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ABSTRACT 

This work on Photovoltaic pumping systems is composed of two broad sections. The 

first section presents an application of an Artificial neural network (ANN) for the•

identification of optimal operating point of a PV supplied separately excited dc motor 

driving two different load torques. An ANN model is developed to control a directly 

coupled photovoltaic water pumping system. A gradient descent algorithm is used to 

train the ANN controller for the identification of maximum power point of the Solar Cell 

Array (SCA) and gross mechanical energy operation of the combined system. A non-

adaptive off-line trained controller using ANN is developed for obtaining the MP 

(maximum power) and GME (gross mechanical energy) of the PV supplied motor-pump 

system. The model and algorithm is developed based on matching of the SCA to the 

motor load through a buck-boost power converter. Performance analysis is evaluated for 

the simulated results in MATLAB. 

• The second section of this work consists of modeling a directly coupled photovoltaic 

pumping system using ANN to predict the pump flow rate for a given pumping system 

for different head values. A method for modelling the output of solar photovoltaic water 

pumping was adopted for training the neural network. This method relies on the data that 

can be quickly measured. Performance evaluation was done in terms of predicted output 

values of pump flow rate and percentage error in prediction. It also demonstrates the 
error of back propagation technique for the neural network. 
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CHAPTER1 

PHOTOVOLTAIC TECHNOLOGY OVERVIEW 

1.1 Introduction 

As conventional energy sources are depleting fast with a gradual rise in 

cost, considerable attention is being paid to other alternative sources. 

Solar energy which is free and abundant in most parts of the world has 

proven to be an economical source of energy in many applications. On a 

clear day the sun's radiation on the earth can be 1000 watts per square 

meter depending on the location. The photovoltaic process is completely 

solid state and self contained. 

1.2 History of Photovoltaic technology 

Solar Photovoltaic cells also called "Photovoltaic" cells or `PV" is a solid-

state semiconductor device with no moving parts that convert sunlight 

into direct-current electricity. Although based on science that began with 

Alexander Edmond Becquerel's discovery of light-induced voltage in 

electrolytic cells over 150 years ago, which is known as Photovoltaic 

effect, significant development began following invention of the silicon 

solar cell in 1954 by Chappin at the Bell Laboratories in Murray Hills, New 

Jersey. This first solar cell had a 4% conversion Efficiency. The conversion 

efficiency is soon improved to. 6% and then to 11%. Scientists such as 

Smith, Adams, Day, Fritts, Hertz, Hollwack, Planck, Einstein and Antoine 

Becquerel advanced Photovoltaic science. 

[1] 



The cross-sectional view of a solar cell connected to external load is shown 

below. 

t 	 l 
Conduction. 

a- Type Material 

p- Type Material 

Fig. 1. Solar cell connected to an external load 

1.3 Advantages of Photovoltaic Technology 
1. They are non-polluting with no detectable emissions or odors. 

2. They can be stand-alone systems that reliably operate unattended for 

long periods. 

3. They require no connection to an existing power source or fuel supply. 

4. They may be combined with other power sources to increase system 

reliability. 

5. They can withstand severe weather conditions including snow and ice. 

6. They consume no fossil fuels - their fuel is abundant and free. 

7. They can be installed and upgraded as modular building blocks - as 

power demand increases; more photovoltaic modules may be added. 

1.4 Disadvantages of Photovoltaic technology 

The disadvantages of PV technology are given below 

1. It operates at lower efficiencies than other sources of power. 

[2] 
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is shown in the Figure below at constant temperature. 
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2. The capital cost of purchasing and installation are high. 

3. A solar cell only produces energy when there is sufficient sunlight. 

4. Technical barriers to widespread use and dissemination. 

1.5 PV or Solar Generator 

The photovoltaic system with a large capacity power requires photovoltaic 

modules. The voltage output of the solar-generator depends on the 

photovoltaic modules in series. The integrated assembly of the 

photovoltaic modules together with support structure (foundation, 

tracking, box junction, cable and other components) is defined as the 

photovoltaic array or PV generator. 

1.5.1 Modules in Series 

In an ideal case when n number of identical photovoltaic modules is 

connected in series, then the total voltage of the PV generator is given 

below. 

VsG = 	1 Vn = Vl + V2 + V3 + ... + Vn (I>0) ............. (1) 

The result of the ideal characteristic of n identical modules in series model 

0 	50 	100 	150 	200 Voltage [V] 

Fig. 2. I-V characteristics of series of PV modules. 

[3] 



1.5.2 Modules in parallel 

The numbers (n) of the identical modules are joined in parallel. The 

resulting voltage VSG  is the same for each module and the resulting 

current ISG  is the sum of the respective currents I1until Inof the module: 

ISG =Di IIn=I1+12+I3+".+In ............................(2) 

V s G = V 1= V z = V3 = V, t ....................................(3) 

Where VSO  is total voltage of solar generator. 

'SG is the total current of solar generator. 

The current and voltage output of the solar-generator in the photovoltaic 

array is given by the following equations: 

VOUT = En o Vn  = V1 + V2 + V3  + ... + Vn  ........................ (4) 

Where Vn  is the voltage of nth solar generator. 

LOUT=LimoIm =I1+I2 -' I3 +...+Im  .....................(5) 

Where dm  is the current of mrh solar generator. 

The power of the solar-generator (Pout) is written in the Equation below: 

n 	m 
POUT=IVnEIm=(Vi+V2+V3+•••+Vn)(I1+I2+•••+Im)...(6) 

i=0 i=0 

[4] 
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4 modules in parallel 
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0 	5 	10 	15 	20 
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Fig. 3. I-V characteristics of modules connected in parallel. 

161-V Characteristic of a PV cell 

The ideal I-V characteristic equation is given below 

qV 
I=1i —Io(ei-1) ..........................................:.........(7) 

Where 	Ii  is the component of cell current due to photons (in A). 

q = Charge of electron =1.6 * 10-19  Coulomb. 

k = Boltzmann'sconstant = 1.38 * 10-23  j/K 

T is the cell temperature in K. 

Fig. 4. shown below depicts the IN characteristics of a typical solar cell for 

different solar intensities at a constant temperature of 25 C. As solar 

radiation or insolation intensity increases the maximum power level from 

a cell also increases. The voltage output is relatively constant at various 

radiations, but the current output is 'proportionally varying with the 

radiation. 

30 

20 

W 

t3 
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Fig. 4. Influence of solar insolation at constant temperature (T=25°C). 

1.7 Temperature Characteristic 

The PV cell I-V curve is also temperature sensitive. The open circuit 

voltage is directly proportional to the absolute temperature of the cell. The 

saturation current is highly temperature dependent. The open circuit 

voltage of a silicon PV cell decreases by 2.3 mV for each degree Celsius 

increase in temperature. The temperature dependence of the PV cell is 

shown in fig. S. 

An operating point of a solar cell will vary by varying insolation, cell 

temperature, and load values. For a given insolation and operating 

temperature, the output power depends on the value of a load resistance. 

As the load increases (or the resistance decreases), the operating point 

moves along the curve (I-V) towards the right. So only one load value gives 

[6] 
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the PV generator its maximum power. When the temperature varies, the 

maximum power points are generated in such a manner that the output 

current stays approximately constant. 

10 Voltage Output (V} 20 

Fig. 5. Influence of temperature at constant solar radiation (G=800W/m2). 

--1.8 Configurations of PV systems 

1.8.1 Grid connected or grid-tied PV systems 

Generally, two types of Grid-connected Photovoltaic Systems are employed 

1. Grid-Connected PV systems without Battery storage. 

2. Grid-Connected PV systems with Battery storage. 

1.8.1.1 Grid - Connected PV systems without Battery storage 

PV systems without batteries are simple and reliable, requiring little 

maintenance. Grid-connected or utility-interactive PV systems are 

designed to operate in parallel and interconnected with the electric utility 

[7] 



grid as shown in fig. 6. The primary component in grid-connected PV 

systems is the inverter, or power-conditioning unit (PCU). The PCU 

converts the DC power produced by the PV array into AC power consistent 

with the voltage and power quality requirements of the utility grid. 

AC Loads 

PV Array --j►I Inverter/Power I 	 Distribution 
Conditioner 	 Panel 

Electric Utility 

Fig. 6. Block diagram of Grid-Connected systems without batteries. 

A bi-directional interface is made between the PV system AC output 

circuits and the electric utility network at an onsite distribution panel or 

service entrance. This allows the AC power produced by the PV system to 

either supply on-site electrical loads, or to back feed the grid when the PV 

system output is greater than the on-site load demand. At night and during 

other periods when the electrical loads are greater than the PV system 

output, the balance of power required by the loads is received from the 

electric utility. When the utility grid is down, these systems automatically 

shut down and disconnect from the grid. This safety feature is required in 

all grid-connected PV systems, and ensures that the PV system will not 

[8] 



continue to operate and feed back onto the utility grid when the grid is 

down for service or repair. A typical interconnection of a grid-connected 

PV power plant including two dc-ac inverters and transformers is shown 

in fig. 7. The capacitor in parallel with the PV array operates to limit the 

change of the PV voltage, Vpv, supplied to the dc-ac inverters. The 

inverters comprise of two 6-switch 3-phase bridge converters. Switching 

signals for the inverters are generated by a neural network controller for 

MPPT of the PV array. The objective of the transformer setup is to reduce 

harmonics involved in the inverter output ac voltage. 

A 

Tc 

Fig. 7. Diagram of the Grid-connected PV system. 

1.8.1.2 Grid Connected PV systems with Battery storage 

This type of system is extremely popular for homeowners and small 

businesses where backup power is required for critical loads such as 

refrigeration, lighting. It is shown in fig.8. Under normal circumstances, the 

system operates in a grid-connected mode, supplementing the on-site 

loads or sending excess power back onto the grid while keeping the 

battery fully charged. In the event the grid becomes de-energized, control 

circuitry in the inverter opens the connection with the utility through a 

[9] 



bus transfer mechanism, and operates the inverter from the battery to 

supply power to the dedicated critical loads only. In this configuration, the 

critical loads must be supplied from a dedicated sub panel. 

Critical AC 	 PV Array 	 Non-Critical 
Loads 	 AC Loads 

Critical 	Inverter/Power 
Load 	 Conditioner 	 Main Panel 

Battery 	 Electric 
Voltage 	 Utility 

Fig. 8. Synoptic of Grid-Connected systems with battery storage. 

From an operational point of view, a photovoltaic array experiences large 

variations of its output power under intermittent weather conditions. Fig. 

9. Illustrates two samples of PV power variations in one day. 

350 

300 

25o 

200 

10 

a 100 
Q. 50 

0 

-60 
7irno Ih~j 

350 

300 

C 200 
° 15o 
b 100 

50 

0 
-50 

Tima [hrj 

Fig. 9. Samples of PV power output variations. 
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1.8.2 PV Hybrid System 

Integration of the PV power plant with other power sources such as diesel 

backup, fuel cell backup or battery backup is called a PV hybrid system. 

The diesel backup for PV power is able to make a continuous 24-hour 

power supply be possible. However, it has a few severe drawbacks. Its 

electrical efficiency decreases significantly at a low level of power output, 

and the diesel power generation is environmentally not viable as well. 

Both the battery backup and the fuel cell backup are the most likely 

technologies to provide backup power for the PV power system in the near 

future. A typical PV hybrid" system is shown below. 

Neural Network 
controller for MPPT 

Transformer 

PV Array 	>1 PCs 

Real/Reactive Power 
Controller 

Reformer 

Fuel 	 Pcontroller Qcoritroller 

Fig. 10. Diagram of the Grid-connected PV-fuel system 
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1.9 Literature Review 

The literature review of this work covers many related papers published 

by many authors. Many conference papers have been reviewed in order to 

get first hand information. The first section of the literature review covers 

aspects of Photovoltaic pumping systems in good detail. 

