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ABSTRACT 

Ultrasound imaging has been established as one of the most important techniques 
in the field of the medical diagnostic technology because of its non-invasing nature, 
portability, low cost and real time information. The image quality is of central im-
portance in an ultrasound examination as the diagnosis of a disease by a radiologist 
is based on his interpretation of the medical images. However, ultrasound images 
suffer from an intrinsic artifact called speckle. Speckle degrades spatial and contrast 
resolution and obscures the underlying anatomy. It makes human interpretation 
and computer-assisted detection techniques difficult and inconsistent. Since speckle 
is a major shortcoming of ultrasound, reducing or eliminating speckle is necessary 
for the visual enhancement and auto segmentation improvement. 

In this thesis work speckle reduction techniques have been implemented to in-
crease the visualization and to make the auto segmentation process easy and fast in 
medical ultrasound images. 

The adaptive filtering and anisotropic diffusion based techniques have been ex-
amined and compared on the basis of their speckle suppression ability and feature 
preservation. Under the adaptive filtering, adaptive weighted median filter (AWMF) 
and aggressive region growing filter (ARGF) have been implemented. Both algo-
rithms uses local statistics of the image for the filtering action. AWMF is an enah-
nced median filter and it is based on weighted median. Aggressive region growing 
filter (ARGF) selects a filtering region size using an appropriately estimated ho-
mogeneity value for region growth. In case of diffusion based techniques speckle 
reduction anisotropic diffusion (SRAD) has been applied. SRAD is based on the 
same minimum mean square error (MMSE) approach to filtering as Lee and Kuan 
filters. 

These filtering algorithms are applied on the simulated and the tissue mimicking 
phantom to have a quantitative analysis. To study the feasibility and usefulness of 
these methods, the algorithms are applied on the real ultrasound image taken from 
GE website and medpix database. To quantify the results obtained by these three 
techniques, evaluation indices (CNR, FOM, MSSIM) have been calculated. 

It is found that SRAD is superior to adaptive filtering based- techniques in in-
creasing the visualization of the images while reducing the speckles. AWMF cannot 
remove the speckles effectively and also causes blurring with the loss of details. 
ARGF technique reduces the speckles effectively and its smoothening effect can be 
used as a preprocessing step for auto segmentation and image registration. 
Qualitative analysis for these three methods has been done by the assistance of the 
medical experts. The results obtained may be useful for radiologists, clinicians or 
experts , who may use it for clinical diagnosis. 
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Chapter 1 

Introduction 

1.1 Medical Imaging: An Overview 

Medical imaging is a technique which is used to provide images of the anatomy of 
the human body for the medical diagnosis. It is composed of set of techniques that 
create images of the internal structure of the body without affecting the functional 
processes occurring inside human body. Medical imaging at various level permit the 
detection and diagnosis of disease or the abnormality at an earlier stage. 
Recent advances in the imaging technology have drastically changed the medical 
diagnosis. The imaging modalities such as X-ray, Computed Tomography (CT), 
Magnetic Resonance Imaging (MRI), Ultrasound and other modalities provide ex-
ceptional view of the internal anatomy, but the analysis of the embedded structures 
depend on the radiologists experience. In this context, the need for the computer 
assisted approaches has been felt by the medical image analysis community. In many 
radiological applications, the visualization and quantitative analysis of physiological 
structures provide valuable clinical information that is extremely useful for diag-
nosis and treatment. Using the sophisticated computer programs and model, the 
physiological structures can be processed and manipulated to reveal the diagnostic 
features that are difficult to observe in original image[1]. But it should not introduce 
artifacts in the images which can lead to a wrong interpretation. 

1.2 Ultrasound Imaging 

The main objective of a medical imaging is to acquire useful information about the 
physiological processes or organs of the body by using external or internal sources 
of energy. The choice for a particular medical imaging modality is governed by 
several factors such as resolution, contrast mechanism, convenience, safety and cost 
effective. The medical use of ultrasound has expanded enormously over the last 
two decades, due largely to the fact that it is safe, allows real-time visualization 
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of moving structures, is suitable for many clinical applications, and is relatively 
inexpensive. The following subsections describe the basics of ultrasound imaging. 

1.2.1 Principle Of Ultrasound Imaging 

Ultrasound imaging is based on the 'pulse-echo' principle in which a beam of ul-
trasound is emitted from a transducer and directed into the tissue. The ultrasound 
machine transmits sound pulses into the body using a probe capable of generating 
and detecting the sound waves. When an ultrasound pulse sees an interface between 
soft tissues having different acoustic impedance, a small portion of the ultrasound 
beam is reflected but most passes across the interface undeviated. The fraction 
of these reflections that return to the direction of the incident ultrasound beam is 
called as backscattered signal. 
When the sound waves hit a boundary between tissues (e.g. between fluid and soft 
tissue, soft tissue and bone) some of the sound waves are reflected back to the probe 
and the rest travel on further until they reach another boundary and are reflected 
back. The reflected waves are detected by the probe and relayed to the machine. The 
machine calculates the distance from the probe to the tissue or organ (boundaries) 
using the speed of sound in tissue (1,540 m/s) and the time of each echo's return . 
The machine displays the distances and intensities of the echoes on the screen and 
forms a two dimensional image. 

Figure 1.1: Reflection of ultrasound beam[21 

1.2.2 Ultrasound Imaging System 

A simplified block diagram of an ultrasound system is shown in the figure 1.2. In 
this system there is a piezoelectric crystal based multi-element transducer at the 
end of a relatively long cable. In this type of system the operator is provided with 
various transducer probe heads to select for optical imaging. 
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Figure 1.2: Ultrasound system block diagram [3] 

The ultrasound system shown consists of electronic transmitter/receiver switching 
circuits, control panel with pulse generation and control, and computer processing 
and display system. There are three main ultrasonic acquisition modes: B-mode 
(gray-scale imaging; 2D); F-mode (Colorflow or Doppler Imaging; blood flow); and 
D-mode (Spectral Doppler). B-mode creates the traditional gray-scale image; F-
mode is a color overlay on the B-mode display that shows blood flow; D-mode is 
the Doppler display that might show blood flow velocities and their frequencies. 
(There is also an M-mode, which displays a single B-mode time line.) In medical 
imaging the operating frequencies are in the range of 1 MHz to 40 MHz. Higher 
frequencies are in principle more desirable, since they provide higher resolution but 
tissue attenuation limits how high the frequency can be for a given penetration 
distance. 

1.2.3 Medical Application Of Ultrasound 

The medical use of ultrasound has expanded enormously over the last two decades, 
due largely to the fact that it is safe and inexpensive. The ultrasound imaging 
is applied for scanning soft tissues like lungs, liver, rectum, prostate, uterus, and 
neonatal brain. It is excellent for the measurement of flow and motion. Also 2D-real 
time scanning is possible and 3D, 4D techniques are evolving. 
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1.3 Speckle Reduction Review 

Ultrasound speckle is a granular pattern formed by the constructive and destructive 
interference of the backscattering echoes from the scatterers smaller than the reso-
lution size. This pattern occurs especially when an ultrasound scan of organs like 
liver and kidney is taken whose underlying structures are too small to be resolved by 
the ultrasound scanners. Speckle degrades the image quality in ultrasound B-scans 
and hence reduces the ability of human observer to discriminate the fine details in 
diagnostic examination[4]. It also decreases the efficiency of further image process-
ing techniques such as edge detection, image segmentation or image registration . 
Therefore, speckle reduction is necessary for the enhancement of ultrasound images. 

An examination of the literature shows a number of speckle reduction techniques. 
Various speckle reduction approaches are based on image post processing and image 
averaging or compounding. Ih averaging based approaches multiple decorrelated 
frames are averaged out. These decorrelated images are sampled at different times, 
from different views, or with different frequencies for the same target[5],[6]. Aver-
aging techniques suffer from limited speckle reduction effects - speckle is reduced to 

where n is the number of frames. Additionally, the multiple frames in averaging 
techniques reduce the frame rate, making the techniques of limited practical use. 

