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ABSTRACT 

Multi-channel electrocardiograms (ECGs) of high precision are the base and modem 

techniques for the non-invasive monitoring of cardiac conditions. The quality and accuracy of 

medical diagnosis is increasing due to improved probing techniques and instrumentation. At the 

same time, it also implies that vast amounts of data are generated. Usually the electrocardiogram 

needs to be stored as part of the clinical record or for further diagnosis or to be transmitted for 

real-time tele-diagnosis and monitoring. 

A recommended remedy of solving the costly economy of storing and transmitting these 

signals is to compress them. Even though Many ECG compression techniques have been 

developed before, most of them do not meet the requirements for clinical acceptability. 

This work intends to develop a compression system by adopting the application of 

Artificial Neural Network in dimension reduction. This system first pre-processes the ECG data 

using digital filters to improve the quality of the ECG signals. Then it adopts amplitude and first 

derivative algorithm to detect the R-points accurately. Finally the partitioned beats are trained 

using artificial neural network which adopts a robust learning algorithm called Resilient 

Backpropagation algorithm. Weights and hidden layer activations are stored to represent the 

original ECG data. Impermanent and highly aberrant ECG beats are stored uncompressed. 

The outcome of this result shows, using backpropagation artificial neural network based 

compression system is an efficient and effective way of compression ECG signals with high 

compression ratio, improved compression precision and less compression time. This technique 

also provides high reconstruction fidelity. 
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CHAPTER ONE 

INTRODUCTION 
1.1 Background and motivation 

Multi-channel electrocardiograms (ECGs) of high precision are the base and modern 

techniques for the non-invasive monitoring of cardiac conditions. This improvement in probing 

techniques and instrumentation provides more accurate information for medical diagnosis. At the 

same time, it also implies that vast amounts of data are generated. Usually the electrocardiogram 

needs to be stored as part of the clinical record or for further diagnosis or to be transmitted for 

real-time tele-diagnosis and monitoring. 

It can be argued that the continuous improvement in probing equipment which generates 

increasingly higher data rates should not be hindered by the limits of storage systems and 

communication infrastructure. Similarly the economy of storing the data is often just as 

important as the possibility of collecting the data. 

This has motivated the search for advanced data compression techniques specifically 

designed for multi-channel ECG data. Different compression techniques have already been 

established and each has a different level of clinical acceptability. 

It is well known that artificial neural networks can be applied to dimensionality reduction 

and such manipulation of data is a common preprocessing technique for some pattern recognition 

and classification applications. This dissertation suggests and explores the application of 

artificial neural networks to solve the ECG data compression problem. 

IIT Roorkee I India 	 , 



2 

If one defines to size of data as its dimensionality reducing the dimensionality of the data 

achieves compression. 

The application of neural network techniques to data compression is relatively new and 

therefore this dissertation could serve as a contribution for further work. It seeks to identify the 

most promising directions for achieving real-time high compression ratios and hence low-loss 

ECG data compression. 

By using the optimal methods of data processing and network training developed during 

the Dissertation work we aim to outperform traditional methods in both compression ratio and 

error performance. 

1.2 Organization of the Report 

• Chapter 2 discusses what the ECG signal is, where it originates from and some 

mechanical aspects of it. It also discusses the basic components of the ECG signal and 

describes the features of these components during normal and abnormal conditions. 

Finally it explains about the ECG leads and their configurations and declares which kind 

of configuration is selected for this work. 

• The theoretical aspects of Artificial Neural Networks (ANN), their historical background, 

neuron models, transfer functions and network architectures is discussed in detail in 

Chapter 3. It also explains about feedforward networks and the backpropagation 

algorithm. 

• Chapter 4 gives a description of the existing multi-channel ECG compression 

techniques, explains how each technique works and gives a comparison of each technique 

with one another. 
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• Chapter 5 is devoted to the proposed technique for ECG data compression. It explains 

how ANNs can be used for ECG data compression and provides a detail on what 

procedures are followed, which BP algorithm is selected and how the performance of the 

proposed compression system is evaluated. It also discusses how the compressed ECG 

data are reconstructed. 

• Based on the techniques and procedures discussed in Chapter 5, the results of the 

performed experiments are presented in Chapter 6. This chapter also presents a 

comparison of the proposed technique with the existing ones based on the results 

obtained. 

• Chapter 7 summarizes the key results and observations to produce an overall conclusion. 

This chapter also recommends directions for future work. 
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CHAPTER TWO 

THE ELECTROCARDIOGRAM (ECG) 
2.1 Introduction 

Before developing a compression system using backpropagation artificial neural networks 

or, in general, any signal processing technique for a particular signal, it is necessary to have a 

thorough knowledge about what kind of signal it is, how it is formed and what its characteristics 

are, and what the building blocks of the signal are. 

This chapter discusses what type of signal the ECG signal is and where it originates from. 

It describes the mechanical aspects of the ECG signal by showing the mechanical and electrical 

events during a single cardiac cycle. 

The basic components of the ECG signal and their characteristics during normal and 

abnormal conditions are given a section in this chapter. This section serves as a reference during 

comparison of the network trained ECGs and the original ECGs. Studying this section helps to 

identify whether the cause of aberrations in the reconstructed ECG data is a "real" abnormality 

or an artifact caused by the compression system. 

Finally the chapter explains about the ECG leads and their configurations and declares 

which kind of configuration is selected for this work. 
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2.2 The origin of the ECG 

The biopotentials generated by the muscles of the heart result in the electrocardiogram 

(ECG). Each action potential in the heart originates near the top of the right atrium of the heart, 

at a point called the sinoatrial (SA) node [I] (see figure2.1). 

The SA node is a group of specialized cells that spontaneously generate action potentials 

at a regular rate that propagate in all directions along the surface of the atria and finally reach the 

surface of the ventricles. 

Atri entricufer 
tsinctril 	node 
node 
	

Bundle  
l His 

R 

c'YtCIuf63 

Left 
atrium 

Right 
ventricle 

Right bundle Left: bundle 
brand/ 	branch 	Left ventricle S 

Figure2.8 Electrical Pathway of the Heart 1381 	Figure 2.9 The Electrocardiogram 
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The sinoatrial node (1) initiates an electrical impulse that flows through the right and left 

atria (2), making them contract. When the electrical impulse reaches the atrioventricular node 

(3), it is delayed slightly. The impulse then travels down the bundle of His (4), which divides 

into the right bundle branch for the right ventricle (5) and the left bundle branch for the left 

ventricle (5). The impulse then spreads through the ventricles, making them contract. [38] 

In synchronized excitation of these specialized cells, the electrical charged tend to 

migrate to the body fluids. Such charge migration constitutes an electric current and hence setup 

potential differences between various points of the body including the outer surfaces. Such 

potential difference can be conveniently picked up by placing electrodes at any points on the 

surface of the body and measured with the help of sensitive instruments, and results in the 

waveform electrocardiogram. See figure 2.2. 

2.3 Mechanical Aspects of ECG signal 
The contraction and relaxation of a cardiac chamber are respectively known as systole 

and diastole. The movements of the cardiac chambers are related in a cycle manner during each 

heart beat that constitutes a cardiac cycle [1] . 

The phase during which both atria and ventricles are in diastole and are released 

simultaneously is called the joint diastole. During this phase, blood continues to flow in to the 

atria through the Superior and Inferior Vena cava. At the end of this phase, the next heart beat 

starts with the contraction of atria. As the atria contracts, they force most of their blood to the 

ventricles which are still in diastole. The atria act as a pump to collect and force the venous 

blood to the ventricles. During atrial diastole, blood cannot pass back from the atria into the great 

veins, because the roots of veins are compressed by the atrium contraction to block their 

opening. [2]. 
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At the end of the atrial systole, the atrium relapses into diastole and starts releasing 

during the atrial systole. Venous blood again passes from great veins to atria to fill them up. 

Simultaneously, the ventricles start contracting (ventricular systole). The pressure rises 

immediately in the ventricles to exceed that in the atria and the AV valves are shut sharply to 

prevent back flow of blood from the ventricles to the atria. 

A o r n F F G 

Figure 2.3 Mechanical and electrical events during a single cardiac cycle. The seven phases are 
denoted by letters as follows: A) atrial systole, (B) isovotumetric ventricular contraction, 
(C) rapid ventricular ejection, (D) reduced ventricular ejection, (F) isovol isovolumetric 
ventricular relaxation, (F) rapid ventricular filling, and (G) reduced ventricular filling.[391 
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This sharp closure of AV valves at the beginning of the ventricular systole produces a 

sound "Lub" in the heart. This is the first heart sound during a heart beat which can be heard by 

placing a stethoscope on the chest wall above the heart. Because the ventricular pressure still 

continues to be lower than the pressure in the great arteries and semi lunar valve consequently 

remains closed, the ventricles now contract as closed chambers. But as the ventricular systole 

progresses the pressure in them increases rapidly and soon exceeds the pressure in the great 

arteries. Semi-lunar valve now open and blood begins to flow into the great arteries. 

At the end of ventricular systole, the ventricles go into diastole and start relaxing 

(ventricular diastole) immediately the semi-lunar valve closes sharply to prevent back flow of 

blood from the great arteries to the ventricles. The closure of the semi-lunar valves at the 

beginning of the ventricular diastole produces a sound "Dub" in the heart. This is the second 

heart sound [1J [2]. The physical activities of the heart with their corresponding ECG component 

are shown in fig 2.3. 

2.4 Basic ECG components 
Before performing any kind of signal processing on ECG signals it is necessary to study its 

basic components. If these components are altered in an irrational way it may result in wrong 

interpretation of the ECG data. The normal and abnormal conditions of each component are 

discussed in detail in this section. 

An ECG is composed of a series of waves and lines usually ordered into some repeatable 

pattern. The waves and lines are displayed on either a two dimensional screen or on ECG paper. 

The height of the tracing represents millivolts while the width of the ECG addresses an interval 

of time (see Figure 2.4). 
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mV 

time 

Figure2.4 The scales of the ECG 

This section on ECG components addresses each of the waves, intervals and segments of 

an ECG in the order that they would appear. While waves are fairly self-explanatory, intervals 

measure time from the start of one wave to the start of another wave (an interval includes at least 

one wave) and segments measure time between waves (waves are not included in a segment). 

Table 2.1 outlines the parameters that are expected of normal and abnormal ECG waves, 

segments and intervals. 

The P Wave, PR Segment and PR Interval 

The P wave represents the depolarization of the right and left atria. The P wave begins 

with the first deviation from baseline and finishes when the wave meets the baseline once again. 

While the P wave is an electrical representation and not mechanical, a P wave strongly suggests 

that the atria have followed through with a contraction. [3] 
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Table 2.7 Normal and Abnormal Parameters of ECG Components 131 

Abnormal Causes of abnormal 
ECG Normal Parameters Parameters 

Components Parameters 
Upright in most leads Inverted Junctional Rhythm 

including lead II. 
Duration: <0.11 seconds Notched or tall Atrial rhythm, atrial 

P Wave Amplitude: 0.5-2.5 sec. hypertrophy 

Duration: shorter or Junctional rhythm, Wolff- 
PR Interval Duration: 0.12 - 0.20 sec. longer than normal Parkinson-White syndrome 

Duration: 0.04 sec. or 
longer 

Duration: <0.04 seconds Amplitude: at least 
Amplitude: <25% the 25% the amplitude of 

Q Wave amplitude of the R wave the R wave Myocardial infarction 
Upright, inverted or 
biphasic waveform 

QRS Duration: <0.11 seconds Duration: 0.11 second Bundle branch block, 
Complex Amplitude: 1 mm or more or more ventricular ectopic i.e. PVC 

Long QT syndrome, cardiac 
drugs, hypothermia, 

subarachnoid hemorrhage 

Duration: less than 1/2 the Duration: at least 1/2 Short QT associated with 
QT Interval width of the R-R interval the R-R interval hypercalcemia 

Cardiac ischemia or infarction, 
In line with PR or TP early repolarization, ventricular 

segment (baseline) hypertrophy, digoxin dip, 
Duration: shortens with Deviation of 0.5 mm pericarditis, subarachnoid 

ST Segment increased heart rate or more from baseline hemorrhage 
Upright, asymmetrical and Cardiac ischemia or infarction, 

bluntly rounded in most subarachnoid hemorrhage, left- 
leads Peaked, inverted, sided tension pneumothorax, 

Duration: 0.10-0.25 sec. biphasic, notched, flat left bundle branch block, 
T Wave Amplitude: less than 5 mm  or wide waveforms hyperkalemia, hypokalemia 

Hypokalemia, cardiomyopathy, 
Upright Peaked or Inverted ventricular hypertrophy, 

U Wave Amplitude: <2 mm Amplitude: > 2 mm diabetes, digoxin, quinidine 
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Figure 2.5 The P Wave, PR Segment and PR Interval [3] 

The PR segment is the line between the end of the P wave and the beginning of the QRS 

complex. The PR segment signifies the time taken to conduct through the slow AV junction. 

This delay allows for atrial kick. The PR segment also serves as a benchmark for the isoelectric 

line. [3] 

The PR interval is measured from the start of the P wave to the start of the QRS complex. 

While it might appear obvious that this is indeed a PQ interval, a Q wave is not always present 

on an ECG tracing. For consistency, the term is PR interval has been adopted whether a Q wave 

exists or not. 

The PR interval covers the time taken for the impulse to travel from the SA node through 

the atria and the AV junction through to the Purkinje network. Most of the PR interval is taken 

by the slow conducting AV junction. Changes to the PR interval often points to the AV junction. 

A normal PR interval is 0.12-0.20 seconds, which is the equivalent to 3-5 small squares (3-5mm) 

on ECG paper. 

