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ABSTRACT 

Electrical energy is generated at a distance from load centre and to minimize losses on 

transmission line; it has to be transmitted at high voltages. One of the faults that exist in high 

voltage insulator is the pollution flashover and subsequent outage of transmission lines. Since 

outage of EHV lines is a serious matter, research on pollution flashover invites concern. 

Flashover on polluted insulator can occur when the surface is wet due to fog, dew or rain. Most 

commonly seen pollution related problem to flashover exist in coastal areas (sea salt), industrial 

areas (chemical pollution), and other areas (desert sands, etc.) 

In the present dissertation, an attempt is made to develop suitable ANN models for predicting the 

flashover voltage (FOV) of contaminated insulators. The ANN models developed make use of the 

above three control (input) namely: salinity of contaminated salt, solution current and resistivity 

of salt solution The output variable is the Flash over voltage (FOV). Since different architectures 

are possible, it is a voluminous task to explore all possible structures. Therefore, the study is 

restricted to the investigation of a few selected architectures, and the best ANN model from these 

is selected for subsequent simulation studies. 
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CHAPTER-1 

INTRODUCTION 

1.1 General: 

Electrical energy is generated at a distance from load centre and to minimize losses in the 

transmission line, it has to be transmitted at high voltages. One of the faults that exist in high 

voltage insulator is the pollution flashover and the subsequent outage of transmission lines. Since 

outage of EHV lines is a serious matter, research on pollution flashover invites concern. 

Flashover on polluted insulator can occurs when the surface is wet due to fog, dew or rain. Most 

commonly seen pollution related problem to flashover exit in coastal areas (sea salt), industrial 

areas (chemical pollution), and other areas (desert sands, etc.) 

1.2 Why Pollution Flashover Occurs 

Development of partial discharge on the insulator surface and propagation of these 

discharges over a period of time causes the leakage current to increase on the insulator surface 

which at may result in a flashover. This occurs in three stages. These are the formation of 

electrolytic conductive film layer, the formation of dry band and the starting of pre discharges 

and propagation of pre discharge. The first two stages can occur frequently; however, the last 

stage does not occur as often as the others. In the case of cap-and pin porcelain insulator, usually 

dry bands initially occur near the cap or the pin of the HV voltage insulator, and when the 

voltage on a dry band exceeds the air withstand —voltage sparks occurs. If this dry band is 

bridged by a partial discharge, voltage .drops and other dry band are created and a discharge 

chain starts. 
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Regarding the pollution of the insulator in the desert, it has been generally concluded that: - 

a) The early morning dew in the desert represents a major source of wetting the insulators. 

b) Sand storms increase the pollution of the insulators severely, the worst conditions 

occurring when sand storm s are accompanied or followed by high humidity, or by rainy or 

misty weather. 

c) Pollution layer accumulated under on insulator during sand storms can be of larger grain 

size and have higher salt content than those accumulated under normal desert weather. The 

sandstorm pollution is usually carried by strong winds from distant regions. 

1.3 Mechanism of pollution flashover 

The flashover process develops in the following stages:- 

a) Surface contamination:- 

Insulators operated in contaminated atmosphere collect pollutants which are deposited on the 

surface of insulator. Deposition of pollutants on insulator surface depends on many factors 

e.g. shape of insulator, nature of voltage i.e. ac or dc, location, angle of inclination of 

insulator, wind, rain etc. The performance of insulator itself is not altered significantly by the 

presence of dry contaminants because of electrical strength of dry polluted insulator is close 

to that for the clean insulator 

b) Wetting process: - 

When the polluted insulator becomes moist due to fog or rain, then the polluted layer 

becomes conductive. The process of moistening depends on wetting condition e.g. moisture 

absorption depending upon the nature of contaminant, temperature of surrounding, 

condensation mounting etc. 



c) Dry band formation: - 

Due the presence of conductive layer the electric field is greatly distorted along the pollutant 

surface. As is known, the voltage gradient needed to initiate spark over in air is about 

30kv/cm. The average surface voltage gradient of an outdoor H.V. insulator is about 

500kv/cm. Therefore, in order to initiate an arc on a polluted insulator surface, the voltage 

distribution must be highly non-uniform. Formation of dry band on a polluted flat plate 

surface takes place in the following steps as shown in Figure 1. 
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Figure 1: Formation of Dry Bands on polluted surface 

Initially the plate is dry and then is then subjected to wetting. As shown in fig 1 "a" the 

voltage distribution is linear as resistivity of layer is uniform. As the layer becomes wet, its 

resistivity decreases and the surface leakage current increases. This condition does not last long 
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due to slightly higher resistance value in some location the voltage gradient in these location may 

exceeds that of air resulting in arc discharge root the area in the near vicinity of discharge dries 

out. The heat dissipation is more in these location and therefore the area dries more rapidly than 

remaining surface, forming dry band "b" If several dry bands are formed then after a short time 

only one dry band remains and due its high resistance nearly all the source voltage is dropped 

across this dry band as in fig "c" the width of the dry band changes until the voltage across it is 

just less than that required to initiate a discharge in air across it. Any moisture falling on the dry 

distort the electrical field in the band and discharge occur, a surge of the current is generated 

which dissipated the heat energy in discharge thereby drying band. The frequency of these 

surges, each of which may last for several cycles, is such that the mean power dissipated in the 

dry is just enough keeping it dry. After the formation of dry band a sudden increase in the 

applied voltage may lead to flashover of surface, while a gradual increase may cause dry band to 

widen. When this happen the arc extinguishes at current zero and restrikes. In the next half cycle 

in fig "d" and "e" and "f" indicate the condition several cycles after restrike. In figure "d" the 

voltage distribution is linear. During subsequent cycles the leakage current is increases and the 

arc lengthens and a greater portion of applied voltage appears across the rest of the polluted 

surface. A further dry band forms and flashes over immediately, as shown in figure "e" and 

finally, the separate discharge combine to span the entire polluted surface figure "fl'. 

d) Breakdown of dry bands:- Almost the entire voltage appear across the dry band and when 

dry band can not sustain the voltage an arc is initiated and bridges the dry band 

e). Propagation of arc: Depending on the applied condition e.g. applied voltage leakage 

Current etc. the arc may be further and bridge the insulator surface resulting in flashover 

or it may extinguish prior to flashover. 
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Figure 2 shows a porcelain bushing that has been partially damaged by pollution flashover 

discharges. 

Figure 2: A partially damaged bushing due to pollution flashover 

DC flashover voltage is lower than the AC, for the same operating conditions. Under dc voltage 

there is no current zero. More ever more pollutant are attracted to an insulator under DC voltage 

than due to AC. Also, due to absence of current zero the propagation of arc is easier in DC than 

in AC. The flashover voltage in ac and dc depends on many factors and even when experiment is 

conducted under the same controlled conditions, the flashover voltage may not be the same. This 

applies for both AC and DC. 
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CHAPTER-2 

LITERA TURE RE VIE W 

Various investigators in relation to pollution flashover phenomenon have carried out in a 

number of research studies. Some of the several reports available in the literature are briefly 

presented as follows: 

Farouk et al, [1] presented a comparative analysis of the tests carried out on polluted insulators 

Subjected to the desert environment in which the effect of sand deposits is predominant. 

4,bdel-Salam et al [2] conducted studies on flashovers observed under desert environmental 

:onditions in insulators. They investigated the flashover characteristics for porcelain insulators 

°xposed to natural sandstorms, as well as to simulated sandstorm with and without a charged grid. 

They showed that neither natural nor artificial sandstorms affect the fast flashover voltage if the sand 

particle is not charged, whereas charged particles of sands reduce the flashover voltage of the 

insulators. To a higher extent, this reduction in flashover voltage will be greater for DC voltages. 

Prem K. Patni[3] presented a detailed review of various models that have been developed to 

explain pollution flashover. 

