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ABSTRACT 

The work presented in the dissertation deals with algorithms for 
model reduction of single input single output discrete time systems in z-transfer 
function and comparison of results among algorithms for best suitable stable 
reduced model of given higher order system. 

Reduction of higher order system transfer function to low order 
models has been an important area in the control engineering environment for 
many years. In the model reduction, finding the low order model of given higher 
order system transfer function, which reflects the dominant characteristics of 
original system, normally step responses matching are performed 

There are several different approaches for the reduction of discrete 
time systems. Here three different such type of algorithms are discussed, namely 
Markov and H-parameter matching (MHM), Genetic Algorithm (direct search 
method), and combination of above both algorithms. 

First algorithm requires error function in terms of reduced model 
variables, Pascal triangle. Markov parameters will dictate transient response and 
h-parameters will dictate the later part of response including steady state 
response. By making use of these variables we find out the reduced model 
parameters. Second algorithm is direct search optimization technique. It directs 
searching for reduced model variables in space in proper steps and also avoids 
local minima. Third algorithm is combination of both first and second algorithm. 
It has the advantages of both algorithms and these are explained in detail in 
chapter 5. 

The advantages of the proposed algorithms are that characteristics 
of original system can be preserved in reduced models and in the reduced 
models are always stable provided, the original system stable. In each algorithm, 
general formulation, steps involved and flow charts for reducing nth order system 
to rth order are explained with numerical example also. 
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Chapter 1 

INTRODUCTION 

1.1 GENERAL INTRODUCTION 

The approximation of high-order systems by low-order models is one 
of the important problems in system theory. The use of a reduced order model 
makes it easier to implement analyses, simulations and control designs. Model-
reduction problems have received considerable attention for many years and 
have been approached in a number of ways [I-10]. Many control techniques are 
relatively simple to implement on a low-order system containing few 
parameters. High-order systems, however, generally lead to a much greater 
amount of effort for their analysis, especially in terms of necessary computation. 

One scheme to ameliorate this is to formulate a model which is of 
much lower order than the system, and yet which retains certain of its properties 
such that it may be viewed as a reasonable approximation to the system. In the 
analysis of many systems for which physical laws are relatively well known, one 
is frequently confronted by problems arising are from the high dimensions of 
descriptive state model, the famous curse of dimensionality. This is particularly 
true for the systems described by partial differential equations, for which 
discretization in space is generally used to obtain a system of ordinary 
differential equations, simpler to use but of a very high dimension. 

A continuous-time transfer function can be described in terms of its 
Markov parameters or its time series proportional, If the Markov parameters of a 
low-order model are made equal to those of the system in as many cases as the 
model will allow, the model response to a step input will approximate that of the 
system for a short time period after the step change has occurred. In the same 
way, if time series proportional to both model and system are equated in as many 
cases as possible, the model will approximate as steady-state is encroached upon. 
One technique for obtaining an overall approximation to a high order system is to 
use two low order models [1].One to cover the initial response and one for 
steady-state conditions. 

More recently, however effort has been concentrated on finding one 
.single low-order model to approximate. The system [2] eased simply on a 
matching of model and system time series proportionals i.e. Pade approximation, 

-1- 



but more generally the model denominator can be found by means of the Routh 
stability criterion such that stability problems associated with Pade 
approximation are overcome, The model numerator parameters can then be 
found via Pade approximation [3, 4], although this means that fewer time series 
proportionals can be matched. Models can also be found whose parameters are 
used to match a few Markov parameters and a few time series proportionals [5, 
6, and 7]. This can also mean that the error between certain remaining 
parameters can be minimized given sufficient degrees of freedom [8]. 

A review of many of these methods was given in Ashoor and Singh [9], 
where the performance of the schemes on several transfer functions was 
considered. It is apparent, however that the methods referenced involve detailed 
ladder networks which are computationally time consuming and prone to 
rounding errors. It is believed that this approach is computationally efficient and 
simple to comprehend. The details are described in terms of discrete time 
systems, due to the direct applicability of the models obtained, and follow on 
from previous discrete time modeling [10],involving continued fractions and, 
hence, ladder networks. 

The approach employs what is termed the error polynomial, which is 
found as the difference between the system and model outputs, to an identical 
step input. In Section 2 the transfer function and its reduced-order model are 
defined, both being assumed to consist of relatively prime polynomials. The error 
polynomial is then detailed in Section 3, along with the effective error input for 
any particular step input change. The parameters contained within the error 
polynomial are considered in Section 4, where two theorems are introduced to 
show how Markov and time series proportional parameter matching can be 
achieved simply by equating the error polynomial coefficients with zero. Genetic 
algorithm using direct search method[25] for reducing higher order model also 
discussed here and compares this with markov parameter and h-parameter 
equalization algorithm. Combination of both also tested and it yields to the good 
results which are discussed in chapter 5. 

However, the one at a time search method described above is not so 
computationally efficient, especially for discrete-time systems, and in the 
gradient based method the problem of local optima cannot be avoided, as 
mentioned below. Since the minimization of the many conventional quadratic 
cost function is a nonlinear problem with respect to the denominator 
parameters. A nonlinear optimization technique [18], [20] such as the gradient-
based method is usually required. 
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However, such techniques• are often very complicated and 
computationally demanding. Moreover, since the cost function generally has 
multiple local minima, the attainment of the global optimum by the nonlinear 
optimization techniques is difficult. In this thesis, to overcome these problems, 
we propose a novel L2, model-reduction algorithm [19] for single input, single 
output (SISO) discrete-time systems combining the least-squares (LS) into with 
the genetic algorithm combined with conventional method. The GA is a 
probabilistic search procedure based on the mechanics of natural selection and 
natural genetics [24]. Recently. the GA has received Considerable attention in 
various fields [29 -30], because It has a high potential for global optimization. 

1.2. LITERATUR REVIEW 

Reduction of higher order systems transfer function to lower order 
model has been an important subject area in control engineering environments 
for many years. The problems in large scale systems including reduced order 
modeling have been a favorite area of researchers during past two decades. 
Reduced modeling of discrete time systems have been attempted in both in time 
and frequency. 

Westcott, J.H. [1] are proposed a method for reduction of large scale 
system to lower order model in frequency domain and explained about their 
relation ship with transient behavior of system. Shamash.Y [2],[4],[7],[10], has 
done excellent work in the area of deriving stable reduction models by several 
method such as Routh stability criterion and Pade approximations and also 
proposed how to identify and estimate the system parameters. Hutton, M. F., and 
Friedland.B [3] proposed a method of model reductions by using the Routh 
approximations. Chen, T. C., Chang, C. Y., and Han, K.W [5] has proposed a new 
method of continuous fraction along with stability equation. PaI.J used Routh.-
Hurwitz array to found stable reduced approximates [8], [9]. 

Principal component analysis in linear time systems provided by 
Moore, B.C.[11] and also proposed the effects of controllability, observability on 
model reduction. Warwick proposed a new method of finding the stable reduced 
order model with matching markov and h-parameters of model and system 
[12].All the methods specified above also deals with stability of reduced model by 
routh stability array, nyquist stability criteria. Excellent books [13], [16] have 
detailed contributions in the reduction of higher order system to stable reduced 
order models by using different methods. 
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Skelton, R.E., and Anderson [15] are extend the work of Warwick [12] 
in the area of markov parameters with covariance equallent 
realizations.[17],[21] are entered into new dimension of introducing delay 
system in reducing the large scale models .[18],[19[,[20],[23]are introduced new 
methods like extended complex curve fitting methods ,optimal and sub optimal 
model reduction methods. [22] proposed the hybrid method of model reduction 
method along with time delays. 

Goldberg [24] had written excellent book to refer Genetic algorithms 
and also done some research in this area. [25], [28] are proposed the how to 
identify system parameters and how to reduce the higher order system by using 
genetic algorithms. It has also played roles in tuning the various controller 
explained in[26],[27] Lansberry, J.E., Wozniak.E, and Goldberg [27] introduce 
genetic algorithms to tune a hydro generator governor. Porter.B, Jones [28] used 
genetic algorithms in tuning the PID controller. Yang, Z.J., Hachino.T, Tsuji.T [29], 
[30] are extended the work proposed in [17], [21], [25] combining Genetic 
algorithms with conventional methods and also time delay necessity present in 
reduced models. 

1.3. STATEMENT OF PROBLEM 

The objective of the dissertation is to compare the time domain 
methods for model reduction of discrete time systems in z-domain and to discuss 
time domain approaches to derive stable reduced order model for a stable 
discrete time system. 

In this dissertation order of discrete time system will be carried out by 
three methods namely Markov and H-parameters Matching (MHM), Genetic 
algorithms and Genetic algorithms with Markov and H-parameter matching 
(combination of both above algorithms). 

In first algorithm, reduced model parameter variables can be found by 
matching markov parameters and h- parameters of given system and reduced 
model. In the second algorithm, reduced model parameter variables can be found 
by applying genetics to variables and searching in a specific manner. In algorithm 
3, denominator parameters are found by alogrtihml and numerator variables are 
found by genetic algorithm. 

A numerical example will be included to illustrate these methods. 
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1.4. DISSERTATION LAYOUT 

This dissertation consists of 6 chapters deals with details as given 
below. 

Chapter-1 deals with brief introduction of model reduction and genetic 
algorithms along with literature review and objective of dissertation. 

Chapter-2 deals with details about model reductions, its need and method of 
order reduction techniques. 

Chapter-3 deals with details of genetic algorithms, how to handle with it and 
merits and demerits. 

Chapter-4 deals with model reduction method and it's algorithms for solving 
along with flow charts in three different methods. 

