
MIXED-MODE SCADA NETWORK FOR
HYDRO ELECTRIC POWER PLANT

A DISSERTATION

Submitted in partial fulfillment of the
requirement; for the award of the degree

of.
MASTER OF TECHNOLOGY

in
ELECTRICAL ENGINEERING

(With Specialization in Measurements and Instrumentation)

N. SAX MANOHAR

r'
1 	P

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE, 2008

 PM OO - I.H. I4a.-M. — 6 -•l••'.. _u_

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in the dissertation entitled

"MIXED-MODE SCADA NETWORK FOR HYDRO ELECTRIC POWER PLANT" in

partial fulfillment of the requirements for the award of the degree of Master of technology in

Electrical engineering with specialization in Measurements and Instrumentation, submitted to

the Department of Electrical engineering, Indian Institute of Technology Roorkee, India is an

authentic record of my own work carried out during a period from July 2007 to June 2008

under the guidance and supervision of Dr. H.K. VERMA, Professor and

Dr.R.P. MAHESHWARI, Professor, Electrical Engineering department, Indian Institute of

Technology, Roorkee.

The matter presented in this project has not been submitted by me for the award of

any other degree of this Institute or any other Institute.

Dated: fluNe-3o, 2c~g 	
N,

Place: Roorkee
 (N. SAI MANO AR)

CERTIFICATE
This is to certify that the above statement made by the candidate is correct to the best of my

knowledge.

3 ~ 4Qo
Dr.H.K.VERMA
	

Dr.R.P. MAHESHWARI

Professor,
 Professor,

Department of Electrical Engineering, 	 Department of Electrical Engineering,

Indian Institute of Technology Roorkee, 	 Indian Institute of Technology, Roorkee,

Roorkee-247667
	

Roorkee-24766

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. H.KVerma, Professor and

Dr.R.P.Maheshwari, Proffessor, Electrical Engineering Department, Indian Institute of

Technology Roorkee, Roorkee, for providing me all the necessary guidance and inspirational

support throughout this dissertation work. I am grateful to Dr.H.K.Verma for giving me the

opportunity to work on the Foundation Fieldbus and MODBUS equipment.

I would also thank Dr.R.S.Anand, Associate Professor, Electrical Engineering

Department for his immense support.

My heartfelt gratitude and indebtness to all the teachers of Measurements and

Instrumentation group who, with their encouraging and caring words, constructive criticism

and suggestions have contributed directly or indirectly in a significant way towards

completion of this project.

I am indebted to the staff of M&I lab, all my friends and family for their encouragement

and support which made the completion of this dissertation possible.

ABSTRACT

The hydro power generation is one of the efficient and economic forms of all the

renewable energy sources. Hydro power stations are located at remote places and require

an automation system which would continuously monitor various plant parameters and

remotely control operations of the plant.

SCADA (Supervisory Control and Data Acquisition system) performs the

function of data acquisition, for providing an unattended, efficient and reliable

supervision and control. SCADA network includes interconnection with the station

computers and device level networks. At the device level, SCADA employs standard

protocols for communication with the field devices and several clients connect to the

work station server to access the parameters for display and processing.

In the past few years, industry has developed at the level of the field-devices at its

own range of digital communication protocols with the increasing involvement of

intelligent instrumentation. When these networks are used in a plant it requires access to

the plant parameters for the remote control and centralized supervision. The applications

had to develop drivers for their own packages to access the data. Hence there was an

urgent need to develop standard schemes for communicating with multiple protocol

networks.

A mixed-mode SCADA network is one which can connect the work station to a

number of device level networks and provide data to multiple client applications

simultaneously. In the present work a mixed-mode SCADA network, integrating a

FOUNDATION FIELDBUS (FF) and two RS485/MODBUS networks, is implemented

for a model hydro power station of 2* 1.5 MW capacity. The network has a central server

node connected to the Fieldbus network through a bridge (Ethernet to FF) and to two

Modbus networks through RS232 to 485 convertor. Each device level network has its

individual OPC server (Object Linking and Embedding for Process Control) and acts as

an interface between hardware providers and software developers. It provides a

mechanism to provide data from a data source and to communicate the data to any client

application in a standard way. The OPC servers installed on the server node are Dfi OLE

server, NAPOPC server and NDS OPC server. Dfi Ole Server acquires the real-time data

tl

from the Fieldbus devices where as NAPOPC and NDSOPC servers have been used to

configure and acquire the data from the Modbus networks. Fieldbus devices have been

used to measure the pressure heads at the forebay and tailrace, water level, inlet nozzle

position, various generator temperature and current. The Modbus devices monitor

generator and transformer voltages, currents, temperatures, frequency and the breaker and

isolator positions. GraphworX, AlarmworX, TrendworX, LabVIEW and Visual Basic

have been used as the OPC clients. GraphWorX is an OPC compliant human-machine

interface (HMI) software package for process control. AlarmWorX is OPC-compliant

alarming software, performs alarm detection and reporting based on the OPC Alarm and

Events Standard. TrendWorX is similar to GraphWorx but is equipped with more

advanced options such as different kinds of plots etc. Smar WebHMI has been used as a

thin client Web solution that enables standard Web browsers, such as Microsoft Internet

Explorer, for use as real-time operator interfaces.

In the present work two remote clients are connected to the plant server on local area

network (LAN). The clients have been configured with DCOM (Distributed Component

Object Model) and windows registry settings to communicate the installed OPC clients

with the servers on the central server node so that any client can monitor and control.

Thus a mixed-mode SCADA network involving Foundation Fieldbus, Modbus and

Ethernet protocols has been successfully implemented in the laboratory with the above

functionalities.

Iv

INDEX

Candidate Declaration ...j
Acknowledgement ..ii
Abstract ... iii
Listof Figures 	...vii
1. 	INTRODUCTION ... 1

1.1 	SCADA Networks 1

1.2 	Mixed-mode SCADA Network 1
1.3 	Statement of Problem 	.. 2
1.4 	Organization of Dissertation 3

2. 	Mixed-mode Network Schemes 5
2.1 	Integration Based on Gateway 5

2.1 .1 	Architecture of Gateway based Network 5
2.2 	Integration Based on DDE and NetDDE 6

2.2.1 Dynamic Data Exchange Protocol 7
2.2.2 Dynamic Data Exchange Concepts 7
2.2.3NETDDE .. 10

2.3 	Integration based on OPC 12
2.4 	Selection for SCADA ... 13

3. 	OPC: Features, Technologies & Standards 17

	

3.1 	OPC Features ... 17

3.1.1 Purpose of OPC ... 	17

	

3.2 	OPC Technologies .. 19

3.2.1 Object Linking and Embedding19

3.2.2 Component Object Model ..21

3.2.3 Distributed Component Object Model 26

3.2.4 ActiveX Technology ..29

3.2.5 OPC Server Structure and Functionality 29

iv

3.2.6 Client-Server Communications 31
3.2.7 OPC Standards ...33

4. 	Hardware and Software for SCADA System38
4.1 	Hardware Used 	... 38

4.1.1 FF Device Descriptions 38
4.1.2 Modbus Device Descriptions 40

4.2 	Software Used .. 43
4.2.1 SYSCON 	... 43
4.2.2 Utility software 	.. 43
4.2.3 OPC 	Servers 	.. 44
4.2.4 OPC 	Clients 	... 48

5. 	Implementation of OPC Based SCADA Network53
5.1 	Model Hydro-Power station 53
5.2 	Network Architecture ...54
5.3 	Configuration Steps ... 55

5.3.1 Foundation Field Bus Configuration 55
5.3.2 Configuration ICP DAS modules 62

5.3.3 Configuration of Nudam modules 63

5.4 	SCADA Functions Implemented 64
5.4.1 	Data Acquisition 	.. 64
5.4.2 Remote Monitoring .. 66
5.4.3 Alarm and Event Notifications 71

5.4.4 Alarm and Event Logging 72

5.4.5 Control Functions ...72

5.5 	WEB Monitoring .. 73

6. 	Results 	..75

7. 	Conclusions and Future Scope 87
7.1 Conclusions ...87
7.2 Future Scope ..87

v

References...8 8

Appendix-A: OPC Data Access Automation Objects and Interfaces91
Appendix-B. , Program for OPC test client in visual Basic 	„93

vi

LIST OF FIGURES

Fig.No 	Figure Name Page No

2.1 Gateway network architecture 5

2.2 Architecture of DDE based Network 8

2.3 Flow chart of server response 10

2.4 Schematic of NET DDE communication 11

2.5 Architecture of OPC based Network 12

3.1 Applications without OPC interface 18

3.2 Applications with OPC interface 19

3.3 COM components in the same process 27

3.4 Client and Server in different processes 27

3.5 Client and Server on different machines 28

3.6 DCOM Protocol stack 28

3.7 Functional Block Diagram of an OPC Server 29

3.8 OPC Interfaces
	 30

3.9 OPC server structure 	 31

3.10 Client and Server residing on same machine 	 32

3.11 Client and Server residing on Different machines 	 32

3.12 OPC Automation Server Object Model 	 33

3.13 OPC Server & Group Objects with their DA interfaces 	 34

3.14 Web server Architecture 	 37

4.1 SYSCON Configuration File 	 43

4.2 I-7000 Utility 	 43

4.3 NAPOPC server window

4.4 Search Window of NAP OPC server
	 45

4.5 Architecture of AlarmServer
	 47

4.6 GraphWorX screen 	 49

4.7 Unified Data Browser 	 49

4.8 Custom and Automation Client Applications Interfacing to OPC Servers 	50

4.9 Flow Chart for VB Automation client 	 52

vii

5.1 Single Line Diagram of Model Hydro-Power station 53
5.2 Mixed-mode Network Architecture 54
5.3 Connection Diagram 56
5.4 Syscon configuration window 62

5.5 Multi-drop RS485/MODBUS Network (ICP DAS) 62
5.6 Fully Configured NAPOPC DA server 63
5.7 NuDAM RS485/MODBUS Network 63
5.8 Fully Configured NDS OPC server 64
5.9 Local security settings 68

5.10 DCOMCNFG in run command 68
5.11 My Computer Properties page in DCOM configurations 69
5.12 Access permissions Tab 69
5.13 Launch permissions Tab 70
5.14 Server application properties Tab 71

5.15 Architecture of WebHMI server and Client communication 73
6.1 Foundation FieldBus and MODBUS Networks Implemented in Laboratory 75

6.2 Server and Client Connected in LAN 76
6.3 Smar OPC Tag browser 77
6.4 Front panel of Plant with parameters of both the Units 78
6.5 Front Panel of UNIT - 1 79
6.6 Front panel for UNIT -2 80
6.7 Alarm WorX Viewer 81
6.8 Lab VIEW client 82
6.9 OPC Test CLIENT in Visual Basic 6.0 83

6.10 Web page of Plant single Line Diagram of 6.4 84

6.11 Web page of Plant UNIT -I of 6.5 85

6.12 Web page of Alaram Viewer of 6.7 86

viii

CHAPTER-1
	

INTRODUCTION

1.1 SCADA Networks

SCADA stands for Supervisory Control And Data Acquisition system. A SCADA

system comprises of several field devices like PLCs, transmitters, sensors and actuators for

measuring and controlling the field parameters. PLCs and Distributed Control Systems

(DCS) are now-a-days offering Ethernet/TCP/IP connectivity so that the real-time

information on the plant can be readily accessible by any work station on the plant network

(LAN/WAN), in a client-server relationship. A plant manager can visualize the graphical

display of the real-time values of the parameters in the plant floor and all the plant operations

in a single window. Industrial plants are using information technology for the years, but with

open IT standards, faster computers, emerging software and demand for integrated

information by all segments of an industrial enterprise (operations, maintenance and

management), industrial networks are merging right into enterprise-wide IT solutions.

Meanwhile at the device level, industry has developed in its own range of field bus or

device-level networks for linking control devices with increasingly intelligent

instrumentation. The field devices are also becoming more complex, smarter and hold more

information about themselves and the processes to which they are connected. A higher

communication data rates are required to handle this additional information without undue

delays. Hence several digital communication protocols have emerged out for connecting

plant network with the field device networks.

1.2 Mixed-mode SCADA Network

There are many sorts of device level buses coexisting in the industrial control systems

but they cannot communicate with each other because of different protocols used in these

buses. In a plant utility normally there are different buses utilized in systems, in which

information communication with each other is often needed. Therefore, scheme of different

kind of bus network system integration that can realize data communication between these

networks of different protocols must be investigated. Such a system for SCADA applications

can be called a "Mixed-mode SCADA network". A standard scheme must be used to the

SCADA network an open system and interoperable for any network protocol. The ideal

opposite to proprietary system is an open system. Open systems are based on off-the-shelf

standards enabling multiple vendors to provide interoperable hardware and software. This

scheme enables the user to choose manufacturer of the instruments freely without any

sticking-up with a single manufacturer, thereby selecting the devices with latest technology

and features, irrespective of type of the existing devices and instrumentation.

1.3 Statement of Problem

The statement of the problem is described as below. This can be split into smaller tasks

that can be well understood.

• Investigate the various available schemes for the integration of different protocol

buses in a SCADA network and select a best and standard scheme for

implementation.

• First to configure Foundation fieldbus network and Modbus network individually,

and then integrate these two networks into a single network connected to a single

server station. Thereby to develop a network such that multiple client applications

installed on remote nodes can access real-time data from the server station on LAN.

• To develop a remote client application to access real-time data from the server of both

protocol networks viz. Foundation fieldbus and Modbus.

• Develop the web service by installing a web server on the server station and to

publish web pages so that the HMI windows can viewed as web pages through web

browsers on LAN

2

1.4 Organization of Dissertation

Chapter I includes a brief introduction about the SCADA networking concepts. It

introduces the definition of the Mixed-mode network, its need for the process control

applications and its benefits. The statement of problem of the dissertation is explained

In Chapter 2 three possible schemes for implementing a mixed-mode network Viz.

Integration based on Gateway, Based on DDE (Dynamic Data Exchange) and Net DDE and

that Based on OPC (OLE for Process Control) are discussed. The three schemes are

compared for their performance and one of the schemes is selected for implementation.

The chapter 3 discusses in detail about the features of an OPC based SCADA network, it

further explains in detail about the technologies used by an OPC network. Several OPC

standards given by OPC foundation group are discussed in detail in this chapter. It also

discusses the client-server architecture of an OPC based network, client-server

communications and structure of an OPC Server and client as well.

Chapter 4 discusses in detail of the field instruments of Modbus and Foundation Fieldbus

used for SCADA system. It then discusses of the software used for the configuration of the

field devices, client software used to access the real-time data from the servers. It also

discusses in detail the procedure for developing the OPC client applications in Lab view and

Visual basic as well.

Chapter 5 discusses the implementation of the above developed mixed-mode SCADA

network as an application for small Hydro-power plant. It discusses in detail of the model

Hydro power station, network architecture, SCADA functions and the details of the

implementation of web-based monitoring.

Chapter 6 summarizes the various results and discussions. The results included in this chapter

are those which cannot be provided as a part of the other chapters but have overall

significance. These results also provide comparison with the other existing implementations

if available.

3

Chapter 7 gives the Conclusions and Scope for Future work. This includes the concluding

remarks and the other developments expected in various fields of applications. Some of the

results, necessary network settings and Configuration details are also included in the

Annexure, where a more detailed explanation is possible.

The References which have been cited are included.

4

Chapter — 2 	 Mixed-mode Network Schemes

2.1 Integration Based on Gateway [1][2)

The gateway is a computer system or other device which is used to interconnect two

systems or networks using different communication protocols, data format structure,

languages and system structures. It can be used to interconnect controlled network and

information network in a SCADA network when they are working with different protocols

from the network layer. Gateway accepts the packets coming from one network reformat it to

the form the network understands and transmits it. . A gateway must understand the protocols

used by each network linked into the router.

2.1.1 Architecture of Gateway based Network

The architecture of interconnected control networks and information through a

gateway will be as shown in figure 2.1 as below.

HMI 	 I SCADA

Ethernet

GatewayA 	 Gateway B 	 I Gateway C

Fieldbus 	 IProfibus 	 I Modbus
Network (Network 	 I Network

Fig. 2.1 Gateway network architecture

The Figure shows three device level networks of different protocols namely

Foundation fieldbus, Modbus and Profibus, connected to the server and information network

through their individual gateways. The gateways integrate the three networks through

5

protocol transits. There are two methods to transit bus protocols. One is to transit in two

protocols that is bus protocol transit is one-one in any two protocols. The other is to choose a

kind of bus protocol as a public protocol, then transit others to this object protocol and the

bus protocol transit is many to one. A network gateway can be implemented completely in

software, completely in hardware, or as a combination of both. It is an effective way to solve

the problem of the system integration of the different bus protocols through the protocol

transit.

At present, the Ethernet (TCP/IP) can be used as the best object protocol, because it is

now widely used as intranet, it is becoming a most important network in the field of

industrial automation. These days the Foundation Fieldbus has issued the High speed

Ethernet as the new H2 norm and it has been voted for one of the 8 kinds of field buses in

IEC61158, and the others are also developing the technology connecting to Ethernet. The

devices in the factory can be tightly connected with the method of integration with the

gateway and the enterprises will not depend on only certain products if we explore the

transiting technology and products of multi-buses protocols.

However, there are so many kinds of fieldbus control networks, whose structures and

features are of great differences. In the above figure 2.1, the Modbus uses RS 485 in its

physical layer. So in order to make it integral part of the system it needs a different gateway

which takes the data from RS485/Modbus network and reformats it to an Ethernet packet. If

enterprise chooses many field buses, the system will become bigger as well as the price,

which will make the gateway become the bottleneck of the whole system. At the same time,

there are some problems to be solved to use the Ethernet as the industrial network and the

most important one is the real time of the Ethernet. The Ethernet is a non-confirmed network

based on collision detection and avoidance, so when the network flux is added, the

responding time will be slow.

2.2 Integration based on DDE and NetDDE [1]

DDE stands for Dynamic Data Exchange. It is one of the Microsoft Windows methods

for transferring data between applications. The DDE protocol is a set of messages and

6

guidelines. It sends messages between applications that share data and uses shared memory

to exchange data between applications. Applications can use the DDE protocol for one-time

data transfers and for continuous exchanges in which applications send updates to one

another as new data becomes available.