On the other hand techniques based on post processing approaches involve non 
adaptive or adaptive filtering of B-scan images to smooth out the speckle. But 
non adaptive techniques causes severe blurring in the ultrasound images and are 
not able to preserve boundaries between the two regions with slightly different gray 
level. Adaptive filtering techniques have been developed for feature detection in 
ultrasound images. As with the median filtering, these techniques produces filter 
output at each pixel from the properties of the pixels inside region Wi containing 
the pixel of interest. The adaptive- weighted median filter (AWMF) [7] is an enhanced 
median filter. The weighted median of a region Wj pixels is defined as the median of 
an extended sequence formed by replicating pixels in Wi,~ by an amount calculated 
from their distance to (i,j) and the estimate of the 'local statistics. The AWMF 
technique eliminates the requirement that speckle artifacts be smaller than the half 
the region size as is required for pure median filtering. Another scheme for filtering 
is also defined, where the adaptive speckle suppression filter (ASSF) is used for 
the smoothening of the images using local statistics [4]. The filter adaptation is 
achieved by using correct shape and size of the local filtering kernels. Each kernel 
is suitable for reducing the noise with an arbitrarily shaped homogenous region 
containing the processed pixel. These kernels are obtained through region growing 
approach, which uses local statistics of the image. Through implementation and 
analysis, it is found that the quality of the AWMF filtering technique is sensitive to 
the values of the empirically selected parameters used in algorithm. Also in ASSF 
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filter, these parameters selection cause the region to grow too large and blur the 
important edges. An alternative approach for improving the speckle suppression is 
to expand the local processing region as much as possible, allowing non speckle pixel 
to dominate speckle pixels in population. Koo and Park [8] proposed a technique 
called homogenous region growing mean filter which required a prespecified, image 
dependent homogeneity as a threshold value. The local homogeneity is estimated 
initially with in an estimated window W;,~ of default size containing the pixel (i,j). 
The ratio of pixel variance to pixel mean in the window is a typical estimator. If the 
initial seed region satisfies local homogeneity criteria it is taken as the seed region 
otherwise it is contracted until it satisfies the homogeneity criteria. Then the seed 
region is expanded till the maximum sized homogenous region is obtained. The 
output pixel is set to the mean intensity of this region. 

Partial differential equation based methods have been widely used for image 
denoising with edge preservation. These methods are either based on the axiomatic 
approach of non linear scale space or on the variational approach of energy function 
minimization. The PDE based speckle reduction approach allows the generation of 
an image scale space (a set of filtered image that vary from fine to coarse level). 
The PDE based approaches not only preserves the edges but also enhance it by 
inhibiting diffusion across the edges but allowing diffusion on either side of the image. 
This approach is adaptive and does not use hard threshold to alter performance in 
homogenous region or in regions near the edges and small features [10, 11]. A partial 
differential equation (PDE) approach to speckle removal called speckle reducing 
anisotropic diffusion (SRAD) has been developed [10]. The diffusion technique is 
based on the same minimum mean square error (MMSE) approach to filtering as 
the Lee (Kuan) and Frost filters. In fact, SRAD can be related directly to the 
Lee and Frost window-based filters. So, SRAD is the edge sensitive extension of 
conventional adaptive speckle filter, in the same manner that the original Perona 
and Malik anisotropic diffusion [12] is the edge sensitive extension of the average 
filter. In this sense, it is the extension of application of anisotropic diffusion to 
medical ultrasound in which signal-dependent, spatially correlated multiplicative 
noise- is present. 

1.4 Objective of Thesis 

Speckle degrades the image quality in ultrasound B-scans and hence reduces the 
ability of radiologists to discriminate the fine details in diagnostic examination. 
In such cases computer aided diagnosis (CAD) can provide a second opinion to 
radiologist's interpretation of medical images. This thesis works deals with the 
implementation of speckle reduction algorithms so as to improve the quality and 
productivity by improving the accuracy of radiological diagnosis and reducing the 
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time taken in the manual analysis of the images. The main goal of this work is 
to reduce the speckles in the ultrasound images while retaining the fine details and 
diagnostic features. A proposed scheme has been shown in figl.3. Since there is no 
standard speckle free image available, for the purpose of evaluating the performance 
of the filtering algorithms the speckles have been simulated using the Loupas' model 
and shape images are corrupted with simulated speckle to resemble the noisy image. 
Then the three algorithms (AWMF, ARGF and SRAD) are applied on the corrupted 
images and their results are quantified using the quantitative indices. Finally based 
on the comparison, the best filtering algorithm is found in terms of its speckle 
reduction ability and feature preservation. These algorithms are applied on the real 
ultrasound images to study their feasibility and usefulness. Qualitative analysis will 
be done by radiologists. 

Selection of 
Speckle Model 

Simulation of 
Speckle Model 

AWMF 

Addition of 
Test 	 Simulated Speckle 	Speckle Simulated

ARGF
Quantitative Analysis 

Image 	 Noise 	 Image 	 (CNR, FOM, MSSIM) 

I SRAD 

Scheme (A) 

Scheme A: For synthetic images. 
Scheme B: For real ultrasound images. 

Comparison 

Results 
AWMF 

Real 	 Qualitative 	Validation by 	 Conclusion 
Ultrasound 	ARGF 	 Analysis 	Radiologist 

Image 

Scheme ~) 

Figure 1.3: Block diagram for proposed scheme 

1.5 Organisation of Thesis 

The present thesis work is organized as follows: 
Chapterl introduces the basics of the ultrasound imaging and their application in 
the medical diagnosis. A brief review of the speckle reduction techniques has also 
been given. In chapter 2 the origin of speckle and the various speckle models have 
been discussed to understand their statistics. A brief description of the adaptive 
based filtering techniques has been given in chapter 3. Under this the two adaptive 
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filters AWMF and ARGF have been implemented and an analysis of their result 
has been done.Chapter 4 describes the anisotropic diffusion filtering for speckle 
reduction in the ultrasound images. A diffusion based technique called speckle 
reduction anisotropic diffusion has been examined in this chapter. In chapter 5 the 
results of the comparative analysis of the filtering efficiency and feature preservation 
capability of the three algorithms have been given. The evaluation criteria is based 
on the quantitative indices ( CNR, FOM, MSSIM). Chapter 6 finally presents the 
conclusions and the possible directions for further work. The references cited in the 
thesis are enlisted at the end. 
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Chapter 2 

Speckle Analysis 

2.1 Introduction 

This chapter gives the brief description about the origin of speckles in the ultrasound 
images and the various models to understand their statistics. The nature of speckle 
has been a major subject of investigation. The most commonly used model to 
explain the effects that occur when a tissue is insonified, as shown in Figure 2.1. 
As shown a tissue is modelled as a sound absorbing medium containing "scatterers" 
which scatter the sound waves. These scatterers arise from structures approximately 
equal to or smaller in size than the wavelength of the ultrasound. In other words, 
they result from the tissue microstructure (like microvasculature, cell conglomerates 
etc.). 
Ultrasound B-scan images represent the back-scattering of an ultrasound beam from 
structures inside the body. There are two main types of scattering: diffuse scatter-
ing which leads to speckle in the image, and coherent scattering that creates clear 
light and dark features. Diffuse scattering arises when there are a large number 
of scatterers with random phase within the resolution cell of the ultrasound beam. 
Coherent scattering results when the scatterers in the resolution cell are in phase. 
The diffuse scatterers are assumed to be uniformly distributed over space. This ran-
dom nature of the location of the scatterers results in speckle pattern and changes 
their statistical nature. Consequently, a statistical approach to its analysis should 
be done. 
While analyzing speckle it is to be noted that the speckle as appearing in the image 
are different from those in the RF envelope.The RF signal is subjected to several 
transformations on its way from the transducer to the screen that affects its statis-
tics. The most important of these is the log compression of the signal, used to reduce 
the dynamic range of the input echo signal to match the lower dynamic range of the 
display device. The input signal could have dynamic ranges of the order 50-70 dB 
whereas a typical display have a dynamic range of the order of 20-30 dB. 
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Figure 2.1: Tissue model in ultrasound imaging [13] 

2.2 Speckle Model 

Considerable work has been done on speckle modeling, the better model we have 
more accurately we can describe the features in the image. Ultrasound researchers, 
such as Burkhard and Wargner [14] adopted Goodman's model [15] that was derived 
from coherent optical imaging. The model is well suited for fully developed speckle 
case. For the images that contains both fully developed and partially developed 
speckle a general model, k distribution [16] was first introduced later in to the 
ultrasound imaging [17]. The clinical ultrasound B-scan images are dynamic range 
compressed to actually fit the display or human dynamic perceptible dynamic range. 
So the statistical properties of speckle are different in clinical situations. To deal 
with clinical B-scan images practical models are used are described below. 

2.2.1 Goodman's Model 
When ultrasonic waves passes through an object such as human body having inter-
nal acoustic impedance mismatches, a portion of the incident energy is reflected at 
the interface of the mismatches. Speckle as discussed above are a special case of 
scattering called diffusion scattering. Ultrasound speckle results from the coherent 
accumulation of random scatterings from within the resolution cell. The accumula-
tion can be described geometrically as a random walk of component phasors. 
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Figure 2.2: Random walk in the complex plane [15] 

When the number of scatterers within one resolution element is large and the phases 
of the scattered waves are distributed uniformly between 0 and 2II,the complex field 
amplitude has a joint probability density function (pdf) given by [14]. This phasor 
has real and imaginary components, a, and ai. 