Chapter-5 deals with numerical examples, along with result and discussion are 
given this chapter to compare the responses of these methods 
explained in chapter 4 

Chapter-6 deals with contribution made in this dissertation and future scope of 
work in this are given. 
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Chapter 2 

MODEL REDUCTIONS 

2.1. INTRODUCTION 

The large Scale systems are all around and exit in diverse fields such as 
complex, chemical process, biomedical systems, social Economic systems 
transportation systems, ecological systems, social economic systems, electrical 
power systems, Aeronautics ,hydraulic pneumatic. 

A system is said to be large if it can decoupled or partitioned into 
number of interconnected systems or small scale systems for either 
computational or practical reasons. Alternatively a system is large scale when its 
dimensions are too high, such that conventional techniques of modeling, analysis 
control, design and computation fails to give accurate solutions with reasonable 
computational fail to give accurate solutions with reasonable computational 
efforts. 

The analyses of such physical systems start by building of a model 
which may be considered a faithful representation of such systems. The task of a 
control engineer begins with formulation of a model. The rest of analysis and 
design can be done with this model. In many practical situations a fairly complex 
and high order model is obtained from theoretical considerations. 

The mathematical models of high order dynamic systems can be 
.described either in state space form or in transfer function from which are called 
time domain and frequency domain representations. In the state space or time 
domain representation a high order differential equation is decoupled into a set 
of first order differential equations. Similarly in the transfer function or 
frequency domain representation, the Laplace transforms of high order 
differential equation is taken under zero initial conditionals and the 
mathematical model is represented, as a rational function(in the ratio of Laplace 
transform of output to the Laplace transform input), called system transfer 
function. The exact analysis of most of high order systems is both tedious and 
costly; it poses a great challenge to both system analyst and control engineer. 

The preliminary design and optimization of such system can often be 
accomplished with greater ease if a low order linear model is derived which 
provides a good approximation to the system. Desirable features of such model 
will be simplicity while preserving features of interest. Since the models may be 



developed with various aims in mind/ view points, it is possible to have more 
than one model for a given system each satisfying some objective. 

2.2. NEED FOR MODEL REDUCTION 

Every physical system can be translated into mathematical model. The 
mathematical procedure of system modeling often leads to comprehensive 
description of a process in the form of high order different equations which are 
very difficult to use either for analysis or controller synthesis. It is hence useful, 
and sometimes necessary, to fine the possibility of finding some equation of the 
same type but of lower order that may be considered to adequately reflect the 
dominant characteristics of the system under consideration. 

■ To have a better understanding of the system 
A system of uncomfortably high order poses difficulties in its 
analysis, synthesis or identification An obvious method of dealing 
with such type of system is to approximate it by a low order system 
which reflect the characteristics of original system such as time 
constant ,damping ratio ,natural frequency etc. 

■ To reduce Computational Complexity 
The developing of state space methods and optimal control 
techniques has made the design of control system for high order 
multivariable system quite feasible. When the order of the system 
becomes too high, special numerical techniques are required to 
permit the calculation to be done at feasible cost on fast digital 
computers. This saves both time and memory required by 
computer. 

■ To reduce Hardware complexity 

A control system design for a high order system is likely to be very 
complicated and a high order itself. This is particularly true for 
controller based on optimal control theory. Controller are designed 
on the basis of low order model will be more reliable, less costly and 
easily implement and maintain. 

■ To generalize results established on a particular system to 
comparable system. 

The results studied for a simple model can be easily generalized to 
other comparable system. 
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■ To make feasible designs 

Reduced order models, may be effectively used in special situation 
like, 

a) Model reference adaptive control schemes. 
b) Hierarchical control schemes. 
c) Suboptimal control. 
d) Decentralized controllers 

■ To improve the methodology of computer aided control system 
design 

The methodology of computer aided techniques for control system 
design can be easily improved using simpler models. 

2.3. OPTIMAL MODEL REDUCTION 

The reduction methods are based on obtaining a model of specified 
order such that its impulse or step response matches that of original system in an 
optimal manner, with no restriction on the location of the Eigen values. Such 
techniques aim at minimizing a selected performance criterion, which is a 
general function of error between the response of original high order system and 
its reduced model system. The parameters of reduced model are obtain either 
from necessary conditions of optimality or from the numerical algorithm. 

2.4. DIFFERENT METHODS OF REDUCTION 

In the field of model reduction several methods has been proposed. The 
basic aim of model reduction is that reduced order approximant should 
reproduce the significant characteristics of the present system as closely as 
possible. There are wide verity of concepts and techniques which have a common 
goal of reducing the dimensions of mathematical model of large scale systems to 
facilitate their analysis and design or simulation. The model order reduction can 
be achieved either in the time domain or in the frequency domain or combination 
of both an excellent review of the methods developed in the area is available in 
various references. We will use the term system to represent the original higher 
order system and the model for its reduced order system. 



2.4.1. CLASSFICATION 

The order reduction techniques can broadly be classified as 

a) Time domain simplification techniques. 
b) Frequency domain simplification techniques. 

2.4.2. TIME DOMAIN SIMPLIFICATION TECHNIQUES 

In these domain techniques, the original and reduced systems are 
expressed n state space form. The domain techniques belong yto either of 
the following categories. 

1.) Model analysis approach. 
2) Subspace projection methods. 
3) Optimal order reduction. 
4) Hankel-norm model reduction. 

2.4.3. FREQUENCY DOMAIN SIMPLIFICATION TECHNIQUES 

In the frequency domain techniques, we simply reduce the order of the 
transfer function .Decreasing the order of the transfer function doesn't 
ensure the resulting transfer function is realizable. For this purpose, the 
term simplification is used. The frequency domain techniques belong to 
wither of the following categories. 

1) Continued fraction expansion and truncation [5]. 
2) Time moment matching [12], [15]. 
3) . Pade approximation. 
4) Stability criteria based reduction methods. 

i) Routh approximations [3], [4], [7]. 
ii) Hurwitz polynomial approximation. 
iii) Routh-Hurwitz array method [2], [6]. 
iv) Stability equation method 

5) Polynomial differentiation. 
6) Truncation method. 
7) Dominant pole retention. 
8) Simplification using Schwarz canonical form. 
9) Reduction using minimal realization. 
10) Frequency response matching. 
11) Reduction using optimization [17], [24, 30]. 
12) Reduction using factor division [20]. 
13) Model reduction using chebshev polynomials [18]. 
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2.5. METHODS FOR REDUCTION OF DISCRETE TIME SYSTEMS 

For discrete time systems also the same arguments as for continuous 
systems hold as far as need for reduced order modeling is concern. Moreover the 
fast development and usage of small digital computers and processors in the 
design and implementation of control systems have increased importance of 
reduced order modeling methods for discrete systems. 

These are broadly classified into two types. 

1) Direct methods. 
2) Indirect methods. 

2.5.1. REDUCTION BY USING DIRECT METHODS 

The bilinear transformation has bee n made in the indirect methods to 
extend model reduction techniques for continuous time systems. These 
methods suffer from the inherent drawbacks associated with bilinear 
transformation cannot only prove to be a very tedious operation it may as 
we produce erroneous results as some of the points in z—domain are not 
necessarily defined in the 'w' domain. The reduction of discrete time 
systems by direct methods has been attempted by several authors [2], 
[10], [12], [19]. 

2.5.2. REDCUTION BY USING INDIRECT METHODS 

Bilinear transformations can be used to extend continued fraction method 
[5],[10] for continuous systems to reduce transfer function in `w' domain 
similarly many other methods for continuous time systems have been 
extended to reduce discrete time systems by using bilinear 
transformations [3],[4],[6],[7].these methods suffer from drawback that 
due to the nature of bilinear transformation, the initial valued step 
response of reduced model may not be zero. 
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Chapter 3 

GENETIC ALGORITHM 

3.1. INTRODUCTION 

Genetic algorithm (GA) is a programming technique that mimics 
biological evolution as a problem-solving strategy. Given a specific problem to 
solve, the input to the GA is a set of potential solutions to that problem, encoded 
in some fashion, and a metric called a fitness function that allows each candidate 
to be quantitatively evaluated. These candidates may be solutions already known 
to work, with the aim of the GA being to improve them, but more often they are 
generated at random. Genetic algorithm is a search technique used in computing 
to find exact or approximate solutions to optimization and search problems. 

Genetic algorithms are categorized as global search heuristics. Genetic 
algorithms are a particular class of evolutionary algorithms (also known as 
evolutionary computation) that use techniques inspired by evolutionary biology 
such as inheritance, mutation, selection, and crossover (also called 
recombination).GA then evaluates each candidate according to the fitness 
function. In a pool of randomly generated candidates, of course, most will not 
work at all, and these will be deleted. However, purely by chance, a few may hold 
promise - they may show activity, even if only weak and imperfect activity, 
toward solving the problem. These promising candidates are kept and allowed to 
reproduce. Multiple copies are made of them, but the copies are not perfect; 
random changes are introduced during the copying process. 

These digital offspring then go on to the next generation, forming a new 
pool of candidate solutions, and are subjected to a second round of fitness 
evaluation. Those candidate solutions which were worsened, or made no better, 
by the changes to their code are again deleted; but again, purely by chance, the 
random variations introduced into the population may have improved some 
individuals, making them into better, more complete or more efficient solutions 
to the problem at hand. Again these winning individuals are selected and copied 
over into the next generation with random changes, and the process repeats. 

The expectation is that the average fitness of the population will 
increase each round, and so by repeating this process for hundreds or thousands 
of rounds, very good solutions to the problem can be discovered. As astonishing 
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and counterintuitive as it may seem to some, genetic algorithms have proven to 
be an enormously powerful and successful problem-solving strategy, 
dramatically demonstrating the power of evolutionary principles. Genetic 
algorithms have been used in a wide variety of fields to evolve solutions to 
problems as difficult as or more difficult than those faced by human designers. 
Moreover, the solutions they come up with are often more efficient, more elegant, 
or more complex than anything comparable a human engineer would produce. 

