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otract

This thesis report deals with the application of probabilistic load
flow computation using Gram-Charlier expansion and Probabilistic load flow
using Complex Random Variable analysis to the radial distribution system.
Two types of load distributions-have been considered namely, normally
distributed loads and discrete random loads. A typical system is analyzed for
nodal powers when they are (a) independer;t and when they ére (b)
dependent. The mean and standérd deviations of bus voltagés, active and
reactive powers have been calculated. The results obtained have been
compared with Deterministic load flow, basic probabilistic distribution load
flow and Monte Carlo simulation and are found to be in good agreement. The
probability density functions for these variables also have been plotted. In
this thesis, for probabilistic load flow with method of moments, the input
parameters viz. loads and line data are assumed as complex random
variables. The probability distribution functions for bus voltages have been
calculated. The resulfs can be used for adequacy analysis of the distribution

system.
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Chapter1

1.1 General

Electrical power system is an interconnected structured system composed of
generating stations and distribution substations together. In terms of operations and
characteristics, the transmission s:ysterr_} is distinctly different from the distribution system.
The principal difference between thé;se two is in their associated voltage levels and
network structure. The forﬁer usually featured as a loop structure, while the létter
generally is of radial structure. It has been realized that the precise sblution_ state of
distribution system can be acquired with a robﬁst and efficient power (load) flow solution
method [1-2]. These power flow solution methods must be able to model the specific
features of radial distribution system. in sufficient detail. Some of the more iﬁréminent
féatures of radial distribution systems are as follows.

% Multiphase, unbalénced, grounded or ungroimdéd operation.

% Imperfection and unc_ertainties of network parameters. -

‘020 Unbalanced distributed loads.

% Extremely large number of nodes and branches
Since then power flow analysis has been one of the most fundamental and widely used tool
by power engineers. The power -ﬂlow analysis yields the system'’s solution state on solving a
set of precisely known non-linear algebraic equations simulténeously. Due to peculiar
features of radial structux"vevand wide-ranging resistance, reactance values, the distribution
system got status as ill-conditioned powerl system. -
The popularly used Newton-Raphson and fast-decoupled load flow (FDLF) solution

techniques are unsuitable for solving load flow for radial distribution systems.

Consequently many other load flow analysis methods have been developed that suits to



distribution system characteristics on assumption that input parameters (line resistance,
reactance and load at different buses) as fixed Quantities [3-5]. However, in realistic
condition, the situation is quite different and input parameters for the load flow study are
* relatively uncertain [6]. These uncertainties arises by virtue of

1.  Error in calculation or measurement of the feeder parameters (resistance

and reactance)

2. Errorinthe magnitude of assumed load demand at system buses
Even 'if parameter uncertainfies were:not an issue, the power flow problem would be
nothing more than a “snapshot” of the system at a giveh instant. Solutions obtained would
be valid ohly for a single specific system conﬁguration and operation condition. However,
the system evolves through time. It appears that it would be reasonable to ask not what the
system looks like at a given instant, but rather ask for the ranges of all pl'ausible system
conditions that might be encountered as result of expected uncertainties in power injection
and other parameters.
1.2 Types of uncertainties: Broadly, speaking uncertainties can be classified in to two
types.
1. Quantitative uncertainty: The uncertainty is quantifiable in numerical terms by a
mathematical function with deterministic parameters.
Ekamples are:
a). Probabilistic variables. The unéertainty is defined by a probability density-f'unction:
uniform, normal, Poisson, etc. [7] or by means of moments of a disfribution and fhe method |
of cumulants. ,
b). Interval variables. An interval‘ variable is a closed set of real numbers [x1, x2] such that
any x in the interval x1<x<x2 is in the set [6, 8].
2. Qualitative uncertainty: This uncertainty is initially expressed in vague, non-numeric -

(usually verbal) terms such as “approximately equal to” and “a small percentage.” By using



the concept of degree of membership of a value to a set, it is pbséible to establish the notion
of fuzzy sets and fuzzy arithmetic. Qualitative uncertainty is quantified using fuzzy.séts [9].
The purpose of a formal characterization of uncertainty is to gain a greater

understanding of a system or process. Single-solution answers, although pleasing in
traditional engineering terms, often give an incomplete picture of the behavior of a system.
A characterization that expliCitly considers uncertainty allows us to create rhodels and
answer questions that are either impossible or difficult to answer with deterministic
methods. Several roles in the characterization of uncertainty are:
a). Uncertainty as an aid in the decision making procéss. Decision makers often conéider
the risk associated with a particular decision. The nature of the uncertainty also has an
influence on the decision: overestimating a number may result in slightly higher costs of
operation, but underestimating the same number could result in severe effects on a system,
which will translate into cbnsi'derably higher costs. |
- b).Deterministic solutions in the presence of uncertainty give detei‘ministic answers that
are guaranteed to almost never take place. Of greater value would be to bracket the
solution and either give intervals guaranteed to contain the solution, or probabilistic
measures guaranteed to contain the solution at a given level of confidence.
c). Uncertainty is essential when reconciling mathematical models with measurements on
physical systems. The classic examble of this use of uncertainty is the stafe estimation
problem in power systems, where more measurements than strictly needed are made ona
- system, and the state of thé system is determined under the assumption that
measurements are subject to error. |

- Methods for handling uncértainty can be app}ied to determine both engineering and
economic parameters, such as current flows, voltages, cost and reliability (or security). Of
increasing interest are methods capable of characterizing important externalities of a

power system, such as environmental effects. These externalities are often associated with



greater degrees of ﬁncertainty than is customary within traditional engineering models.
The fact that uncertainty exists is no reason, however, for simply ignoring an important
concern. Rather, methods for capturing the inherent uncertainty must be used and
incorporated into the more traditional ways of assessing the system.
1.3 Representation of Uncertainty: |
Many papers have been published to deal with uncertain power flow analysis problem [6-
10]. According, applied mathematical techniques these works can be classiﬁeds in to the
three categories.

a. Interval analysis load flow methods

b. Fuzzy load flow methods

¢. Probability power flow fnethods
Each method uses the notion of an “uncertain variable.” An uncertain variable is a variable
that can take more than one numeric vélue according to the point of view of the method.
For probabilistic methods and Monte Carlo Simulation (MCS), uncertain variables are -
better known as random variables, for interval methods they are known as interval
variables and for fuzzy arithmetic methods are known as fuzzy or possibility &ariables.

This thesis méinly focuses on Probabilistic Load Flow (PLF) Methods.
1.4 Probabilistic methods:
| Probabilistic methods are based on the interpretation of belief in the

possibility of an event outcome as a numeric probability. The determinatibn of the
probabilities of basic event outﬁomes is done either by heuristic reasoning or based on
historical information [7]. The fundamental characterization of probability is the
probability density function (PDF). Areas under this curve denote pro-babilities. Fig. 1.1
illustrates the most commonly used probability density functions for representation of
loads. These are.

(a) Uniform.



(b) Gaussian.

(c) Binomial.

(a) Uniform.

{b) Gaussian.

(c) Binomial.

Fig. 11 P:obabﬂity Density Functions.

Probabilistic Load Flow (PLF) uses linear or quadratic approxirhations of
deterministic load flow equations. With these approximations,. load flow equations are
solved in a direct fashion and the probabilistic density function (PDF) of state variables
(voltages and currents) are obtained from the given probabilistic description of measured
variables (generation outputs and loads). PLF calculates both possible power flows and

- their possibilities of occurrence. There are two methods adopted in past research to obtain



the probabilistic distribution functions of the state vector and line flows: Monte Carlo
simulation and convélution method.

Monte Carlo Simulation is one of the methods to compute the Probabilistic
Distribution Function (PDF) of line flows and voltages. This mefhod consists of running
and probabilistically processing several cases of individual load flows, Where the data are
genera’ted by pseudo-random numbers. Monte Carlo solutions have been the backbone of
probébilistic computation. This also serves as benchmark for comparison with other |
methods.

The Convolution technique is another method to compute Probabilistic
Distribution Function (PDF) of line flows and voltages based on probabilistic distribution
of data [11-15]. The probabilistic load flow transforms these input random variables,
defined in terms of probability density functions, into output random variables also
defined in terms of density functions using statistic theory. |
1.5 Problem Statement: |

The purpose of this thesis is avoids complex convolution and replaces them
with simple arithmetic process due to unique properties of cumulants. This method
- combines the cumulants and Gram-Charlier Expansion theory to compute the power flows
and voltages in balanced radial distribution system. This method has significantly reduced
the computational time while maintaining a high degree of accuracy.

The deregulated ah_d competitive power markets are widely spread in the
world and bring about new aspects to system planni.ng [16]. Probabilistic Load ‘Flow
solution based on the method of moments is one of the method used for security
assessment of bus voltages in power systems. In this method, bus loads and network
parameters are treated as complex random variables. Probabilistic Load Flow solution
using method of moments is fast, because the process of convolution of various complex

random variables is performed in moment and cumulant domain.
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1.6 Overview of the thesis: This thesis is organized as follows

Chapter 1 as stated above serves as a general introduction to Probabilistic Load Flow.
'Chapter 2 provides the research contribution from the past to present in the area of.
probabilistic load flow in distribution as well as tran‘smission systeml

Chapter 3 provides the brief discussion on moments, cumulants, relationship between
moments and cumulants, properties of cumulants, complex random variablés, Gram-
Charlier expansion and correlation between the input nodal powers.

Chapter 4 describes the PrObabilistiéf Load Flow '(PLF) using Gram-Charlier detailed
algorithm and also describes the PLF with Method of rhoments and its algorithm used in
this thesis.

Chapter 5 provides the details oﬁ the simulation program results.

Chapter 6 concludes the thesis with a final regard to the improvements for future

development.



Chapter 2

Literature survey shows that fhe most commonly used techniques for radial
distribution load flow (DISTFLOW) are, one based on a Newton like method‘ involving
* formation of jacobians and computation of power mismatches at the end of the féeder and’
laterals [1] and the other based on the backward and forward sweeps involving
computation of branCh flows [2-3]. This method is an efﬁcie‘nt solution for wéakly meshed
distributioh and transmission networks. Nanda and Srinivas [4] proposed a method
similar to the previous method, but differing in the formulation of its algorithni and in the
convergence cﬁterion. Chiag and Zimmerman et al [Sj presented a load flow methodology
based on current computations, was applied for multi phase radial distribution netWo_fks.

Load flow analysis of a distribution system, when the load demand is varying
over an interval, can be performed by either repeated application of normal load flow or by
the use of iriterval arithmetic load flow. Wang and Alvarado [6-7] first proposed the
application of interval arithmetic method for power ﬂdw ‘analysis of transmission'
networks, This paper, discusses uncertainty in power flow computations by -coming up
with simple bounds on the solutions that are, in some sense, as small as possible. These
| results were compared with Monte Carlo Simulation (MCS) results. Later Das 8] éxtended
this technique for power flow an.alysis in balanced radial distribuﬁon systems. This paper,
uncertainties only in the input load paramété'rs are considered and the results afe
compared with the results obtained from repeated load flow simulaﬁdn. | |

Satpathy and Das [9] proposed the application of the fuzzy set theory and
possibility theory for power flow analysis of transmission networks. The uncertain power

injections are usually given in fuzzy numbers with known possibility distributions. The




modeling part, the system loads and available generations are modeled with the help of
‘ trapezoidal membership functions. This paper also discusses a case study on IEEE 14- bus
test system. The most important results of these models are membership functions, for
instance of branch ﬁows or voltages, that reflected, in aggregated way, the uncertainty of a
set of specified power scenarios. Later Ghosh [10] applied fuzzy techniques for radial
distribution sysfems. This paper also discusses real, reactive power losses énd voltage
magnitude at every node with respect to membership function.

The first notion of p‘robébilistic. power flow appeared in the early 1970s.
Borkowska, Allen et ail. [11, 12] have proposed a simptiﬁed probabilistic load flow. In this
paper two assumptions were introduced: (1) the electric power system is represented with
dc network model (2) The real part of the bns electric loads are independent random
variables with these assumptions, a con\(entional deterministic power flow is solved. Later,
this basic method has been extended to AC networkvmodel [13-14]. This paper presents
two possible formulations of the problem that permit the probébility density curves of
angles, voltages, injectéd active and reactive power flows to be computed.

The papers [11-14] assumed that the nodal powers are independent. The assumption
of independence of the nodal electric loads is unrealistic. However, there are various
reasons for correlations.to exist between nodal powers. These reasons depend on whether
lbad/load, generation/load or generation/generation behavior is being considered. For
example, a group of loads existing in'the same area will tend to increase and decrease in a
like manner due to environmenfal or social factors. Therefore thére will be certain degree
of dependence between them. Al-Shakarchi et al. [15, 16] proposed a method in which he
has taken all correlations in to account as explained above. Da Silva et él.[17] proposed a
linear dependence model of electric loads. Using a linearized power flow model, they
proposed a method, which combines Monté Carlo Simulations and convolutions. DopaZo et

al. [18] proposed a method, which models the correlation between the loads at any two



buses. 'i‘heir proposed method assumes that circuit flows ahd bus voltage magnitude are
Gaussian distributed and, thuS, only the variance must be computed With Monte Carlo
Simulation Technique. | |

Burchett [19] has proj)osed a method for obtaining a probabilistic load flow
solution using a discrete frequency domain convolution technique whfch is based on the
Fast lfourier Transform (FFT). Patra [20] proposed a method, probabilistic load flow using
method of moment§ to consider the network outages; In this method, the load and
generated power was considered as éomplex random variables. The probability density
functions of bus voltége and line currents are evaluafed using method of moments and
cumulants. Tae-KyunKih [21] proposed a method of probabilistic load flow analysis using
method of moments for the security assessment of bus voltages. The PDF of bus voltage
readily provide probabilities of threshold violations for ‘the entire planning period,
reflecting the random variation of loads, generation uncertainties, dispatching effects and
outages. Zhang [22] used a dc load-flow model combining the concepf of Cumulants and
Gram-Charlier epransibn theory to consider the bus injectjon uncertainties and to compute
Probabilistic and cumulative distributions of network branch flows with less computation
effort. Chun-Lien [23] proposéd a method for probabilistic load flow based on an efficient
point estimate method and the uncertainty of bus injections and line parameters can be
estimated or measured efficiently.