J. A. Roger [1] has studied theoretically direct coupling between 

photovoltaic solar panels and various d.c. motors (series shunt and 

separate excitation) is as a function of the load. Operating curves are given 

in some specific cases (centrifugal pumps and fans). 

Y.Roger Hsiao and Bruce Blevins [2] Direct coupling between a 

photovoltaic (PV) solar panel and a water pumping system driven by a 

permanent magnet dc motor is analyzed theoretically. Hourly insolation 

data obtained from typical meteorological year SOLMET data are used in 

the simulation. 

W.Z.Fam and M.K.Balachander [3] analysed the dynamic performance of a 

D.C. shunt motor directly connected to a photovoltaic array. The motor is 

represented' by the dynamic equations of its mechanical and electrical 

equivalents. The results are also compared. with those obtained from 

experiments on a 1h.p, D.C. shunt motor connected to a 4kW photovoltaic 

array. 

P. K. Koner, J. C. Joshi and A. K. Mukerjee [4] analyzed theoretically direct 

coupling between a photovoltaic (PVJ generator and a monoblock DC 

[12] 



series motor connected with ventilator load torque centrifugal pump as a 

function of 'the no flow motor-pump speed' and the water head of the 

pump. 

M.Akbabi and M.A.Alattawi [5] developed a new model of solar cell 

generators and the implications on the optimal operation of the combined 

system. The subsequent modeled equations are used to find the optimal 

operating point of directly coupled stand-alone systems. 

M.M.Saied and Hanafy [61- designed optimal parameters for a PV array 

coupled to a DC motor via DC-DC transformer for maximum power point 

operation. A buck-boost regulator tracks the optimal point of the 

photovoltaic array and matches the characteristic of the load with the 

output V-I characteristic of the array. 

Appelabaum and sarma [7] analyzed and studied, the operation of PMDC 

motors powered by a common source of solar cells. PMDC motor is best 

suited to match with the photovoltaic array for optimal operation at 

different insolations. The system operates at higher efficiency. 

S.M.Alghuwainem [8, 9] analyzed the steady-state of dc motors supplied 

from photovoltaic generators with a step-up converter. The performance 

of dc motors is analysed by modelling of system components and then by 

operating the system at maximum power points irrespective of change in 

solar insolation. 

[13] 



Appelbaum [10] studied the starting and steady-state characteristics of dc 

motors powered by solar cell generators and compared their performance 

for different motors. 

M.M.Saied [11] developed a new model for matching of dc motors to 

photovoltaic generators for maximum daily gross mechanical energy. The 

gross mechanical energy of the combined system may be at an operating 

point which is higher than the maximum power operating point of solar 

cell array. 

G.Kou and W.A.Beckman [12] proposed a new method for estimating the 

long-term performance of directly coupled PV pumping systems. This 

method uses only information available from the PV module and pump-

motor. manufacturers. Weather data is generated from monthly averages 

of horizontal radiation and ambient temperatures using well-known 

weather data statistics. 

A. Bennouna and Y. Ijdiyaou [13] presented a model for the simulation of 

photovoltaic D.C. solar pumping plants The model also includes simple 

meteorological data simulations. The computations are based on an energy 

balance at the pump input and take into account the effect of 

meteorological data on the array efficiency and the effect of the 

configuration instantaneous state on the subsystems efficiency. 

M.Moechtar, M.Julwono and Eddy kantosa [14] tested and studied the 

performance evaluation of ac and dc direct coupled photovoltaic water 
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pumping systems. Comparison of the performance data of different 

systems had been done. These pumping systems were installed at Sumba 

Island. 

A. Hadj Arab, F. Chenlo, K.Mukadam [15] analyzed the performance of 

different photovoltaic water pumping systems. The Typical Meteorological 

Year "TMY" data from four distinct Algerian climatic sites was used to 

study the performance of three different PV array configurations and 

several pumping heads applied to two centrifugal pumps. The best couple 

generator configuration and pump for a given installation site and a daily 

load was determined. 

Sui Weerasooriya, M. A. El-Sharkawi [16] introduced an artificial neural 

network based high performance speed control system for a dc motor. The 

rotor speed of the dc motor can be made to follow an arbitrarily selected 

trajectory. The purpose is to achieve accurate trajectory control of the 

speed, especially when motor and load parameters are unknown. The 

unknown nonlinear dynamics of the motor and the load are captured by an 

artificial neural network. 

Chen Kumlun, Zha Zhengming, Yuan Liqiang [17] proposed a simple 

method of tracking the maximum power points and forcing the system to 

operate close to the maximum power points. A MCU (micro control unit) is 

employed to implement the proposed controller. Experimental results 

were compared with actual theoretical algorithm. 
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Ahmed Hussein, Kotaro Hirasawa [18] discussed a new robust control 

method and its application to a photovoltaic (PV) supplied, separately 

excited DC motor loaded with a constant torque. The robust controller is 

designed against the load torque changes by using the first and second 

ordered derivatives of the universal learning networks (ULNs). 

M.Akbaba, I.Qamber, A.Kamal [19] addressed the matching of separately 

excited dc motors to photovoltaic generators (PVG) for maximum power 

output. In this paper a procedure is developed to express the field current 

of the motor directly in terms of maximum power point current and 

voltage of the PVG. It is shown that by adjusting the field current, the 

motor is forced to follow the maximum power trajectory of the PVG. 

Mohanlal Kolhe, J. C. Joshi, and D. P. Kothari [20] analyzed the performance 

of a PV-powered dc permanent-magnet (PM) motor coupled with a 

centrifugal pump at different solar intensities and corresponding cell 

temperatures. The results obtained by experiments are compared with the, 

calculated values, and it is observed that this system has a good match 

between the PV array and the electromechanical system characteristics. 

B. Reshef, H. Suehrcke [21] discussed the results of the experiment-based 

on field measurements and compared with the computer modelling of the 

various system components and evaluated the efficiency of individual 

components and the combined system. 
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Wagdy anis and M. A. Nourz [22] considered the design of a switched 

mode PV pumping system and discussed the effect of different parameters 

influencing the system design. 

0. C. Vilela and N. Fraidenraich [23] studied the relationship between 

water pumping capacity, reservoir size and water demand, for a given 

water deficit. Curves of equal water deficit (iso-deficit lines) are obtained 

for various combinations of PV pumping capacity and reservoir size. 

E.H. Amer, M.A. Younes [24] developed a simple algorithm for estimating 

the long term performance of a photovoltaic water pumping system 

without battery storage. The method uses the standard solar utilizability 

correlation equation to calculate the flow rate of the system, knowing an 

insolation threshold value. 

Tomonobu Senj, Mummadi Veerachary, Katsumi Uezato[25] studied an 

application the effectiveness of interleaved dual boost converter for PV 

supplied separately excited DC motor is studied through simulation. 

A. Hadj Arab, F. Chenlo et al. [26] presented a method for estimating the 

loss-of-load probability (LLP) of a photovoltaic water pumping system. 

The procedure can be used to draw LLP maps with normalised parameters 

using long term observed or generated sequences of meteorological data. 

A. Hadj Arab, F. Chenlo et al. [27] presented two mathematical motor-

pump models for photovoltaic (PV) applications. These models allow 

[17] 



determining the operating point with the PV array and the flow rate of the 

pumped water. The modelled motor-pump characteristics are current-

voltage and flow-voltage. 

A.Saadi and A.Moussi [28] developed a neural network model for 

photovoltaic pumping system for estimation of pumped water quantity. 

Experimental results are compared with neural model for the system and 

the results are said to be satisfactory. 

W.Lawrance, B.Wichert et al. [29] described an efficient system for 

pumping water using a brushless dc motor driven by a PV array. 

Development of a system model from the individual component models 

allows overall system performance to be predicted effectively. 

1.91 Outline of the Thesis Report 

This thesis work is primarily concerned with the control of a photovoltaic 

pump using artificial neural network. An ANN model is developed for 

controlling a photovoltaic pump supplied by permanent magnet dc motor 

and series motor. A second ANN model is developed for directly coupled 

photovoltaic water pumping system. This thesis work is organized into 

several chapters which are given below. 

Chapter 1: This chapter provides with the basic introduction to 

photovoltaic technology. The basic configurations of photovoltaic systems 

are briefly outlined with emphasis on stand-alone systems. The central 

theme of the work, i.e. photovoltaic pumping systems is given a brief 

[18] 



introduction along with their background. Literature review of 

photovoltaic technology in general and photovoltaic pumping systems in 

particular are given in good detail. 

Chapter 2: This chapter gives brief introduction to photovoltaic pumping 

systems, their advantages and disadvantages. The basic components or 

elements which constitute a photovoltaic pumping system were described. 

Different configurations of PVPS (photovoltaic pumping system) were 

presented with their block diagrams. 

Chapter 3: This chapter defines the statement of problem. The 

mathematical model of the whole pumping system is developed by 

detailed modeling of individual components that make up the system. 

Steady-state analysis of centrifugal pump supplied by PV coupled dc 

permanent magnet motor and series motor was analysed and performance 

comparison is made for both cases of operation. 

Chapter 4: This chapter develops a neural network model for optimal 

operation and identification of operating point of PV pumping system. 

ANN architecture, training parameters, training algorithms and functions 

were described in detail. Training of the proposed neural network was 

done with the results obtained from previous chapter (chapter 3). 

Chapter 5: This chapter presents the results of training for all the three 

conditions mentioned in chapter 4. Comparative analysis has been done to 

determine which architecture model is better and results were concluded. 
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Chapter 6: This chapter introduces with the statement of problem which 

is a neural network model for a directly coupled photovoltaic pumping 

system. A model of a specified photovoltaic pumping system has been 

reported based on the measured values of pump parameters. These data 

and the corresponding best-fit equations are used to train an ANN model. 

Results of training for all training conditions are analyzed in terms of ANN 

prediction and percentage error. 

Chapter 7: This chapter gives conclusions to this work. Further scope of 

applications and use of photovoltaic pumping systems was outlined in 

brief. 
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CHAPTER 2 

PHOTOVOLTAIC PUMPING SYSTEMS 

2.1 Introduction 

The simplest and least expensive method to convert solar energy into 

mechanical energy is to supply a motor from a photovoltaic generator. The 

use of Photovoltaics as the power source for pumping water is one of the 

most promising areas in photovoltaic applications. The use of photovoltaic 

power for water pumping is appropriate, as there is a natural relationship 

between the availability of solar power and the water requirement. The 

water requirement increases during hot weather periods when the solar 

radiation intensity is high and the output of the solar array is at its 

maximum. They are commonly used for water pumping in rural villages all 

over the world where no grid electricity exists. 

2.2 Advantages of Photovoltaic water pump 

The following are the advantages of Photovoltaic pump 

1. Photovoltaic water pumping systems are particularly suitable for water 

supply in remote areas where no electricity supply is available. 

2. Low maintenance, ease of installation, reliability and the matching 

between the powers generated and the water usage needs. In addition, 

water tanks can be used instead of batteries in photovoltaic pumping 

systems. 
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2.3 Disadvantages of Photovoltaic water pumping systems 

Factors that have inhibited the widespread implementation of PV pumping 

systems are given below. 

1. High initial capital cost. 

2. Lack of awareness. 

3. Lack of technical installation expertise. 

4. History of failures and. 

5. Lack of sufficient knowledge to predict accurately system daily 

output. 