If an ECG shows P wave, QRS complex - P wave, QRS complex - P wave, QRS complex 

- atrial depolarization, ventricular depolarization until the cows come home, a rather important 

relationship between the atria and the ventricle is revealed. If the P wave is consistently followed 

III Roorkee j India 



12 

by a QRS complex across a consistent PR interval, this is strong evidence that the originating 

impulse is supraventricular. A consistent PR interval is often sufficient to declare that this is a 

supraventricular rhythm. [3] 

The QRS Complex 

ECG interpretation relies heavily on the QRS complex. The QRS complex represents the 

depolarization of the ventricles [3]. The repolarization of the atria is also buried in the 

QRS complex. 

The normal depolarization of the ventricles is illustrated in Figure 4.13 on the next page. 

Three distinct waveforms are often present in a normal QRS complex. These waveforms follow 

the pathways of ventricular depolarization. Depolarization of the ventricular septum proceeds 

first from left to right away from the positive electrode in lead II [3]. This early depolarization 

causes a small downward deflection called a Q wave. 

A Q wave is the first negative deflection of the QRS complex that is not preceded by an 

R wave [3]. A normal Q wave is narrow and small in amplitude. Note that a wide and/or deep Q 

wave may signify a previous myocardial infarction (MI). More on the signs of cardiac ischemia 

and infarction is addressed in the next section. 

Following the depolarization of the interventricular septum, ventricular depolarization 

then progresses from the endocardium through to the epicardium across both ventricles 

producing an R wave and an S wave. An R wave is the first positive deflection of the QRS 

complex [3]. An S wave is the first wave after the R wave that dips below the baseline 

(isoelectric line). The end of the S wave occurs where the S wave begins to flatten out. This is 

called the J point. 
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Figure 2.6 The QRS Complex, ST Segment and the T Wave [31 

Abnormal ventricular depolarization produces a QRS complex that often has additional 

waveforms. For example, a second positive deflection of a QRS complex after an R wave is 

labelled R' (R prime). Similarly, a second S wave that dips below the baseline after the R wave 

is labelled S' (S prime). 

A narrow QRS complex occurs quickly over a period of less than 0.11 seconds (less than 

3 mm in width) [3]. A narrow QRS occurs with normal ventricular depolarization that originates 

above the ventricles. 

While the direction of the QRS complex is generally not important with basic ECG 

interpretation, the width of the QRS complex is key. The width of the QRS complex often 

indicates the location of the originating electrical impulse. This is a rather important point since 

the first and foremost word of an ECG interpretation is the location of impulse initiation. 
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For example, rhythms that come from the SA node are sinus rhythms, from the AV junction are 

junctional rhythms, and that originate from the ventricle are ventricular rhythms. Simple. If the 

QRS is narrow - taking very little time to occur - the cardiac rhythm originates from a 

supraventricular site. Quickly determining whether the QRS is narrow or wide is a vital step in 

rapid ECG interpretation. 

The Q Wave and The QT Interval 

As mentioned in the previous section, a normal Q wave represents a depolarization of the 

ventricular septum, which usually travels from left to right, towards the right ventricle. When 

present, a Q wave is the first downward deflection of the QRS complex. While ST segment 

deviation is a sign of present events, a prominent Q wave points to an MI that has already 

occurred, recently to some time ago. A prominent Q wave is like a tattoo - once you have one, 

it's pretty much yours for good [3]. 

~~- RR Interval ---- ►~ 

y_t to ervai 

Figure 2.7 The Normal Q Wave and QT Interval [31 

A normal Q wave is usually no deeper than 2 mm and less than 1 small square in width 

(<0.04 seconds). An abnormal Q wave tends to get the most attention [3]. A Q wave that is wider 
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than 1 small square or at least 1/4 the height of the R wave is a significant marker of a 

myocardial infarction. 

The QT interval represents a complete ventricular cycle of depolarization and 

repolarization [3]. The QT interval is measured from the beginning of the QRS complex to the 

end of the T wave. A QT interval should be less than 1/2 the R-R interval. 

The concern around a longer QT interval centers around the possibility of the next QRS 

coming at the tail end of the T wave, called an R-on-T phenomenon. This phenomenon can 

potentially cause dangerous dysrhythmias such as torsades de pointes. Causes of prolonged QT 

intervals include long QT syndrome, antiarrythmics such as quinidine and procainamide, 

tricyclic antidepressants, and hypokalemia. 

The ST Segment 

Between the QRS complex and the T wave, lies the ST segment. The ST segment usually 

follows the isoelectric line. The ST segment represents early repolarization of the ventricles [3]. 

Explained in detail in Chapter 6, early repolarization includes a plateau phase where the cardiac 

cell membrane potential does not change. 

During early repolarization, the positive ion potassium exits the cardiac cell while the 

positive ion calcium enters the cardiac cell, effectively negating any change in cell membrane 

potential. Because the cell membrane does not change its electrical potential, ECG leads do not 

record any electrical activity [3]. As a result, the ST segment usually lies along the ECG 

baseline. 
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Determining where the ST segment begins is determined by the J point. The J point, the 

juncture of the QRS and the ST segment, defines the starting point of the ST segment. The J 

point marks where the QRS complex changes direction, forming a notch or bump in the ECG 

tracing [3]. The ST segment is evaluated for any deviation from the ECG baseline 0.04 seconds 

(1 mm) after the J point. 

While ST deviations may be a normal occurrence for a subset of the population, most 

often ST deviation is a sign of either myocardial ischemia, myocardial infarction and/or cardiac 

disease. It makes sense, then, to report any finding of ST deviation from baseline in the ECG 

interpretation i.e. sinus rhythm with ST depression. 

ST Elevation 	ST Depression 	 Digoxin Dip 

Figure 2.8 ST Segment .Deviations [3] 

ST depression of 1 mm or more in 2 contiguous leads (neighboring leads) is suggestive of 

myocardial ischemia, injury or infarction. ST elevation of 1 mm or more in 2 contiguous leads is 

highly suggestive of a myocardial injury or infarction [3]. Note that ST changes (elevation or 

depression) are highly suggestive of current events - the acute coronary events are happening 

now. 
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The shape of the ST segment, if depressed, bears mention. The depressed ST segment 

often presents horizontal, sloping downwards or sloping upwards. Although all morphologies 

can indicate myocardial ischemia, the horizontal and downward sloping depressed ST segments 

are the more likely morphologies that point to ischemic events. 

Several conditions not linked to cardiac ischemia can produce ST changes. The bottom 

line: most ST changes indicate cardiac ischemia, requiring urgent treatment BUT every ECG 

interpretation is more robust when integrated with a patient's clinical status and history. 

The T Wave 

Expect a T wave to follow every QRS complex. The T wave is a graphic representation 

of the repolarization of the ventricle [3]. The T wave is typically about 0.10 to 0.25 seconds wide 

with an amplitude less than 5 mm. While ventricular depolarization occurs rapidly producing a 

tall QRS complex, ventricular repolarization is spread over a longer interval, resulting in a 

shorter and broader T wave. 

The T wave is normally slightly asymmetrical and is usually larger than the P wave. The 

T wave is normally upright in lead II. Note that as heart rates increase, the P wave (atria) and the 

T wave (ventricles) begin to share the same space on an ECG. The larger T wave often covers 

the P wave. Note that the T wave is rarely notched. A notched T wave may also contain a P wave 

trying to show itself [3]. 

An inverted T wave can point to cardiac ischemia among other causes. Ischemia to the 

epicardium prolongs ventricular repolarization to this area. This extended repolarization of the 

epicardium removes the delay between the repolarization of the endocardium and the 

repolarization of the epicardium, with repolarization now following the sequence of 

depolarization. An inverted T wave results. [3] 
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Abnormally shaped T waves can signify acute episodes of cardiac ischemia, electrolyte 

imbalances, and the influence of cardiac medications. For example, peaked T waves can occur 

early during periods of myocardial ischemia and infarction. Later, cardiac ischemia may cause 

the T wave to invert [3]. Electrolyte imbalances can also affect the T wave. Hyperkalemia is 

often associated with peaked T waves. Hypokalemia can flatten the T wave. Quinidine can widen 

the T wave while digitalis can flatten the T wave. 

Abnormally shaped T waves can also occur following injury to the lungs or the brain. 

While the physiology is not well understood, T wave inversion can occur with a left-sided 

tension pneumothorax [3]. Peaked or inverted T waves have also been reported with brain injury, 

specifically subarachnoid hemorrhage. 

Normal 
	

Peaked 
	

Tnverted 
	

Biphasic 

Wide 	 Flttened., 	 Flat air.d Inverted 

Figure 2.9 Normal and Abnormal T Waves [31 

The U Wave 

Occasionally, another wave -the U wave - is recorded immediately following the T wave 

and before the P wave. The U wave remains rather mysterious but is thought to represent a final 
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stage of repolarization of unique ventricular cells in the midmyocardium [3]. The U wave will 

most often orient in the same direction as the T wave with an amplitude less than 2 mm. 

An abnormal U wave is inverted or tall with an amplitude of 2 mm or more. An 

abnormally tall U wave is associated with.conditions such as hypokalemia, diabetes, ventricular 

hypertrophy, and cardiomyopathy. Cardiac medications such as digoxin and quinidine can also 

cause a tall U wave. 

The U wave the series of waves, intervals and segments that form the ECG. Knowing what 

to expect from each the these components prepares you to quickly recognize deviations from the 

norm. 

2.5 ECG leads and lead selection 

As the heart undergoes depolarization and repolarization, electrical currents spread 

throughout the body because the body acts as a volume conductor. The electrical currents 

generated by the heart are commonly measured by an array of electrodes placed on the body 

surface. By convention, electrodes are placed on each arm and leg, and six electrodes are placed 

at defined locations on the chest. These electrode leads are connected to a device that measures 

potential differences between selected electrodes to produce the characteristic ECG tracings. 

Some of the ECG leads are bipolar leads (e.g., standard limb leads) that utilize a single 

positive and a single negative electrode between which electrical potentials are measured. 

Unipolar leads (augmented leads and chest leads) have a single positive recording electrode and 

utilize a combination of the other electrodes to serve as a composite negative electrode. 

Normally, when an ECG is recorded, all leads are recorded simultaneously, giving rise to what is 

called a 12-lead ECG. [4] 
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Standard Limb Leads (Bipolar) 

Leads I, II and III are the so-called limb leads because at one time, the subjects of 

electrocardiography had to literally place their arms and legs in buckets of salt water in order to 

obtain signals for Einthoven's string galvanometer [35]. They form the basis of what is known as 

Einthoven's triangle. Eventually, electrodes were invented that could be placed directly on the 

patient's skin. Even though the buckets of salt water are no longer necessary, the electrodes are 

still placed on the patient's arms and legs to approximate the signals obtained with the buckets of 

salt water. They remain the first three leads of the modem 12 lead ECG. 

• Lead I is a dipole with the negative (white) electrode on the right arm and the positive 

(black) electrode on the left arm. 

• Lead II is a dipole with the negative (white) electrode on the right arm and the 

positive (red) electrode on the left leg. 

• Lead III is a dipole with the negative (black) electrode on the left arm and the positive 

(red) electrode on the left leg. 

Figure 2.10 Bipolar Limb Leads (41 
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Augmented limb leads 

Leads aVR, aVL, and aVF are augmented limb leads. They are derived from the same 

three electrodes as leads I, II, and III. However, they view the heart from different angles (or 

vectors) because the negative electrode for these leads is a modification of Wilson's central 

terminal, which is derived by adding leads I, II, and III together and plugging them into the 

negative terminal of the EKG machine. This zeroes out the negative electrode and allows the 

positive electrode to become the "exploring electrode" or a unipolar lead. This is possible 

because Einthoven's Law states that I + (-II) + III = 0. The equation can also be written I + III = 

II. It is written this way (instead of I + II + III = 0) because Einthoven reversed the polarity of 

lead II in Einthoven's triangle, possibly because he liked to view upright QRS complexes. 

Wilson's central terminal paved the way for the development of the augmented limb leads aVR, 

aVL, aVF and the precordial leads V1, V2, V3, V4, V5, and V6. [35] 

• Lead aVR or "augmented vector right" has the positive electrode (white) on the right 

arm. The negative electrode is a combination of the left arm (black) electrode and the 

left leg (red) electrode, which "augments" the signal strength of the positive electrode 

on the right arm. 

• Lead aVL or "augmented vector left" has the positive (black) electrode on the left 

arm. The negative electrode is a combination of the right arm (white) electrode and 

the left leg (red) electrode, which "augments" the signal strength of the positive 

electrode on the left arm. 

• Lead aVF or "augmented vector foot" has the positive (red) electrode on the left leg. 

The negative electrode is a combination of the right arm (white) electrode and the left 
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arm (black) electrode, which "augments" the signal of the positive electrode on the 

left leg. 

The augmented limb leads aVR, aVL, and aVF are amplified in this way because the 

signal is too small to be useful when the negative electrode is Wilson's central terminal. Together 

with leads I, II, and III, augmented limb leads aVR, aVL, and aVF form the basis of the hexaxial 

reference system, which is used to calculate the heart's electrical axis in the frontal plane. [35] 

Figure 2.12 Augumented Limb Leads [41 

Precordial chest leads 

The precordial leads VI, V2, V3, V4, V5, and V6 are placed directly on the chest. 

Because of their close proximity to the heart, they do not require augmentation. Wilson's central 

terminal is used for the negative electrode, and these leads are considered to be unipolar. The 

precordial leads view the heart's electrical activity in the so-called horizontal plane. The heart's 

electrical axis in the horizontal plane is referred to as the Z axis. [351 

Leads VI, V2, and V3 are referred to as the right precordial leads and V4, V5, and V6 are 

referred to as the left precordial leads. 

The QRT complex should be negative in lead Vi and positive in lead V6. The QRT 

complex should show a gradual transition from negative to positive between leads V2 and V4. 
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The equiphasic lead is referred to as the transition lead. When the transition occurs earlier than 

lead V3, it is referred to as an early transition. When it occurs later than lead V3, it is referred to 

as a late transition. There should also be a gradual increase in the amplitude of the R wave 

between leads VI and V4. This is known as R wave progression. Poor R wave progression is a 

nonspecific finding. It can be caused by conduction abnormalities, myocardial infarction, 

cardiomyopathy, and other pathological conditions. [35] 

• Lead Vi is placed in the fourth intercostal space to the right of the sternum. 