1 	 arfa? p(ar,ai ) = 2' exp 	— 2a2 	....................(1) 

This is simply the product of two independent Gaussian density functions with 
zero mean and variance and is referred to as a circular Gaussian probability density 
function. For the phasor magnitude v = [ar + a? ] 2 the pdf 

p(v) = a2exp I--2 	, v >, 0.......................(2) 

= 0, otherwise 

and for the intensity I = v2 the pdf [14], 

p(I) = 2I2exp {--~ } ,I > 0.............................(3) 

= 0, otherwise 

In keeping with the common convention,we can rewrite (2) as 

2 

p(v) = 	exp — 2, 	,v > 0..........................(4) 

= 0, otherwise 



The parameter ' depends on the mean-square amplitude of the particles in 
the scattering medium. The density function in (3) is called exponential pdf with 
mean equal to variance; the function in (2) and (4) is called the Rayleigh pdf. The 
expected value of v, < v >, in units of its standard deviation var1/2, is commonly 
called the signal-to-noise ratio (SNR) at a point SNR0. The theoretical value of SNR 
for Rayleigh statistics found to be 1.91 [14]. The Rayleigh distribution is a special 
case of Rician distribution as shown in fig 2.3 below. Case (d) in the figure is the 
approximately Gaussian distribution that results from the combination of a strong 
distributed specular component and a weak diffuse component of the backscattere; 
cases (b) and (c) are similar to (d), but with weaker specularity. Finally, case (a) 
is the special case of pure diffuse scattering, often referred to as a "fully developed" 
speckle. When a coherent component is introduced to the speckle, it changes the 
Rayleigh pdf into a Rician pdf. 
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Figure 2.3: Family of Rician pdf's [14] 

2.2.2 Multiplicative Speckle Noise Model 

This model relates the original signal with the observed signal at each pixel value 
in the ultrasound image as a function of speckle noise . As discussed above the 
envelope detected signal has Rayleigh distribution with mean proportional to the 
standard deviation. This implies that speckle could be modeled as multiplicative 
noise. It expresses the observed intensity as a product of the original signal intensity 
and the speckle noise intensity. The multiplicative noise model can be written as 

[18]: 
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g(i, j) = u(i, j)f (i, j) ............................(5) 

whereg(i, j) is the amplitude of the observed pixel and f (i, j) is the noise free, 
u(i, j)is the multiplicative noise with unit mean and variance where variance o-2 and 
it is independent of the signal f (i, j). The mean and variance are given by 

E(u(i, j)) = E(u) ................................(6) 
and 

E[(u(i,j) — E(u))2 ]= a ...................(7). 

Images containing multiplicative noise have the characteristics that the brighter the 
area the noisier it is. Multiplicative noise model is the basis of various adaptive filters 
such as Lee, Kuan, Frost etc. 

2.2.3 K-distribution Model 
Goodman's model is an ideal case for speckle fully developed situation. In more 
general situations, when the number of scatterers is small or the effective number 
of scatterers is reduced the distribution of the reduced signal is more close to the 
lognormal. The K-distribution is given by 1161 has been suggeseted to take in to 
account of these variations. 

p(A) = r~,bv~ (b )'k N _1(bA) ......................(8) 

where b> 0 is a scale parameters, N is the effective number of scatterers, and k N _1 
is a Bessel function of second kind,l,(N) is the gamma function. For positive N, the 
gamma function has the simple form, 

F(N) = N — 1'.......................................(9) 

Fig 2.4 shows the K-distribution pdf curves at different number of effective scat-
terers. With N increasing the distribution moves from pre-Rayleigh(lognormal) to 
Rayleigh distribution. However, this distribution model does not cover the Rician 
case. Homodyned K-distribution and generalized K-distribution have been proposed 
to include the Rician distribution. Since they do not make the analytical expression 
simpler and this model is not considered in this work , they are not discussed in 
detail. 
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Figure 2.4: K-distribution curves with N=1,2,3,5,10 in sequential order(b1) 

2.2.4 Loupas' Model 
In clinical situations B-scan images are usually dynamically range compressed. This 
compression changes statistics of the images and to perform image processing on such 
images, these changes has to be considered. To meet the dynamic range of display or 
the human visual perceptibility, the raw data of ultrasound image undergo dynamic 
range compression. The dynamic range is given by 

DR(db) = 20log A 	 ............(10) 

where A is the brightness value of the data and Ais the precision that will be 
preserved in the original data. Taking X as a brightness value of the compressed 
data,the relationship between X and A is given by 

= 	Amna X~nax — Xmin — Dlog 	 (11) 
Amin 

where Xmjn is the minimum value of the compressed data and D is the parameter 
to control the degree of the compression. 
D can be estimated with the following formula, 

D = DR(X .ax — Xmrn) ......................(12) 

For most B-scan images used, the maximum brightness value is 255 and the min-
imum brightness value is 0. The dynamic range compressed B-scan image is of 
Gaussian distribution in the region where speckle is partially developed. Speckle 
fully developed with coherent components follows the Rician case. 
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Besides, the logarithmic compression the various signal processing stages (low pass 
filtering, interpolation) inside the scanner modify the statistics of the original signal. 
The signal is no longer multiplicative in nature, as the mean is proportional to 
variance rather than the standard deviation [7]. If x denotes the true signal, n is a 
noise term which is independent of x and has mean 0 and y is the observed signal, 
the following signal dependent noise model (Loupas' model) can be written 

y = x + x1 / 2n .................(13) 

2.3 Conclusion 

In this chapter various speckle models have been described based on their statistical 
behaviour. As seen Goodman's model is applicable only when the speckle is fully 
developed which is not always true. The multipliative noise model is suitable for the 
processing techniques which uses the envelope detected RF signal. But it cannot be 
used for the log-compressed image, because the log compression changes the statistics 
of the speckle and it is no longer multiplicative in nature. For log compressed images 
Loupas' model is to be used for speckle modelling. In this thesis work Loupas' model 
has been considered for the dynamic range compressed B-scan images. 
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Chapter 3 

Adaptive Filtering for Speckle 
Reduction 

3.1 Inrtoduction 

In the prevoius chapter the statistics of the speckle had been described under the 
different conditions. Before applying any filtering technique an accurate modelling 
of the speckle is necessary. In this chapter the various adaptive filtering based 
techniques for speckle reduction have been discussed. Under the adaptive filters 
both adaptive weighted median (AWMF) and aggressive region grwoing (ARGF) 
have been implemented. These techniques make use of Loupas' model for spekcle 
behaviour. The adaptive filters are applied on the speckle simulated images and the 
real ultrasound images. For comparison of the performance: the ability to retain 
small details and edges i.e. sudden transitions in gray level or texture and gradual 
changes in gray level are taken as the yard sticks. Several quantitative measures 
like, figure of merit (FOM), mean square distances (MSD), contrast to noise ratio 
(CNR) and mean structural similarity index measure (MSSIM) have been used for 
this task. The details of these quantitative measures are depicted in subsequent 
chapter. 

3.2 Adaptive Filter 

In this section the adaptive filter based on the multilicative noise model and Loupas' 
model have been discussed. Adaptive filters take account of speckle distribution 
models and compute local statistics within a moving window and assign new values 
accordingly, leading to better result. The Lee 119], Kuan [20], and Frost filters [21], 
aimed at minimizing the mean square error (MSE), are derived from the speckle 
model, i.e., assuming speckle is a multiplicative noise random variable with mean of 
one. By examining the derived formulas, however, the Lee and Kuan filters can be 
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considered as adaptive-mean filters. AWMF [7] and ARGF[9] filters are based on 
the Loupas' model. AWMF is an enahnced median filter and it is based on weighted 
median. Aggressive region growing filter (ARGF) selects a filtering region size using 
an appropriately estimated homogeneity value for region growth. Homogeneous 
regions are processed with an arithmetic mean filter. Edge pixels are filtered using 
a nonlinear median filter. 