Different types and sizes of PVP systems are available commercially, in 

various stages of product development, which meet the range of existing 

pumping needs. The significant design variations of these systems depend 

mainly on: 

• The choice of the solar cell material. 

• The type of electric motor. 

• The type of pump and the method of source/load matching. 

2.4 Elements of a PV water pumping system 

(1) Photovoltaic array - To provide electricity supply for the motor-

pump. This supply could be direct current (DC), usually at 110 volts, 

or alternating current (AC) which is produced by inverting the DC 

power to AC power. 

(2) Motor-Pump set. 

(3) Battery storage if used - To provide electricity storage and allow 

pumping in cloudy conditions or at night. 
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(4) Storage tank - normally elevated, making water available at night or 

when it is cloudy. 

(5) Maximum power point tracker (MPPT) which forces the PV array to 

generate its Maximum power. 

The volume of pumped water is dependent on five major factors: 

(1) The radiation level which is a measure of the sun's available energy. 

(2) The photovoltaic array area. 

(3) The conversion efficiency of the photovoltaic array. 

(4) The ambient temperature. 

(5) The pump-motor -hydraulic system characteristics. 

2.5 Photovoltaic Pumping system Configurations 

(1) The first is the directly coupled system without MPPT where a PV array 

is directly coupled to a DC motor and a pump. 

(2) The second system is the battery buffered PV pumping system where a 

battery is connected across the array to feed the DC motor driving a 

pump. 

(3) The third system uses maximum power point tracker (MPPT) or array 

tracking to improve the efficiency of system. 

The typical range of sizes for photovoltaic-powered pumps is a few 

hundred watts to a few kilowatts. 
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2.5.1 Directly coupled without MPPT 

A direct coupled system, where the PV array is directly coupled to a DC 

motor-pump system, is_shown below. Such a system is simple and reliable, 

but the system does not operate continuously at its optimum point due to 

the continuous variation of solar radiation. 

PV Array 	Motor 	 Pump 	>Tank 

Fig. 11. Directly coupled PV pumping system without MPPT. 

2.5.2 Battery buffered systems 

Battery buffered systems with a storage battery is shown in fig 12. In this 

system, a battery is connected across the PV array and the DC motor is 

operating at almost constant voltage, and as a result, the DC motor is 

operated close to its optimum operating point. 

Advantages 

This system has two advantages over the directly coupled one: 

• Water may be pumped day and night, thus the water discharge is larger. 

• The DC motor is -operating at its optimum operating point, and 

consequently, the system efficiency is enhanced. 

Disadvantage 

A major disadvantage of such a system is the extra system cost and 

unreliability due to the battery. 
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Fig. 12. PV pumping system with battery storage. 

The photovoltaic modules are often mounted on a tracking device that 

maximizes energy production by tracking the sun_ from east to west each 

day as shown in fig. 13. The tracker consumes little or no power and may 

increase water production as much as 20 to 40 percent during summer 

months. 

Fig. 13. PV pumping scheme with sun tracker and MPPT. 
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2.6 Types of Photovoltaic pumping systems 

Photovoltaic pumping systems can also be classified broadly into two 

categories. They are 

1. DC Pumping systems 

2. AC Pumping systems 

2.6.1 DC pumping systems 

In DC pumping system the Photovoltaic pump (either centrifugal pump or 

volumetric pump) is driven by a DC motor. The DC motor used may be any 

of the following 

1. Separately Excited motor. 

2. Series motor. 

3. Shunt motor. 

4. Brushed and brushless Permanent magnet motors. 

5. Variable switch reluctance motor. 

2.6.1.1 Advantages of DC motor coupled Pumping system 

The following are disadvantages of DC motor Pumping system 

1. They are simple to operate. 

2. Inexpensive. 

2.6.1.2 Disadvantages 

1. DC motors are not suitable for high-power (above 7 kW) 

applications. 

2. Utilization efficiency of the whole pumping system is poor. 

2.6.1.3 Advantages of Permanent magnet Brushless DC motor-
The following are the advantages of PMBDC motor 

1. Electronically-commuted brushless DC motors require less 

maintenance than standard DC motors. 
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Centrifugal Pump 

2. They have high efficiency, high reliability and minimum 

maintenance requirements. 

2.6.1.4 Disadvantages 

1. Complexity of the system. 

2. Cost is higher. 

3. It is not suitable for village level operation and maintenance. 

2.6.2 AC Pumping systems 

In an AC pumping system the photovoltaic pump is driven by AC motor 

The AC motor can be any of the following 

1. Induction motor or Asynchronous motors 

2. Synchronous motor 

Control unit 

Fig. 14. PV pumping system driven by inverter controlled induction 

machine. 

2.6.2.1 Advantages of AC Pumping systems 

The advantages of AC pumping systems are given below 

1. PV water pumping system driven by an induction motor is reliable. 

2. Maintenance-free operation. 

3. Induction motors provide more possibilities of efficiency 
improvements. 
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4. diversity of control strategies and 

5. The disadvantage of additional inverter cost is offset as system size 
increases. 

2.7 Selection of motor 

The choice of the motor is dependent on numerous factors which are given 

below 

1. Size requirements. 

2. Efficiency. 

3. Price. 

4. Reliability and availability. 

2.8 Hydraulic system and Model of Pump-motor combination 

A pump is a machine for converting input kinetic power (mechanical 

power) into fluid output power (hydraulic power). The output power is 

represented by the delivery of the pump in terms of flow rate and head. 

Depending on the application and the type of water source supply (deep 

well or surface water), different pumps are used in PV-pumping systems. 

For the selection of a solar pump, the following factors are taken in to 

consideration: 

1. Meet the required performances such as: 

a. Capacity 

b. Head 

c. Suction 

2. Provide satisfactory working, such as: 
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a. Efficient 

b. Easy to maintain 

Many different varieties of pumps are suitable for operation in conjunction 

with PV powered pumping systems. Pumps can be generally divided into 

two categories which are given below 

1. Centrifugal (rotodynamic) pumps and 

2. Volumetric (positive displacement) pumps 

These two different pumps have completely different characteristics. 

Centrifugal pumps are simple, low cost and are available for a wide range 

of flow rates and heads. Pumps are generally described by their total head 

(H) as a function of the pump flow rate (Q). The hydraulic load of a PV 

pumping system varies with the time and pump flow rate. So, in order to 

analyze the performance of a PV pumping system, we have to consider the 

behavior of the well during the system operation. 

The head versus flow rate profile usually characterizes the different types 

of pumps. The typical head, as shown in Fig. 15. below, consists of a static 

component and a dynamic component. The static head is defined as the 

height or vertical distance from the water surface to the point of free 

discharge or the height required to pump the water (i.e. static head = A + 

B). 

When the well is pumped, the water level drops, and the water 

being pumped through the pipe causes frictional losses. So, the total 

[29] 



dynamic head is the sum of the static head, the drawdown distance and the 

distance equivalent to the friction losses in the pipe (i.e. total dynamic 

head = A + B + C + friction losses). 

B 
Static Water Level 

,,. 

Fig. 15. Static and total dynamic head. 

Eckstein developed a detailed theoretical analysis to determine the 

characteristics of the motor and pump. The model is briefly presented 

below. In this model, the performance of the pump can be predicted by 

using the affinity laws, which relates the pump speed (n) to flow rate (Q), 

head (H) and power (P) as 

Q = F(n) or Q = Qref(n/nref) ............................. (8) 

H = F(n2) or H = Href(n/nref)Z ........................... (9) 

P = F(n3) or P = Pref(n/nref)3 ............................ (10) 

Where nre f , Qre f , Hre  f and Pref  are the corresponding values at reference 

conditions. These equations imply that for ,a given set of speed, flow rate 

and power, the .corresponding values at a different speed can be 
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determined for constant efficiency. This model can be implemented to 

simulate the performance of both the pump and the motor. 

7) =a+ bQ + cQ2  + dQ3  ......................... (11) 

Where a, b, c and d are the coefficients at reference conditions. 

For a small PV pumping system, the total head can be assumed to be the 

static head and is assumed to be constant in the following analysis. The 

manufacturer normally provides the head-flow-current-voltage data for 

the pump-motor combination, not the pump and motor individually. 

Instead of using individual motor and pump models, the characteristics of 

a pump-motor combination are represented by two functions. One is the 

current-voltage-head function represented in the form shown below: 

V = F1(I, H) ............................... (12) 

V = ao  + a1l+a2I2+a3H+a3H2  ...................... (13) 

The coefficients of the function (ao, a1, a2, a3) are constants. Where the 

form of the function is a polynomial in both I and H and can easily be 

obtained from linear regression using data supplied by the manufacturer. 

At . any solar radiation, ambient temperature and head, the I-V-H 

function is used to find the I-V characteristics of the PV pumping system. 

Equations for the I-V relationship of the PV array, and Equation for the I-V 

relationship of the motor-pump for a - given head, are solved 

simultaneously to find the system operating point. The second function 

(motor-pump characteristic) relates the pump flow (Q) to voltage (V) and 

head (H) and can be expressed as 

Q= F2  (V, H) ........................................... (14) 
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is 

Q = bo+b1I+b2 H ........... .......................... (15) 

The 	coefficients of the function (bo,b1  and b2) are constants. The 

coefficients of the above equations can be found from the data sheet 

provided by the manufacturer of the solar pump. 

The mechanical part modeling of an electric motor is given by 

Te = JmPwm + Bmwm + Tl  ............................... (16) 

Where Bm  = Viscous friction co-efficient 

Jm  = Total inertia of the motor shaft 

T1  = Load torque in N/m. 

In this case of centrifugal pump Ti  is given by 

Tj=Tp =Apwm .....................................(17) 

WhereAp  = W7 ....................................... (18) 

The centrifugal pump is also described by an H (Q) characteristic equation 

given by 

H = C1wm — C2wmQ — C3  ......................... (19) 

The pump performance is predicted by specifying a load curve given by 

H=Hg +AH ..........................................(20) 

Where Hg  = Geometrical head which is the difference between the free 

level of the water to the pump and the highest point of canalization 

AH = Pressure losses in the canalization which is given by 
Z 

AH= (di +f)T,d. g  ...............................(21) 

Where a. = Co-efficient of regular pressure losses in the 

canalization 

I = Length of canalization 

d = Diameter of canalization 

= Co-efficient of pressure losses in elbows and canals 
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2.9 Efficiency of the system 

The performances of the PVP system can be explained in term of its 

efficiency. The efficiency is categorized into photovoltaic efficiency 

efficiency of sub-system 71mb and total efficiency or system efficiency 

7lsys. The photovoltaic efficiency rj p„ is the comparison between energy 

output of the solar generator and irradiation. The PV efficiency depends on 

the quality and kind of the crystal (cell). The mono-crystal has efficiency 

higher than the poly-crystal. The PV efficiency is written by the following 

equation: 

7ipv 
__ ysclsG * 100% .................................... (22)  G*~qpv 

Where Ap„ is total area of the solar generator [m2 ]; VSG voltage output [V] 

and ISG current output [A] of the solar generator. The PV efficiency is also 

dependent on the impedance load. 