• Lead V2 is placed in the fourth intercostal space to the left of the sternum. 

• Lead V3 is placed directly between leads V2 and V4. 

• Lead V4 is placed in the fifth intercostal space in the midclavicular line (even if the 

apex beat is displaced). 

• Lead V5 is placed horizontally with V4 in the anterior axillary line 

• Lead V6 is placed horizontally with V4 and V5 in the midaxillary line. 

Figure2.12 Pericordial Chest Leads [41 
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The selected Lead configuration for the proposed work 

It is possible to use any of the above lead configurations to study the application of 

artificial neural network to ECG data compression. In this work the most commonly used bipolar 

limb lead II (LII) configuration is selected. However any data can be compressed by making use 

of the system developed. 

2.6 Conclusion 

Electrocardiograms (ECGs) are biopotentials generated by the muscles of the heart. The 

electrical currents resulted by these potentials are commonly measured by an array of electrodes 

placed on the body surface. 

A comprehensive knowledge about each component of an ECG signal gives a chance to 

investigate the effect of the compression system, to be developed, on the original data. Defects 

seen on the reconstructed data can only be identified as "real" abnormalities or compression 

system effects if we have the knowledge of Each ECG component's characteristics. 

ECG signals are quasi-periodic, i.e. they have a sequence of cycles which are very much 

similar with only little changes. This is an important feature because if we are going to use 

artificial neural networks, we can store the little differences in the hidden layers and represent the 

similarities by a single weight. The next chapter gives a detail explanation about these networks; 

which brought a paradigm shift in the computation world. 
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CHAPTER THREE 

ARTIFICIAL. NEURAL NETWORK - AN 
OVERVIEW 
3.1 Introduction 

In the previous chapter we have discussed about the basic characteristic of the 

electrocardiogram (ECG) and its prominent feature, its quasi-periodicity, which led to the usage 

of artificial neural networks to compress this signals. In this chapter we will discuss in about 

these computational tools. 

An Artificial Neural Network (ANN) is a massively parallel distributed processor made up 

of simple processing units, which has a natural propensity for storing experiential knowledge and 

making it available for use [9]. It is an information processing paradigm that is inspired by the 

way biological nervous systems, such as the brain, process information. It is composed of a large 

number of highly interconnected processing elements (neurons) working in unison to solve 

specific problems. 

An ANN is configured for a specific application, such as pattern recognition, data 

classification or data compression, through a learning process. Learning in biological systems 

involves adjustments to the synaptic connections that exist between the neurons [10]. This is true 

of ANNs as well. 
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3.2 Historical background [5] 
Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, and has survived at least one major setback and 

several eras. 

The history of neural networks can be divided into several periods: 

1. First Attempts: There were some initial simulations using formal logic. McCulloch and 

Pitts (1943) developed models of neural networks based on their understanding of 

neurology. These models made several assumptions about how neurons worked. Two 

groups (Farley and Clark, 1954; Rochester, Holland, Haibit and Duda, 1956). The first 

group (IBM reserchers) maintained closed contact with neuroscientists at McGill 

University. So whenever their models did not work, they consulted the neuroscientists. 

This interaction established a multidisciplinary trend which continues to the present day. 

2. Promising & Emerging Technology: Not only was neuroscience influential in the 

development of neural networks, but psychologists and engineers also contributed to the 

progress of neural network simulations. Rosenblatt (1958) stirred considerable interest 

and activity in the field when he designed and developed the Perceptron. The Perceptron 

had three layers with the middle layer known as the association layer. This system could 

learn to connect or associate a given input to a random output unit. Another system was 

the ADALINE (ADAptive LInear Element) which was developed in 1960 by Widrow 

and Hoff (of Stanford University). The ADALINE was an analogue electronic device 

made from simple components. The method used for learning was different to that of the 

Perceptron, it employed the Least-Mean-Squares (LMS) learning rule. 
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3. Period of Frustration & Disrepute: In 1969 Minsky and Papert wrote a book in which 

they generalised the limitations of single layer Perceptrons to multilayered systems. In 

the book they said: "...our intuitive judgment that the extension (to multilayer systems) is 

sterile". The significant result of their book was to eliminate funding for research with 

neural network simulations. The conclusions supported the disenhantment of reserchers 

in the field. As a result, considerable prejudice against this field was activated. 

4. Innovation: Although public interest and available funding were minimal, several 

researchers continued working to develop neuromorphically based computaional methods 

for problems such as pattern recognition. During this period several paradigms were 

generated which modern work continues to enhance.Grossberg's (Steve Grossberg and 

Gail Carpenter in 1988) influence founded a school of thought which explores resonating 

algorithms. They developed the ART (Adaptive Resonance Theory) networks based on 

biologically plausible models. Anderson and Kohonen developed associative techniques 

independent of each other. Klopf (A. Henry Klopf) in 1972, developed a basis for 

learning in artificial neurons based on a biological principle for neuronal learning called 

heterostasis. 

Werbos (Paul Werbos 1974) developed and used the back-propagation learning method, 

however several years passed before this approach was popularized. Back-propagation 

nets are probably the most well known and widely applied of the neural networks today. 

In essence, the back-propagation net, is a Perceptron with multiple layers, a different 

thershold function in the artificial neuron, and a more robust and capable learning rule. 

Amari (A. Shun-Ichi 1967) was involved with theoretical developments: he published a 

paper which established a mathematical theory for a learning basis (error-correction 
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method) dealing with adaptive patern classification. While Fukushima (F. Kunihiko) 

developed a step wise trained multilayered neural network for interpretation of 

handwritten characters. The original network was published in 1975 and was called the 

Cognitron. 

5. Re-Emergence: Progress during the late 1970s and early 1980s was important to the re-

emergence on interest in the neural network field. Several factors influenced this 

movement. For example, comprehensive books and conferences provided a forum for 

people in diverse fields with specialized technical languages, and the response to 

conferences and publications was quite positive. The news media picked up on the 

increased activity and tutorials helped disseminate the technology. Academic programs 

appeared and courses were inroduced at most major Universities (in US and Europe). 

Attention is now focused on funding levels throughout Europe, Japan and the US and as 

this funding becomes available, several new commercial with applications in industry and 

finacial institutions are emerging. 

6. Today: Significant progress has been made in the field of neural networks-enough to 

attract a great deal of attention and fund further research. Advancement beyond current 

commercial applications appears to be possible, and research is advancing the field on 

many fronts. Neurally based chips are emerging and applications to complex problems 

developing. Clearly, today is a period of transition for neural network technology. 
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3.3 Neuron model, transfer functions and network architecture 

3.3.1 Neuron Model: Single-input Neuron 

A single-input neuron is shown in Figure 3.1. The scalar input p is multiplied by the 

scalar weight w to form wp, one of the terms that are sent to the summer. The other input,] , is 

multiplied by a bias b and then passed to the summer. The summer output n, often referred to as 

the net input, goes into a transfer function f, which produces the scalar neuron output a. 

If we relate this simple model back to the biological neuron, the weight corresponds to the 

strength of a synapse, the cell body is represented by the summation and the transfer function 

and the neuron output a represents the signal on the axon. [6] 

Input Neuron without bias Input Neuron with bias 

rmr 

p w 	r• c 

lb  

 

a =f(itp) a = f( tip+b) 

Figure 3.1 Single input neuron [71 

The actual output depends on the particular transfer function that is chosen. 

3.3.2 Transfer Functions 

Many transfer functions are used in artificial Neural Network. Three of the most 

commonly used functions are shown below. 

Hard-Limit Transfer Function 
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The hard-limit transfer function shown above limits the output of the neuron to either -0, if 

the net input argument n is less than 0, or 1, if n is greater than or equal to 0 [7]. 

a 
+l. 

n 
Q 

------------ ----------- 
-1 

a = hardiitn(n) 

Figure 3.2 hard-limit transfer function 

Linear Transfer Function 

T±1_ J-... 

0  ` 
n 	 171 

- 	-----------. 

a = purelin(n) 

Figure 3.3 linear transfer function 

Figure 3.3 illustrates the linear transfer function. Neurons of this type are used as linear 

approximators in Linear Filters. 

Sigmoid transfer function 

The sigmoid transfer function shown below takes the input, which can have any value 

between plus and minus infinity, and squashes the output into the range -1 to 1. This transfer 

function is commonly used in backpropagation networks, in part because it is differentiable. 

Input Neuron w Vector Input 
fry ~ 

rya 

a=tcrnsg( ) 

Figure 3.1.0 sigmoid transfer function 

Neuron with Vector Input 

P2  X11 

s •  L 

a =. (Wp +b) 
where R = number of elements in input vector 

Figure 3.11. Neuron with Vector Input [71 
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A neuron with a single R-element input vector is shown below. Here the individual 

element inputs p1,  P2, • • • , PR are multiplied by weights W1,1,  W1,2 ,  • • • , W1,R and the weighted 

values are fed to the summing junction. Their sum is simply wp, the dot product of the (single 

row) matrix W and the vector p. [6] 

The neuron has a bias b, which is summed with the weighted inputs to form the net input 

n. This sum, n, is the argument of the transfer function f. 

n = W1,1p1 + W1,2P2 + ... + W1,R7R 

3.3.3 Network Architectures 

Two or more of the neurons shown earlier can be combined in a layer, and a particular 

network could contain one or more such layers. First consider a single layer of neurons. 

A Layer of Neurons 

A one-layer network with R input elements and S neurons is shown below. 

Inputs Curer of Neurons 

where R = number of elements in input 
, 	 vector 

t 	 S = number of neurons in a layer 

PK . 	w 

Figure 3.124 layer of neurons 171. 

In this network, each element of the input vector p is connected to each neuron input 

through the weight matrix W. The ith  neuron has a summer that gathers its weighted inputs and 
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bias to form its own scalar output n(i). The various n(i) taken together form an S-element net 

input vector n. Finally, the neuron layer outputs form a column vector a. 

Multiple Layers of Neurons 

A network can have several layers. Each layer has a weight matrix W, a bias vector b, and 

an output vector a. To distinguish between the weight matrices, output vectors, etc., for each of 

these layers in the figures, the number of the layer is appended as a superscript to the variable of 

interest. You can see the use of this layer notation in the three-layer network shown below, and 

in the equations at the bottom of the figure. 

Inputs Layer I Layer 2 Layer 3 
rm 

'•8 i a'1 1 	E'{~' 	,•1 	~ n2 i a2 ~ 	1  3 2 n 1 ~~ 	1 

1 1 tJ 1 

2 ' 2 X12 	 I n 2 	a22 

XJ 
n 

F1 
a32 

- I J' )c;IE 
13 1 

2 : )1(X b2 : 	: 
• 

PR 5~ X25 X25 
1 

"3 a , 3 

I 1 1 

a' — f'(iW''' p+ b') S2 — f {LNV'' a' +b) a3 — f (LW ' a`+ bl) 

a3 - f (LW'uf2(LV4+f'(1W"'p +b')+b 2)+ b) 

Figure 3.13 Multiple Layers of Neurons [7]. 

The network shown above has R1 inputs, Sl neurons in the first layer, S2 neurons in the 

second layer, etc. It is common for different layers to have different numbers of neurons. A 

constant input 1 is fed to the bias for each neuron. 
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3.4 Perceptrons, feedforward networks and backpropagation algorithm 

Perceptrons 

An arrangement of one input layer of McCulloch-Pitts neurons feeding forward to one 

output layer of McCulloch-Pitts neurons is known as a Perceptron. It is similar to the layer of 

neurons discussed above. 

Feed forward networks 

Feed-forward ANNs allow signals to travel one way only; from input to output. There is 

no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-forward 

ANNs tend to be straight forward networks that associate inputs with outputs. They are 

extensively used in pattern recognition. This type of organization is also referred to as bottom-up 

or top-down [5]. 

Multi-Layer Perceptron (MLP) 

Multi-layer perceptrons are feed-forward nets with one or more layers of nodes between 

the input and output nodes. These additional layers contain hidden units or nodes that are not 

directly connected to both the input and output nodes. [8] 

Multi-layer perceptrons have been applied successfully to solve some difficult and 

diverse problems in training them in a supervised manner with a highly popular algorithm, 

known as the error back-propagation algorithm. The algorithm is based on the error-correction 

learning rule. 

The multi-layer perceptron neural network is much more powerful than the single layer 

network. The MLP has three distinctive characteristics [9]: 

1) Each neuron includes a nonlinear activation function, which makes the nonlinearity of the 

input-output relation possible. 
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2) The network contains one or more layers of hidden neurons, which enable the network to 

learn complex tasks by extracting more meaningful features from the input patterns. 

3) The network exhibits a high degree of connectivity, determined by the synapses of the 

network. 

The multi-layer perceptron neural network model consists of a network of processing 

elements or nodes arranged in layers. Typically, it requires three or more Iayers of processing 

nodes: an input layer which accepts the input variables used in the classification procedure, one 

or more hidden layers, and an output layer with one node for one class. 

The principle of MLP is that when data from an input pattern is presented at the input layer 

the network nodes perform calculations in the successive layers until an output value is 

computed at each of the output nodes [9]. 

Backpropagation algorithm 

The back propagation training algorithm is an iterative gradient algorithm designed to 

minimize the mean square error between the actual output of a multilayer feed-forward 

perceptron and the desired output. It requires continuous differentiable non-linearities. The 

following assumes a sigmoid logistic non-linearity is used where the function f (a) is [8] 

1 	 (3.1) 
f (a) - 1 + e( 9 ) 

The back-propagation algorithm consists of five steps [8]: 

Step 1. Initialize weights and offsets 

Set all weights and node offsets to small random values. 

Step2. Present input and desired outputs 
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Present a continuous valued input vector xo, xl, . . . , xN J and specify the desired 

outputs do, dl, ... , d,- 1 . 