W.Heise, G.F. Luxa, G.Revery and M.P. Verma [4] presented an assessment of a solid layer 

pollution test for flashover in polluted insulators. 

Sundrarajan R. and Gorur R.S.,[5] presented their findings in relation to the role of non-soluble 

3ollutants in the flashover mechanism They considered the effect of the shape of the insulator in 

ietermining the flashover voltage magnitude. 

In another paper, the same authors [6] evolved a dynamic arc model to explain the flashover 

mechanism under DC conditions for polluted insulators 
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Raghuveer M.R. and E. Kuffel [7] conducted experimental and analytical studies of factors which 

affect pollution flashover voltage on polluted insulation surfaces. 

In yet another paper, Sundrarajan R. and Gorur R.S., [8]. developed dynamic models to estimate 

the pollution flashover voltage for various practical insulator configurations. The dynamic models 

also computed flashover voltages of non-uniformly distributed insulators configurations, which is 

more representative of the service experience. 

Zafer Aydogmus and Mehmet Cebeci, [9] presented a new flashover dynamic model of 

polluted Insulators" 

Holzhausen J.P. and Swift D.A [101 developed theoretical models to predict the flashover on the 

practical cap and pin type insulators. They found that the arc constant varies with pollution severity 

and that this variation can be attributed to the arc across the dry bands not following the insulator 

surface, but taking shorter routes. This analysis is done for AC and DC energies cap and pin 

insulators by comparing the results obtained, using the appropriate theoretical model, with test, data.. 

Obenaus F., [11] was the first to propose a quantitative analysis of the arc on a polluted surface. In 

his model, an arc is considered in series with the wet polluted layer having a resistance Based on this 

simple model and knowledge of arc voltage, the flashover voltage can be predicted. 

Wilkins, R. [121 developed a formula for calculating the resistance of the polluted layer and factor 

which takes into account the change in resistance due heat are derived. Criteria for flashover i.e. 

di/dx > 0 is presented and applied to compare the experimental results. The model can be applied to 

axi-symmetric insulator with complex shape by replacing the practical insulator by its equivalent 

cylinder. For developing flashover criteria he s assumed that the discharge moves to a position where 

the rate of energy expenditure is maximum. A critical current value may be calculated above which 

power increased with the leakage discharge length and below which power decreased with discharge 
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length. For a discharge length of x, the movement will occur if dp >0. Where "p" is power taken 
dx 

from source. 

Alliston L.L. and Zoledziowski, S.[13] proposed a theory that attempted to explain the growth of 

discharge phenomenon in contaminated insulator surfaces. 

•The above models made use of conventional methodologies of analysis. However, recently, there 

is a trend towards the application of artificial intelligence methods ( mostly ANN's) for prediction of 

flashover voltages, Some of the recent work in this direction is discussed in the following 

accompanying studies: 

Ahmad S. et al, [141 successfully applied artificial neural networks in pollution severity 

measurement studies for function estimation. Modeling of the complex non-linear function ESDD 

(which is a complex function of several variables), the equation of which is unknown, was 

accomplished accurately. Further comparative analysis of the estimated results with the measured 

data collected from the site measurement amply demonstrate the effectiveness of the use of ANN in 

modeling ESDD that has an unknown nonlinear relationship .the estimation of critical contamination 

level in terms of ESDD will help in fixing maintenance policy and addressing an effective solution 

against pollution flashover of high-voltage insulator. 

Dixit and Gopal [151 did a study which attempted classify the transition from weak inception 

current flow on the surface of the contaminated porcelain insulators till flashover occurs. It was 

classified into three stages which can be explained in terms of arc voltage gradient. The more 

popular Ayrton's equation was chosen which computes arc voltage gradient in terms of arc current I 

and Ayrton's constants A and n. The present work describes the development of a multi layer Feed 

Forward Neural Network (FFNN) classifier model using back propagation algorithm for training, to 

discriminate the arc gradient for the three stages considered, for the 
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given values of A, n and I as the input parameters. The model is tested and the results show that, 

Neural Network structure with six nodes in the hidden layer is best suited for the present 

classification. The percentage of correct classification is found to be 100% in all the three classes. 

Kontargyri et at [161 attempted to apply artificial neural networks to estimate the critical flashover 

voltage on polluted insulators. The artificial neural network used as input variables the following 

characteristics of the insulator: diameter, height, creepage distance, form factor and equivalent salt 

deposit density(ESDD), and estimated the critical flashover voltage. The data used to train the 

network and test its performance was derived from experimental measurements and a mathematical 

model. Various cases were studied and their results presented separately. Training and testing sets 

were modified for each case. 

Ghosh, et at [17] carried out modeling of flashover characteristics of electrolyte contaminated 

surfaces using artificial neural networks. 

A1-Alawi, et at [181 attempted the prediction of flashover voltages of contaminated insulators using 

artificial neural network. They used experimental data pertaining to the salinity and electrical 

characteristics of the contaminant solution 

Tsanakas A.D. and Agoris D.P [191 presented an approach for forecasting the number and the 

location of faults, caused by pollution flashover in 15 KV overhead distribution network. Faults were 

forecasted with an expert system that combines forecast of different models of feed forward neural 

networks and neuro- fuzzy inference system. 

Thus it may be seen from this brief review, that the subject of Pollution Flashover in 

polluted insulators is one of considerable research interest. The topic is still an active area of further 

research 
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CHAPTER-3 

TESTS ON CONTAMINA TED INS ULA TORS 

3.1 Test on contaminated insulator 

To describe the performance of various type of insulator exposed to natural pollution 

condition, it is necessary to understand what types of test s are performed on the insulator. 

These tests include chemical and grain size analysis of the contaminant, layer distribution as 

well as flashover test of the naturally contaminated insulator wetted by clean fog. 

3.2 Necessity of test 

1). The test is necessary to determine the order of merit of the tested design. It will 

analyze the quantitative data concerning the effect of insulator profile on their 

performance under desert condition. 

2). Flash over characteristic of the different strings is also indicated according to the dust 

deposit method 

3).To calculate the withstand capacity at system phase voltage as well as the system 

flashover voltage at fixed salinity. 

4).For comparing the result i.e. test performance and actual performance in natural 

condition. 

5). Determination of the amount and distribution of foreign deposit material. 
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6). Dust deposit artificial test also produce the same order of merit as test on naturally 

polluted insulator although they did not reveal the particular of insulator behaviors in the 

same quantitative manner. 

7). for determination of the layer conductivity. 

8). for determination of withstand characteristic of insulator. 

3.3 Types of tests The test may be classified into four categories:- 

A). Test on insulator exposed to natural desert condition. 

B). Solid layer deposit pollution tests. 

C). Salt fog tests. 

D). Solid layer artificial pollution test 

3.4 Test on insulator exposed to natural desert condition 

Insulator strings were suspended un-energized on a portal at a mean height of about 25m 

above ground level in a desert environment over a period of tow year. Insulator sample were 

dismantled for test purpose after 6-8 month, 12- 13 months and 24 months of exposure. 

3.4.1 Nature of the contaminant 

Chemical analysis of the natural contaminant showed that the soluble 

salts amount to 17.8%, mostly consisting of sulphates and chlorides CaSO4  : 9.92% NaCI 2.97% 

and KCl 0.53 by weight of the deposit. 

Grain size analysis of contaminant reveals that 95% by weight of the material 

has grain dimension smaller than 44 ,u m. For comparisons, the same analysis was carried out for 

a sample from the surface of the soil in the area. This showed that the above dimension of 44 µ m 

and less is found in 0.15% only of the soil sample, while 88% of the sample consist of grain 
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dimension greater than 105 ,u m The over all salt content of the soil was determined at 0.4% only 

although for the particles with grain dimension of 44 p m and less the corresponding value is 

1.36%. 