When considering distribution networks the problem is simpliﬁed since there
are no generation/generation rélations [24-25]. These papers, discuss derivation of much
simpler relations between inpﬁt, output and state random variableé based on the following
assumptions. At every node volfage is considered as rated vdltage and imaginary part of
voltage drop is neglected. Karakatsanis and Hatziargyriou [26-27] presented a load flow in
distribution network with dispersed wind power. This paper discusses probabilistic model

for the Active power produced and reactive power absorbed by the wind turbines
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equipped with induction generator, which takes in to account the probabilistic nature of
short-term wind velocity forecasts. |
Tande [28, 30] discusses Probabilistic load flow calculation using Monte Carlo
Simulation (MCS) for distribution network with wind generation. This paper, the total
number of hours with over voltage per year was estimated for a distribiition network with
several wind turbines.
| From literature review it is evident that the appliCation of Grarh-Charlier
| expansion in Distribution system probabilistic load flow has not been explored in-depth.
This thesis application of Gram-Charlier expansion in distribution probabilistic load flow

has been carried out.
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- Chapter 3 |
W.

B Suppose X is a random variable and that all of the moments E (X*) exist. The
probability distribution of X is completely determined by its moments, i.e, there is no other
probability distribution with the same seciuenc_e of moments. If 7{1_{1; E (X)" = E(X%) for all
values of k, then tﬁe sequence {Xn} converges to X in distribution. -

“3.1 Significance of the moments [33]:

The First moment about zero, if it exists, is the ei(pectation of X, i.e. the mean of
the probability distribution of X, designated a. In higher orders, the central moxhents are
more interesting than the moments about zero. The first central moment is thus 0; the
sécond central moment is the variance, the square root of which is the standard deviation.
The normalized nth central moment is the nth central moment divided by o™; _th_e nth
moment of t=(x¥a)/a. These normalized central moments are dimensionless quantities,
which represent the distribution independently of any linear change of scale.

3.1.1 Skewness: the third central moment represents the lopsidedness of the
distributional any symmetric distribution will have a third central moment of zero. The
normalized third central moment is called the skewness. Fig_ 3.1 represents the skewness
of the probability distribution functions have the same mean and standard deviation. The

one on the left is positive skewness. The one on the right is negative skewness.

Figure 3.1: skewness
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3.1.2 ‘Kurtosis: the fourth central moment determines whethér fhe distribution is tall
and skinny or short and squat, compared to the normal distribution of the same variance.
. Since it is the expectation of fourth pbwer. the fourth central moment is always positive.
Fig.3.2 represents the kurtosis. The PDF on the right has higher kurtosis than the PDF 6n |

the left. It is more peaked at the center, and it has fatter tails.

Figure 3.2: kurtosis

3.2 Moments about origin
If, for a positive integer v, the function XV is infegrable with respect to F(x)
over interval (-oo, +00), |

a,=E(")= [ x’dF(x) Wherev=1,2..n e (31)

The above equation is called the moment of order v or the vth moment of the
distribution [22].
3.3 Moments about mean

The most important set of moments in statistical theory is obtained by shifting

the origin to the arithmetic mean. These moments, m, are often called central moments.

B, =El¢-m)]= [*®(x-m)’dF(x)  Wherev=1,2.n ... (3.2)
3.4 Cumulants
The mean value of the particular function eité will be written

o) = E(eité) = j'_‘f:geitxdF (x) Where t=1, 2...n e (3.3)
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This is a function of the real variable t, and will be called the characteristic function Qf the

variable & . If the k th moment of the distribution exists, the characteristic function can be

developed in MacLaurin's series for small values of t:

,,¢(f)='1+%%‘,i(it)v ) | | | e (3.4)

logo(f) = 51"1(;':)” + o(tk ) | oo (3.5)
) 1 v

The coefficient 7, is called the semi-invariants or cumulants of the distribution.

3.5 Relation ship between Moments and cumulants |

The relationship between the moments and the cumulants can be deduced by

substituting () in (3.4) to (3.5).

e, v kY, ky | |
Jog(I+X—=(t)" ) =X —(it)” +o(t") : e (3.6)
It is seen that Yy is po]ynomial in al,dz, ........ @, and conversely a, is a polynomial in
71,7’2, """" 7n
h=o,=m :
Y, =0, —a} ' _ e (37)

7 =a, -3aa, +2a
And conversely
o =m=y
W=yt o | " (38)
a3 =73 +370+7; |
Where | |

m denotes the mean value.
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‘In order to facilitate calculation of higher order cumulants, a recursive

relationship between the moments and cumulants of any order of a Probability

Distribution Function (PDF) has been developed [31]. The relationship is as follows.

nh=ey=moo (3.9)

Lk
Vi = ®pn — Z[ .}jyk—j-rl (3.10)

Jj=1 .’

And conversely
o =m=y o (3.11)
k (k
a1 =Yen +]El i ]'Zk—j + e (3.12)
Where [k) are the binomial coefficients and y, andeq, are the kth order cumulants and
j .

moments respectively.

k k!
The binomial coefficient [ J =N
i) Jk—J)

In terms of the central moments 8, , the expression of the ¥, become

h=m
¥, =P, =0
7=Py
7:=B,~3B;
Where o denotes standard deviation and conversely
131 =0
:32 == 0'2
133 =73
_ 2
:34 =74 +3y. 2

15
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A new recursive relationship between the central moments and cumulants of any order of

a Probability Distribution Function (PDF) has been developed. The relationship is as

follows. | |
n=m ..(315)
ST 3.16
7r+l'ﬂr+1+j§2 j jﬂr—j-l‘-l e (3.16)
- And conversely _ |
£ =0 e (317)
S5 ‘ 3.18
Bt =tra* B Pite s )
J=2\J | A
Where C) are the binomial coefficients and » and B, are the k% order cumulants and

central moments respectively.

r!
The binomial coefficient (r) = ———T
\J) -7

3.6 Properties of cumulants [22]
Let £ and 7 be independent random variables with known cumulative

function F and F2. The cumulative function F(x) of the sum of two independent variables is

given by |
F(x)= EZS’F] (x-2)dF,(z) = E;’Fz (x~z)dF(z) I (3.19)
F(x)= Fy(x)*F,(x) L (3.20)
For the sum (,"1 +§2 +...... +g"’n of n independent variables, the cumulative function
F= 2 *F2 ¥ "‘Fn ' wn (3.21)
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Letq)l(t),(pz(t), and gv(t') denote the characteristic function of &, 7, and £+7

respectively,

() = [ + M= B5 1* BT = 2O 0y o (3.22)

If§1 , 52, ......... (fn are independent variables with the characteristic function ;Dl(t),qoz(t)

R (t), the characteristic function @(f) of the sum 51 +§2 S A fn is thus given by

pO=0,0 0, Ot O . (3.23)
The multiplication theorem for characteristic function gives

logp(t) =log ? )+ log¢2_ O+........ logqpn ® e (3.24)
Therefore | |

ok S, +77 (3.25)

m¥n11+m2+ ......... +m_ .. (3.26)
o2 =0'12+0'§+ ....... +o2 (3.27)

3.7 Complex Random Variable (CRV) '
Let Z=X+;Y be a complex random variable (CRV) with a Probability

density Function f(Z). Clearly X and Y are real random variables (RRV), defined in the
same probability space with a joint Probability Density Function f(x, y). Similarly in terms
of magnitude and phase angle, let Z=.ej g then joint Probability Density Functioh (PDF) is

defined as shown in Fig. 3.3. This Probability Density Function (PDF) consists of three

~ discrete functions at Z,,Zand Z; these are the values which Complex Random Variable Z

may assume} with corresponding probabilities p; p, and p; respectively.

17



f %
P P,
@ T ‘ T
21 Z‘g Z;

I —

Figure: 3.3 Discrete PDF of Complex Random Variable
Where Z;, Z,and Z; are clearly complex random numbers and the sum of each

probability p;, p,, ps is one. The interpretation to be the given ablove Probability Density
Function (PDF) is as follows [21].

The complex random variable Z assumes three complex values: Z= z with
probability Py Z= Zs with probability 'p'z and Z= z3.with probability Py Therefore, for
the case Z= z; =% + jyl, with probability of existence Dy is equivalent to X=x1 and Y= N
both with the séme probability existence, i.e. py- Another way of interpreting this is to
think of occurrence of x and yi together as one event. |

3.8 Moments and Cumulants of Complex Random Variable
Referring to the Probability Density Function of Complex Random Variable as

shown in Fig 3.3, the moments about origin of order t, of the Complex Random Variable Z

are defined as [20]

L3 |
a, =E[Z']= 3 Zip, Where t=1, 2..n - e (3.28)
i=1 | -
Where,

E [.]: the expected value of random variable

18



Z f : i~ th value of t-th order Complex Random Variable Z
p;: Probability of i-th value of Complex Random Variable Z

~ Fort=1, 2, 3, 4 the above expression is
@y = Z3py + 2;p; + Z3p3
oy = zipy + 25p, + 23ps
a; = z3p, + 23%p, + ,zg’pg | e (3:29)
@y = 2ipy + 23D, + 23D5
Clearly these moments are Complex Random Variables. The corresponding cumulants
are obtained using the relationship between moments and cumulants. ‘
3.9 Relation ship between CRV moments and cumulants [20]: the recursive
relation between cumulants and moments is
| n=e
y,=a, "jz_](j;..l}/j-ﬂz GZ 2) Where t= 1, 2...nth order e (3.30)
i=1
For t=2, 3, 4 the abofze expression is
Y2 =0~ of ‘
Y3 =03 — 3a2d1 +2ad
Yo = oy — 4030, + 60,05 — 3o} | (3.31)‘

Similarly the recursive relation between moments and cumulants is

o =" |
Lj-1 -
J . Where t= 1, 2..nth order o (332
ar=7e+2( ; }’j—iat 022) ' ( - )
i=1 \ '
For t=2, 3, 4 the above expression is
a; =Y, +vi |
o3 =Yz +3y2y1 +V3 ‘ , e (3.33)

04 = Y4 + 4Y3y; + 3y3 + 6002 + of
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The above moments and cumulants in Probabilistic Load Flow calculation are used each in
multiplication and addition.
3.10 Random Variables used in Load Flow Analysis

To model the load of the system discrete distribution-is considered in this
thesis. However, continuous distribution like normal distribution or any general
distribution can also be used. The load is assumed to be expressible in terms of active and
reactive powers. The simplest way td stimulate this is by means of the Probability density

Function shown in Fig. 3.4.

(S o) 4

T

S
'sdl a2 5d3 Sd4 st }

Si —»

Figure: 3.4 Probability Distribution Functioﬁ ofload with uncertainty »

The Probability Distribution Function (PDF) as shown iﬁ Fig. 3.4 assumes that
the uncertainty applies to both active and reactive powers. If only the active power is in
with an assumed uncertainty; while reactive power is conétant. In this case there is no
difficulty in obtaining the moments of complex load. The moments can be obtained from
the knowledge of the moments of active and reacti\}e components [appendix A]. From the

 Fig. 3.4 various moments can be obtained as follows.
_ 5 |
mt(S D) =i§1s aiPi Where t=1, 2...nth order e (3.34)
where S;=p+jq
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p;: Probability of i-th value of Complex Random Variable s d

The transmission lines are represented by their series impedance or
admittance. The impedance of the line is assumed to be a random variable Z. In its

' simplest form this random variable may take two values.

o

fiz)

7, —

Figure: 3.5 Probability Distribution Function of Available impedance
Z1 =z when the line is in operation with probability p: and Z, =0 when the line is down,

with probability qi, clearly p1+q:=1.The probability Denéity Function (PDF) of available

line impedance is shown in Fig. 3.3.
3.11 Gram-Charlier Type-A Series [32]

Consider a random variable £ with a distribution of a continuous type and |
denote the mean value as p and the standard deviation as o . For the standardiéed variable
($-a)/(0),its cumulative and Probability density function are denoted as F(x) and f(x)

respectively, According to Gram-Charlier expansion, the cumulative and the Probability

density functions can be written as

F(x):—jEOCjHj_l(x)gé(x) | | - . (3:35)
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f(x)= S ¢ H .(x)4) | - - (336)
P A L

]:
Where
JT 2o\ 2) RG-2k)| 52k
; ko, j-2k
J12 021\ 1)~
101 (3] o
k=0 2 k(]—2k)
2

§x)= ﬁlﬁe 2

[n/2] denotes the largest integer<=n/2

The expression Hj(x) are known as Hermite Polynomials.

Some of the eiﬁressions for probability distribution function are given in Appendix A. :
3.12 Edgeworth form of the Gram-Charlier Type-A series

Any Probability Density Function 'f(x)_, with finite moments, may be expréssed
in terms of orthogohal polyno:mials. Consider the Probability Density Function f(x) of a

random variable£, expanded in terms of a standardized random variable x and its

corresponding normal Probability Density Function ¢(x), as follows

) =4(0)- Gg3(x) /314G )/ 44 G ¢S ) 6. e (337)
Where '
=(f-a)lo)
—xz.
N
#(x) = e

V21T
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The parameters G1 and G2 determines the skewness and peakedness of the distribution

and defined in terms of the cumulants of the random variable x, as follows.