Step3. Calculate actual outputs 

Use the sigmoid nonlinearity from above and hidden activation and weights values to 

calculate outputs yo, yl, . • . , yM 1 

Step4. Adapt weights 

Use a recursive algorithm starting at the output nodes and working back to the first 

hidden layer. Adjust weights by 

w1j(t + 1) = w1(t) + 176.xi 	 (3.2) 

In this equation WL j (t) is the weight from hidden mode i or from an input to node j at 

time t, xl  is either the output of node i or is an input, 17 is a gain term, and ój is an error 

term for node j. if node j is an output node, then 

81 = y1(1 — y1)(d1 —yj), 	
(3.3) 

Where dj is the desired output of node j and yj is the actual output. 

If node j is an internal hidden node, then 

(Sj = xJ (1  — x) > 8kwjk' 	
(3.4) 

k 

Where k is overall nodes in the layers above node j. Internal node thresholds are adapted 

in a similar manner by assuming they are connection weights on links from auxiliary 

constant-valued inputs. 

Step5. Repeat by going to step2 
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3.5 The learning process 

All learning methods used for adaptive neural networks can be classified into two major 

categories: 

• Supervised learning which incorporates an external teacher, so that each output unit is 

told what its desired response to input signals ought to be. During the learning process 

global information may be required. Paradigms of supervised learning include error-

correction learning, reinforcement learning and stochastic learning [5]. 

An important issue concerning supervised learning is the problem of error convergence, 

i.e. the minimization of error between the desired and computed unit values. The aim is to 

determine a set of weights which minimizes the error. One well-known method, which is 

common to many learning paradigms, is the least mean square (LMS) convergence. 

• Unsupervised learning uses no external teacher and is based upon only local 

information. It is also referred to as self-organization, in the sense that it self-organizes 

data presented to the network and detects their emergent collective properties. Paradigms 

of unsupervised are Hebbian learning and competitive learning. [5] 

3.6 Conclusion 

An Artificial Neural Network (ANN) is a massively parallel distributed processor made up 

of highly interconnected simple processing elements called neurons. The way this processor works 

is inspired by the way biological nervous systems, such as the brain, process information. 

If we relate ANN neuron to the biological neuron, the weight corresponds to the strength 

of a synapse, the cell body is represented by the summation and the transfer function and the 

neuron output represents the signal on the axon. 
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Two or more of the neurons can be combined in a layer, and a particular network could 

contain one or more such layers. A special kind of layered neurons is the multi-layer perceptron 

(MLP). MLPs are feed-forward nets with one or more layers of nodes between the input and 

output nodes. They have been applied successfully to solve some difficult and diverse problems 

if trained in a supervised manner with a highly popular algorithm, known as the back-

propagation algorithm. 

The back propagation training algorithm is an iterative gradient algorithm designed to 

minimize the mean square error between the actual output of a multilayer feed-forward 

perceptron and the desired output. 

If we use a three layer perceptron and train it in a supervised manner using a robust 

backpropagation algorithm, it can be applied to ECG data compression. The idea is to represent 

the small differences between ECG beats using a hidden layer and the similarities using a single 

weight. If the number of hidden neurons are less than the number of the input neurons then data 

are compressed. 

Before proceeding to present the application of this technique to compress ECG data, we 

will discuss, in the next chapter, the existing ECG data compression schemes and view their 

merits and demerits. This will be crucial in evaluation and comparison of the proposed technique 

with others. 
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CHAPTER FOUR 

EXISTING ECG DATA COMPRESSION 
TECHNIQUES 
4.1 Introduction 

In chapter two, we have discussed about the heart of cardiac monitoring systems, the ECG 

signal. We have selected artificial neural networks as our computational tools in order to 

compress these signals. Thus we have given an overview of these computational tools in chapter 

3. But before presenting my proposed technique of ECG data compression, I would like to 

discuss in this chapter about the existing data compression techniques which are applied to the 

ECG signal. This will help us to make a fair comparison between the proposed technique and the 

existing ones. 

Data compression techniques have been utilized in a broad spectrum of communication 

areas such as speech, image, and telemetry transmission [11]. Data compression methods have 

been mainly classified into three major categories [12]: a) direct data compression, b) 

transformation methods, and c) parameter extraction techniques. 

Data compression by the transformation or the direct data compression methods contains 

transformed or actual data from the original signal. Whereby, the original data are reconstructed 

by an inverse process. The direct data compressors base their detection of redundancies on direct 

analysis of the actual signal samples. In contrast, transformation compression methods mainly 

utilize spectral and energy distribution analysis for detecting redundancies. 
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On the other hand, the parameter extraction method is an irreversible process with which a 

particular characteristic or parameter of the signal is extracted. The extracted parameters (e.g., 

measurement of the probability distribution) are subsequently utilized for classification based on 

a priori knowledge of the signal features. 

Existing data compression techniques for ECG signals lie in two of the three categories 

described: the direct data and the transformation methods. Direct data compression techniques 

for ECG signals have shown a more efficient performance than the transformation techniques in 

regard particularly to processing speed and generally to compression ratio [13]. Most of the 

transformation techniques have been developed specifically for data compression of multi-

orthogonal ECG leads. 

Each compression scheme is presented in accordance to the following five issues [11]: 

a) A brief description of the structure and the methodology behind each ECG compression 

scheme is presented along with any reported unique advantages and disadvantages. 

b) The issue of processing time requirement for each scheme has been excluded. In light of 

the current technology, all ECG compression techniques can be implemented in real-time 

environments due to the relatively slow varying nature of ECG signals. 

c) The sampling rate and precision of the ECG signals originally employed in evaluating 

each compression scheme are presented along with the reported compression ratio. 

d) Since most of the databases utilized in evaluating ECG compression schemes are 

nonstandard, database comparison has been excluded. We believe such information does 

not provide additional clarity and at times may be misleading. However, every effort has 

been made to include comments on how well each compression scheme has performed. 
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The intent is to give the reader a feeling for the relative value of each compression 

technique. 

e) Finally, the fidelity measure of the reconstructed signal compared to the original ECG 

has been ,primarily based on visual inspection. Besides the visual comparison, many 

compression schemes have employed the percent root-mean-square difference (PRD). 

The PRD calculation is as follows: 

PRD —.
~E~' 1[xorg(i)— xrec(l)]2 * 100 	 (4.1) 

Zi=p. xorg2(l) 

where xorg and X rec are samples of the original and reconstructed data sequences. 

4.2 Classical direct data compression methods 
Most of the direct data compression techniques rely on utilizing prediction or interpolation 

algorithms. These techniques attempt to reduce redundancy in a data sequence by examining a 

successive number of neighboring samples. A prediction algorithm utilizes a priori knowledge 

of some previous samples, while an interpolation algorithm employs a priori knowledge of both 

previous and future samples. 

Direct data compression methods are classified into three categories: tolerance comparison 

Compression, differential pulse code modulation (DPCM), and entropy coding methods 

4.2.1 Tolerance-Comparison Data Compression Techniques 

Most of the tolerance-comparison data compression techniques employ polynomial 

predictors and interpolators. The basic idea behind polynomial prediction/ interpolation 

compressors is to eliminate samples, from a data sequence, that can be implied by examining 

preceding and succeeding samples. The implementation of such compression algorithms is 
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usually executed by setting a preset error threshold centered on an actual sample point. 

Whenever the difference between that sample and a succeeding future sample exceeds the preset 

error threshold, the data between the two samples is approximated by a line whereby only the 

line parameters (e.g., length and amplitude) are saved. Description of tolerance-comparison 

compression techniques based on polynomial predictors/interpolators has been consolidated in 

[14] 

a) Polynomial Predictors: Polynomial predictors are based on a finite difference 

technique which constraints an nth-order polynomial to K + 1 data points. Predicted 

data are obtained by extrapolating the polynomial one sample point at a time. The 

polynomial predictor [15] [16] is 

Yn = Yn-1 + +t 2 y_ .  + ... + kYn-1 	 (4.2) 

Where yn  = predicted sample point at time t, 

Yn-1 = sample value atone sample period prior to t, 

1Yn-1 = Yn-1 — Yn-2 

AkYn-1 = Ok-iYn-1 - Ak-lYn-2 

The value of k represents the order of the polynomial prediction algorithm. 

Zero-Order Predictor (ZOP): The ZOP is a polynomial predictor with k = 0. In this case, 

Yn = Yn-1 
	 (4.3) 

where the predicted value is merely the previous data point. Several implementations of 

this algorithm are exploited by employing different aperture (peak error) techniques [ 12], [ 16], 
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[17]. The most efficient ZOP technique uses a floating aperture (sometimes called the step 

method) wherein a tolerance band ±c is centered on the last saved data point as shown in Figure 

4.1 .Succeeding sample points that lie in the tolerance band (±e) , centered around the last saved 

sample point, are not retained. The tolerance band actually "floats" with the non-redundant 

(saved) data points. 

First-Order Predictor (FOP): The FOP is an implementation of equation (4.2) with k = 1 [12], 

[16], [17]. This yields a first-order polynomial of the form, 

Yn = 2Yn- — Yn-2 	 (4.4) 

L L --- 

U 4 	 9 Saved sanples U - 

E
4 } 7e 	•Eliminated samples E 0 Saved samdes 

Q 	Q Predicted samples Ekr~ wed wpbs 

Q 4 	Predicted samples 
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Figure 4.1 Illustration of the ZOP 
	

Figure 4.2 Illustration of the FOP 
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The predicted value is a point on the straight line drawn between the last two data points 

(yn,_1  and y_2). The FOP algorithm with a floating aperture (Figure 4.2) is initiated by retaining 

the first two data points and drawing a straight line between these two points. An aperture of 

width ±e is centered on the obtained line. If the actual sample point (yn) is within ±E of the 

predicted value, then that sample point is not saved. Otherwise, (yn) is saved and a new 

prediction line is drawn through (yn) and the previous predicted point. The signal reconstruction 

requires the non-redundant sample values along with the corresponding time. 

b) Polynomial Interpolators: Unlike the case of prediction, polynomial interpolators utilize 

both past and future data points to decide whether or not the actual sample point is redundant. 

In other words, all samples between the last retained sample and the present sample point 

affect the interpolation. Low-order polynomial interpolators have been found to be very 

efficient in ECG data compression [18]. 

Zero-Order Interpolator (ZOI): The principal operation of the zero-order interpolator is 

illustrated in Fig. 3. The ZOI is similar to the ZOP in the sense that a horizontal (zero-order) 

line is employed to determine the largest set of consecutive data points within a preset error 

III Roorkee I India 



45 

threshold. The main difference lies in selecting the sample point that represents the redundant 

set. The interpolator retained sample is determined at the end of the redundant set, in contrast 

to the first sample in the case of the predictor. Moreover, the saved sample for the 

interpolator algorithm is computed as the average between the minimum and the maximum 

sample values in the set. [I1 ] 

First-Order Interpolator (FOI): The first-order interpolator (linear method) assumes that data 

will continue in the same direction (slope) once it has started. Instead of drawing a horizontal 

line as is the case in the zero-order method, a line is drawn to establish a slope. The firstorder 

interpolator with two degrees of freedom (FOI-2DF) has been found to be the most efficient 

compression scheme among other first-order interpolators [ 12], [19].  The FOI-2DF draws a 

straight line between the present sample and the last saved sample so that intermediate data 

points are within a specified tolerance of the interpolated value. The encoded message 

contains information about the length of the line and its starting and ending points. The 

ending point of a line, in this interpolation scheme, is used as the starting point of the next 

line segment. This results in a reduced code word length with decreased flexibility (i.e., two 

degrees of freedom). In other words, only one data point (the ending point) needs to be 

retained for each line after the very first saved line. 

4.2.2 Data Compression by Differential Pulse Code Modulation 

The basic idea behind the differential pulse code modulation (DPCM) is that when data 

samples are estimated, the error (residual) between the actual sample and the estimated sample 

value(en  = yn  — 9) is quantized and transmitted or stored [20]. Consequently, waveform 

redundancy reduction by DPCM coders is basically achieved by representing the actual 

correlated signal, in terms of an uncorrelated signal, namely, the estimation error signal. 
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4.2.3 Entropy Coding 

The theoretical basis of entropy coding can be traced back to Shannon's theorem of 

communication theory [21]. Data compression by entropy coding is obtained by means of 

assigning variable-length code words to a given quantized data sequence according to their 

frequency of occurrence. This compression method attempts to remove signal redundancy that 

arises whenever the quantized signal levels do not occur with equal probability. 

4.3 Direct ECG Data Compression Schemes 
This section presents the direct data compression schemes developed specifically for ECG 

data compression. 

4.3.1 The AZTEC Technique 

The amplitude zone — time epoch coding (AZTEC) algorithm originally developed by 

Cox et al. [22] for preprocessing real-time ECG's for rhythm analysis. It has become a popular 

data reduction algorithm for ECG monitors and databases with an achieved compression ratio of 

10: 1 (500 Hz sampled ECG with 12 b resolution) [23] [24]. However, the reconstructed signal 

demonstrates significant discontinuities and distortion. In particular, most of the signals 

distortion occurs in the reconstruction of the P and T waves due to their slow varying slopes. 

The AZTEC algorithm converts raw ECG sample points into plateaus and slopes. The 

AZTEC plateaus (horizontal lines) are produced by utilizing the zero-order interpolation (ZOI) 

discussed above .b). The stored values for each plateau are the amplitude value of the line and its 

length (the number of samples with which the line can be interpolated within aperture E). The 

production of an AZTEC slope starts when the number of samples needed to form a plateau is 

less than three. The slope is saved whenever a plateau of three samples or more can be formed. 

The stored values for the slope are the duration (number of samples of the slope) and the final 
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elevation (amplitude of last sample point). Signal reconstruction is achieved by expanding the 

AZTEC plateaus and slopes into a discrete sequence of data points. 