The subsystem efficiency rlsub is the ratio between the hydraulic power 

and the power of the solar generator. The value of 1lsub reflects the 

efficiencies: dc-dc converter, motor and pump. The subsystem efficiency is: 

Q*H 	* 100% sub — 0.367*y 	*I 	 .....................................(23) 
SG SG 

Where Q = pump flow rate (lit/sec), H = Head of the pump (in m) 

The total efficiency rjsys is the comparison between the energy output and 

the energy input to the system. The total efficiency is an integration of 

several efficiencies: PV efficiency and subsystem efficiency and can be 

written as: 
Q*H 

1lsys= 1lpv * Tlsub = 0.367*GApy 
* 100% ........................... (24) 

* 
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CHAPTER 3 

STEADY-STATE PERFORMANCE ANALYSIS 

3.1 Introduction 

The steady-state performance of PM (Permanent magnet DC) and series 

motors coupled to centrifugal pump supplied from Photovoltaic source 

through intermediate buck-boost converter is analyzed. The effect of duty 

ratio selection based on maximum power operation (MP) of PV source and 

maximum daily gross mechanical power (GME) is analysed on the solar 

cell array operating point, motor armature voltage, armature current and 

motor effciency variation. Analysis has been carried out by formulating the 

mathematical models for individual components such as photovoltaic 

source (SCA), DC motors, power converter (DC-DC converter), Centrifugal 

Pump load and volumetric pump. 

Starting torque variation, Torque magnification factors expressions are 

derived and their variations are plotted for the above two cases. Steady-

state performance characteristics are tabulated and graphically shown for 

both cases of operation. The performance of PM DC motor is compared 

with the series motor operating under identical conditions. The tabulated 

(Calculated) values are used for training the Artificial Neural network 

(ANN) for modeling the control of Centrifugal pump. Data from 

manufacturer's data sheet is used for training the neural network in case 

of controlling volumetric pump. 

[34] 



3.2 Mathematical model of the system for steady-state analysis 

The system consists of solar cell array (SCA), ' DC-DC converter 

(Intermediate converter) and DC motor coupled to centrifugal pump as 

shown in Fig. 16. The DC-DC converter is a buck-boost converter with 

variable duty ratios, which regulates the motor voltage and -current such 

that SCA operates at maximum power point (MP), or gross mechanical 

energy (GME) output point. The DC motor may be either PM DC motor or 

series motor coupled to centrifugal pump load. Mathematical models are 

developed in the following sections for individual components and 

combined together for the performance studies. 

Pv Array 	 Converter 

Fig. 16. Schematic diagram of pumping system 

3.2.1 PV Generator Model 

The PV array that converts the solar insolation into electrical energy 

consists of several solar cells connected in series and parallel fashion in 

order to form a PV source capable of delivering desired voltages, currents. 

The solar insolation dependent V-I characteristic of the PV array with Ns 

cells in series and Np cells in parallel is given by the following equation 

Vg = IgRs (NP) + (~S)ln {1..O + (NSIP1 ig)}. 	............(25) 

Vg = IgRsg + -In {1.0 + ('P"9-Ig)} 	............................. (26) 
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Where n = (q/AKT), Ag= A 

q = Electric charge, A = Completion factor =1.0 

K = Boltzmanns constant, T = Absolute Temperature 

Rsg  = Series resistance 

Isg  = insolation dependant photo-current 

Iog  = Cell reverse saturation current 

The PV generator considered in this work consists of 18 parallel paths and 

each path contains 324 cells in series. After substituting the cell constants 

the V-I characteristic of the PV generator becomes 

Vg  = —0.9I9  + 23.697 ln(1.0 + (123.456 (13.45K1  — Ig))} ................. (27) 

Where Ki  is the percentage of insolation. 

3.2.2 Power Converter Model 

The intermediate DC-DC converter is a buck-boost converter with a 

variable duty ratio. This converter produces a chopped output DC voltage 

regulating the motor voltage and current and continuously matches the 

output characteristics of the PV generator to the input characteristic of the 

motor so that maximum power (MP) is extracted from - the SCA or the gross 

mechanical energy (GME) per day of the system is maximum. Assuming 

the DC-DC converter is ideal, the output voltage and current of the 

converter] for a duty ratio of 6 is related to the solar cell voltage Vg  by the 

following equation 

Vag = VgY ..........................(28) 

Ian = (IY) .........................(29) 

.......................(30) 
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Y=(j)  ..................................... (31) 

Where Y = Chopping ratio of the buck-boost converter 

5 = Duty-ratio of the converter 

T p  = Time-period of buck-boost converter 

3.2.3 Model of the DC Motor 

When the DC motor is supplied from PV generator through intermediate 

power modulator/converter, the motor voltage and torque equations 

under steady state are 

Vav  = Eb  + RaIav  .......................... (32) 

Te = KtIav 	.......................................... (33) 

Eb = Kbwm(D .................................... (34) 

For PM DC motor flux is constant hence the above equations becomes 
Vav  = Eb  + Raplav  ................ (35) 

Te  = CeIav  ................................. (36) 

Eb = Cewm  ......................... (37) 

For series motor assuming linear magnetic conditions Eqs. (32)- (34) 
becomes 

Vav  = Eb + Raflav  ..................................(38) 

Te =Maflav  ...........................................(39) 
Eb = Maflavwm  ................................... (40) 

Here Raf  = Ra  + Rf  

3.2.4 Model for the Pump loads 

Pumps may be volumetric or centrifugal types having different head vs. 

flow characteristics. These pump-loads will develop speed dependent 

torques. In these studies a centrifugal pump and a volumetric pump is 

considered whose speed-torque characteristic including friction torque 

given by the following equations 
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The speed-torque characteristic of centrifugal pump is given by the 

following equation: 

Ti = Al  + B1w + C1wi.s ..................... (41) 

The speed-torque characteristics of volumetric pump loads including 

friction torque is given by equation 42. 

Tl = Al  + Blw + C1ws.s  ............................... (42) 

3.3 Performance analysis in steady-state operation 

3.3.1 Maximum power operation of SCA 

For maximum utilization of SCA, a power converter is introduced in 

between SCA and motor. The duty ratio of the converter is changed 

accordingly to match the load to SCA. Assuming power converter is ideal, 

all of the array power is delivered to the motor. When SCA operating at 

maximum power point, the power absorbed by the motor is equal to the 

power delivered by the SCA, i.e. 

-> Ia 

H 'tm '  PV Source 	 DC-DC Converter 	Va 

Fig. 17. Equivalent circuit of the combined system. 

Pm  = VmIm  ........................................ (43) 

Pm = Vavlav  ................................... (44) 
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Where Vm, Im is PV array voltage, current, respectively, at maximum power 

point; Vav, lav is the motor armature voltage, current respectively at 

maximum power point of SCA. The motor armature voltage and currents 

are expressed in terms of SCA voltage and current at maximum power 

point as 

Vav=6MVVm .........................................(45) 

	

Ian = 	P ...............................................(46) 

Transforming the motor equivalent circuit to SCA side then the motor 

armature voltage equation becomes 

= (amp) + I.mp s P ....................... (47) 

Simplifying the above equation 
V 82 — EbcS,np — ImRa = 0 ............ (48)mp 

For the above quadratic equation two solutions exist. Since the duty ratio 

can never be negative, the expression which gives positive duty ratio is 

	

smp = 	+ (( yb )Z+ ~I vRa)) ................ (49) 
m m m 

For a given SCA maximum power the motor armature current is obtained 

from the following equations: 

Pm = Eblav + IavRa ............................. (50) 

Ralav + EbIav — Pm = 0 ..................... (51) 

I
av — 

	(( Eb )2+ (P—"))z ........... (52) 
2Vm 2Vm Ra 

Where Eb is given by Eq. (37) for PM motor and Eq. (40) for series motor. 

The duty ratio of the converter depends (Eq. (49)) on the motor back emf, 

which in turn depends on motor load. When the DC motor coupled to the 

centrifugal pump-load Eq. (41), for a given SCA maximum power 

(Pm, Vm, Im) the back emf is obtained by solving Eqs. (36), (41) and (52) for 
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PM DC motor; (39), (41) and (52) for series motor. Once back emf is 

calculated corresponding toPm, the, duty ratio of the converter, motor 

voltage and current are obtained. Efficiency of the motor is calculated from 

the following equation: 

fl 	(Motor input—losses ~ 100 ....................:..... (53)l  
Motor input 

3.3.2 Maximum Gross Mechanical Energy output from SCA 

For a given value of flux coefficient of the machine it is not possible to 

make the SCA and motor to operate at maximum power points (Pm, Vm, Im) 

at all solar insolations. This is because of the motor V-I characteristic 

dependent on motor flux coefficient and copper losses in the machines. In 

such cases the system is made to operate at a point (P1 ,V1, Im) of gross 

mechanical energy output per -day for a given insolation curve. At these 

operating points the machine under consideration, the optimal parameters 

(Saied, 1988) make the combined system operate at maximum gross 

mechanical energy output. At a given solar insolation the voltage and 

current (Vm, Im) corresponding to MP operation are determined. With 

these (Vm, Im) the voltage and currents (VI, I*) corresponding to GME 

operation are computed using the following equations. 

V* _ Vm(2Ra+89.8I1 27) 
m 	(Ra+89.8IO. 27) 	............................ (54) 

I* -m - 
89.8 1m 73) 

(Ra+89.8 I127) ................. ............... (55) 

Pm =V,n*Im ...........................................(56) 
P* i 

lav = — E6 + (( Eb )Z+ ( m))Z ............ (57) 
2V, 	2Vrn 	Ra 
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Where back emf (Eb) is calculated using Eqn. (37), Eqn. (41), and Eqn. (57) 

in case of centrifugal pump load; Eqn. (37), Eqn. (42), and Eqn. (57) in case 

of volumetric pump load at different solar insolations. Knowing (Eb) the 

duty ratio of the buck-boost converter for GME operation is obtained from 

the following equation. 

m a - 
smg 	(58). 

2VM 2VM Vm 

3.3.3 The torque magnification factor 

Matching the solar cell array to the motor by means of maximum power 

point tracker (MPPT) the motor starting torque can be increased as 

compared to without MPPT. The torque magnification factor for PM DC 

motor is 

mT = (IS) 	ImRa ............................. 	.... (59). 

For series motor it is 

mT = (Im)2rTmRafm 	............................. (60) 
Isc 	

.. 

The increase in the starting torque magnification factor for gross 

mechanical energy operation as compared to maximum power operation 

of SCA is obtained. The torque magnification factor for gross mechanical 

power operation for PM DC motor is 

I" 	V' 
mT —~ 	: m 	................................ (61) 

Isc ImRa 

At gross mechanical energy output 
Vm =kvVm .............................................(62) 

Im _ 1 IIm 	................................................ (63) 

From Eqs. (62)- (63) 
mT = ( K~KI)mT ...................................(64) 
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The torque magnification factor at gross mechanical energy operation for 
series motor is 

_ Im
F7mR.f 

 
mTS  — (Isc)2 	

................ (65) 

From Eqs. (41), (42) and (44) 
mTS = (KVKI)mTS ................. (66) 

3.3.4 Variation of motor starting torque with solar insolation 

Defining solar radiation starting torque factor 't(s)' by the ratio of the 

motor starting torque at an arbitrary solar insolation `s' to the starting 

torque at a reference solar insolation 'Sr' as 
t(s) = Tst(s) ................................... (67) 

Tst(sr) 

These torque factors for PM and series motors [9] for maximum power 
operation are 

tpM(s) _ T—SS, ..................  ......... (68) 

t5(s)=.- ...................................... (69) 
sr  

Assuming the array power proportional to the solar insolation, the above 

torque factors for the PM and a series motor at gross mechanical power 

operation becomes 	tpM(s) = (VI{) tpM(s) ........ (70) 

t(s) = (K)ts (s) ...................... (71) 

Where K = KIK°  
(K1) 

............... (72) 
rKVr 

 

3.4 Results of the Analysis 

A 120 V, 9.2 A, 1500 rpm PM and DC series motors are considered for 

simulation studies. The parameters of the machines and load and PV 

generator are given in Appendix A, in Table 14 and Table 15. Based on the 

mathematical models developed in the preceding Section the converter 

chopping ratio's are calculated at different solar insolations (1 p.u. =100% 

solar insolation=1000 W/m2 ). 
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Figs. (18-23) represents the steady-state simulation results obtained for 

the above two cases. From the Fig. 19B and 19D it is observed that the 

armature voltages for both the motors are higher for GME operation than 

MP operation satisfying the relation (V,; > Vm). For a given solar insolation 

(Fig. 21) the chopping ratio of the converter is smaller for maximum 

power operation of SCA than the gross mechanical energy output 

operation, since (V' > Vm ) under such conditions the motor armature 

current decreases (I ; > I,,,,) which in turn decreases the copper losses as 

shown in Fig. 20B and 20D resulting in reduced thermal loading on the 

machines. We have A, B, C and D designated as below. 