3
Gy = 73(X)/I7, (D12

G, =1, (X0)/7,(OF
The equation (3.37) is referred to as the Edgeworth form Grém-Charlier expansion.

The equation (3.36) is formaily identical to equation (3.37), evén though it has
some difference between them. The probability distribution function is obtained by Edge
worth form Gram-Charlier expansion’in terms of the curﬂulants of the desired random
variable whose probability distribution is to be evaluated where as Gram-Charlier type-A
series in terms of central moments of the desired random variable whose probability
distribution isr to be evaluated. For practical purposes it is necessary to take only a finite
numbeér of terms in the series and to neglect the remainder [31].

3.13 Correlation between nodal powers

In long-term planning studies, possible variations in load demands are due
to forecast uncertainties. The demands can only be predicted within certain statistical
uncertainties and are described by the normal distribution. In these cases, demands are .
completely random and can be independent. When the behavior of the system for
relatively short term, say a few months or less, is being considered, assumption of
independence between the load derﬁands is less valued. The demahds may be
characteristically independent, e.g. for different types of consumer, but may be correlated

“owing to common effects such as weather conditiohs and human-behavior patterns [15].

There are various réasons for correlation between nodal powers to exist, and

these reasons tend to depend on whether load/load, generation/generation, or

generation/load correlation behavior is being considered. The extreme case would be the
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total correlation. A group of loads existing in the same area, will for example, for which all
demands would rise and fall “in step” because of environmental or social factors. Some of
the most relevant reasons are discussed below [16-17].
3. 13 1 Load/load correlation

In long term-planning problems, the probablllstlc variation of loads is,
generally, not one involving time, but, instead, is associated with load forecasting at a
specific time in-the future. In such casas. total independence between loads is a reasonable
assurnption. In operational planning problems, h~owever, the probabilistic variation of
loads is associated with time and a group of loads existing in the same area w1ll tend to
increase and decrease in a like manner; i.e. a certain degree of correlation ex13ts between,
them. The most important reasons for this correlation are due mainly to common
environmentalfactors such as temperature, sunset, rainfall etc,, and to social factors such
as sporting events, television programmes, meal times, working habits etc. As these factors
are likely to affect all loads of a similar nature in a like manner, a degree of correlation will
exist. When the loads rise and fall together, the correlation is positive. ‘Similarly, in the
event of a load failing while another rises, the correlation is negative.

3.13.2 Generation/generation correlation

In practice, generation output into the system may sometimes be controlled so

that the output of a specific group of generation is kept constant. Consequently, if the
output nf one soufte of generation in that group is decreased for one reason or another,.
the output of the other sources of generation is increased by the same amount within the
-output limits of each source. In this case, the correlation is such that, as one nodal power
“increases, another décreases. and therefore generation/generation correlation is negative.
3.13.3 Generation/load correlation
Frequently, in the operation .of a power system, a group of generatdrs is

controlled to meet the load within a certain load area, this being known as area.control. In
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such cases, there must be correlation between those generation assigned to the area load
and the load itself; i.e. as the load rises and falls, the output from the relevant group of
generators is increased and decreased likewise. In this case, the correlation is again
. positive. _
All of the above types of correlations are utilized in operational planning of |
power system.
3.14 Represéntation of correlation of nodal powers
As discussed above that load/load, generation/generation, and
generation/load correlations are approximately linear. Therefore, for many practical
applications a linear representatiorinbf such correlations is all that is required, and the
approximations introduced because of this assumption can be neglected ‘[17]. ‘
If twlo random variables, X and Y, are linearly dependent, they can be related
simply using the equation of a straight line; i.e.
Y=aX+b | ..(338)
Where |
aand b are constants .
If the correlation is positive, then ‘a’ is positive value. In other words, if the correlation is
negative, then ‘a’ has negative value. These will be referred to as positive and negative
linear dependence, respe.ctively. If the asshmption of linear dependence is considered
inappropriate, then the above representation can be modified quite readily to give a
felationship between X and Y when they are not exactly linear. In this case the variable Y
can be divided in to two random variables ¥’ andY". Where Y’ is linearly dependent on Z
~and obeys equation (3.38). ¥” Is relatively small, has an expected value of zero and is
independent of. X. this is shown in Fig. 3.6 for two arbitrary variables related by positive

linear dependency.

25



Figure: 3.6 Two independent random variables that are not exactly lineat_‘
To include linear dependence in probabilistic load ﬂow, each group of linearly
Dependent raﬁdom variables is considered to be independent of all other groups and all
other independent random variables ihcluding the variables Y " introduced to account for
dependence that is not exactly linear. If it is considered that all the random variables are
. linearly dependent (positive orxnegative), then only one shch group exists, and there are no
independent groups or random variébles i.e. Y” does not exist.

3.15 Linear dependence between random variables

Consider the case of two random variables X and Y having expected values Hy

and yy, standard deviation o, and O'y, respectively. The covariance and correlation

- functions [33] are convenient parameters for indicating the measure of linear dependence
between them.

The covariance of 7 of Xand Y is
=E{(X—-u XY~ | . :
My = EAC ‘ MY = 1)} (3.39)
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Where E{ } represents the expected value.
Equation (3.4) can be expressed as
=E{XY -Xﬂy g THHY

=B}~ p B~ B+

Txy

_ B N o (3.40)
= E{XY} By =Bk, I M,
=B} - po
The correlation coefficient 7xy is defined as
7.
Xy
=—T 3.41
L (341)
. X y

Where the value 7xjy isbetween-1and 1

7xy =0 if X and Y are linearly independent and | 7xy | =1 ifX and Y are linearly dependent -

[17].
Consider now the case of two linearly dependent random variables X and Y represented by

the discrete distribution and consider that they are to be combined to give a third random

 variable Z, such that ‘
Z=cX+eY+d ‘ e (342)
Where

¢,d,e are constants,

Since X and Y are linearly dependent. They are related by equation (3.38), and since they
are linearly combined to give Z. For each value of X, there are corresponding values of Y

~and Z all of which have the same value of probability. Therefore if X takes a value x; with
probability fi‘ then Y takes the value bz with probability fz and Z takes the value z; with

probability fl this is shown in Fig.3.7
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Figure: 3.7 discrete distribution functions of dependent random variables

Z;=cx;+ey, +d
The resultant derivation function is [32]
H,=CH, +e,uy +d |
o_=co_+ec_ (Forpositive correlation)
z x y
- B P = :
o,=co, eay (For negative correlation)

This concept can be extended to any number of random variables therefore, if
Z=c1X1 +02X2+ ....... +ciXi+chn+cn+l'
Then

By =Cfy teptly ot Cith ket He

= . +
O'z c10'1 :t020'2 t....% ciai icno-n

o (343)

e (3.44)

e (345)

. (346)

------

(3.47)

(3.48)

 (349)



In equation (3.49), the positive sign is used if the relationship between Xz’ and X1 isa

positive linear dependence, i.e. Xy = a;X; +b; and the negative sign is used if the
relationship is a negative linear dependence.

The above equation has been derived by assuming the réndom variables were
represented by the discrete distributions. It is, also applicable for normally distributed
random variables. This is evident since a normal distribution can be approximated to a

very large number of discrete impulses. Therefore, if all X, in equation (3.45) are normal
_ i

distributions, Z will also be a normally distributed with an expected value of H, and a

standard deviation ofa‘z.
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Chépter4 |

. In this chapter the following probabilistic load flow methods fof distribution
system have been discussed.
1. Monte Carlo simulation method ‘
2. Probabilistic load flow using Laplace transform Method
3. Probabilistic load flow computation using Gram-Charlier expansion
4. Probabilistic load flow using Comp,l,ek Random Variablé analysis. |
Methods 3 and 4 have been modified in this work and lapplied to
distribution system and results have been compared those of 1 and 2. |
4.1 Monte Carlo Simulation [34] |
4.1.1 Introduction:
In fact, simulétion methods can often be the only means of obtaining the solutioh .to -the
system model, especially when the system studied is iafge and complex or when the
probability distributions rather than only | the_ means and variances, are required. A
numerical simulation is a pro;:ess of selecting a set of ;ralues of system parameters and
obtaining a solution of the system model for a selected set. 'Repeatin_g the simulation"
process for different sets of system parameters, obtain different sample solutions. The key
activity in the simﬁla_tion process is the selection of system parameters to obtain sample.
solutions. | |
Monte Carlo simulation is repeating the simulation process. In each simulaﬁon
process a particular set of values of the random variables generated in accordance with the

corresponding probability distribution function.
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4.1.2 Algorithm: .

Stepl. Generate random numbers from the given distribution function (normal or
discrete or binomial distribution).

Step2. This step is deterministic, in which the mathematical model is solved to obtain
the parameters voltage, angle and power flows.

Step3. Above two steps are repeated a sufficient number of times, a statistical analysis
of simulation results is then performed.
4.1.3 Generation of random numbers [35): : e

Generation of appropriate values of random numbers in accordance with respective
given probability distribution. For each variable is first geﬁerate a uniformly distributed
random number between 0 and 1.0 and then, through appropriate transformations, obtain
the corresponding random numbers with the specified probability distribution.

Generating uniformly distributed random numbers is based on recursive calculations
of residues of modulus m from a linear transformation. The multiplicative congruential
method (or power residue method) is frequently used at present. In this method one takes
residues of successive powers of a number ‘%’ to be the successive numbers in the random
sequence: that is, _‘

X; = X'(mod m) e (1)

Equation (4.1) an equivalent expression is

Xi=pX;_,(modm) - . (4.2)
) .
Where p is constant, m=modulus=231-1. The uniform variates are obtained from
ui=xi/m we(4.3)

Equation (4.2) and (4.3) are used for generation of uniform random numbers.
The value of variable ‘X’ therefore is obtained by evaluating an inverse of cumulative
distribution of respective distribution function.

X;=Fx1(u;) wherei=1,2..n we(4.4)
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4.1.4: Discrete random variable generation: The probability mass function p(Xi), -
p(X2)...p(Xi), on the integers S(x1, Xz.....Xi), is shown in Fig.4.1. The Cumulative Probability

distribution function is shown in Fig4.2. In Fig4.2 represents P(X1)= p(X),

P(X2)=p()+p(Xz) PCX)=P(x1)+P(Xe}+.rontp(K) =10
~§ p(%) p(X)
‘g - pta p[xﬂ
X, Xz X3 Xi
" Load (0)

Figure 4.1: Probability Mass Function

. 13,6 PR
£ CRK) 0
& X |
o |
k=3 |
: i
& i
3 N
X, XZLX3 X,
Load (X))

Figure 4.2: Cumulative density function
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The generation of discrete random variable for the probability mass function
is as follows.
Step1: Generate u random value between Oand 1:u (0,1)

. Step2: the integer X =X if it satisfies the following equation

-1 I
2PN =<u<D PU)
J=0 Jj=1 .

Step 3:return
4.1.5 Flow chart:

Generate a random pumber
“"between O and 1: u (0, 1)

h 4

Start simulation n=1

P
—

Ifus< P(Xl)
X=X
v
If P(X]) <u< P(Xz)
X=X,

h 4

n=n+1 If P(X2) <usP(X3)

X=Xs

A 4

HP(X ) <usP(Xi)
X=X

No

7

Yes '

End

Figure 4.3: discrete random generation
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4.1.6 Solution of Deterministic equations:

1. Nodal current calculation:
The nodal current injection Ii®, at network node i is calculated as |

I® =S,V -¥pE? i=1,2..0 | v (45)
Where

()
Vi( )

Is the voltage at node i calcula}t.e during (k-1) t iteration

Siis the specified power injection ét node i

Y: is the sum of ail shunt elements at node i

2. Branch current calculation:
Starting from the branches in the last layer and moving towards the branches connected to
the fdot node. The currentin bfanch L, is calculated as
Juz® =Lz ) +Y.( currents in brénches emanating from node L2) or (4.6)
L=b,b-1....... 1
Where I2® is the current injection at node L2.
3. Voltage calculation:
- Nodal voltages are updated in a forward sweep startihg from branches in the first layer ‘
toward those in the last. For each branch, L, the voltage at hode L2 is calculated using the

up dated voltage at node L1 and the branch current calculated in the preceding backward

- sweep

k -k ' '
Ve =VHi—Z,Jf L=1,2ub e (8.7)
Where |

- Zpisthe series impedance of branch L
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Flow chart:

Read network data
and-initial conditions

y

Set no.of simulation
start simulation n=1

[N

»
\ 4

Set bus count i =1

v

Random generation of load according
to their distribution function using eq
(4.3) and (4.4)

n=n+1

No

Check
bus count

i+1

if i=n

Run conventional load flow using flow
chart of fig (4.3) '

NO

Is no of

simulations
maximum?

Calculate mean and variance of
simulation results according eq (4.8)
and (4.9)

A\ 4

Print results

| Figure 4.4: Flow chart of Monte Carlo Simulation
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N

NUMBER THE BRANCHES

A 4

SET ITERATION COUNT
K= :

v
CALCULATE NODAL CURRENT
USING EUATION (4.5)

K=K+1

CALCULATE BRANCH CURRENT BACKWARD
SWEEP USING EQUATION (4.6)

A 4

CALCULATE NODE VOLTAGES FORWARD
SWEEP USING EQUATION (4.7)

CALCULATE MAXIMUM REAL AND REACTIVE
POWER MISMATCHES AT EACH BUS

| PRINT RESULTS ||

STOP

T

Figure 4.5: Flow chart of load flow solution
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4.1.7 General evaluation:

The Monte Carlo Simulation is a synthetic sampling process. Generation of n values yl,

V2eienans ynof Y and computed sample mean and its variance is
— l 2
==
= (4.8)
Var(Y)=E[(Y-E(Y))?] e (4.9)

Where E(Y) is fhe expected or average valué of Y

In any sampling experiment, the accuracy of results increases with the number of
samples; therefore the accuracy of Monte Carlos analysis will depend on the number of
simulations. Flow chart of Monte Carlo Simulation method is given in Fig.4.4.