4.3.2 The Turning Point Technique 

The turning point (TP) data reduction algorithm [24] was developed for the purpose of 

reducing the sampling frequency of an ECG signal from 200 to 100 Hz without diminishing the 

elevation of large amplitude QRS's. 

The algorithm processes three data points at a time; a reference point (Xo) and two 

consecutive data points (X1 and X 2). Either XI or X2 is to be retained. This depends on which 

point preserves the slope of the original three points. The TP algorithm produces a fixed 

compression ratio of 2:1 whereby the reconstructed signal resembles the original signal with 

some distortion. A disadvantage of the TP method is that the saved points do not represent 

equally spaced time intervals. 

4.3.3 The CORTES Scheme 

The coordinate reduction time encoding system (CORTES) algorithm [26] is a hybrid of 

the AZTEC and TP algorithms. CORTES applies the TP algorithm to the high frequency regions 

(QRS complexes), whereas it applies the AZTEC algorithm to the isoelectric regions of the ECG 

signal. The AZTEC and TP algorithms are applied in parallel to the incoming sampled ECG 

data. Whenever an AZTEC line is produced, a decision based on the length of the line is used to 

determine whether the AZTEC data or the TP data is to be saved. If the line is longer than an 

empirically determined threshold, the AZTEC line is saved; otherwise the TP data are saved. 

Only AZTEC plateaus (lines) are generated; no slopes are produced. The CORTES signal 

reconstruction is achieved by expanding the AZTEC plateaus into discrete data points and 

interpolating between each pair of the TP data. 
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Performance evaluation of the AZTEC, TP, and CORTES algorithms were reported in 

[26] (ECG's sampled at 200 Hz with 12 b resolution) with compression ratios of 5: 1, 2: 1, and 

4.8 : 1 respectively, and PRD's of 28, 5, and 7, respectively. 

4.3.4 Fan and SAPA Techniques 

Fan and scan-along polygonal approximation (SAPA) algorithms, developed for ECG 

data compression, are based on the first-order interpolation with two degrees of freedom (FOI-

2DF) technique. 

a) The Fan Algorithm: In essence, the Fan is a method of implementing the FOI-2DF 

without requiring the storage of all the actual data points between the last transmitted 

point and the present point during program execution. Moreover, it draws the longest 

possible line between the starting point and the ending point so that all intermediate 

samples are within the specified error tolerance [11].  An illustration of the Fan method is 

shown in Fig.4.6. The Fan algorithm starts by accepting the first data point as a 

nonredundant (permanent) point (to) and functions as the origin. Two slopes (U1, LI) are 

drawn between the originating point and the next sample plus a specified threshold (+c). 

One upper slope (U1) passes through a point greater than the second sample point value 

by a tolerance (e), while the other lower slope (LI) passes through a point less than the 

second sample point value by an c. If the third sample point (t2) falls within the area 

bounded by the two slopes, then new slopes (U2, L2) are calculated between the 

originating point and an a greater and an c lower than the third sample point. These new 

slopes (U2, L2) are compared to the previously stored slopes (U1, LI) and the most 

converging (restrictive) slopes are retained (U2, L2). [11] 
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The process is repeated whereby future sample values are compared with the values of 

the most convergent slopes. Whenever a sample value falls outside the area bounded by 

the converging slopes, the sample immediately preceding this sample point is saved as 

the next permanent sample. This permanent sample point also becomes the new 

originating point and the algorithm repeats. 

b) SAPA-2 Algorithm: The theoretical bases of this algorithm are that the deviation 

between the straight lines (approximated signal) and the original signal is never more 

than the preset error tolerance (e). The only difference between the Fan and SAPA-2 
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Figure 4.6 1l)nstration of the Fan method. Upper and lower slopes ( U and L ) are drawn 
within threshold (C) around sample points taken at t i , t2, etc [111 

algorithms is that, in addition to the two slopes calculated in the Fan algorithm, 

SAPA- 2 calculates a third slope between the originating sample point and the actual 

future sample point (called center slope). Whenever the center slope value does not fall 

within the two converging slopes boundary, the immediately preceding sample point is 

considered as a permanent sample. [11] 
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4.3.5 ECG Data Compression by DPCM 

The simplest DPCM system for data compression is a system that employs the predictor 

Hence, the first-difference signal (amplitude between successive samples 

en = y — yn is substituted for the actual signal itself. ECG data compression based on such 

a system has been referred to as "delta coding." [I1 ] 

4.3.6 Entropy Coding of ECG's 

The output of an ECG DPCM encoder is, however, mapped into variable length 

codewords instead of fixed length ones. A disadvantage of variable length encoding is the 

Possibility of serious decoding errors that may occur due to transmission errors [11]. If the 

codewords are not delimited by special means, a 

sequence of erroneous receiver outputs. 

4.3.7 Peak-Picking Compression of ECG's 

The peak-picking compression techniques are 

~ long 

of a 

continuous signal at peaks (maxima and minima) and other significant points of the signal. 

The basic operation of such techniques involves the extraction of signal parameters that 

convey "most" of the signal information. These parameters include the amplitude and 

location of the maxima and the minima points, slope changes, zero-crossing intervals, and 

Points of inflection in the signal. These parameters are substituted in place of the original 

signal. Upon reconstruction, the signal is restored by polynomial fitting techniques such as 

straight lines or parabolic functions. [1 111 

4.3.8 ECG Cycle-to-Cycle Compression 

Basically, the rationale of the cycle-to-cycle compression method is to substitute a 

periodic signal by one cycle period and a count of the total number of cycles that occur in the 
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signal. Yet this approach is only applicable to periodic signals with the constraint that all the 

signal cycles are exactly the same, which is not the case in ECG waveforms. However, the 

ECG is a quasi-periodic signal which does not change appreciably in morphology except as a 

result of a change in the heart function. The cycle-to-cycle ECG compression technique may 

potentially result in a high compression ratio when applied to Holter ECG's. This is best 

justified by noting that in the case of Holter ECG's [27] only certain short-period segments 

of the 24 h recording show abnormality relative to the large number of normal sinus ECG's. 

Table 4.1 Summary of some ECG data compression schemes l l 

Compression 
signal signal o  

Method 
ratio 

frequency precision  PRD (/o) comments 
(Hz) (bits) 

AZTEC 10.0 500 12 28.0 Poor P and T Fidelity 

Sensitive to signal TP 2.0 200 12 5.3 
frequency(SF) 
Sensitive (SF) 

CORTES 4.8 200 12 7.0 
Poor P Fidelity 

Fan/SAPA 3.0 250 -- 4.0 High Fidelity 
Entropy Coding of susceptible to 

2"d-difference ECGs 
2.8 250 10 -- transmission errors 

peak-picking (spline) 
with entropy coding 

10.0 500 8 14.0 Limited Results 

DPCM (delta coding Sensitive (SF) 
with threshold) 

4.0 300 8 -- Poor P Fidelity 
DPCM 

2.5 250 12 -- High Fidelity 
Linear prediction 

DPCM-Linear Sensitive (SF) 
Prediction 7.8 500 8 3.5 and quantization Interpolation, and 

Entropycoding 
Orthogonal 

Transforms (CT, 3.0 250 -- -- Lead-I 
KLT,HT) 

Dual application of 
12.0 250 12 -- (X,Y,Z) Leads 

K-L Transformation 

Fourier Descriptors 7.4 250 12 7.0 (X,Y) Leads 
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4.4 Transformation compression techniques 
Unlike direct data compression, most of the transformation compression techniques have 

been employed in VCG or multilead ECG compression and require ECGwave detection. In 

general, transformation techniques involve preprocessing the input signal by means of a 

linear orthogonal transformation and properly encoding the transformed output (expansion 

coefficients) and reducing the amount of data needed to adequately represent the original 

signal. Upon signal reconstruction, an inverse transformation is performed and the original 

signal is recovered with a certain degree of error. However, the rationale is to efficiently 

represent a given data sequence by a set of transformation coefficients utilizing a series 

expansion (transform) technique. 

Many discrete orthogonal transforms [28] [29] [30] have been employed in digital signal 

representation such as Karhunen-Loeve transform (KLT), Fourier (FT), Cosine (CT), Walsh 

(WT), Haar (HT), etc. The optimal transform is the KLT (also known as the principal 

components transform or the eignevector transform) in the sense that the least number of 

orthonormal functions is needed to represent the input signal for a given rms error. Moreover, 

the KLT results in decorrelated transform coefficients (diagonal covariance matrix) and 

minimizes the total entropy compared to any other transform. However, the computational 

time needed to calculate the KLT basis vectors (functions) is very intensive. This is due to 

the fact that the KLT basis vectors are based on determining the eigenvalues and 

corresponding eigenvectors of the covariance matrix of the original data, which can be a 

large symmetric matrix. The lengthy processing requirement of the KLT has led to the use of 

suboptimum transforms with fast algorithms (i.e., FT, WT, CT, HT, etc). 
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4.5 Conclusion 

As discussed above direct data compression methods are widely employed in ECG data 

compression. This is mainly due to the ease of implementation of such techniques. On the other 

hand, limited work has been reported on ECG data compression by transformation techniques. 

This has been primarily due to the computational requirement, and in some cases due to the low 

achieved compression ratios (especially in single lead ECG compression). 

ECG data compression techniques comparison, based in absolute terms on the reported 

compression ratios, is improper. In fact, the compression ratio calculation of such techniques has 

been based on comparing the resulted compression parameters with the number of samples in the 

original data [11]. Among many factors, sampling rate and precision of the "input" ECG data, 

and the word-length of the "output" compression parameters, which directly affect the 

compression ratio value, have not been taken into consideration. 

Table 4.1 provides a summary of ECG data compression techniques in terms of 

compression ratio (CR), sampling frequency (SF) and A/D precision level, percent rms 

difference (PRD), and pertinent reported comments whenever available. The sampling rate and 

precision of ECG signals originally employed in each compression method are reported in an 

attempt to form some basis of comparison among such techniques. 

We have made a broad discussion of the existing ECG data compression techniques in 

attempt to get comparison points for the technique to be developed. The next chapter deals with 

the proposed technique, which is artificial neural network based ECG compression system and 

performs experiments using real ECG data. 

!IT Roorkee I India 



54 

CHAPTER FIVE 

THE PROPOSED TECHNIQUE 
ECG COMPRESSION SYSTEM BASED ON BACK- PROPAGATION ANN 

5.1 Introduction 
BP neural network can be used to compress ECG signals because ECG signals are quasi-

periodicity signals. The difference between cycles is little. When BP neural network is used to 

study each cycle of ECG waves, the little change between cycles can be expressed with hidden 

units' values, and weights don't change. So we can only store hidden units' values. If the number 

of hidden units is smaller than the number of input data, data are compressed. [31] 

In this direct data compression technique the ECG data are first pre-processed. Four filters 

are adopted to process the data to improve, its quality. Then the R-points of the ECG data are 

detected using a robust algorithm and the data are partitioned by taking R-points as base. The 

partitioned beats are then trained by a feed-forward artificial neural network and hidden values 

and output weights are saved. 

5.2 The pre-processing of ECG data 
Unfortunately, modem electrocardiographs record an ECG signal contaminated by various 

kinds of interference signals. These signals include the ubiquitous 60Hz powerline frequency, 

the depolarization of muscle tissue contraction creating electromyographic interference, and the 

rhythmic inhalation and exhalation during respiration causing a low frequency baseline drift. 

The ECG data can also be corrupted if the subject being tested moves suddenly, causing an 

abrupt baseline shifts. 
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The important compression parameters, compression ratio, compression precision, and 

compression rate are significantly affected by noise. Some noise sources can be eliminated 

before recording, such as powerline noise that can be easily removed with a 60Hz notch filter, 

but others, such as electromyographic interference and abrupt baseline shift, must be identified 

after the data has been collected due to their irregular nature. Thus various filters must be 

implemented to eliminate noise. These filters may include both analog and digital filters. 

In this proposed work four digital filters are used to solve noise problem. These digital 

filters are simple, effective and real-time. 

Notch filter 

The filter is designed to get rid of the powerline interference [main paper] (In this 

dissertation, M1T-BIH database is used as a source of ECG data to test the algorithms. Hence 

powerline frequency is 50Hz). The algorithm of Notch tilter is: 

y(n) _ ? [x(n) + x(n — k)] 
	

(5.1) 

Low-pass filter 

The following Low-pass filter is used to eliminate low, amplitude and high frequency 

noise [main paper]. 

y(n) = x(n) + 4x(n — 1) + 6x(n — 2) + 4x(n — 3) + x(n — 4) 	(5.2) 

The following low-pass filter is used to smooth the ECG waves. 

y(n) _ [ x(n — 1) + 2x(n) + x(n + 1) ]/4 	 (5.3) 

High-pass filter 
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The following high-pass filter is used to eliminate low frequency noise such as the drift 

of the baseline [31]. The algorithm is: 

y(n) = 32x(n — 16) — [y(n —1) + x(n) — x(n — 32) 	 (5.4) 

5.3 R-point detection 
The ability to detect QRS complexes in ECG signals is a very important skill in the field of 

medical instrumentation. It is very important either in the identification of ECG waves or in the 

compression of ECG data. 

In this work ECG data are first partitioned into different cycles before they are 

compressed. The partitioning is based on R points. The detection of R points is the precondition 

of the ECG data compression. 

Numerous algorithms have been devised in order to accomplish this task of automated R 

point detection. Five algorithms described by Friesen et al [32] are discussed here. Three 

incorporated use of the amplitude and the first derivative of the ECG signal — they are designated 

as AF 1, AF2 and AF3. The other two , :algorithms used only the first derivative and are 

designated as FD 1 and FD2. 

Algorithms Based on Amplitude and First Derivative 

AF1: required finding three threshold constants, one for the ascending slope of the ECG signal, 

one for the descending slope, and one for the amplitude of the QRS complex. The algorithm 

calculates the first derivative (slope) of the ECG data is found by using the simplified derivative 

expression of an FIR filter (next sample minus previous sample). [32] 
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Using the first derivative the algorithm loops through the ECG sample and finds where three 

consecutive values in the slope vector are above the ascending threshold. Once it finds data that 

satisfies this condition, it looks for when two consecutive values that are below the descending 

slope threshold within 100 milliseconds, and if all data points between these ascending and 

descending points are above the amplitude threshold, the index of the first point above the 

ascending threshold is considered the location of the start of a QRS. This cycle is continued until 

the end of the sampled data is reached. 

The algorithm based on AF1 is [32]: 

Amplitude threshold = 0.3 max [ X (n) ] 	1 < n < length(x) 

Y(n) = X(n + 1) — X(n — 1) 	2 < n < length(x) — 1 
	

(5.5) 

Y(i),Y(i + l),Y(i + 2)> 0.5 	and 

Y (j),  Y  (j  + 1) < —0.3 	where (i + 2) < j < (i + 25) 

and 

X (i ), X (i + 1), ... ,X (j + 1) > amplitude threshold 

AF2: utilizes its amplitude threshold differently than AF 1. It first rectifies the ECG signal, and 

then sets any data point less than the amplitude threshold equal to the threshold value. The 

derivative of the resulting signal is found in the same way as in AF 1, and any point found to have 

a slope above a threshold is considered a QRS complex [32]. The algorithm used based on AF2 

is 

0 A threshold is calculated as a fraction of the peak value of the ECG: 

Amplitude threshold = 0.4 * max [ X (n) ] 
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• The raw data is then rectified: 

Y0(n) = X(n) 	if X(n) >= 0 	1 < n < length(X) 

Y0(n) _ —X(n) 	if X(n) < 0 	1 < n < length(X) 

• The rectified ECG is passed through a low level clipper: 

Y1 (n) = Y0(n) 	if Y0(n) >= amplitude threshold 

Y1 (n) = amplitude threshold 	if Y0(n) < amplitude threshold. 

• The first derivative is calculated at each point of the clipped, rectified array: 

Y2(n) = Y I (n + 1) — Y 1(n — 1) 	2 < n < length(y1) 

• A QRS candidate occurs when a point in Y2( n ) exceeds the fixed constant threshold, 

Y 2 (i) > 0.4 * max(Y2) 	 (5.6) 

AF3: computes the first derivative of the ECG signal (in the same way as AF 1 and AF2), and 

then loops through the signal searching for four consecutive points whose derivatives exceed the 

pre-determined slope threshold. Once four consecutive points are found as such, a check is 

performed to see if the product of the first derivative and the amplitude of the next two sample 

points of the ECG are positive. If so, it identifies the first point exceeding the slope cutoff as a 

QRS location. [32] 

The algorithm used based on AF3 is: 

• The first derivative is calculated at each point of the ECG: 

Y(n) = X(n + 1) — X(n — 1) 	2 < n < length(x) — 1 

• The first derivative array is then searched for points which exceed a constant threshold: 
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Y(i)>— 0.15 

• Then the next three derivative values Y (i + 1) , Y( i + 2 ) , and Y (i + 3) must also exceed 

0.15. 

• If the above conditions are met, point i can be classified as a QRS candidate if the next two 

sample points have positive slope amplitude products: 

Y(i+ 1)X (i + 1) and Y(i + 2)X(i + 2) >0 

Algorithms Based on First Derivative Only 

FD1: only uses only the first derivate to find the QRS complexes. Unlike the other algorithms, it 

calculates the derivative using four data points — two before and two after the point in question. It 

then determines QRS locations by finding points whose derivatives exceed a set percentage of 

the maximum value of the derivative in the ECG. [32] 

The algorithm used based on FD  is: 

• The first derivative is calculated for each point of the ECG, using Menard's formula: 

Y(n) = —2X(n — 2) — X(n — 1) + x (n + 1) + 2X(n + 2 ) 

3 < n < length(x) — 2 

• The slope threshold is calculated as a fraction of the maximum slope for the first derivative array. 

Slope threshold = 0.70 max [ Y (n)] 	3 < n < length(x) — 2 

• The first point that exceeds the slope threshold is taken as the onset of a QRS candidate: 

Y (i) > slope threshold 

FD2: uses only the first derivate, as calculated in the AF algorithms, to find the QRS complexes. 

It accomplishes this by finding one sample above the constant slope threshold value and then 
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checking the next three data points for a sample above the threshold. In other words, two out of 

four data points must have slopes exceeding a threshold in order to be identified as a QRS 

interval. The first point above the threshold is considered the start of the QRS. The rest of the 

peaks are found in the same fashion. [32] 

The algorithm used based on FD2 is: 

• The first derivative is calculated at each point of the ECG: 

Y(n) = X(n + 1) — X(n — 1) 	2 < n < length(x) — 1 

• This array is searched until a point is found that exceeds the slope threshold: 

Y(i) >— 0.45 

• A QRS candidate occurs if another point in the next three sample points also exceeds the 

threshold: 

Y(i + 1) > 0.45, or 

Y(i + 2) > 0.45, or 

Y(i + 3) > 0.45 

Selected algorithm 

For the ECG data used in this dissertation the second type of algorithm based on 

Amplitude and First Derivative (i.e. AF2) is used. 

The performance of the selected QRS detection mechanism (i.e. AF2) is evaluated and 

summarized in table 5.1. The duration of the ECG data used is 1. min. and the sampling 

frequency is 360 Hz. Therefore the total number of points in a signal is 21,600. 
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Table 5.1 Performance evaluation of the selected QRS detector 

No. 

ECG 
data 

Name 

Original 
number 

of R 
points 

Detected 
number of 
R points 

False R 
oints 

Missed R 
points 

Maximum 
R value Remarks 

1 MbalOO 74 74 0 0 0.9 

2 Mba101 71 72 1 0 1.44 
The false R point is a 

noised T point 

3 Mbal02 73 73 0 0 0.88 
4 Mbal03 70 70 0 0 1.79 

5 Mba104 74 73 0 1 1.52 

6 Mbal05 83 83 0 0 1.74 

7 Mbal07 70 70 0 0 2.695 

8 Mballl 69 69 0 0 1.085 

9 Mba112 86 88 2 0 0.85 

10 Mba114 54 54 0 0 0.69 

11 Mba 115 63 63 0 0 1.65 

12 Mba 117 50 50 0 0 1.86 

13 Mbal19 65 65 0 0 1.555 

14 Mbal21 60 60 0 0 1.475 

15 Mba122 87 87 0 0 1.27 

16 Mbal23 49 49 0 0 1.55 

17 Mba 124 49 49 0 0 1.27 

18 Mba201 90 90 0 0 0.94 

19 Mba202 53 52 0 1 1.4 

One R point missed due 
to its abnormally low 

amplitude value 

20 Mba205 89 89 0 0 0.835 

21 Mba209 93 93 0 0 1.235 

22 Mba210 91 85 0 6 1.045 

Six R point missed due 
to their very low 
amplitude value 

23 Mba212 90 90 0 0 1.315 

24 Mba214 77 74 0 3 1.995 

25 Mba215 72 71 0 1 1.415 

26 Mba219 74 74 0 0 1.6 

27 Mba220 72 72 0 0 1.52 
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28 Mba222 78 67 0 11 1.515 
R points missed due to 

their curved nature 

29 Mba223 80 80 0 0 1.375 

30 Mba228 69 69 0 0 2.26 

31 Mba230 79 75 0 5 1.98 

R points missed due to 
their very low amplitude 

value 

32 Mba231 63 63 0 0 1.52 

33 Mba234 92 92 0 0 1.75 

As we can observe from the above table, the R-points of most of the ECG records are 

accurately detected. In record number 2 (i.e. Mbal 01) a single R-point is missed. This was due to 

a noised T point acting like an R-point. 

In record numbers 5, 19, 22, 24, 25, 28, and 31 R-points are missed and in some of them 

in significant way. This will definitely create a problem in the compression system because the 

cycles corresponding to these R-points will not exist. One remedy to solve this problem is to use 

two QRS detection algorithms jointly and detect the R-points missed by one using the other. 

But the proposed compression system has its own remedy too. If the some R-points are 

missed, it means there will be cycles which are unusually long, these cycles are filtered and will 

not be trained to the network and are left uncompressed. 

Similarly if some false R-points are detected, there will be cycles which are unusually 

short, these cycles are selected and stored uncompressed. These will avoid any miss-training of 

the artificial neural network. 

A sample of an ECG signal and the corresponding detected R waves is shown in figure 5.1. 
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Figure 5.1 A sample of an ECG signal and the corresponding detected R waves 

5.4 The compression system 
A conceptual illustration of the compression system is shown in figure 5.9. The ECG data 

is fed to the system. The system reduces the dimension of the data and stores it or transmits it. 

The compressed data is represented by the hidden activation values. Whenever the data is 

required for display or processing, the compression system reconstructs it. 
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5.4.1 Partitioning the ECG data 

Before compressing an ECG data, it must be first partitioned in to cycles/beats. It is the 

cycles which are then trained to the network. 

The partition of ECG cycles is based R points. We take the points among d1/3 before an 

R point and 2d2/3 after the R point as one cycle (where dl is the space between the current R 

point and the previous R point and d2 is the space between the current R point and the next R 

point). An R point's value is fixed on some input unit. [31 ] 

If the point number of ECG cycles is different from the input unit number and the output 

unit number, we can process them differently according to the extent of the difference. If the 

difference is small and the number of ECG sampling points is smaller than the number of input 

units, we use suitable values to supply deficiencies of the input units. If the difference is small 

and the number of ECG sampling points is bigger than the number of input units, we take one 

point every other point in the foreparts and the tails of cycles and keep the number of input data 

to equal the number of input units. 

5.4.2 Adopted network architecture 

A three layer feed-forward BP neural network is adopted to compress ECG data (see fig 

11  5.10). The number of the input neural units and the number of the output neural units equal the 

number of sampling points in an ECG cycle. The input unit number and the output unit number 

should be dynamic because heart rates are different for different persons or different time of the 

same person. We obtain the average heart rate of a patient through automatic measurement, and 

get the number of sampling points in an ECr cycle. The number is the input unit number and the 

output unit number. 
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Output Layer 
Input Layer 

Figure5.3 A three layer feed-forward BP neural network 

The neural unit number of hidden layer is 2. It is enough to express the difference of the 

same kind of ECG waves of the same person because there is little change between the ECG 

waves. Impermanent and highly aberrant ECG data are uncompressed and are directly stored. If 

the number of similar highly aberrant ECG data is five or more the system figures out new 

weights and hidden layer values. 

5.4.3 Training the BP network 

After the R-points of the ECG data are detected and the data is partitioned, it is trained to 

a 3-layer feed-forward network. Right after the network weights and biases are initialized, the 

network is ready to be trained for data compression. The training process requires a set of 

examples of proper network behavior—network inputs p and target outputs t. 
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During training the weights and biases of the network are iteratively adjusted to minimize 

the network performance, mean square error (mse) , which is the average squared error between 

the network outputs a and the target outputs t. 

The training mode used in this work is batch training mode. The weights and biases of 

the network are updated only after the entire training set has been applied to the network. The 

gradients calculated at each training example are added together to determine the change in the 

weights and biases. 

5.4.4 Selected BP training algorithm 

The basic idea of the backpropagation learning algorithm is the repeated application of 

the chain rule to compute the influence of each weight in the network with respect to an arbitrary 

error function E: 

aE _ aE  as1 aneti 	 (5.7) 
aw11  asp anet j  Ow11  

where w11  is the weight from neuron j to neuron i, s1  is the output, and net is the 

weighted sum of the inputs of neuron i. Once the partial derivative for each weight is known, the 

aim of minimizing the error function is achieved by performing a simple gradient descent: 

wl1 (t + 1) = w11(t) — E aE  (t) 	
(5.8) 

Obviously, the choice of the learning rate E, which scales the derivative, has an important 

effect on the time needed until convergence is reached. If it is set too small, too many steps are 

needed to reach an acceptable solution; on the contrary a large learning rate will possibly lead to 

oscillation, preventing the error to fall below a certain value. 
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What is often disregarded is that, the size of the actually taken weight-step Owi; is not 

only dependent on the (adapted) learning-rate, but also on the partial derivative a - ' . So the 
we; 

effect of the carefully adapted learning-rate can be drastically disturbed by the unforeseeable 

behavior of the derivative itself. This was one of the reasons that lead to the development of a 

new learning scheme called Resilient backpropagation (RPROP): to avoid the problem of 

'blurred adaptivity', RPROP changes the size of the weight-update Owi~ directly, i.e. without 

considering the size of the partial derivative. 

Resilient backpropagation 

Resilient propagation (RPROP), presented by Riedmiller and Braun [33], performs a direct 

adaptation of the weight step. based on local gradient information. In crucial difference to some 

adaptation techniques, the effort of adaptation is not blurred by gradient behavior whatsoever. 

To achieve this, we introduce for each weight its individual update-value A1, which 

solely determines the size of the weight-update. This adaptive update-value evolves during the 

learning process based on its local sight on the error function E, according to the following 

learning-rule: 

(t-1)
, 

A. (t)_ 	— * A..(t-1) 

Qi J (t-1)
, 

aE (t-1) * aE (t) >0 l awi; 	awe; 
aE (t-1) aE (t) * 	<0 l alAl~;. 	awi, 

else 

(5.9) 

Where 0<ii — <1<i+ 
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Verbalized, the adaptation-rule works as follows: Every time the partial derivative of the 

corresponding weight wig changes its sign, which indicates that the last update was too big and 

the algorithm has jumped over a local minimum, the update-value /1j is decreased by the factor 

rj-. If the derivative retains its sign, the update-value is slightly increased in order to accelerate 

convergence in shallow regions. 

Once the update-value for each weight is adapted, the weight-update itself follows a very 

simple rule: if the derivative is positive (increasing error), the weight is decreased by its update-

value, if the derivative is negative, the update-value is added: 

_alp (t), t f ' 	(t ) >0 
awl] 

l ~ (t ) = 	 aE (t ) Ow 	+'Atij(t), if 1 	<0 
ii 

0, 	else 

(5.10) 

wj j (t+1) = w(  t) + 

The following pseudo-code fragment shows the kernel of the RPROP adaptation and 

learning process. The minimum (maximum) operator is supposed to deliver the minimum 

(maximum) of two numbers; the sign operator returns +1, if the argument is positive, -1, if the 

argument is negative, and 0 otherwise. 

At the beginning all update values 1ij are set to a reasonably chosen initial value Ao. The 

initialization and assignment of all the parameters is discussed in [33]. 
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For all weights and biases { 

if aE —(t--1)* aE (t) . 0 then { awi; 	awi; 

= minimum( t L J (t —1) * rl+, Omax) 

aE 
Owi~ (t) = –sign 	(t) * Aij (t) 

wLj (t + 1) = w11(t) + Awl (t) 

elseif ( aE (t – 1) * aE (t) <0 J then { 
awl; 	aw j; 	J 

L1i~(t) = maximum(ti~ (t –1) * 71 m  in) 

wl~ (t + 1) = wig (t) – Ow1~ (t – 1) 

SE 
(t) = 0 

elseif I aE (t –1) * aE (t) = 0 I then { 
aw~1 	awe; 	I 

w1 (  t) = –sign aE (t) * 

w11(t + 1) = wig (t) + Owt~ (t) 

5.4.5 Performance measuring techniques 

Other than the network performance function (i.e. the mean square error-mse), the original 

and reconstructed ECG data are analyzed and the network performance is investigated using 

techniques described below. 
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• PRD: percent root-mean-square difference (PRD calculation is as follows: 

PRD = ~n 1LXorg(l) — xrec(i)]2 
* 100 	

(5.11) 

1 xorg 2 (l) 

where xorg and xrec are samples of the original and reconstructed data sequences. 

• Compression ratio: is defined as the ratio of the size of the original ECG data( to those 

data the network is applied) to the size of the compressed ECG data. 

• Percent RR-interval error: is the percentage error between the values of the R-R 

intervals of the original ECG data and the Corresponding values of the R-R intervals of 

the reconstructed ECG data. 

• Reconstruction error (Percent data lost): is the percentage data lost (or gained) during 

compression. 

• Onset of P-wave error: indicates how the onsets of P-waves of the original ECG data 

are represented in the reconstructed ECG data. It is the percent root-mean-square 

difference (PRD) of the two onsets. 

• Offset of T-wave error: indicates how the offsets of T-waves of the original ECG data 

are represented in the reconstructed ECG data. It is the percent root-mean-square 

difference(PRD) of the two offsets 

• Visual inspection: The features of each ECG component discussed in chapter 2 are 

visually inspected. The offsets of P-waves and onsets of T-waves are especially 

examined. Changes to these components are noted if they are caused by the compression 

system. 
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N.B. The onset and offset of P-wave and T-wave are defined as the points at which the P-wave 

and T-wav exceed and return to the baseline (isoelectric line), respectively. Since these points are 

important in ECG interpretation, they have to be included as evaluation parameters of the 

proposed compression system. 

5.4.6 Reconstruction 

During reconstruction the data must be figured out according to the way they are saved. If 

the data are uncompressed they are saved as they are. If the data are compressed the 

reconstructed data is figured out according to formula 5.6. 

out_eCgk = ZHL1 Wk J hI 	k = 1: OL 
	

(5.6) 

Where OL = output layer size 

HL = hidden layer size 

W = out put layer weight 

h = hidden layer activation 

The R-peak value of each cycle of the reconstructed ECG data is replaced by the 

corresponding cycle R-peak value of the original ECG data. This is important to avoid any R-

peak error and therefore the error is nil. 

The overall compression system can be summarized with flow charts given in figure 5.11 

and figure 5.12. The flow chart in figure 5.11 shows the compression stage and the flow chart in 

figure 5.12 shows the reconstruction stage. 
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Figure5.5 Flow chart of the reconstruction stage. 
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CHAPTER SIX 

RESULT AND DISCUSSION 
6.1 Description of the ECG data used 

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia 

Laboratory between 1975 and 1979. Twenty-three recordings were chosen at random from a set 

of 4000 24-hour ambulatory ECG recordings collected from a mixed population of inpatients 

(about 60%) and outpatients (about 40%) at Boston's Beth Israel Hospital; the remaining 25 

recordings were selected from the same set to include less common but clinically significant 

arrhythmias that would not be well-represented in a small random sample. [34] 

The recordings were digitized at 360 samples per second per channel with 11-bit 

resolution over a 10 mV range. 

Out of the 48 half-hour ECG records, 33 records are selected for experimental testing of 

the artificial neural network based ECG compression system. Every selected record contains a 1 

minute long data. The sampling frequency is 360, so each record includes 21,600 sample points. 

The naming of each record is done by adding a prefix `mba-`on the original numeric name found 

on the database (e.g. mba 100). 

6.2 Experimenting with MIT-BIH arrhythmia database 
Table 6.1 shows the experimental result of each record and displays the compression 

ratio, compression precision and compression time of each experiment along with other 

performance testing parameters. 
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Table 6.1 Experimental result of ANN based ECG compression 

No 
ECG data Network 

CR 
Overall 

CR 

Compr- 
ession 
time(s) 

Compression precisions(PRD) Average 
R-R 

interval 
error 

Data 
loss 
(oho)  overall 

precision 
Network 
precision 

Minimum 
precision 

1 cmbal00 10.06 4.25 39 6.95 8.83 3.13 4.00 3.11 
2 embal0l 5.51 2.16 40 7.90 9.30 2.37 5.87 -1.31 
3 cmbal02 5.59 2.36 43 8.43 8.43 6.16 4.31 0.26 
4 cmba103 5.90 2.82 39 7.01 9.61 1.67 5.16 -3.44 
5 cmba104 10.12 1.58 36 5.05 10.4 5.49 4.54 3.45 
6 cmbal05 20.20 4.1 37 6.65 8.05 4.31 4.29 2.11 
7 cmba107 4.66 2.00 40 8.64 9.98 4.32 4.14 -2.64 
8 cmbal11 3.61 

24.13 
1.90 
11.7 

47 
39 

8.16 
4.14 

12.1 
5.39 

1.79 
2.00 

4.38 
4.45 

3.96 
-1.31 9 cmba112 

10 cmball4 3.06 1.85 32 7.55 9.65 2.02 3.98 -0.26 
11 cmba115 2.92 1.67 37 5.16 8.16 2.91 4.33 -3.95 
12 cmba117 15.26 

2.95 
5.87 
2.00 

26 
34 

6.52 
7.05 

7.22 
10.5 

3.39 
4.11 

3.04 
3.33 

0.03 
-2.63 13 cmba119 

14 cmbal2l 18.10 6.93 30 5.73 6.03 2.04 9.03 0.02 
15 cmbal22 25.6 10.0 39 5.33 5.90 2.61 8.46 1.84 
16 cmbal23 2.50 1.85 24 9.16 13.6 4.10 3.58 2.37 
17 cmbal24 14.26 5.08 26 8.73 8.73 3.68 4.70 0.79 
18 cmba201 3.91 1.80 51 4.46 10.9 5.84 9.09 3.95 
19 cmba202 4.39 1.69 30 5.64 10.6 2.22 4.55 -3.44 
20 crhba205 25.35 10.0 40 5.54 6.04 3.71 4.78 1.05 
21 cmba209 6.90 2.88 46 9.44 11.6 5.63 3.98 -1.32 
22 cmba2l2 3.11 1.5 45 6.33 11.3 3.58 5.62 -2.38 
23 cmba2l3 28.58 7.9 46 8.67 9.72 3.83 0.71 -0.26 
24 cmba214 6.62 3.47 41 8.00 9.98 4.75 10.01 0.25 
25 cmba217 4.73 2.84 39 8.17 10.7 1.63 5.26 1.05 
26 cmba2l9 4.27 2.19 44 4.21 8.79 0.31 9.85 6.06 
27 cmba220 7.20 4.67 41 6.30 6.97 1.56 5.23 2.63 
28 emba222 5.73 1.24 31 1.67 9.1 6.74 10.31 3.95 
29 cmba223 22.01 5.84 36 6.43 7.63 3.71 3.79 -1.31 
30 cmba230 3.25 1.84 50 7.18 10.1 1.36 6.01 4.22 
31 cmba231 3.31 1.95 41 5.25 9.25 3.90 8.18 5.01 
32 cmba234 12.22 4.98 42 8.22 9.2 4.25 2.28 0.79 
33 cmba116 22.93 7.58 36 7.21 8.21 3.71 3.04 0.78 

Average 10.27 3.95 38.39 6.69 8.30 3.41 5.31 2.17 
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Compression system achievements 

Compression ratio (CR) 

Two kinds of compression ratios are presented in table 6.1, the Network compression 

ratio and Overall compression ratio. The reason of presenting two kinds of compression ratios is 

due to the uncompressed ECG data. The Network compression ratio excludes the uncompressed 

ECG data and examines only the performance of the BP ANN. But the Overall compression ratio 

calculates the compression performance of the whole system (i.e including the uncompressed 

ECG data). When the uncompressed ECG data are taken in to consideration, it is obvious that the 

compression ratio degrades. 

Taking the Network alone, a compression ratio as high as 28:1 is reached and an average 

compression ratio (of all the 33 records used) of 10:1 is achieved. This shows how ANN can be 

powerful in compressing ECG data. 

Regarding the Overall compression system, the maximum compression ratio achieved is 

12:1. The average compression ratio in this case has degraded to 4:1. This implies many ECG 

beats are stored uncompressed due to their impermanent and highly aberrant nature. But in 

practical case, ECG data are likely to have little aberrance and impermanence per record, 

especially when the ECG data is long. Hence it is well fair to take the average compression ratio 

of the network as the compression ratio of the system. (see table 6.2 for more justification) 

Table 6.2 shows how the Network: and Overall compression systems are improved as 

more ECG beats are used. A 5 minute long data of 10 ECG records from the above 33 are 

utilized to test the compression system. 
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Table6.8 Testing the compression system for 5min. ECG data 

No. ECG data New Network 
CR 

Old Network CR 
(i.e. I min) 

New Overall 
CR  

Old Overall CR (i.e. 
1 min) 

1 5min cmbal00 21.28 10.06 7.97 4.25 
2 5min_cmbal0l 21.23 5.51 7.84 2.16 
3 5min cmba103 15.90 5.90 5.31 4.1 
4 5min_cmba105 20.38 20.20 4.78 2.82 
5 5min_cmbal12 39.07 24.13 13.9 11.7 
6 5min_cmbal14 4.36 3.06 2.05 1.85 
7 5min_cmballS 7.28 2.92 3.17 1.67 
8 5min_cmbal17 30.77 15.26 7.57 5.87 
9 5min cmbal2l 32.6 18.10 7.48 6.93 

10 5min cmba205 25.35 25.6 10.0 7.58 

Table 6.2 clearly shows that the longer the ECG data is the more improved the Network 

and Overall compression ratios will be. This indicates that the proposed compression system is 

best suitable for Holter or ambulatory ECG recording system. 

Compression precision 

Akin to to the compression ratio, the compression precision is also presented in two 

categories. One is the Network compression precision and the other is Overall compression 

precision. In a similar manner the Overall compression precision includes the uncompressed 

ECG data and the Network compression precision excludes them. One may argue that why 

would the uncompressed ECG data be considered to calculate the overall compression precision, 

if they are not touched by the network at all. My response would be; the uncompressed ECG data 

are those who are different from the other beats and which are highly aberrant. This beats are 

selected in a smart way and are made to bypass the network intentionally and stored in their 

original condition. This will avoid the wrong "prediction" of these beats. This deliberate action is 
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a virtue of the proposed compression system, and hence those uncompressed beats should be 

included in the calculation of the overall compression precision of the system. 

Both the Network and Overall compression precisions are calculated in terms of the 

Percent Root-mean-square Difference (PRD) of the original ECG data and the reconstructed 

ECG data, in beat by beat manner. 

Table 6.1 has displays the Overall compression precision, the Network compression 

precision and the Minimum compression precision for all the 33 records used in the experiment. 

The average Overall compression precision for the total of the 33 records is 6.69. The average 

Network precision is a little greater, it is 8.30. In both cases, the average precision is less than 

10% which indicates that more than 90% of the original ECG data is reconstructed successfully. 

The minimum compression precision achieved by the compression system is 0.31. 

Compression time 

As to the compression time, for 1 minute long records the maximum time required is 50 

seconds and a compression time as low as 24s is reached. This implies the proposed 

compression system is real-time. 

R-R interval error 

Some ECG arrhythmias, such as sinus arrhythmia, have a considerable R-R interval 

variation among successive ECG beats. This variation should be preserved during compression. 

Therefore the average percentage R-R interval difference between the original ECG record and 

the reconstructed ECG record is calculated and is included as performance evaluator. As table 

6.1 shows, the average R-R interval error is 5%, which is acceptable for most arrhythmia types. 
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Percentage data loss 

The last column of table 6.1 displays the percentage data loss after reconstruction. Since 

the compression system is lossy compression some data could be lost or gained (information 

lost). In this compression system not much loss of data is observed. The average loss of data of 

all experiments (i.e. 33 records) is 0.71%. It is very low to be significant. 

Onset and Offset of P-wave and T-wave 

Ten sample ECG data are selected to test how the onsets and offsets of the P-waves and 

the T-waves are affected by the proposed compression system. The result is presented in table 

6.2 below. 

Table6.9 Compression system effect on onsets and offsets of P-waves and T-waves 

No. ECG record 

Average error 
of onset of 

P-wave (PRD) 

Visual inspection 
of offset of 

P-wave 

Average error 
of offset of T- 
wave (PRD) 

Visual inspection of 
onset of T-wave 

1 cmba 116 7.52 Well represented 9.53 Well represented 

2 emba223 5.74 Well represented 8.97 Well represented 

3 emba213 10.76 Fairly represented 16.62 Fairly represented 

4 embal24 8.78 Well represented 14.9 Fairly represented 

5 cmbal21 6.51 Well represented 12.02 Fairly represented 

6 emba122 4.94 Well represented 7.27 Well represented 

7 cmba112 4.34 Well represented 7.35 Well represented 

8 cmba105 21.36 Poorly represented 20.54 Poorly represented 

9 cmbal00 7.69 Well represented 12.62 Fairly represented 

10 cmba102 13.49 Fairly represented 14.15 Fairly represented 
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As we can observe from Table 6.2, most of the onsets and offsets of P-wave and T-wave 

are well represented or fairly represented. Most of the ECG data conceded an average error less 

than 10%. This result indicates that the proposed compression system is reliable. 

Visual Inspection 

Most importantly, a thorough visual inspection is done on each experiment and the 

reconstructed ECG data are compared with the original ones. Even though few irregular 

extensions and shortenings of the Q-wave and the S-wave are observed, since they occur in small 

numbers and at low scale, we can conclude that the proposed compression system is significantly 

efficient. 

Sample test result are shown in figure 6.1. The figures show the ECG data before 

compression and after compression. 

Original ECG<Data: 

samples 

Reconstructed ECG Data 

........ 	 ...... 	 .... 	 .. 	.... 

..... 	........ 	.... 	.. 	.... 	... 	 .. 

3 	200 	400 	600 	.Ilc0 	1060 	1200 	1460 	1600 	1600 	2000 
samples 

a) 6-seconds excerpt of the original and reconstructed data 

2 

E 

0 

2 

0 
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OrigiiiaiECG Data 

400 	450 	500 	550 	600 	650 
	

700 
samples 

Reçotructed ECG'Data 

400 450 500 550 600 650 70 
samples 

b) A closer look at the original and reconstructed ECG data 

Original ECG Data 

samples, 

0 

E 

.2 

samples 

c) A morpho!ogically unique beat uncompressed successfully 

> 
E 

Figure 6.1 Sample test results of the compression system 
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6.3 Effect of neural unit number of hidden layer on the compression system 
performance 

At the beginning of my work I have made an assumption that the difference between ECG 

beats of the same record is little and therefore I have limited the hidden layer unit number to 2. 

All the experiments are done using this setup. In this section few experiments are done using 

different values of the neural unit number of the hidden layer. 

Three records, cmbal00, cmbal 12 and cmba217 are selected for the experiment and 

hidden layer neural unit numbers of 2, 4, 8, 12, 24, 36, and 72 are used. The results are shown in 

table 6.4, 6.5 and 6.6. The Network compression ratio and Network compression precision of all 

the three records are plotted versus the hidden layer size in figure 6.2, 6.3 and 6.4. 

As we can observe it from the figures, when the hidden layer size increases, the network 

compression ratio decreases exponentially while the network compression precision shows little 

improvement. Hence the selection of hidden layer is a trade off between the compression ratio 

and the compression precision. 

Table6.10 Experimenting hidden layer size Effect using record cmbal.00 

Hidden 
Layer size Network CR Overall CR 

Compression 
time (sec) 

Compression precisions(PRD) 
overall 

precision Network 
precision 

Minimum 
precision 

2 10.06 4.25 39 7.17 8.56 3.11 
4 6.11 3.6 37 6.84 8.03 2.87 
8 3.64 2.87 38 6.53 7.32 2.10 

12 2.56 2.20 39 5.87 6.58 0.41 
18 1.66 1.53 41 6.25 7.34 1.91 
24 1.31 1.26 44 5.95 6.78 1.55 
36 0.87 	_ 0.88 41 6.37 7.36 2.20 
72 0.43 0.47 54 5.29 6.21 1.44 
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Table6.11 Experimenting hidden layer size Effect using record cmba112 

Hidden 
Layer size 

Network CR Overall CR 
Compression 

time(sec) 
 sec) 

Compression precisions(PRD) 
overall 

precision 
Network 
precision 

Minimum 
precision 

2 21.53 11.7 39 3.88 4.06 2.01 

4 13.23 8.87 36 3.17 3.33 1.45 

8 7.45 5.92 39 2.83 2.97 1.76 

12 5.19 4.44 37 3.24 3.40 1.95 

18 3.6 3.23 37 3.57 3.74 2.00 

24 2.73 2.54 40 2.36 2.48 1.82 

36 1.84 1.78 41 2.88 3.02 1.76 

72 0.94 0.93 55 2.70 2.83 1.72 

Table6.12 Experimenting hidden layer size Effect using record cmba217 

Hidden 
Layer size 

Network CR Overall CR 
Compression 

time(sec) 

Compression precisions(PRD) 
overall 

precision Network 
precision, 

Minimum  
precision 

2 5.79 2,73 39 7.99 10.50 1.49 

4 9.67 3.08 32 7.05 9.44 4.14 

8 3.18 2.26 37 6.76 8.28 1.41 

12 2.15 1.73 39 6.40 8.12 2.21 

18 1.48 1.34 39 6.47 8.21 1.32 
24 1.12 1.09 44 6.47 8.21 1.69 

36 0.71 0.77 39 5.87 8.01 1.00 

j 	72 0.35 0.43 56 5.26 7.32 0.80 

But despite the little improvements of the compression precisions with the increase in 

hidden layer size, a worth tradable value is not attained before entering the waming(yellow) and 

danger(red) zone. Hence for this proposed compression system, a hidden layer neural unit 

number of 2 is enough to compromise the two important parameters, compression ratio and 

compression precision. 
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Figure6.2 Effect of hidden layer size on PRD and comp. ratio / record cmbal.00 
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Figure6.3 Effect of hidden layer size on PRD and comp. ratio / record cmba112 
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Figure6.4 Effect of hidden layer size on PRD and comp. ratio / record cmba2l7 
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6.4 Comparison of the proposed technique with existing techniques 

Before comparing the performance of the proposed ECG compression technique with the 

existing ones, let us see, first, the basis of comparison. 

According to Jalaleddine et al[11], some of the factors which should be considered for ensuring a 

solid basis of comparison among ECG compression techniques are: 

a) Identical application lead bandwidth(i.e. monitoring, diagnostics, or Holter), 

b) All data should be from standard databases (i.e. like MIT-BIH, AHA etc). 

c) The reconstructed ECG signals must meet or exceed specific error criteria for ECG 

segments and waves. These error criteria must be clinically application dependent. 

One more important point that is highlighted by Jalaleddine et al[ 11] is, the employment of 

the PRD in evaluating ECG compression schemes has no practical value. Although the rms error 

between original waveforms and reconstructed waveforms is a common form of comparison, it 

does not reveal whether or not an algorithm can preserve diagnostically significant features of 

the ECG waveform. 

With these basic understandings I will present the comparison of the proposed technique, i.e. 

ECG data compression using ANN, with the existing ECG data compression techniques. The 

Network performances of the proposed technique are presented. The Overall performances are 

left because the aim of the dissertation is to study if ANN can be used for ECG data 

compression, I will focus my discussion on the Network performances (i.e. Network 

compression ratio and Network compression precision). 
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The comparison of the proposed compression system and existing techniques discussed in 

chapter 4 is summarized in table 6.7. 

Table 6.7 comparison of proposed techniques with existing ones 

Compression 
signal signal 

Method ratio 
frequency precision PRD (%) comments 

(Hz) (bits) 

AZTEC 10.0 500 12 28.0 Poor P and T Fidelity 

Sensitive to signal 
TP 2.0 200 12 5.3 

frequency(SF) 
Sensitive (SF) 

CORTES 4.8 200 12 7.0 
Poor P Fidelity 

Fan/SAPA 3.0 250 -- 4.0 High Fidelity 

Entropy Coding of susceptible to 
2"a-difference ECGs 

2.8 250 10 transmission errors 
peak-picking (spline) 

10.0 500 8 14.0 Limited Results 
with entropy coding 
DPCM (delta coding Sensitive (SF) 

with threshold) 
4.0 300 8 -- Poor P Fidelity 

DPCM 
2.5 250 12 -- High Fidelity 

Linear prediction 

DPCM-Linear Prediction Sensitive (SF) 
Interpolation, and 7.8 500 8 3.5 and quantization 
Entropy coding 

Orthogonal Transforms 
3.0 250 -- -- Lead-I 

(CT, KLT,HT) 
Dual application of 

12.0 250 12 -- (X,Y,Z) Leads 
K-L Transformation 

Fourier Descriptors 7.4 250 12 7.0 (X,Y) Leads 

The Proposed 
Technique 10.0 360 11 8.30 High fidelity 
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According to the reported Network compression ratios from the 33 experiments I have 

carried out, the average Network compression ratio is 10:1. This value is better or equal to all the 

reported compression ratios of the existing ECG data compression techniques, but Dual 

application of K-L Transformation (see table 6.7). However one more advantage of the proposed 

ECG technique is that, the compression ration increases significantly as the length of the data 

increases (i.e. as more beats are used) (see table 6.2). 

The average Network compression precision (in terms of PRD), according to the reported 

PRDs of all the 33 experiments, is 8.30. This value implies, the proposed compression technique 

is more precise than AZTEC and peak-picking (spline) with entropy coding. However it also 

seems to imply that it is a little less precise than CORTES and Fourier Descriptors and significantly 

less precise than TP, Fan/SAPA, and DPCM-Linear Prediction Interpolation, and Entropy coding. 

But According to Jalaleddine et al[11], the CORTES and Fan/SAPA are tested using 

idealized ECG waveforms, rather than standard databases. Hence it will be difficult to compare 

the compression precisions reported using these techniques with the proposed technique. 

Moreover, it was reported in [I1 ] that the CORTES deteriorated substantially whenever it was 

used with sampling rates higher than 200Hz while the proposed technique is less frequency 

dependent. 

Even though the TP algorithm and DPCM-Linear Prediction Interpolation, and Entropy 

coding look better in compression precision, it is reported that they are sensitive to signal 

frequency and quantization. In addition the TP algorithm gives poor P-wave fidelity. 
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In the proposed technique it is reported that the ECG wave components are reconstructed 

with good fidelity. Hence ECG data compression using ANN is a better and promising technique 

in the future if more researches are done in this field. 
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CHAPTER SEVEN 

CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 
As the results in Chapter 6 show, Backpropagation artificial neural network based 

compression system is an efficient way of ECG data compression. It gives an improved 

compression ratio and compression precision. The compression of ECG data using this technique 

is real-time. 

The existing ECG data compression techniques such as AZTEC, CORTES, FAN AND 

SAPA all give a compression ration less than 10. But using this technique it is common to 

achieve a compression ration greater than 20. The interesting thing about the proposed 

compression technique is, as the size of the data increases, more similar ECG signals will be 

represented by few weights and hidden values. Therefore for long time ECGs like ambulatory 

ECG this technique is very successful. 

If we compare the compression precision of the proposed technique and the existing ECG 

data compression techniques, this technique gives a satisfactory precision of 6.69. This value is 

the average of all cycles in a single record plus all the 33 experiments. This calculation of the 

compression precision may lower the actual compression power of the system. So it is better to 

compare this parameter using same data for all techniques. 

One of the crucial components of ECG used in ECG interpretation is the R-R interval. 

The proposed compression system is also investigated for R-R interval error. As table 6.1 shows 
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this error is significantly low. Hence we can conclude that the proposed compression system 

does not affect ECG interpretations directly or indirectly related to this ECG component. 

One of the good features of using ANN based compression system is, there is only a little 

reduction or addition in the number of sample points in an ECG data. In other words most of the 

sample points of the original ECG are used to train a BP ANN; which is the main reason why 

this technique yields high fidelity. However many of the ECG compression techniques discussed 

in Chapter 2 alter the sample points by a significant amount. This will considerably affect the 

signal retrieval. 

A draw back of using Backpropagation artificial neural network based compression 

system could be the distortion of the peak values (R —points) of the ECG data. The main reason 

might be the low number of sample points around the QRS complex of ECGs. As a result enough 

amounts of points may not be available to exactly predict the peak. But since the peak values (R-

points) are very important in ECG interpretation, this problem should be solved. The remedy 

used in this work is to save the original ECG peaks and replace the reconstructed peaks by the 

original one. This will require an R-point detection of the reconstructed data. This solution may 

decrease the compression ratio and may increase the compression time by few amounts; but it is 

tolerable. 

Even though it is not compared with the existing ECG compression techniques, one of the 

successes of the proposed technique is the representation of the onsets and offsets of the P-waves 

and T-waves of the original ECG data in the reconstructed ECG data. The results in table 6.2 

show these fiducial points are well represented in the retrieved signals. 
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7.2 Recommendation 
BP algorithm usually reaches convergence after hundreds of iterations. If the amount of 

work in each training is cut down, then it will benefit shortening the compression time greatly. 

If we combine Backpropagation (BP) algorithm with the existing compression techniques 

discussed in Chapter 4, such as turning point (TP) algorithm, it would be possible to cut down 

the compression time. TP algorithm has high speed of execution and high fidelity. Its 

compression ratio is about 2:1. If we use TP algorithm to process data before using BP 

algorithm, the number of points in each ECG cycles after using TP algorithm is half the number 

before. The input and the output neural unit number are half the before, which cut down the 

amount of work of each training and shorten the compression time greatly. 

This combination of TP algorithm with BP algorithm not only decreases the processing 

time but also the compression ration. Because if the neural input and output numbers are 

reduced, the network size will be reduced which means the size of the weights to be stored will 

effectively be reduced. 

Moreover, the performance of the artificial neural network can be improved if techniques 

like pre-grouping are used before compression. This technique is will be helpful to group ECG 

complexes into sets of signals which are morphologically similar to one another. The more 

similar the set of ECG beats to be compressed by the ANN are the better the results be, in terms 

of compression performance (high compression ratio, low reconstruction error). 

Self-organizing ANN models such as, competitive learning networks, Fuzzy ART and 

Fuzzy Min-Max cluster are some of the options which can be used to perform pre-grouping. 
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