A- PM motor maximum power operation. 

B- PM motor gross mechanical energy operation. 

° 	 C- Series motor maximum power (MP) operation. 

D- Series motor gross mechanical energy (GME) operation. 
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Fig. 18. PV array voltage variation for MP, GME operations. 
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Fig. 19. PM and series motor armature voltage variation. 

For both the machines on account of reduced losses, the GME operation 

results in efficiency improvement which is depicted in Fig.21. But, the 

efficiency of the series motor is slightly lesser value than the PM motor for 

the obvious reasons of additional losses in the series field and increases 

with solar insolation. Further, the series motor efficiency reduction is 

more at lower solar insolations for both GME and MP operations. In case of 

PM DC motor efficiency is higher at lower solar insolations because of 

VPM > VSE, IPM < ISE  and falls slightly with increase in insolation. 
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Fig. 20. PM and series motor armature copper losses. 

From Fig. 23 when the system is operating at maximum. daily gross 

mechanical energy output the starting torque magnification factors 

increases for the PM motor, decreases for the series motor with solar 

insolation. Fig. 23H indicates that, at GME operation the starting torque 

variation with solar insolation as compared to MP operation is more in 

case of series motor. However, the variation of motor starting torque with 

solar insolation is very much influenced by the gross mechanical power 

operation for the series motor than the PM DC motor. From the simulation 

studies it is found that the PM DC. motor with optimal value of 'Ce' gives 

higher motor efficiencies at gross mechanical energy operation as 

compared to series motor. 
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Fig. 23. PM and series motor starting torque magnification. 

In the above figure E, F, G and H are given below. 

E- Starting Torque ratio with GME operation to MP operation of PM motor 
F- Starting Torque ratio with GME operation to MP operation of series 

motor 

G- Starting Torque variation ratio with GME operation to MP operation of 
PM motor 

H- Starting Torque variation ratio with GME operation to MP operation of 
series motor 
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CHAPTER4 

ANN MODEL FOR CONTROLLING PHOTOVOLTAIC PUMP 

4.1 Introduction 

The present work brings out the identification of optimal point 

(corresponding to MP or GME operation) of the PV supplied separately 

excited dc motor and series motor fed from intermediate power converter 

driving centrifugal pump or volumetric pump loads. The converter-

chopping ratio is selected adaptively using ANN to get maximum power 

from SCA or GME output from the combined system. This off-line training 

approach avoids adjustment of optimal operating point through trial and 

error procedure and does not require high-resolution sensors. 

4.2 Statement of Problem 

The problem is to design an off-line non-adaptive controller by using 

Artificial Neural Network for obtaining the MP or GME operation of the PV 

supplied dc motor system. These MP or GME operations can be achieved at 

different solar insolations by controlling the power converter duty ratio, 

which is adjusted by the ANN controller. The SCA operating point is shifted 

to its maximum power point by using a voltage control type inverter, 

which is identified by the ANN. 
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4.3 Functional Block Diagram of the system 

Based on the mathematical models developed in the preceding Sections 

the converter chopping ratios are computed for the following two cases of 

operation 

1. Maximum power operation of SCA at different solar insolations. 

2. Gross mechanical energy output operation at different solar 

insolations for two load torques mentioned above. 

The basic functional diagram of the combined system is depicted below 

where the intermediate DC-DC converter's Chopping ratio is adaptively 

controlled by a neural network controller. 

Motor 
Insolation 

PV Source Irk DC-DC Converter 

............................... 	................. 	
Load 

Neural Network 	 Cho in ratio 
Architecture  ~P g Controller 

............................................................: 

ANN Controller 

Fig. 24. Functional Block Diagram of Combined system. 
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4.4 Block diagram for ANN training 

The ANN training block diagram for MP or GME operation is shown in Fig. 

24. Using the mathematical models developed in preceding Sections the 

reference patterns for MP and GME operation are computed. Block-1 

represents these reference patterns. The ANN training is performed by 

initially assigning random values to the weight terms. Gradient descent 

algorithm is used in the training, as it improve the performance of the ANN 

by reducing the total error by changing the weights along its gradient. The 

learning rate is close to the computed values. The training process was 

terminated as and when the mean square error E is less than the specified 

value. 

Block-1 

Reference Patterns 
for MP and GME 

operation 

Solar Insolation 

ANN Tracker 
Ymp (or) Ygme 

Block-2 

VIM 
Fig. 25 Block diagram for AN trai 

t *A~,.f~a~~•~ 
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4.5 ANN Architecture 

J 

The ANN model/Architecture for the combined system is shown below in 

fig. 26. The architecture consists of three neural layers with each layer 

having different no. of neurons. Input layer consists of single input which 

is percentage of solar insolation (Kins). The hidden layer consists of varied 

number of neurons for different conditions and for each case the results 

were analysed on the complexity of the system as a whole. The output 

layer consists of a single neuron. The output from the neural network is 

chopping ratio (Y). The model is same for both centrifugal pump and 

volumetric pump. The chopping ratios are predicted for each pump load 

for both maximum power operation and gross mechanical energy 

operation. The values of input pattern (Kips) for training neural network is 

calculated from the method mentioned above and subsequently chopping 

ratios (output values of the neural network). 

Yj 

Solar I 

I 

UK 

Fig. 26. Schematic diagram of an artificial neural network. 
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4.6 ANN Training 

The work has been performed in MATLAB7.0. The training was 

performed using TRAINGDM (gradient descent algorithm) The following 

procedure/steps has been followed for training the network. 

Step 1: Construct the network and initialize the synaptic weights with 

random values. 

Step 2: Apply an input vector to the network and calculate the 

corresponding output values. 

Step 3: Compare the actual outputs with the desired outputs and 

determine a measure of the error. 

Step 4: Determine the amount by which each weight is to be changed and 

make corrections to each weight. 

Step 5: Repeat step 2 to step 4 with all the training vectors until the error 

for the vectors in the computed and predicted values of chopping 

the training set is reduced to an acceptable value. 

4.7 MATLAB/SIMULINK model for the neural network 

MATLAB/SIMULINK model of the developed architecture of neural 

network is depicted below using MATLAB 7.0 command gensim (net,-1). 

This command generates a SIMULINK block for neural network simulation. 

Input 1 {1} 	y{1} 

Input layer Neural Network Output layer 

Fig. 27. Block model for input layerl. 
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bias 

b{1}  

Fig. 28. Block model for input layer 1. 

Fig. 29. Block diagram for layer 2. 

4.7.1 Feed-forward neural network architecture 

The created feed-forward multi-layer perceptron model neural network 

has been trained with Back-propagation algorithm. The architecture of a 

multilayer network is not completely constrained by the problem to be 

solved. The number of inputs to the network is constrained by the 

problem, and the number of neurons in the output layer is constrained by 

the number of outputs required by the problem. However, the number of 

layers between network inputs and the output layer and the sizes of the 
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layers depend on the type of application. The neural network consists of 

three layers with different transfer or activation functions. The application 

of a particular type of transfer function depends on the range and values of 

the training inputs and their corresponding outputs. The learning or 

training employed is supervised biased learning with bias values of each 

layer randomly generated by the computer. The network is trained with 

initial random weights generated by the computer. 

4.7.2 Training function (TRAINGDM) 

The performance function or error criteria (goal) for the algorithm have 

been Mean square error (MSE). The training algorithm used is TRAINGDM 

(Gradient Descent method). Gradient descent algorithm is used, as it 

improves the performance of ANN by reducing the total error by changing 

weights along its gradient. An adaptive learning rate will keep the learning 

step size as large as possible. An adaptive learning rate requires some 

changes in the training procedure used by 'traingdm'. First, the initial 

network output and error are calculated. At each epoch new weights and 

biases are calculated using the current learning rate. New outputs and 

errors are then calculated learning stable. The learning rate is made 

responsive to the complexity of the local error. As with momentum, if the 

new error exceeds the old error by more than a predefined ratio 

max_perf inc (typically 1.04), the new weights and biases are discarded. In 

addition, the learning rate is decreased (typically by multiplying by lr_dec 

= 0.7). Otherwise, the new weights are kept. If the new error is less than 

the old error, the learning rate is increased (typically by multiplying by 

lr_inc = 1.05). This procedure increases the learning rate, but only to the 

extent that the network can learn without large error increases. Thus, a 
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near-optimal learning rate is obtained for the local terrain. When a larger 

learning rate could result in stable learning, the learning rate is increased. 

TRAINGDM is a network training function that updates weight and bias 

values according to gradient descent with momentum. 

4.7.3 Limitations and cautions of TRAINGDM 

The gradient descent algorithm is generally very slow because it requires 

small learning rates for stable learning. The momentum variation is 

usually faster than simple gradient descent, since it allows_ higher learning 

rates while maintaining stability, but it is too slow for many practical 

applications. These two methods would be used only when incremental 

training is desired. You can use Levenberg-Marquardt training for small 

and medium size networks, if you have enough memory available. If 

memory is a problem, then there are a variety of other fast algorithms 

available. 

4.7.4 Transfer or Activation functions 

The selection of activation function plays an important role in designing 

neural network. In the present model (network) a bipolar sigmoid function 

f [u (t)] = tanh [g.0 (t)] for the hidden layer and linear function f [u (t)] _ 

g.0 for the output layer were considered. The transfer functions used in the 

proposed neural network are TANSIG and PURELIN. The training input 

vectors which are % of solar insolation are values which range between 0 

and 1.So, the transfer function used in the input layer is TANSIG. The 

transfer function used in the output layer is PURELIN. The output of 

network can take any value as it is with pure linear transfer function. The 

output of neural network which is chopping ratio can take any value as 
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calculated in the preceding section. Neurons of this type are used as linear 

approximators in various applications like linear filters. 

4.7.4.1 TANSIG activation function 

Multi-layer feed-forward and other neural network architectures use tan-

sigmoid transfer function tansig. The input-output characteristic of tan-

sigmoid transfer function is shown below. 

a 

ri B 
a=tansig(n) 

Fig. 30. Input-Output characteristic of tan-sigmoid function 

4.7.4.2 PURELIN activation function 

The input-output characteristic of pure-linear activation function-is shown 

in the following graph and the corresponding to it. 

a 

7'Lzi 
7/.... 

a=purelin(n) 

Fig. 31. Input-Output characteristic of pureline activation function 
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CHAPTER 5 

SIMULATION RESULTS 

5.1 Introduction 

This chapter presents the results of ANN training for all the three training 

conditions mentioned in chapter 4. Training performance for each training 

condition and for each mode of operation i.e., MP operation and GME 

operation is analyzed in terms of ANN prediction of output chopper values 

and percentage error. 