4.2 Probabilistic Distribution Load Flow Technique Using Laplace transforms:

4.2.1General formulation:
The load flow problem can be mathematically described by two sets of nonlinear equations
[6-7] as: _
Y=g[x] | e (4.10)
Z=h[x] o (4.11)
Where, in the case of probabilistic load flow (PLF) '
Y- Input random vector (réél and reactive injections) .
X-state random vecfor (voltage magnitudes and angles)
Z-output random vector (power flows)
g, h-load flow functions.
Once the input vector Y is specified, the state vector X must be evaluated in order to
determine the output vector Z. As it is a well-known fact, the main problem is solving
| (4.10) since it is not possible to explicitly express X in terms of Y. Therefore, (4.10) is
linearized around the specified values Yo. 'In the case of‘probabilistic load flow (PLF)

-where input variables are given in terms of their respective probability distribution
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function (PDF) s, the mdst appropriate values to linearize afound are the expected values.
So, let Yo denotes the expected value of Y.
| Yo=g[Xo) | e (412)
Zo=h[Xo] , e (413)
Zo and Xo are only approximations for the expeéted values of Z and X due to the
nonlinear load flow functions. |

Linearizing (4.10) and [4.11)-around the points (Yo, Xo) and (Zo, Xo), rgspectively,

gives the following:
Where |
X~Xo+AAY =X, +AY O e(a1)
Z=~Zo+ AN =Z)+B.Y .. (4.15)

. A=(3—z |2 =)t

B=Clx=1x).4

AY =Y -Y,

Xo=Xo—AYo, Zy =2, —-BY,
Equations (4.14) and (4.15) express each element of the random vectors X and Z as a
" linear combination of random elements of the input véctor Y. The random elements Qf
vectors X and Z can be computed from a “weighted” sum of the random elements of vectof
AY. The weighting coefficients are defined sensitivity coefficients. The sum of  indepéndent
(or in some cases linearly dependent) random variables can be made [7] using
mathematical convolution techniqueé. The convolution implied by equations (4.14) and
(4.15) can be written as | ,

fXD)=FO) *f(Z) * oo f (V) e (4.16)
Where o
Y¢ represents (Y, — Yo )ay,

* Denotes convolution.
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ay, is an element of A

Equation (4.16) can be evaluated with different ways. One is to use numericai
methods based on Laplace transforms, which is referred to as the- conventional method.
Another method, transforms the equation in to frequency domain using fast Fourier (FFT)
techniques. The remaining deterministic part of (4.14) and (4.15), Xo; and zq;, which is

related to the point of linearization, affects only the position of the resultant PDF.

4.2.2 Algorithm: Step1:
When the system being considered has radial operating structure, the linearization of
(4.10) and (4.11) can be significantly simplified. Firstly, if we neglect power losses in the -

elements of the system, i.e. AP = AQ =0, real and reactive power flow in the element “i-j”

would be.
- Prj=Zkea; Pr | o (4:17)
Qi-j = Zkea; Ck _ e (4.18)

Where A ; denotes the set of all nodes supplied via node “j”, including “j" itself. -

Because of the radial operating structure of the system, each element of the output
vector (whether they are random or not) can be determined directly as a sum of some or
all the elements of the input vector (injected real and reactive powers).

Step2:

When calculating the voltages in distribution networks, having in mind that those are

operating on medium and low voltage level, the following two approximations can be made
»  The imaginary part of voltage drop in any element of tﬁe network compared to
the real one is much smaller; hence, can be neglected. |
>  Since voltages in every node of the network do not differ much from the
rated Voltage, it can be used rated voltage can be used instead of the actual

voltage, when calculating the voltage drop.
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Consequently, for the voltage drop in the element “i-j", AV,_; we can write the

following:

PR jXiy | PijXij=QijRij 419
AV, = Do)y Pl . (4.19)

Where R, ;, and X,  denote resistance and reactance of the element “i-j".

One consequence of the first approximation is that the voltages in all' the nodes of the
netwbrk have the saine phase angle. Therefore, the voltage d'ropv in any sequence of the
consecutive elements in the network is the algebraic sum of tﬁe respective voltage drops
calculated in accordance with (4.19). Thus, the total voltage drop from the feeding node ‘to
the node “k” will be sum of voltage drops in all the elements found on the path of supply,
starting from the feeding poiht up to the node “k”, i.e: | o

Ve = B jyem, AV .- __ | e (4.20)

Where m;, denotes the set of elements found on the supply path for the node k.
Step3: a
For the voltage in node “k”, we can write:
Ve =V, — AV, . , (4121]

Where ¥, denotes the voltage of the feeding point.

Expression (4.19) from which we calculate (4.20) and {4.21) is not quite suitable,
however, for evaluation of the resultant PDF of the voltage in node “K", because it contains

output random variables (F;,Q;) Although these variables are not just numbers, but

random variables defined with their réspective PDFs which need not be statistically
independent. Therefore, it is much more suitable to express the voltage drops in terrﬁs of
input random.variables. Real and reactive power in (4.19) should be substituted with
(4.18) and (4.19). When this new expression for the element's vbltage drop is entered in

(4.20) and the summations are interchanged, the total voltage drop from the feeding node

to the node “k” is given as:
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4.2.3 Flow chart:

Read network data and initial
conditions

'

Start bus count k=1

Y

Is distribution of
load?

Yes

!

No

Calculate power flow using
discrete L.T convolution

k=k+1

v

A 4

Calculate power flow at each bus
using (L.T) convolution

!

Calculate Voltage drop at each
bus using L.T convolution

v

Calculate Voltage at each bus

No Bus count

A

k=i

Yes

Print results

4

Plot Probability function of V,
- P,and Q :

A A
D

Figure 4.6: Flow chart
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AV, =~ > (BR, +O,.X,) v (4.22)

nom =1

“Where R, and X, denote total resistance and reactance of the common

elements found on the supplying paths of nodes “i” and “k” (intersection). The flow chart
for this method is given in Fig4.6. |
4.3 Probabilistic Load flow Computation using Gram-Charlier expansion

P. Zhang‘and S. T. Lee [22] first proposed the application of probabilistic load ;
flow cofnputation using combined cumqlan_ts and Gram-Charlier expansion for power ﬂow
analysis of transmission networks. They also compared their results with 'theA results
obtained from Monte-Carl@ Simﬁlation method. In their study they have taken WSCC test
system for illustration.

In this thesis the probabilistic load flow computation using Grém-Charlier
expansion for .power flow solution of a balanced radial distribution system has been
developed. In this study, the load demands in the system at different buses are uncertain.
The load ﬂdw algorithm chosen is essentially a probabilistic load flow algorithm [24]. This
proposed method has been tested with 30 bus test system and the results have been
' compared with Monte Carlo and Probabilistic Load flow using L.T convolution method.
| The major problem in the conventional convolution method is to compute the
equivalent discretev function since a function represented by r impulses convolved with
another represented by s impulses .Will have r times s impulses. Reference [11] clearly
~ stated that, even to Vobtain’th'e PDF of a single line:flow, the final number of discontinuous
| points could be extremely large when the number of discontinuous curve to be convoluted

are large or each curve is represented by a large number of points. This process requires a
large amount of storage and time. Compared with othér methods | used by previous

- researchers [7]-[12], the method incorporate in this thesis avoids complex convolution
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calculation and replaces them with simple arithmetic process due to unique properties of
Cumulants. Moreover, this method is able to obtain the PDF of line flows with one load
. 'ﬂow. This method significantly reduces the storage since low order Gram-Charlier
" expansion is able to achieve enough accuracy to approximate PDF of line flows. Study
results have shown that the proposed method can calculate the probability distribution

accurately with much less computation effort.

4.3.1 Algorithm:

Step1: Read the given Probabilistic load data and network data

Step2: Setthe order of moménts and chmulants

Step 3: check the type of distri_butiori“(;f load data

Step 4: if the distribution of load is normal go to step 6 else step5.

Step 5: Calculate the moments of injected active power as well as reactive power according
to the equation (3.1). _

Step 6: Compute the cumulants of injected power according to the relationship between
moments and cumulants of equation (3.7) or (3.9 & 3.10).

Step 7: Compute the moments of resistance and reactance from the given network
probabilistic data based on the equation (3.1)

Step 8: Calculate the cumulants of line flow from thevfollqwing equation

For the i % line flow.
Plinéi = hil p+ hi2 | +h Pn | e (4.23)
Qlinei = hﬂQ1 + hi2Q2 R SR +hy Oy e (4.24)

Where
h;;j represents the sensitivity coefficient
h;j =1ifj*load is in the path to the it line else 0

For the cumulants (y) related with it line flow
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7 =Vh"y1 +hy2 +..‘....v..,..+hl"7" - - o (425)
Wllere V=1,2.un
Step 9: Compute the central moments of each line according to the relation ship between
' 'central moments and cumulants expressed using equation (3.14) or (3.17 &3.18).
Step 10: Calculate the Gram-Charlier expansion coefficients using equation (3.38)

Step 11: the Probability Distribution Funttlon of line flow can be obtained using equation
(338) .

Step 12: Compute resultant moments of active and reactive voltage drops using the .

following equations. » |
@y (AVi) active = oy (Puday(Ry) : . o (426)
oy (AVik)reactive = #(Qudaty(Xix) | e (4.27)
Where | '

a denotes 'moments about origin

Step 13: Calculate cumulants of voltage drop from their moments using equation (3 6)

Step 14: Compute the voltage drop cumulants using the followmg equation
7,',(4 k)“7v§ Tk ik)"”’ @, Ry o | o (4:28)
Step 15: Compute the voltage cumulants at each node. .
7( P =7,00)-1,0%) S 29
Where ‘
;/v (Vl) = Voltage cumulants at substation node |
yv' (AVk) = Voltage drop cumulants

Step 16: Calculate central moments of voltage at each node based on equaﬁon (3.14) or |

(3.17 &3.18).

Step 17: Compute the Gram-Charlier coefﬁc1ents using equation (3. 36)



Step 18: Compute the Probability D__istributio_n Function of voltage using equation (3.38).
4L4Probabilistic Load Flow using Complex Random Variable Analysis- |
S.Patra and RB.Misra [20] first proposed the probablhst:lc load flow using.
" Method of moments for power flow analysis of transmlssmn networks Later Tae-Kyunklm :
[2 1] applied this method for securlty assessment of bus voltages in transmission network.

, iln this thesis the probabilistic load flow using Complex random Varxable
ahalysis for power flow solution of distribﬁtion system haé been carried out. In this smdy‘,‘
the load outages and network outages has also béen considered. _The load ﬂow algbritl\im
chosen is essentially a Z Loop load flow algorithin [24]. This method has been tested with
13 and 30 bus test system. h | ' |
4.4.1 Slack Bus Representatlon At the slack bus the voltage remains constant. If the
slack bus i 1,$ usually assumed to be bus number o.ne, this constancy of bus voltage may be

probabilistically simulated by a PDF as depicted in Fig. 4.7.

V)

PR ™

!wﬁ-—ﬁ-

Figure 4.7: PDF of Slack bus voltage
The moments of this CRV V; ,are's'imply given by - .

W)=V t=12e.. | e (4:30)
The cumulants are given by | ‘ |
r=a()=%h _ ' e (4.31)
(V1) =0 t>2 . S o (432)
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The slack bus is, therefore, assumed capable, by means of thé generating unit connected to
it, to maintain a constant voltage for all possible contingencies of the'generating units,
distribution lines as well as load variation and uncertainty. This clearly implies that a
100% reliable generating unit is appropriately fixed so as to provide the required active
and vreactive power§ for all con_tingéncies.
4.4.2 PQ-Bus Representation: At a PQ; bus the active and reactive powers are known
since the bus powers are given by the difference between the generated bowers and the
demand as -
S=5;-5p o (4.33)
‘This assumes that the PDF of generated power as well as the PDF of demand are known.
There are clearly three cases to consider |
(i) PQ-bus with no generation such that §= Sp, (ii) PQ-bus with no demand such that
S=35¢ and (iii) PQ-bus with both generation and demand such that § = §; — S |
In the first .case, the PDF of demand is assumed to be expressible in terms of
active and reactive i)owers. In this thesis two types of loads have been considered.
a. Deterministic load: | ‘ _ -
. The load is represented by Sp = P, + jQp with known probability py = 1.0
and may be depicted as in Fig.4.8.

Py

f(??ﬂ i

Sp = PpHQp
Sy —

Figuré: 4.8 PDF of available Load or demand
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b. Load with Uncertainty:
The simplest way to simulate this is by means of The PDF as shown in-Fig.4.9.

I S )
1 3 .

|

a1 *d2 Sa3 334 35

8y

Figure 4.9: PDF of load with Uncertainty
The moments and cumulants may be evaluated, therefore, from these PDFs in a straight
forward manner. |
L In the second casé, the PDF of available capacity is assumed known. A typical
PDF for a unit may be depicted as shown in Fig. 4.10. The total PDF of available capacity at
a bus may be obtained convolving the individual PDFs of the units connected at that bus.

The implicit assumption that is made is that outages of these units occur independently.