2.2.1 Dynamic Data Exchange Protocol [33]

Windows has a message-based architecture, passing messages is the most appropriate

method for automatically transferring information between applications. However, messages

contain only two parameters (wParam and IParam) for passing data. As a result, these

parameters must refer indirectly to other pieces of data when more than a few words of

information pass between applications. The DDE protocol defines exactly how applications

should use the wParam and lParam parameters to pass larger pieces of data by means of

global atoms and shared memory handles. The DDE protocol has specific rules for allocating

and deleting global atoms and shared memory objects. A global atom is a reference to a

character string. In the DDE protocol, atoms identify the applications exchanging data, the

nature of the data being exchanged, and the data items themselves

2.2.2 Dynamic Data Exchange Concepts [33]

Two applications participating in DDE are said to be engaged in a DDE conversation.

The application that initiates the conversation is the DDE client application, the application

that responds to the client is the DDE server application. An application can engage in

several conversations at the same time, acting as the client in some and as the server in

others. A DDE conversation takes place between two windows, one for each of the

participating applications. A window may be the main window of the application or a hidden

(invisible) window whose only purpose is to process DDE messages. Since a DDE

conversation is identified by the pair of handles to the windows engaged in the conversation,

no window should be engaged in more than one conversation with another window. Either

the client application or the server application must provide a different window for each of its

conversations with a particular server or client application. An application can ensure a pair

of client and server windows is never involved in more than one conversation by creating a

7

hidden window for each conversation. The sole purpose of this window is to process DDE

messages.

(a) Architecture of DDE Based Network [1][2]

The Fig 2.2 shows a schematic of the interconnected network of Foundation Fieldbus and

Modbus networks with DDE Client-servers.

SCADA (OPC)
Client 1

HMI (©PC)
Client 2

Ethernet

OFC
	

OPC
Server 1
	

Server 2

Foundation Field- i
bus N W

RS 485IModbus
NIW

Fig 2.2 Architecture of DDE based Network

The server will control the communications on the device level network and polls the

devices and holds the real-time values of the parameters. The applications of the

information network such as HMI applications, Alarm & Event applications and data

logging applications which access the real-time data form the clients.

(b) Application, Topic and Item Names

The DDE protocol identifies the units of data passed between the client and server

with a three-level hierarchy of application, topic, and item names. Each DDE conversation is

uniquely defined by the application name and topic. At the beginning of a DDE conversation,

the client and server determine the application name and topic. The application name is

usually the name of the server application. The DDE topic is a general classification of data

within which multiple data items may be "discussed" (exchanged) during the conversation.

Because the client and server window handles together identify a DDE conversation, the

application name and topic that define a conversation cannot be changed during the course of

the conversation. A DDE data item is information related to the conversation topic

exchanged between the applications. Values for the data item can be passed from the server

to the client or from the client to the server. A special registered format named Link

identifies an item in a DDE conversation.

(c) Permanent Data Links

Once a DDE conversation has begun, the client can establish one or more permanent

data links with the server. A data link is a communications mechanism by which the server

notifies the client whenever the value of a specified data item changes. The data link is

permanent in the sense that this notification process continues until the data link or the DDE

conversation itself is terminated. There are two kinds of permanent DDE data links warm and

hot. In a warm data link, the server notifies the client that the value of the data item, has

changed, but the server does not send the data value to the client until the client requests it. In

a hot data link, the server immediately sends the changed data value to the client.

(d) DDE Message Flow

A typical DDE conversation consists of the following events:

I. The client application initiates the conversation, and the server application responds.

2. The applications exchange data by any or all of the following methods:

• The server application sends data to the client at the client's request.

• The client application sends unsolicited data to the server application.

• The client application requests the server application to notify the client

whenever a data item changes (warm data link).

• The client application requests the server application to send data whenever the

data changes (hot data link).

• The server application carries out a command at the client's request.

3. Either the client or server application terminates the conversation.
6

(e) Server Message Processing

Server applications respond according to the logic illustrated in the following fig.2.3

Waiting for
request

Was an
app cat n
specified?

/ Is this an N
instance of that

app cation? ,
Do nothing

(return).

Was a topic
requested?

Yes

Post a positive
No 	WM DDE_ACK to

• the c5ent tot each
topic supported by

the appcation.

Does this
application
svppot the
,. topic?

No

,Yes

Post a positive
WMJDDE ACK
to the cent for

the requested topic.

Fig 2.3 Flow chart of server response [33]

2.2.3 NET DDE [1][2][33]

The server application and the client application should be operated in the same

computer in the standard DDE dialogue and it cannot be operated on the network, which is

not appropriate for the integration of multi-protocol buses. Therefore NetDDE has been used
10

to solve this problem. NetDDE, which only adds something to the DDE is not a new data

exchange format. Network DDE is a technology that allows applications that use the DDE

transport to transparently exchange data over a network. Its principle is to conduct network

mapping through the inner function blocks operated by the operation system in the

background and map the data required by the DDE dialogue on one computer to other

workstations on the network. So, applications on different computers can communicate with

each other. In this way, it is possible that they can share information on the same network

and the application between client-server will come true. Figure2.4 shows its communication

principle.

Machine - A 	 Machine - B

Fig 2.4 Principle of NET DDE communication

It consists of two major components:

(i) The NetDDE agent. This is a service that acts as a proxy for the remote DDE application.

It communicates with all local DDE applications, and with remote NetDDE agents using

NetBIOS as shown in Fig 2.4.

(ii) A DLL that implements NetDDE Application Program Interface functions such as

NDdeShareAdd, NDdeShareDel, and so on. This DLL is usually named NDDEAPI.DLL.

NETDDE expose the NetBIOS interface and map NetBIOS commands to their own native

commands. The NetBIOS Frames protocol (NBFP) can be implemented by the underlying

protocol software to perform the network I/O required by the NetBIOS interface.

2.3 Integration based on OPC [1] [2] [5] [6]

OPC stands for OLE for Process Control. OPC specification uses Microsoft's COM

and 'DCOM technology for applications to exchange data on one or more computers using

client-server architecture. OPC defines a set of standard objects, interfaces and methods for

use in process control applications to facilitate true interoperability. OPC standardizes on

technology rather than on product. By using the OPC set of standards, data can be passed

from a data source to any OPC compliant application. OPC was designed to bridge Windows

based applications and process control hardware and software applications. It is an open

standard that permits a consistent method of accessing data from field devices. This method

remains the same regardless of the type and source of data. OPC servers provide a method

for many different software packages to access data from a process control device, such as a

PLC or DCS. Traditionally, any time a package needed access to data from a device, a

custom interface, or driver, had to be written. The purpose of OPC is to define a common

interface that, is written once and then reused by any SCADA, HMI, or custom software

applications. The architecture of the OPC based network is shown in Fig 2.5.

SCADA (OPC)
Client I

HMI (OPC)
Client 2

Eth emet

OPC
	

OPC
Server 1
	

Server 2

Foundation Field-
bus NIW

RS485IModbus
IJIW

Fig 2.6 Architecture of OPC Based Network

12

OPC standard specifies that a manufacturer of the hardware must develop the OPC

server with the standard interfaces as defined in the standard. The OPC server must poll the

device for real-time data. Any client application that wants to access the data must use these

standard server interfaces to access the server for real-time data. OPC servers use Microsoft's

OLE (Object Linking and Embedding) technology (also known as the Component Object

Model, or COM) to communicate with clients. COM technology permits a standard for real-

time information exchange between software applications and process hardware to be

defined. Since there are many kinds of device level networks exists the solving method of

system integration with the software can adopt middle objects between system integration

and different control networks. As in figure 2.6 every network provides an OPC server and

client applications can call these OPC servers and get data from different buses with the

unified OPC interface. The advantage is that if one kind of protocol version is updated, the

relevant server application should only be added, while the other OPC servers and clients

need not be modified. Integration of fieldbus system based on OPC is system level

integration.

2.4 Selection for SCADA

From the schemes discussed in the above sections, the gateway based scheme is not

an optimum solution as there exits many device level networks with different structures and

features giving rise to the requirement of different kinds of gateway products to connect the

device network to the SCADA network. If the number of device networks is large in number,

the system will become bigger, as well as the price, which will make the gateway become the

bottleneck of the whole system. However there are other problems to be solved to use

Ethernet as the industrial network, most important is the real-time of the Ethernet. The

Ethernet is a non-confirmed network based on collision detection and avoidance, so when the

network flux is added the responding time will be slow. Hence gateway scheme cannot

become a solution for Mixed-mode network.

The other two schemes, which are the ways Windows, allow data transfer between

applications, the Dynamic Data Exchange (DDE) protocol and Object Linking and

13

i

Embedding for Process Control (OPC). The DDE protocol is a set of messages that uses

shared memory to exchange data between applications. Network Dynamic Data Exchange

(NetDDE) is an extension of the DDE protocol that has existed since the very early versions

of Windows. NetDDE extends all of the DDE capabilities and enables applications on two or

more workstations to dynamically share information over a network. NetDDE is not a special

form of DDE but rather a service that examines the information contained in a DDE

conversation and looks for a special application name. NetDDE Share must be configured

before the applications can exchange data. Due to the limited security model for NetDDE,

support for this has been waning. Although it is available on Windows XP and 2003 Server,

it is disabled by default.

OPC is based on the COM/DCOM. COM is a binary standard that enables objects to

interoperate in a networked environment and includes ActiveX Controls, Automation, and

object linking and embedding (OLE) technologies. Since the release of Windows NT,

Microsoft recommended DCOM as the preferred method for data exchange between

client/server applications over the network. DCOM builds upon the remote procedure call

(RPC) technology, and was designed to give developers more control over security, as

compared to other interprocess communication mechanisms. From an implementer's point of

view, the following points are what should be considered:[1][30]

Supportability: DDE is old and/or obsolete. Although DDE has made the cut to

Windows Vista, the fact that there is no support for remote access via NetDDE will be a

severe backdrop for DDE applications in the future.

2. Interoperability: It would seem to be an obvious point, but what applications will be

connecting to your system? Are there more DDE clients or OPC clients available in the

marketplace, and which are more likely to be developed in the future? Consider also that

OPC offers standardized compliance testing for servers, and OPC Interoperability testing for

client applications.

3. Speed and Through-put: One of the main differences between DDE and COM

applications, OPC, is how transactions are identified and processed. Unlike COM which

14

uses pointers to shared memory objects, DDE applications create and exchange string and

data handles, which identify strings and memory objects. Also the NetDDE service

examines each DDE request, looking for the use of a special reserved application name,

which is preceded by the name of the remote system. The resulting string parsing and

management results in slower performance. COM is a truly binary standard, that is designed

to process and move more data, more quickly

4. Scalability: Related to speed is the concept of scalability. As the number of client

connections or item requests goes up, how is performance affected? When handling

messages from more than one source, a DDE client or server must process the messages of a

conversation synchronously. On the other hand COM/OPC supports the concept of non-

blocking method calls. OPC Clients can exploit parallelism without the pain of multi-

threading, and servers can handle calls asynchronously for vastly improved scalability.

Another key feature of OPC, is that the OPC Server will cache the most current value, so

only the values which have changed need to be reported back to the client application. DDE

updates all values, regardless whether or not they have changed.

5) Robustness: In addition to the speed and scalability issues, a good error reporting and

handling infrastructure is needed for a truly robust application. In addition to standard COM

error handling`codes, the OPC specifications outline specific error codes to be returned under

different scenarios.

6) Security: Security in any networked architecture is another whole topic of discussion, but

we can still hit the high points between DDE and OPC. Network DDE uses trusted shares

and security descriptors to control access to shares. The user that created the NetDDE share

must be logged on in order for the connection to occur. OPC Security is controlled by

Windows DCOM security configuration. Whenever an OPC client calls a method, DCOM

obtains the client's current username, and passes it to the machine where the server is

running. DCOM on the server's machine then validates the username using the configured

authentication mechanism and checks the access control list (ACL) for the component.

15

DCOM security is at the same time one of the strongest features and biggest implementation

headaches of OPC, but it works.

DDE probably still has its uses for simple, small-scale, non-networked applications..

However, the overwhelming majority of industrial applications will be non-trivial, large scale

and involves multiple connections over the network. Finally here in deploying a mixed-mode

network OPC can be preferred to DDE and other schemes as the best scheme for

implantation.

Chapter — 3 OPC: Features, Technologies and Standards

3.1 OPC Features

Today's manufacturing enterprises are looking at advanced distributed object

technologies as a means of integrating the islands of automation that currently exist within

their worldwide operations. Distributed object technologies allow the seamless exchange of

information across plant and enterprise networks. Furthermore, OLE for Process Control

(OPC), work to significantly reduce the time, cost, and effort required to write custom

interfaces for the hundreds of different intelligent devices and networks in use today. OPC

makes it possible to have plug-and-play software and hardware across the spectrum of

vendors, devices, software, and systems that manufacturing can easily integrate into

corporate-wide automation and business systems.

3.1.1 Purpose of OPC [3][4][5][33]

Before OPC all the client applications that have been developed that require data

from a data source and access that data by independently developing "Drivers" for their own

packages. The following figure 3.1 shows diagrammatically the scenario of various client

applications accessing the devices by programming the drivers for individual networks. This

lead to the following problems:

Much duplication of effort: Everyone must write a driver for a particular vendor's

hardware. Each application must write drivers for all the hardware it needs to access.

Inconsistencies between vendor's drivers:. Hardware features not supported by all driver

developers.

Support for hardware feature changes: A change in the hardware's capabilities may break

some drivers.

Access Conflicts: Two packages generally cannot access the same device simultaneously

since they each contain independent Drivers.

17

Burden on Hardware: As two applications cannot access devices simultaneously, the

device must process the commands from each application in a queue this increases burden on

the hardware. This leads to reduction in life time of the hardware as well.

Hardware manufacturers attempt to resolve these problems by developing drivers, but

are hindered by differences in client protocols. Finally the choice application will be on the

basis of how many devices it supports for.

H VII application

Histoiy
 , 	 database

FF DrivesModbuc
	Profinet

	

Dove' 	Driver

FFBns 	Modbus 	Proftbu;>
Network 	Network 	Network

Fig 3.1 Applications without OPC interface

Today they cannot develop an efficient driver that can be used by all clients. OPC is an

industry standard setup by the OPC Foundation specifying the software interface to a server

that collects data produced by field devices. OPC draws a line, between hardware providers

and software developers. It provides a mechanism to provide data from a data source and

communicate the data to any client application in a standard way. The following figure 3.2

shows a network with OPC interface. A vendor can now develop a reusable, highly

optimized server to communicate to the data Source, and maintain the mechanism to access

data from the data source or device efficiently. Providing the server with an OPC interface

allows any client to access their devices

FI 1I application

History
jjp ww,d data base

: . 	 _____
OPC Interface 	I 	I 	OPC Interface

OPC Interface 	OPC Interface [OPC Interface

FF OPC 	Modbus 	Profiles
Server 	OPC Server 	OPC Server

FF Bus 	Modbus (Profibus
Network 	Network 	Network

Fig 3.2 Applications with OPC interface

.3.2 OPC Technologies

The OPC Specifications resulted from the collaboration of a number of leading

worldwide automation suppliers working in cooperation with Microsoft. The specifications

are Originally based on Microsoft's OLE COM (component object model) and DCOM

(distributed component object model) technologies, the specification defined a standard set of

objects, interfaces and methods for use in process control and manufacturing automation

applications to facilitate interoperability. The COM/DCOM technologies provided the

framework for software products to be developed. There are now hundreds of OPC Data

Access servers and clients. The OLE, COM and DCOM technologies are described in detail

below before the standards are introduced.

3.2.1 Object Linking and Embedding [33][34][35]

OLE is a technology that enables an application to create compound documents that

contain information from a number of different sources. OLE documents, historically called

compound documents, seamlessly integrate various types of data, or components. Sound

clips, spreadsheets, and bitmaps are typical examples of components found in OLE

Lo

documents. Supporting OLE in your application allows your users to use OLE documents

without worrying about switching between the different applications; OLE does the

switching for you. You use a container application to create compound documents and a

server application or component application to create the items within the container

document. Any application you write can be a container, a server, or both. _OLE incorporates

many different concepts that all work toward the goal of seamless interaction between

applications. These areas include the following:

(a) Linking and. Embedding

Linking and embedding are the two methods for storing items created inside an OLE

document that were created in another application. Using the Paste command in a container

application can create an embedded component, or embedded item. The source data for an

embedded item is stored as part of the OLE document that contains it. In this way, a

document file for a word processor document can contain text and also can contain bitmaps,

graphs, formulas, or any other type of data. OLE provides another way to incorporate data

from another application: creating a linked component, or linked item, or a link. The steps for

creating a linked item are similar to those for creating an embedded item. Unlike an

embedded component, a linked component stores a path to the original data, which is often in

a separate file. Every OLE item, whether embedded or linked, has a type associated with it

based on the application that created it

(b) OLE Containers and servers

A container application is an application that can incorporate embedded or linked

items into its own documents. The documents managed by a container application must be

able to store and display OLE document components as well as the data created by the

application itself. A container application must also allow users to insert new items or edit

existing items by activating server applications when necessary. A server application or

component application is an application that can create OLE document components for use

by container applications. Server applications usually support drag and drop or copying their

data to the Clipboard so that a container application can insert the data as an embedded or

20

linked item. An application can be both a container and a server. Most servers are stand-

alone applications or full servers; they can either be run as stand-alone applications or can be

launched by a container application. Containers and servers do not communicate directly.

Instead, they communicate through the OLE system dynamic-link libraries (DLL). These

DLLs provide functions those containers and servers call, and the containers and servers

provide callback functions that the DLLs call. Using this means of communication, a

container does not need to know the implementation details of the server application. It

allows a container to accept items created by any server without having to define the types of

servers with which it can work. As a result, the user of a container application can take

advantage of future applications and data formats. If these new applications are OLE

components, then a compound document will be able to incorporate items created by those

applications. Client items are data items belonging to another application that are either

contained in or referenced by an OLE container application's document. Client items whose

data is contained within the document are embedded; those whose data is stored in another

location referenced by the container document are linked.

3.2.2 Component Object Model [33][34][35]

(a) 	Basic Overview

The Microsoft Component Object Model (COM) is a platform-independent,

distributed, object-oriented system for creating binary software components that can interact.