3.2.1 Lee Filter 

The basic idea behind Lee filter is that if the variance over an area is low or constant, 
then the smoothing will be performed. Otherwise, if the variance is high (i.e. near 
edges), smoothing will not be performed. Lee filter assumes that the speckle noise is 
multiplicative. Thus, the filtered ultrasound image can be approximated by a linear 
model given as in Eq. (3.1) 

...................(3.1) 

where F is the estimate value of the noise free pixel, F is the average value of the 
pixels within the filter window nF and k.0 is a adaptive filter coefficient equal to 

—c2-c2  z 	v 

From (3.1), it is clear that in the flat parts the filtered pixel F is about to equal 
to the local mean F . But in rapidly varying regions (containing edges), the filter 
output is equal to the observed pixel value F. The value of k lies between [0 1]. 
The COV in the alternative form of Lee filter is given as: 

CZ =cam ............................ (3.3) 
~ 

where C =µ and C., is COV of the noise free signal, Cz is COV for the noise affeted 
signal and C,, is COV for the speckle noise. 

3.2.2 Adaptive Weighted Median Filter 

The weighted median is a general class of median-type filters, having the weighted 
coefficients. The weighted median of a sequence {X} is defined as the pure median 
of the extended sequence formed by taking each term X i , w, times, where {w} , are 
the corresponding weight coefficients [7]. For example, if wl = 2, w2i = 3, w3 = 2, 
the weighted median of the sequence {X I , X2 , X3 } is given by 

yw,. = median {X1, X1, X2, X2, X2, X3, X3} ..............(3.4) 
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By adjusting these weight coefficients smoothing characteristics of the filter can 
be varied. Thus it is possible to suppress noise. 

As more emphasis is placed on the central weights the ability of the weighted 
median to suppress noise decreases but also the signal preservation increases. This 
is a very useful characteristic because it allows the design of filter which combines 
median-type properties with adjustable smoothing [7]. It can be achieved by choos-
ing a family of weights which decrease as we move away from the center of the 
window. This rate of decrease is controlled by the local image content. This is 
the main idea behind the adaptive weighted median. In this the Loupas' model is 
considered for the speckle modelling. 

y= x + x1 / 2n................................................(3.5) 

Local statistics have been used to deal with the space varying image content. 
The mean value gives the measure of gray level while variance gives an idea about 
the contrast of the image. The mean and variance are defined below. 
Let X = 	i = 1, 2, 3, ....., M and j = 1, 2, 3......, N be the image containing M 
rows and N columns with gray level xi ,~ at pixel (i, j). A region Wwxw of X is a 
connected subset of X. W. denotes a local region associated with (i, j). The, two 
local statistical parameters: arithmetic mean and variance of image intensity are to 
be computed within a region as follows: 

w 	w 
2 	2 

— 
— w2 	(Xi—m —n ) ........................ (3.6) 

m=- 2 n=- 

w 	w 
2 	2 

	

( 	 2 	......... (3.7 = ,W2 	 lxi—rn,~—~ —µa,7) ........ 	l 	) 
.m,=- 2 n=- 

The local variance and mean ratio of the sampled pixel in a fully developed ultra-
sound speckle image is used as the suitable parameter. In adaptive weighted median 
(AWM) the ratio µ characterize the local image content and performs the space-
varying weighted median filtering with the weight coefficients adjusted according to 
the local statistics of the image by using the formula, 

w(i, j) = [w(K + 1, K + 1) — cd ] ..........................(3.8) 

where, 
c scaling constant 
~c, 012 the local mean and variance inside the 2K + 1 by 2K + 1 window, 
d distance of the point (i, j) from the centre of the window (K + 1, K + 1), 
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[x] denotes the nearest integer to x if x is positive, or zero if x is negative. 
The selection of the weight coefficients represents a trade-off between noise reduction 
and signal preservation. 
Results And Discussions: 
Speckle Simulated Image Results : Original shape image is corrupted by Loupas' 
model presented in Eq. (3.5) for simulation of the speckle distortion where noise is 
randomly introduced by the normal probability distribution function with mean = 0 
and variance = 0.2. The original and speckle-distorted image is shown in Fig.3.1(a) 
and Fig.3.1(b). The window size for this filter is taken as 9 x 9. 

(a) 

(b) 	 (c) 

Figure 3.1: Shape image a) Original b) Simulated with speckle noise c) AWMF 
filtered 
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(a) 	 (b) 

Figure 3.2: Edge profile obtained using Canny opearator a) Original b) AWMF 
Filtered 

From the fig.3.1(b) and (c) it is seen that the AWMF reduces the speckles in the 
image. The speckle simulated image background has bright dot like appearance 
which is the speckle noise. This has been smoothened by the AWMF. Also a careful 
look at the small circles shows that inside the circles smoothing has occured thereby 
reducing the speckle noise. But it has also caused blurring in the output image. The 
spiral shape in the image have been blurred and the rounding of corners have taken 
place in the centrally placed rectangular structure. To see the edge preservation 
ability of the AWMF an edge profile is obtained by applying the Canny operator 
on the original and the filtered image. As shown in the fig 3.2 , the edge profile 
of the original image and the filtered image, the smearing of the edges occurs as 
a result of filtering. The spiral structure has lost its sharp edges and has smeared 
with the upper rectangular strip whereas in the original image their boundaries are 
distinctively visible. 
Real Ultrasound : The AWMF is applied on the real B-scan image of the portal 
vein. This image has the diagnostic features and the cavities. The fine details have 
been marked in the image. Fig 3.3 shows the result of filtering the ultrasound B-
scan image. As seen in the figure 3.3 (b) the AWMF has smoothened the image 
background, thus reducing the speckles. But the fine details marked with arrows 
(shown in fig 3.3 (a) ) have been lost. If the region around the cavities is to be 
studied then AWMF can be useful. 
From the above results it can be concluded that AWMF causes smoothing of the 
images at the cost of losing the fine details. If speckle reduction is only the main 
consideration then AWMF can be used. 
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(a) 
	

(b) 

Figure 3.3: Portal vein image a) Original b) AWMF filtered 

3.2.3 Aggressive Region Growing Filter (ARGF) 

Several region-based adaptive filter techniques have been developed for speckle re-
duction but there are no specific criteria to choose the size for region growing in the 
post processing of the filter. The size of a region appropriate for one local region 
may not be appropriate for the other region. Generally, a large region size is used 
to smooth speckle and a small region to preserve the edges in an image. Selection of 
the correct size of a region involves a tradeoff between speckle reduction and edge 
preservation. To overcome this type of problem, the filter described in this section 
is basically based on the aggressive region growing approach where region growth 
and region smoothing are processed by the first order statistics.The ARGF 191 pro-
cedure constructs a homogeneous filtering region whose size is adjusted by shrinking 
and growing to make it of maximal size within the pre-specified upper limit. This 
algorithm has three stages: selection of a seed region, contraction of this seed region 
until it is homogeneous and expansion of this homogeneous region till it satisfies the 
homogeneity criterion or its size exceeds a pre-specified limit. The block diagram 
of the ARGF method is shown below in fig 3.4. The details of the approach are 
presented below. 
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Figure 3.4: Diagram of ARGF method[9] 



Homogeneity model using first order statistics : 	 _ 

In uniformly spatially distributed speckle regions, the amplitude of fully developed 
speckle has been determined to follow a Rayleigh distribution with the mean propor-
tional to the standard deviation. The logarithmic compression of the echo amplitude 
data used in ultrasound scanner may change the statistics of the speckle features.As 
an example, Fig. 3.5 and 3.6 show the gray-level histograms for uniform speckle 
regions in a real ultrasound image. It is observed that the distribution of speckle 
is Gaussian-shaped rather than Rayleigh-shaped. It means the mean is directly 
proportional to the variance rather than standard deviation. For the signal depen-
dent noise model using the linear relationship between mean and standard deviation 
proposed by Loupas et al. [71 expressed as follows: 

y = x +X112n  ................... (3.9) 

The local variance and mean ratio of the sampled pixelcan be used to describe 
the homogenity of a particular region. .From Eq. (3.6) and (3.7) the parameter 
representing the ratio of local variance to mean of the pixel (i, j) in Eq. (3.5) is 
calculated as follows: 

h(i,9) = ........................(3.10) 
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Figure 3.5: Uniform speckle ultrasound image: (a) Original image and (b) Gray 
level histogram. 
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Figure 3.6: a) Original ultrasound image, (b) Gray level histogram of region B 

In the adaptive filtering operation, h(i, j) is a homogeneity factor, which is used 
to determine whether the local region is homogeneous, or not. Normally homoge-
neous regions have small value of h(i, j) whereas the regions containing edges have 
high values. The parameter ho  is a homogeneity threshold to decide the regions 
whether they are homogeneous or not by comparing the homogeneity factor with 
it. If is smaller than ho  then regions are considered to be homogeneous and are 
smoothened out. In other case, these regions contain edges and are preserved. 