3.4.2 Distribution of the layer 

One objective of the testing is to investigate the effect of insulator shape on the amount 

and distribution of the contamination layer. As is usual with natural pollution the layer was found 

to be for from uniform on all the insulator types. Beside the non-uniformity of the layer alone the 

leakage path there was also a lack of circular symmetry of the layer distribution. The effect of 

shape was particularly distinct in comparing the relative weight of the contaminant n the lower 

and upper surfaces of each insulator i.e. on the protected and unprotected areas respectively. For 

example, after 24 months f exposure the above ratio reached 18-20 for the ribbed insulators, type 

A and C, while it was occasionally as low as unity for the flat design type B. 

Figures 3.1 3.2 and 3.4 show the basic internal structures of ribbed insulators of types A, B & D, 

while Figures 3.3 ,3.5 and 3.8 show the effect of contaminant on their respective breakdown 

voltages. 

Figure 3.1: Type "A" insulator 
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Figure 3.2: Type "B" Insulator 
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Figure 3.3 Distribution of equivalent NaCl surfaces density along a path on the surface of 
type "B" insulator after tow year exposure in the desert. 
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Figure 3.4: Type "D" Insulator 

Figure 3.5: Distribution of equivalent NaCI surfaces density along a path on the surface of 
• type "D" insulator after tow year exposure in the desert. 
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Figure 3.6: Type "C" Insulator 	 Figure 3.7: Type "E" Insulator 

Figures 3.6 & 3.7 show the structures of Type C & Type E insulators. 

A pollution monitor directly graded to read equivalent NaCl surface density was used to 

determine the distribution of the contaminant following paths along the insulators when saturated 

with clean fog. Two examples of such distributions after 24 months of exposure are shown in 

figures 6 & 8 for insulator type B and C respectively. 

3.4.3 Flashover characteristics: 

Beside the amount and distribution of the foreign layer the insulator shape in itself has, of 

course, a major influence in determining the flashover voltage. Flashover test were carried out 

there fore on the different insulator types after different periods of exposure to natural pollution. 

Wetting took place by clean fog under constant applied voltage, and test was repeated on 

similarly polluted insulator with the voltage changed according to the staircase method. For 

space limitation only a summary of the result could be reported here. The result of flashover tests 

are shown in figure where, for the sake of comparison, they are expressed in terms of the 
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flashover voltage per unit suspension length of each insulator type. This quantity is adopted as 

the measure for the order of merit of each design. After one year of exposure, with a total rain 

intensity amounting to2.8mm, the favorable effects of the flat design from the point of view of 

self-cleaning by wind were quite apparent. The specific flashover voltage per unit creep age 

length was found to be 368V/cm and329V/cm for type B and C respectively as compared to 

239V/cm for the deep-ribbed type A and C respectively. On the other Than, the relatively high 

ratio of leakage length to spacing of type D insulators, proved quite favorable as clearly shown 

by figure the second year of exposure, although obviously a dry year, brought the much heavier 

rainfall of 14.9mm. On one day during the 19th month of exposure the rain fall amounted to 7.6 

mm and on another day during the 22nd month there was 4.4mm of rain. 

c.pcs arc 	Vcric, —•onth, 

Figure 3.8: Flashover voltage per unit suspension length, kV/cm 
Versus Exposure period in months 

Judging from the ratio of shed overhang to shed spacing, it is found that for type A insulator this 

ratio is much in excess of the corresponding values of the other designs. It is believed therefore 
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that type A was the least cleaned by rainfall and that this is the reason for the relative 

deterioration of its performance in the tests at the end of the second year. If the order of merit is 

determined according  to the lowest specific flashover voltage per unit suspension length reached 

during the two years of exposure, then insulator C assume the first rank followed by B, and A. 

3.5 Solid layer pollution deposit test 

These tests are performed on strings of almost equal suspension length consisting of 7 discs of 

insulator types A, B, D, 3 insulator of type C and one insulator type E. In this way, the string 

lengths are in the range of 127(+-) 8 cm. The test procedure is not described here, only the results 

are discussed. The results are shown in figure it is noticed that for the range of heavy pollution, 

the order of merit starting with the best insulator is D, B, C, A and E which is identical to that 

determine from test on naturally polluted insulators reported above. It should be noticed however 

,that in the range of heavy pollution, the dust deposit tests show only minor differences between 

types B, C and A. This is contrary to clear superiority of type B over type A as revealed by 

natural tests. Another point is that for the present case of uniform artificial pollution the 

performance of type D insulator compared to those of B, C somewhat deteriorated in the vicinity 

of 10 ,u s . An explanation may be that for that deep ribbed type, the leakage path is not fully 

utilized at lighter pollution I.e. some of the ribs are over bridged by the arcs without following 

the insulator profile. 

Presentation of the results on logarithmic paper showed that a reasonably close fit of 

the relationship between the 50% flashover voltage U and the specific layer conductivity x , is 

given by: 

- 	-Q 
U=cx % s 
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Where, a And 8 are constants for each insulator type. The exponent /3 for the insulator type A, 

B, and C were fount to be 0.39 0.40 and 0.36 respectively. It is interesting to note that from a 

simplified theoretical flashover criterion under alternating voltage this exponent was deduced as 

0.40. 

The test result showed that for all the insulator types investigated there was a tendency of 

decreased relative dispersions of the flashover voltage: , with heavier pollution. So while at 

10 µ s the value of a / U were in the range of 10-17%, the corresponding range at 40 p s was 4-

8%. 

3.6 Salt fog test 

Salt fog tests are also carried out on the 110kv sting of different designs described above In one 

such test, the tested insulators consisted of 7 insulators of type A, B,& D, 3 insulators of type C 

and one insulator of type E per string. The spraying system and the testing procedure to obtain 

the withstand salinity at the system phase voltage of 63.5kv was in conformity with the 

concentration of the salt solution used in the tests was adjusted to one of the values: 

5-7-10-14-20-23.8-28.0-33.6-40.0-47.5-56.5-80.0-112-160-224kg/mm2. 

(With proper correction of solution conductivity to20 degrees Centigrade.) 

Also average flashover voltage of the above strings at a fixed salinity, here chosen as 

33.6kg/ yyl 3  , was determined following, to a large extent, a procedure described in briefly below: 

The insulator was energized at 90% of its estimated flashover voltage for minutes during the 

build-up of the saline fog. 

The voltage was then raised in 5kv steps (6-10%) in five minutes intervals until flashover. The 

insulator was re-energized at 90%of this flashover voltage for 5 minutes and the voltage was 

then raised in steps of 2.5kv (3-5%) every 5 minutes until flashover. 
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This last test is repeated four times and the average of all the results except the first is taken as 

the mean flashover voltage. 

3.7 Summary of Results of Salt Fog Tests 

Table 3.1 shows the test results of the described tests carried out on the insulators: 

Table 3.1 Summary of Test Results 

String type Withstand salinity at Average 	F.O.V., Order of merit 
63.5kV,g/l KV 	at 	33.6 	g/1 

salinity 
A 28 69 3 
B 14 60 4 
C 40 71 2 
D 47.5 86 1 
E 7 49 5 

This order of merit however is different from those obtained from the dust deposit test and from 

the test of insulator exposed to natural desert pollution, as described above. 

The table shows the relationship between the average flashover voltage at fixed salinity of 33.6 

g/1 and the leakage path length for the different strings, confirming the fundamental importance 

of this quantity to insulator performance under pollution conditions. The comparison of the 

individual results with the regression line determined by the least square method reveals the 

favorable effects of the deep ribs of types D and A under this test. On the other hand the flat 

aerodynamic profiles of insulator types B and C appear less suited to salt fog condition. 

3.8 Solid layer Artificial Pollution Test 

3.8.1 Basis of the Test procedure:- 

For the solid layer test a layer consisting of a solid material with ion-building ingredient is 

applied on the surface of the insulator. Wetting makes this layer conductive. 
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3.8.2 Cleaning 

The insulator shall be care fully cleaned with a detergent in order to remove all traces of grease. 