Py(X,)

XA= C

Xa

Figure: 4.10 PDF of available capacity of a generating unit
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In the third case, the PDF of generation must be convolved with PDF of
demand (negative demand Sp) to obtain the PDF of bus power. Since these CRVs are
| assumed independent. That cumulants can be added. The procedure can be put into the
-following algorithm.
4.4.2.1 Algorithm:
1. Obtain the moments of S; and —Sp
2. Obtain the cumulants using the relation between moments and cumulants using
equation (3.30) -
3. Add the cumulants of S; and —S,
4, Obtain the momenfs of the_sum uléing the reiation between cumulants and moments
using equation (3.32) | |
~ 4.4.3 Formulation of Stochastic equations:
Assume that voltage (V) and power (S) are independeht complex random variables
with known probability density functions. The moments of arbitrary i-th bus curref\ts are

calculated by the complex power equation
v*=s* . . (43%)
* * .
at(li) =at(S1. )/at(Vi ) - - o (4.35)
Where |
t: the t-th order moments,
i: thei-th bus

a = moments about origin

Branch current stochastic equation

yt(Ji): —yt(Ii _p*7,(Zcurrents eminating from (i-1) thnode) ... (4.36)
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Figure 4.11: Flow chart
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Voltage equation in the stochastic form ;
7, 0)=1,0;_)=7,(Z) o (437)

‘The cumulants of ¥,(ZyJ;) can be calculated using transformation bétween the moments
and cumulants. » |
a,(Z) = a,(Z)a,(J) : . (4.38)
Moments of Voltage Converge if | '
(VD) - a(Ve)| <e . S, (4.39)
Where ‘ ) '
a (V*) = moment of k! iteration of voltage
a (VD) = moment of (k — 1)th iteration of voltage
€ =1x1073
The flow chart of Probabilistic Load Flow using Compie,x Random Variable
analysis is given in Fig 4.11. N

* In the next chapter the simulation results are presented
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Chapter5

Probabilistic Load Flow using Laplace‘ Transform “Probabilistic load flow .

computatlon using Gram-Charlier have been apphed ona test system as shown in Fig 3.1,
and the data are given in table B1 an BZ in appendix B. Out of the total number of 30 buses,
20 buses are load buses. The root node has a specified voltage of 1.05p.u. Two types of load 'I
prdbability distribution function (normal and discrete) with four different cases have been
considered. The results have been compared with Monte Carlo Simulation and

deterministic load flow methods.

15
Figure 5. 1 Radial distribution network

51



N

In deterministic load flow the loads are deterministic i.e. loads are with out
uncertainty. The power losses and voltage drops have been considered. In Monte Carlo
Simulation method the loads are probabilistic instead of deterministic.

To select appropriate number of simulatipns for Monte Carlo Simulation
method the bus voltages, the bus active power and the bus reactive power variations with
number of simulations were plotted (FIG. 5.2) and compared with base case load flow
results. The Mont_é Carlo Method converges after 800 simulations for voltages, 1400
simulations for bus active power and 1400 simulations for bus reactive power. Hence 1400

simulations are used in Monte Carlo Simulations.

E s = | [ onite
OETE et d@terininistic ||

9. L N — L L e b —
o 200, 4007 00800 D00 w208 4400
no-oef simulatidns

Figure5.2: Variation of bus voltage, bus active power, bus reactive power with no of

“simulations
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5.1.1 Case (1): When all Bus loads are mdependent and normal:

Load flow using Monte Carlo Techmque probablhstlc usmg L.T techmque and

PLF using Gram-Charlier have been carried out for the case when all loads are

independent and have normal distribution. The results for bus voltage, bus active powers

and bus reactive powers are given below.

Table 5.1: Comparison of bus ';/_oltage PDF

DETERMINISTIC {MONTE-CARLO PROBABILISTIC { GRAM-CHARLIER
USING (L.T)

Bus no | base(V) | mean(V) | std(V) { mean(V) | Std(V) [ mean(V)| Std(V)
1 1.05 1.05 0 1.05 0 1.05 . 0
2 10.9265 -] 0.9264 |0.0025 [0.9372 |0.0019 -0.9372 ' |0.0019
3 0.9252 {09251 |0.0026 |0.936 0.0019 [0.936 |0.0019"

4 - 109243 109242 [0.0026 {0.9352 |0.0019 |0.9352 |0.0019
5 109241 |0.924 |0.0026 |0.935 0.0019 | 0.935 0.0019
6 |0.9187 |0.9186 |[0.0027 |0.93 0.002 |0.93 10.002
7 0.9181 {09181 |0.0027 {0.9295 {0.002 |0.9295 |0.002
8 [0.9181 {0.9181 [0.0027 |0.9295 {0.002 |0.9295 |0.002

9 0.9172 109172 10.0027 |0.9287 |0.002 |0.9287 . |0.002" -
10 09166 {09165 |0.0027 |0.9282 {0.0021 {0.9282 |0.0021
1110916 (09159 |0.0027 |0.9276 |0.0021 |0.9276 |0.0021
12 {09157 {0.9156 |0.0027 |0.9273 - | 0.0021 |{0.9273 |0.0021
13 10.9161 |0.916 0.0027 "1 0.9277 |0.0021 {0.9277 |0.0021

14 {09159 |0.9158 |0.0027 |0.9275 |[0.0021 |0.9275 {0.0021
15 10.9154 10.9154 .10.0028 |0.9271 ]0.0021 |} 0.9271 | 0.0021
16 ~10.9154 10.9153 {0.0028..[0.9271 10.0021 |0.9271 |0.0021
17 10.9147 109146 - | 0.0028: | 0.9264 | 0.0021 | 0.9264 | 0.0021
18 105151 10.9151 [0.0028 |0.9268 . |0.0021 |0.9268 | 0.0021
19 10923 10923 10.0026 10.934  {0.0019 {0.934 [0.0019

20 10.9228 |0.9228 {0.0026 |0.9339 |0.0019 0.9339 |0.0019
21 109219 [0.9219 [0.0026 |0.933 0.002 = {0.933 0.002
22 109214 0.9213 0.0026 |0.9325 {0.002 |0.9325 |0.002
23 109213 109212 10.0027 10.9324 |0.002" | 0.9324 | 0.002
24 10.9208 {0.9207 }0.0027 {0.932 |{0.002 |0.932 0.002
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25 [0.9206 | 0.9205 |0.0027 ] 0.9318 ]0.002 |0.9318 ]| 0.002
26 |0.9201 |092  ]0.0027 |0.9313 ]0.002 |0.9313 | 0.002
27 (092 [0.9199 [0.0027 [0.9313 [0.002 |0.9313 |0.002
28 [0.9202 [0.9201 |[0.0027 [0.9314 |0.002 |0.9314 | 0.002
20 [0.5191 [0.919 [0.0027 [0.9304 |0.002 |0.9304 |0.002
30 [0.9199 [0.9198 [0.0027 [0.9311 [0.002 [0.9311 |0.002

From the table (5.1) it can be observed that Monte Carlo Simulatibn resﬁlts are
closer to the results obtained from determiﬁistic load flow method. The probabilistic using
L.T method and Gram-Charlier results are exactly matchih'g. The probabilistic load flow
using L.T method; Gram-Charlier results are also in good agreement with Monte Carlo
simulation. The maximum error in both cases is 1.2737%.

This difference in bus voltages in both cases due to
(a) Assuming 1.0p.u voltage at all busses.

(b) Using approximate expression for calculating the line \;oltage drop.

Table 5.2: Comparisonvbf bus active power PDF

DETERMINISTIC [MONTE-CARLO PROBABILISTIC | GRAM-CHARLIER

USING (L.T)
Busno | P mean(P) | std(P) | mean(P) | std(P) | mean(P) | std(P)
1 3.5849 | 3.5866 |0.0871 |3.2 0.0716 |3.2 0.0716 |
3.2271 13.2282 {0.0723 |32 0.0716 |3.2 0.0716
3.223 | 3.2241 |0.0721 |32 0.0716 |3.2 ~ |0.0716

0.16 |0.1601 |0.0157 |0.16 | 0.016 |0.16 |0.016
0.16 |0.16 |00163 |0.16 |0.016 |0.16 |0.016
1.6044 | 1.6055 |0.05 |16  |0.0506 | 1.6 | 0.0506
0.16 |0.1604 |0.016 |0.16 |0016 |0.16 |0.016
0.16 |0.1597 |0.0161 |0.16 [0.016 [0.16 |0.016
9 [016 |0.1605 |0016 |0.16 |0016 |0.16 |0.016
10 | 11215 |1.1221 |0.042 |1.12  |0.0423 |1.12 |0.0423
11|06 |0.1601 [0.0161 |0.16 | 0.016 [0.16 |0.016
12 |0.16 |0.1602 |0.0159 |0.16 | 0.016 |0.16  |0.016
13 |0.16 |0.1601 |0.0161 |0.16 |0.016 |0.16 |0.016

X Q|Nf || Wid
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0.0318

0032

70.032

14 10.6406 | 0.6408 - To64 064
15 0.6 01597 |0.0163 |016 [0016 |0.16 |0.016
16 |0.16. |0.1601 |0.0159 [0.16 [0.016 [0.16 |0.016
17 1016 |0.1601 |0.0159 [0.16 |0016 [0.16 | 0.016
18 | 0.6 | 0.1603 0016 |016 [0.016 [0.16 ~|0.016
19 | 12833 | 12831 |0.046 |128 00453 |128  |0.0453
20 |0.16 |0.1603 |0.0159 |016 _ [0.016 |0.16 |0.016
“21 |06 |016 |00162 [016 _[0.016 [0.16 |0.016
"22 | 09614 |09609 |0.0396 |096  |0.0392 [0.96  [0.0392
23 0.16 |0.1599 [0.0159 016 0016 [0.16 [0.016
24 |0.16 [0.1598 |0.0159 [0.16 |0.016 [0.16 _|0.016
25 | 0.6407 |0.6405 |0.0321 |0.64  |0.032 [0.64 ]0.032
26 |0.16 |0.1597 |00161 [0.16 |0016 [0.16  [0.016
27 |0.16 |0.16 |00163 |0.16 |0.016 [0.16 |0.016
28 |0.3203 03204 |0.0228 [032 - |0.0226 [0.32  |0.0226
29 0.6 ]0.1601..]0.0161 |0.16 ]0.016 |0.16 |0.016
30 [0.16 [0.16 0016 [0.16 (0016 [0.16 [0.016 |

Table 5:3: Comparison of bus reactive power PDF

PROBABILISTIC | GRAM-CHARLIER |

DETERMINISTIC |[MONTE-CARLO
o | | USING (L.T)
Bus no Q ‘
mean(Q) | std(Q) | mean(Q) | std(Q) | mean(Q) | std(Q)
1 1.966 | 1.9672 |0.0431 | 1.6 0.0358 | 1.6 10.0358 -
2 | 16127 |1.6133 |0.0362 [ 1.6 0.0358 | 1.6 0.0358
3 |1.6097 [ 1.6103 |0.0362 | 1.6 0.0358 | 1.6 0.0358
4 [0.08 [o0.0801 [0.008 [0.08 0.008 [0.08 |0.008
5 (008 008 [0.0078 [0.08 0.008 [0.08  |0.008
6 (0802 [0.8024 [0.0256 [08 ~ [0.0253 |08  [0.0253
-7 .10.08 0.0799 | 0.0079 | 0.08 10.008 10.08 0.008
8 (008 [0.0799 [0.008 [0.08 0.008 [0.08  0.008
9 0.08 0.08 0.0081 | 0.08 0.008 10.08 0.008
10 0.5604 |0.5611 |0.0215 | 0.56. 0.0212 {0.56 0.0212
11 [0.08 |0.0801 |0.008 |0.08 0.008 [0.08 0.008
12 {008 [0.0801 |0.0081 [0.08 0.008 10.08 0.008
13 008 [0.0801 [0.0081 {0.08 0.008 {0.08 0.008
14 0.3201 | 0.3203 | 0.0161 | 0.32 0.016 0.32_' - 10.016
15 0.08 | 0.0801 |} 0.0079 |0.08 0.008 10.08 - 10.008
16 [0.08 [0.0799 [0.008 [0.08 0.008 |0.08 0.008
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distribution function

17 ]0.08 ]0.0801 |0.0081 |0.08 ]0.008 |0.08 | 0.008
18 |0.08 |0.0802 |0.0082 |0.08 |0.008 |0.08 |0.008
19 |0.6415 [0.6416 |0.0226 |0.64 | 0.0226 |0.64 | 0.0226.
20 |0.08 |0.0801 |0.0081 |0.08 |0.008 ]0.08 |0.008
21 |0.08 |0.0799 |0.0079 [008 |0.008 |0.08 |0.008
22 | 0.4805 | 0.4806 | 0.0194 |048  |0.0196 |0.48 | 0.0196
23 |0.08 [0.0799 [0.008 |008 |0.008 |0.08 |0.008
24 |0.08 |0.0802 | 00081 |0.08 |0.008 |0.08 |0.008
25 03201 |03202 |0.016 |032 | 0.016 |032  |0.016
26 | 0.08 |0.08 |0.0081 |0.08 |0.008 |0.08 |0.008
27 |0.08 |0.08 | 0.0082 |0.08 |0.008 |0.08 |0.008
28 |0.16 |0.1601 |0.0114 |0.16  |0.0113 |0.16 | 0.0113
29 |0.08 |0.08 |0.008 |008 |0.008 |0.08 |0.008
30 |0.08 |0.0801 |0.008 |008 |0.008 |0.08 |0.008

From the tables (5.2) and (5.3) comparing the bus active and reactive powers

A good agreement in results between the four methods can be seen. Differerices can be
observed in the bus powers at the slack bus. The difference is of the order of 10.77%.