COM is the foundation technology for Microsoft's OLE (compound documents), ActiveX

(Internet-enabled components), as well as others. To understand COM and therefore all

COM-based technologies, it is crucial to understand that it is not an object-oriented language

but a standard. Nor does COM specify how an application should be structured; language,

structure, and implementation details are left to the application programmer. Rather, COM

specifies an object model and programming requirements that enable COM objects also

called COM components, or sometimes simply objects to interact with other objects. These

objects can be within a single process, in other processes, and can even be on remote

machines. They can have been written in other languages, and they may be structurally quite

21

dissimilar, which is why COM is referred to as a binary standard—a standard that applies

after a program has been translated to binary machine code. The only language requirement

for COM is that code is generated in a language that can create structures of pointers and,

either explicitly or implicitly, calls functions through pointers. COM defines the essential

nature of a COM object. In general, a software object is made up of a set of data and the

functions that manipulate the data. A COM object is one in which access to an object's data is

achieved exclusively through one or more sets of related functions. These function sets are

called interfaces, and the functions of an interface are called methods. Further, COM requires

that the only way to gain access to the methods of an interface is through a pointer to the.

interface.

Besides specifying the basic binary object standard, COM defines certain basic

interfaces that provide functions common to all COM-based technologies, and it provides a

small number of API functions that all components require. COM also defines how objects

work together over a distributed environment and has added security features to help provide

system and component integrity.

(b) 	COM Clients and Servers

A critical aspect of COM is how clients and servers interact. A COM client is

whatever code or object gets a pointer to a COM server and uses its services by calling the

methods of its interfaces. A COM server is any object that provides services to clients; these

services are in the form of COM interface implementations that can be called by any client

that is able to get a pointer to one of the interfaces on the server object. There are two main

types of servers, in-process and out-of-process. In-process servers are implemented in a

dynamic linked library (DLL), and out-of-process servers are implemented in an executable

file (EXE). Out-of-process servers can reside either on the local machine or on a remote

machine, In addition, COM provides a mechanism that allows an in-process server (a DLL)

to run in a surrogate EXE process to gain the advantage of being able to run the process on a

remote machine. The COM programming model and constructs have now been extended so

that COM clients and servers can work together across the network, not just within a given

22

machine. This enables existing applications to interact with new applications and with each

other across networks with proper administration, and new applications can be written to take

advantage of networking features. COM client applications do not need to be aware of how

server objects are packaged, whether they are packaged as in-process objects (in DLLs) or as

local or remote objects (in EXEs). Distributed COM further allows objects to be packaged as

Microsoft Windows NT or Microsoft Windows 2000 Services, synchronizing COM with the

rich administrative and system-integration capabilities. COM is designed to make it possible

to add the support for location transparency that extends across a network, It allows

applications written for single machines to run across a network and provides features that

extend these capabilities and add to the security necessary in a network.

(c) COM Server Responsibilities

One of the most important ways for a client to get a pointer to an object is for the

client to ask that a server be launched and that an instance of the object provided by the

server be created and activated. It is the responsibility of the server to ensure that this

happens properly. There are several important parts to this. The server must implement code

for a class object through an implementation of either the IClassFactory or IClassFactory2

interface. The server must register its CLSID in the system registry on the machine on which

it resides and further, has the option of publishing its machine location to other systems on a

network to allow clients to call it without requiring the client to know the server's location.

The server is primarily responsible for security—that is, for the most part, the server

determines whether it will provide a pointer to one of its objects to a client. In-process

servers should implement and export certain functions that allow the client process to

instantiate them.

(d) Registering COM Servers

After you have defined a class in code and assigned it a CLSID, you need to put

information in the registry that will allow COM, on request of a client with the CLSID, to

create instances of its objects. This information tells the system, for a given. CLSID, where

the DLL or EXE code for that class is located and how it is to be launched. There is more

23

than one way of registering a class in the registry. In addition, there are other ways of

"registering" a class with the system when it is running, so that the system is aware that a

running object is currently in the system

(e) 	Inter-Object Communication

COM is designed to allow clients to communicate transparently with objects,

regardless of where those objects are running—in the same process, on the same machine, or

on a different machine. This provides a single programming model for all types of objects,

and for both object clients and object servers. From a client's point of view, all objects are

accessed through interface pointers. A pointer must be in-process. In fact, any call to an

interface function always reaches some piece of in-process code first. If the object is in-

process, the call reaches it directly, with no intervening system-infrastructure code. If the

object is out-of-process, the call first reaches what is called a "proxy" object provided either

by COM or by the object. The proxy packages call parameters (including any interface

pointers) and generate the appropriate remote procedure call (or other communication

mechanism in the case of custom generated proxies) to the other process or the other machine

where the object implementation is located. This process of packaging pointers for

transmission across process boundaries is called marshaling. From a server's point of view,

all calls to an object's interface functions are made through a pointer to that interface. Again,

a pointer has context only in a single process, and the caller must always be some piece of in-

process code. If the object is in-process, the caller is the client itself. Otherwise, the caller is a

"stub" object provided either by COM or by the object itself. The stub receives the remote

procedure call (or other communication mechanism in the case of custom generated proxies)

from the "proxy" in the client process, unmarshals the parameters, and calls the appropriate

interface on the server object. From the points of view of both clients and servers, they

always communicate directly with some other in-process code. COM provides an

implementation of marshaling, referred to as standard marshaling. This implementation

works very well for most objects and greatly reduces programming requirements, making the

marshaling process effectively transparent.

24

The clear separation of interface from implementation of COM's process transparency

can, however, get in the way in some situations. The design of an interface that focuses on its

function from the client's point of view can sometimes lead to design decisions that conflict

with efficient implementation of that interface across a network. In cases like this, what is

needed is not pure process transparency but "process transparency, unless you need to care."

COM provides this capability by allowing, an object implementer to support custom

marshaling. Standard marshaling is, in fact, an instance of custom marshaling—it is the

default implementation used when an object does not require custom marshaling. You, can

implement custom marshaling to allow an object to take different actions when used from

across a network than it takes under local access—and it is completely transparent to the

client. This architecture makes it possible to design client/object interfaces without regard to

network performance issues and then later to address network performance issues without

disrupting the established design. COM does not specify how components are structured; it

specifies how they interact. COM leaves the concern about the internal structure of a

component to programming languages and development environments. Conversely,

programming environments have no set standards for working with objects outside of the

immediate application. Microsoft Visual C++, for example, works extremely well for

manipulating objects inside an application but has no support for working with objects

outside the application. Generally, all other programming languages are the same in this

regard. Therefore, to provide network wide interoperability, COM, through language-

independent interfaces, picks up where programming languages leave off. The double

indirection of the structure means that the pointers in the table of function pointers do not

need to point directly to the real implementation in the real object. This is the heart of process

transparency.

For in-process servers, where the object is loaded directly into the client process, the

function pointers in the table point directly to the actual implementation. In this case, a

function call from the client to an interface method directly transfers execution control to the

method. However, this cannot work for local, let alone remote, objects because pointers to

memory cannot be shared between processes. Nevertheless, the client must be able to call

interface methods as if it were calling the actual implementation. Thus, the client uniformly

25

transfers control to a method in some object by making the call. A client always calls

interface methods in some in-process object. If the actual object is local or remote, the call is

made to a proxy object, which then makes a remote procedure call to the actual object. So

what method is actually executed? The answer is that whenever there is a call to an out-of-

process interface, each interface method is implemented by a proxy object. The proxy object

is always an in-process object that acts on behalf of the object being called. This proxy object

knows that the actual object is running in a local or remote server. The proxy object packages

up the function parameters in some data packets and generates an RPC call to the local or

remote object. That packet is picked up by a stub object in the server's process on the local or

a remote machine, which unpacks the parameters and makes the call to the real

implementation of the method. When that function returns, the stub packages up any out-

parameters and the return value and sends it back to the proxy, which unpacks them and

returns them to the original client. Thus, client and server always talk to each other as if

everything was in-process. All calls from the client and all calls to the server are, at some

point, in-process. But because the vtbl structure allows some agent, like COM, to intercept all

function calls and all returns from functions, that agent can redirect those calls to an RPC call

as necessary. Although in-process calls are faster than out-of-process calls, the process

differences are completely transparent to the client and server.

3.2.3 Distributed Component Object Model (DCOM) [33][34][35]

The Microsoft Distributed Component Object Model (DCOM) extends the

Component Object Model (COM) to support communication among objects on different

computers—on a local area network (LAN), a wide area network (WAN), or even the

Internet. With DCOM, your application can be distributed at locations that make the most

sense to your customer and to the application.

(a) The DCOM Architecture

DCOM is an extension of the Component Object Model (COM). COM defines how

components and their clients interact. This interaction is defined such that the client and the

component can connect without the need of any intermediary system component. The client

26

calls methods in the component of a server without any overhead whatsoever. Figure 3.3

illustrates this in the notation of the Component Object Model.

Client
	

Component

Fig 3.3 COM components in the same process [33]

In today's operating systems, processes are shielded from each other. A client that

needs to communicate with a component in another process cannot call the component

directly, but has to use some form of interprocess communication provided by the operating

system. COM provides this communication in a completely transparent fashion. It intercepts

calls from the client and forwards them to the component in another process. Figure 3.4

illustrates how the COM/DCOM run-time libraries provide the link between client and the

server components running in different processes.

Client 	 i r nt me 	I 	I 	rn-t me 	Component

Security I DCE RPC I 	I Security I DCE RPC Provider 	 I Provider

LPC 	 LPC

Fig 3.4 Client and Server in different processes[33]

When client and component reside on different machines, DCOM simply replaces the

local interprocess communication with a network protocol. Neither the client nor the

component is aware that the wire that connects them has just become a little longer. Figure

3.5 shows the overall DCOM architecture, The COM run-time provides object-oriented

services to clients and server components and uses RPC and the security provider to generate

standard network packets that conform to the DCOM wire-protocol standard.

27

Client 	 r-gyp--1 	CAM 	I 	I 	COM 	1 	I Component
run-time 	 run-time

Security I DCE RPC 	Security DCE RPC
Provider I 	 Provider

Protocol Stack 	 Protocol Stack

DCOM network-
protocol

Fig 3.5 Client and Server on different machines[33]

While COM is a specification for building interoperable components, Distributed

COM (DCOM) is simply a high-level network protocol designed to enable COM-based

components to interoperate across a network. We consider DCOM a high-level network

protocol because it is built on top of several layers of existing protocols. It may also be useful

to think of a DCOM protocol stack in terms of the Open Systems Interconnection (OSI)

seven-layer model. In Figure 3.6 the OSI seven-layer model is juxtaposed with the sample

protocol stack discussed here. Note that this figure shows a Windows platform. Other

operating systems might implement the protocols at different layers.

D CO vI IRPC

UDP/TCP

IP

Ethernet Driver

Ethernet card

Fig 3.6 DCOM protocol stack [35]

r:

3.2.4 ActiveX Technology [33]

ActiveX is an open integration platform that provides developers, users, and Web

producers a fast and easy way to create integrated programs and content for the Internet and

Intranets. ActiveX is a standard that enables software components to interact with one

another in a networked environment, regardless of the language(s) used to create them. Most

World Wide Web (WWW) users will experience ActiveX technology in the form of ActiveX

controls, ActiveX documents, and ActiveX scripts. ActiveX controls, formerly known as

OLE controls or OCX controls, are components (or objects) that you can insert into a Web

page or other program so that you can reuse packaged functionality that someone else

programmed. When you are browsing with an ActiveX-aware Web browser, such as Internet

Explorer, ActiveX documents enable you to open a program with its own toolbars and menus

available. This means you can open non-HTML files, such as Microsoft Excel or Microsoft

Word files, by using an ActiveX-aware Web browser.

3.2.5 OPC Server Structure and Functionality [36]

According to OPC standards every manufacturer of the devices has to develop

their own server complaint to OPC standards, which describes the functions of the server. All

the functions are ordered one over the other as in Fig 3.6.

PC "C OM Interfaces

OPC Group & Itenni Management

Item Data Optiauuzal ion and Monitoho

Device Specific Protocol Logic

Hardware Connection Maiiagemeuit

Fig 3.7 Functional Block Diagram of an OPC Server

29

(a) OPC / COM Interfaces [7][8][9][36]

This specification describes the OPC COM Objects and their interfaces implemented

by OPC Servers. The specification specifies about what the interfaces must be, but does not

talk about how of the implementation of these interfaces. OPC specifications always contain

two sets of interfaces; Custom Interfaces and Automation interfaces. As shown in Figure 3.8

C++ Application K OPC Custom UP

OPC SERVER 	L~
(tn-Process, Local, 	V Protocol si

Remote) 	N

VB Application 'k' Auto

Fig 3.8 OPC Interfaces

An OPC client application communicates to an OPC server through the specified

custom and automation interfaces. OPC servers must implement the custom interface, and

optionally may implement the automation interface. In some cases the OPC Foundation

provides a standard automation interface wrapper. This "wrapperDLL" can be used for any

vendor-specific custom- server. OPC server developers must implement all functionality of

required interfaces OPC server developers may implement the functionality of the optional

interfaces An optional interface is one that the server developer may elect to implement. In

general, client programs which are created using scripting languages will use the automation

interface. Client programs which are created in C++ will find it easiest to use the custom

interface for maximum performance.

(b) OPC Group &Item Management

An OPC server is structured as a directory with root, branches and leaves. The

branches may consist of sub branches and items. The branches are called groups. A group

consists of related data items. The scenario is well illustrated in fig 3.9.

Root

.= 	 ?Q24_l

870172
y AIt

87058_3
DIs

4Ry DICounter
Q> La9thLowDls

y Labh}iighDts 1V
7033_4 	 Groups
gj Alt

tO 7041D_5
DIs

y DICountr
L*IchLowDis
LatchHi hDIs

O 7024_6
a

Z5 Choi 	 An4*Z0%xtput
8 Ch02 	 Ans ogOu1put
S ChO3 	 AnsbgOniqut

Items

Fig 3.9 OPC server structure

The structure may be flat or Hierarchical model. The groups and items are defined in

the server during the configuration of the network. Every item is identified by its fully

qualified item ID. For example the fully qualified item ID of an item indicated in fig 3.9 will

be "87024 1.AO.Ch03".

(c) Item Data Optimization and Monitoring

The OPC standards just define what the interfaces are but do not define their

implementation. Hence the implementer of server should develop the logic for the interface

such that it should optimize the inputs and outputs with the hardware. The logic should be

such that it should reduce the unnecessary burden on the hardware by continuously polling

the devices, rather it should fire the events when data changes or any event occurs and update

the clients continuously through cache.

(d) Device specific protocol logic & Hardware Connection management

It is the function of the server to communicate with devices in their respective

protocol. That is formatting the data into respective protocol formats and it also takes care of

the hardware connection management like opening the port closing the port etc.

3.2.6 Client — Server Communications [34][36]

The communication between OPC client and OPC server depends on location of the

client and the server. The situations can be of three types, in-process, same machine and on

the remote machine. The following fig 3.10 and 3.11 illustrate the way the client and server

31

communicate while residing on the same machine and remote machine respectively. The

Clients and servers residing on the same machine may be running in the same process or

running in two separate processes, however the mechanism would similar. The one limitation

for the DCOM is that it does not work with firewalls.

node

client application 	client application
(OPC client) 	 (OPC client)

(DPC server 	OPC server I I OPC server

devices 	 0 	y 	devices
devices devices

Fig 3.1.0 Client and Server residing on same machine

client application
((CPC client)

:tub
DCOM

TCP/ P
D C DM

DCOM I I 	I I DCOM

oPc 	 CPC server
server: 	 FB Manage

fieldbcns

Fig 3.1 .1 Client and Server residing on Different machines

32

3.2.7 OPC STANDARDS [6][7][8]

OPC is open connectivity in industrial automation and the enterprise systems that

support industry. Interoperability is assured through the creation and maintenance of open

standards specifications. There are currently seven standards specifications completed or in

development. There are namely OPC Data Access, Alarm &Event, Historical Data Access,

(1) OPC Data Access specification

The Data Access specification defined a standard set of objects, interfaces and

methods for use in process control and manufacturing automation applications to access real

time values of the data items. At a high level, an OPC Data Access Server is comprised of

several objects: the Server, the Group, the Item and the Browser. The OPC server object

maintains information about the server and serves as a container for OPC group objects. The

OPC group object maintains information about itself and provides the mechanism for

containing and logically organizing OPC items. The logical relation is illustrated in figure

3.12.

OPC Server Object

OPC Groups Collection II 	f OPCBrowseObject

I 	OPC Cfrotup Objects

OPC Items Collection

I 	OPC Items Objects

Fig 3.12 OPC Automation Server Object Model

The OPC Groups provide a way for clients to organize data. Data can be read and written. An

OPC client can configure the rate that an OPC server should provide the data changes to the

OPC client. OPC standard defines a set of interfaces to operate on these objects.

33

There are two types of groups, public and local (or `private'). Public is for sharing

across multiple clients, local is local to a client. The OPC Items represent connections to data

sources within the server. An OPC Item, from the custom interface perspective, is not

accessible as an object by an OPC Client. Therefore, there is no external interface defined for

an OPC Item. All access to OPC Items is , via an OPC Group object that "contains" the OPC

item, or simply where the OPC Item is defined. Associated with each item is a Value, Quality

and Time Stamp. The value is in the form of a variant, and the Quality is similar to that

specified by Fieldbus. Note that the items are not the data sources - they are just connections

to them. For example, the tags in a DCS system exist regardless of whether an OPC client is

currently accessing them. The OPC Item should be thought of as simply specifying the

address of the data, not as the actual physical source of the data that the address references. A

group can be activated and deactivated as a unit. A group also provides a way for the client to

`subscribe' to the list of items so that it can be notified when they change. Two collections

were also specified Groups and Items. OLE Automation collections are objects that support

Count, Item, and a hidden property called new-Enum. Any object that has these properties as

part of the interface can be called a collection.

IUnknomi
	 IUnknown

IOPCItenuMet
IOPCCOntuton I0PCGroupStateMQt

IOPC:Sercer Q (IOPCPublicGroupStitcMgt)

(IOPCScrverPttblicGroups) Standard IoPCSytelo

[IOPCBro%icSetry'CrAddc scSpaeeI OPC Server IOPCASyircIO2

Object 1
ICouncctionPointContainer

[IPersislFilc)
[IOPCAScIOJ old

IConuectionPointCoutniner 	0 (IDataObject] old

Standard
OPC Group

Object

Fig 3.13 OPC Server & Group Objects with their DA interfaces

(2) OPC Alarms and Events [7][30]

The Alarm and Event specifications provide alarm and event notifications on demand

in contrast to the continuous data flow of Data Access. These include process alarms,

operator actions, informational messages, and tracking/auditing messages. These standards

34

provide the mechanisms for OPC Clients to be notified of the occurrence of specified events

and alarm conditions. They also provide services which allow OPC Clients to determine the

events and conditions supported by an OPC Server, and to obtain their current status. We

make use of entities commonly referred to in the process control industry as alarms and

events. The terms alarm and event are often used interchangeably and their meanings are not

distinct. Within OPC, an alarm is an abnormal condition and is thus a special case of a

condition. A condition is a named state of the OPC Event Server, or of one of its contained

objects, which is of interest to its OPC Clients. On the other hand, an event is a detectable

occurrence which is of significance to the OPC Server, the device it represents, and its OPC

Clients. An event may or may not be associated with a condition. The transitions into

HighAlarm and Normal conditions are events which are associated with conditions.