5.2 Training of Neural network for MP operation of SCA 

A 120V, 9.2A, 1500 rpm PV supplied PM dc separately excited motor 

driving both centrifugal pump load and volumetric pump load was 

modeled using mathematical models of individual components and 

controlled by a neural network. The architecture of the network has been 

discussed in the previous section. Training has been performed on various 

architectures using traingdm training function.  algorithm and back-

propagation algorithm. The no. of input layer (neurons) and no. of output 

neurons are 1. This is constant for various cases of operation and for 

different training conditions. 

The no. of epochs/iterations, error criteria and performance functions are 

judiciously varied and prediction or estimation results are calculated for 

both the pump types. Analysis has been done for the following two cases 

and their subsequent sub-cases. 
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5.2.1 Cases of Operation 

Case 1: PM DC motor driving centrifugal pump. 

Case 2: PM DC motor driving volumetric pump. 

Case 3: Series motor driving centrifugal pump. 

For each of case 1 and case 2 and case 3, two further cases are analysed 

and results are reported. They are given below 

Case a: Maximum power point (MP) operation 

Case b: Gross mechanical energy (GME) operation 

5.2.1.1 Case la: PMDC motor driving centrifugal pump for MP 

operation 

The training data for case la is given in the table below and the results are 

obtained for MP operation. 

Table 1. Training data for MP operation of PMDC motor driving centrifugal 

pump. 

% of solar 
insolation 

Chopping ratio with MP 
operation for centrifugal 

pump (Ymp) 

0.10 0.5196 

0.20 0.65.26 

0.30 0.7410 

0.40 0.8105 

0.50 0.8846 

0.60 0.9342 

0.70 0.9919 

0.80 1.0324 

0.90 1.0704 

1.0 1.1186 
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5.2.1.1.1 Results of Case la 

The results of training and testing for case la has been carried out for 

three conditions. They are given below. 

1. Network with 1 hidden layer with 3 neurons in hidden layer with 

10000 epochs. 

2. Network with 1 hidden layer with 5 neurons in hidden layer with 

10000 epochs. 

3. Network with 2 hidden layers with 3 neurons in each hidden layer 

with 10000 epochs. 

The error or performance criteria is set to le-7 with Mean square error as 

its performance function (MSE).The graph below shows Training patterns 

(inputs) versus Target chopping ratio values. 

Plot of Training patterns versus target values 
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(train-Training inputs(% of solar insolation) 

Fig. 32. Plot of Training inputs with target chopping ratio (PMDC-mpc). 
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5.2.1.1.1.1 Training condition 1 

The training condition 1 consists of the following training parameters 

which are shown in table below. 

Table 2. Training parameters for Training condition 1. 

No. of Hidden layers 1 

No. of neurons in 3  
hidden layer 

No. of epochs 10000 

Performance 
function 
(MSE) 1 e-7 
error 

Training function TRAINGDM (Algorithm) 

Learning rate (Ir) 0.55 

Momentum 0.8 constant (mc) 

The plot of computed values versus ANN predicted values of chopper duty 

ratio are shown in Fig. below. 

Fig. 33. Plot of calculated versus ANN predicted chopping ratios (tc1). 
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The plot of percentage error with testing inputs is shown below. 

Fig. 34. Plot of percentage error versus testing inputs (tcl). 

5.2.1.1.1.2 Training condition 2 

The training condition 2 consists of the following training parameters 

which are shown in table below. 

Table 3. Training parameters for Training condition 2 

No. of Hidden layers 1 

No. of neurons in 5  
hidden layer 

No. of epochs 10000 

Performance 
function 
(WE) 1 e-7 
error 

Training function 
(Algorithm) 

TRAINGDIw 

Learning rate (Ir) 0.55 

Momentum 
constant (mc) 

0'8 
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Fig. 35. Plot of calculated versus ANN predicted chopping ratio (tc2). 

The plot of percentage error with testing inputs is shown below. 

Fig. 36. Plot of percentage error versus testing inputs (tc2) 
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5.2.1.1.1.3 Training condition 3 

The training condition 3 consists of the following training parameters 

which are shown in table below. 

Table 4. Training parameters for Training condition 3. 

No. of Hidden 2  
layers 

No. of neurons 
in each hidden 3 

layer 

No. of epochs 10000 

Performance 
function 
(MSE) 1 e-7 
error 

Training 
function TRAINGDM 

(Algorithm) 
Learning rate 0.55 (Ir) 
Momentum 0 8  

constant me 

Fig. 37. Plot of calculated versus ANN predicted chopping ratio (tc3) 

The plot of percentage error with testing inputs is shown below. 
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Fig. 38. Plot of percentage error versus testing inputs (tc3). 

5.2.1.2 Case 1b: PMDC motor driving centrifugal pump for GME 

operation. 

The training data for the network is shown in the below Table 

Table 5. Training data for GME operation of PMDC motor driving 

centrifugal pump 

% of solar 
insolation 

Chopping ratio with 
GME operation for 
centrifugal pump 

(Ygmec) 
0.10 0.5530 

0.20 0.6814 

0.30 0.7866 

0.40 0.8582 

0.50 0.9359 

0.60 0.9876 

0.70 1.0476 

0.80 1.0889 

0.90 1.1287 

1.0 1.1784 
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Fig. 39. Plot of calculated versus ANN predicted chopping ratio (tclb) 

Fig. 40. Plot of percentage error versus testing inputs (tclb). 

5.2.1.2.1 Results of Case 1B. 

The results, of training and testing for Case 1B has been carried out for 

three conditions. 

5.2.1.2.1.1 Training condition 1 
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5.2.1.2.1.2 Training condition 2 

Fig. 41. Plot of calculated versus ANN predicted chopping ratio (tc2b) 

Fig. 42. Plot of percentage error versus testing inputs (tc2b). 
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5.2.1.2.1.3 Training condition 3 

Fig. 43. Plot of calculated versus ANN predicted chopping ratio (tc3b). 

Fig. 44. Plot of percentage error versus testing inputs (tc3b). 

[67] 



Training of Neural network for MP operation of SCA 

5.2.1.3 Case 2a: PMDC motor driving volumetric pump 

The training data for the network is shown in the table below 

Table 6. Training data for MP operation of PMDC motor driving volumetric 

pump 

% of solar 
insolation 

Chopping ratio with MP 
operation for Volumetric 

pump (Ympv) 

0.10 0.1634 

0.20 0.3201 

0.30 0.4711 

0.40 0.6167 

0.50 0.7708 

0.60 0.9061 

0.70 1.0501 

0.80 1.1766 

0.90 1.2991 

1..0 1.4305 

5.2.1.3.1 Results of case 2a 

The results of training and testing for case 2a has been carried out for 

three conditions. The error or performance criterion is set to le-7 with 

Mean square error as its performance function (MSE). For each training 

condition corresponding training performance in terms of output plots 

and percentage error in prediction is plotted below. 
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5.2.1.3.1.1 Training condition 1 

Fig. 45. Plot of calculated versus ANN predicted chopping ratio (tcic). 

5.2.1.3.1.2 Training condition 2 

Fig. 46. Plot of calculated versus ANN predicted chopping ratio (tc2c). 
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Fig. 47. Plot of percentage error versus testing inputs (tc2c) 

5.2.1.3.1.3 Training condition 3 

Fig. 48. Plot of calculated versus ANN predicted chopping ratio (tc3c). 
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Fig. 49. Plot of percentage error versus testing inputs (tc3c) 

Training of Neural network for GME operation 

5.2.1.4 Case 2b: PMDC motor driving volumetric pump for GME 

operation 

The training data for the network is shown below 

Table 7.Training data for GME operation of PMDC motor driving 

volumetric pump 

% of solar 
insolation 

Chopping ratio with 
GME operation for 
Volumetric pump 

(Ygmev) 

0.10 0.1741 

0.20 0.3413 

0.30 0.5028 

0.40 0.6589 

0.50 0.8247 

0.60 0.9710 

0.70 1.1271 

0.80 1.2648 

0.90 1.3990 

1.0 1.5434 
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Fig. 50. Plot of calculated versus ANN predicted chopping ratio (tcld) 

Fig 51. Plot of percentage error versus testing inputs (tcld) 
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5.2.1.4.1 Results of Case 2b 

The results of training and testing for Case 2b has been carried out for 

four conditions. 

5.2.1.4.1.1 Training condition 1 



5.2.1.4.1.2 Training condition 2 

Fig. 52. Plot of calculated versus ANN predicted chopping ratio (tc2d). 

Fig. 53. Plot of percentage error versus testing -inputs (tc2d) 
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5.2.1.4.1.3 Training condition 3 

Fig. 54. Plot of calculated versus ANN predicted chopping ratio (tc3d). 

Fig. 55. Plot of percentage error versus testing inputs (tc3d). 
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The non-adaptive off-line controller using ANN is tested for different set of 

solar insolations and the results are close to the computed values for DC 

separately excited motor. The error in ANN prediction is less than (+-8010) 

for centrifugal and volumetric pump loads. It is observed from the results 

that the ANN even though trained for ten solar insolations the 

intermediate results obtained from the network are within the range. The 

results of MP and GME operations suggest that the ANN controller is 

accurate in identification or tracking optimal operating points even with 

stochastically varying solar insolations. 

5.3 Series motor control by ANN 

5.3.1 Training of Neural network for Maximum power of SCA 

operation 

A 120V, 9.2A, 1500 rpm PV supplied series dc motor driving centrifugal 

pump load and was modeled using mathematical models of individual 

components and controlled by a neural network. The architecture of the 

network has been discussed in the previous section. 

Training has been performed on various architectures using 

traingdm training function algorithm and back-propagation algorithm. The 

no. of input layer (neurons) and no. of output neurons are 1. This is 

constant for various cases of operation and for different training 

conditions. The no. of epochs/iterations, error criteria and performance 

functions are judiciously varied and prediction or estimation results are 

calculated. 
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5.3.1.1 Case 3a: Series motor driving centrifugal pump for MP 

operation 

The training data for the network is shown below 

Table 8. Training data for MP operation of series motor driving centrifugal 

pump. 

PU Solar Insolation 
Chopping ratio for MP 

operation for 
centrifugal pump 

(Ympc) 
0.1 0.2812 
0.20 0.4132 
0.30 0.5406 
0.40 0.6613 
0.50 0.7704 
0.60 0.8617 
0.70 0.9703 
0.80 1.0324 
0.90 1.1215 
1.0 1.2063 

5.3.1.1.1 Results of case 3a 

The results of training and testing for case 3a has been carried out for two 

conditions. They are given below. 

1. Network with 1 hidden layer with 3 neurons in hidden layer with 

10000 epochs 

2. Network with 2 hidden layers with 3 neurons in each hidden layer 

with 10000 epochs 

The error or performance criterion is set to le-7 with Mean square error 

as its performance function (MSE).The graph below shows plot of Training 

patterns (inputs) versus Target chopping ratio values. 

[76] 



5.3.1.1.1.1 Training condition 1 

Fig. 56. Plot of calculated versus ANN predicted chopping ratio (tcle) 

Fig. 57. Plot of percentage error versus testing inputs (tcle) 
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5.3.1.1.1.2 Training condition 2 

Fig. 58. Plot of calculated versus ANN predicted chopping ratio (tc2e). 

Fig. 59. Plot of percentage error versus testing inputs (tc2e). 
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5.3.2.1 Case 3b: series motor driving volumetric pump for GME 

operation 

The training data for the network is shown below 

Table 9. Training data for GME operation of series motor driving 

volumetric pump. 

PU Solar fnsolation Chopping ratio 
GME 

0.1 0.3403 

0.20 0.5713 

0.30 0.6923 

0.40 0.8406 

0.50 0.9234 

0.60 1.1206 

0.70 1.2238 

0.80 1.3440 

0.90 1.4263 

1.0 1.5403 

5.3.2.1.1 Results of case 3b 

The results of training and testing for case 3b has been carried out for one 

condition. 