'The difference in the slack bus power is due to the assumption of neglecting
power losses in the lines, in this case active power loss is 0.3849pu and reactive power loss

is 0.366pu. These losses are nearly equal to the difference in the value of P and Q at slack

bus. .
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Figure 5.3: Probability distribution function of the Voltage at node 28
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Figure 5.5: Probability distribution function
of Reactive power flow in element 25-28 ,

In figures 5.3, 5.4 and 5.5 are shown Probability distribution function(PDF) of
the voltage at node 28, the real and reactive power ﬂow in element 25-28, for the case
when all input variables independent and normal with Monte Carlo technique,

| Probabilistic technique using L.T and Gram-Charlier respectively. As it can be seen,-these
functions have the similar “bell” shape of the normalvprobability distribution functions.
This is what should be expectéd for all the resultant variables in this case, since all inputs

are normal. The PDF of above techniques compare well with each other.
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The time taken by the probabilistic load flow computation using Gram—Charlier
method is 1.9375sec, while the Monte Carlo Simulation requires 15sec (1400simulations).
The results obtained by Monte Carlo Simulatidn are very accurate while the' probabilistic
load flow Computation using Gram-Charlier results are slightly less accurate. But the
maximum error is 1- 2% and is with in acceptable limits. The results are of aéceptable
acéuracy. The slight inaccuracy is attributed to the simplifying assumptions. How evef, |
these assumptions result in substantial simplification in the.modeling. |
5.1.2 Case (ii): At least one load has a discrete distribution function:

In order to demonstrate the impact on the resultaﬁt prdbability distribution
function of the shape of the input probability distribution functions, for the load in 30 has
been assumed to be a discrete distribution as shown in Fig 5.6, in percentage of the mean

value. All the other inputs are independent and normal.

discret distribution function of load
04 r ——— ' r——— o

¥

03¢
02}
n.1{-} | T ) | T

0 3
0 02 04 06 08 1 12
load!

probability

Figure 5.6: Probability mass function for the load at 30th bus

Load flow using probabilistic methdd using L.T and Gram-Charlier have been
carried out and the results have been compared with Monte Carlo Simulation, Probabilistic
load flow using Laplace transform and deterministic load flow, for the case when at least

one of the load has been considered as a discrete distribution function and remain loads
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' are independeht and normal. The results for bus voltage, bus active powers are given

below.

Table 5.4: Comparison of Bus Voltages

"DETERMINISTIC [MONTE-CARLO | PROBABILISTIC | GRAM-CHARLIER
. USING L.T

Bus no | base(V) { mean(V) | std(V) | mean(V) { std(V) | mean(V) | std(V)
1 | 1.05 1.05 . 0 1.05 0 1.05 0
2 109265 | 09263 | 0.0038 | 0.9372 | 0.0024 | 0.9372 | 0.0024
3 [09252 ] 09251 00038 [ 0936 | 0.0025 [ 0.936 | 0.0025
4 109243 [ 0.9241 ]0.0038 | 0.9352 | 0.0025 | 0.9352 | 0.0025
5 | 0.9241 ] 09239 | 0.0038 | 0.935 | 0.0025 | 0.935 | 0.0025
6 | 09187 | 09185 [0.0039 | 093 | 00026 | 093 | 0.0026
7 109181 | 0.918.]0.0039 | 0.9295 | 0.0026 | 0.9295 | 0.0026
8 | 09181 ] 0918 |0.0039 | 0.9295 | 0.0026 | 0.9295 | 0.0026
9 109172 | 09171 [ 0.0039 | 0.9287 | 0.0026 | 0.9287 | 0.0026
10 | 0.9166 | 0.9165 | 0.0039 | 0.9282 | 0.0026 | 0.9282 | 0.0026
11 | 0916 | 09159 | 0.004 | 0.9276 | 0.0026 | 0.9276 | 0.0026
12 [ 09157 | 09156 | 0.004 | 0.9273 | 0.0026 | 0.9273 | 0.0026
13109161 | 0.916 | 0.004 | 0.9277 | 0.0026-| 0.9277 | 0.0026
14 09159 | 09158 | 0.004 | 0.9275 | 0.0026 | 0.9275 | 0.0026
15 ] 09154 | 09153 | 0.004 | 0.9271 | 0.0026 | 0.9271 | 0.0026
16 [ 09154 ] 09153 | 0.004 | 0.9271 |.0.0026 | 0.9271 | 0.0026
17 ] 09147 | 09146 | 0.004 | 0.9264 | 0.0026 | 0.9264 | 0.0026
18 109151 | 0915 | 0.004 | 0.9268 | 0.0026 | 0.9268 | 0.0026
19 | 0923 | 0.9229 | 0.0039 | 0.934 [ 0.0026 | 0.934 [ 0.0026
20 ] 09228 | 0.9227 | 0.0039 | 0.9338 | 0.0026 | 0.9338 | 0.0026
21 | 09219 | 09218 | 0.0039 | 0.933 [ 0.0026 | 0.933 | 0.0026
22109214 | 09213 | 0.004 | 0.9325 | 0.0026 | 0.9325 | 0.0026
23 7109213 | 0.9211 | 0.004 | 0.9324 [ 0.0026 | 0.9324 [ 0.0026
24 109208 | 0.9206. | 0.004 | 0.932 | 0.0026 | 0.932 | 0.0026
25 | 0.9206 | 0.9205 | 0.0041 | 0.9318 | 0.0027 | 0.9318 | 0.0027
26 109201 | 09199 | 0.0041 | 0.9313 | 0.0027 | 0.9313 | 0.0027
27 | 092 | 09199 [0.0041 | 09313 [0.0027 [ 0.9313 | 0.0027
28 109202 | 0.92 |0.0041 | 0.9314 | 0.0027 | 0.9314 | 0.0027
29 | 0.9191 | 0.9189 | 0.0042 | 0.9304 | 0.0027 | 0.9304 | 0.0027
30 ] 09199 | 09197 | 0.0042 [ 0.9311 | 0.0028 | 0.9311 | 0.0028
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Table 5.5: Comparison of Bus active power flow

DETERMINISTIC | MONTE CARLO { PROBABILISTIC | GRAM-CHARLIER
- Using (L.T). |

bus no P mean(P) | std(P) | mean(P) | std(P) | mean(P) std@
1 3.5849 | 3.5895 | 0.1167 | 3.2002 | 0.0931 3.2002 0.0931
2 32271 | 3.2305 | 0.0951 | 3.2002 | 0.0931 3.2002 | 0.0931
3 3.223 | 3.2264 | 0.0948 | 3.2002 0.0931 3.2002 0.0931
4 0.16 | 0.1597 | 0.0159 0.16 0.016 | 0.16 0.016
5 0.16 01599 | 0.016 | 0.16 0016. | 0.16 0.016
6 1.6044 | 1.6057 | 0.051 1.6 00506 | 1.6 0.0506
7 . 0.16 0.1602 | 0.016 016 | 0.016 0.16 0.016
8 0.16 0.1604 | 0.0161 | 016 | 0016 | 0.16 | 0.016
9 0.16 0.1602 | 0.0161° | 0.16 | 0.016 0.16 0.016
10 11215 | 1.122 | 0.0426 1.12 0.0423 |  1.12 0.0423
11 0.16 | 0.1599 | 0.0161 0.16 | 0.016 016 | 0.016
12 016 | 0.1603 | 0.0159 | 0.16 | 0.016 0.16 0.016
13 0.16 ‘| 0.1601 | 0.016 0.16 0.016 . 0.16 0.016
14 | 0.6406 | 0.6408 | 0.0322 0.64 0.032 0.64 0.032
15 0.16 01603 | 0.0158 | 016 | 0.016 0.16 0.016
- 16 0.16 0.1599 | 0.016 0.16 | 0.016 ~ 0.16 0.016
17 0.16 0.1602 | 0.016 0.16 0016 | 0.6 0.016
18 | 0.16 0.1598 ‘| 0.0159 0.16 0.016 0.16 0.016
19 1.2833 | 1.2857 | 0.0749 | 1.2802 | 0.0748 1.2802 | 0.0748
20 0.16 0.16 | 0.0157 0.16 0.016 0.16 0.016
21 - 0.16 0.1602 | 0.0159 | 0.16 | 0.016 0.16 0.016
22 1 0.9614 | 09636 | 0.0714 | 0.9602 | 0.0713 | . 0.9602 0.0713
23 0.16 0.1602 | 0.0161 0.16 0016 | 0.16 ~ 0.016
24 016 |. 0.16 | 0.0159 0.16 0.016 0.16 0.016
25 0.6407 | 0.6427 | 0.0677 | 0.6402 | 0.0676 0.6402 0.0676
26 0.16 0.1598 | 0.0159 0.16 0.016 0.16 0.016
27 0.16 | 0.1602 | 0.0159 0.16 0.016 - 0.16 ' 0.016
28 | 03203 | 0.3223 | 0.0635 | 0.3202 | 0.0637 0.3202 0.0637
29 0.16 0.1604 | 0.0156 0.16 0.016 0.16 0.016
30 0.16 0.1616 | 0.0817. | 0.1602 | 0.0617 0.1602 0.0617
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Table 5.6: Comparison of bus Reactive power Flow

DETERMINISTIC | MONTE CARLO | PROBABILISTIC | GRAM-CHARLIER
' ' : Using (L.T) . ‘
bus no Q mean(Q) | std(Q) | mean(Q) | std(Q) | mean(Q) std(Q)
1 1966 | 1.9674 | 0.0631 | 1.6001 | 0.0465 | 1.6001.{ 0.0465
2 1.6127 | 1.6129 | 0.0469 | 1.6001 | 0.0465 | 1.6001 0.0465
3 1.6097 | 1.6099 | 0.0468 | 1.6001 | 0.0465 | 1.6001 0.0465
4 0.08 0.0801 | 0.0081 0.08 { 0.008 0.08 0.008
5 0.08 0.08 | 0.0079 | 0.08 0.008 0.08 _0.008
6 0.802 | .0.8015 | 0.0251 0.8 0.0253 0.8 0.0253
7 - 0.08 0.08 0.008 0.08 0.008 0.08 0.008
8- 0.08 -0.0799 0.008 0.08 | 0.008 | 0.08 0.008
9 ~0.08 0.0799 | 0.0081 ] 0.08 0.008 0.08 0.008
10 0.5604 | 0.5602 | 0.021 0.56 0.0212 0.56 0.0212
11 0.08 0.0799 0.008 0.08 0.008 0.08 0.008
12 0.08 0.0799 | 0.008 0.08 0.008 0.08 | 0.008
13 0.08 0.08 | 0.0079 0.08 0.008 | 0.08 0.008
14 0.3201 0.32 0.0158 0.32 0.016 0.32 0.016
15 0.08 | 0.0803 0.008 0.08 0.008 0.08 0.008
- 16 0.08 | 0.0799 | 0.0079 | 0.08 0.008 0.08 . 0.008
17 0.08 0.0799 0.0079 0.08 { .0.008 008 | 0.008
18 0.08 0.0798 | 0.0081 0.08 | 0.008 0.08 0.008
19 0.6415 | 0.6421 | 0.0376 | 0.6401 | 0.0374 | 0.6401 0.0374
20 0.08 0.08 0.008 0.08 0.008 0.08 0.008 -
21 0.08 0.0798 - | 0.0081 0.08 0.008 _0.08 0.008
22 0.4805 0.4812 | 0.0358 0.4801 0.0356 | 0.4801 0.0356
23 0.08 0.08 0.008 0.08 0.008 0.08 0.008
24 0.08 0.0799 | 0.0081 | . 0.08 0.008 0.08 0.008
25 0.3201 0.3208 0.034 | 0.3201 0.0338 | 0.3201 0.0338
26 0.08 0.0799 | 0.008 0.08 0.008 0.08 0.008
27 0.08 0.08 0.0081 0.08 0.008 0.08 0.008
28 0.16 0.1608 0.032 0.1601 - [ 0.0318 | 0.1601 0.0318
29 0.08 0.08 0.008" 0.08 0.008 0.08 ~ 0.008
30 0.08 0.0808 | 0.0309 | 0.0801 | 0.0308 | 0.0801 0.0308
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distribution function

The shape of the voltage probability distribution function remains the bell

~shaped and is shown in Fig 5.7, but the impact' on the acﬁve and reactive power flow
probability distribution function is as shown in Fig.5.8 and 5.9. The probability distribution
functions (PDF) becomes non-normal. The difference in the shape of PDF in Gram-Charlier
method can. be atfribtited to the fact that Gram-Charlier series is based on normal

probability function, and the resultant function in this case is multi model.
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Figure 5.7: Voltage PDF at 28 th bus
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Figure 5.8: Active power flow PDF 25-28

62.



B o T B
- T e 2 2-5 T — “ T

25
S ol £ 2 ]
g ; :
S 15} a1 :
5 § 1
T 1t 1 i
E 5 ;
'-E ) O | I T ¥ 1 L I ) -
L : — 0 . W5 00 Q1 0% 0N GF O 02 2 024 0%
= 005 01 05 02 0% o ) ‘
tective power fiow (pu) teecive poner fow ) |
Monte-Carlo Probabilistic [L.T} C Gram-Charlier

Figure 5.9: Active power flow PDF 25-28
-But the expected'values..ahd the range of randdm variables are predicted
accurately by Gram-Charlier.
5.1.3 Case [m) When All Bus loads have a dlscrete distribution functlon
| To stimulate a practical system the IEEE Discrete hourly load data has been
considered. Fr“(‘)m‘- these data, the probabilistic distribution of load at each bus _h_as been
calcul-'éted. The Probabilistic method using Laplace transform and Probabilistic using
Gram Charlier has been carried out when ‘the case of all bus loads have discrete

: dlstrlbutlon functnon asshowni m Fig 5.10, in percentage of the mean value.
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Flgure 5.10: IEEE Probabilistic discrete distribution of load
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The bus powers and voltages are given below.