However, operator actions, system configuration changes, and system errors are examples of

events which are not related to specific conditions. OPC Clients may subscribe to be notified

of the occurrence of specified events.

The alarm Server interfaces provide methods enabling the OPC Client to

➢ Determine the types of events which the OPC Server supports.

➢ Enter subscriptions to specified events, so that OPC Clients can receive

notifications of their occurrences. Filters may be used to define a subset of desired

events.

➢ Access and manipulate conditions implemented by the OPC Server.

(3) OPC Historical Data Access [7]

Historical engines today produce an added source of information that must be

distributed to users and software clients that are interested in this information. Currently most

historical systems use their own proprietary interfaces for dissemination of data. There is no

capability to augment or use existing historical solutions with other capabilities in a plug-n-

play environment. This requires the developer to recreate the same infrastructure for their

products as all other vendors have had to develop independently with no interoperability with

any other systems. In keeping with the desire to integrate data at all levels of business,

35

historical information can be considered to be another type of data. There are several types of

historian servers. Some key types supported by this specification are:

• Simple Trend data servers: These servers provided little else then simple raw data storage.

(Data would typically be the types of data available from an OPC Data Access server, usually

provided in the form of a tuple [Time Value & Quality])

• Complex data compression and analysis servers: These servers provide data compression as

well as raw data storage. They are capable of providing summary data or data analysis

functions, such as average values, minimums and maximums etc. They can support data

updates and history of the updates. They can support storage of annotations along with the

actual historical data storage.

(4) 	OPC XML DA [4] [28] [38]

OPC has not defined a mechanism to detect nodes with OPC-XML-DA Servers or to

detect OPC-XML-DA Servers on a specific node. The Universal Description Discovery and

Integration (UDDI) protocol is a widely used standard for web services and it will be the

likely basis for any future OPC specification for web service discovery. Until then, an OPC-

XML-DA client needs to know the URL of any OPC-XML-DA server it wants to use. Note

that web service implementations never need to know their URLs since the person

deploying and maintaining the web service on a particular machine always assigns them. In

addition, these URLs allow for an optional port number, as a result, OPC-XML-DA web

services are not required to use the standard HTTP Port 80 provided the web server used

supports configurable port numbers. Applications implementing or using Web Services

interact with each other by using the Simple Object Access Protocol (SOAP). SOAP

combines XML so as to encapsulate messages in a format suitable for transmission using

HTTP Internet protocol. In short, SOAP runs within TCP/IP. TCP/IP can of course use

different network proto-cols. To implement a Web Service a device has only to support

HTTP and XML. Therefore OPC XML DA can be implemented on any device supporting

these two properties. HTTP is firewall-friendly. This allows OPC XML to run over the

internet. Defining XML schemas is pretty easy, but OPC is all about interoperability, and

defining XML schemas is not enough to ensure multi-vendor compatibility. The

36

specification would also specify communication protocols, discovery mechanisms, error

handling and all of the rest.

	

OPCXMLDA (OPCXMLDA 	OPCXMI.DA

	

Client 	 Client 	 Client

XML Over HTTP

Web Server

XML DA Web-
service Wrapper

COMIDCOM

	

OPC DA Server 	OPC DA Server 	OPC DA Server

Fig 3.14 Web server Architecture

Major platform vendors like Microsoft were hard at work layering new standards and new

tools on top of the existing XML standards. First, SOAP (Simple Object Access Protocol) is

layered on top of XML, then WSDL (Web Services Description Language) is layered on top

of SOAP. Together, these specifications define the plumbing that is needed for true

interoperability.

(5) 	OPC Security [6][71

All the OPC servers provide information that is valuable to the enterprise and if

improperly updated, could have significant consequences to plant processes. OPC Security

specifies how to control client access to these servers in order to protect this sensitive

information and to guard against unauthorized modification of process parameters.

37

Chapter 4 	 Hardware and Software for SCADA System

This chapter discusses hardware and software aspects of various Field devices used for the

project work.

4.1 Hardware Used

To develop a mixed-mode network Foundation fieldbus network and Modbus

network were used. The hardware comprises of smart transmitters of Foundation fieldbus and

data acquisition modules of Modbus protocols which were explained in below sections.

4.1.1 FF Device Descriptions

(a) 	Fieldbus Universal Bridge (DFI 302) [221

The DF1302 is a powerful multifunction hardware component integral to the modular

SYSTEM302 that includes the most up-to-date hardware and software necessary to manage,

monitor, control, maintain and operate the plant. It is a single integrated unit with functions

of interfacing, linking device, bridge, controller, gateway, Fieldbus power supply and

distributed I/O subsystem. The DFI302 is total modular and has the following basic settings:

Hardware

• DFOI - Rack with 4 Slots (Backplane)

• DF02 - Last rack terminator

• DF50 - Power Supply for Backplane

• DF51 - DFI302 Processor with Ix 10 Mbps Ethernet, Ix RS-232, and 4x Hl

Channels

• DF52 - Power Supply for Fieldbus

• , DF53 - Power Supply Impedance for Fieldbus (4 ports)

• DF54 - Standard Ethernet Cable Twisted-Pair (10OBase-TX) - Length 2 meters.

Software

• DFI OLE Server

• System302

Transmitters are employed for monitoring the field values. Various transmitters from Smar

Corporation are used as a part of the project. Each transmitter has a sensor assembly, main

circuit board and display board. The sensor assembly senses the input and transfers it to the

main circuit board which contains CPU and memory. The display board contains the display

controller and The LCD display.

A brief description of the transmitters configured is given below.

(b) Foundation Fieldbus Pressure Transmitter (LD 302) [17]

The transmitter can be used for the measurement of absolute, differential and gauge

pressure, level and flow.

Principle of Operation

The transmitter has a capacitive sensor with two fixed plates corresponding to two inputs and

a moving sensor diaphragm between the plates. The deflection in diaphragm is proportional

to the difference of pressures applied on either sides of the diaphragm. Flow is directly

proportional to the square root of differential pressure. Level transmitter has only one input

while the other input is sealed.

(c) Foundation Fieldbus Position Transmitter (TP 302) [18]

The transmitter can measure the position of the valve along its calibrated range. The

output is in the form of the percentage of valve opened, i.e. 0% for fully shut and 100% for

fully open.

Principle of Operation

The transmitter works on the principle of Hall Effect. Which implies that when a transverse

magnetic field is applied on a current carrying conductor, a potential difference appears

across the conductor in a direction perpendicular to both the magnetic and electric fields?

(d) Foundation Fieldbus Temperature Transmitter (TT 302) [20]

The transmitter is mainly intended for the measurement of temperature using RTD or

thermocouples, but can also accept input from other sensors with resistance or milli volt

output, such as pyrometers, load cells etc.

There are four sensor terminals in order to handle both single and dual inputs.

39

(e) 4-2OmA to Foundation Fieldbus Converter (IF 302) [19]

The IF 302 is a converter mainly intended to interface analog transmitters to a

Fieldbus network. The converter can handle up to three current signal inputs both 4-20 mA

and 0-20mA and makes them available to the Fieldbus system.

(1) 	Fieldbus Terminator (BT 302) [21]

The primary function of the bus terminator is to avoid reflection of the signal which

causes major distortions on the original signal. As per the standard, the terminators shall

present an impedance Z equal to 100 S ±2%, over the frequency range of 7.8 kHz to 39 kHz.

4.1.2 Modbus Device Descriptions

The I-7000 series modules from ICPDAS make and ND-6000 series modules of

NuDam make are used for Modbus. The 7000 series is a family of RS 485 remote

controllable and data acquisition modules. They provide Analog input, Analog output,

Digital I/O, Timer/Counter and other functions. These modules can be controlled remotely by

a set of commands. Communication between the module and the host is in ASCII format via

an RS-485 bi-directional serial bus standard. Baud Rates are software programmable and

transmission speeds of up to 115.2K baud can be selected.

(b) 	RS 232 — RS 485 Convertor

The conventional two-wire RS-485 network uses a converter module 1-7520 to

convert host RS-232 to a two-wire RS-485 signal and vice versa. The baud rate and data

format must be set to a fixed value for the whole network. For the network of I-7000

series modules a baud rate of 9600 bits per sec and data format of 10 bits per character

should be selected. The 7000 RS-485 network is the most powerful and flexible two-wire

RS-485 networks in the world. It is a multiple baud rate and multiple data format network

system. The 7520, RS-232 to RS-485 converter, equips a "Self Tuner" inside, therefore it

can detect the baud rate and data format automatically and control the direction of the RS-

485 network precisely.

(c) 	Analog Input and Thermocouple Modules

The analog input modules used are I-7019 R and ND-6017. ND-601 1, a thermocouple

input module which can sense temperature by directly connecting a thermocouple at its input

terminals.

The I-7019 module consists of eight analog input channels. Each channel should be

configured separately with respect to the range of the sensor input connected. It can sense a

wide range of inputs like voltage, current and temperature as well.Cold junction

compensation is provide with in the module. For current input of +/- 20mA, no external

resistance is required but the jumper of the corresponding channel should be shorted.

NuDAM-6017 is an analog input module with 8 input channels. Six of the eight

channels are differential type and the other two are single ended type. The whole module

should be configured for a single type of input. It can also sense a current input of range +/-

20mA but an external resistance of 125 ohms is to be connected and the jumper for the

corresponding channel should be shorted.

NuDAM-6011/D is a multi-function analog input module with cold junction

compensation (CJC). The maximum input voltage range of analog input channel is +2.5V.

The high gain feature allows very small full range of ±15mV. Temperature can be measured

by directly connecting the thermocouple because of the presence of CJC inside and the high

gain feature. The module provides the analog signal monitor or the alarm function. The high

and low bound of the alarm limit is programmable. The alarm status can be sent to digital

output channels if this function is ON. The supervisor of a factory can `see' or `hear' the

alarm if the digital output channel control a real alarm device. The two digital output

channels can be set for general-purpose use if the alarm is disabled. The module provides

another one digital input channel. This can be used for general purpose such as monitor

digital signal, or be used as input of the event counter.

41

(d) Digital Input-Output Modules

The DIO modules support TTL signal, photo-isolated digital input, relay contact

output , solid-state relay output, Photo MOS output and open-collector output. The Digital

I/O modulel-7050D is used. The module has eight digital output channels and seven digital

input channels.

(e) Analog Output Module

ND-6021 analog signal output module is used. It receives the digital command from

host computer through RS-485 network. The format of the digital value can be engineering

units, hexadecimal format or percentage of full-scale range (FSR). A microprocessor is used

to convert the digital command to digital value to send to DAC. The DAC converts the

digital value into analog form. The analog output can be either voltage or current output. It

provides many safety functions such as isolation, watchdog, and power on safe value. The

opto-isolators provide 5000Vrms isolation voltage to isolate the digital section and the

remote controlled analog equipments. The damage of power surges is avoided. Another

safety function is the watchdog. Whenever the host has lost contact with the remote NuDAM

module, or the micro-processor is down, the module will reset itself and send the safety value

to the analog output therefore the industry safety is guarantee. The safety value / power-up

value can be set by configuration software.

4.2 Software Used

4.2.1 SYSCON [23]
SYSCON is the acronym for System Configuration Software. It is a part of the

System 302 enterprise automation solution. Its main feature is to instantiate, configure and

monitor a Foundation field bus device for probing the data collected by the field device. The

software provides an explorer style of view, possess several software function blocks like

analog input block, PI block, PID block etc, hence provides a way to implement complex

control strategies. The function blocks are sequence of programming steps that will be

executed with real-time values of the parameters as inputs. The control strategy so developed

will be downloaded into the device supporting distributed control. The figure 4.1 shows a

syscon window with configured devices and a simple control strategy.

42

x
F1ryaEle £dt- lryne-funiurraice+-ydnd~lkb 	S^~'" 	- '- 	- 	.; r '` ,..~~•_,_ 	k. 	~s 	6 	r;

x
x

-

CdY L3tr-Ipl 	aAnr 	ur-r23Y
rLJ Rots.

FWA
Cd) -p Y~CDE El.Y.

RovssC<Y~ ,-o CWIi ! r
r42 P1i 	s, CN rs - 0 LT R 1(I.•

Rer,9rr _ • -) 	001'ILGY711N1
1 	ryYL3 tG12AIRDCrtid•Lff•Y?N3V t

0 rrrnras*saucu.ur.ua
aar

UI

[~ Ccmdn4.•akI
CamdModrkB - 	-

r 	Canails IGIAS 	-.
CcmdMaAklO

oar 	CAr In

!Y.YL7

.~4MY.srL~M7N - 	 .

• t

Fig 4.1. SYSCON Configuration File

4.2.2 Utility software

The Utility is a program based on COM port interface, which search modbus modules and

configures the individual modules. For configuration of the network, parameters like baud

rate, corn port for search, timeout setting and check sum are set. The figure 4.2 shows a view

of the utility software.

Fife QOM Port search Run jorminal ffelp

Module

Exit Search Dialog
Stop Searching

Start Searching the Network

Searching Status 	-
COMPaYt: OMt 	Adder OFdect 	fhexl 	 BaudRnt~ 960

Fig 4.2 I-7000 Utility

43

The modules are connected to the RS 485 network in multi-drop topology and this

network connects to one of the COM ports (COM 1/COM 2) of the PC through the convertor

module, 1-7520. Address ranging from 00 to 255 will be automatically assigned to the

modules connected in the network. For configuring the I-7000 modules "%AANNTTCCFF"

command should be used. For analog input modules "$AA7CiRrr" should also be used. AA —

the present address of the module. NN — New address to be assigned to the module. TT —

New type code. CC- Baud rate code. FF- Used to set data format. If any address conflicts

occur then the conflicting address of one of the modules has to be changed using

"%AANNTTCCFF" command.

4.2.3 OPC Servers

(a) Smar DFI OLE Server [14]

After fully building the system in SYSCON and checking that the devices

communicate with the control station (Computer), the parameter tags of all the field devices

are exported and stored in a file using the `Export tags' option. Once the transmitters are

configured they start sending the measured values continuously to the linking device and

from there to the computer without any'sending any further requests. The smar DFI OLE

server runs continuously on the control station updating the real-time values of the tags. Smar

DFI OLE server allows any OPC client to access standard Fieldbus data using the standard

interface OLE for Process Control (OPC). These Servers provide also Fieldbus configuration

using OLE interfaces so, all the supervision and configuration steps could be done across a

network environment using Microsoft DCOM. Smar OLE Server implements the most

efficient way to exchange data between the Fieldbus network and HMI. All the parameters in

the Fieldbus (including the status) are available just using browse interface.

(b) NAPOPC Server [13]

The NAPOPC DA Server, the OPC server for 1-700 series modules, uses an Explorer-

style user interface to display a hierarchical tree of modules and groups with their associated

tags as shown in figure 4.3. A group can be defined as a subdirectory containing one or more

tags. A module may have many subgroups of tags. All tags belong to their module when they

are scanned for perform I/0. The "OPC" stands for "OLE for Process Control" and the "DA"

stands for "Data Access".
44

File Add Edit View Options Help

V'%
New 	Open 	Save Device Group Tong Gener. Search Expand 	Shr

El J 7033D

10 7044 7044
• DIs

DOs
LatchLowDIs
LatchHighDls

ii 7060D

8 ChOO Bit Input 	 0
8 ChO 1 Bit Input 	 1
8 Ch02 Bit Input 	 2
a Ch03 Bit Input 	 3
8 Ch04 Bit Input 	 4
3 Ch05 Bit Input 	 5
9k Ch06 Bit tnnnt 	 6

Fig 4.3 NAPOPC server window

The other functions of the NAPOPC server are:

(i) Searching the modules on the network as shown in figure 4.4. Specifies the

communicate timeout value for each module. The default value is 500 (equal to 0.5

Seconds), measured in millisecond(s) [0.001 Second(s)]. After a module has been found,

this timeout value will also be recorded for further use. Users can reduce this value to

shorten the search time. Be careful. A shorter search time may cause communication

failure

COM

Baud Rate Searching ---- • -~-~

i- 921600 E 460800 r 230401

❑ 57600 ❑ 38400 0 19200
❑ ❑ 7A00 ❑ 1200

0 Clear Modules

fl 115200
Q 9600

Select All 	 Clear All

Address (Ito 255) Checksum Timeout (;nSec',
Start j tEl Disabled 1200
End 255

El Enabled

Stetux 	Static

I
i i:...:. i. :::::ii L

Exit

Fig 4.4 Search Window of NAP OPC server

45

(i) Adds devices ,groups and tags

(ii) Monitors continuously added tags

(iii)Provides the data to a number of OPC clients

(c) 	NuDAM OPC Server [15]

NDS-OPC includes a full-function OPC sever for NuDAM RS 485 modules,

providing immediate compatibility with a very wide range of application software systems.

Any software system with OPC client capabilities can access the NDS-OPC server,

monitoring and control data to and from the NuDAM hardware. The NDS-OPC includes an

OPC server program and an explorer program that is a graphical configuration utility for easy

system setup. The explorer program saves the setup procedure during installation by

integrating both hardware and software configuration into one step. Using the explorer

program first, you can interactively configure NuDAM modules, setting programmable

hardware parameters such as range, data format, filters. Secondly, you can configure the

operation of the OPC server. You can set I/O scan times and timeout limits, as well as name

each data item (tag). OPC client software can then access these data items, or tag, via this

name assigned in the explorer program.

(d) Alarm &Event Server [30]

AlarmWorX is the OPC-compliant alarming software based on the OPC Alarm and

Events (AE) Specification. The AlarmWorX Server receives field data from any OPC-

compliant Data Access server and performs alarm detection and reporting based on the OPC

Alarm and Events Standard. The event notifications generated by the AlarmWorX Server are

sent to any OPC Alarm and Event clients that subscribe. The AlarmWorX Viewer and the

AlarmWorX Logger are two examples of clients that can receive these notifications from the

server. The architecture of Alarmworx server is well depicted in figure 4.5. The Server

Application has no user interface and may optionally be run as a service on Windows. The

server reads its configuration information from a Microsoft Access database file, which can

be configured by the alarm server configurator application. During runtime the server polls

the configuration database for changes, so configuration may be done on the fly without

stopping the server.