Hereafter the insulator surface shall be rinsed with mains water of low conductivity 

(<500 p s/cm).the surface of the insulator is deemed to be sufficiently cleaned and free from any 

grease, if large continuous wet areas observed. 

3.8.3 Application of the pollution layer: 

A suspension of the following composition shall be used for application of the layer on the 

surface of the insulator: 

100 g kieselguhr (diatomaceous earth, diatomite) 

10 g aerosol (silicon dioxide of particle size 2-20 p m) 

1000 g water 

The conductivity of this suspension shall be adjusted by adding a suitable amount of salt to 

obtain corresponding layer conductivity according to Table3.2 

Table 3.2: Required conductivity of the Suspension 

Layer 	conductivity 	with 5 10 20 40 
wetting at 	± 20' c in 

,U s(tolerance: ± 	15%) 
Correspondence 	conductivity 1500 3000 6000 12000 
value 	of 	the 	suspension 

x  f  
at20'cin Us/cm 

Suspension should be applied on the clean and dry surface of the insulator by means of one or 

several atomizing nozzle to obtain a reasonably uniform layer. 

3.8.4 Wetting of the pollution layer: 

The polluted insulator shall be installed in the test chamber in its test position. Hereafter the 

insulator shall be Wetted with steam fog uniformly over its whole length. The temperature of the 
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test shall not exceed 40' . The intensity of wetting shall be so adjusted that the highest wetting of 

the layer and consequently the highest layer conductivity is reached in about 15 to 20 minutes. 

For this a rate of flow of approximately 0.7-kg/hour steam per cubic meter chamber's volume is 

necessary. During wetting of the pollution layer no dripping of moisture shall takes place. 

3.8.5 Determination of the layer conductivity: 

During the wetting of insulator, the leakage current shall be repeatedly measured; the voltage 

applied only for long enough to read the meter. The alternating measuring voltage shall be about 

2kv R.M.S. per meter of the flashover distance of the insulator. The highest layer conductance, 

determined out of voltage-current measurements, shall be multiplied by form factor f of the 

insulator giving the layer conductivity xP  

The form factor shall be determined from the insulator dimension. For graphical estimation of 

the form factor, the reciprocal value of the insulator circumference (1/b) is drawn against the 

leakage paths. The form-factor is given by the area under this curve and is calculated 

accordingly. 
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CHAPTER=4 

THEORIES OF FLASHOVER IN POLLUTED 
INS ULA TORS 

4.1 Introduction 

Flashover on transmission line insulation due to pollution insulator was reported as early as 

1902. Since then, an appreciable number of experimental and theoretical studies have been 

conducted to understand the complex process of insulator flashover. The flashover process 

mainly involves the propagation of arc on a polluted surface. For an arc to propagate two 

conditions must be satisfied. These conditions are: 

1). Electrical condition initiation and maintaining the arc (i.e. applied voltage and current) 

and 2) mechanism involving force which is responsible for movement of the arc generated 

from condition "1" 

Despite considerable research work, the processes involved in flashover are still not fully 

understood. Studies were aimed to find the necessary conditions for initiation of an arc and then 

elongation of the arc. The process of flashover depends on factors such as type and nature of 

pollutant, non-uniform wetting process, conductivity of wet layer, orientation, shape and profile 

of insulator, wind, location, etc. Therefore the researchers faced a formidable task to find a 

suitable solution, which will take into account the effects of all the factors. 

Based on experimental and theoretical studies many models were presented to explain the 

process of flashover. Since it is impossible to account all the factors involved, therefore the 

researchers had to make some assumptions in developing these models. It is therefore not 
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surprising to come across different theories explaining flashover mechanism. It is desirable to 

compare some important models to predict the flashover voltage 

An overview of various theories /models which explaining to pollution flashover: is 

presented as follows: 

4.2 Flat Plate Models 

[A] Model of F. Obenaus: - Obenaus was first proposed a quantitative analysis of the arc on a 

polluted surface. In this model an are of length "x" is considered in series with the wet polluted 

layer having a resistance "Rp". Based on this simple model and knowledge of arc voltage, the 

formulae for calculating the minimum voltage required to sustain an arc has been derived, which 

is given below:- 

n+l 
V cx = 	

n 1 ~  l ~ 
] /- (n+l)x (n+l) ]~ (n+1) 

 p 

n (n+l) 

Where, 

V=applied voltage 

X= arc length 

I= leakage current 

R = R pollution resistance 
P  P 

n= exponent of static arc characteristics 

N=static arc constant 

• In this model assume that flashover occurs if the discharge is able to bridge the 

insulator without extinguishing. 

• This model was developed for dc voltage. 
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• In this model identifies the necessary condition for flashover but not the sufficient 

condition. This means that it identifies the voltage, below which no flashover can 

occur due to discharge extinction, but not higher value at which the flashover will 
e 

occur. 

[B] Model of G. Neumarker 

The model of Obenaus was applied by neumarker with one 

difference. Instead of considering a fixed resistance of pollution layer in series with arc, 

neumarker considered a uniform resistance per unit length of wet polluted layer. In this model 

the formula relating the minimum voltage required an arc and x/L are derived, where L is length 

of polluted surface. Also an equation for the critical arc length is derived. 

Equation for critical flashover voltage is given below:- 

1 

V AX =[ r p  {( X n _(X 
nNLl L) 

n 
(n+l)  (n+1) 

n 1, NL(1 + n) 

Xc = Critical arc length 

This model is applicable to DC voltage and could be valid under AC energization by considering 

ac as series of application of fixed voltage equal to that peak alternating voltage. 

[C] Model of R. Wilkins 

In this model formula for calculating the resistance of the polluted layer 

and factor which takes into account the change in resistance due heat are derived. Criteria for 

flashover i.e. di/dx > 0 is presented and applied to compare the experimental results. The model 

can be applied to axi-symmetric insulator with complex shape by replacing the practical insulator 
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by its equivalent cylinder. For developing flashover criteria he was assumed that the discharge 

moves to position where the rate of energy expenditure is maximum. A critical current value may 

be calculated above which power increased with the leakage discharge length and below which 

power decreased with discharge length. For a discharge length of x, the movement will occur if 

d
p >0. Where "p" is power taken from source. 

The flat plate model and discharge are shown in Fig 4.1 below 

X 
1 

Figure 4.1: Details of Flat Plate Model 

For narrow strip, resistance is given as:- 
R = 1 /(27ro-s){TC(L — x) / a + ln(a /(2;Trd )} 

Where, 
a = dry band length 

• = surface conductivity 
y' d = radius of discharge 

Critical voltage for this model is calculated, which is given below:- 

2 

V c = N n+ly.n+I {L+(2rr
)ln(J 4a . )}+V ~. 

lC 
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Where 

J= current density in amp/ Cm  z 

In the above equation use the surface conductivity i.e. the conductivity at the time of flashover 

which affected by high temperature. Therefore the flashover voltage values from these equations 

gives higher values when compared with experimental values. This value may be divided by a 

suggested factor of about "1.8" to taken in to account the variation in conductivity due to 

temperature. 

(D] Model of P Claverie 

This model deals with the phenomenon of flashover mechanism. Discharge development is 

studies using a flat plate of glazed porcelain and movement of arc are studies by using a high 

speed camera. The circuit resistance of pollution in series with the arc is considered with arc 

ignition conditions. Formula for arc voltage is derived, together with voltage required for re-

ignition. Condition e.g. maximum arc length and resistance of pollution layer at maximum arc 

length is derived. Formula for critical arc length and flashover voltage are derived and applied to 

practical insulator. In this model criterion for reigniting of arc is developed .For calculating this 

some assumptions are made here:- 

• Arc propagation speed prior to critical conditions so low as to justify the quasi-stationary 

analysis. 