Homogeneity criteria 

The homogeneity parameter depends on the region size so an adjustable ho-
mogeneity criteria is selected based on local first order statistics. Homogeneity is 
measured at different locations in uniform speckle regions using different region sizes. 
Fig.3.7 plotted homogeneity versus region size for the B-scan of portal vein image, 
where it suggests a parameterized model for ho  followed by Eq. (3.11): 

— ho  _ aflwfl+u   11 6+I  I'wI I  ........................... (3.) 

where Hw is window size of M x M . Here a, b and u are evaluated by nonlinear 
least square regression parametric fitting. Eq. (3.11) is basically homogeneity model 
used for the adaptive homogeneity criterion. In this criterion, ho  describes statistical 
specifications of homogeneous regions and is adaptively determined on the basis of 
current size of region in the image. 
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Figure 3.7: Homogeneity vs window size for portal vein image 

While homogeneity h increases as the region size grows larger, its standard deviation 
decreases.Therefore, the following parameterized model for the standard deviation 
ao  is proposed: 

ao = c + kexp(—d II w II) ..........................(3.12) 

where c and k are parameters with values that are estimated empirically. The model 
parameters are obtained via nonlinear regression based on observed homogeneity 
measurements. 
The algorithm is defined below: 

Algorithm (ARGF) 
For each pixel (i, j) 

1. Define an initial seed region Wij to be of size 11 x 11 and centered at (i, j ). 

2. Region contraction 

(a) Calculate the homogeneity factor h(i, j) of Wij. 

(b) Calculate the homogeneity threshold ho  and ao  corresponding for the 
window size II W II to the current Wij and depth d in the image. 

(c) While (h(i,j) > ho  + ao ) and II W II> 	shrink the region and go to 
Step 2.a. Here S7  in  is the lower size limit. If (h(i, j) < ho  + o'o ) is not 
true before II W 11 < S i ,, then go to Step 4.b. 
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3. Region growing 

(a) Calculate the homogeneity factor h(i, j) of the current region. 

(b) Update the homogeneity criterion ho  and o-o  corresponding for the window 
size II W IIto the current Wij and depth d in the image. 

(c) While (h(i, j) < ho+oo), h(i, j) changes by less than oo  and II W < Sma., 
expand the region and go to Step 3.a. Here S,,ax  is the upper size limit. 

4. Filtering 

(a) If W I I > wo, the value of the output pixel at (i, j) is the trimmed 
arithmetic mean of the pixels in Wij. 

(b) If II W II < wo, the value of the output pixel at (i, j) is the median of the 
pixels in Wij. 

Seed window size: 
The initial seed region Wij is 11 x 11 pixels in size and centered at (i, j). In this, 
a size of 7 x 7 is considered minimal (hence, S= 49), since speckle artifacts can 
sometimes exceed this size, causing an incorrect classification of a seed region inside 
a speckle artifact as homogeneous. 

Region Contraction : 

The initial seed region Wij is contracted by removing its outermost rows and 

columns and contraction is repeated until the homogeneity h(i, j) agrees with the 

estimate ho  predicted by Eq. (3.11) to within a tolerance 6o  predicted by Eq. (3.12) . If 

the contraction procedure fails to find a homogeneous region before the size shrinks 
to the minimal threshold value S i,, a pixel is assumed to be an edge, a 3 x 3 
median filter is applied to preserve edge details, and processing continues at Step 1 

with the next pixel. 

Region Growing : 

After the contraction procedure the next step is to find a maximum homogenous 
region around the entral pixel by region growing. A systematic region growing 
method expands the region one side at a time is used. The direction of expansion 
cycles clockwise i.e. north, south, east, west. As in the region contraction procedure, 
the estimated and predicted homogeneities are compared after each expansion to 
determine whether region expansion should continue. 
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Filtering : 

In the ARGF method, the trimmed mean filter is applied in the homogeneous region 
after the region growing procedure. Pixels in a non-homogeneous region are assumed 
to contain resolvable edges and are processed by a small median filter (3 x 3 ) to 
preserve edge details. A trimmed mean filter is used to preserve the image contrast. 
It can be defined as, 
Let Wij be the current filtering region and 	o) be the sample mean and 
standard deviation of W. The original region Wij is trimmed to construct the new 
pixel set Pij : 

Pij = {xkl I ( k , l) E Wij0 I xkl — µwad I< O'w1~ } ................(3.13) 

The output pixel value at (i, j) is the mean value of the set Pij ; 

Yij = 	
1 	 ..........(3.14) 

xkl E P 
Results And Discussions 
Speckle Simulated Image Results: Original shape image is corrupted by Loupas' 
model presented in Eq.(3.5) for simulation of the speckle distortion where noise is 
randomly introduced by the normal probability distribution function with mean = 0 
and variance = 0.2. The original and speckle-distorted image is shown in Fig.3.8(a) 
and Fig.3.8(b). The window size for this filter is taken as 13 x 13 and the values of 
the parameters were found by making the homogeniety model for the shape image. 

■ 
0 r r 

(a) 
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(b) 	 (c) 

Figure 3.8: Shape image a) Original b) Simulated with speckle noise c) ARGF 
filtered 

(a) 	 (b) 

Figure 3.9: Edge profile a) Original b) ARGF Filtered 

From the fig.3.8 (b) and (c) it can be seen that the ARGF has reduced the speckles 
in the image. The speckle simulated image background has bright dot like appear-
ance which is the speckle noise. This has been smoothened by the ARGF but the 
background contrast has changed slightly, this could be due to region growing and 
region contraction procedure. The granular appearance inside the the small circles 
due to speckle noise has been reduced. But it has also caused more smoothening in 
the output image. To test the edge preservation ability of the ARGF an edge profile 
is obtained by applying the Canny operator on the original and the fitered image. 
As shown in the fig 3.9 , the edge profile of the original image and the filtered image, 
the star shape as shown in fig 3.9 (a) has lost its sharp edges, otherwise other edges 
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By varying the parameters found, we can control the smoothing level in the images, 
as shown in fig3.11(a) Mode 1 and (b) Mode 2. If further segmentation is required, 
then ARGF can provide good results because the speckles have been removed and 
their texture will not interefere with the segmentation proceess. 

3.3 Conclusion 

The adaptive filters AWMF and ARGF are applied on the speckle simulated images 
and the ultrasound B-scan image. From the results it is seen that ARGF is better 
at reducing the speckles and retaining the features. AWMF reduces the speckles 
effectively , but very fine details are lost. ARGF can be used as a preprocessing step 
when auto segmentation is to be done. In ARGF region expansion step takes more 
computation time. 
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Chapter 4 

Anisotropic Diffusion for Speckle 
Reduction 

4.1 Introduction 

This chapter describes the anisotropic diffusion technique for the speckle reduction 
in B-scan images. In the previous chapter adaptive filters were implemented and it 
was, observed that these filters are very sensitive to the size and shape of the kernel 
window. Given a filter kernel window that is too large (compared to the scale of 
interest), over-smoothing will occur and edges will be blurred. A small kernel size 
will decrease the smoothing capability of the filter and will leave speckle. In term 
of the window shape, a square window will lead to corner rounding of rectangular 
features that are not oriented at perfect 900  rotations. Also the existing filters do not 
enhance edges-they inhibit smoothing near edges. When any portion of the filter 
window contains an edge, the coefficient of variation will be high and smoothing 
will be inhibited. Therefore, noise/speckle in the neighborhood of an edge (or in the 
neighborhood of a point feature with high contrast) will remain ever after filtering. 

In this chapter partial differential equation based approaches have been discussed 
which are used for image denoising with edge preservation. These methods are ei-
ther based on the axiomatic approach of non linear scale space or on the variational 
approach of energy function minimization. The PDE based speckle reduction ap-
proach allows the generation of an image scale space (a set of filtered image that 
vary from fine to coarse level) without bias due to filter window size and shape. 
The PDE based approaches not only preserves the edges but also enhance it by in-
hibiting diffusion across the edges but allowing diffusion on either side of the image. 
This approach is adaptive and does not use hard threshold to alter performance 
in homogenous region or in regions near the edges and small features [10, 11]. A 
partial differential equation (PDE) approach to speckle removal called speckle re-
ducing anisotropic diffusion (SRAD) has been developed [10]. The SRAD algorithm 
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is applied on both the synthesized (simulated) and the real ultrasound images. 