46

Live Alarm
Viewer

Server
	 Historical

Confi2urator
	 Logger

on

Multimedia
plug-ins

AlarmWorx
Server Logger Data Base

OPC DA
	

OPC DA
Server 	 Server

Fig 4.5 Architecture of AlarmServer

(e) 	Web-Server [4][28][38]

Smar WebHMI is a thin client Web solution that enables standard Web browsers,

such as Microsoft Internet Explorer, for use as real-time operator interfaces to manufacturing

and factory floor applications. Based on ActiveX technology, WebHMI provides you with a

powerful and versatile approach to using the same standard HMI (Human Machine Interface)

components included in ProcessView. WebHMI delivers industry-standard, real-time OPC

(OLE for Process Control) information. WebHMI likewise delivers fast, worldwide operator

graphical visualization, trending and alarming information—both real-time and historical—

and HTML-based reports. Since WebHMI Web components are packaged in standard

Microsoft .cab files server and clients can be located anywhere. Similarly, one can store

.cab files anywhere on the network. Installed and resident on one or more WebHMI servers,

these components (e.g., GraphWorX, TrendWorX, or AlarmWorX) are delivered

automatically, quickly, and "in the background" to a browser on the client-side machine.

Since WebHMI delivers the necessary components required for performing HMI and

SCADA functions it is not necessary to have any servers and processview products installed

47

on the client machines. Ultimately, WebHMI turns a Web browser into an OPC client when

the browser views Web pages located on any WebHMI server.

The ProcessView Web Publishing Wizard is used to publish the HMI files as web

pages to the web server. It enables you to "export" your GraphWorX (.gdf), TrendWorX

(.t32), and AlarmWorX (.a32) displays to HTML files and/or publish the HTML files to a

Web server (LAN or Internet). In publishing displays to a Web server, WebHMI uses HTML

to reference the files in an Internet-enabled format. Once a display is "exported" to an HTML

file and then published to a Web server, client machines can browse it through an Internet

browser, such as Microsoft Internet Explorer. Each display can be viewed as a Web page. .

Interaction between clients and the WebHMI server is made possible by Smar GenBroker

which uses TCP/IP communication over the Internet. The GenBroker Configurator allows to

customize client/server architecture based on your network configuration.

4.2.4 OPC Clients

(a) 	Process View [27]

ProcessView suite is a set of powerful software modules in SYSTEM302 that

includes all the best-of-breed applications the operator needs for process visualization and

operation, advanced alarming, trend analysis, reporting, supervisory control, and much more.

ProcessView is the base of the plant "information architecture" which provides the traditional

monitoring functions. The operator can build the system and integrate workstations and other

applications with unparalleled ease, economy and performance. The suit consists of Graph

worx, Trendworx, Alarmworx and WebHMI.

(i) 	GraphWorx [27]

GraphWorX is a human-machine interface (HMI) software package for process

control. GraphWorX is a fully compliant OPC client featuring ActiveX and OLE

Automation technologies. GraphWorX includes simple and powerful object-oriented

graphics design tools in the same application that makes it easy for the system integrator to

create user-friendly graphics for the operators during the engineering stage. A view of

graphworx screen is as shown in fig 4.5

	

OLE 	I Trend Viewer
1 	ndi- , 	Gauge ActiveY

File Edit View Format Arrange DrawDynarntcs Tools_. itkne He

II 	 .J1 	1 I f L I i s . 	
Act;veY

~ • «'orkAtca ~_ ~~ 	 ~ 	 Gra pica
Btack radio 	 SyrAbols

4 1 	 - 	 j

	

1 u' -r 	'rS Lea lli!rj.. 	
~i 	 modem

1 Osiptay Events
D at aE ntryActvated[D ataE nhyJ
OataEntryDeactivated(DateEntry) -
UatatntryValuear eredUaaLnhyJ ~

	

-~ 	 Ti W.~.. 	! I 	Process Point 	me state
Ln,Col

) 	I n4 pni {yr~. I ~rI 	R 	M e ®I 	e 1 A . '► Jk :i
For Help, press Ft 	 (r̂ Primary Layer

Fig.4.6 GraphWorX screen [27]

SYSTEM302 is completely tag-based, eliminating the need for mapping, cross-referencing

and all worries about device and memory addresses associated with HMI in the past. The

data in any server can be picked up simply by pointing and clicking in a universal tag

browser, as shown in fig 4.6, without having to key in any tag or location. The browser

shows all the registered servers in the local computer and on the remote computer. In order to

access the servers on the remote server in the local network a set of registry settings called

the DCOM settings and server registrations are required to be performed on all the remote

clients.

XI
iI 	! 1 —,f0i ' 	x►4 P-

	

OPC PA 1 	 !GIDbaI,Aa5D3 ~ GraphWar7f l ... ~_

Name .:.E..

 SmerNa7 «1 Sh..Alar'm5erverlt
mar,Det! hj See DaabeseOPC5ertar,3

f }2) 	Snw.Dett ;;t Sm r,Dtt4Wor%2,8
Ste .5kra r29 Smar,Amulata. t

l- (MGk tro
r=arartes

	

0., 	carrel

Fig 4.7 Unified Data Browser [27]

(b) LabVIEW OPC Client [39]

LabVIEW is graphical development platform for design, control and test. Lab VIEW

makes it easy to create human-machine interface (HMI) applications for remote monitoring

and control. An OPC client program can be developed in LabVIEW software using the data

socket. LabVIEW provides several activeX objects for developing a professional user

interface such as graphs, knobs, switches etc. LabVIEW can be used as OPC client by

connecting to an OPC server through a Data socket connection. Data socket has an OPC

layer through which it can access the OPC custom interfaces of an OPC data access server.

We can read and write to an OPC server using Data socket.

(c) OPC Automation Client in VB [8][37][36][39]

Visual Basic supports COM. There are two types of interfaces as discussed in section

3.2.5 namely, Custom interfaces and Automation interfaces. COM implementations from

Visual Basic use what is called an "Automation" interface. The standard interfaces an OPC

server supports are custom interfaces. Servers may or may not implement the automation

interfaces. The automation clients cannot directly connect to the custom server. The

"Automation Wrapper" DLL, provided by OPC Foundation should be used by the

Automation clients to connect VB to any OPC data access server as shown in Fig.4.7.

OPCAutomation Client

Automation. Wrapper .DLL 	 41

COMiDCOM

OPC Custom Interface Server

Fig.4.8. Custom and Automation Client Applications Interfacing to OPC Servers [8]
50

At higher level, an OPC Data Access Server is comprised of several objects: the

Server, the Group, the Item and the Browser as discussed in section3.2.8. The OPC server

object maintains information about the server and serves as a container for OPC group

objects. The OPC group object maintains information about itself and provides the

mechanism for containing and logically organizing OPC items. The Automation Wrapper

connects to the OPC server and creates the groups and items in the server and gives you

references to them in the VB program in an Object model that mirrors that of the server. A

client registers its groups and items at the server. The server keeps the structure of all its

clients. The "fully qualified item" is not sufficient to identify an item; a client may subscribe

the same item in different groups. The pair ClientHandle, ServerHandle uniquely identifies

an item. A handle is an identifier assigned in software to point to a memory location or data

point. The sequences of steps involved in the development of an OPC client program in

visual basic are given in the flow chart in Fig.4.9.

(d) Alarm Viewer [30]

The Alarm Viewer is a current-events alarm ActiveX. Because this component is an

ActiveX, it can be placed in any ActiveX container application, such as GraphWorX,

Microsoft Visual Basic, or a Web page. The Alarm Viewer displays current alarm

information and handles the user interface to the alarm system (such as alarm

acknowledgement). The layout of information displayed, including sort order, color, font,

and displayed data, is user-configurable. One can be drop this ActiveX Control in the

provided AlarmWorX Container, within any GraphWorX HMI Display, an HTML

Internet/intranet-based Web page, or any other ActiveX container, and it automatically

configures itself to deliver live alarms in a scrollable window. You can easily customize the

view via its properties page to control the colors, fonts, columns, rows, alarm filtering,

subscriptions, hot-links, etc.

51

START

iuitialize a dummy server object and get all
registered OPC sez•ers using the eet .
OPC Server method of server object

Create a new server object and connect to
the selected server object

Create Browser object and OPC groups

object and their references from the
connected server

Create OPCGroup Object and Add the Group
to the created OPCGroups object and set the

group active and subscribed properties

NO
Read?

YES 1
Browse the OPC server for items with OPC

read access rights and add the selected

items to the group

Writ:

YES 4,
Browse the OPC server for items with OPC

write access rights and add the selected

items to the group YES

IS selection

completed?

C1

Write the value to the
Selected item

One more
item

IYESI 	I

On Data change event fires back

or all items in the group

LYES J
Stop 	 Remove all the groups

access? 	 and disconnect server

User program I 	 (STOP
handles the data

Fig.4.9 Flow Chart for VB Automation client

52

CHAPTER 5 Implementation of OPC Based Mixed-Mode

SCADA Network

This chapter discusses of the implementation of developing a Mixed-protocol network with a

Foundation Fieldbus protocol, one Modbus protocol and a proprietary DCON protocol and

this shown as an application to a Small Hydro power station.

5.1 	Model Hydro-Power Station

A Model Hydro power station consisting of two units is selected for designing a Mixed

SCADA network, The layout of the model Hydro power station is as depicted in fig.5.1

OUT GOING FEEDER

'1
ISO 	■

CS-Line

Bulbar

cs - U- I

GEN TIF - I

GS-U-2

OEN-T/F .2

e

NOT

GEN.2

Fig.5.1 Single Line Diagram of Model Hydro-Power station 	 53

5.2 	Network Architecture

The design of the implemented mixed-mode SCADA network implemented in the
laboratory is depicted in the fig.5.2

;OPC CLIENT. I
IF> 192.168.164.101

pLANTCONTR01`ROOM ----V~ ~

~

'OFC CLIENT -2
11P > 192.I6i.164.102'

1\I jIi H ❑
~CENTAL SERHER
[P> 192a6a,16sa 	Ple' k Switch

~ 	 I
❑ 6M 1 	 RS 232

ETHERhIET 	 I OM .RS 232

SMAR FIELDBUS BRIDGE
DFI.302

[P> 192,168,164.100

L_______

FOUNDATION
FIELD BUS NM

3232 TO RS 485
CONVERTOR

1-7520

PRESS TRANSMTR 	RS 485 C 1ODBUS 	 RS 4851 MOBU;

LD 302 	 "141PJ

CURRENT FF CONVERTOR
IF 302

TEMP TRANSIVITR
TT 302

POS TRANSMTR
TP 302

PRESS TRANSMTR
LD 302

ANALOG 1/P MODULE
ND 6017

ANALOG 0/P MODULE
ND 6021

THERMOCOUPLE MODULE
art 	ND 6011

+R5 232.10 RS 485
'CONVERTOR_

=7520"

PLANT& FZEl,~

ANALOG IIP MODULEI
1.7019 R

(

ANALOG GP MODI{LE
1.7019R 	I

DIGITAL I/P MODULE
- 7052 D

I 	 ~ 	 +

I 	 LEVfL TRANSMTR 	 DIGITAL O/P MO~1ULF

I 	 LD TR

L

L ,AN L G I/P MODULE 	
1.7043 D

COUNTBR•FRM ~i0d).
1 7080

Fig. 5.2 Mixed-mode Network. Architecture

The network has a central node (IP: 192.168.164.106) acts as a server station. This

node connects the three networks, Foundation field bus network via a bridge

(IP:192.168.164.100) and the two RS 485 networks through convertor modules. Syscon, the

configuration software of Foundation field bus and Utility software for the configuration of

54

RS 485 modules are installed on this central node. The three OPC servers, smar DFI OLE

server for Foundation fieldbus network, NAPOPC for I-7000 series modules and NDS-OPC

server for ND-6000 series modules are installed on this central node. Smar WebHMI and

hence Web-server are installed on this node and the HMI front panels are published as web

pages and any remote client connected to this network on LAN can access these web pages

through Microsoft Internet explorer. For demonstration of the function of remote monitoring

through OPC two clients are connected in LAN as clients. The OPC clients, Graphworx,

Trendworx, Alarmworx viewer are installed on the client nodes. For the clients to access the

remote servers first of all the servers are to be registered on the client nodes, the access

permissions and windows registries need to be configured on the client nodes as well as the

server nodes. The detailed configurations steps and windows registry settings and the

configuration steps for Foudation fieldbus and Modbus networks are explained in the below

sections

5.3 Configuration steps

5.3.1 Foundation Field Bus Configuration

(A) 	Hardware Connection details

1. The bridge is powered with the help of single phase AC supply provided to its DF 50.

The Power Supply for Backplane (DF50) is a high performance standard with

universal AC input, 5 V DC (Backplane Power Supply) and 24 V DC (external use)

outputs.

2. DF 52 provides DC power supply to the Fieldbus with a universal AC Input and 24 V

DC isolated-output.

3. The Fieldbus Power Supply Impedance DF53 (4 ports) provides impedance for the

power supply and the Fieldbus network, ensuring no short-circuit between the power

supply and the communication signal on the Fieldbus.

4. DF 51 of the bridge or linking device is a powerful CPU module and also has an

Ethernet port. An Ethernet cross cable is used to connect the bridge to the computer

through its LAN port.

55

5. The transmitters LD 302, IF 302, TT 302, TP 302 are connected to the bridge through

a daisy chain connection starting from the HI Segment of the DF 51. In this way all

the devices are connected in parallel to the power supply.

6. A terminator BT 302 is used at the end to avoid reflection of signal.

Figure 5.3 Connection Diagram [8]

In this way the devices are connected to form a Local Area Network.

(B) 	Setting up DFI 302

1. System 302 software is installed in the computer.

2. Hard keys (Hard lock protection) is used to get a DFI OLE Server License.

3. DF1302 working environment is composed of a network (Sub-Net) where IP

addresses will be necessary for each connected equipment. The automatic solution for

attribution of these addresses is called DHCP (Dynamic Host Configuration Protocol)

Server. Using DHCP Server these IP addresses are generated automatically

preventing any IP conflict between two distinct equipment. If the network does not

have a DHCP server, DF51 will have the default IP address 192.168.164.100.Since

the network to which the transmitters are connected did not have a DHCP server the

IP addresses and Sub-Net Mask were to be set.

4. The IP address is modified to 192.168.164.XXX and the Sub-Net Mask is modified to

255.255.255.0. IP Address 192.168.164.100 is not used as this is already DFI302

default address.

5. To download the firmware we move to Dfi Download' dialog box by choosing `DF

51' option from 'FB Tools Wizard'. However this firmware download is a onetime

operation and need not be performed repeatedly.

56

(C) 	Creation of a New Project

The SYSCON software is run and a new project is selected. The DFI OLE Server is

chosen from the communication menu. The HI Segment is created and a new bridge is

formed and the virtual field devices are attached to the bridge. Device tags are given to all the

devices. The tags are exported to 'Taginfo' file in OLEServers folder using `Export tags'

option and the Communication is initiated using `Init Communication'. The cross mark is

removed by placing the device id in the attributes. In this way all the devices appear in the

`Live List'.

The SYSCON divides the actual application into two parts namely

1. The Logical Configuration.

2. The Physical Configuration.

(D) 	The Logical Configuration

The main Project window contains an `Area' field which is a set of "Process Cells".

Each process cell defines the application with Function blocks. Here the applications are

named as `control modules'. The actual control objective is built in the form of a control

strategy by interconnecting the function blocks in the strategy window.

Since our application is only to monitor the field values in the slurry transportation

plant no separate control strategy is required. Analog input blocks are used to display

measured values in the form of percentages and arithmetic blocks are used to perform scaling

operations.

(E) 	The Physical Configuration

HI Segment Window deals with the Physical Configuration part of the application. It

shows how the field devices are connected to the actual HI Fieldbus segment and finally to

the Linking device or the bridge. The physical configuration starts with creation of a H1

Fieldbus segment connected to a linking bridge and wiring all the devices to that Fieldbus

segment. In this manner all the transmitters are instantiated using SYSCON.

Double clicking on the respective device displays the list of function blocks a field

device. For any device four blocks are compulsory. They are namely

1. Resource block

2. Transducer block.

57

3. Display block.

4. Diagnostics block

Resource block

Resource blocks are used to define hardware specific characteristics of function block

applications. Similar to transducer blocks, they insulate function blocks from the physical

hardware by containing a set of implementation independent hardware parameters.

Transducer block

Transducer blocks insulate function blocks from the specifics of I/O devices, such as

sensors, actuators, and switches. Transducer blocks control access to I/O devices through a

device independent interface defined for use by function blocks. Transducer blocks also

perform functions, such as calibration and linearization, on I/O data to convert it to a device

independent representation. Their interface to function blocks is defined as one or more

implementation independent I/O channels.

Diagnostics block

This transducer block provides the following features:

• Online measurement of block execution time

• Hardware revision

• Firmware revision

• Serial number of device

• Serial number of main board.

Display Transducer Block

The display transducer is responsible to show on the LCD screen, one chose variable

when it is in monitoring mode or a configured menu when in local adjustment mode. The

display transducer is completely configured via SYSCON. It means the user can select the

best options to fit his application. Among the possibilities, the following options can be

emphasized: Mode block, Outputs monitoring, Tag visualization and Tuning Parameters

setting. The user, when configuring, may select up to seven parameters of any block,

executing in the local device. It means that the device itself is executing that Display

Transducer Block.

The `Target' parameter of the `MODE BLK' of all the blocks is set to `Auto'.

The Tag Designations for all the blocks are given.

(F) Configuring Transducer block

Calibration:

Two types of calibration can be performed on the transmitters

1. Calibration with reference: This is used to adjust a transmitter's working range

using a standard as reference.

2. Calibration without reference: This is used to adjust the transmitter working range

where the user specifies the limit values.

Type of calibration done depends on the transmitter and its area of application.

The Upper Trim and the Lower Trim is configured via SYSCON using CAL_POINT_LO

and CAL_POINT_HI. A convenient engineering unit should be chosen before starting the

calibration. This engineering unit is configured by the CAL_UNIT parameter.

For calibrating the device, the lowest input has been applied to the transmitter and the

corresponding reading obtained in the transmitter is set in CAL_POINT_LO. Similarly the

highest input has been applied to the transmitter and the corresponding value is placed in

CAL POINT HI. In the similar manner calibration can also be done at the intermediate

values.

Calibration can also be done using Local Adjustment. The lower and upper values set

must be within the sensor range specified.