• Single arc flash is assumed. 

• Uniform resistivity is assumed. 

• It is assumed that the arc propagation is due to the thermal phenomenon, i.e. the arc 

grows due to heat energy, as it dries the layer in front of the root. 

After performing several experiments, arc re -ignition voltage was found to be empirically given 

by the relation: 
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V>940___xl 
(V) 

According to the above formula, if an arc will occur, then to stabilize the glow, the above 

condition must be satisfied.. 

Flashover voltage is calculated by following formula: 

V = 476r PL 

[E] Model of P.S. Ghosh and S. Chatterjee 

A mathematical model to predict the flashover voltage of polluted insulator under 

AC is presented. This model takes into consideration the appropriate arc constants for different 

chemical nature of pollutants. The critical values of flashover voltage and current are derived. 

	

I 	n 
V= L ]T (n+l) ]\j (n+l)r (n+l) 

~1. 	1 Y 	p 

kN 
	n + 1 

i s _ [ 	1~ 	1 

r p 

In this model the value of N=450 and n= 0.49 for NaCl electrolyte are used. 

4.3 Cylindrical Models 

[A] Model of L.L. Alston& S.Zoledziowski 

This model consist of a cylindrical insulator of length "L", with electrodes on flat ends, as shown 

in Figure 4.2 below 
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Figure 4.2: Configuration of the model 

The voltage required to maintain the discharge on polluted insulators may increase with an 

increase in discharge length, and if this voltage exceeds the supply voltage, the discharge 

extinguishes without causing a flashover. Based on this mechanism, criteria, which define 

flashover conditions, have been developed. A simple geometry of insulator with constant surface 

resistance per unit length is considered. Flashover criteria in terms of formulae relating to 

applied voltage; critical stress, discharge length and resistance have been developed. Flashover is 

considered impossible if the applied voltage and the initial arc length are less than the critical 

values defined in this model. 

In this there was certain assumption made, which are given below: 

• Discharge current is constant along the length of the discharge, there is no contact 

between the discharge and pollution except that at discharge tip. 

• The dry band does not conduct the current. 

• The electrode voltage drop is neglected. 

• Resistance per unit length is constant. 

• The electric field is uniform for most part of length. 

• Single arc is assumed. 
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The discharge voltage calculated in this model is given as:- 

n 

Il = (n+1)(N7C)n+. `1 
f(L _ x ) r Pi 

I n J 

In Figure 4.3 below ,plot between "x" and Vcx is given:- x , 

As from Figure 4.3 we can seen that V ,x has maximum value, called critical value V.• For an 

applied voltage vs , the are can elongate up to an initial length of x, , as for length greater than 

x.r , the voltage required to maintain the are is more than the supply voltage. 

1. 

Figure 4.3: Dependence of V on arc length 

4.4 Summary 

Various theories have been proposed to explain the phenomenon of flashover in polluted 

insulators. This chapter attempts to discuss some of the diverse theories that have been 

forwarded. It is seen that despite considerable research work, the processes involved in flashover 
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are still not fully understood.. The process of flashover depends on factors such as type and 

nature of pollutant, non-uniform wetting process, conductivity of wet layer, orientation, shape 

and profile of insulator, wind, location, etc. The researcher may experience a formidable task in 

developing a suitable theory or model, which can explain the phenomenon satisfactorily in terms 

of all the factors. Since it is impossible to account all the factors involved, therefore the 

researchers has to make some assumptions in developing these models. It is therefore not 

surprising to come across different theories explaining flashover mechanism. 

In view of this difficulty, researchers need to explore other types of models that can provide 

reasonable accuracy in predictions. Artificial Neural Networks(ANN) based models appear to be 

promising in this respect and, are therefore the focus of the present dissertation work. The next 

chapter provides an overview of ANN models. The present dissertation attempts to develop a 

suitable ANN model of high accuracy for predicting flashover voltages of polluted insulators. 
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CHAPTER-5 

ARTIFICIAL NEURAL NETWORK (ANN) 
- AN O VER VIE W 

5.1 Introduction 

The neural network was inspired from its inception by the recognition that the human brain 

computes differently than that of a conventional digital computer. The brain acts as a highly 

complex, nonlinear, and parallel computer. A neural network is a massively parallel-distributed 

processor made up of simple processing units, known as neurons, which has a propensity for 

storing, and making easily available, experiential knowledge. It resembles the brain in two 

respects: 

1. Knowledge is acquired by the network from its environment through learning processes. 

2. Inter-neuron connection strengths, known as synaptic weights, are used to store the acquired 

knowledge. 

The procedure used to set the connection strengths is called learning, the function of which is to 

modify the synaptic weights of the network in an orderly fashion to attain a desired design 

objective. A neural network derives its computing power through its massively parallel distributed 

structure and its ability to learn and therefore generalize. Generalization refers to the neural 

network producing reasonable outputs for inputs not encountered during training (learning). These 

two information-processing capabilities make it possible for neural networks to solve complex 

problems. In practice, neural networks often cannot provide adequate solutions by working 

individually. Rather, they need to be integrated into a consistent system engineering approach. 

Specifically, a complex problem of interest is decomposed into a number of relatively simple tasks, 

and neural networks are assigned to a subset of the tasks that match their inherent capabilities. In 
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this work, the neural networks method is integrated into a system approach for power system 

voltage security analysis. 

5.2 Properties of Artificial Neural Networks [20] 

The use of neural networks offers the following useful properties and capabilities: 

1. Nonlinearity. 

A neural network, made up of an interconnection of nonlinear neurons, is itself nonlinear. 

Moreover, the nonlinearity is of a special kind in the sense that it is distributed throughout the 

network. Most real systems, including power systems are nonlinear, so this property is very 

desirable for its applications in power systems. 	 4 

2. Input-Output Mapping. 

A popular paradigm of learning called learning with a teacher or supervised learning involves 

modification of the synaptic weights of a neural network by applying a set of labeled training 

samples or task examples. Each example consists of a unique input signal and a corresponding 

desired response. The network learns from the examples by constructing an input-output mapping 

for the problem. In power system voltage security analysis, the traditional approaches which are 

widely used can be used to generate those training samples. 

3. Adaptivity 

Neural networks have a built-in capability to adapt their synaptic weights to changes in the 

surrounding environment. In particular, a neural network trained to operate in a specific 

environment can be easily retrained to deal with minor changes in the operating environmental 

conditions. Moreover, when it is operating in a non -stationary environment, a neural network can 

be designed to change its synaptic weights in real time. 

4. Fault tolerance 

A neural network has the potential to be inherently fault tolerant in the sense that its performance 

degrades gracefully under missing or erroneous data. The reason is that the information is 
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distributed in the network, the errors must be extensive before catastrophic failure occurs. These 

are the properties that are most desirable for solving the problems at hand. See [24] for a 

discussion of other useful properties. 

5.3 The Model of a Neuron 120] 

A neuron is an information-processing unit that is fundamental to the operation of a neural 

network. Figure 5.1 shows a model of neuron. There are three basic elements: 

1. A set of synapses or connecting links, each of which is characterized by a weight or strength of 

its own. 

Bias 
\ 	 Activation 

___ 	ftniciioll 
iii at 	~~ 	 v 	 t utizut 

h t, —~ • 	 Rtnctioii 

Figure 5.1 Model ol'a neuron 

2. An adder for summing the input signals, weighted by the respective synapses of the neuron; the 

operations by the adder constitute a linear combiner. 