Genetic algorithms are implemented as a computer simulation in which 
a population of abstract representations (called chromosomes or the genotype or 
the genome) of candidate solutions (called individuals, creatures, or phenotypes) 
to an optimization problem evolves toward better solutions. Traditionally, 
solutions are represented in binary as strings of Os and 1s, but other encodings 
are also possible. 

The evolution usually starts from a population of randomly 
generated individuals and happens in generations. In each generation, the fitness 
of every individual in the population is evaluated, multiple individuals are 
stochastically selected from the current population (based on their fitness), and 
modified (recombined and possibly randomly mutated) to form a new 
population. The new population is then used in the next iteration of the 
algorithm. Commonly, the algorithm terminates when either a maximum number 
of generations has been produced, or a satisfactory fitness level has been reached 
for the population. If the algorithm has terminated due to a maximum number of 
generations, a satisfactory solution may or may not have been reached. 

A typical genetic algorithm requires two things to be defined: 

1. Genetic representation of the solution domain, 
2. Fitness function to evaluate the solution domain. 

A standard representation of the solution is as an array of bits. Arrays 
of other types and structures can be used in essentially the same way. The main 
property that makes these genetic representations convenient is that their parts 
are easily aligned due to their fixed size that facilitates simple crossover 
operation. Variable length representations may also be used, but crossover 
implementation is more complex in this case. Tree-like representations are 
explored in Genetic programming and graph-form representations are explored 
in Evolutionary programming. 
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The fitness function is defined over the genetic representation and 
measures the quality of the represented solution. The fitness function is always 
problem dependent. A representation of a solution might be an array of bits, 
where each bit represents a different object, and the value of the bit (0 or 1) 
represents whether or not the object. In some problems, it is hard or even 
impossible to define the fitness expression; in these cases, interactive genetic 
algorithms are used. Once we have the genetic representation and the fitness 
function defined, GA proceeds to initialize a population of solutions randomly, 
and then improve it through repetitive application of mutation, crossover, and 
inversion and selection operators. 

3.2. METHODS OF REPRESENTATION 

Before a genetic algorithm can be put to work on any problem, a 
method is needed to encode potential solutions to that problem in a form that a 
computer can process. 

❖ One common approach is to encode solutions as binary strings: sequences 
of 1's and 0's, where the digit at each position represents the value of some 
aspect of the solution. 

❖ Another, similar approach is to encode solutions as arrays of integers or 
decimal numbers, with each position again representing some particular 
aspect of the solution. This approach allows for greater precision and 
complexity than the comparatively restricted method of using binary 
numbers only and often "is intuitively closer to the problem space" 

❖ A third approach is to represent individuals in a GA as strings of letters, 
where each letter again stands for a specific aspect of the solution. One 
example of this technique is Hiroaki Kitano's "grammatical encoding" 
approach, where a GA was put to the task of evolving a simple set of rules 
called a context-free grammar that was in turn used to generate neural 
networks for a variety of problems 
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3.3. METHOD OF APPROACH 

Steps involved in solving problems that are related optimization and detailed 
discussion is given below. 

INITIALIZATION 

Initially many individual solutions are randomly generated to form an 
initial population. The population size depends on the nature of the problem, but 
typically contains several hundreds or thousands of possible solutions. 
Traditionally, the population is generated randomly, covering the entire range of 
possible solutions (the search space). Occasionally, the solutions may be "seeded" 
in areas where optimal solutions are likely to be found. 

SELECTION 

During each successive generation, a proportion of the existing 
population is selected to breed a new generation. Individual solutions are 
selected through a fitness-based process, where fitter solutions (as measured by 
a fitness function) are typically more likely to be selected. Certain selection 
methods rate the fitness of each solution and preferentially select the best 
solutions. Other methods rate only a random sample of the population, as this 
process may be very time-consuming. 

Most functions are stochastic and designed so that a small proportion 
of less fit solutions are selected. This helps keep the diversity of the population 
large, preventing premature convergence on poor solutions. Popular and well-
studied selection methods include roulette wheel selection and tournament 
selection. 

METHODS OF SELECTION 

There are many different techniques which a genetic algorithm - can use 
to select the individuals to be copied over into the next generation, but listed 
below are some of the most common methods. Some of these methods are 
mutually exclusive, but others can be and often are used in combination. 

1) ELITIST SELECTION 

The fit members of each generation are guaranteed to be selected. 
(Most GAs does not use pure elitism, but instead use a modified form where the 
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single best or a few of the best, individuals from each generation are copied into 
the next generation just in case nothing better turns up.) 

2) FITNESS-PROPORTIONATE SELECTION 

More fit individuals are more likely, but not certain, to be selected. 

3) ROULETTE-WHEEL SELECTION 

A form of fitness-proportionate selection in which the chance of an 
individual's being selected is proportional to the amount by which its fitness is 
greater or less than its competitors' fitness. Conceptually, this can be represented 
as a game of roulette - each individual gets a slice of the wheel, but more fit ones 
get larger slices than less fit ones. The wheel is then spun, and whichever 
individual "owns" the section on which it lands each time is chosen. 

4) SCALING SELECTION 

As the average fitness of the population increases, the strength of the 
selective pressure also increases and the fitness function becomes more 
discriminating. This method can be helpful in making the best selection later on 
when all individuals have relatively high fitness and only small differences in 
fitness distinguish one from another. 

5) TOURNAMENT SELECTION 

Subgroups of individuals are chosen from the larger population, and 
members of each subgroup compete against each other. Only one individual from 
each subgroup is chosen to reproduce. 

6) RANK SELECTION 

Each individual in the population is assigned a numerical rank based on 
fitness, and selection is based on these ranking rather than absolute differences 
in fitness. The advantage of this method is that it can prevent very fit individuals 
from gaining dominance early at the expense of less fit ones, which would reduce 
the population's genetic diversity and might hinder attempts to find an 
acceptable solution. 

7) GENERATIONAL SELECTION 

The offspring of the individuals selected from each generation become 
the entire next generation. No individuals are retained between generations. 
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8) STEADY-STATE SELECTION 

The offspring of the individuals selected from each generation go back 
into the pre-existing gene pool, replacing some of the less fit members of the, 
previous generation. Some individuals are retained between generations. 

9) HIERARCHICAL SELECTION 

Individuals go through multiple rounds of selection each generation. 
Lower-level evaluations are faster and less discriminating, while those that 
survive to higher levels are evaluated more rigorously. The advantage of this 
method is that it reduces overall computation time by using faster, less selective 
evaluation to weed out the majority of individuals that show little or no promise, 
and only subjecting those who survive this initial test to more rigorous and more 
computationally expensive fitness evaluation. 

REPRODUCTION 

The next step is to generate a second generation population of 
solutions from those selected through genetic operators like crossover (also 
called recombination), and/or mutation. For each new solution to be produced,' a 
pair of "parent" solutions is selected for breeding from the pool selected 
previously. 

❖ CROSSOVER 

Crossover is a genetic operator used to vary the programming of a 
chromosome or chromosomes from one generation to the next. It is 
analogous to reproduction and biological crossover, upon which genetic 
algorithms are based. 

Many crossover techniques exist for organisms which use different data 
structures to store themselves. 

1) ONE-POINT CROSSOVER 

A single crossover point on both parents' organism strings is selected. All 
data beyond that point in either organism string is swapped between the 
two parent organisms. The resulting organisms are the children. 
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2) TWO-POINT CROSSOVER 

Two-point crossover calls for two points to be selected on the parent 
organism strings. Everything between the two points is swapped between 
the parent organisms, rendering two child organisms. 

3) CUT AND SPLICE 

Another crossover variant, the "cut and splice" approach, results in a 
change in length of the children strings. The reason for this difference is 
that each parent string has a separate choice of crossover point. 

4) UNIFORM CROSSOVER AND HALF UNIFORM CROSSOVER 

In both these schemes, the two parents are combined to produce two new 
offspring. In the uniform crossover scheme (UX) individual bits in the 
string are compared between two parents. The bits are swapped with a 
fixed probability, typically 0.5.In the half uniform crossover scheme (HUX), 
exactly half of the non matching bits are swapped. Thus first the Hamming 
distance (the number of differing bits) is calculated. This number is 
divided by two. The resulting number is how many of the bits that do not 
match between the two parents will be swapped. 

CROSSOVER FOR ORDERED CHROMOSOMES 

Depending on how the chromosome represents the solution, a direct swap may 
not be possible.One such case is when the chromosome is an ordered list, such as 
ordered lists the cities to be travelled for the traveling salesman problem. A 
crossover point is selected on the parents. Since the chromosome is an ordered 
list, a direct swap would introduce duplicates and remove necessary candidates 
from the list. Instead, the chromosome up to the crossover point is retained for 
each parent. The information after the crossover point is ordered as it is ordered 
in the other parent. For example, if our two parents are ABCDEFGHI and 
IGAHFDBEC and our crossover point is after the fourth character, then the 
resulting children would be ABCDIGHFE and IGAHBCDEF. 

CROSSOVER BIASES 

For crossover operators which exchange contiguous sections of the 
chromosomes (e.g. k-point) the ordering of the variables may become important. 
This is particularly true when good solutions contain building blocks which 
might be disrupted by a non-respectful crossover operator. 



❖ MUTATION 

It is a genetic operator used to maintain genetic diversity from one 
generation of a population of chromosomes to the next. It is analogous to 
biological mutation. 

The classic example of a mutation operator involves a probability that 
an arbitrary bit in a genetic sequence will be changed from its original state. A 
common method of implementing the mutation operator involves generating a 
random variable for each bit in a sequence. This random variable tells whether or 
not a particular bit will be modified. 