Fig. 60. Plot of percentage error versus testing inputs (tc3e) 
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Chapter 6 

Neural Network model for Photovoltaic Pumping System 

6.1 Statement of problem 

It is impractical for a manufacturer to supply system output data for 

infinite combinations of the solar input (irradiance/insolation) and the 

pumping head. Moreover, the system output varies with the various 

combinations of the system components (photovoltaic module, linear 

current booster, pump, filter and the various pipes and fittings) that a 

system may be comprised. It is therefore necessary to develop a model for 

a particular system that can predict the output for any combination of 

head and irradiance. Estimation or prediction of flowrate for a 

photovoltaic pump is performed by using this ANN model. 

6.2 Introduction 

The flowrate is measured as a function of both irradiance and head. The 

pumping system is set up (installed at university of Curtin) such that it 

draws the water from a large pan (tank) and pumps it to a certain head 

where it discharges the water into a funnel. After the system starts up, its 

delivered flow rate is proportional to the radiation intensity. The relation 

between flow rate and radiation intensity is nonlinear in nature. At high 

levels of insulation, the rate of increase of pump discharge with increasing 

insolation is smaller than that at intermediate insolation levels. The 

nonlinear relationship between flow rate and insolation and the existence 

of the insolation threshold make the performance prediction of a PV 

pumping system difficult. 
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By applying the technique of Maximum Point Power Tracking (MPPT), the 

efficiency of the system rises whatever is the solar radiation value and the 

temperature of the environment. The technique of MPPT was applied by 

different ways and means. In this work, we execute this technique with the 

use of artificial neural network. A typical nonlinear relationship between 

pump flow rate and insolation for a PV pumping system is shown in Fig. 

61. 

Fig. 61. Flowrate vs irradiance at various pumping heads. 

6.3 Method of modeling the motor-pump combination 

The pumping rate (flowrate, f) depends basically on two factors: the 

pumping head, H, and the irradiance, I. Fig. 61. show the dependence of the 

flowrate on both head and irradiance. Each line represents a different 

head. It is noted that the curves cross each other. This is attributed to the 

differences in the PV module efficiencies for different sets of data. The 
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effect may also be partially caused by the differences in the actual pump 

characteristics at different heads. The pump is less efficient at lower heads, 

because some energy is transferred to the pumped water in the form of 

kinetic energy. Ideally the pump should deliver water to a certain head 

with zero kinetic energy. In general, the flowrate increases with irradiance, 

but not linearly. A second order parabolic equation fits the data very well. 

Table10. shows the equations for the best fit curves and the correlation co-

efficients. 

Table 10. Best fit equations and correlation coefficient (r2) for curves in 
Fig. 61 

Head(m) Best fit equation (r2) 

2.9 f= 0.015+2.51*10-41 —1.06 

* 10-712  

0.99 

3.9 f= -0.0017+3*10-41-1.23 * 10-712  0.99 

7.56 f= -0.099+4.69*10-41— 2.07 

* 10-712  

0.98 

10.37 f= -0.127+5.40*10-41 — 2.98 

* 10-712 

0.99 

13.8 f= -0.06+3.16*10-41-1.23 * 10-7I2  0.99 

The equations obtained in Table 10. are restricted to the heads shown in 

Fig. 61. We are particularly interested in determining the flowrate as a 

function of both irradiance and head from a single equation. 

Flow rate, f = f (I, H) ................................. (71) 
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In other words the model (equation) developed should be able to predict 

the flowrate for any combination of head and flowrate. It is noted that all 

the equations in Table 10. have one general form: 

Flow rate, f= bo + b11 + b212 ...................:..... (72) 

The only difference is that the different heads have different co-efficients 

bo,bl and b2. These co-efficients are plotted against the head, as shown in 

Fig. 62. From Fig. 62. relationship between the co-efficients and head is 

shown. Again a second order parabolic regression is used to obtain the• 

best fit equations. The results are shown in Table 11. The equations in 

Table 11. can now be combined with Eq. (72) to give a combined 

relationship for flowrate as a function of irradiance and head. 
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Fig. 62. Best fit co-efficients from Table 1 plotted against pumping heads 
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Table 11. Best fit equations and correlation coefficients (r2 ) for 
coefficients of equations in fig. 61. 

Co-efficient Best fit equation (r2) 

bo bo= 0.175-0.06 H + 3.1* 10-3H2  0.99 

bi b1=-1.06*10-4+1.389*10-4H — 7.8 * 10-6H 2  0.94 

b2  b2  = 9.1 * 10-g  — 8.13 * 10-8H + 4.7 
* 10-9H2 

0.82 

Thus 	f = bo+bil+b2I 2  ................................. (73) 

Where f = flowrate in 1/sec, I = irradiance in W m-2, and bo, bland 

b3  are given by equations in Table 11. This model can now be used to 

predict the flowrate for any combination of head and irradiance. Fig. 63. 

Shows the predicted flow rates plotted for a variety of heads (solid 

lines).Superimposed on these are the actual measured values. 

U AW 49th OW OQU 1Q00 1200 

Irradiance (W m4) 

Fig. 63. Predicted flowrate vs irradiance at various heads. 
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The procedure is applied to the Solar Star 1000 pumping system to arrive 

at a model that predicts the volume flowrate, given the head and the 

irradiance. The parameters of the PV generator and motor are given in 

Appendix A. 

Fig. 64. explains the increase of Q by the increase of E (insolation). At 25 C° 

the water flood from centrifugal pump is found to be optimal. Here, we 

chose to change the application of neural network by choosing Q and E as 

its output and input respectively, and trackiing the error of algorithm back 

propagation in applying the learning program. 

Fig. 64. Variation of flowrate of pump with solar insolation 

The earth receives solar energy as electro-magnetic waves which we 

define as "solar parameters" as the average quantity of the radiation that is 
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incident on the earth level. The value of this parameter is between (0-

1000) W/m2. 

Fig. 65. Solar radiation variation w.r.t in a typical day at T=25 C. 

The quantity of solar energy, which is incident, relies on many factors: The 

geographical situation, the time during the day and the season, the purity 

of the air, the determination of the variation in humidity and temperature, 

and the wind speed. All these factors were taken into account during the 

determination of solar radiation direction in the pumps flow rate-head 

chart. It is limited in 12 hours a day where it reaches the peak during the 

mid-day, like in fig. 65. 

E(t) = Em, sin (15(t-6)) .................................... (74) 

Where E.,, = Maximum value of solar insolation = 1000 W/m2. 

t = Time of the day (in hours). 
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6.4 Neural network model 

An artificial neural network model for predicting or estimating the flow 

rate of a photovoltaic water pump driven by a separately excited DC motor 

controlled by a MPPT (Maximum Power Point Tracker) is proposed and 

validated. The neural network architecture and the training algorithm, 

transfer functions used are explained in detail. This model predicts the 

output of the network which is flow rate of pump in (1/sec) with good 

accuracy. The application of the practical chosen neural network with 

cheap available electronic instruments rests an objective for generalizing 

and spreading the use of photovoltaic pumping system. 

6.4.1 Neural network architecture 

The neural network architecture developed has three layers. They are 

1. Input layer 

2. Hidden layer 

3. Output layer 

The single input to the network is the solar radiation and the single output 

is the required pumped water quantity. 

6.4.2 Training the neural network 

The training data for the proposed neural network is obtained either from 

the manufacturer's data charts and sheets for centrifugal pumps. As 

mentioned in the previous section, a model for small-scale photovoltaic 

pumping system was used to generate the training data. The data 

corresponds to different heads for which actual measurements were done. 

Training was performed with TRAINGDM-gradient descent function. The 

algorithm used was error back-propagation theorem. Training was 

[871 



algorithm used was error back-propagation theorem. Training was 

performed for different conditions where the number of neurons in hidden 

layer was varied with training parameters kept constant. ANN prediction 

of output values (flowrate) and percentage error variation with insolation 

were graphically shown for each training condition. 

6.4.2.1 Training conditions 

Effect of network architecture on learning was analyzed from different 

training conditions as described below. They are 

1. Training condition 1 with three hidden neurons in one hidden layer. 

2. Training condition 2 with two hidden layers with 3 neurons in each 

layer 

6.4.3 Head-2.9 

6.4.3.1 Training condition 1: The training parameters are shown 

below. 

Table 12. Training parameters for training condition 1 

Training function TRAINGDM 

Performance Mean Square 

function Error 
(MSE) 

No. of Hidden ~ 
layers 

No. neurons in 3 
Hidden layer 

Activation tansig in hidden 

functions layer and purelin 
in output layer 

Learning rate 0.7 
Momentum ® 8 
constant 
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Fig. 66. Plot of calculated vs ANN predicted values of flow rate[tc1-H=2.9]. 

Fig. 67. Plot of %error with solar insolation for[tc1- H=2.9]. 
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6.4.3.2 Training condition 2 

The Training condition 2 is given by the following training Parameters. 

Table 13. Training parameters for training condition 2 

Training function TRAINGDM 

Performance 
Mean Square 

function 
Error 
(MSE) 

No. of Hidden 2  
layers 

No. neurons in 3,5 
Hidden layer 

Activation tansig in hidden 

functions layer and purelin 
in output layer 

Learning rate 0.6. 
Momentum 0.8 constant 

Fig. 68. Plot of calculated vs ANN predicted values of flow rate[tc2-H=2.9]. 
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Fig. 69. Plot of %error with solar insolation for [tc2- H=2.9]. 

6.4.4 Head-3.9: output graphs for training condition 1 are shown below 

6.4.4.1 Training condition 1 

Fig. 70. Plot of calculated vs ANN predicted values of flow rate[tc1-H=3.9]. 
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Fig. 71. Plot of %error with solar insolation for [tcl- H=3.9]. 

6.4.4.2 Training condition 2: 

Fig. 72. Plot of calculated vs ANN predicted values of flow rate[tc2-H=3.9]. 
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Fig. 73. Plot of %error with solar insolation for[tc2-H=3.9]. 

6.4.5 Head -7.56 

6.4.5.1 Training condition 1 

Fig. 74. Plot of calculated vs ANN predicted values of flow rate[tcl-H=7.56] 
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6.4.5.2 Training condition 2 

Fig. 75. Plot of calculated vs ANN predicted values of flow rate[tc2-H=7.56] 

6.4.6 Head - 10.37 

6.4.6.1 Training condition 1 

Fig. 76. Plot of calculated vs ANN predicted values of flow rate[tcl- 

H=10.37] 
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6.4.6.2 Training condition 2: 

Fig. 77. Plot of calculated vs ANN predicted values of flow rate[tc2- 

H=10.37]. 

Fig. 78. Plot of %error with solar insolation for[tc2-H=10.37]. 
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6.4.7 Head 13.8 

6.4.7.1 Training condition 1 

Fig. 79. Plot of calculated vs ANN predicted values of.flow rate[tcl-H=13.8] 

Fig. 80. Plot of %error with solar insolation for[tcl-H=13.8]. 
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6.4.7.2 Training condition 2: 

Fig. 81.Plot of calculated vs ANN predicted values of flow rate[tc2-H=13.8]. 

Fig. 82 plot of %error with solar insolation for[tc2-H=13.8]. 
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Chapter 7 

Conclusions and Future Scope of work 

7.1 Conclusions 

In this work steady-state performance of DC motors (PM and series) with a 

MPPT (intermediate converter) is analysed by mathematical modeling of 

individual components. From the simulation studies it has been observed 

that the use of the converter will influence the steady-state behavior of the 

pumping system. By suitable adjustment of power converter duty ratios, it 

is possible to operate at maximum power point of the SCA or gross 

mechanical energy output of the combined pumping system. It has been 

observed that the armature voltages for both the motors is higher for GME 

operation than the MP operation satisfying the relation V4 > Vm. 