3. An activation function for limiting the amplitude of the output of a neuron. Typically, it 

constrains the amplitude of the output signals to lie within the intervals [0, 1 ] or [-1,1] 

The neuron in Figure 5.1 also includes an externally applied bias, denoted by bk. The bias bk has 

the effect of increasing, or lowering, the net input of the activation function, depending on whether 

it is positive, or negative. The activation function, denoted by . (v), defines the output of a neuron in 

terms of the induced local field v. There are basically three different kinds of activation functions: 
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I ft v { 
1. Threshold function. G`)(v) = fit 

	iC. r 
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2 	 function. r,2(v) = V 	l .; > > -- 
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Sigmoidal functions, including the logistic function: and 

I- exp(-- ) 
The 	hyperbolic 	v) ` tanli(` ) - 1 c~;~ , 	tangent function: as shown in . 	t;~ i 

Figure 5.2 (a) and (b). 
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5.4 Learning Processes 1201 

Learning is a process by which the free parameters of a neural network are adapted through 

stimulation by the environment in which the network is embedded. The type of learning is 

determined by the manner in which the parameter changes take place. The property that is of 

primary significance for a neural network is the ability of the network to learn from its 

environment, and to improve its performance through learning. A neural network learns about its 

environment through an interactive process of adjustments applied to its synaptic weights and bias 

levels. Ideally, the network becomes more knowledgeable about the environment after each 
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iteration of the learning process. There are five basic learning rules: error-correction learning, 

memory-based learning, Hebb Ian learning, competitive learning, and Boltzmann learning. 

5.4.1 Error-Correction Learning 

Error-correction learning is based on optimum filtering and is used in feed forward networks, 

which are employed by this study. To illustrate the learning rule, consider the simple case of a 

neuron k constituting the only computational node in the output layer of a feed forward neural 

network, as depicted in Figure 5.3. 

I I1pLlt VeCtOr 	 Y ft 1 	 aryl E~;l 

Figure 5.3 Feedback in Network 

The output signal yk(n), representing the only output of the neural network, is compared to a 

desired response or target output, dk(n). Consequently, an error signal, ek(n), is produced, where 

ek(n) = dk(n) - yk(n). The error signal ek(n) actuates a control mechanism, the purpose of which is 

to apply a sequence of corrective adjustments to the synaptic weights of neuron k. The corrective 

adjustments are designed to make the output signal yk(n) approach the desired response dk(n) in a 

step-by-step manner. This objective is achieved by minimizing a cost function or index of 

performance, s(n) = 0.5 e2 k(n). That is, E(n) is the instantaneous value of the error energy. The 

step-by-step adjustments to the synaptic eights of neuron k are continued until the system reaches 

steady state (i.e., the synaptic weights are essentially stabilized). 

Minimization of the cost function c(n) leads to a learning rule commonly referred to as the delta 

rule or Widrow-Hoff rule: 

dwkj(n) = gek(n) xj(n) 
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where wkj(n) is the weight of neuron k excited by xj(n) of the signal vector x(n) at time step n. rl 

is a positive constant that determines the rate of learning. 

5.4.2 Memory-Based Learning 

Memory-based learning operates by memorizing the training data explicitly. All (or most) of the 

past experiences are explicitly stored in a large memory of correctly classified input-output 

examples as 

{ Xi, di}N; =0  where= x i denotes an input vector and di denotes the corresponding desired response. 

All memory-based learning algorithms involve two essential ingredients: 

(1) A criterion for defining the local neighborhood of the test vector xtest, and, 

(2) A learning rule applied to the training examples in the local neighborhood of x test. 

In a simple, yet effective type of memory-based learning, known as the nearest neighbor rule, the 

local neighborhood is defined as the training example that lies in the immediate neighborhood of 

the test vector x test. In particular, the vector X'NE{ xl, x2, ...,xN} ' . x is said to be the nearest 

neighbor of x test if min where d(xi, xtest) = d(X'N, X test) where d(xi, xtest) is the Euclidean 

distance between the vectors xi and xtest. The class associated with the minimum distance, that is, 

vector x'N,' , is reported as the classification of xtest. 

5.4.3 Hebbian Learning 

Hebb 's postulate learning is the oldest and most famous of all learning rules; it is named in honor 

of the neuropsychologist Hebb. It has two parts : 

(a) If two neurons on either side of a synapse (connection) are activated simultaneously, 

then the strength of that synapse is increased. 

(b) If two neurons on either side of a synapse are activated asynchronously, then that synapse is 

weakened or eliminated. 
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One form of Hebbian learning is using covariance hypothesis: 

dwkj= ij(xi -x) (yk-y) 

where rl is the learning-rate parameter. x and y are the time-averaged values of the pre-synaptic 

signal, xi, and postsynaptic, yk, respectively. One can see from (2.2) that synaptic weight wij is 

enhanced if there are sufficient levels of pre-synaptic and postsynaptic activities. Synaptic weight 

wij is depressed if there is either a pre-synaptic activation in the absence of sufficient postsynaptic 

activation or a postsynaptic activation in the absence of sufficient pre-synaptic activation. There is 

strong physiological evidence for Hebbian learning in the area of the brain called the 

hippocampus. This physiological evidence provides Hebbian learning`with significant justification. 

5.4.4 Competitive Learning 

Competitive learning is also inspired by neurobiological considerations. The output neurons of a 

neural network compete among themselves to become active (fired). Whereas in a neural network 

based on Hebbian learning several output neurons may be active simultaneously, in competitive 

learning only a single output neuron is active at any one time. It is this feature that makes 

competitive learning highly suited to discover statistically salient features that may be used to 

classify a set of input patterns. The individual neurons of the network learn to specialize on 

ensembles of similar patterns; in doing so they become feature detectors for different classes of 

input patterns. The standard competitive learning rule defines change of weight by 

Ii;(x;  - ++, a  ) 	if neuronk wins  
= 	 (2.3)   

10 	else 
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Figure '5.4 Kohonen networks 

This rule has the overall effect of moving the synaptic weight vector Wk of winning neuron k 

toward the input pattern x. This kind of learning is used in Kohonen maps. 

5.4.5 Boltzmann Learning 

The Boltzmann learning rule, named in honor of Ludwig Boltzmann, is a stochastic learning 

algorithm derived from ideas rooted in statistical mechanics. A neural network designed on the 

basis of the Boltzmann learning rule is called a Boltzmann machine. The machine is characterized 

by an energy function: 

E -- ~j I G.jr "4 i Xk X f 	~k 
"i ! k 

The machine operates by choosing a neuron at random at some step of the learning process, then 

flipping the state of neuron from state Xk to - Xk at some temperature T with probability 
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I. + exp(—L E,,, / T) 

where Ek is the energy change resulting from such a flip. 

If this rule is applied repeatedly, the machine will reach thermal equilibrium. The learning rule is 

defined by 

where p+kj and p"kj denote the correlation between the states of neurons k and j with the network 

in its clamped condition (visible neurons are all.fixed into specific states determined by the 

environment) and free-running condition, respectively. 

5.5 Kohonen Self-Organizing Networks 

Kohonen self-organizing networks are competitive-based network paradigm for data clustering. 

Networks of this type impose a neighborhood constraint on the output units, such that a certain 

topological property in the input data is reflected in the output units' weights. Figure 5.4 shows a 

Kohonen network. Based on competitive learning, Kohonen networks use a similarity measure. 

The winning unit is considered to be the one with the largest activation. For Kohonen feature maps, 

however, one updates not only the winning unit's weights but also all of the weights in a 

neighborhood around the winning units. The neighborhood's size generally decreases slowly with 

each iteration. A sequential description of how to train a Kohonen self organizing network is as 

follows: 

(1) Select the winning output unit as the one with the largest similarity measure between all weight 

vectors w; and the input vector x. If the Euclidean distance is chosen as the dissimilarity measure, 

then the winning unit c satisfies the following equation: 
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(2) Let NB c denote a set of indices corresponding to a neighborhood around winner c. The 

weights of the winner and its neighboring units are then updated by: 

'\1V = ii(x — wt) 
	1€ i\'B. 