The purpose of mutation in,GAs is to allow the algorithm to avoid local 
minima by preventing the population of chromosomes from becoming too similar 
to each other, thus slowing or even stopping evolution. This reasoning also 
explains the fact that most GA systems avoid only taking the fittest of the 
population in generating the next butorather a random (or semi-random) 
selection with a weighting toward those that are fitter. By producing a "child" 
solution using the above methods of crossover and mutation, a new solution is 
created which typically shares many of the characteristics of its "parents". New 
parents are selected for each child, and the process continues until a new 
population of solutions of appropriate size is generated. 

These processes ultimately result in the next generation population of 
chromosomes that is different from the initial generation. Generally the average 
fitness will have increased by this procedure for the population, since only the 
best organisms from the first generation are selected for breeding, along with a 
small proportion of less fit solutions, for reasons already mentioned above. 

TERMINATION 

This generational process is repeated until a termination condition has 
been reached. Common terminating conditions are 

1) A solution is found that satisfies minimum criteria. 
2) Fixed number of generations reached. 
3) Allocated budget (computation time) reached. 
4) The highest ranking solution's fitness is reaching or has reached a plateau. 

Such that successive iterations no longer produce better results. 
5) Manual inspection. 
6) Combinations of the above. 
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PSEUDO CODE ALGORITHM 

1) Choose initial population 
2) Evaluate the fitness of each individual in the population 
3) Repeat 

i. Select best-ranking individuals to reproduce 
ii. Breed new generation through crossover and mutation (genetic 

operations) and give birth to offspring 
iii. Evaluate the individual fatnesses of the offspring 
iv. Replace worst ranked part of population with offspring 

4) Until <terminating condition> 

3.4. STRENGTHS OF GA 

• Genetic algorithms are intrinsically parallel 

Most other algorithms are serial and can only explore the solution 
space to a problem in one direction at a time, and if the solution they 
discover turns out to be suboptimal, there is nothing to do but 
abandon all work previously completed and start over. However, 
since GAs has multiple offspring, they can explore the solution space 
in multiple directions at once. If one path turns out to be a dead end, 
they can easily eliminate it and continue work on more promising 
avenues, giving them a greater chance each run of finding the 
optimal solution. 

• GA just likes as pollster on the space with the highest-fitness individuals 
and finds the overall best one from that group. 

By evaluating the fitness of this one particular string, a genetic 
algorithm would be sampling each of these many spaces to which it 
belongs. Over many such evaluations, it would build up an 
increasingly accurate value for the average fitness of each of these 
spaces, each of which has many members. Therefore, a GA that 
explicitly evaluates a small number of individuals is implicitly 
evaluating a much larger group of individuals 

• GAs are well-suited to solving problems where the space of all potential 
solutions is truly huge and too vast to search exhaustively in any 
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reasonable amount of time.GA allows it to surmount even this enormous 
number of possibilities, successfully finding optimal or very good results in 
a short period of time after directly sampling only small regions of the vast 
fitness landscape 

• GA performs well in problems for which the fitness landscape is complex - 
ones where the fitness function is discontinuous, noisy, changes over time, 
or has many local optima. 

• Genetic algorithms excel is their ability to manipulate many parameters 
simultaneously. 

Many real-world problems cannot be stated in terms of a single 
value to be minimized or maximized, but must be expressed in 
terms of multiple objectives, usually with tradeoffs involved like 
one can only be improved at the expense of another. 

• GA knows nothing about the problems they are deployed to solve. 

One of the qualities of genetic algorithms which might at first 
appear to be a liability turns out to be one of their strengths. They 
make random changes to their candidate solutions and then use the 
fitness function to determine whether those changes produce an 
improvement. 

3.5. LIMITATIONS 

• GAs may have a tendency to converge towards local optima or even 
arbitrary points rather than the global optimum of the problem. 

• Operating on dynamic data sets is difficult 

• GAs cannot effectively solve problems in which the only fitness measure is 
right/wrong. 

• For specific optimization problems and problem instantiations, simpler 
optimization algorithms may find better solutions than genetic algorithms 
(given the same amount of computation time). 
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Chapter 4 

IMPLEMENTATION OF REDUCTION ALGORITHMS 

4.1. INTRODUCTION 

In this chapter, Statement of problem, theorems used in algorithms, model 
reduction methods and it's algorithms for solving problems along with flow 
•charts in three different methods are discussed. 

4.2. STATEMENT OF PROBLEM 

The model reduction problem consists of replacing a given high order system by 
a low order one approximating the input/output relation of the original. Consider 
the linear time invariant dynamic nth order system which is described by the 
transfer function. 

G (z~ 	an-izn-li..
an-2zn-2.+.an-3zn-3.............+alz+a0 	

... (4.1) n = 	 ....... zn+bn-szn-1 } bn-zzn-2+bn-szn-3+............+b1z+bo 

And above transfer function can represent as 

= A (z) Gn(Z) 	B(z) 	 ......... (4.2) 

Where A(z) = an-izn-1 .+.an-2Zn-2 + an-3zn-3 + ............ + a1z + a0 and 

B(z) = Zr + bn-1Zn-1 + bn-2zn-2 + bn-3Zn-3 + ....... .. + b1z + b0. 

A reduced model of order r<n is to be determined, which may be taken as: 

R,(Z) _ dr-szr-l+dr-2zr-2+dr-3 zr-3+............+dlz+d0 
zn+er-lzr-1+er-2Zr-2

+er-3z
r-3+............+elz+e0 

......... (4.3) 

And above transfer function can represent as 

Rr(z) = D(z) 
E(z) ........ (4.4) 
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4.3. MARKOV PARAMETERS and H-PARAMETERS 

MARKOV PARAMETERS 

The transfer function G(z) in equation (2.1) can also be written with regard to its 
power series expansion about z=oo, i.e. 

G(z) = ,E 1 g-iz-1 
	 ......... (4.5) 

The parameters { g_1  : i=1, 2, 3...... oo} being called the markov parameters. 

H-PARAMETERS 

Similarly, G (z) can be written in terms of power series expansion about z=l.this 
is most easily done by means of the substitution [10] 

p=z-1 such that 

Gn(p) an-ip"-i+an-zpn-z+...+aip+ao 	
(4.6) 

pn+bn_1pn-1+• • •+bip++bo 

The expansion of G(p) about p = 0 is equivalent to the expansion of G(z) about z = 
1,hence 

G(p) = 	1 hip' 
	 ......... (4.7) 

The parameters { hi  : i=1, 2, 3...... oo} proportional to the system time moments 
[10] and these arc termed the H-parameters. 

4.4. ERROR POLYNOMIAL AND ITS IMPLICATIONS 

The resultant error between system and model can be described the equation 

G(z)=R(z)+A(z) 	 .........(4.8) 

Where X(z) is a rational transfer function denoting the undesired error. Equation 
(4.8) can, however also, written from equation (4.2), (4.4) as 

. A(z)*E(z)=D(z)B(z)+ A(z)*E(z)*B(z) 	 .........(4.9) 
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Such that error polynomial may now be defined as 

W(z)= X(z)*E(z)*B(z) 	 .........(4.10) 

Where W(z) = wo  + w1z + • • • ..... +Wmzm 	 ......... (4.11) 

in which m=n+r-1. 

The usefulness of { wi: i = 0, 1, 2.....m} parameters and their meaning in relation 
to the error between model and system at any time instant will now be 
discussed. 

. If an identical input is provided to both system and model, an error 
will be apparent between the respective outputs when the transfer functions are 
not identical. Let this input be u(t) at time t it = 0, + 1, +2, ...}, and let the outputs, 
at time t, be y(t) and ym  (t) for system and model, respectively. 
Then, the error at time t is defined as 

v(t) = y(t) — ym  (t) 	 ........... (4.12) 

This may be also written as 

v(t)=[G(z)-R(z)]*u(t) 	 .............(4.13) 

Hence W(z) *u(t) =E(z)*B(z) 	 ............. (4.14) 

The `m' roots of the W(z) polynomial are therefore also the zeros of the 
transfer function relating input to error. It follows that if the system denominator 
polynomial, B(z), is stable, it is a requirement that the model denominator, E(z) is 
also stable, to enable the error to tend to zero under steady-state conditions. 
Model stability is not generally achieved with all reduction methods [2], and is 
shown here to be a limiting factor for a particular model choice. 

ERROR POLYNOMIAL WITH A UNIT STEP INPUT 

Applying a unit step, equation (4.15) input to system in equation (4.1) and model 
in equation (4.3) 

u(t)—{
o 	t<o1 	 ............ (4.15) 

Then, if a subsidiary error signal is defined as a 

v(t) = W(z) * u(t) 	 ........... (4.16) 
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This signal equation(4.16) is filtered by the polynomial E(z)B(z) to become the 
error v(t). At time instant t = 1, therefore, v(1) =Wm, and v(2) =wn, + wm_1etc. 
This addition of errors at each time instant can be summarized by 

_ 	 j  = w. j=m+1-t,0<t<-m+1 
(4.17) 

- 0 	 t>m+1 
........... v(t)  

Under steady-state conditions the error v(t) fed through to the E(z)B(z) filter is 
thus E _` o  wi i.e. the summation of all the W(z) coefficients. There are, therefore, 
`m+1=n + r' error terms {v(t): t = 1, 2..., m +1}, but only 2k, the number of model 
parameters to be chosen, degrees of freedom. Hence, whilst r < n, at least one of 
the v(t)values will be nonzero, i.e. the model response cannot be made to fit 
exactly that of the system. 

Time instant(t) Error signal v t Representation 
0 0 
1 Wn  Wn  
2 wn  + Wn-1  
3 
. 
. 

wn  + wn-1 + wn-2 
......................... 
......................... 

wn-2 
.......... 
......... 

