 
11A(z) 

Fig. 4.18 EEG synthesis filter 

If both the linear prediction coefficients and the error sequence are available, the EEG can be 

reconstructed using the synthesis filter [23]. 

4.4.2 Correlation 

The correlation is one of the most common and most useful statistics. A correlation is 

a single number that describes the degree of relationship between two variables. Correlation 

between groups of data implies that they move or change with respect to each other in a 

structured way. In the case of signals, signals have to be digitized and that therefore form 

groups of data. For N pairs of data {x (n), y (n)}, the coefficient is defined as; 



N 
{x(n) — x} { y(n) —y} 

y  —  n=1 

	

xy — N 	 N  

	

n=1 	 n=1 

• 4.38 

If the finite length signals are to be analyzed, then the definition of the cross 

correlation function of the two signals is given. 

	

N 	_ 	 _ 
{x(n)—x}{y(n+k)—y} 

 

r(  k) 
^  n=1  

.4.39 
N 

{x(n) — x}z  y {y(n) — y}2  

	

n=1 	 n=1 

In the case when the two input signals are the same, the cross correlation function 

becomes the autocorrelation function of that signal. Thus, the autocorrelation function is 

defined as 

	

N 	_ 	 _ 
{x(n) — x} {x(n + k) — x} 

 

r (k) =  n=1 	N  .4.40 xe  
{x(n)_x}2    

n=1 

Autocorrelation is useful to determine the pitch period of the EEG signals and also 

this is useful in the determination of unstable and stable frames in the EEG signals. 

4.4.3 Pitch Detection 

Pitch period is important factor in the case of unstable EEG coding methods. 

Accurate estimation of the pitch period or the lag in the pitch filter is very important. It is 

difficult to measure exact pitch period due to the following reasons [24]: 

■ The reliable measurement of pitch is limited by the inherent difficulty in defining the 

exact beginning and end of each pitch period during voiced speech segments. 

■ Another difficulty in pitch detection is distinguishing between stable EEG and low 

level unstable EEG. In many cases, transitions between stable EEG segments and low 

level unstable EEG segments are very subtle, and thus are extremely hard to pinpoint. 

■ In practical application, the background ambient noise can also seriously affect the 

performance of the pitch detector. This is especially serious in mobile communication 

environments where a high level of noise is present. 
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Pitch diction methods can be classified in the following categories [24]: 

I. Pitch detectors which utilize the frequency domain properties of EEG signals. 

II. Pitch detectors which utilize the time domain properties of EEG signals. 

III. Pitch detectors which utilize both the frequency and time domain properties of 

EEG signals. 

In this dissertation work I am mainly interested in pitch detectors which utilize the 

time domain properties of EEG signals. One major property of periodic signals is that the 

distant similarity of the waveform in time domain. The main principle of pitch detection 

algorithms (PDAs) which rely on waveform similarities is to find the pitch by comparing the 

similarity between the original signal and its shifted version. If the shifted distance is equal to 

the pitch, the two signal waveforms should have the greatest similarity. The majority of 

existing PDAs are based on this concept. Among them, the auto-correlation (AC) method and 

the average magnitude difference function (AMDF) are the two most widely used. Out of 

these two we are concentrating on only auto-correlation method. 

The key problem of PDAs which are based on the waveform similarity methods is the 

quantitative definition of similarity [24]. There are a number of different similarity measures 

which result in different PDAs and performance. They are mainly based on the minimization 

of a quadratic cost function. The direct distance measurement is the most popular criterion, 

examining the similarity between two waveforms which can be expressed as; 

1 N-1 
E(r) _ —V [s(n) – s(n + r))2 

 

N 
4.41 

Where N is the analysis frame length and i is the shifted distance. The above equation 

assumes that the average signal level is fixed. The assumption in the case of auto-correlation 

method is that the signal is stationary. The error criterion of equation (4.25) can be rewritten 

as 

E(r) = [R(0) * R(r)] 
	 .4,42 

N-1 
Where; 	 R(r) _ 	s(n)s(n + r) 	 .4.43 

n=0 
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The minimization of the estimation error, E (r), in equation 4.25 is equivalent to maximizing 

the auto-correlation R (t). The variable i is called lag or delay, and the pitch is equal to the 

value oft, which results in the maximum R (t). 

voiced speech 

~
..0.4 

cr 
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Figure 4.19 Illustration of pitch period 1251 

In the above figure 4.19 has been shown that the pitch period (T) of the EEG signal. 

Pitch period is a variable parameter. Its value changes from person to person's EEG signal. 

4.4.4 Stable/ Unstable Decision 

By calculating the auto correlation coefficient we can say that the particular frame is stable or 

unstable. Auto correlation coefficient can be calculated by using the equation (4.26). If the 

auto correlation coefficient is maximum, only once in a frame then we can say that, that 

frame is unvoiced. If the auto correlation coefficient is giving maximum value repeatedly 

with particular interval then we can say that the frame is unstable with pitch period of T. 

Detection of stable, unstable and pitch period is showing in the figure (4.20). 
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Figure 4.20 Stable/Unstable Decisions 1251 
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Chapter - 5 

SIGNAL. ACQUISATION, INSTRUMENTS AND DATABASE 

5.1 Introduction 

The database has taken from three varieties of signals from different sources. The first two 

were taken from standard website [26] archive of physiological signals. The third database 

has been taken from EEG machine, laboratory of Electrical Engineering department, IIT 

Roorkee. 

5.2 Effect of Deep Brain Stimulation on Parkinsonian Tremor 

The recordings of this database are of rest tremor velocity in the index finger of 16 subjects 

with Parkinson's disease (PD) who receive chronic high frequency electrical deep brain 

stimulation (DBS) either uni- or bi-laterally within one of three targets: 

Vim = the ventro-intermediate nucleus of the thalamus (n=3  

• GPi = the internal Globus pallidus (n=7), or 	 $ 	. 	* 

• STN = the subthalamic nucleus (n=6).  

This surgical procedure involves implanting an electrode into subc 	l 9tru~T (Vim, 

GPi or STN) for long-term stimulation at frequencies greater than 100 Hz. The mechanism 

by which high frequency DBS suppresses tremor and reduces other symptoms in PD is 

unknown. 

Parkinson's disease is characterized by the progressive loss of dopamine neurons in the 

substantia nigra of the midbrain, and is associated with motor symptoms including tremor 

(usually rest tremor, though sometimes postural tremor), bradykinesia and rigidity. In 

Parkinson's disease, tremor becomes more regular or harmonic, its frequency is shifted to a 

lower range (typically 4-6 Hz), its amplitude increases, the shape of its oscillations changes, 

and it fluctuates over time. These changes are subtle and intermittent at first, becoming more 

permanent and obvious as the disease progresses. Chronic high frequency deep brain 

stimulation of the Vim can decrease tremor amplitude in a spectacular way. Deep brain 

stimulation of the GPi and STN has been shown to relieve not only tremor but also other 
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symptoms of PD such as rigidity and dyskinesia. See figure 5.1 for an example of the effect 

of deep brain stimulation of the GPi on tremor. 

(a) 
1 

0.5 

0 

-0.5 

-1 

1 sec 

(C) 
	 (d) 

Figure 5.1 Two seconds of Parkinsonian rest tremor velocity (metres/second) recordings from subject g2 

(stimulator implanted in the GPi) under four conditions: (a) no stimulation and no medication, (b) deep 

brain stimulation and no medication, (c) no stimulation and 150% medication, (d) deep brain stimulation 

and 150% medication. Note the zoomed vertical scale in (b), (c) and (d) [26]. 

Figure5. 2 Velocity laser recording of rest tremor [26]. 

The raw data were obtained using a low intensity velocity-transducing laser that was directed 

at a piece of reflective paper on the subject's index finger tip (figure 5.2), with the output 

voltage proportional to the velocity of the finger. 
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(a) DBS/Medication conditions: 

Tremor was recorded for approximately 60 seconds under various conditions: 

1. Two conditions of DBS (on-off) and two conditions of medication (L-dopa on-off) 

[total: 55 recordings of approx 60 seconds each] 

2. every 15 minutes when DBS was stopped for 60 minutes (medication off) 

[total: 46 recordings of approx 60 seconds each] 

Subjects were tested under all conditions. 

For the `medication off condition, the subject did not take any medication for at least 

12 hours. For the `medication on' condition, the subject took 150% morning dose of 

dispersible Modopar and testing began after the neurologist determined the medication had 

taken effect (approximately 40 minutes) [26]. 

(b) Subjects: 

The 16 subjects can be divided into two groups: 

1. Subjects 1-8 with high amplitude tremor (HAT) those are receiving DBS to relieve 

tremor. (Group 1), and 

2. Subjects 9-16 with low amplitude tremor (LAT) those are receiving DBS to relieve 

other symptoms such as rigidity or dyskinesias (Group 2). 

The file description.txt [26] contains information on the 16 subjects. They have been 

explained in the next chapter. 

(c) The file name structure of the records is: 

• 2 character subject identification: stimulation target (v=Vim, s=STN, g=GPi) and 

subject number (1-16) 

• 1 character tremor type: r = resting tremor 

• 1 character DBS condition: e = effective (> 100 Hz), o = no stimulation 

• (optional) 2 character time since stimulator arrest: if a 2 digit number follows the 

DBS condition, it indicates the number of minutes since the stimulation was stopped 

• 1 character medication condition: n= medication on, f=medication off 
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• 3 character extension indicates the side tested: let = left index finger tremor, rit = right 

index finger tremor 

Table 5 .1 Subject description table of parkinsonian Tremor 

Information Description 

SUBJECT Character subject identification: 

Stimulation target (v=Vim, s=STN, g=GPi), and 

Subject number (1-16) 

AGE. Age at the time of testing (years) 

GENDER Male (n=1 1) or female (n=5) 

STIM TARGET Vim = ventro-intermediate nucleus of the thalamus 

GPi = internal Globus Pallidus 

STN=subthalamic nucleus 

BI/UNI-LATERAL Bilateral stimulation (n=12) or unilateral stimulation (n=4) 

EFF FREQ Frequency (Hz) of effective stimulation (> 100 Hz) 

INEFF FREQ Frequency (Hz) of so-called ineffective stimulation (< 100 Hz) 

INTENSITY Stimulation intensity (V) 

PULSE WIDTH Stimulation pulse width (µsec) 

MODE Cont = continuous stimulation, 

Cycl=cyclic stimulation (e.g. 1 minute on, 1 second off) 

STIM CONTACTS Listed in order of proximal distal direction on 

Quadripolar stimulating electrode: 

- negative polarity 

+ positive polarity 

not stimulated 

YEAR DIAGNOSED Year diagnosed with Parkinson's disease 

YEAR DBS RIGHT Year of right brain DBS surgery 

YEAR DBS LEFT Year of left brain DBS surgery 

TOT DAILY MED Total medication of morning, noon and evening doses (mg) 

150% SINGLE DOSE Dose taken before testing "medication on" condition (mg) 
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(d) Filename examples: 

• s6ren. let contains a recording (approx. 60 sec) of rest tremor in the left index finger of 

subject 6 in the "dbs on and medication on" condition: the subject had taken 150 % 

morning dose of L-dopa and was receiving "effective" stimulation of the STN. 

• v4rof.rit contains a recording (approx. 60 sec) of rest tremor in the right index finger 

of subject 4 in the "dbs off and medication off' condition: the subject was off 

medication for at least 12 hours and the subject's stimulator (implanted in the Vim) 

was switched off. 

• glr30of.rit contains a recording (approx. 60 see) of rest tremor in the right index 

finger of subject 1 at 30-minutes after the stimulator (implanted in the GPi) was 

switched off. Also, this subject was off medication for at least 12 hours. 

(e) Tremor recordings: 

The rest tremor recordings can be classified as one of 8 categories, for subjects with high 

amplitude tremor (HAT) and for subjects with low amplitude tremor (LAT): 

Case 1: ren: Deep brain stimulation on, Medication on 

HAT subjects: n=5 recordings 

LAT subjects: n=8 recordings 

Case 2: ref Deep brain stimulation on, Medication off 

HAT subjects: n=5 recordings 

LAT subjects: n=8 recordings 

Case 3: roan: Deep brain stimulation off, Medication on 

HAT subjects: n=7 recordings 

LAT subjects: n=8 recordings 

Case 4: rof: Deep brain stimulation off, Medication off 

HAT subjects: n=6 recordings 

LAT subjects: n=8 recordings 
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Case 5: r15of: Deep brain stimulation off for 15 minutes, Medication off 

HAT subjects: n=3 recordings 

LAT subjects: n=8 recordings 

Case 6: r30of: Deep brain stimulation off for 30 minutes, Medication off 

HAT subjects: n=4 recordings 

LAT subjects: n=8 recordings 

Case 7: r45of: Deep brain stimulation off for 45 minutes, Medication off 

HAT subjects: n=3 recordings 

LAT subjects: n=8 recordings 

Case 8: r60of: Deep brain stimulation off for 60 minutes, Medication off 

HAT subjects: n=4 recordings 

LAT subjects: n=8 recordings 

HAT subjects: n=37 recordings, LAT subjects: n=64 recordings all are shown in [26]. 

5.3 Noise Enhancement of Sensorimotor Function 

This database contains postural sway [26] measurements for 15 healthy young (mean age 23, 

standard deviation 2), and 12 healthy elderly (mean age 73, standard deviation 3) volunteers. 

Each subject's postural sway is recorded during a test of 10 minutes for the young subjects, or 

5 minutes for the elderly subjects, in all cases with a 2-minute seated break midway through 

the test. Each test was divided into 30-second trials, and each file of the database contains 

data for one of these 30-second trials. 

In each shoe, subjects wore a gel-based insole, which included vibrating elements 

(tactors) beneath the forefoot and heel. The vibrations were generated using a digitized 

uniform white noise signal, low-pass filtered with 100 Hz cutoff. Before beginning the test, 

each subject adjusted the amplitude of the vibrations produced by the tactors to a level that 

could be felt only slightly. The stimulation level was then reduced by 10% so that the 

vibrations were subsensory. 

The data from the young and elderly subjects are contained within the yng (young) 

and eh (elderly healthy) directories respectively. Within these, separate directories for each 

subject contain the data for that subject. For each subject, sub sensory vibration applied 
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during half of the 30-second trials (those recorded in the database files within the STIM 

subdirectories of the subject directories), and no stimulus was applied during the remaining 

(control) trials (those in the NULL subdirectories). The sequence of noise and control trials 

was randomized in a pair wise fashion, so that subjects were not aware of the presence or 

absence of the stimulus in any given trial. 

An example should make this arrangement clear. Within the eh directory are 

subdirectories for each of the 12 healthy elderly volunteers, designated as MT1502, MT1503, 

etc. Within the directory for the first of these, MT1502, are subdirectories NULL and STIM, 

containing control and noise trial data for subject MT1502. Within each of these are the data 

files, with names that indicate their positions within the sequence of trials for that subject. 

For example, the data for the first trial, fMT1 50201 .txt, are found in the NULL subdirectory, 

so this indicates that subject MT1502's first trial was a control trial. 

The data files are two-column text files, and the data are measurements of the 

displacement of a reflective marker placed on the subject's shoulder to characterize whole 

body postural sway. A Vicon motion analysis system has been used to record the 

mediolateral (side-to-side) and anteroposterior (front-to-back) displacement (normalized by 

the height of the marker) in columns 1 and 2 respectively, at a rate of 60 samples per second, 

throughout each 30 second trial. 

5.4 EEG machine data 

This data base has been taken from EEG laboratory in Electrical Engineering department, IIT 

Roorkee. It is computer based machine named "RMS EEG-24" supplied by "Recorders 

Medicare Systems" belongs to Punjab, India. 

Machine has two software supporting EEG signal processers are existing, one "EEG 

Acquire" and "Analysis", by using EEG acquire we can record the data up to 24 channels by 

using gel based non invasive type of electrodes. This software provides number of varieties 

to take data means reference changing, patient details changing and so on. The "Analysis" 

software can support processing the recorded data means Average, RMS, splitting into 

different frequency bands and so on. The sampling frequency exists between 40-6OHz. 
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Chapter — 6 

RESULTS AND DISCUSSIONS 

6.1 Evaluation details 

The work is carried out on a Pentium IV PC operating at 2.00 GHz clock with a 512RAM. In this 

work MATLAB 7.5.0.324(R2007b) is used for the implementation of EEG compression 

techniques. The EEG signals are downloaded from internet and also recorded from EEG machine 

using software called 'superspec'. Three types of signals have been taken and tested with the 

three algorithms, and forty-five patient data have been taken for comparative evaluation. 

In this work EEG signals are compressed using DCT, Wavelets and LPC techniques. In 

Wavelets best among all Wavelets `Dbl0' is used by using level dependent thresholding. 

Compression is achieved in two ways one by thresholsing (or) bit assigning and another by 

Huffman coding. These three results of the each sampled EEG signal are tabulated and all the 

three coding technique performance are compared. 

6.2 Parameters for Comparative Evaluation 

The following parameters for the comparative evaluation of the EEG compression 

techniques have been implemented in this dissertation work. 

1. Compression Ratio (CR) 

2. Compression Factor (%) (CF) 

3. Signal to Noise Ratio (dB) (SNR) 

4. Percent Residual difference (%) (PRD) 

The above quantities are calculated using the following formulae: 
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1. Compression Ratio 

Memory required for sampled original data 
C = 

Memory required for encoded data 

2. Compression Factor (%) 

The reduction in storage requirement is usually expressed as a percentage using a 

figure of merit called the compression factor (CF). 

CF(%) = USU  Cs  xlOO 
s 

U. Is the original data size and C,, is the compressed data size. 

3. Signal to Noise Ratio 
z 

SNR = 10lo 6X 
goo( z) 

0 e  

o-  Is the mean square of the speech signal and o is the mean square difference 

between the original and reconstructed signals. 

4. 	Percent Residual Difference 

The reconstruction error is often expressed using a distortion metric called the 

percent residual difference (PRD), defined as 

N 
(x; — Y;)2  

PRD(%) _  '_' N 	x 100 

Ix2 ; 

x is the original signal, y is the reconstructed signal, and. N is the segment length. 

6.3 Subjects with High Amplitude Tremor 

This database contains "Effect of deep brain stimulation on parkinonian tremor" signals. 

These are further divided into HAT and LAT. First of all HAT signals have been used. For these 
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signals two coding techniques were applied one DCT and another Wavelet. For both techniques, 

Huffman coding was applied to further compress the data. Compression ratio (C.R), compression 

factor (C.F %), signal to noise ratio (SNR) and percent residual difference (PRD %) are 

calculated for each coding technique. Original EEG signal data and encoded EEG signal data are 

stored in the `.mat' file. The size of the original and reconstructed EEG signal data that has been 

represented in the result tables are in "KB (kilobytes)" and `Bytes". 

In HAT [26], there are eight varieties of condition are available, those are as follows: 

# FILES FOR SUBJECTS WITH HIGH AMPLITUDE TREMOR: 

#----------------------------------------------------------- 
# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
# REST TREMOR,  CONDITION: DBS ON, MEDICATION ON  (n=5 files) 
#----------------------------------------------------------- 
SUBJ FILE RANGE VELOCITY LASER RATE SAMPLES 

gi glren.let 0.5 mm/s 0-0.2 100 6234 
g2 g2ren.rit 0.2 mm/s 0-0.2 100 7680 
v3 
v4 
v5 
s6 s6ren.let 0.2 mm/s 0-0.2 100 6288 
s7 s7ren.rit 0.5 mm/s 0-0.2 100 6468 
s8 s8ren.let 0.2 mm/s 0-0.2 100 6252 

#----------------------------------------------------------- 

# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
# REST TREMOR,  CONDITION: DBS ON, MEDICATION OFF (n=5 files) 
#----------------------------------------------------------- 
SUBJ FILE RANGE VELOCITY LASER RATE SAMPLES 

gl glref.let 0.5 mm/s 0-0.2 100 6690 

g2 g2ref.rit 0.2 mm/s 0-0.2 100 6336 
v3 
v4 
v5 
s6 s6ref.let 0.2 mm/s 0-0.2 100 7260 
s7 s7ref.rit 0.5 mm/s 0-0.2 100 6402 

s8 s8ref.let 0.2 mm/s 0-0.2 100 7896 

#------------------------------------------------------------ 
# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 

0 REST TREMOR, 	CONDITION: 	DBS OFF, MEDICATION ON (n-7 files) 
#----------------------------------------------------------- 
SUBJ FILE RANGE VELOCITY LASER RATE SAMPLES 

gl glron.let 0.5 mm/s 0-0.2 100 6264 
g2 g2ron.rit 0.5 mm/s 0-0.2 100 7134 

v3 
v4 v4ron.rit 2.0 m/s 0-1 100 6432 
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v5 v5ron.let 1.0  m/s 0-0.2 100  7344 
s6 s6ron.let 0.5  mm/s 0-0.2 100  7356 
s7 s7ron.rit 0.5  mm/s 0-0.2 100  6234 
s8 s8ron.let 0.2  mm/s 0-0.2 100  6720 

#----------------------------------------------------------- 
# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
# REST TREMOR,  CONDITION:  DBS OFF, MEDICATION OFF (n=6 files) 
#----------------------------------------------------------- 
SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 

gl 
g2 g2rof.rit 2.0  m/s 0-1 100  7176 
v3 
v4 v4rof.rit 2.0  m/s 0-1 100  6282 
v5 v5rof.let 2.0  m/s 0-1 100  3400 
s6 s6rof.let 1.0  m/s 0-1 100  9114 
s7 s7rof.rit 0.5  mm/s 0-0.2 100  6264 
s8 s8rof.let 2.0  m/s 0-1 100  6216 

#---------------------------------------------------------------------- 
# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
# REST TREMOR,  15 MINUTES AFTER DBS STOPPED (MEDICATION OFF)  (n=3 
files) 
#---------------------------------------------------------------------- 
SUBJ FILE  RANGE VELOCITY LASER  RATE SAMPLES 

gl 
g2 g2rl5of.rit  2.0  m/s 0-1 100  6150 
v3 
v4 
v5 
s6 s6rl5of.let  1.0  m/s 0-1 100  7104 
s7 
s8 s8rl5of.let  2.0  m/s 0-1 100  8598 

#---------------------------------------------------------------------- 
# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
# REST TREMOR,  30 MINUTES AFTER DBS STOPPED (MEDICATION OFF)  (n=4 
files) 
#------------------------------------------------------------------------ 
SUBJ FILE  RANGE VELOCITY LASER  RATE SAMPLES 

g1 
g2 g2r30of.rit  2.0  m/s 0-1 100  9144 
v3 
v4 
v5 
s6 s6r30of.let  1.0  m/s 0-1 100  7200 
s7 s7r3Oof.rit  0.5  mm/s 0-0.2 100 	6510 
s8 s8r30of.let  2.0  m/s 0-1 100  8616 

#---------------------------------------------------------------------- 

# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
# REST TREMOR,  45 MINUTES AFTER DBS STOPPED (MEDICATION OFF)  (n=3 
files) 
#---------------------------------------------------------------- ------ 
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SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 

gl 
g2  g2r45of.rit 2.0 m/s  0-1 100 6354 
v3 
v4 
v5 
s6  s6r45of.let 1.0 m/s  0-1 100 8232 
s7 
s8  s8r45of.let 2.0 m/s  0-1 100 8652 
#----------------------------------------------------------------------
# SUBJECTS WITH HIGH AMPLITUDE TREMOR: 
REST TREMOR, 60 MINUTES AFTER DBS STOPPED (MEDICATION OFF) (n=4 

files) 
------------------------------------------- 

SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 
g1 
g2  g2r60of.rit 2.0 m/s  0-1 100 6162 
v3 
v4 
v5 
s6  s6r60of.let 1.0 m/s  0-1 100 7218 
s7  s7r60of.rit 0.5 mm/s  0-0.2 100 6300 
s8  s8r60of.let 2.0 m/s  0-1 100 6726 

# SUBJ: g = GPi = Globus Pallidus interna 
#  v = Vim = Ventro-intermediate nucleus of the thalamus 
#  s = STN = subthalamic nucleus 
# RANGE:  Range (V) Precision (+/- mm/s) 
#  2.0  1.0 
#  1.0  0.5 
#  0.5  0.25 
#  0.2  0.1 
#  0.1  0.05 
# VELOCITY: units of velocity in recordings 
#  (mm/s or m/s) 
# LASER: laser speed setting 
#  (0-0.2 m/s or 0-1 m/s) 

# RATE: sampling rate in Hz 
# SAMPLES: number of samples in recording 

#---------------------------------------------------------------------------- 

The above database is the 51 files of 8 HAT patients. The different patients are 

considering s->subthalmic nucleas, g-> globus pallidus interna, v-> ventro-intermediate 

nucleas of the thalamus. From above files it is considered only one patient data for 

compression, because one file can give good comparative study of compression 

algorithms. The considered data file is `s6' because it is appearing in 8 varieties of 

conditions. The remaining details are available in the above description text it self. 
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a) Original and reconstructed waveforms 

Original and reconstructed waveforms for different conditions of patient `6' are shown figure 6.1 

and 6.2 respectively. 
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b) Representation of results in tabular form 

The performance index for two EEG signals (s6ren.let and s6ref.let) are presented in tables 6.1 to 

6.4 using DCT and Wavelet coding. 

Table 6.1 Performance index for EEG signal I ("s6ren.let") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data in bytes 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.28 324 4.0454 75.2808 -3.9272 157.1674 
4 1.28 381 3.7342 70.9320 2.2660 77.0369 
5 1.28 470 2.7888 64.1418 8.2182 38.8231 
6 1.28 567 2.3117 56.7413 14.2762 19.3280 
7 1.28 662 1.9799 49.4934 20.3891 9.5619 
8 1.28 768 1.7067 41.4063 26.4641 4.7511 
9 1.28 854 1.5348 34.8450 32.4037 2.3978 

Table 6.2 Performance index for EEG signal 1 ("s6ren.let") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.28 723 1.8129 44.8395 19.7365 10.3080 
2 1.28 580 2.2599 55.7495 12.3566 24.1086 
3 1.28 438 2.9925 66.5833 7.8116 40.6837 
4. 1.28 364 3.6009 72.2290 5.1406 55.3312 
5 1.28 319 4.1088 75.6622 3.9803 63.2393 
6 1.28 300 4.3691 77.1118 3.3999 67.6087 

Table 6.3 Performance index for EEG signal 1 ("s6ref.let") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.39 342 4.1620 75.9723 -3.3563 147.1692 
4 1.39 362 3.9320 74.5672 3.1145 69.8677 
5 1.39 441 3.2277 69.0170 9.4333 33.7547 
6 1.39 541 2.6311 61.9913 15.2857 17.2073 
7 1.39 631 2.2558 55.6683 21.3626 8.5481 
8 1.39 728 1.9552 48.8534 27.2075 4.3614 
9 1.39 821 1.7337 42.3196 33.2903 2.1651 
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Table 6.4 Performance index for EEG signal 1 ("s6ref.let") using Wavelet coding 

Level of 
decomposition 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.39 761 1.8704 46.5350 22.3779 7.6051 
2 1.39 589 2.4166 58.6190 14.4228 19.0047 
3 1.39 461 3.0876 67.6118 7.9612 39.9891 
4 .1.39 366 3.8891 74.2862 3.9201 63.6788 
5 1.39 323 4.4068 77.3072 2.0749 78.7507 
6 1.39 295 4.8251 79.2744 1.4995 84.1444 

It is observed from above tables that, by increasing the number of bits per sample C.R and PRD 

are decreasing while SNR increases. For Wavelet, by increasing the level of decomposition C.R 

and PRD are increasing while SNR is decreasing. By comparing DCT and WT it is observed that 

WT is giving good results at 8 bits per sample. 

The performance index (s6ron.let and s6rof.let) are presented in tables 6.5 to 6.8. 

Table 6.5 Performance index for EEG signal 1 ("s6ron.let") using DCT coding 

No of bits 
per sample 

Original 
signal size 

in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.14 344 3.3935 70.5318 -2.9982 141.2253 
4 1.14 358 3.2608 69.3325 3.3060 68.3439 
5 1.14 381 3.0639 67.3623 9.6903 32.7708 
6 1.14 416 2.8062 64.3640 16.0869 15.6912 
7 1.14 475 2.4576 59.3099 22.2813 7.6901 
8 1.14 554 2.1071 52.5425 28.5460 3.7385 

Table 6.6 Performance index for EEG signal 1 ("s6ron.let") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (by) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.14 564 2.0699 51.6859 29.8294 3.2250 
2 1.14 453 2.5770 61.1945 27.7073 4.1175 
3 1.14 367 3.1809 68.5615 25.1218 5.5451 
4 1.14 314 3.7178 73.1017 22.5133 7.4875 
5 1.14 293 3.9843 74.9006 19.6695 10.3878 
6 1.14 279 4.1842 76.0999 16.7720 14.5010 



Table 6.7 Performance index for EEG signal 1 ("s6rof.let") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 2.22 318 7.1487 86.0114 -5.4920 188.1913 
4 2.22 326 6.9733 85.6595 0.6689 92.5885 
5 2.22 360 6.3147 84.1639 6.7922 45.7499 
6 2.22 398 5.7118 82.4923 13.0137 22.3519 
7 2.22 434 5.2380 80.9086 19.2607 10.8884 
8 2.22 495 4.5925 78.2253 25.4499 5.3396 
9 2.22 545 4.1712 76.0258 31.5349 2.6501 

Table 6.8 Performance index for EEG signal I ("s6rof.let") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 2.22 741 3.0679 67.4039 38.4467 1.1958 
2 2.22 568 4.0023 75.0141 28.6983 3.6736 
3 2.22 461 4.9312 79.7209 15.7542 16.3038 
4 2.22 354 6.4217 84.4278 5.5642 52.6972 
5 2.22 310 7.3332 86.3633 2.5328 74.7068 
6 2.22 293 7.7586 87.1111 1.2497 86.5994 

Similar are the results observed in tables 6.5 to 6.8. 

The performance index (s6rl5of.let and s6r45of.let) are presented in tables 6.5 to 6.8 by same 

DCT and Wavelet techniques. 

Table 6.9 Performance index for EEG signal 1 ("s6rl5of.let") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 2.17 315 7.0542 85.8241 -10.1294 320.9750 
4 2.17 318 6.9877 85.6891 -4.0504 159.4108 
5 2.17 330 6.7336 85.1490 2.1068 78.4625 
6 2.17 343 6.4784 84.5640 8.2999 38.4598 
7 2.17 	° 367 6.0547 83.4839 14.6052 18.6096 
8 2.17 401 5.5413 81.9538 21.0865 8.8242 
9 2.17 461 4.8201 79.2537 27.6119 4.1630 
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Table 6.10 Performance index for EEG signal 1 ("s6rl5of.let") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

l 2.17 733 3.0315 67.0129 40.7376 0.9186 
2 2.17 552 4.0255 75.1584 34.9604 1.7864 
3 2.17 441 5.0387 80.1537 17.9454 12.6687 
4 2.17 350 6.3488 84.2490 6.0067 50.0803 
5 2.17 305 7.2855 86.2741 1.7148 82.0843 
6 2.17 294 7.5581 86.7692 0.9900 89.2273 

Table 6.11 Performance index for EEG signal 1 ("s6r45of.let") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.96 335 5.9912 83.3088 -5.7986 194.9535 
4 1.96 354 5.6696 82.3621 0.3810 95.7079 
5 1.96 376 5.3379 81.2659 6.6337 46.5922 
6 1.96 416 4.8246 79.2730 12.9710 22.4620 
7 1.96 460 4.3631 77.0807 19.1416 11.0387 
8 1.96 519 3.8671 74.1410 25.3441 5.4050 
9 1.96 590 3.4018 70.6035 31.7439 2.5871 

Table 6.12 Performance index for EEG signal 1 ("s6r45of.let") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.96 723 2.7760 63.9768 34.9114 1.7965 
2 1.96 559 3.5904 72.1480 28.2224 3.8804 
3 1.96 433 4.6352 78.4259 13.9475 20.0737 
4 1.96 347 5.7840 82.7109 6.0434 49.8687 
5 1.96 315 6.3716 84.3052 2.7817 72.5967 
6 1.96 303 6.6239 84.9031 1.1097 88.0061 

The results from tables 6.9 to 6.12 show the higher C.R and SNR. It is because of low frequency 

variation in the signal. In the tables 6.11 and 6.12, the average C.R in DCT and WT are 4.2356 



and 5.4236, respectively. By observing the HAT results parameters variation are not wide among 

tables, but overall it is observed that there is always some change in these parameters. 

By observing high amplitude tremor signals the compression ratios are existing in 

between 3 to 7. In DCT and Wavelet there is trade of between these two in respective to bits per 

sample or level of decomposition, but overall Wavelets show better results. The 6 verities of data 

(ren, ref, ron, rof, rl5of, r45of) of left indexed tremor (let) of patient `s6' are shown results 

similarly in each table by respective coding. It indicates the algorithms DCT and Wavelet are 

signal independent algorithms. 

c) Representation of results in graphical form 

Fig 6.3 shows one representation graph for file 's6ren.let'. 

(a) comparative graph of `°S6ren.lit" using DCT coding 

The tabular results presented earlier are presented in graphical form here. Variations in different 

parameters obtained are clearly visible here. 



(b) comparative graph of "S6ren.lit" using Wavelet coding 

Fig 6.3 Comparative graph for different coding 

Similarly, variations in different parameters obtained clearly visible here by Wavelet. 

6.4 Subjects with Low Amplitude Tremor 

Similar to high amplitude tremor LAT [26] signals also 8 varieties are available, those are as 
follows 

# FILES FOR SUBJECTS WITH LOW AMPLITUDE TREMOR: 
#------------------------------------------------------------ 
# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR, CONDITION: DBS ON, MEDICATION ON (n=8 files) 
#----------------------------------------------------------- 

SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 
g9  g9ren.rit 0.5 mm/s  0-0.2 100 6276 
g10  gl0ren.let 0.5  mm/s  0-0.2 100 6180 
gll  gllren.let 0.1  mm/s  0-0.2 100 6276 
g12 	gl2ren.rit 0.2  mm/s  0-0.2 100 6492 
g13  gl3ren.rit 0.1  mm/s  0-0.2 100 6282 
s14  sl4ren.rit 0.5  mm/s  0-0.2 100 6408 
s15  sl5ren.rit 0.5  mm/s  0-0.2 100 7284 
s16  sl6ren.let 0.2  mm/s  0-0.2 100 6300 
#-----------------------------------------------------------
# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR, CONDITION: DBS ON, MEDICATION OFF (n=8 files) 
#------------------------------------------------------------
# 
SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 
g9  g9ref.rit 0.5 mm/s  0-0.2 100 6174 
g10  glOref.let 0.5  mm/s  0-0.2 100 6252 
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gll  gllref.let 0.1  mm/s  0-0.2 100 6396 
g12 	g12ref.rit 0.2  mm/s  0-0.2 100 6714 
g13  gl3ref.rit 0.2  mm/s  0-0.2 100 6564 
s14  s14ref.rit 0.5  mm/s  0-0.2 100 6282 
s15  sl5ref.rit 0.5  mm/s  0-0.2 100 6228 
s16  s16ref.let 0.2  mm/s  0-0.2 100 7128 

--------------------------------------------------
# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR, CONDITION: DBS OFF, MEDICATION ON (n=8 files) 

-------------------------------------------------- 

SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 
g9  g9ron.rit 0.5 mm/s  0-0.2 100 9156 
g10  glOron.let 0.5  mm/s  0-0.2 100 12108 
gll  gllron.let 0.1  mm/s  0-0.2 100 6366 
g12 	gl2ron.rit 0.2  mm/s  0-0.2 100 7176 
g13  gl3ron.rit 0.2  mm/s  0-0.2 100 6234 
s14  sl4ron.rit 0.5  mm/s  0-0.2 100 6228 
s15  s15ron.rit 0.5  mm/s  0-0.2 100 6102 
s16  sl6ron.let 0.5  mm/s  0-0.2 100 6696 

-------------------------------------------------- 

SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR, CONDITION: DBS OFF, MEDICATION OFF (n=8 files) 
#------------------------------------------------------------- 

SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 
g9  g9rof.rit 0.5 mm/s  0-0.2 100 6354 
gl0  glOrof.let 0.5  mm/s  0-0.2 100 6180 
g1l  gllrof.let 0.1  mm/s  0-0.2 100 6306 
g12 	gl2rof.rit 0.2  mm/s  0-0.2 100 6360 
g13  gl3rof.rit 0.2  mm/s  0-0.2 100 7230 
sl4  sl4rof.rit 0.5  mm/s  0-0.2 100 6492 
s15  sl5rof.rit 0.5  mm/s  0-0.2 100 6300 
s16  sl6rof.let 0.5  mm/s  0-0.2 100 6594 
#----------------------------------------------------------------------
# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR, 15 MINUTES AFTER DBS STOPPED (MEDICATION OFF) (n=8 
files) 
#---------------------------------------------------------------------- 

SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 

g9  g9rl5of.rit 0.5 mm/s  0-0.2 100 6306 
g10  glOrl5of.let 0.5  mm/s  0-0.2 100 6132 
gll  gllrl5of.let 0.1  mm/s  0-0.2 100 6258 
g12 	gl2rl5of.rit 0.2  mm/s  0-0.2 100 6348 
g13  gl3rl5of.rit 0.2  mm/s  0-0.2 100 6558 
s14  sl4rl5of.rit 0.5  mm/s  0-0.2 100 6726 
sl5  sl5rl5of.rit 0.5  mm/s  0-0.2 100 6252 
s16  s16ri5of.let 0.5  mm/s  0-0.2 100 6486 
#-----------------------------------------------------------------------

# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR, 30 MINUTES AFTER DBS STOPPED (MEDICATION OFF) (n=8 
files) 
#---------------------------------------------------------------------- 

SUBJ FILE  RANGE VELOCITY LASER RATE SAMPLES 

g9  g9r30of.rit 0.5 mm/s  0-0.2 100 6318 
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g10 glOr30of.let 0.5 mm/s 0-0.2 100 6198 
gll gllr30of.let 0.1 mm/s 0-0.2 100 6594 
g12 gl2r30of.rit 0.2 mm/s 0-0.2 100 6354 
g13 g13r30of.rit 0.2 mm/s 0-0.2 100 7140 
s14 s14r30of.rit 0.5 mm/s 0-0.2 100 6276 
s15 s15r30of.rit 0.5 mrn/s 0-0.2 100 6438 

s16 sl6r30of.let 0.5 mm/s 0-0.2 100 6588 
#---------------------------------------------------------------------- 

# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR,  45 MINUTES AFTER DBS STOPPED  (MEDICATION OFF)  (n=8 
files) 

----------------------------------------------------------- 

SUBJ FILE RANGE VELOCITY LASER RATE SAMPLES 

g9 g9r45of.rit 0.5 mm/s 0-0.2 100 6240 
gl0 glOr45of.let 0.5 mm/s 0-0.2 100 6210 
gll gllr45of.let 0.1 mm/s 0-0.2 100 6318 
g12 gl2r45of.rit 0.2 mm/s 0-0.2 100 6300 
g13 gl3r45of.rit 0.2 mm/s 0-0.2 100 6264 
s14 sl4r45of.rit 0.5 mm/s 0-0.2 100 6282 
s15 sl5r45of.rit 0.5 mm/s 0-0.2 100 7104 
s16 sl6r45of.let 0.5 mm/s 0-0.2 100 6744 
#---------------------------------------------------------------------- 

# SUBJECTS WITH LOW AMPLITUDE TREMOR: 
# REST TREMOR,  60 MINUTES AFTER DBS STOPPED (MEDICATION OFF)  (n=8 
files) 
#---------------------------------------------------------------------- 

SUBJ FILE RANGE VELOCITY LASER RATE SAMPLES 
g9 g9r6Oof.rit 0.5 mm/s 0-0.2 100 6312 
gl0 glOr6Oof.let 0.5 mm/s 0-0.2 100 6180 
gll g11r60of.let 0.1 mm/s 0-0.2 100 6282 

g12 gl2r60of.rit 0.2 mm/s 0-0.2 100 6342 
g13 gl3r6Oof.rit 0.2 mm/s 0-0.2 100 6342 
s14 sl4r60of.rit 0.5 mm/s 0-0.2 100 6342 
s15 sl5r6Oof.rit 0.5 mm/s 0-0.2 100 6516 
s16 sl6r60of.let 0.5 mm/s 0-0.2 100 7302 

----------------------------------------------------------- 

# SUBJ: g = GPi = Globus Pallidus interna 

v = Vim = Ventro- intermediate nucleus of the thalamus 

s = STN = subthalamic nucleus 

# RANGE: Range  (V) Precision (+/- mm/s) 

# 2.0 1.0 
# 1.0 0.5 
# 0.1 0.05 

# VELOCITY: units of velocity in recordings 

# (mm/s or m/s) 

# LASER: laser speed setting 

(0-0.2 m/s or 0-1 m/s) 
RATE: sampling rate in Hz 

# ------ 
	

---------------------------------------- 

Similarly the above description has 8 patient of database of LAT containing 51 files. Remaining 

details are same as explained above. 
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a) Original and reconstructed waveforms 

Original and reconstructed waveforms for different conditions of patient '12' are shown 

figure 6.4 and 6.5 respectively. 
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b) Representation of results in tabular form 

The performance index for two EEG signals (gl2ren.rit and gl2ref.rit) are presented in tables 

6.13 to 6.16 using DCT and Wavelet coding. 

Table 6.13 Performance index for EEG signal I ("gl2ren.rit") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.19 314 3.8809 74.2319 -6.1395 202.7557 
4 1.19 350 3.4817 71.2776 0.3622 95.9155 
5 1.19 432 2.8208 64.5483 6.0825 49.6449 
6 1.19 526 2.3167 56.8343 12.1117 24.7979 
7 1.19 624 1.9529 48.7920 18.3849 12.0435 
8 1.19 718 1.6972 41.0780 24.4417 5.9967 

Table 6.14 Performance index for EEG signal I ("gl2ren.rit") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.19 698 1.7458 42.7193 18.7673 11.5249 
2 1.19 563 2.1645 53.7979 11.0525 28.0141 
3 1.1.9 441.  2.7633 63.8097 6.7229 46.1164 
4 1.19 375 3.2496 69.2260 4.6608 58.4735 
5 1.19 316 3.8563 74.0678 3.5956 66.1031 
6 1.19 300 4.0620 75.3808 3.3439 68.0467 

Table 6.15 Performance index for EEG signal I ("gl2ref.rit") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.18 348 3.4722 71.1997 -0.9830 111.9821 
4 1.18 422 2.8633 65.0755 4.9134 56.7979 
5 1.18 521 2.3192 56.8823 10.7613 28.9692 
6 1.18 619 1.9521 48.7718 16.9223 14.2522 
7 1.1.8 712 1.6971 41.0752 23.0243 7.0597 
8 1.18 806 1.4992 33.2958 28.9263 3.5784 
9 1.18 883 1.3684 26.9233 35.0850 1.7610 



Table 6.16 Performance index for EEG signal 1 ("gl2ref.rit") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.18 760 1.5899 37.1028 16.6174 14.7615 
2 1.18 589 2.0515 51.2546. 9.7280 32.6287 
3 1.18 445 2.7153 63.1720 5.6948 51.9108 
4 1.18 361 3.3471 70.1238 2.9181 71.4656 
5 1.18 317 3.8117 73.7652 1.8308 80.9952 
6 1.18 300 4.0277 75.1721 1.1732 87.3658 

It is observed from above tables that, by increasing the number of bits per sample C.R and PRD 

are decreasing while SNR increases. For Wavelet by increasing the level of decomposition C.R 

and PRD are increasing while SNR is decreasing. By comparing DCT and WT it is observed that 

WT is giving good results at 8 bits per sample. 

Table 6.17 Performance index for EEG signal 1 ("gl2ron.rit") using DCT coding 

No of 

 

it 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.19 360 3.3849 70.4569 0.5492 93.8727 
4 1.19 454 2.6841 62.7429 6.5414 47.0900 
5 1.19 562 2.1683 53.8800 12.8104 22.8812 
6 1.19 647 1.8834 46.9045 18.6354 11.7012 
7 1.19 753 1.6183 38.2058 24.8894 5.6955 
8 1.19 839 1.4524 31.1482 31.0791 2.7928 
9 1.19 933 1.3061 23.4342 36.8807 1.4321 

Table 6.18 Performance index for EEG signal 1 ("gl2ron.rit") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

l -1.19 636 1.9160 47.8072 21.1527 8.7572 
2 1.19 534 2.2819 56.1778 13.2946 21.6406 
3 1.19 418 2.9152 65.6972 8.5819 37.2310 
4 1.19 352 3.4618 71.1134 5.7338 51.6784 
5 1.19 308 3.9564 74.7243 4.2987 60.9627 
6 1.19 291 4.1875 76.1194 3.6441 65.7351 

Table 6.19 Performance index for EEG signal I ("gl2rof.rit") using DCT coding 
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Table 6.19 Performance index for EEG signal 1 ("gl2rof.rit") using DCT coding 

No of bits 
per sample 

Original 
signal size 

in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.13 327 3.5386 71.7402 -4.8325 174.4322 
4 1.13 366 3.1615 68.3697 1.4110 85.0059 
5 1.13 446 2.5944 61.4560 7.4844 42.2452 
6 1.13 544 2.1271 52.9867 13.2462 21.7615 
7 1.13 642 1.8024 44.5174 19.3170 10.8181 
8 1.13 741 1.5616 35.9617 25.4285 5.3527 
9 1.13 842 1.3743 27.2331 31.3585 2.7044 

Table 6.20 Performance index for EEG signal I ("gl2rof.rit") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.13 749 1.5449 35.2703 19.6326 10.4321 
2 1.13 572 2.0229 50.5669 12.1437 24.7069 
3 1.13 452 2.5600 60.9375 7.4457 42.4341 
4 1.13 364 3.1789 68.5426 4.9992 56.2395 
5 1.13 326 3.5494 71.8266 3.4292 67.3813 
6 1.13 289 4.0039 75.0242 2.7491 72.8694 

In the tables 6.17 to 6.20 comparing to high amplitude tremor signals low amplitude tremor 

signals are showing lesser compression ratios. For WT, by increasing the level of decomposition 

C.R, PRD are increasing slowly. In DCT at bit level 6 and in Wavelets at level 3 decomposition 

all the parameters are with in the acceptable range. 

Table 6.21 Performance index for EEG signal 1 ("gl2rl5of.rit") using DCT coding 

No of bits 
per sample 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.16 329 3.6103 72.3027 -3.9532 157.6381 
4 1.16 382 3.1094 67.8408 2.3570 76.2342 
5 1.16 465 2.5544 60.8533 8.2519 38.6727 
6 1.1.6 566 2.0986 52.3505 14.4321 18.9842 
7 1.16 667 1.7808 43.8477 20.3371 9.6194 
8 1.16 768 1.5466 35.3448 26.3175 4.8320 
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Table 6.22 Performance index for EEG signal 1 ("gl2rl5of.rit") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

1 1.16 759 1.5650 36.1025 16.6962 14.6282 
2 1.16 599 1.9830 49.5723 9.6454 32.9405 
3 1.16 466 2.5489 60.7691 5.8420 51.0387 
4 1.16 369 3.2190 68.9352 4.0389 62.8134 
5 1.16 323, 3.6774 72.8078 2.9967 70.8211 
6 1.16 305 3.8944 74.3231 2.3626 76.1851 

Table 6.23 Performance index for EEG signal I ("gl2r45of.rit") using DCT coding 

No of bits 
per sample 

Original• 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

3 1.15 342 3.4433 70.9579 -0.0362 100.4178 
4 1.15 441 2.6703 62.5510 6.0976 49.5588 
5 1.15 543 2.1687 53.8893 12.0553 24.9596 
6 1.15 643 1.8314 45.3974 17.9942 12.5977 
7 1.15 743 1.5849 36.9056 23.9332 6.3583 
8 1.15 830 1.4188 29.5177 30.0001 3.1623 
9 1.15 909 1.2955 22.8091 36.0804 1.5703 

Table 6.24 performance index for EEG signal 1 ("gl2r45o£rit") using Wavelet coding 

Level of 
decomposition 

Original 
signal siz 
in KB 

Size of 
encoded 
data(bytes) 

C.R 
Compression 
Factor (%) 

SNR.in dB PRD (%) 

1 1.15 630 1.8692 46.5014 19.4343 10.6729 
2 1.15 548 2.1489 53.4647 11.7469 25.8616 
3 1.15 433 2.7196 63.2303 7.9556 40.0145 
4 1.15 353 3.3360 70.0238 5.6606 52.1157 
5 1.15 312 3.7744 73.5054 4.3231 60.7920 
6 1.15 292 4.0329 75.2038 3.6507 65.6846 

Similar are the results observed in tables 6.21 to 6.24. 

Coming to end of the parkinsonian tremor disease results, we can observe the variations 

in the C.R, SNR, PRD and C.F all most similar in each table for respective algorithm. At bit 
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level 4-6 DCT giving better results and Wavelet giving better results at 3-5 decomposition level. 

At last the conclusion about these results is Wavelet is some what better than the DCT. 

c) Representation of • results in graphical form 

Fig 6.6 shows one representation graph for file 'gl2ren.rit'. 

(a) comparative graph of "g12ren.rit" using DCT coding 

(b) comparative graph of "gl2ren.rit" using Wavelet coding 

Fig 6.6 Comparative graph for different coding 

The tabular results presented earlier are presented in graphical form here. Variations in 

different parameters obtained are clearly visible here. 
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6.5 Subjects with Sensorimotor Function 

This database contains "Noise enhancement of sensorimotor function [26]" signals. In this 

database there are 15 young and 12 elder subjects are existed, from this I have chosen 3 young 

and 3 elder subject's data. Coming to compression techniques DCT and Wavelet transform are 

implemented, for this fixed bit rate (12) and fixed decomposition level (3) were chosen. 

There are two channels data existing in these files, hence, I have compressed the two 

channels data and results are tabulated separately for each channel. 

Details of the files are, sampling frequency 60Hz and no of samples for each file 1800 (mean 

30 seconds data). 

a) Original and reconstructed waveforms 

Original and reconstructed waveforms for subject MT1415 are shown in figure 6.7. 

STIM `MT1415' using DCT and Wavelet 

original eeg signal 
360 

355 

350 

345 

340 

335 

 

 

0 200 400 600 800 1000. 1200. 1400 1600 1800 
sample number 

reconstructed signal 
360 

355 

350 

345 

340 

335 
0 200 400 600 800 1000 1200 1400 1600 1800 
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(a) original and reconstructed EEG signals at 12 bits for sample in OCT 
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(b) original and reconstructed EEG signals at level 3 decomposition in Wavelet 

Fig 6.7 Original and reconstructed EEG signals of patient MT1415 

b) Representation of results in tabular form 

The performance index for EEG signals ('NULL' channel I and channel 2) are presented in 

tables 6.25 to 6.28 using DCT (at 12 bits per sample) and Wavelet coding (level 3 

decomposition). 

Table 6.25 Performance index for EEG signal 2 channel I ("NULL") using DCT coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT1415 11.2 1003 11.4345 91.2545 73.7444 0.0205 
MT1424 11.1 949 11.9772 91.6508 74.0485 0.0198 
MT1433 1.1.1 928 12.2483 91.8356 74.3176 0.0192 
MT1504 11.2 1.05KB 10.6667 90.6250 75.0177 0.0177 
MT1512 11.1 1.00KB 11.1000 90.9910 75.0955 0.0176 
MT1523 11.5 1.07KB 10.7477 90.6957 75.0091 0.0178 
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Table 6.26 Performance index for EEG signal 2 channel 2("NULL") using DCT coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT1415 11.3 1015 11.4002 91.0942 75.4208 0.0169 
MT1424 11.5 1.15KB 10.00 90.0000 73.3791 0.0214 
MT1433 12.5 1.24 KB 10.0806 90.0800 74.1933 0.0195 
MT1504 12.6 1.37 KB 9.1971 89.1270 74.3529 0.0192 
MT1512 11.2 1.07 KB 10.4673 90.4464 73.2341 0.0218 
MT1523 11.5 996 11.8233 91.5400 73.2391 0.0218 

Table 6.27 Performance index for EEG signal 2 channel 1("NULL") using Wavelet coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT1415 11.2 606 18.9254 94.7161 67.8141 0.0407 
MT1424 11.1 629 18.0706 94.4611 67.7036 0.0412 
MT1433 11.1 611 18.6029 94.6245 67.7629 0.0409 
MT1504 11.2 636 18.0327 94.4545 66.3154 0.0483 
MT1512 11.1 612 18.5725 94.6157 66.8260 0.0456 
MT1523 11.5 715 16.4699 93.9283 66.6334 0.0466 

Table 6.28 Performance index for EEG signal 2 channel 2 ("NULL") using Wavelet coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor, (%) 

SNR in dB PRD (%) 

MT1415 11.3 655 17.6660 94.3394 67.9818 0.0399 
MT1424 11.5 751 15.6804 93.6226 65.6556 0.0521 
MT1433 12.5 778 16.4524 93.9218 64.2520 0.0613 
MT1504 12.6 796 16.2090 93.8306 55.3376 0.1710 
MT1512 11.2 686 16.7184 94.0816 66.2158 0.0489 
MT1523 11.5 667 17.6552 94.3359 67.4639 0.0423 

It is observed from above tables that, at fixed bit rate and decomposition level better results are 

obtained compare to parkinsonian tremor signals. It is because of the low frequency variation in 

the signal. By comparing DCT and WT it is observed that WT is giving good results at 8 bits per 

sample. 
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The performance index for EEG signals (`STIM' channel 1 and channel 2) are presented in 

tables 6.29 to 6.32 using DCT (at 12 bits per sample) and Wavelet coding (level 3 

decomposition). 

Table 6.29 Performance index for EEG signal 2 channel 1 ("STIM") using DCT coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT1415 11.1 925B 12.2880 91.8650 73.2672 0.0217 
MT1424 11.2 943B 12.1620 91.7777 74.3043 0.0193 
MT1433 11.1 964B 11.7909 91.5189 73.1689 0.0220 
MT1504 11.3 1.16 KB 9.7414 89.7345 73.3890 0.0214 
MT1512 11.1 1008B 11.2762 91.1318 73.1087 0.0221 
MT1523 11.4 1.02 KB 11.1765 91.0526 75.3988 0.0170 

Table 6.30 Performance index for EEG signal 2 channel 2("STIM") using DCT coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT1415 11.4 967B 12.0720 91.7164 74.0983 0.0197 
MT1424 11.6 1.14 KB 10.1754 90.1724 73.3669 0.0215 
MT1433 11.6 1.20 KB 9.6667 89.6552 73.2956 0.0216 
MT1504 11.9 1.45 KB 8.2069 87.8151 75.3267 0.0171 
MT1512 11.1 1.00 KB 11.1000 90.9910 75.5737 0.0166 
MT1523 11.6 995B 11.9381 91.6235 73.3946 0.0214 

Table 6.31 Performance index for EEG signal 2 channel 1("STIM") using Wavelet coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT1415 11.1 605 18.7874 94.6773 67.4605 0.0424 
MT1424 11.2 616 18.6122 94.6289 57.6117 0.1316 
MT1433 11.1 586 19.3966 94.8445 67.6262 0.0416 
MT1504 11.3 700 16.5303 93.9505 64.6576 0.0585 
MT1512 11.1 639 17.7878 94.3782 66.8342 0.0455 
MT 1523 11.4 695 16.7965 94.0464 66.6973 0.0463 
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Table 6.32 Performance index for EEG signal 2 channel 2 ("STIM") using Wavelet coding 

Subject 
No 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

MT14 55 11.4 682 17.1167 94.1578 57.1967 0.1381 
MT1424 11.6 722 16.4521 93.9217 65.3430 0.0541 
MT1433 11.6 752 15.7957 93.6692 64.4574 0.0599 
MT1504 11.9 829 14.6992 93.1969 59.3511 0.1078 
MT1512 11.1 655 17.3533 94.2374 67.1833 0.0437 
MT1523 11.6 687 17.2902 94.2164 57.3024 0.1364 

It is observed from above tables that, once again the WT showing better results compared to 

DCT in terms of C.R. PRD is very less in the sensorimotor signals. 

At the end of sensorimotor function results, the average C.R and SNR in DCT are 11 and 

73.567 and in Wavelets 1.7 and 62. It is observed higher compression ratios obtained with good 

signal quality. It is because of the low frequency the signals, means these signals are low 

frequency signals similar to 'thita' and `alpha' waves of EEG. The results are concluded among 

DCT and WT, Wavelets are better in Sensorimotor function than DCT. 

c) Comparative table for different coding 

The performance index for EEG signals (MT415,MT1504) are presented in tables 6.33 and 6.34 

using DCT (at 12 bits per sample) and Wavelet coding (level 3 decomposition). 

Table 6.33 Comparative table of noise enhancement of sensorimotor signals (NULL condition) 

Channel 
& 

technique 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 

Factor (%) 
SNR 7PRD 
in dB 

(%) 

MT1415 
1(DCT) 11.2 1003 11.4345 91.2545 73.7444 0.0205 
l(Wavelet) 11.2 0606 18.9254 94.7161 67.8141 0.0407 
2(DCT) 11.3 1015 11.4002 91.0942 75.4208 0.0169 
2(Wavelet) 11.3 0655 17.6660 94.3394 67.9818 0.0399 

MT 1504 
1(DCT) 11.2 1.05 KB 10.6667 90.6250 75.0177 0.0177 
l(Wavelet) 11.2 636 Bytes 18.0327 94.4545 66.3154 0.0483 
2(DCT) 12.6 1.37 KB 9.1971 89.1270 74.3529 0.0192 
2(Wavelet) 12.6 796 Bytes 16.2090 93.8306 55.3376 0.1710 
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In the above table comparison between one young and one elder patient is done. It is observed 

that WT giving very better results compare to DCT in both the cases. 

Table 6.34 Comparative table of noise enhancement of sensorimotor signals (STIM condition) 

Channel 
& 

technique 

Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 

Factor (%) 
SNR 
in dB 

PRD (%) 

MT1415 
1(DCT) 11.1 925 12.2880 91.8650 73.2672 0.0217 
I(Wavelet) 11.1 605 18.7874 94.6773 67.4605 0.0424 
2(DCT) 11.4 967 12.0720 91.7164 74.0983 0.0197 
2(Wavelet) 11.4 682 17.1167 94.1578 57.1967 0.1381 

MT 1504 
1(DCT) 11.3 1.16 KB 9.7414 89.7345 73.3890 0.0214 
1(Wavelet) 11.3 700Bytes 16.5303 93.9505 64.6576 0.0585 
2(DCT) 11.9 1.45 KB 8.2069 87.8151 75.3267 0.0171 
2(Wavelet 11.9 829Bytes 14.6992 93.1969 59.3511 0.1078 

Similar results are observed in the above comparative table. Finally it is concluded that Wavelet 

transform technique is suitable for sensorimotor signals with good SNR and least PRD. 

6.6 Subjects with EEG Machine data from Biomedical lab. 

This database I have taken from biomedical and instrumentation lab of Electrical department, of 

IIT Roorkee. In this single eye blink, double eye blink, relaxation data's are compressed using 

DCT, Wavelet and LPC. But LPC technique results are not tabulated, because of the signal 

reconstruction was not good and quantization was not implemented. The samples in each file are 

2560 and the gel based electrodes are used for recording the EEG. It has 4 subjects database. For 

recording the EEG, the interface supported machine is attached to the computer and there are two 

software's existing for supporting data acquisition and analysis. 24 electrodes system is available 

for data acquisition. 

The results are as follows, 



a) Original and reconstructed waveforms 
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(a) original and reconstructed "double eye blink" EEG signals at in DCT coding 
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(b) original and reconstructed EEG signals at level 3 decomposition in Wavelet 

Fig 6.8 Original and reconstructed EEG signals of subject db8 
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(a) original and reconstructed EEG signals at 6 bits for sample in OCT coding 
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(b) original and reconstructed EEG signals at level 3 decomposition 

Fig 6.9 Original and reconstructed EEG signals of subject sbS 
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b) Representation of results in tabular form 

The performance index for EEG signals (Single eye blink, double eye blink, relaxation) are 

presented in tables 6.35 and 6.36 using DCT (at 6 bits per sample) and Wavelet coding (level 3 

decomposition). 

Table 6.35 Performance index for EEG signal 3 ("Eye blink") using DCT coding at fixed bits (6) 
for sample 

File name Original 
signal size 
in KB 

Size of 
encoded 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD (%) 

sb8 3.06 626 5.0055 80.0220 12.5647 23.5379 
sb4 3.13 913 3.5105 71.5143 18.4615 11.9378 
sb6 3.39 776 4.4734 77.6456 14.4735 18.8941 
db4 3.34 862 3.9677 74.7965 19.6099 10.4593 
db8 3.2 1.05 KB 3.0476 67.1875 20.8763 9.0404 
db9 3.58 1006 3.6441 72.5580 20.1919 9.7814 
rell 12 3.42 1.94 KB 1.7629 43.2794 38.0591 1.2504 

Table 6.36 Performance index for EEG signal 3 ("Eye blink") using Wavelet coding at level 3 
decomposition. 

File name Original 
signal size 
in KB 

Size of 
encoded. 
data (bytes) 

C.R 
Compression 
Factor (%) 

SNR in dB PRD 

sb8 3.06 753 4.1613 75.9689 26.9507 4.4923 
sb4 3.13 921 3.4800 71.2647 22.2426 7.7245 
sb6 3.39 844 4.1130 75.6868 21.3020 8.6079 
db4 3.34 814 4.2017 76.1999 29.9236 3.1902 
db8 3.20 860 3.8102 73.7549 22.2234 7.7416 
db9 3.58 956 3.8346 73.9220 23:2135 6.9076 
rel1 3.42 1.02 KB 3.3529 70.1754 9.4942 33.5190 

It is observed above tables that both in DCT and Wavelet fixed compression ratios exist. In the 

case of SNR and PRD Wavelets are showing better results than DCT. 

Finally coming to end of the results, Wavelets are good in three signals. DCT is good in 

parkinsonian tremor and eye blink. But overall Wavelets have shown better results in all aspects 

of data compression. 



Chapter - 7 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

7.1 Conclusions 

In this dissertation work, three types of compression techniques namely, DCT Wavelet 

Transform and LPC coding have been implemented. This work mainly concentrated on 

compression of recorded EEG signals without significant loss of quality. Comparative 

evaluation was performed with respect to compression ratio, compression factor, SNR, and 

PRD. These three algorithms are tested on different EEG signals taken by variety of sources. 

Implementation of DCT coding technique gives the average compression ratio of 

3.2412, 11.3456, 3.5674 with respective to parkinsonian tremor, sensorimotor and eye blink 

signals with very less variation in compression ratio with respective to number of bits per 

sample. The average SNR, PRD at bit level 6 are 16.0869, 15.6912 in parkinsonian tremor 

and 20.1919, 13.2456 in eye blink signals. In The case of Sensoirmotor function signals SNR 

and PRD are 74.3176 and 0.0195 respectively. This indicates better quality output EEG from 

this technique. 

In wavelet transform based EEG compression, different wavelets like `Db 10', `Haar', 

`coiflet', `symlet', and `discrete mayor' are used for the analysis purpose. In the analysis it 

shows that `Dbl0' gives more compression ratio than that of all other wavelets. `Discrete 

mayor' wavelet produces least compression ratio 1.5643. In all other cases, compression ratio 

are nearly equal to 4 at level of decomposition 3. Quality is more in the case of . `Db 10' 

wavelet and less in the case of `Haar' wavelet. The compression ratio can be changed in the 

case of wavelet transform based EEG compression by changing the level of decomposition. 

At decomposition level 3, this technique is giving compression ratio of about 60 and at level 

5 it is giving 75 in ratios. But there is drastic change in the quality after level 3. Thus, for the 

comparative evaluation purpose 'dblO' wavelet has been used at decomposition level 3 

considering quality as an important factor. 

A significant advantage of using wavelets for neurological signals compression is that 

the trade off between compression ratio and quality can be achieved while for LPC technique 

compression ratio is nearly fixed with fixed quality. In the case of wavelet transform based 



EEG compression average compression ratio is 4.9312, 17.7878 and 3.9102 with respective 

to parkinsonian tremor, sensorimotor and eye blink signals respectively. The average SNR 

and PRD at level of decomposition three are 15.7542 and 16.303 8 in high amplitude tremor 

and 7.4457 and 42.4341 in low amplitude tremor signals. In The case of sensorimotor signals 

average SNR and PRD are 64.4574 and 0.0599 and in eye blink these are 20.8763 and 

9.0404. One disadvantage in the wavelet transform based neurological signals compression is 

that, with respect to other two techniques this involves much more computation. 

It is clear that compression ratio is increasing with respect to level of decomposition 

in the case of WT while decreasing with number of bits per sample in DCT. In this work, it is 

also concluded that one more task achieved variable compression ratio of the neurological 

signals is obtained by the Wavelet transform. Finally coming to end of the, conclusion WT is 

high in all aspects of the EEG compression techniques in three signals. At fixed bit rate DCT 

was showing better results, it was observed in parkinsonian tremor. LPC results are not 

tabulated because it is working only for eye blink signals and giving poor results in the case 

of SNR and PRD. For Telemedicine point of view we need higher compression ratio while 

maintaining the signal qualities which is achieved by DCT in parkinsonian tremor, eye 

blinking and WT by sensorimotor, eye blinking and parkinsonian tremor. 

7.2 Scope for Future Work 

In this dissertation work, EEG compression techniques like DCT technique, Wavelet 

transform and LPC coding has been implemented and compared with respect to compression 

ratio. The work can be further extended to any one of the directions: 

1. For better compression ratios, further data compression ratio is possible by 

exploiting the redundancy in the encoded transform coefficients. 

2. Implementation of the algorithms can be done by using the higher level languages 

like C, C++ for faster processing. 

3. DCT, Wavelet transform implementation can be done on DSP kit for real time 

application for transmission of neurological signals. 

4. In this work objective quality measuring methods like SNR are used for the 

comparative evaluation, a subjective quality measuring methods like mean 

opinion score, diagnostic acceptability measure can also be tried for comparison 

purpose. 
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