Instead of defining the neighborhood of a winning unit, one can also use a neighborhood 

function .c(i) around a winning unit c. For instance, the Gaussian function can be used as 

the neighborhood function: 

_ Y 	— Il ~r 	
Pt, II2 1 

where p; and pc are the positions of the output units i and c, respectively, and 6 reflects 

the scope of the neighborhood. By using the neighborhood function, the update formula 

can be rewritten as: 

= t10- ( )(X - w r ) 
where i is the index for all output units. To achieve better convergence, the learning rate and the 

size of neighborhood should be decreased gradually with each iteration. 

5.6 Multilayer Perception [20] 

5.6.1 Introduction 

Multilayer perception network consists of a set of sensory units (source nodes) that constitute the 

input layer, one or more hidden layers of computation nodes, and an output layer of computation 

nodes. The input signal propagates through the network in a forward direction, on a layer-by layer 

basis. Multilayer perceptions have been applied successfully to solve a number of diverse and 
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difficult problems by training them in a supervised manner with a highly popular algorithm known 

as the back-propagation algorithm. This algorithm is based on the error-correction learning rule. 

Error back-propagation learning consists of two passes through the different layers of the network: 

a forward pass and a backward pass. In the forward pass, an activity pattern (input vector) is 

applied to the sensory nodes of the network, and its effect propagates through the network layer by 

layer. Next, a set of outputs is produced as the actual response of the network. During the forward 

pass the synaptic weights of the networks are all fixed. During the backward pass, on the other 

hand, the synaptic weights are all adjusted in accordance with an error-correction rule. 

Specifically, the actual response of the network is subtracted from a desired response to produce an 

error signal. This error signal is then propagated• backward through the network against the 

direction of synaptic connections-hence the name "error back-propagation." The synaptic weights 

are adjusted to make the actual response of the network move closer to the desired response in a 

statistical sense. 

5.6.2 Error Back-Propagation Algorithm 

The back propagation algorithm is defined using delta rule: 

( ~) 	iO J (ii ).y1(n) 

where yi(n) is the input signal of neuron j from neuron i and 8j(n) is the local gradient. If neuron j 

is an output node, 6i(n) equals the product of the derivative cpj'(vj(n)) and the error signal ej(n), 

both of which are associated with neuron j, i.e., Si(n) =ej (n) Soj'(vj(n)). If neuron j is a hidden 

node, t i(n) = rpj '(vy(n)),ER (n)w kj, i.e., b(n) equals the product of the associative derivative 

gpj'(vj(n)) and the weighted sum of the S's computed for the neurons in the next hidden or output 

layer that are connected to neuron j. The factor ,'(vj(n)) depends solely on the activation 

function associated with hidden neuronj. Figure below shows the signal-flow graph of the error 
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back-propagation algorithm. 

(n) 	 bk(n) 	g7k.~(Vk(1.1))) 

	

04 	0 'k(11) 

eL!l () 
t~~'Lj(n)  

Figure5.5 Signal- flow graph of the error hack-propagation algorithm 

5.6.3 Achieving Better Performance 

There are many methods that will significantly improve the back-propagation algorithm 

performance. A few are briefly described here: 

(1) The sequential mode of back-propagation learning is computationally faster than the batch 

mode. This is especially true when the training data set is large and highly redundant. 

(2) The use of an example that results in the largest training error or an example that is radically 

different from all those previously used. This will maximize information content. These two 

heuristics are motivated by a desire to search more of the weight space. 

(3) Generally, using an ant symmetric activation function is faster than using nonsymmetrical 

functions in back-propagation. 

(4) Normalizing the inputs and target values will keep the back-propagation algorithm away from 

the limiting value of the sigmoid activation function. Otherwise, the backpropagation 

algorithm tends to drive the free parameters of the network to infinity, and thereby slow down the 

learning process by forcing the hidden neurons into saturation. 

The input should be uncorrelated; this can be done using principal component analysis. 
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The de-correlated input should be scaled so that their covariance's are approximately equal, 

thereby ensuring that the different synaptic weights in the network learn at approximately the same 

speed. 

(5) A good choice of initialization is important so that too large a value will not drive the network 

to saturation nor too small a value will cause the network to operate on a very 

flat area around the origin of the error surface. 

(6) A high learning rate will speed up the rate of learning, but the network may become 

unstable. A simple way of increasing the rate of learning yet avoiding the danger of 

instability is to modify the delta rule by including a momentum term: 

Aw j  (n) -- (/Alt fl (r'i — I) , i8 (n)y1(17) 

where a is usually a positive number called the momentum constant. 

5.6.4 Improving Generalization 

The essence of back-propagation learning is to encode an input-output mapping into the synaptic 

weights and thresholds of a multilayer perception. The hope is that the network becomes well 

. trained so that it learns enough about the past to generalize to the future. One problem that occurs 

during training is called over fitting. The error on the training set is driven to a very small value, 

but when new data is presented to the network the error is large. The network has memorized the 

training examples, but it has not learned to generalize to new situations. Use a network that is just 

large enough to provide an adequate fit will improve network generalization. The larger a network 

is used the more complex the functions that the network can create. If a small enough network is 

used, it will not have enough power to over fit the data. The problem is that it is difficult to know 

beforehand how large a network should be for a specific application. 
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There are two other methods for improving generalization. The first is modifying the performance 

function, which is normally chosen to be the sum of squares of the network errors on the training 

set: 

The modified performance function is then: 

,7 

where y is the performance ratio, and. 	=  

Using such a performance function will cause the network to have smaller weights and biases, and 

this will force the network response to be smoother and less likely to over fit. Another method for 

improving generalization is early stopping. In this technique, the available data is divided into 

three subsets: training set, validation set and test set. The training set is used for computing the 

gradient and updating the network weights and biases. The error on the validation set is monitored 

during the training process to guard against over fit. The validation error will normally decrease 

during the initial phase of training, as does the training set error. When the network begins to over 

fit the data, the error on the validation set will typically begin to rise and learning can be stopped. 

Both methods are used to guard against over fitting. 
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CHAPTER-6 

ARTIFICIAL NEURAL NETWORK (ANN) MODELS 
FOR FLASH OVER VOL TA GE (FO V) ESTIMA TION 

6.1 Introduction 

In the present chapter an attempt is made to develop suitable ANN models for predicting the 

flashover voltage (FOV) of contaminated insulators. Since different architectures are possible, it 

is indeed a voluminous task to explore all possible structures. Therefore, the study is restricted to 

the investigation of a few selected architectures, and the best ANN model from these is selected 

for subsequent simulation studies. 

6.2 The Control Variables 

Flash over voltage (FOV) has been experimentally seen to be a function of certain variables. In 

the study reported by Al-Alawi et al [181, the following variables are found to exert influence: 

(1) Salinity of contaminated salt solution ( gm/100 ml) 

(2) Solution current (mA) 

(3) Resistivity of salt solution( ohm-cm) 

The output variable is the Flash over voltage (FOV). 

Accordingly, The ANN models developed make use of the above three control (input) 

variables with FOV as the output (controlled) variable. 

6.3 Activation Functions 

The models make us of activation functions of different functional forms. The following are the 

activation functions generally available with ANN models: 
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(a) Linear Transfer Function (LTF) 

(b) Log- Sigmoid Transfer Function(LSTF) 

(c) Hyperbolic Tangent Sigmoid Transfer Function.(HTSTF) 

Various combinations of the above transfer functions may be employed with respect to the 

hidden layer inputs and the output layer inputs. 