4.2 Diffusion Techniques 

4.2.1 Linear Diffusion: 
It is the simplest PDE method for smoothing images. Diffusion can be defined 
as a process that equilibrates concentration gradient without creating or destroying 
mass[23]. This physical observation can be easily cast in a mathematical formulation. 
The equilibrium property is expressed by Fick's law 

j = —D.Vu .............. 	............. (4.1) 

This equation states that a concentration gradient Vu causes a flux j which aims 
to compensate for this gradient. The relation between Vu and j is described by 
the diffusion tensor D, a positive definite symmetric matrix. The case where j and 
Vu are parallel is called isotropic. Then we may replace the diffusion tensor by a 
positive scalar-valued diffusivity g. In the general anisotropic case, j and Vu are 
not parallel. The observation that diffusion does only transport mass without mass 
destroying it or creating new mass is expressed by the continuity equation. 

atu = —divj ...................................4.2 ( 	) 

where t denotes the time. 
Putting eq (4.1) in to the continuity equation we get the diffusion equation : 

at u = —div (D.Du) ......................... (4.3) 

This equation appears in many many physical transport process. In the context of 
heat transfer it is called heat diffusion equation. The solution presented in Eq. (4.3) 
of this heat equation at a particular time t is the convolution of the original image 
with 2D Gaussian kernel GQ of variance a = 2t : 

U(t) = un, * G6 ........................... (4.4) 

where Go = 2n~2 exp(— x2 ?) and a = 2t 

In image processing it is interpreted as concentration of gray value at a point. The 
diffusion tensor does not have to be a constant : it is often chosen as the function of 
the local image structure. This leads to a class of nonlinear diffusion filters. Three 
cases are relevant for image processing: 



1. linear isotropic diffusion filters using a constant diffusivity. 

2. nonlinear isotropic diffusion filters with diffusivities being adapted to the local 
image structure. 

3. nonlinear anisotropic diffusion filters with diffusion tensors being adapted to 
the local image structure. 

4.2.2 Nonlinear Diffusion 

Perona - Malik formulation 
In the standard linear scale-space approach, the true location of a boundary is not 
directly available in the coarse scale image. The locations of the edges at the coarse 
scales are shifted from their actual locations. There is additional problem with the 
images using linear scale space filtering i.e., it destroys the edge junctions, which 
contain important spatial information for boundary detection. 

Considering above as motivation, Perona and Malik [121, in their pioneer work 
have suggested following nonlinear scale space criteria for generating multi-scale 
description of image: 

1. Casuality: Any feature at a coarse level of resolution is required to possess a 
(not necessarily unique) "cause" at a finer level of resolution although the re-
verse need not be true. In other words, no spurious detail should be generated 
when the resolution is diminished. 

2. Immediate Localization: At each resolution, the region boundaries should be 
sharp and coincide with the semantically meaningful boundaries at that reso-
lution. 

3. Piecewise Smoothing: At all scales, intraregion smoothing should occur pref-
erentially over interregion smoothing. 

To satisfy these criteria, Perona-Malik proposed to adapt the diffusion to the local 
image characteristics by introducing a space- and time-variant diffusion coefficient 
c(x, y, t), and formulated the following nonlinear diffusion equation. They formu-
lated the ansotropic diffusion filter as a diffusion process that encourages intraregion 
smoothing while inhibiting interregion smoothing. The anisotropic diffusion equa-
tion is given by: 

ae = div(c(x, y, t)V F) ............................ (4.5) 

where c is the conduction coefficient lying between [0,11. If c is a constant it re-
duces to isotropic heat diffusion equation. In this case, all locations in the image 
including edge are smoothened equally. If we want to encourage smoothing within a 
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region in preference to smoothing across the boundaries, this could be achieved by 
setting the conduction coefficient to be 1 in the interior of each region and 0 at the 
boundaries. The blurring would then take place separately in each region with no 
interaction between regions. The region boundaries would remain sharp. c(x, y, t) 
is a monotonically dcreasing function of the image gradient: 

c(x, y, t) = f (V F) .................................. (4.6) 

Although many monotonically decreaing continous functions of VF would suffice as 
diffusion function , the two functions have been suggested by Perona-Malik: 

c1IIVFII = exp( —II K2112)' and c2IIVF'II = 1+(IIVFII/K)2 ...........(4.7) 

where K is a fixed gradient threshold that differentiate between the low and high 
contrast area. It is called as diffusion constant or flow constant. The behaviour of 
the filter depends on the value of K. These functions are plotted in fig4.1(a) & (b). 
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Figure 4.1: Perona-Malik diffusivity (a) c1II VFII and (b) c211 VFII 

To clarify the effect of K , and the diffusion function, on the diffusion process, we 
define a flow function: 

1(VF) = c(IIVFII)•IIVFII ................................(4.8) 

The flow functions I 1 and 'D2 corresponds to diffusion functions cl and c2. The flow 
increases with the gradient strength to the point whereJVFJ = K, then decreases 
to zero. This behavior implies that the diffusion process maintains homogeneous 
regions (where J VFJ << K ) since little flow is generated. Similarly, edges are 
preserved because the flow is small in regions where IVF I >> K. The greatest flow is 
produced when the image gradient magnitude is close to the value of K. Therefore, 



by choosing K to correspond to gradient magnitudes produced by noise, the diffusion 
process can be used to reduce noise in images. Assuming an image contains no 
discontinuities, object edges can be enhanced by choosing a value of K slightly less 
than the gradient magnitude of the edges. These features of nonlinear anisotropic 
diffusion are shown in fig 4.2 

q5(VF) 

K 	 IIVFII 

Figure 4.2: Flow function plotted as a function of image gradient 

Discrete Implementation 
In practical problems the image is sampled at the nodes(pixels) of a fixed equidistant 
grid. Thus the diffusion filter has to be discretized. For the discretization, the 
following three key ideas help to map the problem from the continuous domain to 
the discrete domain [12]. 

1. In the discrete domain, a gradient or derivative can be approximated as the 
difference in intensity between neighboring elements in the image. 

2. The flow function introduced in t(VF) = c(JjVFJJ),IJVFJJ can be calculated 
independently for each of the neighboring elements. 

3. The filter is iterative; the right hand side of Eq. (3.4) describes the change in 
image intensity produced by single iteration of the filter. 

Eq. (3.4) can be discretized on a square lattice with brightness value associated to 
the vertices and flux functions to the arcs (Fig. 4.3). 4-nearest neighbor discretiza-
tion of the Laplacian operator has been used as: 

Ft~ 1 = F' . + Ot [CN .V N F + cs.VsF + C E.V E F + cwVWF]Z x .....(4.9) 
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where 0 < t t < 4 for the numerical scheme to be stable. The nearest neighbor 
differences are : 

V N Fi,j = F'i -1,j — 

V s F'i,j = Fi+l,j — 

= Fi,j+l — 

V w F'i,j = Fi,j -1 — Fi,j 

Figure 4.3: Discretization for 2D diffusion among the pixels 

Diffusion coefficients are updated in each step as functions of the brightness gra-
dient. The value of gradient can be computed on different neighborhood structures 

achieving different compromises between accuracy and locality. 

= C (II (VN F ), II) 

= C 	II (V sF)i,j II l 	 J 

= C `II (V EF)i,j II) 

= C (11(VwF)s,jll) 

Eq (4.5) can be written as: 

F; 1 = F j +At(~N+"S+4)E+4DW)i,j ...........................(4.10) 

where 4)(VF) = c(IIVFJI). JVFII 
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4.3 Speckle Reduction Anisotropic Diffusion Filter 

SRAD is the edge sensitive diffusion for speckled images corrupted with signal-
dependent, spatially correlated multiplicative noise. It utilizes the instantaneous 
coefficient of variation as in the adaptive filtering, which is a function of the local 
gradient magnitude and Laplacian operators. In the presence of the speckle noise, 
speckle reducing anisotropic diffusion gives better results over the traditional speckle 
removal filters and the conventional anisotropic diffusion filters. SRAD is based on 
the same minimum mean square error (MMSE) approach to filtering as Lee and 
Kuan filters. 

From [10] the relationship of lee filter discussed in chapter3, with conventional 
anisotropic diffusion shows that: 

I2,~ = Ii,~ + 	 div [(1 — 	......................... (4.11) 

The relationship shown in Eq. (4.11) is similar to the discrete form of the anisotropic 
diffusion where c(j( Vi ,~ IJ) = (1 — 	, 71. represents the spatial neighborhood of 
pixel at (i, j) and fri91 is the number of pixels in the window (usually four, except at 
the image boundaries). 
The Lee filter and enhanced Lee filter process a current pixel based on its inten-
sity and the intensities of neighboring pixels inside a fixed square window. Thus, 
these two filters have no mechanism to enhance edges or feature structures within 
a window. The modification of the Lee filter to include directional sensitivity and 
filtering perpendicular to the edge direction would significantly enhance the ability 
to remove the speckle in the vicinity of edges and small features. 

Coefficient Of Variation: 

Similar to the coefficient of variation in the Lee filter, a discritized version of the 
coefficient of variation applicable to PDE has been developed[10]. 