. 
N 

......................... 
Wn  + Wn-1 + .......... +W1 + Wo 

.......... 
Wo 

Table 4.1: Error signal co-efficients 

There are '2k'model parameters to be chosen. Thus, there '2k'degree of freedom 
with respect to the 'n' number of error co-efficientsw,.one further polynomial 
must be introduced ,this being W(p) obtained from equation (4.6).Hence, 

W(P) = wm pm  + Wm-1Pm-1 + ............ + W1p + Wp 	............ (4.18) 

Such that wl  co-efficients can be obtained simply from Pascal triangle. 

For example k=2, then total 4 model parameters to be chosen. 

Wo = Wo + Wl + w2 + W3  + W4 = Wp 
W1 =w1+2W2+3W3+4w4 
wZ =w2+3w3+4w4 
Wg = W3  + 3w4 
W4 =W4 	 =Wq, 
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It must be noted that 

Wo  =wo 	 ............ (4.19) 

Wm  = Wm 	 ............. (4.20) 

4.5. THEOREMS 

In this section theorems discussed about two important theorems which will be 
useful in algorithml, algorithm 3 which will bee discussed latter sections to find 
stable reduced models for higher order systems. 

4.5. 1.THEOREM 1 

Statement: 
Equating the i parameters to zero for i = m- j + 1, .1= 1, 2 .... ,j-1;where o<j<=2k 
by means of correct model parameter selection, will result in the first `i' Markov 
parameters of the system and the first 'j' Markov parameters of the model being 
equal. 
Proof: 

The system markov parameters can be found from B( z)
) 
 as 9-1,9-2,.... etc , 

C 

where as the model markov parameters, obtained from DMZ)  will be written 

as g_1, g_2, g_3.... etc. then defining the function 

0  g-i = g-i — g-1-1 	 ........... (4.21) 

Where A g;  = 0 if and only if ̀ ith markov parameter of the system is equal to ̀ ith' 
markov parameter of the model. It follows that: 

A(z) D(z)  = B(Z)  — E(Z)  = ig-1z-1  + Ag-2z + ..........= Zi=1 g-iz-i  

And from equation (4.9) 

A(z) = ::i g-jz-i  

From equation (4.10) 

W(z) = E(z) * B(z) * [Zi__1 g-iz-i] 

......... (4.22) 

........... (4.23) 

............ (4.24) 

Therefore, on condition that the term is nonzero, which must be true for a 'kth' 
order model of 'nth' order system, by sequentially setting the W; terms, {Wm, Wm_1 
...} to zero. The g_;  {o g_1,o g_2..... }terms are consequently also set to zero. 
This can be seen, by equating like powers of 'z' in equation (4.20) as 
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Wm  = erbnAg-1 

Wm-1 = erbn/g-2 + (erbn-1 + er-1bn)Ag-1 

Wm-2 = erbnXg-3 + (erbn-1 + er-1bn)ig-2 + (er-2bn + er-lbn-1 + erbn-2)ig-1 

.......... (4.25) 

The error coefficients w,, are given by 

w, = Z;nl w; 	i = 0,1,2,.......m; 	 .......... (4.26) 

Must then necessarily have the same effect on the parameters Og_1  if they 
themselves are sequentially set to zero. Starting, initially with Wm . Theorem1 
shows how Markov parameters can be matched between a model and the system 
which it is intended to approximate by simply equating w, parameters to zero. It 
can be seen quite clearly matching the Markov parameters will equate 'earlier' 
error coefficients to zero, or, in other words initial part of the system and model 
time responses will be identical under these conditions. 

4.5.2. THEOREM 2 

Statement: 
Equating the w, parameters to zero for i = m- j + 1,.! = 1, 2 .... ,j-1;where o<j<=2k 
by means of correct model parameter selection, will result in the first 'i' Markov 
parameters of the system and the first 'j' H-parameters of the model being equal. 

Proof: 

The system markov parameters can be found from $(z) as h1, h2...etc, where as 

the model markov parameters, obtained from E 
(z)  
(z)  will be written as hi, h2,.... 

E  

Etc. 

Then defining the function 

hi  = h_1 — h-1-1 
	 ............ (4.27) 

Where . hi  = 0 if and only if `ith H-parameter of the system is equal to 'it' 
markov parameter of the model. It follows that: 

ACP) _DAP)  
B(P) 	E(P) = Oho  + Ah1  p + h2p2  + ..........= 	1  h;p' 	.......... (4.28) 

And from equation(4.9) 

(4.29) 
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From equation (4.10) 

W(p) = E(p) * B(p) * 	1  h;z'] 	 ........... (4.30) 

Let the model transfer function be defined by 

R (n  _ do-ipn-  +d'  _2pn-z+dn-3pn-3 +... .........+d1P+d' _1pn-i
+do 	

(4.31 m \Y)  

Therefore from the equation(4.6)and the above ,equation(4.31)on condition that 
term e' b is non zero, which must be true for reference input following,by 
sequentially setting the terms wL  to zero, the terms A hi  are consequently also 
set to zero. By equating like powers of `p' in equation (4.30) we get 

wo  = e' b' Aho  

w1  = ( e' b' + e' b1)Lho  + e' b' Ah1  

w2  = (e 	+ ' b' 	e' b' + e' b) 0 (' Lh + e' b' + e' b) 1  + e' Ah 	' b' 2 ••• Ah 	.......4.32 

	

0 2 	1 1 	2 0 	1 0 	0 1 	0 0  

Therefore, this theorem can be proved same as previous theorem 1.Matching the 
H-parameters have been shown to -latter part of the model transient response to 
that of system [10]. This can be seen from the parameter, wo  which in effect, sets 
the steady-state error. 

Using the two theorems introduced in this Section it is clear that 
with `2k' model parameters to be selected. They can be chosen such that a total of 
`2k' w, and w 1  coefficients can be equated with zero. However, because the 
w, and w , coefficients are linear combinations of the w; parameters, they are by 
no means independent. 

Markov and H-parameter matching by means of the error 
polynomial are, of course, special cases in which certain of the polynomial 
coefficients are set to zero. The method, however, also allows for minimizing all, 
rather than zeroing some, of the polynomial coefficients or indeed zeroing some 
and minimizing others. This latter approach links up [9] with other more 
complicated methods, again using ladder networks. 
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4.6. ALGORITHMS 

4.6.1.  ALOGRITHM1:  MARKOV AND H PARAMETER MATCHING 

STEP 1: Initially, preserve the information of given higher order system transfer 
function about order of the given system and co-efficients of z that 
present in numerator and denominator terms along with its degree. 
Also the order of the reduced model transfer function. 

STEP 2: Depends on reduced model transfer function order, calculate the 
number of variables required. If 'r' is the order of the reduced model 
then total '2r+1' variables are required in which 'r+1' variables to 
represent the denominator terms and 'r' variables represent the 
denominator variable terms. 

STEP 3: Develop the error polynomial W(z) in terms of given system transfer 
function parameters and assumed variables of reduced model 
parameters. And generate the Pascal triangle matrix of order 'r+n' 
where 'n' is the order of given system transfer function and `r' is the 
order of required reduced model transfer function for representation of 
the given system. 

STEP 4: Find Markov parameters of the given system and model as specified in 
algortihml. Matching Markov parameters will equate earlier error co-
efficients to zero or in other words initial part of the system and model 
time response will be identical under these conditions. This will give 
set of equations which are consists of given system parameters and 
reduced model parameters. 

STEP 5: Find H-parameters of system and model as specified in algorithms 2. 
Matching H-parameters to match the latter part of the model transient 
response to that of system and model or in other words latter part of 
the system and model time response will be identical under these 
conditions. This will give set of equations which are consists of given 
system parameters and reduced model parameters. 

STEP 6: With '2k' modeI parameters to be selected and they can be chosen such 
that total of '2k' error polynomial co-efficients to be zero. One 
particular choice is that to match first markov parameters and first '2k-
1' h-parameters to be zero, where k=n+r-1. 

STEP 7: By solving the equations that are obtained from step6 and step 7 we will 
get the reduced model numerator and denominator variables. Apply 
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basic step input to both given system and reduced model, compare the 

results. 

Start 

Given system order 
numerator `A(z)' 

and denominator co-
efficients B(z) of z 

along with its degree 

Reduced model 
transfer function 

order `r' 

Compute total number of 
variables required for reduced 

model transfer function 
(2r+l) 

Create two arrays storage 
capable size of r,r+1 for 

numerator and denominator 

Generate Pascal triangle(P) 
matrix of order (r+m) -(r+m) 

fl Compute Error polynomial 
w (z) 

Develop error co-efficient matrix (W) 
by combining Pascal triangle(P) aired 

Error polynomials w(z) 

Find the Markov and H- 
parameters of the given 

system and reduced model 
and match them 

Solve and.display Reduced 
model numerator 

c(z),den.ominator(z) terms 

End 

Figure 4.1.Flowchart for Algorithm 1 
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4.6.2.  ALGORTIHM2:  GENETIC ALGORITHMS (DIRECT SEARCH) 

STEP 1: Initially, preserve the information of given higher order system transfer 
function about order of the given system and co-efficients of z that 
present in numerator and denominator terms along with its degree. 
Also the order of the reduced model transfer function. 

STEP 2: Depends on reduced model transfer function order, calculate the 
number of variables required. If 'r' is the order of the reduced model 
then total `2r+1' variables are required in which 'r+1' variables to 
represent the denominator terms variables represent the denominator 
variable terms. 

STEP 3: Initialization to Genetic algorithms. For total number of variables 
generate binary strings or assign genotype to each variable. And it 
generates the random population for each variable or it takes 
predefined data also. 