6.4 ANN Architectures 

The ANN models used in the present study have three inputs and a single input. The choice of 

the number of nodes for a single hidden layer can be varied from three to seven. Therefore, by 

varying the number of hidden layer nodes, different architectures/configurations have been 

developed 

6.5 ANN Models Developed 

Table 6.1 shows the various configurations of models that are considered for the present study: 

Table 6.1 ANN Models Configuration 

S.No Model No. of nodes 
in input layer 

No. of 
nodes in 

hidden layer 

No. of 
nodes in 
output 
layer 

Activation 
function 
(Input- 
hidden 
layer) 

Activation 
Function 
( Hidden= 

output 
layer) 

1. A 3 5 1 LSTF LTF 

2. B 3 5 1 LSTF LSTF 

3. C 3 5 1 LSTF HTSTF 

4. D 3 5 1 LTF LTF 

5. E 3 5 1 HTSTF LSTF 

6. F 3 5 1 HTSTF LTF 

7. G 3 5 1 HTSTF HTSTF 

8. H 3 7 1 LSTF LTF 

9. I 3 7 1 LTF LTF 

10 J 3 3 1 LSTF LTF 
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6.6 Software Used 

MATLAB version 7.3.0(R2006b) software was used for the purpose of developing . the ANN 

models as described in Table 6.1. The MATLAB Tool Box function was used. Training data for 

the models was obtained from the experimental data quoted in reference [18]. Due to 

unavailability of a large number of data sets, the ANN models were trained with limited 

observational points. Nevertheless, the results show good agreement with the actual data outputs 

and this validates the application of ANN methodology for prediction of FOV in polluted 

insulators. 

6.7 Results and Discussions 

6.7.1 Model Architecture/Configuration and Training 

6.7.1 .1 Model A 

Figure 6.2 shows the structure of Model A as depicted in MATLAB Toolbox: 

3 	 5 	 1 

Figure 6.2: Layout of Model A 
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3 	 5 	 1 

Training Curve for Model A is shown in Figure 6.3 

U  

Figure 6.3: Training Curve for Model A 

6.7.1.2 Model B 

Figure 6.4 shows the structure of Model B as depicted in MATLAB Toolbox: 

Figure 6.4: Layout of Model B 
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Training Curve for Model B is shown in Figure 6.5 

Figure 6.5 Training Curve for Model B 

6.7.1.3 Model C 

Figure 6.6 shows the structure of Model C as depicted in MATLAB Toolbox: 

Figure 6.6: Layout of Model C 
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Training Curve for Model C is shown in Figure 6.7 

P.•'mm, mr s (1 :f .•n.l . C 

• ~r,,,~y. 

Figure 6.7 Training Curve for Model  

6.7.1.4 Model D 

Figure 6.8 shows the structure of Model D as depicted in MATLAB Toolbox: 	~• .~•~!•-~~~~'~ 

3 	 5 	 1 

Figure 6.8: Layout of Model D 
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Training Curve for Model D is shown in Figure 6.9 

Padormahce is 1.52224, Goal is 0 

Figure 6.9 Training Curve for Model D 

6.7.1.5. Model E 

Figure 6.10 shows the structure of Model E as depicted in MATLAB Toolbox: 

3 	 5 	 1 

Figure 6.10: Layout of Model E 
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Training Curve for Model D is shown in Figure 6.11 

Performance is 233.46, Goal is 0 

1ne epoch 

Figure 6.11 Training Curve for Model E 

5.7.1.6 Model F 

Figure 6.12 shows the structure of Model F as depicted in MATLAB Toolbox: 

Figure 6.12: Layout of Model F 
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Training Curve for Model F is shown in Figure 6.13 
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Figure 6.13 Training Curve for Model F 

6.7.1.7 Model G 

Figure 6.14 shows the structure of Model G as depicted in MATLAB Toolbox: 

3 	 5 	 1 

Figure 6.14: Layout of Model G 
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Training Curve for Model G is shown in Figure 6.15 

Figure 6.15 Training Curve for Model G 

6.7.1.8 Model H 

Figure 6.16 shows the structure of Model H as depicted in MATLAB Toolbox: 

3 	 7 	 1 

Figure 6.16: Layout of Model H 
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Training Curve for Model H is shown in Figure 6.17 

Performance is 1.19 1, Goal is 0 
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Figure 6.17 Training Curve for Model H 

6.7.1.9 Model I 

Figure 6.18 shows the structure of Model H as depicted in MATLAB Toolbox: 

3 	 7 	 1 

Figure 6.18: Layout of Model I 

Training Curve for Model I is shown in Figure 6.19 
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Figure 6.19 Training Curve for Model I 

6..7.1.10 Model J 

Figure 6.20 shows the structure of Model H as depicted in MATLAB Toolbox: 

3 	 1 

Figure 6.20: Layout of Model J 

Training Curve for Model J is shown in Figure 6.21 
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Figure 6.21 Training Curve for Model J 

6.7.2 Discussion on the Training Trends of ANN Models 

The ten models (Model A-Model J) as indicated above show diverse training features. In some 

models training was accomplished while in others, training was not successful. Therefore, we 

will consider only those models in which training was successful. 

A summary is presented in Table 6.2 to provide an overview of the training results obtained. 

The results show that only Models A, D, , H, I and J could be trained. The rest i.e. Models B, C, E, 

F and G could not be trained with the activation functions and the hidden layer structure used. 

From above table we also observe that for same goal (zero) different activation functions give 

different performance in regard to convergence in terms of no. of epochs. Our main aim is to select 

an ANN model which gives less error i.e. output is nearer to the target value. 
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Here, Model A gives best results as compared to others; hence it is best model out of them. Now 

this model is used for simulation studies pertaining to pollution flashover in insulators. 

Table 6.2 Summary of Training Results 

S.No. Model target 

performance 

goal No. of epochs Remarks 

1 A 1.19651 0 51 Training 

accomplished 

2 B 2033.46 0 1 Not trained 

3 C 2033.46 0 1 Not trained 

4 D 1.52224 0 47 Training 

accomplished 

5 E 2033.46 0 1 Not trained 

6 F 29.2538 0 11 Not trained 

7 G 2033.46 0 2 Not trained 

8 H 1.19651 0 60 Training 

accomplished 

9 r 1.52224 0 97 Training 

accomplished 

10 J 1.12087 0 100 Training 

accomplished 

6.8 Verification of Accuracy of ANN models 

Table 6.2 and Figure 6.22 show the results for the actual and predicted values of the selected 

ANN model (Model A) 
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Table 6.3 Analytical Values of FOV obtained using Model A 

S. No. Actual experimental Value of FOV (kV) Predicted Value of FOV (kV) 

1 60 60.1601 

2 29 30.4334 

3 47 46.7384 

4 34 33.8347 

5 38 38.9772 
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Figure 6.22 Graphical validation of Accuracy of ANN Model A 
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6.9 Summary 

The present chapter is devoted to the evaluation and selection of a suitable ANN Model for 

predicting FOV of polluted insulators Out of the ten models, Model A appeared to be the best. 

Hence its use is recommended for further simulation work. 
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CHAPTER-7 

CONCLUSIONS 

7.1 Summary 

The presented study was devoted to the evaluation and selection of a suitable ANN Model for 

predicting FOV of polluted insulators in terms of thee input parameters viz. salinity, resistivity 

and current flow through the solution of the pollutant. Ten models (Model A —Model J), having 

different combinations of architectures and different activation functions with hidden and output 

layers were tried out. It was seen the best performance in terms of the goal attainment and the no. 

of epochs for convergence was shown by Model A. Hence this model is selected for subsequent 

simulation studies in relation to pollution flashover in polluted insulators. 

7.2 Scope for Further Work 

The present studies can be extended in the following ways: 

(a) Other method of analysis can be used e.g. Fuzzy based models, Fuzzy-neuro models, 

regression techniques, etc 

(b) Optimization of the parameters may be done to find out the best dimensions of the 

insulators to withstand flashovers for different levels of voltages. 

(c) Apart from the three control parameters (as used here), the use of other parameters can 

be investigated in enhancing the ANN model. 

(d) The studies have been restricted to flashover under AC voltages. The performance under 

High DC voltages can also be explored. 
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