For both the machines, the GME operation results in efficiency 

improvement. The efficiency of the series motor is slightly less than the PM 

motor because of additional losses in the series field. These simulation 

studies forms the basis for training a neural network model for predicting 

chopping ratios of DC-DC converter. Comparative analysis is made 

between different architectures in chapter 4. The non-adaptive controller 

using ANN is tested for different set of solar insolations and the results are 

close to the computed values. From these studies it is found that the ANN 

provides a highly accurate identification/tracking of optimal operating 

points even with stochastically varying solar insolation. The percentage 

error in prediction for all cases of operation is found to be less than 10%. 
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A second ANN model is developed for modeling a photovoltaic water 

pumping system. ANN predicted values are compared with the flow rate 

values calculated from equations developed for a particular pumping 

system. The maximum percentage error is found to be around 20%. The 

deviation though small is attributed to fluctuations in the solar radiation 

and unsteady temperatures during the actual measurements. 

The error in ANN prediction can be further reduced by judicially changing 

the neural network architecture. Training algorithm or function will also 

influence the performance during prediction. Training has been performed 

with TRAINGDM algorithm. Different training functions can be used for 

even optimal results. 

7.2 Future Scope of work 

The area of optimal operation of photovoltaic pumping systems is fast 

evolving in recent years. Different maximum power point tracking 

algorithms are successfully applied to photovoltaic pumping systems and 

their efficiency has been improved considerably. Artificial intelligence 

techniques such as artificial neural networks, fuzzy logic control and 

genetic algorithm mechanisms are used for optimal matching of PV 

generator to pump for maximizing utilizing efficiency. The following are 

few areas of the future scope of the present work 

• Genetic Algorithms: Application of Genetic algorithms on a 

photovoltaic panel-pump motor matching to natural tracking of PV 

maximum power points. In this method, photovoltaic pumping 

systems controlled by different motors are optimized without any 

controller device like MPPT's (DC-DC converters). Investigations to 
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improve the performance of the system without adding any complex 

circuitry need to be done. 

• Robust control methods: Robust control methods for 

identification and control of PV supplied DC motors coupled to 

constant and variable loads can further be investigated in good 

detail. Application of ULN's Universal Learning networks for 

detection of maximum power points and tracking the speed of the 

motor-pump unit need to be studied. 

• Fuzzy and ANN models: Fuzzy and ANN models for global 

efficiency optimization and estimation or prediction of maximum 

power point of PV systems controlled by intermediate converters 

can be applied for performance evaluation. 

• Transient analysis: In this work steady-state analysis of PV 

controlled dc motors were performed and later used for training an 

ANN controller in an off-line adaptive control mode. Transient 

analysis has not been dealt with. Transient performance of 

photovoltaic pumping systems can be done to decide the best 

combination of motor-pump unit for pumping applications. 
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Appendix A 

The machine data for both PMDC and series motor for steady-state analysis is 

given in the table below. 

Table 14. Machine Data (PMDC and Series) 

Machine data for the Analysis 

Machine Data " e rmanentn  Magnet DC D ~~  
~ 	mdt 	L D 	Series Motor 

Ra -Armature Resistance 1.50 Ohm 1.50 Ohm 

RE -Field Resistance --- 0.70 Ohm 

La -Armature Inductance 0.02 H 0.02 H 

I:f Field Inductance 	.;° --------- 0.13 H 

Ce lux co 	dent 0.621/0.6626 -------- 

Mat Mut anductance ------ 0.0675/0.12 H 

Load data (centrifugal pump) is shown in the table below. 

Table 15. Load data for Analysis 

Load data (Centrifugal pump) 

Load data PM 	Motor Ef Series Moto 

J-Moment of 
 

• 
• Inertia 0.02367 0.02367 

Al 	„ 0.00039 0.00031 

81  0.002387 0.002387 

Cl 	• 0.5 0.46 
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Appendix B 

Machine data of a PMDC motor coupled to photovoltaic water pump which is 

used for ANN modeling is given below 

PV generator parameters at STC (Standard Temperature Conditions) 

The PV generator parameters at STC are shown below.STC corresponds to 

following parameters: 

(1) Temperature - 25°C 
(2) Solar insolation or radiation —1000 W/m2  
(3) Air mass(A.M-1.5) 

Short-circuit 4.81 current (A) 

Open-circuit 224 voltage (V) 

Resistance 
Series (ohm) 2.25 

Table 16. PV generator parameters 

Motor parameters 

Table 17.Motor Parameters 

Nominal power 690 (W) ______ 

Nominal speed 3000 (rpm) 

Supply voltage 

_ 

200-220 

Nominal current 4.8 (A) 
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Appendix C 

Tabular Data for MP and GME operations 

The following section gives the tabular data from the analysis for both MP and 

GME operations and for both PMDC motor and series motor. The data shown 

here is used for training a neural network for prediction of chopping ratio of the 

Intermediate DC-DC converter. The tables are listed below. 

Table 18. PV array Voltage Variation with Solar insolation for PMDC motor. 

PV Voltage(V)-MP PV Voltage(V)-GME PU Solar Insolation 
82 82 0.1 
•92 94 0.15 
96 98 0.20 
102 104 0.25 
106 110 0.30 
108 112 0.35 
111 117 0.40 
113 120 0.45 
114 122 0.50 
115 125 0.55 
117 128 0.60 
118. 130 0.65 
120 131 0.70 
121 133 0.75 
122 135 0.80 
123 136 0.85 
124 137 0.90 
123 138 0.95 
124 139 1.0 
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Table 19. Armature Voltage Variation with Solar insolation for PMDC motor. 

Armature 
Voltage(V)-MP 

Armature 
Voltage(V)-GME PU Solar Insolation 

42 45 0.1 
53 56 0.15 
62 65 0.20 
69 76 0.25 
78 82 0.30 
82 87 0.35 
88 95 0.40 
96 101 0.45 
100 106 0.50 
105 116 0.55 
109 118 0.60 
116 122 0.65 
119 125 0.70 
121 130 0.75 
124 133 0.80 
129 136 0.85 
133 138 0.90 
136 141 0.95 
138 146 1.0 

Table 20. Armature Voltage Variation with Solar insolation for series motor. 

Armature 
Voltage(V)-MP 

Armature 
Voltage(V)-GME PU Solar insolation 

22 26 0.1 
33 40 0.15 
40 54 0.20 
48 66 0.25 
58 76 0.30 
65 82 0.35 
74 95 0.40 
79 101 0.45 
87 113 0.50 
95 119 0.55 
100 129 0.60 
105 136 0.65 
112 143 0.70 
119 155 0.75 
124 160. 0.80 
129 166 0.85 
136 175 0.90 
141 181 0.95 
146 189 1.0 
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Table 21. Copper losses with solar insolation for PMDC motor. 

Copper Losses 
MP 

Copper Losses 
GME PU Solar Insolation 

8.10 8.07 0.1 
17.12 17.06 0.15 
20.12 20.06 0.20 
23.24 22.93 0.25 
30.35 30.17 0.30 
33.45 32.85 0.35 
45.51 44.21 0.40 
54.32 53.65 0.45 
62.41 60.64 0.50 
70.61 68.82 0.55 
80.82 78.33 0.60 
82.34 80.43 0.65 
94.63 90.32 0.70 

105.42 101.87 0.75 
112.32 110.67 0.80 
116.77 113.34 0.85 
137.54 135.52 0.90 
146.67 142.53 0.95 
155.2 152.48 1.0 

Table 22. Copper losses with solar insolation for series motor. 

Copper Losses 
MP 

Copper Losses 
GME PU Solar Insolation 

35.12 20.21 0.1 
50.23 30.43 0.15 
55.67 40.43 0.20 
70.23 45.62 0.25 
86.42 50.13 0.30 
94.14 57.25 0.35 

102.33 64.26 0.40 
112.23 70.35 0.45 
122.35 75.24 0.50 
130.45 80.41 0.55 
135.66 85.13 0.60 
145.23 90.45 0.65 
154.33 92.34 0.70 
161.12 98.49 0.75 
170.88 101.52 0.80 
180.37 104.52 0.85 
185.10 110.55 0.90 
195.27 115.47 0.95 
200.10 120.60 1.0 
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Table 23. Efficiency with solar insolation for PMDC motor. 

%Efficiency 
MP 

% Efficiency 
GME 

PU Solar Insolation 

93.2 94.2 0.1 
93.4 94.4 0.15 
93.0 94.0 0.20 
92.8 93.8 0.25 
92.6 93.6 0.30 
92.4 93.4 0.35 
92.1 93.1 0.40 
92.0 93.0 0.45 
91.8 92.8 0.50 
91.7 92.7 0.55 
91.7 92.6 0.60 
91.6 92.4 0.65 
91.5 92.4 0.70 
91.3 92.2 0.75 
91.1 92.1 0.80 
91.0 92.0 0.85 
90.7 91.7 0.90 
90.5 91.6 0.95 
90.3 91.5 1.0 

Table 24. Efficiency with solar insolation for series motor. 

%Efficiency 
MP 

% Efficiency 
GME pU Solar Insolation 

61.2 82.3 0.1 
67.1 84.5 0.15 
72.3 84.8 0.20 
75.2 84.9 0.25 
76.4 85.3 0.30 
77.3 86.0 0.35 
78.1 86.4 0.40 
78.3 86.6 0.45 
78.6 86.9 0.50 
78.9 87.0 0.55 
79.3 87.3 0.60 
79.7 88.2 0.65 
80.1 88.9 0.70 
80.4 89.3 0.75 
81.4 90.1 0.80 
81.8 90.6 0.85 
82.6 90.8 0.90 
82.9 91.1 0.95 
85.2 91.4 1.0 
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Table 25. Chopping ratio with solar insolation for PMDC motor. 

Chopping ratio 
MP 

Chopping ratio 
GME 

PU Solar Insolation 

0.5196 0.5515 0.1 
0.5769 0.6122 0.15 
0.6526 0.6922 0.20 
0.6876 0.7291 0.25 
0.7410 0.7853 0.30 
0.7875 0.8341 0.35 
0.8105 0.8582 0.40 
0.8491 0.8987 0.45 
0.8846 0.9359 0.50 
0.9175 0.9704 0.55 
0.9342 0.9876 0.60 
0.9368 1.0185 0.65 
0.9919 1.0476 0.70 
1.0065 1.0627 0.75 
1.0324 1.0889 0.80 
1.0572 1.1152 0.85 
1.0704 1.1287 0.90 
1.0937 1.1527 0.95 
1.1186 1.1784 1.0 

Table 26. Chopping ratio with solar insolation for series motor. 

Chopping ratio 
MP 

Chopping ratio 
GME 

PU Solar Insolation 

0.2812 0.3402 0.1 
0.3403 0.4625 0.15 
0.4132 0.5713 0.20 
0.4813 0.6.113 0.25 
0.5406 0.6923 0.30 
0.6114 0.7843 0.35 
0.6613 0.8406 0.40 
0.7109 0.9215 0.45 
0.7704 0.9834 0.50 
0.8115 1.0793 0.55 
0.8617 1.1206 0.60 
0.9026 1.1718 0.65 
0.9703 1.2238 0.70 
0.9917 1.2836 0.75 
1.0324 1.3440 0.80 
1.0834 1.3814 0.85 
1.1215 1.4263 0.90 
1.1603 1.4605 0.95 
1.2063 1.5403 1.0 
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