['?j+ 1 °zr2 ] Cz =   	— 1.......... .................... (4.12) 

As Cz ,~ is usually called local coefficient of variation, we call the function q the in-
stantaneous coefficient of variation. It combines a normalized gradient magnitude 
operator and a normalized Laplacian operator to act like an edge detector for speck-
led imagery. High relative gradient magnitude and low relative Laplacian tend to 
indicate an edge. Instantaneous coefficient of variation (ICOV), q(t) is: 

q(2 	t)2 — z( of ~ 2 is~°ir 2 (4.13) 
[1+4( I >] 
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The diffusion coefficient for anisotropic diffusion using ICOV becomes: 

c1 (q) = exp {— [q2(i, j; t) — qo(t)] / [go(t)(1 + qo (t))]} .......................(4.14) 

1 C2 (q) — 	
p — i+ g2 (i j ;t)—q(t) 190 	o (t)(1+4(t)) .................................................

(4.15) 

qo(t) is the speckle scale function obtained by median absolute deviations (MAD)[27]. 
MAD is defined as follows : 

MAD(VI) = median{II VF — median(I~VF11)11} ................................(4.16) 

_ MAD(VF) q0 ( t ) 	 ..................(4.17) 

where c' = 1.4826 is derived from the fact that the MAD of a zero-mean Gaussian 
distribution with unit variance is 1/1.4826. 
The instantaneous coefficient of variation q(i, j; t) serves as the edge detector in 
speckled imagery. The function exhibits high values at edges or on high-contrast 
features and produces low values in homogeneous regions. Similar to the parameter k 
in (4.4), the speckle scale function qo(t) effectively controls the amount of smoothing 
applied to the image by SRAD. 
Finally, by approximating time derivative with forward differencing, the numerical 
approximation to the differential equation is given by : 

I'-1 =I~+ .......................................(4.18) 

where di ~ is the divergence of c(.)VI as in anisotropic diffusion equation. 

4.3.1 Results and Discussions: 

SRAD algorithm is applied on speckle simulated image (shown in fig 4.4) and the 
real ultrasound image. In implementing the speckle reduction anisotropic diffusion 
algorithm, a fixed number of iterations and time step= 0.05 is used. 
The output of SRAD shown in fig 4.4 is obtained for 260 iterations and At = .05. 
From the fig 4.4 (b) & (c) it is clear that SRAD has been able to reduce the speckle 
noise. The bright dots in the form of speckle noise have been completely smoothed 
giving a smooth background. Also the fine details are retained. If we look at 
the shapes of different patterns (circle, rectangle, star) in the filtered image, it is 
observed that their boundaries are delineated and well defined. 



(b) 

(a) 

Figure 4.4: Shape image a) Original b) Simulated with speckle noise c) SRAD 
filtered 
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To test the edge preservation ability of SRAD, the edge profile of the filtered image 
and the original image is obatined using the Canny operator. As shown in fig 4.5 (a) 
and (b), the SARD technique has preserved the fine and sharp edges of the patterns 
in the shape image. For the synthetic image, number of iterations is 20, 60, 100, 
140, 180, 220, 260 and 300 and the time step Lt is 0.05. As the number of iterations 
increases the smoothing increases. This behaviour of SRAD is depicted in fig 4.6. 
Image obtained after 20,100,220 iterations still has speckle noise. The final filetered 
image is shown below in fig 4.6 (d). To see the gray level variation with the number 
of iteration a gray level profile along the line marked in the speckled image(fig 4.4 
(a)) has been shown in fig 4.7 after a certain number of iterations. 

(a) 
	

(b) 

Figure 4.5: Edge profile a) Original b) SRAD filtered 



uI 

(a) 
	

(b) 

Figure 4.6: SRAD output for speckled distorted shape image after, (a) 20 iterations, 
(b) 100 iterations, (c) 220 iterations, (d) 300 iterations, t = 0.05 
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Figure 4.7: SRAD output profile for shape image along the line shown in Fig.4.4(b) 
for time step 0.05. 

From the figure 4.7 , it is seen that as the no. of iterations increases the smoothining 
effect increases and after that the image may slightly become blurred due to the 
smearing of edges. 

(a) 
	

(b) 

Figure 4.8: Portal vein image a) Original b) SRAD filtered 

The SRAD algorithm is applied on the real ultrasound image of the portal vein as 
shown in fig 4.8, it is observed that the speckles have been reduced effectively in 



the filtered output. SRAD has also reatined the fine details marked with the arrow 
shown in fig 4.8(a) and also the cyst boundaries have been enhanced. This could be 
useful in auto segmentation and when the lesion boundaries are to be enhanced and 
delineated. 

4.4 Conclusion 

SRAD algorithm applied on both the simulated and the real ultrasound images gave 
a better visualization of the features masked by the speckle noise. Also SRAD re-
moves the speckles effectively without causing blurring as compared to the adaptive 
filters. SRAD can also be used in the image segmentation and image registration. 



Chapter 5 

Results and Discussions 

5.1 Introduction 

In the previous chapters the adaptive filetrs and anisotropic diffusion filters were vi-
sually evaluated. To have a robust comparison , these methods should be evaluated 
quantitatively. In this chapter a quantiative comparison of the speckle reduction 
techniques(AWMF, ARGF, SRAD) has been done. For comparison of the perfor-
mance: the ability to retain small details and edges i.e., sudden transitions in gray 
level or texture and gradual changes in gray level are taken as the yard sticks. 
Several quantitative measures like, figure of merit (FOM), contrast to noise ratio 
(CNR) and mean structural similarity index measure (MSSIM) have been calculated 
for this task. To achieve such evaluation, simulated images and ultrasound images 
of a "phantom", i.e., an artificial object with tissue-like acoustic properties have been 
used. The simulation and the phantom studies give quantitative performance analy-
sis, while real ultrasound images were used to study the feasibility and usefulnessr of 
the methods. The real ultrasound images were shown to the radiologists to get the 
visual evaluation of the speckle reduction techniques 	btai f 1,he,quantitative 
measures are depicted in subsequent section. 

5.2 Evaluation Indices 
1E 0 

Since speckle in the ultrasound image is modele s*_ Ae~Mi t cM at ve noise, a 
linear image fidelity criterion, such as MSE or SNR, is not always an accurate 
measure of speckle suppression in images. In this work, the algorithm performance 
is quantified by using two quality indices: a noisy suppression quality index [241, an 
edge preservation index, called figure of merit (FOM) [25]. Speckle suppression is 
evaluated by comparing the structure similarity between denoised image and noise-
free image. 
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5.2.1 Structural Similarity Test 

Structural similarity index is used to compare the local patterns of pixel intensities 
that have been normalized for luminance and contrast [24]. Structural similarity 
index measure (SSIM) is defined as: 

SS'IM( x y) — = . (2µxl,y+C1)(2axy+C2) 
 (uz+µ2+Cj)(az+may+C2) 

where x and y are the image signal, which have been aligned with each other. µx 
and p, are the mean intensity for luminance comparison and ax and o y are standard 
deviation for contrast measurement. axy is the correlation coefficient. Ci is the 
constant to avoid instability. All involved parameters were set as suggested in [24]. 
Mean SSIM (MSSIM) index is used for the overall quality measure of the entire 
image. 

MSSIM(F, F) = M E1 SSIM(xi, yi) 

where F and P are the reference and the distorted images respectively. xi and yi 
are the image contents at the ith local window and M is the number of windows. 

5.2.2 Figure of Merit 

To compare the edge preservation performance of the different filtering approaches, 
Pratt's FOM is used. The FOM is given by [25]: 

1V  1 

FOM = 	1 	 ,y~ max{N,Nidea,} 	1 ~- [b (~ 
i=1 

where N and Nideal are the number of detected and ideal edge pixels respectively, 
di is the Euclidean distance between ith detected edge pixel and nearest ideal edge 
pixel and a is a constant typically set to 1/9. The FOM ranges between 0 and 1. 
A unity value of FOM stands for the ideal edge detection. 

5.2.3 Contrast to Noise Ratio 

The contrast-to-noise-ratio (CNR), which is sometimes referred as lesion signal-to-
noise ratio [26] was computed by : 

CNR = IA1-P2 
Q +02 

where p and ai are the mean and variance of intensities of pixels in a region of 
interest (ROI), and µ2 and o2 are the mean and variance of intensities of pixels in 

51 



a background region that has the same size as the ROI to be compared with. 