Table 5.7: Comparison of Bus voltages

“DETERMINISTIC

GRAM-CHARLIER

MONTE-CARLO | PROBABILISTIC
USING (L.T)
Bus | ,
no base(V) | mean(V) | std(V) | mean(V) | std(V) | mean(V) | std(V)
1 105 | 105 | 0 | 105 0 1.05 0
2 | 09265 | 0.9264 | 0.0073 | 0.9372 | 0.0041 | 0.9372 | 0.0041
3 | 0.9252 | 0.9251 | 0.0073 | 0.936 | 0.0041 | 0.936 | 0.0041
4 ] 09243 | 0.9242 | 0.0074 | 0.9352 | 0.0041 | 0.9352 | 0.0041
5 | 09241 | 0924 | 0.0074 | 0.935 | 00042 | 0.935 | 0.0042
6 | 09187 | 0.9186 | 0.0077 | 093 | 0.0044 | 093 | 0.0044
7- | 09181 | 09181 | 0.0077 | 0.9295 ‘ 0.0044 | 0.9295 | 0.0044
8 | 0.9181 | 0.9181 | 0.0077 | 0.9295 | 0.0044 | 0.9295 | 0.0044
9 0.9172 | 0.9172 | 0.0078 | 0.9287 | 0.0044 | 0.9287 | 0.0044
10- 1 0.9166 | 0.9166 | 0.0078 | 0.9282 | 0.0044 | 0.9282 | 0.0044
11 | 0916 | 0916 | 0.0078 | 0.9276 | 0.0045 | 0.9276 | 0.0045
12 | 0.9157 | 0.9156 | 0.0079 | 0.9273 | 0.0045 | 0.9273 | 0.0045
13 | 09161 | 0.9161 | 0.0078 | 0.9277 | 0.0045 | 0.9277 | 0.0045
14 | 0.9159 | 0.9158 | 0.0079 | 0.9275 | 0.0045 | 0.9275 | 0.0045
15 0.9154 | 0.9154 - 0.0079 | 0.9271 | 0.0045 | 0.9271 | 0.0045
16 0.9154 | 0.9154 | 0.0079 | 0.9271 | 0.0045 | 0.9271 | 0.0045
17 | 0.9147 | 0.9147 0.0079 | 0.9264 | 0.0045 | 0.9264 0.0045
18 0.9151 }{.0.9151 | 0.0079 | 0.9268 | 0.0045 | 0.9268 | 0.0045
19 0.923 0.923 0.0075 0.934 0.0042 | 0.934 0.0042
20 0.9228 | 0.9228 | 0.0075 | 0.9339 | 0.0042 | 0.9339 | 0.0042
21 0.9219 0.921 9 | 0.0075 0.933 | 0.0042 | 0.933 | 0.0042
22 | 0.9214 | 0.9214 | 0.0076 | 0.9325 | 0.0042 | 0.9325 | 0.0042
- 23 0.9213 | 0.9212 | 0.0076 | 0.9324 | 0.0042 | 0.9324 | 0.0042
24 | 0.9208 | 0.9208 | 0.0076 | 0.932 | 0.0043 | 0.932 | 0.0043
25 | 0.9206 | 0.9206 | 0.0076 | 0.9318 | 0.0043 | 0.9318 | 0.0043
26 0.9201 | 0.92 0.0076 | 0.9313 | 0.0043 | 0.9313 | 0.0043
27 | 092 | 092 | 0.0076 | 0.9313 | 0.0043 | 0.9313 | 0.0043
28 | 0.9202 | 0.9201 | 0.0076 | 0.9314 | 0.0043 | 0.9314 | 0.0043
29 0.9191 0.919 | 0.0077 | 0.9304 | 0.0043 | 0.9304 | 0.0043
30 0.9199 | 0.9198 | 0.0076 | 0.9311 { 0.0043 { 0.9311 | 0.0043
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Table 5.8: Comparison of Bus active power

DETERMINISTIC [MONTE-CARLO PROBABILISTIC |GRAM-CHARLIER
USING (L.T)

Busno | P _{ mean(P) | std(P) | mean(P) | std(P) | mean(P) | std(P)
1 | 3.5849 | 3.5855 | 0.1975 3.1998 | 0.1543 | 3.1998 | 0.1543
2 |3.2271 | 3.2264 | 0.1571 | 3.1998 | 0.1543 | 3.1998 | 0.1543
3 3.223 | 3.2223 | 0.1567 [ 3.1998 | 0.1543 | 3.1998 | 0.1543
4 0.16 | 0.1598 | 00345 [ 0.16 |0.0345 | 0.16 | 0.0345
5 0.16 | 0.1593 | 00348 [ 0.16 | 0.0345 | 0.16 | 0.0345
6 1.6044 | 1.6055 | 0.1097 | 1.5999 | 0.1091 | 1.5999 | 0.109T
7 0.16 | 0.1595.| 0.0347 | 0.16 | 0.0345| 0.16 | 0.0345
8 | 016 | 0.1599 |0.0342 [ 0.16 |0.0345 | 0.16 | 0.0345
9 | 016 | 0.1602 | 0.0348 | 0.16 | 0.0345 | 0.16 | 0.0345
10 | 11215 | 1.1229 | 0.0916 | 1.1199 | 0.0913 | 1.1199 | 0.0913

11 0.16 | 0.1603 | 0.0346 | 0.16 | 0.0345 | 0.16 | 0.0345
12 0.16 | 0.1601 | 0.0344 [ 0.16 [0.0345 | 0.16 | 0.0345
13 0.16 | 0.1603 | 0.035 | 0.16 | 0.0345| 0.16 | 0.0345.
14 | 0.6406 | 0.6412 | 0.0693 | 0.64 | 0.069 | 0.64 | 0.069
15 | 0.16 | 0.1615 [ 0.0347 | 0.16 | 0.0345 | 0.16 | 0.0345
16 0.16 | 0.1596 | 0.0344 0.16 0.0345 0.16 0.0345
17 0.16 0.1597 | 0.0346 0.16 0.0345 0.16 0.0345
18 | 016 |0.1597 [ 0.0348 | 0.16- | 0.0345 | 0.16 | 0.0345
19 1.2833 | 1.2822 | 0.0989 | 1.2799 | 0.0976 | 1.2799 | 0.0976
20 0.16 | 0.1603 | 0.0343 | 0.16 [ 0.0345 | 0.16 | 0.0345
21 0.16 | 0.1601 | 0.0345| 0.16 | 0.0345 | 0.16 | 0.0345
22 109614 | 0.9598 | 0.0855 | 0.9599 | 0.0845 | 0.9599 | 0.0845
23 | 0.16 | 0.1598 | 0.035 | 0.16 | 0.0345 | 0.16 | 0.0345
24 0.16 | 0.1591 | 0.0348 | 0.16 | 0.0345 | 0.16 | 0.0345
25 ] 0.6407 | 0.6402 | 0.0685 [ 0.64 | 0060 | 0.64 | 0.069
26 0.16 | 0.1601 | 0.0347 | 0.16 | 0.0345 | 0.16 | 0.0345
27 | 0.16 | 0.1601 | 0.0343 | 0.16 | 0.0345 | 0.16 | 0.0345
- 28 0.3203 | 0.3197 | 0.049 0.32 0.0488 0.32 0.0488
29 0.16 0.1595 | 0.0346 0.16 0.0345 | - 0.16 0.0345
30 0.16 | 0.1599 | 0.0345 | 0.16 - | 0.0345 | 0.16 | 0.0345
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Table 5.9: Comparison of bus reactive power

DETERMINISTIC MONTE-CARLO PROBABILISTIC |GRAM-CHARLIER
USING (L.T)

Busno [P mean(P) | std(P) | mean(P) | std(P) | mean(P) | std(P)
1 1,966 | 1.9671 | 0.1183 | 1.5999 | 0.0772 | 1.5999 | 0.0772
2 1.6127 | 1.6125 | 0.0785 | 1.5999 | 0.0772 | 1.5999 | 0.0772
3 1.6097 | 1.6094 | 0.0781 | 1.5999 | 0.0772 | 1.5999 | 0.0772
4 0.08 0.0799 | 0.0173 0.08 0.0173 0.08 0.0173
5 | 0.08 | 0.0797 | 0.0174 0.08 0.0173 0.08 | 0.0173
6 0.802 | 0.8026 | 0.0548 | 0.7999 | 0.0546 | 0.7999 | 0.0546
7 0.08 0.0798 | 0.0173 0.08 | 0.0173 { 0.08 [ 0.0173
8 0.08 0.08 0.0171 0.08 0.0173 | 0.08 0.0173
9 0.08 0.0801 | 0.0174 0.08 | 0.0173 | 0.08 0.0173
10 0.5604 | 0.5611 | 0.0458 0.56 | 0.0457 0.56 | 0.0457
11 0.08 0.0802 | 0.0173 0.08 | 0.0173 | 0.08 0.0173
12 0.08 0.0801 | 0.0172.| 0.08 | 0.0173 0.08 0.0173
13 | 0.08 0.0802 | 0.0175 0.08 0.0173 0.08 0.0173
14 0.3201 | 0.3204 | 0.0346 0.32 0.0345 0.32 | 0.0345
15 10.08 0.0808 | 0.0173 0.08 0.0173 0.08 0.0173
16 0.08 0.0798 | 0.0172 0.08 0.0173 | 0.08 0.0173
17 0.08 0.0799 | 0.0173 0.08 0.0173 0.08 0.0173
18 0.08 0.0799 | 0.0174 0.08 0.0173 | 0.08 0.0173
19 0.6415 | 0.6411 | 0.0494 0.64 0.0488 0.64 | 0.0488
20 0.08 0.0802 | 0.0172 0.08 0.0173 | 0.08 | 0.0173
21 0.08 0.0801 | 0.0172 0.08 | 0.0173 | 0.08 0.0173
22 0.4805 | 0.4798 | 0.0427 0.48 0.0423 0.48 0.0423
23 0.08 0.0799 | 0.0175 0.08 0.0173 0.08 0.0173
24 0.08 0.0796 | 0.0174 | 0.08 0.0173 0.08 | 0.0173
25 0.3201°] 0.3199 | 0.0342 0.32 0.0345 0.32 | 0.0345
26 - 0.08 0.08 0.0174 0.08 0.0173-| 0.08 0.0173
27 0.08 0.08 0.0172 | 0.08 0.0173 | 0.08 0.0173
28 0.16 0.1597 | 0.0245 | 0.16 0.0244 0.16 | 0.0244
29 0.08 0.0797 | 0.0173 0.08 0.0173 0.08 0.0173
30 0.08 0.08 0.0173 0.08 0.0173 0.08 0.0173
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distribution function

N

2

distibution function

- The shapes of voltage, active and reactive power flow probability distribution function

remain the bell shaped and is shown in Fig 5.11,5.12 and 5.13
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Figure5.11: Probability distribution function of the voltage at node 28
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Figure 5.12: Probability distribution function of Active_ power flow in element 25-28
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Figure 5.13: Probability distribution function of reactive power flow
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While the voltage PDFs match well slight difference in, the shape of active and reactive
power PDFs are slightly difference from Monte Carlo Simulation. The difference is due to

omission of line losses and approximations in voltage drops.
5.1.4 Case (IV): When all the loads are dependent and normal with positive
correlation:

Probabilistic method using Laplace transform and Gram-Charlier has been
carried out when the case of all loads are. dependent and normal with positive correlation.
The bus voltages, active and reactive power flow are given below.

Table 5.10: Bus Voltages:

Bus no | base(V) | mean(V) | std(V) | mean(V) | std(V)
1 1.05 1 0 1.05 0
2 0.9265 | 0.9372 | 0.6113 | 0.9372 | 0.0113
3 09252 | 0.936 | 0.0114 | 0.936 | 0.0114
4 0.9243 | 0.9352 | 0.0115 | 0.9352 | 0.0115
5 109241 | . 0935 [0.0115 | 0935 | 0.0115
6 09187 | 093 0.012 0.93 0.012
7 0.9181 | 0.9295 | 0.012 | 09295 | 0.012
8 0.9181 | 0.9295 | 0.012 | 0.9295 | 0.012
9 0.9172 | 0.9287 | 0.0121 | 0.9287 | 0.0121
10 0.9166 | 0.9282 | 0.0122 | 0.9282 | 0.0122
11 0.916 | 0.9276 | 0.0122 | 0.9276 | 0.0122
12 0.9157 | 0.9273 | 0.0123 | 0.9273 | 0.0123
13 0.9161 | 09277 | 0.0122 | 0.9277 | 0.0122
14 0.9159 | 0.9275 | 0.0122 | 0.9275 | 0.0122
15 ] 09154 | 09271 | 0.0123 | 0.9271 | 0.0123
16 0.9154 | 0.9271 | 0.0123 | 0.9271 | 0.0123
17 | 09147 | 0.9264 | 0.0124 | 0.9264 | 0.0124
18 0.9151 | 0.9268 | 0.0123 | 0.9268 | 0.0123
19 0.923 0.934 | 0.0116 | 0.934 | 0.0116
20 0.9228 | 0.9339 | 0.0116 | 0.9339 | 0.0116
21 0.9219 | 0.933 | 0.0117 | 0.933 | 0.0117
22 0.9214 | 0.9325 | 0.0117 | 0.9325 | 0.0117
23 0.9213 | 0.9324 | 0.0118 | 0.9324 | 0.0118
24 0.9208 | 0.932 | 0.0118 | 0.932 | 0.0118
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25

0.9206

] 0.9318 | 0.0118 | 0.9318 | 0.0118
26 0.9201 | 0.9313 | 0.0119 | 0.9313 | 0.0119
27 0.92 | 09313 | 0.0119 | 0.9313 | 0.0119
28 0.9202 | 0.9314 | 0.0119 [ 0.9314 | 0.0119
29 10,9191 | 09304 | 0.012 | 0.9304 0.012
30 0.9199 [ 0.9311 | 0.0119 | 0.9311 | 0.0119