There are many other parameters like Characterization Trim, Temperature Trim etc.

which can be modified depending on the application. The mnemonics RW against a

parameter indicates that the corresponding parameter can be modified depending on the

application.

(G) Configuring Analog Input Block

An analog input bock is created for every device. The Analog Input block takes the input

data from the Transducer block, selected by channel number, and makes it available to other

function blocks at its output.

59

Transducer scaling (XD_SCALE) is applied to the value from the channel to produce the

FIELD_VAL in percent. The XD_SCALE engineering units code and range must be suitable

to the sensor of transducer block connected to the Al block.

The L_TYPE parameter determines how the values passed by the transducer block will be

used into the block. The options are:

Direct - the transducer value is passed directly to the PV. Therefore OUT_SCALE is useless.

Indirect - the PV value is the FIELD VAL value converted to the OUT_SCALE.

Indirect with Square Root - the PV value is square root of the FIELD_VAL converted to the

OUT_SCALE. Direct option is selected in all the analog input blocks. Square root option

can be selected when we wish to see the value of the flow directly on the device. Then the

proper scaling of the parameter can be done using arithmetic block. The ARTH block is

intended for use in calculating measurements from combinations of signals from sensors.

Similarly other blocks like Analog Output block, PID block etc. can be used to frame a

strategy depending on which the entire process can be controlled.

(H) 	Configuring Display Block

This block supported by devices with LCD display can be used to monitor and actuate

in local parameters of blocks. This block can configure seven different displays which can be

seen on the LCD display.

Parameters Configured:

1. BLOCK_TAG_PARAM: This is a tag of the block to which the parameter belongs to

use up to a maximum of 32 characters. This parmeter is filled in with the designations

of the transducer and analog input blocks from where we get the required parameters

to be monitored.

2. INDEX RELATIVE: This is the index related to the parameter to be actuated or

viewed. The primary value or the measured variable has an index relative of 14 in the

transducer block and an index relative of 7 in the analog input block.

3. SUBINDEX: This is the offset of the parameter which we wish to monitor. The

primary value or the measured variable has a sub index relative of 2 in both the

transducer block and analog input block.

4. MNEMONIC: This is mnemonic of the value which can be displayed on the screen. It

is generally set as P_VAL or the name of the unit of the primary value.

5. INC_DEC: It is the increment and decrement in decimal units when the parameter is

Float or Float Status time, or integer, when the parameter is in whole units. It is set to

0.01 or 0.25.

6. DECIMAL—POINT—NUMBER: This is the number of digits after the decimal point

(0 to 3 decimal digits). The required precision can be set on the display. This is set to

2.

7. ACCESS: The access allows the user to read, in the case of the "Monitoring" option,

and to write when "action" option is selected, and then the display will show the

increment and decrement arrows. Monitoring option is selected.

8. ALPHA NUM:

These parameters include two options:

1. value

2. mnemonic.

In option value it is possible to display data both in the alphanumeric and in the

numeric fields, this way, in the case of a data higher than 10000, it will be shown in

the alphanumeric field. Mnemonic option is selected.

All these parameters are configured for each display that is presented on the transmitters.

After configuring all the devices offline, Tags are again assigned and exported and

download operation is performed to set up the transmitters with the required configuration.

`Partial download' can also be performed to the individual devices. Now the devices acquire

`Good' online characterization.

The real time change in the measured variable can be seen both in transducer block

`primary value'. The devices can also be reconfigured online by modifying the values online.

They can also be offline characterized in which case the Tags have to be exported and the

configuration needs to be downloaded again to acquire `Good' online characterization. The

following figure.5.4 shows the configured SYSCON window.

M

ttl Fh FAt 5eerCh View WYdow Help*

'7- vryeytcu„21OBB7

Cj-c keel

t -d51
S3 ht

- I a«nm en

.. 	.. 	
.... 	

AI 	bLK 	
....

..... 	.

..... _ _

t 451

IU MIB VFD
4 - 	Fb VFD

2
d ,...~y,~ y ~~y~, ~~

is *-'W1.+' 	+~,+A q) P ©geslxrA'r RB-J
Q wes+Mr-BK-1

T 	 lid I A66- ~r-0 weslM DI G1
"9 a SLOP iX 5t bD07020DD9:5MAR-DF51:2172 Bx10

❑ p5 JSG ç 	 000]112]0015MR-LD2:DOOI7a7D Dx18

t8 ,{3 ARTI RLK S ISSr ODU3D2DDOI:SMAR;LD30Z:OBOI7SO4 NIIC

[f}- - 	posrerU YtMV 	 0003CM]:7MAR.IFMZ:OD1166I5 550
[3- - 	tertpxmtr pOSxmlr 	 BOD382000b:$MM-TS055S 017419 SFS
'ti} alsxW x tr 0003020001:5MAR4 0 000179(19 SF6

~1 	bvMrrU t_r 	t, 	 bD07DZ0DM%AR-TT3U2:WI15706 0515
Qj- 	lronv

Lwta:X•035.Y -1d1 	1

....r~1 	` uaW'

Fig.5.4 Syscon configuration window

5.3.2 Configuration of ICP DAS Modules

The 1-7000 utility and NAPOPC server are used to configure the 1-7000 series

modules. The modules are connected to the RS 485 network in a multi-drop fashion and the

network is connected to the comport-2 of the host computer as shown in fig.5.5.

I-7520

I-7050D I-7019R 	I7019R

Fig.5.5 Multi-drop RS485/ MODBUS Network (ICP DAS)

CA

The following are the steps to configure the RS 485 modules:

1. Start the NAPOPC server from start->All programs-> NAPOPC server.exe.

2. Then "search modules" function as shown in fig5.5 configures the OPC server. It
searches the RS485 network for connected modules and the modules are added.

3. The monitor function is used to view the real-time values of the tags.

File Add Edit View Options Help

New 	Open 	Save Device

	

16A 	'

	

Group 	Tag_ 	Multi.,
0

Gener•, Search Expand
'
Shrink 	monitor

1
Cut 	Copy 	Paste Delete 	Preview 	Print

8-JO 7019R_1
AIs

Name 	I
S C8-LTAC•00

Type 	I Channel Location I
0

Value 	5calin
ON

Description
STATION AUXILARY•.. } p 	1 7019R_2 S GEN-CS-01

sit Input
Bit Input I ON

i-•-j AIs S GEN-CB-02 Bit Input 2 ON
C• '4O 70500 6 S LINE-CB-03 Bit Input 3 ON

5 LINE-ISO Bit Input 4 ON
DOs

• j DlCounter
LatchLowDls

j LatchHighDls

Fig.5.6. Fully Configured NAPOPC DA server

5.3.3 Configuration of NuDAM modules

The NDSOPC server is used to configure the ND-6000 series modules. The modules

are connected to the RS 485 network in a multi-drop fashion and the network is connected to

the comport-2 of the host computer as shown in fig.5.7.

I-7520

Central
Server Node

ND6011 	ND6017 	ND6021

Fig.5.7. NuDAM RS485/MODBUS Network

The following are the steps to configure the RS 485 modules:

1. Start the NDSOPC server from start->All programs-> NAPOPC server.exe.

63

2. Then "search modules" function as shown in fig5.8 configures the OPC server. It
searches the RS485 network for connected modules and the modules are added.

3. The start diagnostic function is used to view the real-time values of the tags

file Server Comm Device Item Diagnostic View Help`

~ D 4 la 1.011 110 TO X I;

COMI

Item Name 	 1 Access 	j Value Ref Count Time Stan Quality

* COMI.ND6017_17,GEN-1 VOLT 	R 	5.251 	0 	2008106)21 11:23:24 OPC_QUALITY_G000
6 ND6017 17 *COMl,ND601717,LINE-1 VOLT R 5,205 0 2008/06121 11:23:23 OPC_QUALITY,600D

G- 	GEN t VOLT
COM1,ND6017 17,GEP!-2_VOLT R 5.251 0 2008/06/21 1123,23 OPC_QUAL1TY_GOOD

LINE - 1 	VOLT
COMI,ND6017 17,ND6021 ANL-, R 0,000 0 2000/06/21 11:23:24 OPC 	GOOD

U GEN 2 VOLT
I 	- ® ND 6021 ANL-

yK COMI.ND60I7 17,GEN• EXC•VOLT R 10,000 0 20081062111:23:24 OPC_QUALITYG00D

I GEN-EXC•VOLT -~ * COMLND6017 17,LINE-2 VOLT R 5,251 0 2008106121 11:23:24 OPC QUALITY G00D

i Pk COMI,ND6017_17,GEN 2 EXC VOLT R 10,000 0 2008/06/2! 11:23:24 OPC_QUALITY G00D
m 	 LINE-2!XC_

GEN-2-EXC Vo COMI,NDbOII 69 GEN 8ERRIPIG,,, R 28.330 0 2008(06(2111:23:24 OPC_QUVL!TY_0000

ND6011 69 * COMI.ND601i_69,C 	0 R 32.100 0 2008106)2111:23:24 OPC-QUALITY-GOOD

GEN BEARING- * COMI,ND6021 6,ANLG OUT 0 RAW 0,000 0 2008106121112324 OPC_QUALITY GOOD

CJC_0

C~ 1 ND6021 6
L.® ANLG_OUT_0

Fig.5.8. Fully Configured NDS OPC server

5.4 SCADA Functions Implemented

The following SCADA functions are implemented as a part of physical simulation of

a mixed-mode SCADA network for a model Hydro-power station.

5.4.1 Data Acquisition

The following real-time values of the following parameters are acquired through
these networks

Intake Pressure Head — Pressure Transmitter (LD 302)

Level measurement

at fore bay 	- Level Transmitter (LD 302)

Level measurement

at tailrace 	= Level Transmitter (LD 302)

Speed /Frequency 	- Counter Frequency module I -7080D

OPU Pressure 	- Pressure Transmitter (LD 302)

Inlet Nozzle Position - Position transmitter (TP 302)
64

Generator Parameters

Voltage Phase-A

Voltage Phase- B

Voltage Phase —C

Current Phase —A

Current Phase —B

Current Phase — C

DC Excitation Voltage

DC Excitation Current

Generator Transformer Parameters

Current Phase — A

Current Phase — B

Current Phase - C

Unit Auxiliary Transformer Parameters

Current Phase — A

Current Phase — B

Current Phase — C

Transformer Oil Temperature

Generator Temperatures

Stator core Temperature Ph — A - I

Stator Core Temperature Ph — A - 2

Stator Core Temperature Ph — B - 1

Stator Core Temperature Ph — B - 2

Stator Core Temperature Ph — C - 1

Stator Core Temperature Ph — C - 2

Bearing Temperature BT - 1

Bearing Temperature BT —2

Generator Transformer temperatures

Transformer Oil Temperature

Winding Temperatures

Digital In and Out

Unit -1- CB

Unit-2—CB

Feeder CB

Station Isolator

Transformer Winding Temperature

The developed Mixed-mode network is simulated for a Model Hydro power station.

Hence the above parameters of the power station are simulated with the DC voltage sources

and current sources, RTDs, Thermocouples and other available sensors, so that the test of the

developed Mixed-mode SCADA network can be successfully carried out.

65

5.4.2 Remote Monitoring

The central server station is connected in LAN with two client nodes as shown in

fig.5.2 OPC client applications are installed on the client nodes. The clients and server are

required to be configured with the following DCOM settings.

DCOM Settings

Two different configurations are to be done, the client-side one and the server-side

one. In the client-side you may have an end-user program like Syscon and some components

of Smar OLE Server software (CONFPrx.dll, IProxy.dll. and OPCProxy.dll files, and the

required information to NT registry). In the server-side you must have the whole Smar OLE

Server software in order to establish communication between software client(s) and

Hardware plugged in the computer. The DCOM settings vary with the operating system

under use. The below settings mentioned in this chapter are Windows XP service pack2

specific since all the nodes have the applications running in this operating system. The major

goal of Windows XP Service Pack 2 is to reduce common available scenarios for malicious

attack on Windows XP. The Service Pack will reduce the effect of most common attacks in

four ways:

1. Improvement in shielding Windows XP from the network

a. RPC and DCOM communication enhancements

b. Enhancements to the internal Windows firewall

2. Enhanced memory protection

3. Safer handling of e-mail

4. Internet Explorer security enhancements.

Most OPC Clients and Servers use DCOM to communicate over a network and thus

will be impacted due to the changes in Service Pack 2. When Service Pack 2 is installed with

its default configuration settings, OPC communication via DCOM will cease to work. Since

the callback mechanism used by OPC essentially turns the OPC Client into a DCOM Server

and the OPC Server into a DCOM Client, the instructions provided here must be followed on

all nodes that contain either OPC Servers or OPC Clients.

(A) Configuring the Firewall

The Windows Firewall allows traffic across the network interface when initiated

locally, but by default stops any incoming "unsolicited" traffic. However, this firewall is

"exception" based, meaning that the administrator can specify applications and ports that are

exceptions to the rule and can respond to unsolicited requests.

By default the windows firewall is set to "On". This setting is recommended by

Microsoft and by OPC to give your machine the highest possible protection. For trouble

shooting, firstly the firewall is turned off.

(B) Configuring your Network Hosts

There are two possibilities when configuring your machines to be involved in DCOM

communication. You can use only Workstations (standalone) or Workstations in a Domain

Note that any NT Server may be or not a server-side machine for the PCI OLE service. The

advantages of one over another may depend on your local network architecture. Both

processes require help of your network administrator. To choose which one to use remember

that Domain based architecture has a single security database and thus is the simplest way. In

laboratory, a client-server network based on standalone workstations is implemented.

First a work group "OPCGROUP" is created on the local area network. On each machine

in LAN a new user is created and added to the so created OPC GROUP.

(C) System-wide settings

1. In the local security settings (Control panel\Administrative tools\Local security

policies\local security settings) navigate to the Network access: Sharing and security change

the option to local users authenticate as themselves.

67

File 	Action 	view 	Help

Security Settings olk 	I Secu 	Settl 	 - 	j
r-(Account Poikies fR, ' t+6crosoft network server: D QS*... Disabled

Local Policies Microsoft network server: Digitally... Disabled
Audit Policy RF Microsoft network server: Dlsconn... Enabled
User Rights Assigrunen

RNetwork access: Allow anonymous,., Disabled
(-[u) Security Options

p•• j Public Key Poles
^ Netwoekaccess: Do not allow arro,.. Enabled

Cf Cj Software Restriction Pollan
OW Network access: Do not allow ono... Disabled

JNetwork access: Do not.alow stor... Disabled IP Security Policies on Loca
Network access: Let Everyone per,., Disabled
Network access: Named Pipes that,.. COMNAPCOMdODE,SQL QUERYSPOOL5SU.SRPCbrowser
Network access: Remotely accessl.., SystemkCurrttCOntrolSet\ContcOflProductOptions,System%CUrrentControf5...
Network access: Shares that can ,,. COMCFG,DFS$

Network security: Do not store LA.., Disabled
[Network security: Force logoff wh... Disabled
Ri 	Network security: LAN Manager a... Send LM & NTLM responses

NCtwork security; LDAP client sigrd,.. Negotiate signing
Network security: Minimum session... No minimum 	 !3
Network security: Minimum session... No m[Nmum

[,Recovery console: Allow automati... Disabled
Recovery console: Allow Nappy co... Disabled

.i.~Shutdown: Allow system to be shu... Enabled
(Shutdown: Clear virtual memory p... Disabled
[.'System cryptography: Use PIPS c.•. Disabled
[System objects: Default owner for... Object creator

; -' 	""` 	'J 	i):I LSystem objects: Require case terse... Enabled 	 v !

Fig 5.7 Local security settings

2. Go to Start -> Run and type DCOMCnfg and click on OK.

Yj
Type the name of a program, Folder, ducumei*, or
Internet reso ce, and Windows a open it for you.

open: 	& cnig

Fig 5.8 DCOMCNFG in run command

Click on Component Services under the Console Root to expand it.
3. Click on Computers under Component Services to expand it.
4. Right click on My Computer in the pane on the right and select Properties
5. Go to the COM Security tab as shown in fig.5.9 and note there are four permission

configurations which have to be edited:

General 	Options 	DelauR Pro ernes

Default Protocols 	j 	MSDTC 	1 	COM Seoutity

Access Perrnicions 	-- 	--
You may edit who is allowed detarit access to applications. You may
also set limits on aFpliicetions that determine thar own permissions.

Edit xmis._ 	lEdit DetaulL..

Launch and Activetio, Permissions

You may edit wh 	is allowed by default to launch applications or
activate objects. You may also set limits on appications that
delamine then 0,111 Permissions.

Edit Ljmits... 	Edit Qetault...

OK 	1 r Esvtsy

Fig 5.9 My Computer Properties page in DCOM configurations

6. Edit the Limits for Access and Launch
a. Access Permissions — Edit Limits...
You need to check the Remote Access box for the user labeled ANONYMOUS LOGIN in
this dialog.

f: °.ectsrity Limits ._

Qroup or user names -

ANONYMOUSLOGON

i: Everyone

Aid 	Lemove '
is 	PermissionstotANLIWNIU S 1 	LDGON Atom 	Deny

Local Access 	 Q 	❑

Remote Access [J 	0
ii

OK i Cancel

Fig.5.10 Access permissions Tab

This setting is necessary for OPCEnum.exe to function and for some OPC Servers and

Clients that set their DCOM 'Authentication Level' to 'None' in order to allow anonymous

connections. The OPC Enum.exe is OPC server enumerator. It searches the registered OPC

servers on the computer.

b. Launch and Activation Permissions — Edit Limits...
You need to check the remote boxes for the user labeled Everyone in the dialog as shown
in fig.5.11

seouay Lurots

group or user names;

IMAdarin4hatorol\ 	tDD'$ArkranistratorsI

A,. 9errove

J?arnicsions for Everyone 	 Allow Deny

Local Launch 	 Q

Rertrote Launch 	 2 [
Local Activation 	 El C
Remote ANioation 	 Q [

I 	OK . 	cael..._._ I
Fig.5.11 Launch permissions Tab

7. Edit Default Permissions for Access and Launch
For each user (or group) that participates in OPC communication (e.g. "OPC Users"), both
the Local Allow and Remote Allow checkboxes are both checked.
8. Select the Default Properties folder and set the following fields:
8.1. Enable Distributed COM on this computer.
8.2. Default Authentication Level: Connect.
8.3. Default Impersonation Level: Identify.

(D) Server Specific settings

The system wide settings are performed on all the nodes in LAN and will be same for all the

nodes.

1. From DCOMCNFG properties (Run: dcomcnfg->componentservices->My computer

>dcomcnfg) Select the Applications folder and double click on specific server application.