STEP 4: Decode them to decimal number system by using formulae. If initial 
range of the population lies in [amin amax]. 

If `a1' is decimal value of binary string and it can be decoded as a1=10q 

Where q =  log am  z,. l 
o%un1  + log aml .n  and Al is decimal value of 

binary string. 

STEP5: Substitute randomly generated values in reduced model variables and 
take frequency response samples of reduced model and given system 
transfer function and note down the time sampling also. Samples are 
taken such away that no information regarding system is lost. Sampling 
time is very very small so that it seems to be continuous. 

STEP 6: Calculate the mean square error between these two systems. This is 
fitness function of the problem. Genetic algorithm is going to searches 
the values for variables such that it leads to as minimum as possible .i.e. 
optimization of fitness function. 

STEP 7: Verify whether fitness function has reached absolutely low value or 
numbers of iterations are increased more than specified or numbers of 
generations are more than specified. Here checking of condition for 
termination of optimization will go on. 
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STEP 8: If the conditions specified in the above step are not met, optimization 
process will progress in specified manner explained in below steps. 
Firstly, we have to select population from randomly generated pool and 
methods are specified in chapter 3. 

STEP 9: Reproduction to generate a second generation population of solutions 
from those selected through genetic operators like crossover (also 
called recombination), and/or mutation. Eliminate any repeated strings 
in newly generated population. The methods for crossover and 
mutation are specified in chapter 3, go to steps and repeat. 

4.6.3. ALGORTIHM3: COMBINATION OF MARKOV AND H- PARAMETER 
MATCHING and GA (DIRECT SEARCH METHOD) 

STEP1: Initially, preserve the information of given higher order system transfer 
function about order of the given system and co-efficients of z that 
present in numerator and denominator terms along with its degree. 
Also the order of the reduced model transfer function. 

STEP2: Depends on reduced model transfer function order, calculate the 
number of variables required. If 'r' is the order of the reduced model 
then total '2r+1' variables are required in which 'r+1' variables to 
represent the denominator terms variables represent the denominator 
variable terms. 

STEP 3: Apply Algorithm1 and find the denominator parameters and substitute 
these variables into reduced model transfer function. 

STEP 4: Apply Algorithm 2 and find the numerator parameters and Obtain total 
reduced model transfer function. . 

STEP 5: Apply step input to both given system and reduced model, compare the 
results. 

WIN 
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Figure 4.2.a. Flowchart for Algorithm 2 
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Figure 4.2.b. Flowchart for Algorithm 2 
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4.7. NUMERICAL EXAMPLE 

G(z) _ 0.3124 z3-0.5743 z2+0.3879 z-.0089 
z4-3.233z3 +3.9869z2-2.2209Z+0.4723 

ALGORITHM 1 

A(z) 
Given system is B(z) = 

0.3124 z3-0.5743 z2+0.3879 z-.0089 

z4-3.233z3+3.9869z2 -2.2209Z+0.4723 

Here order of the system n=4.It is desired to use a second order model to 
approximate the above transfer function. Therefore, order of the model r=2.This 
can be represented as 

Rr(Z) = dlz+do 
e2z2+ elz+e0 

............ (4.33) 

The polynomial W(z) can now be formed from 

W(z)=A(z)B (z)-D (z)B (z) 

And error polynomial terms subscripts from 0 to m=n+r-1=5 i.e. wo, wi, w2, W3, 
W4, ws are error polynomial co-efficients of 'z' and total 6 terms are present in 
error polynomial. Error co-efficient matrix in terms of original system and 
reduced model parameters given as below. 

W5 0.3124 0 0 -1 0 e2 
W4 -.5743 0.3124 0 3233 -1 el 
W3 = 0.3879 -0.5743 0.3124 -3.9869 3.233 ,~ 	eo 	 4 •••• •• 	• (.34) 
w2 -0.0889 0.3879 -0.5743 2.2209 -3.9869 

-. 0889 
dl 

W1 0 0.3879 -0.4723 2.2209 d 
0 wo 0 0 -0.0889 0 -0.4723 

As the model is of order k=2 and, a total 0 g-.; and & h; of 2k=4 can 
be set to zero. One particular choice is then to make, i.e. to match the first markov 
parameter and first three h-parameters. From the definition given 

w5 =0=w$ asm=n+r-1=5 	 ..............(4.35) 

Wo=0=W0 +W1 +W2 +W3 +W4+W5 	 ...............(4.36) 

w1 =0=w1 +2w2 +3w3 +4w4 +5ws 	 ..............(4.37) 

w2 =0=w2 +3w3 +6w4 +10w5 	 .............(4.38) 

Equation (4.37) represents the first markov parameter of error polynomial said 
to be zero. Equation (4.38), (4.39),(4.40) are representing the first three h- 

-35- 



parameters of error polynomial function and these are equating to zero.(since 
from Theorem 1 and Theorem 2 specified in section 4.5,4.6) 

These equations can re written as 

W5 =0 

wo =—W3 -3w4  

W1 = 3W3 + 8W4 

W2 =-3w3 -6w4 	 .................. (4.39) 

By substituting the equations (4.39) in matrix in (4.34) we get the parameters of 
reduced model for specified order r =2; then final reduced model will be 

0.3124z-0.0298 
R2( z) 

= z2-1.73692+0.7773 

ALGORITHM 2 

Given system is 
A(z)  
B (z) 

0.3124 z3-0.5743 z2+0.3879 z—.0089 
z4-3.23323+3.986922-2.2209Z+0.4723 

Here order of the system n=4.It is desired to use a second order model to 
approximate the above transfer function. Therefore, order of the model r=2.This 
can be represented as 

Rr(z) = dlz+do  
e2z2+ e1z+e0  ............ (4.40) 

Here total number of variables are (2*r+1) =5.so Genetic algorithm assigns 5 
genotypes to variables. 

First step it assigns the random population size of 100, a matrix of (population 
size x no. of variables), i.e. 100x6.and follows algorithm 2 specified in section 4. 
Secondly, sample both given system and reduced system and at same instants so 
that calculate fitness function and select best population and apply modification 
to the existing population through mutation and crossover using different 
methods present in them and try to minimize the error. Take limit on the number 
of iteration, error obtained, and population generation. To avoid local minima we 
have to search from different initial points. 

The options taken in genetic algorithm for solving above problem are specified 
below. 
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OPTIONS: 

Population Type 
Population Initial Range 
Population Size 
Population spreading 
Elite Count 
Crossover Fraction 
Migration Direction 
Migration Interval 
Migration Fraction 
Generations 
Time Limit 
Fitness Limit 
Stall Generation Limit 
Stall Time Limit 
Selection Function 
Crossover Function 
Crossover fraction 
Mutation 

double Vector 
[0 1] 
[100X5] 
Passions distribution 
2 
0.8100 
Forward and backward 
20 
0.2000 
100 
Infinitive 
-Infinitive 
50 
100 

Roulette function 
Two point crossover method 
0.81 
0.05 

Table 4.1.Genetic algorithms options for algorithm 2 

Reduced order model obtained after too many iterations or generations of 
population. The information regarding that is present below table (4.2). 

Generation f-count Best fitness 
f(x) 

Average value of 
fitness function F(x) 

Stall 
iteration 

1 100 9226 49000 0 

2 200 9226 46710 1 

3 300 7793 38530 0 

4 

...... 

400 

....... 

7567 

......... 

315300 

................ 

0 

............. 

....... 

50 

........ 

5000 

......... 

5386 

............... 

8517 

.............. 

4 

Table 4.2. Genetic algorithm diagnostics display for algorithm 2 

R2  (z) = 
0.8174z — 0.7333 

zz — 1.848z + 0.857 
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ALGORITHM 3 
A(z) _ 0.3124 z3 -0.5743 z2+0.3879 z—.0089 

Given system is B(z) 	z4-3.233z3 +3.9869z2-2.2209Z+0.4723 

Here order of the system n=4.It is desired to use a second order model to 
approximate the above transfer function. Therefore, order of the model r=2.This 
can be represented as 

d1z+do 
R r z~ 	e2z2+ elz+eo 	 ............ (4.41) 

It will obtain by combine method of algorithm 1 and algorithm 2 specified in 
sections 4.7. 

From the matrix in equation (4.34) and set of equations in(4.39),we obtain the 
denominator parameters 

By the normalization e2 = 1 , 

and e1 = —1.732 and eo = 0.773; 

Equation (4.41) further reduced to 

R2 (z) = dlz+do 
z2+ —1.732z+0.7773 

............ (4.42) 

Here total numbers of variables are r=2; so Genetic algorithm 
assigns 2 genotypes to variables. First step it assigns the random population size 
of 100, a matrix of (population size x no. of variables), i.e. 100x2.and follows 
algorithm 2 specified in section 4. Secondly, sample both given system and 
reduced system and at same instants so that calculate fitness function and select 
best population and apply modification to the existing population through 
mutation and crossover using different methods present in them and try to 
minimize the error. Take limit on the number of iteration, error obtained, and 
population generation. To avoid local minima we have to search from different 
initial points. 
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The options taken in genetic algorithm for solving above problem are specified 
below. 

OPTIONS: 

Population Type 
Population Initial Range 
Population Size 
Population spreading 
Elite Count 
Crossover Fraction 
Migration Direction 
Migration Interval 
Migration Fraction 
Generations 
Time Limit 
Fitness Limit 
Stall Generation Limit 
Stall Time Limit 
Selection Function 
Crossover Function 
Crossover fraction 
Mutation 

double Vector 
[0 1] 
[100x2] 
Passions distribution 
2 
0.8100 
Forward and backward 
20 
0.2000 
100 
Infinitive 
-Infinitive 
50 
100 

Roulette function 
Two point crossover method 
0.81 
0.05 

Table 4.3.Genetic algorithms options for algortihm3 

Then finally, obtained reduced model transfer function of order =2 is given by 

R2  (z) _ 
0.4399z — 0.8220 

z2  -- 1.7369z + 0.7773 

The detailed results are discussed in next chapter with comparisons and plots of 
different models obtained from different algorithms and different given systems. 