5.3 Results 

5.3.1 Results from Speckle Simulated Images : 

The three speckle reduction techniques (AWMF, ARGF, SRAD) are applied on the 
shape image and Lena image, which are corrupted by speckle noise having a normal 
probability distribution function with mean = 0 and variance = 0.2. The original 
shape image and the speckle simulated image are shown in fig 5.1 Similarly lena 
image is depicted in fig 5.4(a) and speckle distorted is shown in fig 5.4(b). The 
filtered images by each of the techniques are shown in fig 5.5. 

(a) 	 (b) 

Figure 5.1: Shape image a) Original b) Simulated with speckle noise 

(a) 
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(b) 
	

(c) 

Figure 5.2: Filtered images a) AWMF filtered b) ARGF filtered c) SRAD filtered 

From the filtered images it is clear that although AWMF reduces the speckles, it 
causes loss of details. ARGF suppresses the speckles while retaining the features, 
but it leads to smoothening of images. SRAD has been able to preserve the shape of 
different pattern in the shape image. Similar behaviour is observed for the simulated 
Lena image. To quantify the performance of each of the techniques the indices 
(FOM, MSSIM) are calculated. The resulted have been tabulated in table 5.1 

Image FOM MSSIM 

Noisy 0.453 0.560 
AWMF 0.782 0.750 
ARGF 0.852 0.780 
SRAD 0.898 0.810 

Table 5.1: FOM and MSSIM for shape image 

For the filtered image to be close to the original image FOM and MSSIM should be 
close to 1. The higher value of FOM for SRAD shows that it is best at preserving 
the edges. High value of MSSIM indicates the filtered output from SRAD matches 
best with the original image. These figures indicate that SRAD is better than 
ARGF and AWMF at preservation of edges and reducing the speckles. ARGF causes 
smoothening of the image. Further from the edge profile of the original image and 
the filetred images shown in fig 5.3 it is clear that AWMF causes smearing and loss 
of sharp details. Similarly results were obtained for the Lena image and the results 
are tabulated in table 5.2. 
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(a) 
	

(b) 

Figure 5.4: Lena image a) Original b) Simulated with speckle noise 

(a) 

(c) 
	

(d) 

Figure 5.5: Filtered images a) AWMF filtered b) ARGF filtered c) SRAD filtered 
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5.3.2 Results from Phantom Experiment 

These three algorithm are applied on an ultrasound simulated cyst phantom image, 
shown in Fig. 5.7(a) to test their filtering efficiency and increasing the visualization. 
The cyst phantom consists of a collection of point targets, five cyst regions, and five 
highly scattering regions. This can be used for characterizing the contrast-lesion 
detection capabilities of a speckle redution technique. The cyst phantom image 
together with the filtered output is shown in fig 5.7. In the cyst image the ROI 
have been marked with numbers 1,2,3 to find their contrast to noise ratio (CNR) 
for each algorithm. The results have been shown in table 5.3. It is seen that for 
all the ROI' s (1,2,3) SRAD gave a higher value of CNR , thereby suggesting its 
ability in increasing the visualization of the organs and the small structures. SRAD 
outperforms the AWMF and ARGF filters at reducing the speckles and preserving 
the features. 

(a) 	 (b) 

(c) 	 (d) 

Figure 5.7: Speckle reduction output for phantom image: (a) Simulated with speckle 
noise, b) AWMF filtered c) ARGF filtered d) SRAD filtered 
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Image ROI 1 ROI 2 ROI3 

Noisy 2.34 3.00 2.62 
AWMF 5.22 5.47 4.41 
ARGF 5.66 7.17 5.54 
SRAD 5.81 8.61 5.68 

Table 5.3: CNR values on a cyst phantom image 

5.3.3 Result from Real Ultrasound 

To test the filtering and the feature preservation ability , the three speckle speckle 
reduction techniques are applied on the clinical ultrasound images of Liver and 
portal vein. These images have different scales of information and should be useful 
to differentiate between the performances of the three techniques. 

Case 1) Liver image 

This case contains both large and small details. Results of this experiment are 
shown in fig 5.8. From the figure it is clear that SRAD has reduced the speckles 
effectively and the regions marked in circles have been preserved. The blood ves-
sels region can be better visualized in SRAD filter image since speckle have been 
suppressed highlighting the boundary of the blood vessels. But these details have 
been lost in AWMF. ARGF filter has preserved the details but it has caused more 
smoothening as compared to SRAD. 

The pixel values along the line 146 have been depicted in fig 5.9. To have clear 
view of the profile the pixel values from 100 to 280 have been shown separately in 
the fig 5.10. From this gray level profile it is clear that SRAD and ARGF are good 
at preserving the mean in homogenous region and variance in the area containing 
important features, while SRAD better than ARGF at reatining fine details. 

ARGF smoothening ability can be used as a preprocessing step for auto segmen-
tation and image registration. 



(a) 
	

(b) 

(c) 
	

(d) 

Figure 5.8: Results of ultrasound image of Liver a) Original b) AWMF c) ARGF d) 
SRAD 
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Figure 5.9: Profile along the line highlighted in liver image for three algorithms 
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Figure 5.10: Profile along the pixel position 100 to 280 

Case 2) Portal vein image 

This image has cavities alongwith the important diagnostic features. The filtered 
images are shown in fig 5.11. If we compare the filtered images on the basis of 
retaining the texture and details, it is seen that AWMF blurs the details and speckles 
are not removed effectively. ARGF reduces the speckles but fine details are lost as 
compared to SRAD. The pixel profile along the line highlighted in the image supports 
this result. 

(a) 
	

(b) 



(c) 
	

(d) 

Figure 5.11: Results -of ultrasound image of Portal vein a) Original b) AWMF c) 
ARGF d) SRAD 

180 

160 

140 

120 

a, 100 
a, 

60 

60 

40 

20 

0 
0 

Original 
AWMF 
ARGF 
SRAD 

60 	100 	150 	200 	250 	300 	350 
pixel position 

Figure 5.12: Profile along the line highlighted in portal vein image for three algo-
rithms 

If the compare ARGF and SRAD methods for the image simplification, for auto 
segmentation purpose it is observed that ARGF proves better than SRAD and hence 
can be used as a preprocessing step for image segmentation and image registration. 
Also it can help in diagnosis of the nature of lesion by delineating it's boundaries. 
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The portal vein image section with the cavities have been zoomed to show this 

nature of ARGF. 

Figure 5.13: Image showing cavities a) ARGF b) SRAD 

These algorithms were applied on four ultrasound B-scan images having different 
diagnostic features and information at different scales. From the results obtained, it 

was observed that the behaviour of these three techniques is same as seen above for 

the two cases. It was found that AWMF reduces the speckle but loss of diagnostic 
information occurs whereas in case of ARGF speckles were suppressed effectively, 
but very fine details were lost while filtering. SRAD improved the visualization of 

the structures while reducing the speckles. ARGF smoothening behaviour can be 
used for image simplification. 
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Chapter 6 

Conclusion and Scope for Future 
Work 

6.1 Conclusion 

This thesis work introduced the speckle reduction techniques for the enhancement of 
the medical ultrasound images. The main objective of this thesis was to find out the 
best speckle reduction technique in terms of speckle reduction, feature preservation 
and as a preprocessing step for auto segmentation and image registration. 
The work started with the introduction of a ultrasound imaging system and the 
speckle analysis incorporating various models developed to represent their statis-
tics. The adaptive filtering and the diffusion based techniques were implemented for 
speckle suppression. Under the adaptive filtering the AWMF and ARGF were im-
plemented and for the diffusion techniques SRAD was examined. To compare their 
performance, these algorithms were tested on the speckle simulated images and. the 
tissue mimicking phantom. Then, the quantitative analysis was done to quantify 
the results obtained. The quantitative analysis was done using the indices FOM, 
MSSIM and CNR. SRAD gave the higher value for these indices when applied on a 
dataset of images. It can be concluded that for the better visualization and speckle 
reduction the SRAD technique outperforms the AWMF and ARGF techniques. But 
for auto segmentation and image registration, ARGF can be used as a preprocessing 
step. 
Qualitaive analysis was done by presenting the filtered image to the radiologists. 
And it was found that technically speckle can be considered as a noise, but for 
a medical approach their texture should not be removed completely. And in this 
regard SRAD improves the visualization in medical ultrasound images. 
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6.2 Scope of the Future Work 

The performance of ARGF method is highly dependent on the parameters obtained 
from the homogeniety model. Even these parameters vary from image to image. 
Therefore an independent estimation procedure for each new imaging configuration 
should be developed. The ARGF technique can be used for image simplification. 
The SRAD technique can be extended to three dimensions also. And a robust 
method can be developed to find the speckle scale function. Besides, the medical 
opinion in deciding the best algorithm should be considered. 
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