2. Select the Location folder and check Run application on this computer option.

3. Select now the Security folder. Check the option Use default access permissions and Use

default launch permissions.

70

(E) 	Client Specific Settings

The system wide settings will similar to that of the server system wide settings. A part

from these settings following settings has to be made on individual client nodes.

1. Go to Start -> Run and type DCOMCnfg and click on OK.
2. Select the applications folder (->component services->computer->My computer-
>dcomcnfg)

double click on each server icon and select the location folder and give the node id of the
central server where the server application runs as shown in fig.5.12.

The following settings allow DCOM to locate the correct computer for this
application. If you make more than one selection, then DCOM uses the first
applicable one. Client applications may overide your selections.

r Run application on the computer where the data is located.

l Run application on this computer.

r Run application on the following computer:

192.168.164.106 	 Browse...

Fig.5.12 Server application properties Tab

3. Select now the Security folder. Check the option Use default access permissions

and Use default launch permissions.

4. Repeat these steps 1 to 3 for all the OPC servers. Here these steps are repeated for
the three servers Smar dfi OLE server, NAPOPC server, NDS OPC server.

After fully configured, the client nodes will be able to access all the OPC servers on

the server station. The Graph Worx software is used to develop the professional Human

Interface front panels for the workstation of a Small Hydro power station. Two other test

clients developed with standard OPC interfaces in LAB VIEW and Visual Basic 6.0 are .tested

for remote access.

5,4,3 Alarm and Event Notifications

The Alarm worx server is installed on the central server station. The AlarmWorX

Server receives field data from OPC Data Access servers, Smar DFI OLE, NAP OPC and

NDSOPC servers and performs alarm detection based on the conditions specified, may be on

71

a single tag or an expression comprising of multiple tags, in the configuration file and report

to the alarm viewer installed on the client nodes . The AlarmWorX Viewer and the

AlarmWorX Logger are used as two clients to receive these notifications from the server on

the remote client nodes. The alarm conditions are set during the configuration of the server

for individual tag.

5.4.4 Alarm and Event logging

The AlarmWorX Logger provides a permanent copy of alarm and event notifications

produced by any OPC Alarm and Events server, including the AlarmWorX Server. The

Logger Application (AWXLog32.exe) that provides the runtime storage and printing has no

user interface and may optionally be run as a service. The logger typically reads its

configuration information from a Microsoft Access. The Alarm Logger Configurator

(AWXLogCfg.exe) is used to make changes to the database file that the Logger uses for

configuration information.

5.4.5 Control Functions

The main control function is to remotely open or close the circuit breakers from a

control station. In the circuit breakers two contacts namely main contacts and auxiliary

contacts exists. Both the contacts are connected to the same lever. Both the contacts move

simultaneously, main contacts are connected to the line and we monitor the auxiliary

contacts. This function is simulated with a two change over relay. The relay has two contacts,

main contacts and auxiliary contacts. The main contacts are connected to a light load and the

auxiliary contacts are monitored through a digital input module. The digital out module is

connected to the relay such that when a command `1' is written through the module the relay

is excited and the contact is closed to supply load. Therefore from a remote client the

position of the contacts is monitored and controlled. The important control function is to

support the interlocking of the Line circuit breaker and isolator. The interlocking should be

such that when we try to close the circuit breaker when the isolator is open the command

should not be implemented in fact a message should be given to the operator and if we open

the isolator when the circuit breaker is closed then it should not open the isolator and intimate

72

the operator. That is the circuit breaker must open the circuit or close the circuit not the

isolator. This interlocking functionality is implemented.

5.5 WEB Monitoring

Smar WebHMI application is used to publish the HMI front panels as web pages.

First the Internet Information service 6.0 is installed on the central server station. Then the

WebHMI application is installed and the name of the web server and node ID are configured

during the installation. The architecture of the web server and client communication

implemented is as shown in figure.5.3.

Clients 	 Internet 	GenBroker

Fig.5.3 Architecture of WebHMI server and Client communication

The webHMI server communicates to thin clients through the genbroker provided as

an integral part of process view. GenBroker uses TCP/IP and SOAP/XML channels to

achieve real-time and secure communications between Web browser clients and WebHMI

servers. Genbroker is configured to enable the communication over the internet. It acts as a

bridge between Web HMI server and web clients. A thin client sends out a request over the

Internet to the WebHMI server. The thin client uses GenBroker to transmit the request. The

WebHMI server's response to the request is also returned via GenBroker. But if the thin

client's request requires a response from a remote server in a local area network (LAN),

WebHMI could be configured to use DCOM. The communication type in configuration of

the genbroker is specified as DCOM over TCP/IP. Since the application uses the OLE and

73

activeX technologies it can transfer the configuration files to the web client during the

runtime. Hence the client even does not require any process view components but as the

communication channel used is DCOM over TCP/IP it requires DCOM configuration

settings to be performed on the clients as well.

The configurations of the security server, software licensing, alarm server and

genbroker are maintained as Microsoft .cab files which can be transferred to the remote client

during the runtime. First of all the HMI front panels contain the visual basic components

which can not be transferred over the internet hence the pages should be saved as non-VBA

pages in the working directory of the WebHMI application (C:\

Inetpub\WWWroot\WebHMI\ will be by default). The web pages are now published using

the web publishing wizard of Smar WebHMI application. Now typing the URL of the web

page in the internet explorer. The syntax for URL is http://<WebServer name>/<Webpage

name>.html

74

	

CHAPTER 6 	 Results

The mixed-mode network is successfully deployed and the two client nodes are
successfully communicated with the server.

The following figure 6.1 shows the implementation of the network in the laboratory.

1-7520

	

DC Power 	Thermocouple 	
RS232-485

ND-6017 	Convertor

	

tr . 	ND-6021 	Analog I/P

	

Analog 0/P 	 COM-1

ND-6011 • .
Analog I/P

2 Contact Relay 	-• ;~~..-~-- 	:.._~_~..-,.

1W4 	 fCOM-2

	

`~ 	1-7019 R -7050 D 	 ~ 	I-7019 R 	I-7520
Digital 1/O 	Analog I/P-.~ _ 	 RS232-485 Analog I/P 	~~ L , d 	', 	 4 	Convertor

G .. ~f 1. 	 G. - .. - .~-r w~-'iJ 	•- ' 	,• ~" . 	!, 	 f,. (rr 	 t~.: ' u.- 	..~ S~'..~ - .

	_

	

TP 302 	TT 302 	LD 302 LD 302 	Xmtr
LEVEL Xmtr 	 Position Xmtr 	TEMP Xm Press Xmtr

::, 	LD 302 	
DF! 302
BRIDGE

	

Press Xmtr 	 i! 	1F302

	

manvaum 	 ~`'• 	 mweaau _

Convertor

sy

4' 	 `"~" 	FOuvD,%,rION FIELD BUS

r•;

PLANT FIELD

Fig 6.1 Foundation FieldBus and MODBUS Networks Implemented in Laboratory
/ J

SCADA WORK STATION FOR MODEL HYDRO POWER

PLANT_SERVER CLIENT L 7

.rat, 	 , .rrr• 	e'. 	1
~ ~ s

~~ 	 ,.....

\ ,1
1

3

	

jy 	r ♦
'°.

	

I~ 1 	t F' 	k 	!'

'q" Z ' 	q
:',v 1 3

vc 	1 A~ 11 1 	Y
	

i 	1; 	dry 	 . 	a

Fig 6.2 Server and Client Connected in LAN

76

The following figure shows the Unified data browser, used to browse the servers and tags in
local node and in the network as well. Figure 6.3 shows the work group "MSHOME" and
servers in PLANT SERVER.

4' (~ N 	X 	j Help

lant server ADLlttJK,NuDAt,1,2}CuMI.ND6C+11 o9,ND CH TEMP

OPC DA

D ° My Computer

9•••19 Network Neighborhood

GI Mshome

(Client-01
Plant_server

C1 	ADLINK.NuDAM.2
I+ r Advantech,AdamOPCDA.3
fit•]••' 	ICONICS,Alarmserver_ 1
f~•-~ 4 ICONICS.DatabaseOPCServer.31

ICONICS.DataWorX32M

M•• 	NAPOPC.Svr,1 	 I=e
14 ,R + National Instruments,DagOpc.1

National Instruments,LookoutOP'

National Instruments.OPCDemo.

fb a` q National instruments.OPCFieldPc
+L

	

	+ National Instruments.Variabie En.

Smar.DF655erver,1

tCJ 	5mar.I5erver.0

t~l••~ SMAR,Simulator.i
1t1 	Internet 	 y,

-) 	i>d!

Name 	 I Full Item Id 	 ^'
COAI 	 H
C3AI BLK
C)ARTH BLK
(jdf51-DIAG-1
bdf51-HC-1
bdf51-RB-1
bdf5l-TEMP-1
IDd151-TRDIDSH-1
O D5_ELK
)[' if_disp
bifconv-DIAG-1
bifconv-R8-1

bifconv-TRDIF-1
jifconv-TRDIF-2
bifconv-TRDIF-3
Ellevelxmtr-BLK-1
blevelxmtr•DIAG-1
blevelxmtr-RB-1
C3levelxmtr-TRDD5P-1
)POS AI

OK 	Cancel

Fig 6.3 Smar OPC Tag browser

The figures 6.4 to 6.12 show the front panels developed in GraphWorx and LabVIEW in

context of the model Hydro Power station and that of a test OPC client developed in Visual

basic displaying real-time values of the parameters. The Web pages viewed through internet

explorer are also attached.

77

.L

a

a

LT

C 0

F

I-

~ N N

. d ~f 	4aD OdD N 6 O Q0 Q N d tY d
E
 C' 7 N

M a yj ~Ci 	r cM- 	47 V V p
NI 	m V Q N F-
z 	<! m1 VI <I ml VI a v

J J J VI
—

J J J
LL I-I

H
C r Q V Z ~~6 0 0 0 . 	m V a (J 	LL d W W W > >> LL LL LL

N

7m, w ~~

	

II ~ 	 1
•N

	

~ 	 1

I

th

LL

z ~I

	

W 	 -
U o

O

O

F- I-

Z ~5
W LL LL LL

(7 FHF=

A A 1+
ddd
9D 1 	0] o

LL9 dd d m c mr~
OJ 	Q]

C' d7 rr r N

 d d 	ff 	0~ 	0]
Irt N N0

 Ol7 LA 47 O O], OAD 	OAO a y
E

N
Sri N N

qi 	4 aM- I N
O

0
®

per' ° LLI aD v C v v
2 	Gm ~ m 0 Q ~I m Vd

m 0

Q 	sc~ ¢ 	ciaa eXmv a d I m V W aC m V 44 d N v

4 0~o m m
c I

1 1 71 I W I
J

I 	I
J J

LL

W

a C
e e c z J J J a V V W y E > m 	." « .b a a m V m 	F X X 0 00 F-

U. _ d V I. 	a W W > > > VUU 7)]> vvci 7

Co
N

P

0

bn

M
t8 iD O

NI '- -

~~

UJ U Q'
UJUJ

W

w
w

w
N

z
D

e

= O O Q= = = 0 0 C~9 M M M m M @7 V7 C+7 C+7

N N N N N N N N N N

r Cy r N r N N N
m m 99 r N Q rC

a s m m a NI 	Q a a 4.

Z 	5 E E E E E E
!

G G C C C C Z z

o 0 o a o w w o 0

rN+ 	M
M7 M

M M S0 RD
f7 co
SO o

CO N
1„ O O

O
d

tn
.0 I

M M M
SO ~D

N N N G7 C"7 M h+ of 	07 O O O M M f7
U 	In .- i- .- 	L) O r. i •-

W r
i

a U 4 m U d F" ~
z 	F-I I -I 	F-I > ~I W W W
LU

W U

a~

U0

r4
00
11 1

00 J z
 Lr

rt 	jJjJj1
LU

E
E
0
C)

U 	- U - - 	 -

CLZ CL: CL
>C/3

Q1HJJJI 0O 0Q 0QJ1PU
0 3 0 40

41F

!
a,

ul I gr

LU UJ

Lu

LLJ It 	 CD

Xwl

La

I

o

.9- 	U 	Lii 	I 	 W

H

 cc CU

• -:

w 2

0 	Iii

m w

w o

1iiLi11
w w

i J

~ m

O y

O • 1..i
w'.

O d ro V

I HI
-

~3~ 	 x
fftfi 	•• -~~~: 	 4

~
a•

•

Ld .' Ifi N lf1 M O O wean
F fV 	- M U w

n~ai

w z F a W W '
~" f' lw7 ,' V V V V a O rj M F 	9

a } > V v W W
•

G
__* I"

W:. _ a' N N

W
r W` J+ LT

m
N

t

cn M
rl ws N v N u~ N u> a<• N -: ,D N N w .M.~ C1 Oti ';

cC -';
M .' M '" M

N
R
N

• .L ~- a I- 11) ll1 R .. O a

q a' N N N N N Ni N N Ni N
~

-. N N N a a
Ol = d m V 4 m V a O LL

W ~.: Ln Ln w kn w q ca vWi N A
o

►n a' a a = a d '~' O u a a d O D O

,A ~' LzU l7 l7 z w O O Wz Z F

~I ♦ .~ O O D a Q
L W W w

N

Fri

/ N
_H y
Z y

a a a a d a a
ao m m LO m In co q o 0 0 0 0 0 0

.NT V Vim' V V N 7N

NG O O O 'O O O h- O O i 0 O N O 1

N IN 'N iN N N 'N

v w o W 117 N
o
N CD m

J LL1 Ol O N
O i "t '. W IIl ON7
m m m o m m
N ONI ' O ON7 I

. N O Ill LL7 W

N W) L2 r 11l r N

00

a

N
E
O
2
cn

N 0

L
t

a)
tS Z 	O 	C

O
-
Q 	0 	j

JOJ>J UIm
7 OL O N j rl> x 1w w

TL r (VIW NN m
w Z W Z 2 w Z ZI ~ wZWWZww o IU' J00::j 0
w Nf~f~IR f~fIci
Q r r r r r r
~ ~I~I Î~I~ITITI

L,

0000000
o tD CD [O W W W LD
F DO []ddOO

Z z z z z Z Z

00000 00

a

Lu F
y 	E
N 	e :
o 0i

m m • w
0 a) r m _

Z E coo
C) Lii

ty 0 U G. CO

CO 	J
w
C7

w
(0 J

w 	W
CO 	L7

M1 	M1 r_ _ M1 M1_ ti 	a

N-I F-I F-I Ni FI FI

COO LLD 	COO w 	COG W ; COO

z z z z z z z

0 0 0 O 0 0 U

z
2

y 2 z
I— 	(O IU O

E

S
41 N

•Q 	 N
d)
?
y v.

N
cc
W
>

2

W

Lu
N

►

N

4
0

I-
W
J Z
U

0 N Q
w

U
a

v } a)
U)
O

>
I-.

U N

Z w 0 o N V

w

m

O
a)
3 '

O
4)
3 O :?
a0 0 _
a) O
y J
of :5
Lu

01 I

V
O
V LO
O IN ►
a)

Ii N9

m c0

0

► 0

O
U

V O ,

O U
a~ ~

i-
4Y

H U" © o
U

y N
4 1(7 In 	~C

Oo IX

'~{

J

-
Q E a O C m o o t O O p N d- 	. v

OD OD ~L
N N n

Y -.
 T 	En 0

a -N
Z C m V Q m V E a

U~lO
U I- J J

OO 	m V a v V

w w 0 7 7 Z ? >> 	-_ a U. a vb l c c Ht _

r 1~ N

1II
 I W

0

H I ~

__ 	 __ __ 	

@9-

!h _ _

	

t 	1 	

I.

0Q 	o

• 4 	
U = 4a

	

' 	 Z 	 0

I
 _~ ' - - 	-- 	

t

W
,~
~t

e--I

	

F a 	w m 	-I
o _.1 	 L1 	0.

O

U- Z 07
H VS

U a J

 HIIcLH 	
fl

a' LL Z S

,z F

o ~ 0 0 0 O
F- t I l'I[I 	d. 	m IR IR 	(6 C6 r1 pp
~

Ui
a

	

~I ' 	N 	 N

	

N! ► 	Z 	 O o O 	pp O
LL 	!, d 	W 	 N N N ` 90 97 O tti if) tl O OD 	!

► 	L 	Or a d 4 m V c
	dl ml VI 	 _ z 	~~ ml VI

	

u 	 a N N A W N N 7 	I J J 	 Q 	U U 	J J J 	q
LLI

	

r 	u w

00

I

A
J

1
C 10 C C7 C7

V
d Q
•

00

a
SV
N

N
N N

N N N N N N C"4 cv
0 0 I N e- N 	'- N N N

N N <1 m r~, 	U U N Q KC

a ° a d a~ 	0- a I ~ d
w z W Q) E E E E E E E

z `a F - Hi~H LUF I- }-
LU J

o
z r 01

c
a]

c
cl 31

c 	t
0)

c
O 'U
z

01
Z3 c

O)

t
03

z
Q

0 0 0 0 o m m
U7 (n (n 	Cf1 Cn [11 U7

F
►n ~r eci

IO W v er .r c a v L a° 0n.
N
N N

N N
w
(V

N N N ~j N C j CI r- d CV
LL r'

a
~ "
m I

4•

a m o<
z z Z 1 	I IU- >1-

cc x_ 0 0 0 0(m a 	LL w w
V v U

0

O

	
i

U
W

w
w
w

Y-

z

L[fl!E1

a;n:n
o;oo

o k-0 I

uJ

O

z
O;
0
Cl)

O'

III
t.

a,

o tu o'so

N _

' R 	1 	41
? €

'E
EE

UY N ?(O a 	fii N N

CC

00 ;00.00 o;o
CC =C c_C

— S
O

€N5(~l
H O? O

O
O~

rat 	a 	Xv `7
<-•

7
; ~'-

N €N N NV ~U CV ?CV

9

CHAPTER 7 	 Conclusions & Future Scope

In this chapter the various concluding remarks and the future scope of the work done are

summarized.

7.1 Conclusions

The Mixed-mode smart sensor network with two remote clients, integrating a

FOUNDATION FIELDBUS and two .MODBUS networks is successfully developed with

available smart and Intelligent sensors in the laboratory. The two remote clients were also

successfully communicated with three servers on the central server node. The developed mixed-

mode network is realized as an application to a SCADA network of a model Hydro Power

station. The functions namely, real-time data acquisition and display on the remote nodes in the

front panels developed using multiple client software, control functions are also simulated in the

laboratory, alarm and event notifications through alarm servers for the operator on remote

clients, front panels so developed are published as web pages to a web server installed on the

central server node so that the nodes without the client software components can also view the

real-time parameters through a web browser, were successfully implemented. The OPC security

is also employed by specifying the user groups for access, the specific users were also restricted

for access to only few applications like only monitoring but no controlling rights. Hence the OPC

Data access, OPC Alarm and Event, OPC XML data access and OPC security standards were

successfully implemented on a local area network.

7.2 Future Scope

The mixed-mode SCADA network developed is functioning well and this can

implemented in any Small Hydro power station or on a setup. Although few control functions are

implemented with available equipment, complex control strategies implemented in industrial

control systems can be programmed using FIELDBUS function blocks, demonstrating a fully

distributed network.

References

[1] Zaiping Chen, Xiaowei Yao, Xunlei Yin "Research of Schemes on Integration of
Fieldbus System", Industrial Electronics Society, 31st Annual Conference of IEEE
Nov- 2005,pp 6-10.

[2] Maxim Lobashovl, Thilo Sauter2, "Vertical Communication from the Enterprise Level to
the Factory Floor — Integrating Fieldbus and IP-based Networks", Emerging Technologies
and Factory Automation, ETFA'06. IEEE Conference on September 2006, pp-20-22.

[3] Li Zheng, Nakagawa. H, "OPC (OLE for process control) specification and its
developments", Proceedings of the 41st SICE Annual Conference, ,vol.2, Aug. 2002,
pp:917-920

[4] Vu Van Tan, Dae-Seung Yoo, Myeong-Jae Yi, "Design and Implementation of Web Service
by Using OPC XML-DA and OPC Complex Data for Automation and Control Systems",
Computer and Information Technology, the Sixth IEEE International Conference , Sept.
2006 pp:263 — 263

[5] Xiaohong Hao, Shunhong Hou, "OPC DX and industrial Ethernet glues fieldbus together"
Control, Automation, Robotics and Vision Conference-8th, Volume 1, 6-9 Dec. 2004
Page(s):562 - 567

[6] What is OPC at www.opcfoundation.org
http://www.opcfoundation.org/Default.aspx/O1_about/O1 whatis.asp?MID=AboutOPC

[7] OPC Common Definitions and Interfaces, Version 1.0, October 27, 1998, at
www.opcfoundation.org

[8] Data Access Automation Interface Standard, Version 2.02, February 4, 1999, at
www.opcfoundation.org

[9] Data Access Custom Interface Standard, Version 2.0, October 14, 1998, at
www.opefoundation.org

[10] OPC Net wrapper- Client interface manual, Version 1.1.0.0, 22 March 2005, at
www.opcfoundation.org

[11] Performance Test Report of ALEO SHP Station (2 * 1500 kW), AHEC, IIT Roorkee,

Dec 2005.

[12] Performance Test Report and SCADA manuals of Someshwara SHP Station, AHEC, IIT

Rorkee, 2005.

[13] NAPOPC DA Server, User's Manual [For Windows 95/98/Me/NT/2000/XP], Version:
3.00, Date: Jul-10-2007

[14] Smar OLE Server, User manual, July 2002, VERSION 2.0

[15] NDS-OPC OPC Server for NuDAM Modules, Windows-95/98/NT, Manual Rev. 1.00b:
September 6, 1999

[16] "Fieldbus Tutorial", Smar International Corporation, USA, July 2004.

[17] "Operation and Instruction/ Manual model LD 302", Smar International Corporation, USA,

Dec 2005.

[18] "Operation and Instruction/ Manual model TP 302", Smar International Corporation, USA,

July 2006.

[19] "Operation and Instruction/ Manual model IF 302", Smar International Corporation, USA,

Nov 2006.

[20] "Operation and Instruction/ Manual model TT 302", Smar International Corporation, USA,

Feb 2007.

[21] "Operation and Instruction/ Manual model BT 302", Smar International Corporation, USA,

March 2005.

[22] "Operation and Instruction/ Manual model DFI 302", Smar International Corporation,

USA, July 2005.

[23] SYSCON Manual, Version 6.0, Smar International Corporation, USA, March 2007.

[24] "Foundation Fieldbus General Manual", Smar International Corporation, USA, July

2005.

[25] "Foundation Fieldbus Function Block Manual", Smar International Corporation, USA,

May 2007.

[26] Electronic Instruments and Instrumentation Technology — M.M.S.Anand (PHI)

[27] "Operation and Instruction/ Manual Graph WorX", Smar International Corporation, USA,

Feb 2007.

[28] "Operation and Instruction/ Manual Smar WebHMI", Smar International Corporation,

USA, Feb 2007.

[29] "Operation and Instruction/ Manual WEB Publishing Wizard", Smar International

Corporation, USA, Feb 2007.

[30] "Operation and Instruction/ Manual Alarm WorX server Configurator", Smar International

Corporation, USA, Feb 2007.

[31] Al Chisholm, "DCOM, OPC and Performance Issues", Intellution Inc, 2/3/98

[32] Karl-Heinz Deiretsbacher, Siemens AG, Jim Luth, ICONICS Inc, OPC Foundation
technical Director, Rashesh Mody Invensys/Wonderware OPC Foundation Chief Architect
"Using OPC, via DCOM with Microsoft Windows XP Service Pack 2".

[33] COM & DDE Technologies at
http://msdn.microsoft.com/library/default.asp ?url=/1ibray/en-us/dndotnet/htm11cal1comcomp. asp

[34] •A presentation on "COM, DCOM and OPC" by ICONICS

[35] Guy Eddon and Henry Eddon, "Understanding the DCOM Wire Protocol by Analyzing
Network Data Packets", Microsoft Systems Journal, March 1998.

[36] Prof. Dr. H. Kirrmann, ABB Research Centre, Baden, Switzerland "A presentation on

OPC",May 2006.

[37] John Weber, President & Founder, Software Toolbox, Inc. "Using Visual Basic As
An OPC Client", March 2001

[38] OPC XML-DA Specification, Version 1.0, July 12, 2003

[39] OPC resources at www.ni.com/opc/opc_resources.htm

APPENDIX - A: OPC Data Access Automation Objects and Interfaces

A.1 OPC Server Object

Properties:
StartTime CurreutTilue LastUpdateTime
Ma}orVersion MSmlorVersio11 BuildNulnber
VendorInfo SelverState LocalelD
Bandwidth OPCGroups PublieGroupNames
ServerNiaule ServerNode ClientNauue

Methods:
Get©PCSer ers Connect Disconnect
CreateBrowser GetEr or.String Query 4vailableLocaleIDs
QuervAvailableProperties GetItemProperties LookupItemiDs

Events:
Ser wrShutDowii

A.2 OPC Browser Object

Properties:
Organization Filter Dat iType
AccessRigllts CmTentPosition Count

Methods:
Item ShowBrariches ShowLeafs
MoveUp MoveToRoot MoveD own
MoveTo GetItemlD GetAccessPaths

A.3 OPC Groups Object

Properties:
Parent DefaultGrouplsActive DefaultGroupUpdateRate
DeflmltGroupDeadband. DefaultGroupLocalelD DefaultGnoupTisueBias
Count

Methods:
Item SlhowwB1 anclies ShowLeafs
MoveUp MoveToRoot MoveDown
MoveTo GetItemlD GetAccessPaths

Events:

I GlobalDataChange

A.4 OPC Group Object

Properties
Parent Name ISPUblic
IsActive IsSllbscl'ibed ClientHandle
S erverHandle LocalelD TinieBias
DeadBand UpdateRate OPClteins

Methods
SyncRead Sync Write AsyncRead
AsvncWrite AsyncRefresil AsyneCancel

Events
DataChange 	 AsyncReadC omplete 	 Async Wr'iteConiplete
Aso ncCarice lC omp lete

A.5 OPC Items Object

Properties
Parent 	 DefaultRequestedDataT pe 	DefaultAccessPath
Defau1tIs.4ctive 	 Count

Methods
Item GetOPCIteni Addltew
AddItelns Remove Validate
SetActive SetClientHanclles SetDataTypes

A.6 OPC Item Object

Properties
Parent ClientHandle Ser el•Handle
AccessPath AccessRiglits ItemID
IsActive RegtlestedDa.taType Value
Quality Ti neStanlp CanonicalDataType
EUType EUInfo

Methods
Read 	 Write

92

End Sub

Private Sub Combo2 Click()

AnBrowser.MoveDown (Combo2.Text) /*Moving to the selected position
AnBrowser.ShowBranches in the tree structure of server*/

Dim i As Integer

For i = 1 To AnBrowser.Count
Combo3.Addltem (AnBrowser.Item(i))
Next i

End Sub
--

Private Sub Combo3 Click()

Dim i As Integer
AnBrowser.MoveDown (Combo3.Text)
AnBrowser.ShowLeafs /* Accessing all the items in server*/

Combo7.Clear
For i = I To AnBrowser.Count

Combo7.AddItem (AnBrowser.Item(i))

Next i

End Sub

Private Sub Combo4 Click()

Dim i As Integer
AnBrowser.MoveDown (Combo4.Text)
AnBrowser.ShowBranches
Combo5.Clear

For i = 1 To AnBrowser.Count
groupsl(i) = AnBrowser.Item(i)
Combo5.Addltem groupsl(i)

Next i

End Sub

Private Sub Combos Click()

Dim othername As String
Dim i As Integer
AnBrowser.MoveDown (Combo5.Text)
AnBrowser.ShowLeafs
Combo6.Clear
For i = 1 To AnBrowser.Count

othername = AnBrowser.Item(i)
Combo6.Addltem othername
Next i

End Sub
--

Private Sub Combo6 Click()

OPCItemIDs(k) = AnBrowser.GetltemlD(Combo6.Text)

94

Events:
GlobalDataChange

A.4 OPC Group Object

Properties
Parent Name Ispublic
IsActive Is Sub sca ibed ClientHandle
SelverHandle LocaleID TimeBias
DeadBand LlpclateRate ©PCItems

Methods
SyncRead Sync Write AsyncRead
AsyncWrite AsyncRefresh AsyncCancel

Events
DataChange 	 AsyncReadComplete 	 AsyncWriteComplete
AsyncCancelCoinplete

A.5 OPC Items Object

Properties
Parent 	 DefaultRequestedDataType 	DefaultAccessPatli
DefaultlsActive 	 Count

Methods
ItemI7 GetOPCItem Acidlteni
AddIteins Remove Validate
SetActive SetClientHandles SetDataTypes

A.6 OPC Item Object

Properties
Parent ClientHandle SeiverHandle
AccessPath AccessRights ItennlD
IsActive RequestedDataT ype Value
Quality TimueStamp CanonicalDataType
EUT pe EUlafo

Methods
Read 	 W rite

92

APPENDIX - B: Program for OPC test client in visual Basic

Option Explicit
Option Base 1 'Makes all arrays start with an index of 1

Dim WithEvents.ConnectedOPCServer As OPCServer
Dim WithEvents MyGroups As OPCGroups
Dim WithEvents oneGroup As OPCGroup
Dim Groupname As String
Dim AnBrowser As OPCBrowser
Dim k As Integer 	/* Intialising the objects and
Dim Myitems As OPCItems 	variables */
Dim oneItem As OPCItem

Dim ItemCount As Long
Dim OPCItemIDs(30) As String
Dim groupsl(30) As Variant
Dim groups2(30) As Variant
Dim ItemServerHandles(50) As Long
Dim ItemServerErrors(50) As Long
Dim ClientHandles(50) As Long

Private Sub AsyncRefresh_Click()

Dim Source As Integer
Dim ClientTransactionlD As Long
Dim ServerTransactionlD As Long
Source = 1
ClientTransactionlD = 2125

/*This Function Fires the
OnDatachange Event for all

Added. groups */

oneGroup.AsyncRefresh Source, ClientTransactionlD, ServerTransactionlD

End Sub

Private Sub Client Name_ Click()
Dim info As String
info = ConnectedOPCServer.ClientName 	/* Accessing the Client name
Text3.Text = info 	 Property of server Object*/
End Sub

Private Sub Combol Click()

ConnectedOPCServer.Connect (Combol.Text) 	/*Connecting the server
Listl.Addltem "Connected To Server" 	to the selected server*/
Set MyGroups = ConnectedOPCServer.OPCGroups /*Getting the reference of
Set oneGroup = MyGroups.Add("Group_Read") 	OPCgroups from server */

Set AnBrowser = ConnectedOPCServer.CreateBrowser /* Getting the
reference of the Browser object from the connected server*/

oneGroup.UpdateRate = 500
oneGroup.IsActive -= True
oneGroup.IsSubscribed = True
k= 1
ItemCount = 25
ConnectedOPCServer.ClientName = "OPC TEST CLIENT

93

End Sub
---=----------------
Private Sub Combo2 Click()

AnBrowser.MoveDown (Combo2.Text) /*Moving to the selected position
AnBrowser.ShowBranches in the tree structure of server*/
Dim i As Integer

For i = 1 To AnBrowser.Count
Combo3.Addltem (AnBrowser.Item(i))
Next i

End Sub

Private Sub Combo3 ClickO

Dim i As Integer
AnBrowser.MoveDown (Combo3.Text)
AnBrowser.ShowLeafs /* Accessing all the items in server*/
Combo'? . Clear

For i = 1 To AnBrowser.Count
Combo7.Addltem (AnBrowser.Item(i))

Next i

End Sub

Private Sub Combo4 Click()

Dim i As Integer
AnBrowser.MoveDown (Combo4.Text)
AnBrowser.ShowBranches
Combo5.Clear

For i = 1 To AnBrowser.Count
groupsl(i) = AnBrowser.Item(i)
Combo5.Addltem groupsl(i)

Next i

End Sub

Private Sub Combos Click()

Dim othername As String
Dim i As Integer
AnBrowser.MoveDown (Combo5.Text)
AnBrowser.ShowLeafs
Combo6.Clear
For i = 1 To AnBrowser.Count
othername = AnBrowser.Item(i)
Combo6.Addltem othername
Next i

End Sub
--

Private Sub Combo6 Click()

OPCItemIDs(k) = AnBrowser.GetltemlD(Combo6.Text)

List4.Addltem OPCItemIDs(k)
AnBrowser.ShowLeafs
Set Myitems = oneGroup.OPCItems
Dim x, i As Integer
x = 1975
i = 1
ClientHandles(k) = x + I /* Setting client Handles for the items

to be added*/
i = i +1

Myitems.Addltem OPCItemIDs(k), ClientHandles(k) /* Adding the
Items using "Add Item property" */

Set oneItem = Myitems.Item(k)
Dim somevalue As Long
ItemServerHandles(k) = oneItem.ServerHandle /* Getting the Server

Handles of the added Items*/

AnBrowser.MoveToRoot
k = k + 1
If k < ItemCount Then
Textl.Text = "Select one more Item
Else
Textl.Text = " Items selection is completed "
End If

End Sub

Private Sub Commandl_Click()
End 	/* End of Execution*/
End Sub

Private Sub Disconnect Click()

MyGroups.RemoveAll 	/*Removes all the added items and groups */
ConnectedOPCServer. Disconnect
End Sub

Private Sub Form Load()

Combo8.Addltem "Completed"
Combo8.Addltem "NotCompleted"

End Sub

Private Sub Getopcservers Click()

Dim Allopcservers As Variant
Dim i As Integer
Set ConnectedOPCServer = New OPCServer 	/*Creating a dummy server

object/*
Allopcservers = ConnectedOPCServer.Getopcservers /*Getting all the

registered OPC server in the node*/

For i = LBound(Allopcservers) To UBound(Allopcservers)
Combol.Addltem Allopcservers (I)
Next i

95

End Sub
--
Private Sub Item Click()

Dim i As Integer
Dim somename As String
Dim currentvalue As Long

Set MyGroups = ConnectedOPCServer.OPCGroups
MyGroups.DefaultGrouplsActive = True
MyGroups.DefaultGroupDeadband = 0 /* Setting the properties*/

Dim position As String
AnBrowser.ShowBranches
Combo4.Clear
For i = 1 To AnBrowser.Count

somename = AnBrowser.Item(i)
Combo4.Addltem somename
Next i

End Sub
--

Private Sub oneGroup DataChange(ByVal TransactionlD As Long, ByVal
Numltems As Long, ClientHandlesO As Long, ItemValuesO As Variant,
Qualities() As Long, TimeStampsO As Date)

Dim i As Integer

If Combo8.Text = "Completed" Then
List6.Clear

For i = 1 To k - 1
List6.Addltem OPCItemIDs(i) & " " & ItemValues(i) & "
" & TimeStamps(i)

List6.Addltem " "
Next i /** This is an Event driven function which will

Executed when

Else
End If
End Sub

Private Sub Select Click()

Dim i As Integer

Dim somename As String

AnBrowser.MoveToRoot

AnBrowser.AccessRights = 4
AnBrowser.ShowBranches
Combo2.Clear

For i = 1 To AnBrowser.Count
somename = AnBrowser.Item(i)
Combo2.Addltem somename

Next i

'i = AnBrowser.AccessRights
'Text5.Text = i
End Sub

Private Sub Servername_Click()
Dim info As String
Dim node As String

info = ConnectedOPCServer.Servername /*Accesing the Server ID*/
List2.Addltem info
node = ConnectedOPCServer.ServerNode
List2.Addltem node

End Sub

Private Sub serverstatus Click()

Dim serverstatus As Long
serverstatus = ConnectedOPCServer.ServerState
If serverstatus = 1 Then /* Readin the Current status of the Server*/
List3.Addltem "Connected and Working Normal"
End If
End Sub

Private Sub Version Click()

Dim major, minor As Integer
major = ConnectedOPCServer.MajorVersion /*Reading version of the
minor = ConnectedOPCServer.MinorVersion 	Connected server*/
Text4.Text = "Version" & major & "." & minor
End Sub

Private Sub Write Click()

Dim oneGroupi As OPCGroup
Dim Myitemsl As OPCItems
Dim oneIteml As OPCItem

Dim Value As Variant
Dim ClientHandle As Long

Set oneGroupl = MyGroups.Add("Group_Write")/*Adding the group to
oneGroupl.IsActive = True 	 write*/
oneGroupl.IsSubscribed = True
Set Myitemsl = oneGroup.OPCItems

ClientHandle = 2000 	/*setting the client Handle to added item */
Myitemsl.Addltem AnBrowser.GetltemlD(Combo7.Text), ClientHandle
Set onelteml = Myitemsl.Item(l)
'Text2.Text = "Enter the Value to be written"

Value = Text2.Value
oneIteml.Write (Value)
'List5.Addltem oneIteml

End Sub

97

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