-39- 



Chapter 5 

RESULTS 

5.1.PROBLEM 1: 

G(z) = 
0.3124 z3  - 0.5743 z2  + 0.3879 z - .0089 

z4  - 3.233z3  + 3.9869z2  - 2.2209Z + 0.4723 

ALGORITHM 1 

0.3124 z2  - 0.2461 z + 0.233 
R3(z) = z3 -1.859Z2  + 1.003Z - 0.4723 

R2 (z) = 
0.3124 z - 0.02985 
zz - 1.737z + 0.7773 

0.3124 
R1(z) _ z - 0.9554 

Characteristics 
4th order 

Given 
System 

3rd 	order 
Reduced 
model 

2rd order 
Reduced 
model 

1st order 
Reduced 
model 

Peak Magnitude (Mr) 1.15 1.13 1.12 - 

%Overshoot (%M p) 14.7 12.9 11.7 - 

%Overshoot time(TMp) 1.62 1.66 1.67 - 

Settling Time (TS) 3.34 2.52 2.58 8.57 

Rise Time (Tr) 0.813 0.78 0.789 4.82 

Steady state time (TSS) 4.5 4.5 4.5 15 

Final Value (FV) 1 1 1 1 

Table 6.1. Comparison of time domain characteristics of reduced models of 
problem 1 obtained from Algorithm1 with given system. 

From table 6.1, second and third order transfer function reduction 
models are having approximate time domain characteristics similar to given 
higher order system in algorithm 1.Step responses of reduced models are shown 
in figure 6.1 and compared with step response e of given system. 
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Figure 6.1. Comparison of step responses of given system Vs Reduced models of 
problem 1 obtained in Algorithm 1. 
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ALGORITHM 2 

R3  (z) = 
0.1186 z 2  — 0.1512 z + 0.04081 

z 3  — 2.804 z 2  + 2.629z — 0.8236 

0.8714 z — 0.7333 
R2(z)  =  z 2  — 1.848z + 0.857 

1.748 
R1(z) 	z — 0.8076 

Characteristics 4th order 

Given 
System 

3rd order 

Reduced 
model 

2rd order 

Reduced 
model 

1st  order 

Reduced 
model 

Peak Magnitude (Mr) 1.15 1.4 1.05 - 

%Overshoot (%M) 14.7 37.7 4.86 - 

%Overshoot Time(TMp) 1.62 2.76 3.36 - 

Settling Time (Ts) 3.34 10 5.08 1.83 

Rise Time (Tr) 0.813 1.17 1.54 1.03 

Steady state time (T55) 4.5 18 8 4.5 

Final Value (FV) 1 1 1 1 

Table 6.2. Comparison of time domain characteristics of reduced models of 
problem 1 obtained from Algorithm2 with given system. 

From table 6.2, none of reduction model obtained by Algorithm 2 is 
closely representing the given system. So it is difficult to express any reduced 
model with Genetic algorithms alone. Algorithm 3 results shown in table 6.3 and 
figure6.3. will clarify this fact. Step responses of reduced models obtained from 
algorithm 2 and step response of given system are shown in figure 6.2. 
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Figure 6.2. Comparison of step responses of given system Vs Reduced models of 
problem 1 obtained in Algorithm 2. 
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ALGORITHM 3 

0.85 z2  + 1.2212 z + 0.0203 
R3  (z) = z

3  — 1.859 z2  + 1.003Z — 0.4723 

0.4399 z — 0.8220 
R2 

 (z) = z2  — 1.737z + 0.7773 

0.3343 _ 
R1(z) 	z — 0.9554 

Characteristics 4th order 

Given 
System 

3rd order 

Reduced 
model 

2rd order 

Reduced 
model 

Pt order 

Reduced 
model 

Peak Magnitude (Mp) 1.15 1.13 1.12 - 

%Overshoot (%M p) . 	14.7 13.5 11.6 - 

%Overshoot time(TMp) 1.62 1.62 1.71 - 

Settling Time (TS) 3.34 2.5 2.66 8.57 

Rise Time (Tr) 0.81.3 0.734 0.798 4.82 

Steady state time (TSS) 4.5 4.5 4.5 15 

Final Value (FV) 1 1 1 1 

Table 6.3. Comparison of time domain characteristics of reduced models of 
problem 1 obtained from Algorithm2 with given system 

From table 6.3. Second and Third order transfer function reduction 
models are having approximate similar time domain characteristics as that of 
given higher order system. So second and third order transfer function reduction 
models are best suitable for given system representation from Algorithm 3.Step. 
responses of reduced models and given system step response are shown in 
figure6.3. 
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Figure 6.3. Comparison of step responses of given syste . Vs Reduced models of 
problem 1 obtained in Algdritlim 3. 
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5.2.PROBLEM2 

3z4  - 8.886 z3  + 10.0221 z2  - 5.092 z + 0.9811 _ 
G(z) 

Z5 -3.7z4+5.4723-4.037z2+1.486Z-0.2173 

ALGORITHM 1 

3 z3  - 6.6261 z2  + 5.008 z - 1.2974 
R4(z)  z4  - 2.9560z3  - 3.2803 z2  - 1.6343 z + 0.3518 

3 z2  - 4.462 z + 1.679 
R3 (z)  Z3  - 2.184z2  + 1.49Z - 0.2915 

3 z - 2.6644 
R 2(z)= 

Z2  - 1.769 z + 0.7916 

3 
R1(z)_  z-0.7976 

Characteristics 
5th order 

Given 
system 

4th order 
Reduced 
model 

3rd order 
Reduced 
model 

2rd order 
Reduced 
model 

1st  order 
Reduced 
model 

•Peak Magnitude (Mr) 1.26 1.27 1.25 1.17 - 
%Overshoot (%M p) 26 26.9 25.4 16.7 - 

%Overshoot time(TMp) 1.71 1.65 1.68 1.44 - 
Settling Time (TS) 4.94 4.91 4.94 3.11 1.73 

Rise Time (Tr) 0.71 0.695 0.705 0.577 0.972 

Steady state time (T55) 9 9 8 5 2.5 

Final Value (FV) 1 1 1 1 1 

Table 6.4. Comparison of time domain characteristics of reduced models of 
problem 2 obtained from Algorithm1 with given system. 

From table 6.4, Fourth and third order transfer function reduction 
models are having best approximate similar time domain characteristics as that 
of given higher order system in Algorithm 1. Second order system also giving 
good characteristics representation. The step responses are shown in figure 6.4. 
and compared with step response of given system. 
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Figure 6.4. Comparison of step responses of given system Vs Reduced models of 
problem 2 obtained in Algorithm 1. 
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ALGORITHM 2 

0.2565 z3  - 0.6797 z2  + 0.5966 z - 0.1729 
R4(z)  =  z4  - 3.699z3  + 5.173 z2  - 3.249 z + 0.7743 

_ 0.1272 z2  - 0.1628 z + 0.04416 
R3  '(z)  - z 3  - 2.184z2  + 2.642Z - 0.8272 

0.8386 z- 0.7633 
R2(z) 	zz - 1.901 z + 0.9068 

0.8963  
R1(z) _ z - 0.9425 

Characteristics 

5th order 
Given 

system 

3rd 	order 
Reduced 
model 

2rd order 
Reduced 
model 

1St order 
Reduced 
model 

Peak Magnitude (Mr) 1.26 1.34 1.14 - 

%Overshoot (%M p) 26 33.6 13.6 - 

%Overshoot time(TMp) 1.71 3.95 3.61 - 

Settling Time (TS) 4.94 13.4 6.52 6.61 

Rise Time (Tr) 0.71 1.83 1.63 3.71 

Steady. state time (T55) 9 20 12 10 

Final Value (FV) 1 1 1 1 

Table 6.5. Comparison of time domain characteristics of reduced models of 
problem 2 obtained from Algorithm2 with given system, 

From table 6.5. None of reduction model obtained by Algorithm 2 is closely 
representing the given system. So it is difficult to express any reduced model 
with Genetic algorithms alone. Algorithm 3 results shown in table 6.6 and 
figure6.6. will clarify this fact. Step responses of reduced models obtained from 
algorithm 2 and step response of given system are shown in figure 6.5. 
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ALGORITHM 3 

- 	1.095 z3  + 0.09146 z 2  + 0.8386 z + 1.45 R4(z)   
z4  - 2.9560z3  - 3.2803 z 2  - 1.6343 z + 0.3518 

_ 0.07168 z 2  + 0.07546 z + 1.56 
R3(z)  z3 -2.184 z 2  + 1.49Z - 0.2915 

2.93 z - 2.67 
R2 (z)  = z2  - 1.769 z + 0.7916 

2.6576 
R1(z) = z - 0.7976 

Characteristics 

5th order 
Given 

system 

4th order 
Reduced 
model 

3rd order 
Reduced 
model 

2rd order 
Reduced 
model 

1St order 
Reduced 
model 

Peak Magnitude (Mp) 1.26 1.22 1.25 1.28 - 

%Overshoot (%M p) 26 21.7 25.4 26.1 - 

%Overshoot time(TM) 1.71 2.55 1.68 1.26 - 

Settling Time (TS) 4.94 5.67 4.94 3.06 1.73 

Rise Time (Tr) 0.71 1.03 0.705 0.421 0.972 

Steady state time (TSS) 9 9 9 9 9 

Final Value (FV) 1 1 1 1 1 

Table 6.6. Comparison of time domain characteristics of reduced models of 
problem 2 obtained from Algorithm 3 with given system. 

From table 6.6. Fourth and Third order transfer function reduction 
models are having approximate similar time domain characteristics as that of 
given higher order system. Second order transfer function reduction models also 
suitable for given system representation from Algorithm 3.Step responses of 
reduced models and given system step response are shown in figure6.6. 
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Figure 6.7.Genetic Algorithm plots for different parameters specified in program 

5.3. COMPARISON OF REDUCTION MODELS OBTAINED IN DIFFERENT 
ALGORITHMS WITH GIVEN SYSTEM 

5.3.1. PROBLEM 1 

3rd order 3rd order 3rd order 

Characteristics 
4th order Reduced Reduced Reduced 

Given model model model 
System (Algortihm1) (Algortihm2) (Algortihm3) 

Peak Magnitude (Mp) 1.15 1.13 1.4 1.13 

%Overshoot (%M p) 14.7 12.9 37.7 13.5 

%Overshoot 1.62 1.66 2.76 1.62 
Time(TMp) 

Settling Time (TS) 3.34 2.52 10 2.5 

Rise Time (Tr) 0.813 0.78 1.17 0.734 

Steady state time (T5) 4.5 4.5 18 4.5 

Final Value (FV) 1 1 1 1 

Table 6.7. Comparison of time domain characteristics of 3rd order Reduced 
models of problem.1 Vs Given System. 
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2nd 	order 2nd 	order 2nd 	order 

Characteristics 
4th order Reduced Reduced Reduced 

Given model model model 
System (Algortihml) (Algortihm2) (Algortihm3) 

Peak Magnitude (Mp) 1.15 1.12 1.05 1.12 

%Overshoot 	(%M p) 14.7 11.7 4.86 11.6 

%Overshoot Time(TMp) 1.62 1.67 3.36 1.71 

Settling Time 	(TS) 3.34 2.58 5.08 2.66 

Rise Time 	(Tr) 0.813 0.789 1.54 0.798 

Steady state time (TSS) 4.5 4.5 8 4.5 

Final Value 	(FV) 1 1 1 1 

Table 6.8. comparison of time domain characteristics of 2nd order Reduced 
models of problem 1 Vs Given System. 

Characteristics 
4th order 

Given 
System 

1St order 
Reduced 
model 

(Algortihm1) 

1St order 
Reduced 
model 

(Algortihm2) 

1St order 
Reduced 
model 

(Algortihm3) 

Peak Magnitude (Mp) 1.15 - - - 

%Overshoot (%M p) 14.7 - - - 

%Overshoot Time(TMp) 1.62 - - - 

Settling Time (TS) 3.34 1.83 8.57 8.57 

Rise Time (Tr) 0.813 1.03 4.82 4.82 

Steady state time (T55) 4.5 4.5 15 15 

Final Value (FV) 1 1 1 1 

Table 6.9. comparison of time domain characteristics of 1st order Reduced 
models of problem 1 Vs Given System. 
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Tables 6.7., 6.8., 6.9., brings overall comparison of time domain 
characteristics of all reduced models in all different algorithms proposed in this 
thesis with respect to their order of reduced model. Among comparisons, the 
completion is between Algorithm 1 and algorithm3.redduced models obtained 
from algorithm 2 characteristics are not proper representation of original 
system. Among all reduced models obtained from three different algorithms 
algorithm 3 represents best compared with algorithm 1.Third and second order 
models from algorithm 1 and algorithm 2 are representing good models. But 
none of the first order models from any algorithm can represent the original 
system, because first order system cannot obtain overshoot characteristics of 
under damped systems. Given system in problem 1 consists of overshoot 
characteristics, so first order systems cannot applicable here. Overall, by 
increasing the order of the reduced model, then the probability of representing 
and matching of characteristics that of original system can be made higher. 

5.3.2. PROBLEM 2 

Characteristics 
5th order 

Given system 

4th order 
Reduced model 
(Algorithm1) 

4th 	order 
Reduced model 
(Algorithm3) 

Peak Magnitude (Mp) 1.26 1.27 1.22 

%Overshoot (%M p) 26 26.9 21.7 

%Overshoot Time(TMp) 1.71 1.65 2.55 

Settling Time (TS) 4.94 4.91 5.67 

Rise Time Tr) 0.71 0.695 1.03 

Steady state time (Tss) 9 9 9 

Final Value(FVJ 1 1 1 

Table 6.10. Comparison of time domain characteristics of 4th order Reduced 
models of problem 2 Vs Given System 
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Characteristics 

• 

5th order 
Given 

system 

3rd 	order 
Reduced 
model 

(Algorithm1) 

3rd order 
Reduced 
model 

(Algorithm 2) 

3rd order 
Reduced 
model 

(Algorithm 3) 
Peak Magnitude (Mr) 1.26 1.25 1.34 1.25 

%Overshoot (%M p) 26 - 25.4 33.6 25.4 

%Overshoot time(TMp) 1.71 1.68 3.95 1.68 
Settling Time (T$) 4.94 4.94 13.4 4.94 

Rise Time (Tr) 0.71 0.705 1.83 0.705 
Steady state time (Tss) 9 8 20 9 

Final Value (FV) 1 1 1 1 

Table 6.11. Comparison of time domain characteristics of 3rd order Reduced 
models of problem 2 Vs Given System 

Characteristics 
5th order 

Given 
system 

2nd 	order 
Reduced 
model 

(Algorithm1) 

2nd order 
Reduced 
model 

(Algorithm 2) 

2nd order 
Reduced 
model 

(Algorithm 3) 

Peak Magnitude (Mr) 1.26 1.17 1.14 1.28 

%Overshoot 	(%M p) 26 16.7 13.6 26.1 

%Overshoot time(TMp) 1.71 1.44 3.61 1.26 

Settling Time (TS) 4.94 3.11 6.52 3.06 

Rise Time (Tr) 0.71 0.577 1.63 0.427 

Steady state time (TSS) 9 5 12 9 

Final Value (FV) 1 1 1 1 

Table 6.12. Comparison of time domain characteristics of 2nd order Reduced 
models of problem 2 Vs Given System 
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Characteristics 
5th order 

Given 
system 

1st 	order 
Reduced 
model 

(Algorithml) 

1St 	order 
Reduced 
model 

(Algorithm 2) 

1St 	order 
Reduced 
model 

(Algorithm 3) 

Peak Magnitude (Ma) 1.26 - - - 

%Overshoot (%M) 26 - - - 

%Overshoot time(TM) 1.71 - - - 

Settling Time(T5) 4.94 1.73 6.61 1.73 

Rise Time (Tr) 0.71 0.972 3.71 0.972 

Steady state time (T55) 9 2.5 10 9 

Final Value (FV) 1 1 1 1 
fable 6.13. Comparison of time domain characteristics of 1st  order Reduced 

models of problem 2 Vs Given System. 

Tables 6.10., 6.11., 6.12., 6.13, brings overall comparison of time 
domain characteristics of all reduced models in all different algorithms proposed 
in this thesis with respect to their order of reduced model. Reduced models 
obtained from algorithm 2 characteristics are not proper representation of 
original system. Among all reduced models obtained from three different 
algorithms algorithm 3 represents best compared with algorithm 1.Fourth, third, 
second order models from algorithm 1 and algorithm 2 are representing good 
models for problem 2..But none of the first order models from any algorithm can 
represent the original system, because first order system cannot obtain the 
overshoot characteristics of under damped systems. Given system in problem 2 
consists of overshoot characteristics, so first order systems cannot applicable 
here. Overall, from the above discussion, increasing the order of the reduced 
model , then the probability of representing and matching of characteristics that 
of original system can be made higher. 
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Chapter 6 

CONCLUSION and FUTURE SCOPE 

6.1 CONCLUSION 

In this thesis, three different algorithms are explained in detail to 
reduce given higher order transfer function to find the stable reduced model 
transfer function for single input and single output systems.Algortihm1, markov 
and h-parameters matching give good approximated reduced model to represent 
given system as compared with Alogrtihm2,Genetic algorithms (GA) .Algorithm 
3,combination both Markov and H-parameter matching and Genetic 
algorithms(GA) give better_ approximated reduced model as compared with 
Algorithm 1. 

Two common numerical examples are taken and tried to find the best 
suitable reduced order models by using three algorithms. Results are shown in 
chapter 5 and tabulated the specification of time domain properties of given 
system and reduced model, and compare the results.All methods are using 
common philosophy of step response matching. Algorithm2, Algorithm3 were 
tried with uniform sampling rate for order reduction of discrete time 
systems.Algortihm 1 does not need any samples of either given system or 
reduced system. 

As we are using Genetic algorithms in Algorithm2, Algorithm3 the 
obtained models are very sensitive to parameter of genetic algorithm properties 
such as method of selection, type of mutation and crossover, distribution of 
population, etc. Genetic algorithms are parallel search optimization method, so 
each time it starts with different starting point and ends with different 
one.Algorithml, Markov and H-parameter matching requires a lot of 
computations and complexity while finding the stable reduce model. 
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6.2. SCOPE OF FUTURE WORK 

Development of three algorithms of order reduction and its 
applications in designing a controller, leads to following possibilities, which can 
tried in future. 

■ The choice of constant sampling rate can be replaced with varying 
sampling rate for trying these ideas as a faster sampling rate can give 
better result in transient part of the response and slower rate may be not 
enough. 

■ The design of a controller using reduced order model can be examined 
more rigorously by comparing with other existing techniques. 

■ This work can be improved over for MIMO systems. 

■ Case study of Genetic Algorithms with other conventional methods for 
giving still better approximated reduced models may possible. 

Motivation for working with discrete time systems. technology leads to 
radically new approach in control system design. It will be practicable to design 
controller for very complicated digital systems using reduced order model. 
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