Table 5.11: Bus active power Flow
Busno |P | mean(P) | std(P) | mean(P) | std(P)
1 | 35849 | 32 0.32 32 | 032
2 | 32271 | 32 0.32 32 032
3 3223 | 32 | 032 | 32 | 032
4 0.16 0.16 | 0.016 0.16 0.016
5 0.16 0.16 .| 0.016 0.16 | 0.016
6 1.6044 1.6 0.16 1.6 0.16
7 0.16 | 0.16 | 0.016 | 0.16 | 0.016
8 0.16 | 0.16 | 0.016 | 0.16 | 0.016
9 0.16 0.16 0.016 0.16 0.016
10 | 11215 112 | 0112 | 1.12 | 0.112
11 0.16 | 0.16 | 0016 | 0.16 | 0.016
12 0.16 0.16 0.016 0.16 - | 0.0l6
13 0.16 | 0.16 | 0.016 | 0.16 | 0.016
14 0.6406 0.64 | 0.064 0.64 | 0.064
15 | 016 | 0.16 | 0016 | 0.16 | 0.016
16 | 0.16 | 0.16 | 0016 | 0.16 | 0.016
17 0.16 | 0.16 | 0.016 | 0.16 | 0.016
18 | 016 | 0.6 | 0016 | 0.16 | 0.016
19 1.2833 1.28 0.128 1.28 0.128
20 0.16 0.16 0.016 0.16 | 0.016
21 0.16 0.16 0.016 0.16 0.016
22 0.9614 0.96. | 0.096 0.96 0.096
23 - 0.16 0.16 0.016 0.16 0.016
24 0.16 0.16 0.016 | 0.16 0.016
25 | 0.6407 0.64 0.064 0.64 0.064
26 0.16 0.16 0.016 0.16 0.016
27 0.16 0.16 | 0.016 0.16 0.016
28 0.3203 0.32 0.032 0.32 0.032
29 0.16 0.16 0.016 0.16 0.016
30 0.16 0.16 0.016 0.16 0.016
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Table 5.12: Bus reactive power flow

Bus no Q {mean(Q) | std(Q) | mean(Q) | std(Q)
1 1.966 1.6 0.16 1.6 0.16
2 1.6127 1.6 0.16 1.6 0.16
3 1.6097 1.6 - 0.16 1.6 - 0.16
4 0.08 0.08 | 0.008 0.08 0.008
5 0.08 0.08 0.008 | 0.08 0.008
6 '0.802 0.8 008 | 08 0.08
7 0.08 | 0.08 0.008 0.08 0.008
8 0.08 0.08 | 0.008 0.08 | 0.008
9 0.08 0.08 | 0.008 0.08 0.008
10 0.5604 | 0.56 0.056 0.56 0.056
11 0.08 0.08 0.008 0.08 0.008
12 . 0.08 0.08 0.008 0.08 0.005 -
13 0.08 0.08 0.008 0.08 0.008
14 0.3201 0.32 0.032 | 032 0.032
15 0.08 0.08 0.008 0.08 0.008
16 0.08 0.08 0.008 0.08 0.008
17 0.08 0.08 0.008 0.08 0.008
18 0.08 0.08 0.008 | 0.08 |[.0.008
19 | 0.6415 0.64 0.064 0.64 0.064
20 0.08 0.08 0.008 0.08 0.008
21 10.08 0.08 0.008 0.08 0.008
22 0.4805 0.48 0.048 0.48 0.048
23 0.08 0.08 | 0.008 0.08 0.008
24 0.08 0.08 0.008 0.08 0.008
25 0.3201 0.32 | 0.032 0.32 0.032
26 0.08 0.08 | 0.008 0.08 0.008
27 - 0.08 - 0.08 0.008 | 0.08 0.008
28 0.16 0.16 0.016 0.16 0.016
29 0.08 0.08 0.008 | 0.08 0.008
30 0.08 0.08 0.008 0.008

0.08
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From Table 5.10 to 5.12 It can be seen that, in all cases, the standard deviation
of voltages, active and reactive power were greater when‘ the nodal powers were to be
dependent than when the load loads are independent and normal (Table 5.1 to 5.3). The
standard deviation increases or decreases, is dependent upon the impact between the
linear dependence of the nodal powers as well as sign of the sensitivity coefficients. In this
particular case it is seen that there is increase in the standard deviation of voltages and
active power, when nodal powers were assumed dependent with positive'correlation.

Fig 5.14 shows the probability distribution function of voltage, when the loads are

correlated with positive linear dependency
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Figure 5.14: Probability Distribution function of voltage plot at node 28

The parameters for the input probability density function are the same as before. As it can
be seen that there is significant increase in the deviation of the fig '5.14 ‘probability

~ distribution, as compared to the Fig. 5.1
5.2 Simulation Results for Complex Random Variable analysis:

The probabilistic load flow using complex random variable analysis has been
applied to IEEE 13 bus system and 30 bus test sj'stem is shown in Fig.5.15 and 5.1. The
failure data of each distribution line and bus are assumed shown in Table B3, B4 and slack

bus is 1 in this test system.
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The moments of 13 bus and 30bus system, voltages are shown in table 5.13 and 5.14.

Table 5.13: Moments of bus voltage using complex random variable for 13 bus system
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Figure 5.15: 13 bus test system
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Bus
no

First order
moments

Second order
moments

Third order
moments

. qurth order

moments

O o0 Wn A Wik —

Pk et et
W N -

1.0500

1.0017 - 0.0603i
0.9892 - 0.0818i
0.9810 - 0.0958i
0.9759 - 0.1040i
0.9748 - 0.1058i
0.9747 - 0.1062i
0.9558 - 0.1290i
0.9525 - 0.1351i
0.9491 - 0.1414i
0.9456 - 0.1477i
0.9513 - 0.1372i
0.9511 - 0.1376i

1.1025

0.9999 - 0.1214i
0.9720 - 0.1624i
0.9534 - 0.18861
0.9418 - 0.2037i
0.9393 - 0.2070i

0.9389 - 0.20751

0.8972 - 0.24751
0.8892 - 0.2583i
0.8810 - 0.2692i
0.8725 - 0.2802i
0.8864 - 0.2619i
0.8860 - 0.26251

1.1576

0.9945 - 0.1830i
0.9484 - 0.2413i
0.9174 - 0.2776i
0.8981 - 0.2979i
0.8939 - 0.3024i

10.8932 - 0.3032i

0.8258 - 0.3540i
0.8123 - 0.3678i
0.7982 - 0.3817i
0.7838 - 0.3955i
0.8075 - 0.37251
0.8067 - 0.3732i

1.2155

0.9852 - 0.2448i
0.9186 - 0.31801
0.8734 - 0.3620i
0.8455 - 0.3860i
0.8394 - 0.3912i
0.8384 - 0.3921i
0.7435 - 0.4473i
0.7238 - 0.46241
0.7034 - 0.4775i1
0.6825 - 0.4921i
0.7169 - 0.46751
0.7158 - 0.4683i
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Table 5.14: Moments of bus voltage using Complex random variable for 30 bus system

Bus | First order Second order | Third order Fourth order
'no moments moments moments moments
1 1.0500 - [1.1025 , 1.1576 1.2155

12 0.9419 - 0.0405i1 {0.8856 - 0.0763i {0.8312 - 0.1077i | 0.7787 - 0.1350i
3 0.9408 - 0.0408i {0.8835 - 0.0767i | 0.8281 - 0.10811 | 0.7748 - 0.1354i
4 0.9399 - 0.0405i |0.8819 - 0.0761i | 0.8259 - 0.1072i | 0.7721 - 0.1341i
) 0.9398 - 0.0405i | 0.8816°- 0.0760i | 0.8256 - 0.1070i | 0.7717 - 0.1339i
6 0.9349 - 0.0403i | 0.8725-0.0754i {0.8128 - 0.1056i |0.7558 - 0.1315i
7 0.9344 - 0.0402i [0.8716 - 0.0750i | 0.8115 - 0.1051i | 0.7542 - 0.1307i
8- 0.9344 - 0.0402i |0.8715 -0.0750i | 0.8114 - 0.1050i ) 0.7541 - 0.1307i
9 0.9337 - 0.0399i | 0.8702 - 0.0745i. | 0.8096 - 0.1042i |0.7518 - 0.1296i
10 0.9332 - 0.0406i |0.8692 - 0.0757i (0.8081 - 0.1059i |0.7499 - 0.1315i
11 0.9326 - 0.0404i |0.8682 - 0.0754i | 0.8068 - 0.10531 }0.7483 - 0.13071
12 0.9323 - 0.0403i [0.8677 - 0.0752i {0.8060 - 0.1050t |0.7474 - 0.1303i
13 0.9327 - 0.0404i | 0.8683 - 0.07541 {0.8068 - 0.1053i |0.7484 - 0.1308i
14 0.9325 - 0.0407i | 0.8680 - 0.0758i | 0.8065 - 0.10601 }0.7479 - 0.1315i |
15 0.9322 - 0.0406i {0.8673 - 0.0756i | 0.8055 - 0.1055i |0.7467 - 0.1310i
16 0.9321 - 0.0406i |0.8673 - 0.0756i | 0.8054 - 0.10551 | 0.7466 - 0.1309i
17 | 0.9314 - 0.0403i {0.8660 - 0.0751i {0.8036 - 0.1048i |0.7444 - 0.1299i
18 0.9319 - 0.0405i |0.8669 - 0.0754i |0.8049 - 0.1053i | 0.7460 - 0.1306i
19 0.9389 - 0.0411i |0.8798 - 0.0771i | 0.8230 - 0.1084i |0.7684 - 0.1355i
20 0.9387 - 0.0410i {0.8795 - 0.0769i |0.8225 - 0.1082i 1 0.7678 - 0.1352i
21 0.9378 - 0.0407i |0.8779 - 0.0763i {0.8204 - 0.10731 |0.7651 - 0.1339i
22 0.9374 - 0.0413i {0.8771 -0.07731 | 0.8191 - 0.10861 | 0.7635 - 0.1355i1
23 0.9373 - 0.0413i {0.8768 - 0.0773i {0.8187 - 0.1085i | 0.7630 - 0.1354i
24 0.9368 - 0.0411i |0.8760 - 0.0769i | 0.8176 - 0.1080i |0.7617 - 0.13461
25 0.9367 - 0.0414i | 0.8757 - 0.0774i {0.8171 - 0.10871 | 0.7610 - 0.13551
26 0.9362 - 0.0412i {0.8748 - 0.0771i |0.8159 - 0.1082i [0.7595 - 0.1348i | -
27 0.9362 - 0.0412i {0.8747 - 0.0771i | 0.8158 - 0.1081i | 0.7594 - 0.1347i
28 0.9363 - 0.0414i {0.8749 - 0.0775i | 0.8160 - 0.1087i | 0.7596 - 0.1355i
29 0.9352 - 0.0411i {0.8729 - 0.0767i | 0.8132 - 0.10751 {0.7562 - 0.1339i
30 0.9360 - 0.0413i | 0.8744 - 0.07731 | 0.8153 - 0.1084i }0.7588 - 0.1351i

The cumulants are calculated from the moments of each bus voltages and vthey can be

converted into normal distribution using the Edge worth type of Gram-Charlier expansion.

The PDF of each bus voltage is shown in Fig.5.16and 5.17.
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Figure 5.16: the PDF of each bus voltage using Gram-Edgeworth
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Figure 5.17: PDF of bus voltage using Gram-Edgeworth
The realization of PDF using Probabilistic Load Flow with method of moments
measures the probability of bus voltages instability through determining bus indices. The
bus voltage levels depend mainly on the reactive power production of the generators and

failure rate by unplanned outage, this method can provides a measure of the severity of

abnormal voltages.

The advantage of the method using Complex Random Variable analysis
is that that network uncertainties is directly incorporated in this method. This would
greatly simplify contingency analysis as there is no need of repeated load flows for

different contingencies.
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ChapterS

The application of Probabilistic load flow method using Gram-Charlier Series
Expahsion for distribution s‘ysterh has been presented. The probability distribution
function of bus voltages, bus active powers and bus reactive powers have been calculated
and compared with Probabilistic Load flow and Monte Carlo simulation method. The
probabilistic load flow using Gram-Charlier series expansion method adopted in this thesis
provides a new way of comﬁuting probabilisﬁc distribution function of line flows for
distribution system. Correlations between the nodal loads of the system were taken in to

account using a simple expression based on their standard deviations.

In Comparison with Monte Carlo with 5000 iterations, this method is 10-20
times faster and significant reduction in memory requirement in comparison to
probabilistic load flow using Laplace transform this method has reducing the complexity

of calculation and significant improvement in reduction of calculation time.

This thesis also presents a method of solution of the stochastic load flow
problem based on the method of moments of complex random variables for radial
distribution system. In comparisdn to the probabilistic load flow computation using Gram-

Charlier expansion, this method can easily incorporate network uncertainty.

The probabilistic load flow study gives qualitatively more information about
the system analyzed as compared to the conventional deterministic method. In this thesis
the loads are modeled as statistical uncertainties that always exist in the process of

planning and operation of practical systems. The various conditions, situations and
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constrains in a much more flexible way by weighting them with appropriate probabilities.

This should result in a more realistic picture about the observed system.

Gram-Charlier series is valid for (-0, +0), some negative probabilistic values
can occur as the random variable is in power system varies between 0 to . Laguerre and
Legendre series are valid for random variable between 0 to o and their application to the

Probabilistic Load Flow can be explored.
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» - Appendiv-4
Consider a Complex Random Vériable with real and imaginary componénts XandY,
also random variablesl Assume that the moments and cumulants of X are known and that Y is
completely known i.e. it has a probability density function with only one impulse with
probability one. The first four momeