
IMPLEMENTATION OF DSP PROCESSOR ON FPGA

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRICAL ENGINEERING
(With Specialization in System Engineering and Operations Research)

By

T.RAVI KUMAR

•ft.a. 17

X 1

Q , 	DEPARTMENT OF ELECTRICAL ENGINEERING
 INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2008

1..

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this
dissertation entitled, "IMPLEMENTATION OF DSP PROCESSOR ON FPGA"
submitted in the partial fulfillment of the requirements for the award of the degree
"Master of Technology" with specialization in System Engineering and
Operations Research, to the Department of Electrical Engineering, IIT
Roorkee, Roorkee is an authentic record of my own work carried out during the
period from August 2007 to June 2008 under the supervision of Dr. Indra Gupta,
Associate. Professor, Department of Electrical Engineering, IIT Roorkee,
Roorkee.

The matters embodied in this report have not been submitted by me for
the award of any other degree or diploma.

Date: 30 June 2008

Place: Roorkee 	 (T.RAVI KUMAR)

This is to certify that above statement made by candidates is correct to
the best of my knowledge.

Date: 30 June 2008
Place: Roorkee

(Dk.,Mdra Gupta)
Associate Professor,
Electrical Engineering Department,
Indian Institute of Technology
Roorkee.

I

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor, Dr. Indra
Gupta, Associate Professor, Department of Electrical Engineering, for the
patience and guidance throughout the entire duration of my thesis. Continuous
monitoring and time management was an inspiring force for me to complete the
work. Without her supervision, this thesis would never have been a success.
Working under her guidance has been a great experience which has given me a
deep insight in the area of technical research. Her painstaking support and
involvement in preparation of manuscript, theoretical analysis •and simulation
studies are gratefully acknowledged. I humbly acknowledge a lifetime's gratitude
to her and hope for a continued interaction even in the future.

I consider myself extremely.. lucky and privileged to learn about Micro
Processors subject from Prof. M. K. Vasantha. It is because of him, that I started
developing interest in Digital electronics and Computer architecture. His way of
teaching, presentation in the classroom, the discipline he has inculcated in us,
will be what I would like to follow throughout my life. His constant encouragement
and willingness to listen to and help with my academic queries are some of the
things I benefited with.

I also thank Dr. H.O Gupta, Dr. Surendra Kumar, Dr. Rajendra Prasad,
Dr. G.N. Pillai and Dr. Barjeev Tyagi for extending moral support and technical
discussions as and when required during the work.

I would like to take this opportunity to express my deep sense of gratitude
to my family for their support and encouragement they have provided me over the
years.

I would also like to thank my friends and lab assistants who have offered
me their -unrelenting assistance throughout the course.

Date: 30 June 2008 	 T.Ravi Kumar

Place: Roorkee.

II

Abstract

Microprocessors built specifically for digital signal processing are DSP

processors. DSP chips are high-speed, dedicated microprocessors that have

been optimized to perform Arithmetic operations on the huge amounts of data

required by spectral analysis and signal processing algorithms.

DSP Processors are the computational engines on which DSP

applications are built. General purpose DSP processors provides an effective

way to design and implement DSP algorithms for real-world applications. DSP is

one of the core technologies in rapidly growing applications like communications

and audio processing. DSP systems have progressed remarkably in the past

decades, especially within the last few years. The estimated growth of DSP

processors in the last 6 years is over 40%. The variety of DSP capable

processors for various applications also increased with the rising popularity of

DSP processors.

The present work is a structured approach to design and implementation

of an embedded DSP processor core. The work focuses on the design of the

16bit DSP Processor described by"the VHDL language and optimized by forcing

timing constraints. The proposed DSP Processor is implemented and tested

through simulation results and the results of the processor are validated.

The designs are coded with VHDL, synthesized and configured into

Spartan-2 XC2S200-5Q208 FPGA, from Xilinx family. The ISE 7.1 synthesis tool

is used in this project for synthesis and implementation.

III

CONTENTS

Page no

II

III

IV

VI

CANDIDATE DECLARATION

ACKNOWLEDGEMENT

ABSTARCT

CONTENTS

LIST OF FIGURES

CHAPTER 1: Introduction

1.1 General Introduction

1.1.1 A Brief History of FPGAs

1.1.2 What can FPGAs be used for

1.2 Objectives of the dissertation

1.3 Organization of Thesis

CHAPTER 2: DSP Processors

2.1 Introduction to DSP Processors

2.1.1 DSP Environment

2.1.2 Applications

2.1.3 DSP Architecture

2.2. General Architecture of DSP Processors

2.2.1 Data Path

2.2.2 Control unit

2.2.3 Memory

CHAPTER 3: Developed Processor: Instruction Set Architecture
and Addressing Modes

3.1 Introduction

3.2 Instruction Format

3.3 Addressing Modes

3.4 Instruction Types

I

1

3

4

5.

5

7

7

7

8

9

10

11

12

12

13

13

13

14

15

IV

3.4.1 R-type instructions 15

3.4.2 I-type instructions 15

3.4.3 J-type instructions 16

3.5 Instruction Set 17

3.5.1 Data transfer instructions 18

3.5.2 Arithmetic instructions 19

3.5.3 Logical instructions 19

3.5.4 T register, P register and Multiply instructions 20

3.5.5 Shift instructions 20

3.5.6 Branching instructions 21

CHAPTER 4: Design Architecture of Proposed DSP Processor 22

4.1 Introduction 22

4.2 Architecture Overview 22

4.3 'Data Path (DP) 25

4.3.1 Arithmetic and Logic Unit (ALU) 25

4.3.2 Comparator 26

4.3.3. Multiplier: 	_ 27

4.3.3.1 Array-Based Multiplication 30

4.3.4 Register File 33

4.3.5 Multiplexer 34

4.3.6 Shifters 35

4.3.7 Reg 37

4.3.8 Trireg 37

4.4 Controller 38

4.5 CPU 41

CHAPTER 5: Simulation Results 43

CHAPTER 6: Conclusion and'Future Scope 50

REFERENCES 52

APPENDIX A 54

APPENDIX B 59

APPENDIX C 62

V

List of Figures

Page No.

Figure 2.1. DSP System Overview 8

Figure 2.2. Von Neumann Architecture 9

Figure 2.3. Harvard Architecture 9

Figure 2.4 General Architecture of DSP Processor 10

Figure 3.1. Instruction format 13

Figure 3.2 Fields in the R-type instruction 15

Figure 3.3 Data path for an R-type instruction 15

Figure 3.4 Fields in an. I-type instructions 16

Figure 3.5. Data path for an I-type instruction 16

Figure 3.6 Instruction fields for Jump instruction 16

Figure 3.7 Data path for Jump instruction 17

Figure 4.1: Internal Architecture of designed DSP Processor 23

Figure 4.2 ALU 25

Figure 4.3. Symbol of Comparator 26

Figure 4.4. Architecture of comparator 27

Figure 4.5. Multiplier Block diagram 28

Figure 4.6 A 16-bit Array Multiplication 29

Figure 4.7. Full Adder symbol 30

Figure 4.8. Full adder RTL diagram 30

Figure 4.9. A16 Bit Array Multiplier 31

Figure 4.10. Multiplier Internal Architecture 32

VI

Figure 4.11. Register Fife Symbol
	

33

Figure 4.12. Register File internal architecture
	

33

Figure 4.13. Block diagram representation of 2-to-1 MUX
	

34

Figure 4.14. Multiplexer
	

34

Figure 4.15. Block diagram of Barrel Shifter
	

35

Figure 4.16 RTL Diagram of Barrel Shifter
	

36

Figure 4.17. Register Symbol and RTL diagram
	

37

Figure 4.18 Tri Register Symbol and RTL diagram
	

38

Figure 4.19. Block diagram of the Control Path
	

39

Figure 4.20. Controller Block diagram
	

40

Figure- 4.21 RTL Diagram of CPU
	

41

Figure 5.1 Simulation Result of ALU
	

43

Figure 5.2 Simulation Result of B Shifter
	

44

Figure 5.3 Simulation Result of Tri Register
	

44

Figure 5.4 Simulation Result of Register Array
	

45

Figure 5.5 Simulation Result of Control Unit
	

45

Figure 5.6 Simulation Result of 1.6 bit Array Multiplier
	

46

Figure 5.7(a) Simulation report of DSP Processor for case I
	

47

Figure 5.7 (b) Simulation report of DSP Processor for case 2
	

48

Figure 5.7 (c) Simulation report of DSP Processor for case 3
	

48

Figure 5.7 (d) Simulation report of DSP Processor for case 4
	

49

VII

Chapter 1

Introduction

1.1 General Introduction

A signal is an impulse or a fluctuating electric quantity, such as voltage,
current, or electric field strength, whose variations represent coded information.
Electrical signals are normally either discrete in time and amplitude or continuous
in time and amplitude. Digital signals are a sequence of quantized values making
them discrete in time and amplitude. The digital signal [5,18] amplitude is
represented by limited number of predefined values unlike continuous values
where it is samples continuously. To convert the continuous signal into a digital
signal an Analog to Digital Converter (ADC) can be used. Once the signals are
processed it needs to be converted back into the continuous domain for which a
Digital to Analog Converter (DAC) is used. The ADC works by sampling the
signal at fixed points and the DAC works by interpolation.

DSP stands for Digital Signal Processing. In practice DSP mean
processing of digital signals using electronic circuits or computers such as DSP
Processors or-Application Specific Integrated Circuit (ASIC). Processing signals
mean applying algorithms based on arithmetic computations. Arithmetic could be
any arithmetic operations like addition, subtraction, and so on. DSP is the
processing of analog signals in the :digital domain [18]. Real-world signals, such
as voltages, pressures, seismic vibrations, visual images, sound waves and
temperatures, are converted to their digital equivalents at discrete time intervals
for processing by the CPU of a digital computer. DSP is the mathematics,
algorithms and the techniques used to manipulate these signals after they have
been converted into a digital form. The world of science and engineering is filled
with signals: images from remote space probes, voltages generated by the heart
and brain, radar and sonar echoes, seismic vibrations, and countless other
applications. DSP is the science of using computers to understand these types of
data. This includes a wide variety of goals: filtering, speech recognition, image
enhancement, data compression, neural networks, and much more. DSP is one

1

of the most powerful technologies that will shape science and engineering in the
twenty-first century.

DSP is useful . in almost any application that requires the high-speed

processing of a large amount of numerical data. The data can be anything from
position and velocity information for a closed loop control system, to two-

dimensional video images, to digitized audio and vibration signals.

The roots of DSP are in the 1960s and 1970s when digital computers first
became available. Computers were expensive during this era, and DSP was
limited to only a few critical applications. Pioneering efforts were made in four key

areas: radar & sonar, where national security was at risk; oil exploration, where

large amounts of money could be made; space exploration, where the data are
irreplaceable; and medical imaging, where lives could be saved. The personal
computer revolution of the 1980s and 1990s caused DSP to exploded with, new

applications. Rather than being motivated by military and government needs,

DSP was suddenly driven by the commercial marketplace. Anyone who thought

they could make money in the rapidly expanding field was suddenly a DSP

vender. DSP reached the public in such products as: mobile telephones, compact

disc players, and electronic voice mail.

DSP Processors are micro processors designed to perform DSP. Digital

Signal Processing is one of core technology on the most rapidly growing areas

such as wireless communication, industrial control, audio and video applications.

With the rise in DSP processor applications there has been a huge increase in

the DSP Processors in the industry since the 1980's.

If an application to be controlled or analyzed requires that time-critical

functions be completed within a given time interval., then a system can be called a

real-time system [16] if it will completely execute the necessary functions within

the given time interval for all cases. More specifically, real time implies real time

within the constraints of the system of interest . A real time DSP is a system

which has to process and output data samples at the same frequency the input

samples arrive.

2

Most DSP Processors are meant to handle high performance, repetitive,

numerical task like the famous multiply and accumulate. Second important

feature in DSP Processors is the ability to handle several memory accesses in

the same instruction cycle like fetching instructions while fetching operands or

storing the result of previous computations to memory. Third feature is the ability

to generate address using the address generation circuitry in parallel with the

other instructions though initially the address generation has to configured and

set. The DSP Processor has a loop counter implemented within so that there is

no necessary for the programmer to expand the instruction cycle to implement a

for loop. To facilitate low cost, high performance most DSP processors

incorporate serial and parallel I/O interfaces, specialized I/O handling

mechanisms like Direct Memory Access (DMA) or interrupt handler. This will

allow data transfers to proceed with none or little intervention [16].

1.1.1 A Brief history of FPGAs

The FPGAs first arrived in the mid-1980s, they were largely used to

implement glue logic medium complexity state machines, and relatively limited

data process- ing tasks. During the early 1990s, as the size and sophistication of

FPGAs started to increase, their big markets at that time were in the

telecommunications and networking arenas, both of which involved processing

large blocks of data and pushing that - data around. Later, toward the end of

1990s, the use of FPGAs in - consumer, automotive, and industrial applications

underwent a humongous growth spurt [6].

FPGAs are often used to prototype ASIC designs or to provide a hardware

platform on which the verification of the physical implementation of new

algorithms was done. However, their low development cost and short time-to-

market mean that they are increasingly finding their way into final products.By the

early-2000s, high—performance FPGAs containing millions of gates has be-

come available. Some of these devices feature embedded microprocessor cores,

high speed—input/output (I/O) interfaces, and the like ones. The end result is that

today FPGAs can be used to implement just about anything, including

communications devices and software-defined radios, radar, image, and other

DSP applications [5].

3

1.1.2 What can FPGAs be used for?

Mainly FPGAs are currently into four major market segments: Application

Specific Integrated Circuit (ASIC) and custom silicon, DSP, embedded

microcontroller applications, and , physical layer communication chips.

Furthermore, FPGAs have created a new market in their own. right:

Reconfigurable Computing (RC).

➢ ASIC and custom silicon: Today FPGAs are increasingly being used to

implement a variety of designs that could previously have been realized

using only ASICs and custom silicon.

> Digital Signal Processing: High speed DSP has traditionally been

implemented using specially tailored microprocessors called Digital Signal

Processors. However, the FPGAs available today can contain embedded

multipliers, dedicated arithmetic routing, and large amounts of on—chip

RAM, all of which facilitate DSP operations. When these features are

coupled with the massive parallelism provided by FPGAs, the result is to

outperform the fastest DSP .chip by a factor of 500 or more.

➢ Embedded microcontrollers: Small control functions have traditionally

been handled by special—purpose embedded processors called

microcontrollers. These low—cost devices contain on—chip program and

instruction memories, timers, and I/O peripherals wrapped around a

processor core. FPGA prices are falling, however, and even the smallest

devices now have more than ,- enough capability to implement a soft

processor core combined with a selection of custom I/O functions. The end

result is that FPGAs are becoming increasingly attractive for embedded

control applications.

➢ Physical layer communications: FPGAs are used to implement the glue

logic that interfaces between physical layer communication chips and

high—level net- working protocol layers. As high—end FPGAs can contain

multiple high—speed transceivers mean that communications and

networking functions can be consolidated into a single device.

> Reconfigurable Computing: This refers to exploiting the inherent

parallelism and reconfigurability provided by FPGAs to "hardware

4-

accelerate" software algorithms.. Various companies are currently building
huge FPGA—based re- configurable computing engines for tasks ranging
from hardware simulation to cryptography analysis.

1.2 Objectives -of the Dissertation:

An attempt has been made to develop a simple 16-bit DSP Processor on
FPGA. The instruction size, data path size as well as the operand size is of 16-

bits.

The objectives of the dissertation are mentioned briefly:

➢ The individual blocks of the DSP Processor are implemented using VHDL
(VHSIC Hardware Descriptive Language). These can be implemented
using any HDL, there are two main languages namely Verilog and VHDL,

In this dissertation, VDHL is used for the implementation. The algorithms
implemented are then simulated and tested for suitability for synthesis. If
these are not suitable for synthesis, the coding has to be done again. Care

should be taken so that the HDL coding is done using the structural design
method.

➢ The VHDL programs simulated are then synthesized on an suitable FPGA
kit. In this work the Spartan 2, XC2S200 FPGA development kit is used.
After the synthesis, the bit—streams are loaded onto the FPGA. This
completes the implementation of DSP Processor on FPGA.

1.3 Organization of Thesis:

> Chapter 1 includes a brief introduction about Digital Signal Processing and
Field Programming Gate Arrays. The various applications of DSP and FPGA
is discussed along with the evolution and the applications in various fields.

> Chapter 2 explains about general DSP Processors and its environment, their
architecture, applications.

> Chapter 3 explains about Instruction set architecture and addressing modes
of the proposed processor.

Wi

> Chapter 4 gives an insight to the Processor design flow that has been

followed in this thesis work. It is the main chapter that gives, an idea about

how exactly the Processor design was carried out.

➢ Chapter 5 summarizes the various results and discussions.

Chapter 6 gives the Conclusions and Scope for Future work. This includes

the concluding remarks and the other developments- expected in the same

field.

The Appendix A and B explain about the various softwares and hardware kit

details utilized for this dissertation.The softwares and the FPGA

development kit are listed. Detailed explanation about each of them is

included for a better understanding. As the market is on the rise, there are

more and more new FPGA development kits coming into the market. It is

going on in a such a pace that every month, a new FPGA development kit is

being released by some or the other VLSI company. .

> Appendix C gives the RTL Diagrams of the processor.

6

Chapter 2

DSP Processors

2.1 INTRODUCTION TO DSP PROCESSORS

2.1.1 DSP Environment

The Digital Signal Processing (DSP) Processor is designed specially for

processing digitalsignals. DSP has a wide range of applications such as RADAR,

Audio, SONAR, Telephony, Process Control, Digital Television, and Facsimile.

There are a wide range of applications they have some common features like

they have a lot of math involved, deal with signals from real world and require

response in certain time [17,18].

The main advantages of using digital systems are repeatability, versatility and

simplicity.

➢ Repeatability is when they can be easily- duplicated; responses do not drift

away with temperature and do not depend on strict component tolerances.

> Versatility is. when systems can be reprogrammed for other applications or

can be ported to other hardware like board level product. And finally

> Simplicity means some things are easier in digital systems than in

analogue systems.

Most DSP applications - dead with analogue signals which have to be

converted to digital signals for processing as in Figure 2-1. During this conversion

some information is lost due to uncertainty in timing, limits on duration of

measurement or inaccuracies in measurement. The effects are called

Quantization Errors. The continuous analogue signal has to be held before it can
be sampled and measured so that value is not changing during the

measurement. Then once it has been measured the signal will be converted to

digital value for processing. The sampling results in a discrete set of digital

numbers that were measured in equal intervals of time. The sampling takes

places after the hold. So the Analog to Digital Converter (ADC) has to be fast

7

enough to sample the signal before the next signal value is taken in by the hold

circuit. In short the ADC will have all the time to perform the conversion as long

as the signal is held. A fast sampling needs to be done so that the rapid changes

in the incoming signals are not lost. If not some higher frequencies can be

interpreted as low frequencies [5,22].

Physical Signal

Figure 2.1. DSP .System Overview 	Physical Signal

2.1.2 Applications:

Applications of DSP are RADAR, Audio, SONAR, Telephony, Process

Control, Digital Television, and Facsimile. DSP Processors have a wide range of

applications from consumer electronics to Radar. There is no specific DSP

Processor that will match all the applications. It is the designer choice to first

evaluate the constraints in hand like power consumption, area, speed,

performance, integration and other metrics in hand. In terms of money volume

the biggest applications of DSP are in portable digital audio players commonly

know as mp3 now days, mobile phones and disk drives where DSP is used for

servo control. In these applications the integration and cost are paramount. For

portable productions the battery consumption is very, important and hence the

focus is on power consumption.

8

2.1.3 DSP Architecture

All DSPs consist of several fundamental modules: a digital signal
processing core to perform mathematical operations, memory to store data and
program instructions. As a stored-program machine, the processor must be told
what to do every clock cycle. Typically, a DSP fetches an instruction and some
data from memory, operates on these, and then returns the manipulated data to
storage. The way this is conducted is not the same for all processors. Two
different architectures can be identified: Von Neumann and Harvard (see Figure
2.2 and 2.3).

The DSP application, in addition to the memory and peripheral configuration,
usually governs the type of architecture employed [5,16].

Stored
Program
and Data

Program
Control

Input/
Output

Arithmetic
Logic Unit

Figure 2.2. Von Neumann Architecture

Stored
Program

Program
Control

Arithmetic
Logic Unit

Input/
Output

Stored
Data

Figure 2.3. Harvard Architecture

Von Neumann architecture has set the standard for computer
development over the past 40 years. Essentially, the architecture is very simple.
Both program and data can reside in the same memory-mapped space. This
architecture forms a basis for more general-purpose processing needs.

Harvard architecture separates the program and data memory spaces.
Having two buses to serve each address space ensures that data and program
access occurs in parallel, increasing processing speed.

2.2. General Architecture of DSP Processors

A DSP Processor is a programmable digital system intended to solve
computational problems in a large variety of applications. A general purpose
processor consists of a data path and a control unit tightly linked with a memory.

(a)

(b)
Figure 2.4 General: Architecture, of DSP Processor

10

All general DSP Processors Core is composed of the Data Path, Control
Path and Program Path. The Memory Subsystem is located out of the processor
core. Figure 2.3 (a) and (b) shows the general architecture of DSP Processor in
both Harvard and Von Neumann. fashion.

A basic DSP .processor supports RISC and CISC instructions. The RISC
uses the general registers for operands and writes them back to the Register File
(RF). The CISC used the memory subsystem to compute vector elements like in
the case of convolution.. The CISC reads from the memory and write them to the
Accumulator and to the registers.

The memory bus is distributed to the memory and DSP core DP
components MAC and RF. However, there could be more components that can
be connected to the memory bus. This depends on the choice of the instruction
set which specifies all the operands required to perform a certain instruction. If
there are instructions that ALU performs by fetching operands from the memory
subsystem then the memory bus would also be connected to the ALU and so on.
The Control Path generates the control signals for all components in the core,
keeps track of the Program Counter and has a stack to service subroutines.

2.2.1 Data Path :

The datapath is the second main part of a processor. The datapath is
responsible for the manipulation of data. The datapath consists of the circuitry for
transforming data from and for storing temporary data. It includes (1) functional
units such as adders, shifters, multipliers, ALUs, and comparators, (2) registers
and other memory elements for the temporary storage of data, and (3) buses and
multiplexers for the transfer of data between the different components in the
datapath. External data can be entered into the datapath through the data input
lines. Results from the computation are provided through the data output lines.

Processors are typically distinguished by their size, i.e. the bit width of the
datapaths components. Common, processor sizes include, 4-bit, 8-bit, 16-bit, 32-
bit and 64-bit.

2.2.2 Control Unit: - -

Even though the datapath is capable of performing all the operations of the

processor, it cannot, however, do it on its own. In order for the datapath to

execute the operations automatically and correctly, the appropriate control

signals must be asserted at the right time. In a processor, these control signals

are generated by the control unit.

The control unit, also known as_ the controller, controls the operations of

the datapath, and therefore, the operations of the entire processor. The controller

is a finite state machine (FSM) because it is a machine that executes by going

from one state to another, and the fact that there are only a finite number of

states for the machine to go to.

The control unit consists of circuitry for retrieving program instructions and

for moving data to, from and through the datapath according to those instructions. -

For each instruction the controller typically sequences through several stages,

such as fetching the instruction from memory, decoding it, fetching operands,

executing the instruction in the datapath, and storing the results. Each stage may

consists of one or more clock cycles. A clock cycle is usually the longest time

required for data to travel from one register to another.

223 Memory:

The registers server a processor's short-term storage requirements,

memory server the processor's - medium and long-term information-storage

requirements, i.e. the storage information as either program or data. Program

information consists of the sequence of instruction that cause the processor to

carry out the desired system functionality. Data information requests the values

being input, output and transformed by the program.

12

Chapter 3

Developed Processor: Instruction Set Architecture and

Addressing Modes

3.1. Introduction :

The operation of the processor is determined by the instructions it

executes, referred to as machine instructions. The collection of the different

instructions that the processor executes is referred to as the instruction set. Each

instruction is represented by sequence of bits. The instruction is divided into

fields, corresponding to the constituent elements of the instruction [13,14,19].

The decision regarding the instruction format and addressing modes of a

processor is the most important stage in the design. This decision will lead to the

structure of the data path and the -control unit. In the present work a 16 bit

instruction format is adopted for the. implementation of the proposed processor,

where the operands and opcodes.are of 16 bits. The instructions are of variable

length. The instruction format is explained in detail in next few pages.

3.2 Instruction Format :

An instruction format must include an opcode and implicitly, zero or more

operands. The format must, explicitly or implicitly, indicate addressing mode for

each operand.The various fields of the instruction format are explained below.

Opcode RD RS . SHAMT SE lAmode I/Dcontrol

5 bits 3 bits 3 bits 2 bits 1 bit 1 bit 1 bit

Immediate Data

(2 Bytes/none)

Figure 3.1. Instruction format

13

The meaning of each of the fields is given as

• Opcode: Specifies the operation to be performed. It is the basic operation

of the instruction.

• RD: The destination register operand, it gets the result of the operation.

• RS: Source register

• SHAMT: Shift amount

• SE: Shift enable bit

• lAmode: Indirect Addressing mode control bit

• I/D control: Increment/decrementafter the operation when lAmode bit is 1.

3.3. Addressing modes:

The way of representing the operand in the instruction is known as the

addressing mode. The proposed DSP Processor's instruction set provides the

following addressing. modes.

> Register addressing modes: The register will be identified in the instruction

and the content of the register will be the operand. The address field that

references registers is of 3 bits, thus 8 general purpose registers can be

referenced. This addressing mode includes the data transfer instructions,

i.e. the register to register data transfer instructions as well as the arithmetic

instructions.

➢ Immediate addressing: It is the simplest form of the addressing, in which the

operand is actually present in the instruction. This mode uses constants as

operands to set the initial values of variables.

> Direct addressing mode: In this the operand is at the memory location

whose address is specified in the instruction.

> Indirect addressing mode: In this the operand is at the memory location

whose address is present in the register and the register is specified in the

instruction.

14

3.4. Instruction types:

The instruction set is classified depending on the operands, broadly under

the following categories.,

• R-type instructions

• I-type instructions

• J-type instructions

3.4.1 R-type instructions:

The format for the R-type instruction is given in the figure.

Opcode RD RS SHAMT SE Ignored Ignored

5 bits 3 bits 3 bits 2 bits 1 bit 1 bit 1 bit

Figure 3.2 Fields in the R-type instruction

The operation which has to be performed on two registers is decided by the

Opcode field. The resultant value of the operation will go to the destination

register which is provided in the field named RD. The data path for the R-type

instructions is shown below.

Figure 33 Data path for an R-type instruction

3.4.2 I-type instructions:

The instruction format of I-type instructions is shown in figure. Since the

immediate data present in the instruction itself, this instruction needs another

15

word to contain the immediate data (either data or address). Some of the fields in

the instruction are ignored.

Opcode 	 RD 	 XXXXXXXX

• 5 bits 	 3 bits 	 8 bits

immediate Data or Address

16 bits

Figure 3.4 Fields in an I-type instructions

This group includes instructions with immediate operand, which is of 16

bits in length. The data path for immediate data instructions is shown in figure.

Figure 3.5. Data path for an I-type instruction

3.4.3 J-type instruction:

Opcode
I 1 	

XXXXXXXXXXX

5 bits 	 11 bits

Target Address

16 bits

Figure 3.6 Instruction fields for Jump instruction

16

. These instructions require 16-bit address field to specify the target of the

jump. The instruction format is shown in figure. The target address is of 16-bits.

So, the target can be any location within a range of 215 locations.

The data path for the Jump . instruction is shown in the figure 3.7. The

necessary control signals are depoded in the decode stage and depending on

these controls the next address for PC is decided.

Instr
PC 	uctio 	Decode 	Execute

n 	 Stage 	Stage
mem
ory

Figure 3.7 Data path for Jump instruction

3.5. Instruction set:

The total instruction set for the proposed DSP Processor consists of both

single word and double word instructions. These instructions are classified into

the following, as per the operation they perform as follows

• Data transfer instructions

• Arithmetic instructions

• Logical instructions

• T register, P register and multiply instructions

• Shift instructions

• Branching instructions

17

3.5.1 Data transfer instructions:

MVi R. IMMDATA

The immediate data of 16 bits is loaded into the register specified as R.

The opcode for the instruction is of the format

OPCODE R VALU E XXXXXXXX I M M DATA

5 Bits 3 Bits 8 Bits 16 Bits

MOV Rd, Rs

The data in Rs is copied to Rd. The opcode for the instruction is of the format

OPCODE R VALUE R VALUE XXXXX

5 Bits 3 Bits 3 Bits 5 Bits

MOV Rd, (Rs)

The data in the address specified by the register Rs is copied in to Rd.

The opcode for the instruction is of the format

OPCODE R VALUE R VALUE XXX 1 	I/D

5 Bits 3 Bits 3 Bits 3 Bits 1 Bit 	1 Bit

From the above format IAmode field '1' indicates the indirect addressing

mode and I/O field indicates either the auto decrement or increment in Rs value.

LDAI IMMDATA

The accumulator is loaded with the IMMDATA. Accumulator is the implicit

operand. The opcode for the instruction is of the format

OPCODE XXXXXXXXXXX IMMDATA

5 Bits 	.. 8 Bits
	

16 Bits

18

STORE (Rd), Rs

The data in register Rs is copied in to the address specified in the register

Rd. The opcode for the instruction is of the format

OPCODE 	R VALUE 	R VALUE 	XXX 	1 	I/D

5 Bits 	3 Bits 	3 -Bits 	3 Bits 	1 Bit 	1 Bit

3.5.2 Arithmetic instructions:

INC/DEC R

The data in register R is either incremented or decremented as per

the operation and the result is stored in the same register.

	

OPCODE 	R VALUE 	XXXXXXXX

	

5 Bits 	3 Bits 	8 Bits

ADD/SUB Rs

The data in the register Rs is operated with the accumulator as per the

instruction and the result is stored in the accumulator. The instruction

format is shown below.

OPCODE. XXX R VALUE XXXXX

5 Bits 3 Bits 3 Bits 	.. 8 Bits

3.5.3 Logical instructions:

ORA/ANA/XRA Rs

The value of Rs is operated as per the logical operation with the contents

of accumulator and the result is stored in the accumulator. The instruction format

is shown below.

OPCODE R VALUE XXX XXXXXXXX

5 Bits 3 Bits 3 Bits 8 Bits

.19

ORA/ANA/XRA IMMDATA

The content of accumulator and immediate data are operated according to the

logical operation specified and the result is stored 'in the accumulator. The

instruction format' is shown below

OPCODE 	XXXXXXXXXXX I M M DATA

5 Bits 	 11 Bits 	16 Bits

3.5.4 T register, P register and multiply instructions:

LT IMMDATA

The T register is loaded with the sign extended form of the IMMDATA. The

IMMDATA is sign extended to 16 bits and is loaded into T register. The opcode

for the instruction is of the format

IIIPYV

5 Bits 	11 Bits

MPY R

The contents of the register R. are multiplied with the contents of implicit

operand T register and the result is placed in the P register. The instruction

format is shown below •

OPCODE XXX R VALUE XXXXX

5 Bits 3 Bits 3' Bits 5 Bits

3.5.5 Shift instructions

SHL/R Rd, Rs, SHAMT

The shift instruction shifts the data present'in the register Rs by number of

bits specified in the field SHAMT and stores the result in register Rd. The

instruction format is shown below

20

OPCODE. R VALUE 	R VALUE SHAMT SE 	XX
5 Bits 	3 Bits 	3 Bits 	2 Bits 	1 Bit 	2 Bits

3.5.6 Branching instructions

JMP IMMDATA

The jump instruction always branches to the target address that is specified in the
instruction itself. The instruction format is shown below

OPCODE XXXXXXXXXXX IMMDATA
5 Bits 	 11 Bits 	16 Bits

21

Chapter 4

Design Architecture of DSP Processor

4.1 Introduction

The circuit for the DSP Processor can be divided into two parts: the
datapath and the control unit. The datapath is responsible for the actual
execution of all operations performed by the DSP Processor. The control unit,
also known as the controller, provides all control signals to the programPath and
dataPath.

Every digital logic circuit, regardless of whether it is part of the control unit
or the datapath, is categorized as either a , combinational circuit or a sequential
circuit. A combinational circuit is one where the output of the circuit is dependent
only on the current inputs to the circuit. A sequential circuit, on the other hand, is
dependent not only on the current inputs but also on all the previous inputs. Since
sequential circuits are dependent on the history, they must therefore contain
memory elements for remembering the history, whereas, combinational circuits
do not have memory elements [1 O14,19].

This chapter describes the various modules of the Processor Data Path,
their design considerations and architecture. This chapter also describes about
the ControlPath which is the most complicated and tricky in designing a
Processor.

.4.2 Architecture Overview

The architecture of the designed 16-bit DSP Processor is split into 3 main
modules: controller, dataBus, and programBus. The controller consists of a finite
state machine with states for instruction fetch and decode based on the 16-bit
instruction set. The controller outputs control signals to every submodule in the
dataBus and programBus. The program Bus module consists of a 16-bit bus
called programBus (actually, Instruction Register), which contains each fetched

22

instructions from the Program ROM. The data Bus module consists of a 16-bit
bus called dataBus, which has complete data information. The dataBus also
contains an ALU, multiplier, accumulator, barrel shifter, and muxes [2,3,153. The
DSP Processor supports three addressing modes: direct, register-indirect, and
immediate modes. The internal datapath architecture is shown in Figure 4.1.

16

bshift
sel

B Shifter 	T Register
	Tregsel
	

Instr
Reg

32

Register 	 Multiplier 1
Array

P Register 	 Comparator

regsel from 	 Pregsel 4 	instrsel
control unit 	 32

muxsel 	 co i peel
2:1MUX

32

ALU (32) 	j AC C (32)

PC Ii l 	 -I- 	I alnsel

Shifter
Control 	clock

16 	 steel 	 Unit
Addr L 	Out Register 	

reset Reg 	

1 	 I pro~c~rtrsel

addrregsel 	Ready RtW VrvlA

Figure 4.1. Internal Architecture of designed DSP Processor

The 'proposed processor's DataPath houses all the arithmetic hardware, a
32-bit ALU, 32-bit accumulator, and 16x1 6-bit multiplier with 32-bit product. It also
contains a 144x16-bit data RAM. Two shifters are also used in the architecture.

The 0 to 16 bit barrel shifter with 16-bit data bus input outputs a 32-bit value to
the ALU. The second shifter takes the output of the accumulator and shifts 0, 1,

23

or 4-bits and outputs 16-bits to the dataBus. The register array (RF) used for

indirect addressing and for storage of operands is also located within the

dataPath. All these functional units inside the datapath (ALU, accumulator,

shifter, multiplier, etc.) and the registers are connected together with multiplexers

and buses to form one Unit, the datapath. The 16-bit dataBus, which holds data to

and from the data RAM and accumulator.

The controller provides all control signals to the • programPath and

dataPath. They include all the select lines for multiplexers, ALU and other

functional units having multiple operations, all the read/write enable signals for

registers and register files, address lines for register files, and enable signals for

tri-state buffers. The operation of the datapath is determined by which control

signals are asserted and at what time.

During startup and 'reset, an initialization state followed by two wait states

set up the CPU. This allows initialization values to propagate through the logic.

The decode state determines which instruction is on the programBus.

Direct/indirect addressing functionality are also detected within this state. When

an instruction execution is complete, the state machine will always return to the

fetch/decode state.

The number of states per instruction varies from four to six states

depending on the complexity of the instruction. The controller outputs mux

controls, ALU functions, register . reads/writes and other control signals to the

DSP hardware depending on the current instruction. The program counter (PC) is

enabled during the second to last instruction state. It takes two state cycles for

the next instruction to stabilize on the programBus.

In return, the datapath needs to supply status signals back to the control

unit in order for it to operate correctly. These status signals are usually from the

output of comparators. The. comparator tests for a given logical condition

between two values. These values can be obtained either from memory

elements, directly from the output of functional units, or hardwired as constants.

These status signals provide input, information for the control unit to determine

what operation to perform next. For example, in a conditional loop situation, the

status signal will tell the control unit whether to repeat or exit the loop.

24

4.3 Data Path (DP)

The datapath performs all the functional operations of a processor, and the

processor is for solving problems, therefore the datapath must be able to perform

all the operations required to solve the given problem.

Datapath design is also referred to as the register-transfer level (RTL)

design. The register-transfer level design tells how data is transferred from one

register to another or back to the same register. If the same data is written back

to a register without any modifications, then nothing has been accomplished. So

before writing the data to a register, the data passes through one or more

functional units and gets modified.

4.3.1 Arithmetic and Logic Unit (ALU)

As the name describes, the ALU does all the logic and arithmetic

computations. This entity performs at number of arithmetic or logical operations on

one or more input busses. A symk~ol for the ALU is shown in Figure 4.2. All of the

other elements of the processor-, bring data into the ALU [7,9,10,19] for it to

process and then take the results back out.

Sel Input Operation
0000 C=A
0001 C = A AND B
0010 C=AORB
0011 C =NOT A
0100 C=AXORB

0101 C=A+B

0110 C=A-B
0111 C=A+1

1000 C=A-1

1001 C=0

a(31:0) 	c(31:0) I 	I .

b(31:0)

sel(3:0)

Figure 4.2 ALU

The proposed 16 bit DSP processor contains two 32-bit input ports and

one 32-bit output port feeding the accumulator. ALU and accumulator for

arithmetic operations. The ALU is a general purpose arithmetic unit; operations

25

performed with the 16-bit words taken from memory, the 16-bit words derived

form immediate instructions, or the 32-bit result taken from the product register

of the multiplier. In addition to the normal arithmetic instructions, the ALU perform

Boolean operations, providing a bit manipulation ability required of a high speed

controller.

Inputs a and b are the two input busses upon which the ALU operations

are performed. Output bus c returns the result of the ALU operation. Both the

inputs a and b and output c are of 32-bits. Input sel determines which operation

is to be performed as specified by the table 4.1. The input sel is of 4-bits.

The control unit provides sel(3:0) signals that control the operation of the

ALU and the movement of the data into and out of the ALU. The ALU can

perform a number of arithmetic operations, such as add and subtract, and some

logical operations, such as AND, OR, and XOR.

4.3.2 Comparator

This entity compares two values and returns either a `1' or '0' to the

control unit as the status signals, depending on the type of comparison

requested and the values being compared. Based on this status signal the

controller determine what operation to perform next. A symbol showing the ports

of the comparator is shown in Figure 4.3. The comparison type is determined by

the value on input port sel(2:0).

Figure 4.3. Symbol of Comparator

To compare if inputs a and b are equal, apply the value eq to port sel. If

ports a and b have the same value, port compout returns `1'. If the values are

not equal, `0' is returned. All operations work on two input values and return a

26

single bit result. This bit is used to control the flow of operation within the

processor while executing instructions. If the condition tested is true, a `1' value is
assigned; otherwise, a `0' is assigned. Figure 4.4 shows the internal architecture

of comparator.

Figure 4.4. Architecture of comparator

4.3.3 Multiplier: Multiplication is one of the basic and critical operations in the

computations. Efficient implementations of multipliers are required in many

applications. In this present work a 16-bit array multiplier [4,5] is designed,
whose block diagram is shown in figure 4.5. The multiplier performs a 16 x 16 bit

multiplication with a 32-bit result in a single machine cycle. The multiplier consists
of three elements:

27

• The T Register,

• The P Register,

• The multiplier array

The 16-bit T register temporarily stores the multiplicand; the P register stores the

32-bit product. The multiplier values either come from the data memory or are

derived from instruction word. The on-chip multiplier allows the device to perform

fundamental DSP operations such as convolution, correlation, and filtering.

a(15:0) 	c(31:0)

b(1 5:0)

Figure 4.5. Multiplier Block diagram

There are 3 methods for performing the multiplication.

1. Serial/Parallel multiplication: In this one operand is used in parallel and

the second operand is used bitwise, i.e. serial.

2. Serial/Serial multiplication: if both operands are used serial, the

scheme is called a serial/serial multiplier. Such a multiplier only needs one full

adder, but the latency of serial/serial multipliers is high, because the state

machine needs about N x N cycles.

3.Parallel/Parallel or Array multiplication: In this approach both

operands are used in parallel. It improves the speed of the operation with

increased complexity. This arrangement is viable if the time required to complete

the carry and sum calculations are same.For modern FPGA the carry

computation is performed faster than the sum calculation and a different

architecture is more efficient for FPGAs. The approach for this array multiplier is

shown in figure 4.6.

This is a direct array.form of "pencil and paper" method and must therefore

produce a valid product. In this work, the array multiplier for unsigned numbers is

28

u

proposed. The proposed scheme is applicable for VLSI and FPGA application.
For VLSI implementations of multipliers, array-based multipliers are well known
and often used.

O a;

j A

p cM

r

~r• r
'0

M M t

~ a q v 44A

xu 0 	4

n a

Y 	•l

P V

d v 7

a 	3 a a ..

9 4

p r a

M tea+ r o u

q

U .

4

Figure 4.6 A 16-bit Array Multiplication

29

4.3.3.1 Array-Based Multiplication:

An array multiplier was first proposed in [1,4,5] which has good

repeatability of unit cells and is very regular in its structure. It uses only short

wires that connect one full adder horizontally, vertically, or diagonally adjacent full

adders. Thus, it results in a very simple and efficient layout in VLSI

implementation.

The operation of an 16-bit multiplication is shown in figure 4.9, where the

two operands are a(15:0) and b(15:0) and the out put is c(31:0). The operation

contains all 256 partial product bits of the form (ai x bj) properly aligned. The

partial product in the first row is added to that in the second row, and so on. The

final product is thus obtained.

x 	 c

Y

z 	 s

Figure 4.7. Full Adder symbol

}OD A3

ANDZ

Figure 4.8. Full adder RTL diagram

The N-bit Array multiplier, requires N*N two input AND gates and N*(N-1)

Full Adders. The 16 bit array multiplier requires 256 two input AND gates and 240

Full-Adders. The same principle is applied to 32 bit, 64 bit array multipliers.

To use the multiplier, first one of the operand must be loaded into the T

register by load instruction. Then by multiply immediate instruction, the second

operand will be loaded, thus the multiplier computes the multiplication of those

two operands. The result of the multiplier is stored in the P register.

W

uR

R u

E

Fl

R

Figure 4.9.:A16 Bit.Array Multiplier

31

Figure 4.10. Multiplier Internal Architecture

The multiplier architecture that is generated in Xilinx ISE 7.1 tool is shown

in figure 4.10. This consists of full adders and the AND gates that are required in

the construction of the multiplier.

32

4.3.4 Register File:

The Register File (RF) is a group of general purpose registers used as a
storage buffer. This register array or Register File [9,10,19] entity is used to
model the set of registers within the CPU that are used to store intermediate
values during instruction processing. These registers are read from and written to
during the execution of instructions. The set of registers is modeled as a RAM of
eight 16-bit words. The symbol for the regarray entity is shown in Figure 4.11.

data(15:0) 	q(15:0)

sel(2:0)

clk

en

Figure 4.11. Register File Symbol

Figure 4.12. Register File internal architecture.

From the fig 4.12. it shows two register arrays A and B. Each array
consists of 8 registers which are of`16-bits each. The individual register array is
used by the application of corresponding signals. In this present work register
array A is used. To write a location in the regarray, set input sel to the location to
be written, input data with the data to be written, and put a rising edge on input

33

clk. To read a location from regarray, set input sel to the location to be read and

set input en to a `1'; the data is output on port q. When the clk signal has a rising.
edge, the location selected by input sel is updated with the new value.

4.3.5 Multiplexer:

The multiplexer connects multiple inputs to a single output. At any time,
one of the inputs is selected to be passed to the output. In the present work a 2-
to-1 multiplexer(MUX) is developed. The block diagram representation of 2-to-1
MUX is shown in figure 4.13.

10(31:0) 	q(31:0)

11(31:0)

a

Figure 4.13. Block diagram representation of 2-to-1 MUX

!O(n) 	 q(m)

a

Figure 4.14. Multiplexer

34

There are two input lines ,labeled is and il, both are 32 bit length. One of
these lines is.selected to provide the output q. To select one of the two possible
inputs, a selection line needed, and this is implemented, as a. At any time the
output is either lo or it for MUX selection line a is at `0' or `1', respectively.

Even though the total .input line gets selected to the output line, the actual
selection is based on the bit by bit basis as shown in the figure 4.14.

4.3.6 Shifters:

Two shifters are available for manipulating data: a Barrel shifter for shifting
data from data RAM into the ALU and a parallel shifter for shifting the
accumulator into data RAM.

Barrel shifter: A barrel shifter [7,9] is a digital circuit that can shift a data word

by a specified number of bits. The barrel shifter has a 16-bit input connected to
the data bus and a 32-bit output connected to the ALU.

This shifter extends the high-order bit of the data word and zero-fills the
low-order bits. The barrel shifter produces a left shift of 0 to 16 bits on all data
memory words that are loaded into the accumulator. The shifter sign extends the
16-bit data memory word to 32 bit by an arithmetic left shift operation.
Simultaneously logical shift operations can also be performed.

data (15:0) 	re s u lt(31: 0)

operation(1:0)

enable

Figure 4.15. Block diagram of Barrel Shifter

35

Figure 4.16 RTL Diagram of Barrel Shifter

Parallel shifter:

The accumulator parallel shifter performs a left-shift of 0,1 or 4 places on
the entire accumulator and places the resulting high-order bits into memory. The
Parallel shifter is loaded with the 32-bit content of the accumulator. The data is
then left-shifted. The most significant 16 bits from the shifter are stored in RAM,
resulting in a loss of remaining 16-bits. The contents of the accumulator remain
unchanged.

36

4.3.7 Reg

The reg entity is used for the address register and the instruction register.

These registers need to be able to capture the input data on a rising edge of the

clk input and drive output q with the captured data. The value of input a is
assigned to output q when a rising edge occurs on input clk. The assignment is

delayed by 1 nanosecond to remove delta delay problems during simulation. A

symbol for the reg entity is shown in Figure 4.17.

a(15:0) 	q(15:0)

clk

FD
a 15: 	 D 	 O 	 15:0

clk 	 c

Figure 4.17. Register Symbol and RTL diagram

The reg symbol contains- three ports. Port a is the data input port, port q is

the data output port, and port clk controls when the data is stored in the reg
entity. The same architecture is for the 32 bit registers, whereas the inputs and

output are of 32 bits.

4.3.8 Trireg:

The tristate register is connected to the main data bus and can store

information from the data bus as well as drive information to the data bus. The

trireg entity has four ports as shown in Figure 4.18.

Input a is the data input to the register, and port q is the data output from

the register. Input clk is used to store a new value into the register. When a rising

edge is applied to input cik, the data on input a is stored in the register. Input on
is used to control output •q. When 'en - is -a `1' value, the register state is driven to
output q. When on is a `0', output°q is a high impedance value and not driving.

37

a(15:0) 	q(15:0)

clk

en

FD

D 	 Q 	 I 	 0

T

C .

en 	cval_NO

Figure 4.18 Tri Register Symbol and RTL diagram

4.4 Controller:

The control unit [7,9,19] is a sequential circuit in which its outputs are

dependent on both its current and past inputs. This history of past inputs is stored

in the state memory and is said to represent the state of the circuit. Thus, the

circuit changes from one state to the next when the content of the memory

changes. Depending on the. current state of the circuit and the input signals, the

next-state logic will determine what the next state ought to be by changing the

content of the state memory. Hence, a sequential circuit executes by going

through a sequence of states. Since the state memory is finite, therefore the total

number of different states that the circuit can go to is also finite.

Finite-state machines are classified into two main types: Moore and Mealy.

A Moore type FSM is one where the output of the machine is dependent only on

the current state, whereas a Mealy type FSM is one where the output is

dependent on both the current state and the input signals.

The control unit (or controller) is responsible for controlling all the

operations of the datapath by providing appropriate control signals to the

datapath at the appropriate time. At any one time, the control unit is said to be in

a certain state as determined by the content of the state memory as shown in

38

figure 4.19. The state memory is, simply a register with one or more (D) flip-flops.

The control unit operates by transitioning from one state to another — one state

per clock cycle.

Control 	 Data•
Inputs 	 Inputs

Control 	 Data
Outputs 	 Outputs

Figure 4.19. Block diagram of the Control Path

Depending on the current state, the control inputs and the status signals,

the next-state logic in the control unit will determine what state to go to next in the

next clock cycle. Thus, the..control unit is also referred to as a finite-state machine

(FSM) because of this. In every state, the output logic that is in the control unit

generates all the appropriate control signals for controlling the datapath. The

datapath, in return, provides status signals for the nextstate logic.

Architecture of the control unitcontains two processes as shown in figure

4.20. The first is a combinational process (not clocked) that examines the current

state and all inputs and produces output control values and next state output. The

second is a Sequential process. (has a clock) that is used to store the current

state and copy the next state to the current state. The next state transitions occur

on rising edges of the clock input. The control block is a very large state machine

that contains a number of states for-each instruction. Executing all of the states

for an instruction performs the necessary steps to complete the instruction.

7

39

If the reset signal is high, the sequential process labeled controlffproc sets

signal current state to state value . reset1. This is the first state of the reset

sequence for the CPU. This state starts the process of getting the CPU ready to

execute instructions.

Figure 4.20. Controller Block diagram

If the reset signal is not `1' and there is a rising edge on the clock signal,

then the controlffproc process copies the next state signal generated by the

combinational process to signal.:current state. This is the method for the state

machine to advance from one state to another.

After the reset signal is set to a value other than `1', the state machine is in

state reset1. This state causes the alu entity to output the value 0, the shift entity

to pass the value with no modification, and the next state signal to be updated

with the value reset2.

At the next clock edge, thestate machine advances to state reset2. State

reset2 leaves the control signals for the alu and shift entities as before, but also

sets the OutRegWr signal to a 1', causing the 0 value on the data bus to be

40

written to register OutReg. The goal of the reset sequence is to set up the

program counter to start reading instructions from memory.

After state reset2, the state machine next goes to state reset3 on the next

clock edge. This state sets signal OutRegRd to a `1', causing entity OutReg to

output its value to the data bus. The state machine then advances to state reset4.

During reset4, the value from OutReg is copied into register ProgCntr and also to

register AddrReg. The state machine advances to state reset5, sets output signal

RW (read write) to '0' (read mode), and signals VMA (Valid Memory Address) to

a `1'. This causes memory entity mem to output the data at location 0 to the data

bus. The state machine advances to state reset6 and, depending on the value of

the ready signal from the memory, either stays in reset6 or writes the memory

data value to register InstrReg and goes to state execute.

At this point, the state machine has reset the state of the CPU to a known

state and loaded the first instruction into register InstrReg. From this point

forward, the state machine changes state depending on the instructions

encountered.

4.5 CPU:

Figure 4.21 RTL Diagram of CPU

41

The figure 4.21 shows interconnection of the all the blocks to form the
complete DSP Processor CPU core. All of these units communicate through a
common,16-bit tristate data bus. The processor fetches instructions from the
memory and executes these instructions to run a program. These instructions are
stored in the instruction register and decoded by the control unit. The control unit
causes the appropriate signal interactions to make the processor unit execute the
instruction.

When executing an instruction, a number of steps take place. The program
counter holds the address in memory of the current instruction. After an
instruction has finished execution, the program counter is advanced to where the
next instruction is located. If the processor is executing a linear stream of
instructions, this is the next instruction. If a .branch was taken, the program
counter is loaded with the, next instruction location directly.

The control unit copies the program counter value to the address register,
which outputs the new address on the address bus. At the same time, the control
unit sets the R/W (read write signal) to a `0' value for a read operation and sets
signal VMA (Valid Memory Address) to a `1', signaling the memory that the
address is now valid. The memory decodes the address and places the memory
data on the data bus. When the data has been placed on the data bus, the
memory has set the READY signal to a `1' value indicating that the memory data
is ready for consumption.

The control unit causes the memory data to be written into the instruction
register. The control unit now has access to the instruction and decodes the
instruction. The decoded instruction executes, and the process starts over again.

42

Chapter 5

Simulation Results

The processor module is designed by interconnecting the basic blocks,
through the structural model in VHDL. All the entities of the processor were
developed using behavioral model and structural model in VHDL. The simulation
results of the each stage and the simulation result of the processor on a whole is
shown in next few pages.

Figure 5.1 shows the simulation result of the ALU. The inputs are control
signal sell , input data (a and b) and output is the result(c) from ALU. The'control
signal set selects the type of the operation, and is performed.

Figure 5.1 Simulation Result of ALU

Figure 5.2 shows the simulation result of B-Shifter. The input data is operated as
per the control signals and produces the output.

43

l... AOBF1~: _~~!TI':Ii•■

3iift~'3ii~LI•~~Li.. i 	[,_._I =T._~i~.~___~i(::i'. ifi(____~~

 __________ ~~m~nnnnnnnn
2us 	 4us 	 bus 	 Bus 	10 us 	12u

Figure 5.2 Simulation Result of B Shifter

Figure 5.3 shows the simulation result of tri register. Input a is the data input to

the register, and port q is the data output from the register. Input clk is used to

store a new value into the register. When a rising edge is applied to input clk, the

data on input a is stored in the register. Input en is used to control output q.

When en is a `1' value, the register state is driven to output q. When en is a `0',

output q is a high impedance value.

Figure 5.3 Simulation Result of Tri Register

Figure 5.4 shows the simulation result of Register Array. The input signal

sel selects one of the registers and the input data is written into that register,

whenever the input enable line en is high. From the simulation, at each time one

of the registers got selected and modified.

44

Whenever input sel changes, the value of the signal temp_data gets

updated. The signal temp data is passed to the output if the en signal is `1';

otherwise, it puts out Z values: The Z values signify that the regarray entity is not

driving the output when the en input is unasserted.

Figure 5.4 Simulation Result of Register Array

Figure 5.5 shows the simulation result of control unit whose inputs are the

opcode part of the instruction and the outputs are different control signals. The

control signals are applied to their corresponding components at the appropriate

time.

Figure 5.5 Simulation Result of Control Unit

45

Figure 5.6 shows the simulation result of 16Lbit array Multiplier, where a, b

are the inputs and c is the output. The inputs are 16 bit data and the output is of

32 bits. Remaining signals are the intermediate results. From the figure it is

observed that the output is changed with the immediate change in the input(s),

i.e. without any delay.;. The time to completemultiplication is less than 1 ns. The

performance is improved than the multiplier of shift-add type.

Figure 5.6 Simulation Result of 16 bit Array Multiplier

. Figures 5.7 (a), (b), (c) show the simulation result of the main entity

processor. The figures show the simulation result for a block of instructions that

are executed. To cover some more instructions and their execution, these blocks

of instructions are taken as the cases.

Case 1:

Instruction Opcode

MVI R1,0010H 	V 2100H

0010H

MOV R3,(R1) OB20H

LDAI FFFFH 9000H

FFFFH

ANA R1 8100H

INC R1 3900H

f 	I 	i 	i 	I 	1 	1 	e 	I 	1 	1

5us 	 10 us 	 15us 	 20 us

Figure 5.7(a) Simulation report of OSP Processor for case I

Case 2:

Instruction Opcode

MVI R1-,0010H 2100H

OOIOH

MOV R3,(R1) ,- OB20H

STR R3, .R1 1320H

MOV R2,(R3) 2100

47

Figure 5.7 (b) Simulation report of DSP Processor for case 2

Case 3:
Instruction Opcode
MVI R0,0004H 2000H

0004H
LT, 0015H 4015H
MPY RO 4800H
ANI 0010H 5000H

0010 H
XRA RO 	 9800H
LDAI FFFFH 	 9000H

FFFFH

Figure 5.7 (c) Simulation report of DSP Processor for case 3

Case 4:

Instruction Opcode

MVI R2,0004H 2200H

0004H

LDAI AAAAH: 9000H

AAAAH

JMP 001OH 2800H

0010H

The instruction OR R2, whose opcode is 8AOOH, is there at the address location

0010H. That instruction is executed as shown in the result.

Figure 5.7 (d) Simulation report of DSP Processor for case 4

49

Chapter 6

Conclusion and Future Scope

6.1 Conclusion:

The present work deals with implementing a 16-bit DSP Processor on

FPGA. The instruction set of the proposed processor is of 16 bit instructions and

supports the numeric intensive signal processing operations and general purpose
applications. The operands of the instructions are of 16 bits. The instruction set

consists of primarily of single word instructions, only Immediate Data Type

instructions are of two word instructions.

Each block of the processor is designed by behavioral model and

structural model and these blocks are connected by structural model using
VHDL. The simulation results have been provided in the previous chapter. The

synthesized RTL diagrams of the each block is shown in the Appendix B.

The 16 bit array multiplier is used in this present work. The array multiplier

requires a large amount of logic, but can compute a product much more quickly

than the method of shifting and adding typical of earlier computers.

The registers in the register array are used for temporary storage of data

and are used to store the address of the operand in indirect addressing mode.

6.2 Scope For Future Research:

In terms of the future work, there are many possiI ksr
further development. The improvements which are recomrre

are as follows

> Development of processor having advanced features like instruction look-

ahead and prediction functionality.
> The current controller has specific states for each and every instruction,

but could be improved by. creating generic multi-cycle stages for the
execution of each instruction.

50

> Researching new and improved instructions to increase the usability of the
DSP.

> By using pipelining the long paths can be reduced and the speed of the
processor can be improved.

➢ The instruction set can extended including parallel MAC and distributed
arithmetic instructions.

➢ An attempt can be made to extend the work for floating point numbers.

51

References

[1]. Chin-Long Wey And Jin-Fu Li , "Design Of Reconfigurable Array
Multipliers And Multiplier-Accumulators," The 2004 IEEEAsia-Pacific•
Conference On Circuits And Systems, pp 37-40, December 6-9, 2004.

[2]. Chang Choo, Jeff Chung, James Fong, Shinghin Eddy Cheung,
"Implementation of Texas Instruments TMS32010 DSP Processor, on
Altera FPGA", San Jose State University, 2004.

[3]. TMS320C1x 	Digital 	Signal 	Processors",
http:/focus.ti.com/lit/ds/symlink/smj320c 15.pdf, pp. 8-10,13, 1991.

[4]. Guoping Wang; Shield, J, : "The efficient implementation of an array
multiplier',Electro Information Technology, May 2005.

[5]. U.Meyer-Bease, "Digital Signal Processing With Field Programmable Gate
Arrays," Springer Publications.

[6]. Wayne Wolf, "FPGA-Based System Design," Prentice-Hall, 2004.

[7]. M. Morris Mano, "Digital Design," Second Edition, 2001.

[8]. Aamir A. Farooqui, Vojin G. =Okpobdzija, "General Data-Path Organization
of a MAC unit for VLSI I DSP Processors," IEEE 1998.

[9]. Charles H. Roth, Jr, "Digital System Design Using VHDL," Fifth
Edition,2004.

[10]. Douglas L Perry, "VHDL Programming by Example," Fourth Edition.

[11]. J Bhaskar, "A VHDL Primer", third edition, Pearson Prentice Hall.

[12]. Surin Kittitornkun and Yu Hen Hu, "Programmable Digital Signal
Processor(PDSP): A Survey", University of Wiscons in Madison, 2003.

52

[13]. William Stallings, "computer organization & architecture", sixth edition,
2003.

[14]. Ney Laert Vilar Calazans, . Fernando Gehm Moraes2 Cesar Augusto
Missio Marcon, "Teaching Computer Organization and Architecture with
Hands-On Experience", 2002 IEEE 32nd ASEE/IEEE Frontiers in
Education Conference, November 6-9,2002, Boston, MA.

[15]. Texas Instruments, Inc.,"TMS 320C1x User's Guide", 2563968-9721
revision, July 1991.

[16]. Sen M Kuo, Bob H Lee, Wenshun Tian, "Real Time Digital Signal
Processing Implementations and Applications" Second Edition,2006.

[17]. Hassan M. Ahmed, Richard B. Kline, "Recent Advances in DSP Systems",
IEEE Communications Magazine, May 1991.

[18]. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", third
edition.

[19]. Jonathan and Michelle; "Micro Processor Design Principles and Practices
with VHDL ", 2004.

[20]. Volnei A. Pedroni, "Circuit Design with VHDL", Massachusetts institute of
technology, 2004.

[21]. Peter J. Ashenden, "The VHDL Cookbook", First Edition, July, 1990.

[22]. Vijay K.Madisetti and Douglas B.Williams, "Digital Signal Processing Hand
Book", Georgia Institute of Technology, 1991.

[23]. Peter J. Ashenden, "The VHDL Cookbook", First Edition, 1990.

[24]. http://www.xilinx.com/support/library.htm

[25]. www.mte-india.com

[26]. www.wikipedia.com

53

Appendix A

Software Details

In the present work, there were many softwares which were utilized. Some
of these were utilized for the simulation purpose, some of them were used for
verification purpose and some for the validation purpose. The hardware here
means the FPGA development kit, on which the developed design is
implemented. The Details are discussed in the following sections.

A.1 Softwares used: -

1. Hardware Descriptive Language (HDL)

2.Xilinx ISE 7.1

A.1.1 Hardware Descriptive Language:

A Hardware Descriptive Language (HDL) is a. computer language
designed for formal description of electronic circuits. It can describe a circuit
operation, its structure, and the input stimuli to verify the operation (using
simulation). A HDL model is a text-based description of the temporal behaviour
and / or the structure of an electronic system. In contrast to a software
programming language, the HDL syntax and semantics include explicit notations
for expressing time and concurrent execution, which are the primary attributes of
hardware.

Traditional programming languages such as C/C++ (augmented with
special con-structions or class libraries) are sometimes used for describing
electronic circuits. They do not include any capability for expressing time explicitly
and, consequently, are not proper hardware description languages.

There are over 200 Hardware Descriptive Languages (HDLs) around the
world. Only two HDLs which are famous are VHDL and Verilog. VHDL stands for
HSIC Hard-ware Descriptive Language. Both VHDL and Verilog are powerful
languages that allow describing and simulating complex digital systems. Verilog

54

is popular in Silicon Valley companies, while VHDL is used more by
governments, in Europe, Japan and most of the universities worldwide. Major
Computer Aided Design (CAD) frame- works now support both languages.

Features of VHDL:

There are many properties, of VHDL which make it very convenient for
Hardware Design Engineers. These are concurrent signal assignment, process
execution, statement concurrency, operator overloading, packages, component
instantiation. The difference which is clearly visible among C programming and
VHDL is that, statements in C language - are executed sequentially whereas in
VHDL, statements can be executed sequentially or concurrently or one can have
both, i.e., some of the statements being executed in sequential and some in
concurrent fashion.

A.1.2 Xilinx ISE 7.1

Xilinx ISE stands for Xilinx Integrated System Environment (ISE). ISE controls all
aspects of the design flow. Through the Project Navigator interface, one can
access all of the design entry and design implementation tools. One can also
access the files and documents 'associated with the project. Project Navigator
maintains a flat directory structure; therefore, the project should be updated
through the use of snapshots.

The Xilinx ISE system is an integrated design environment that consists of
a set of programs to create (capture), simulate and implement digital designs in a
FPGA or CPLD target device. All the tools use a graphical user interface (GUI)
that allows all programs to be executed from toolbars, menus or icons.

Design Entry:

The first step is to enter the- design. This can be done by creating "Source"

files based on the design criteria.' Source files can be created in different formats
such as a schematic, or a Hardware Description Language (HDL) such as VHDL,
Verilog. A project design will consist of a top-level source file and various lower-

55

level source files. Any of these files can be either a schematic or a HDL file.

Source files are used to describe hardware for the purpose of simulation,

modeling, testing, design and documentation of digital systems.

Simulation

This is an important step- that should be done at various stages of the

design. The simulator is used to verify the functionality of a design (functional

simulation), the behavior and the timing (timing simulation) of the circuit. The
operation of the design is verified before the implementation it as hardware.

Simulation can be done using ModelSim in ISE software. ISE tool supports the

following simulation tools:

• HDL Bencher is an automated test bench creation tool. It is fully'integrated

with project navigator.

• ModelSim from Model Technology is integrated in Project Navigator to

simulate the design at all the steps.

Design Constraints

Setting constraints is an important step in the design process. It allows to
control timing optimization and enables more efficient use of synthesis tools and
implementation processes. This efficiency helps minimize runtime and achieve
the requirements of design. There are many different types.of constraints that can

be set.

Design Synthesis

After the design has been successfully analyzed, the next step is to

translate the design into gates and optimize it for the target architecture This is

the synthesis phase. In this step the design is translated into gates and it will be

optimized for the target architecture. The synthesis step creates netlist files,

which is a description of how the circuit is realized or connected using basic
gates, from the various source files. The netlist files can serve as input to the
implementation module.

56

Design Implementation

After generating the netlist file (synthesis step), the im- plementation will

convert the logic design into a physical file that can be downloaded on the target

device i.e. FPGA. This step. involves three sub-steps: Translating the netlist,

Mapping and Place, & Route.

This builds a physical realization of the synthesized logic by placing the

logic blocks into logic elements and choosing interconnect resources for the

connections between them. This creates the physical realization.

1

Figure A.1: Overview of various steps involved in the design flow

Generate bit stream

It creates the information needed to program the device. This information

is called as bit stream file.

Device Configuration

This refers to the actual programming of the target FPGA by downloading
the programming file, to the FPGA or any other FPGA development kit. It is the

process by which the bit stream of a design, as generated by Xilinx software, is

loaded into the internal configuration -memory of the FPGA. SPARTAN-2 device

supports both serial configuration, using master/slave serial and JTAG modes, as

57

well as byte-wide configuration employing the select Map mode. FPGAs support

3 configuration modes.

> Slave Serial Mode

> Master Serial Mode(Through PROM)

> Boundary Scan Mode

The configuration mode is determined by the three configuration mode pins (M1,

M2, M3).

Sources Window

This window contains the design source files for a project. These are the

source files that are created or added to the project. A drop down list at the top of

sources window allows you to select source files that are associated with a

particular design aspect such as Synthesis/Implementation or Simulation.

Processes Window

The processes windows list the available processes (corresponding to the

process selected in the processes window). Typically a particular process that is

desired to be performed on the selected •source file, is selected. This can include

a simulation, implementation, etc. To run a process you can double click on the

process. When a process has been successfully executed a green tick-on icon

appears. When a high-level process is run, the Project Navigator will

automatically run all the associated lower-level processes.An overview of the

digital design flow is explained in Figure. A.1

58

Appendix B

Hardware details

B.1 Universal DSP Trainer

Universal DSP protoboard supports various FPGAs and is useful to

physically verify DSP algorithms or simple designs.

B.1.1 Advantages of using FPGA .

Using FPGA's for implementing DSP functions is one of the preferred ways,

and has many advantages over using DSP processors and ASIC's.

➢ High performance

➢ Reconfigurable

> One chip solution

B.1.2. Spartan-2:

Spartan-2 family is second generation high volume production FPGA

solution. Devices in this family are available up to 200k gates, with up to 200 MHz

system performance.

Spartan-II FPGA Family Members

Device
Logic
Cells

System Gates
(Logic and RAM)

CLB
Array

(R x C)
Total
CLBs

Maximum
Available
User 110(1)

Total
Distributed RAM

Bits

Total
Block RAM

Bits
XC2S15 432 15,000 8 x 12 96 86 6,144 16K

X02S30 972 30,000 12 x 18 216 92 13,824 24K

XC2850 1,728 50,000 16 x 24 384 176 24,576 32K

XC2S100 2,700 100,000 20 x 30 600 176 38,400 40K

XC2S150 3,888 150,000 24 x 36 864 260 55,296 48K

XC2S200 5,292 200,000 28 x 42 1,176 284 75,264 56K

B.1.2.1. Features of Spartan 2 families are:

> On chip RAM

> Dedicated carry logic for high speed arithmetic

59

➢ Dedicated multiplier support

➢ Low power segmented routine architecture

> 16 high performance interface interface standards

➢ 4 dedicated delay locked loop(DLL) for advanced clock control

> Unlimited reprogram ability

➢ Very low cost

B.2 DSP Protoboard features:

> It, supports a variety of FPGA's in different sizes and architectures

➢ Analog interface

o Analog input (0-5 v) : 4channels using ADC

o Analog output (0-5v) : 4 channels using DAC

> Function generator(using IC 8038)

o With sine, square and triangular waveforms.

o Frequency variable from 60-200hz.

➢ One anti aliasing filter at the input of ADC

> One reconstruction filter at the out put of DAC

➢ User interface

o 16 output LEDs

o 16 DIP switches

o 4 key switches

o 4 seven segmented. displays

➢ Serial interface :One RS-232 channel using MAX3223

➢ User selectable configuration modes

➢ On board RPS

B.2.1 Power Supply:

FPGA supplies (Vccint,Vccio) are generated on the board

o Vccint (Inetrnal core supply voltage)=2.5v

o Vccio (I/O bank supply voltage)=3.3v

o Download cable voltage=3.3v

B.2.2 LEDs

There are total 34 LEDs on the protoboard, which are grouped as

➢ POWER-ON LED
➢ DONE LED
➢ ILO to IL15
> OLOtoOL15

B.2.3 DIP SWITCH

> 8-way DIP switches(SW1 & SW2): Used to apply logic inputs to FPGA
> SW7 is 4-way dip switch and is used to select different time constants for

anti-aliasing filter
> SW9 is 4-way DIP switch and is used to select different time-constants for

reconstruction filter
> SW8 is 4-way DIP switch and is used to select the frequency range of the

function generator

B.2.4 Function Generator:

Function generator-1C8038 is used on board to generate sine, square, triangular
waves, in the frequency range of 60 Hz to 200 KHz. Output of the function
generator can be used as the analog input to ADC for performing different DSP
applications.

> Amplitude setting: The amplitude of generated waveform can be adjusted
using potentiometers as follows:

o PR7forSinewave
o PR8 for Square wave
o' PR9 for Triangular wave

> Frequency setting: The frequency of the function generator can be varied
in 2 steps

o Coarse frequency — Using switch SW8
o Fine frequency — Using potentiometer PR10

61

Figure B..1 RTL diagram for Accwr

Figure B.2(a) RTL diagram for alusel(0)

Figure B.2(b) RTL diagram for alusel(1)

62

Appendix C

RTL, Diagrams

This chapter gives the synthesized RTL diagrams of. the blocks that are

generated in the implementation of the , processor. The RTL diagrams are

obtained from Xilinx ISE 7.1 synthesis tool.

Figure B.2(c) RTL diagram for alusel(2)

4D3

Figure B.3(a) RTL diagram for bshftsel(0)

63

AND3

Figure B.3(b) RTL diagram for bshftsel(1)

Figure B.4(a) RTL diagram for currentstatel

65

Figure B.4(b) RTL diagram for currentstate2

Figure B.4(c) RTL diagram for currentstate3

instrWr>

AND2

Figure B.5 RTL diagram for instrwr

Figure B.6 RIL diagram for outregwr

Figure B.7 RTL diagram for progcntrrd

67

Figure- B.8 RTL diagram for progcntrwr

Figure. B.9(a) RTL diagram for regrd

Figure B.9(b) RTL diagram for regwr

Figure B.1O(a) RTL diagram for regsel(0)

Figure B.1 O(b) RTL diagram for regsel(1)

Figure B.10(c) RTL diagram for regsel(2)

71

Figure B.1 O(c) RTL diagram for regsel(2)

71

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

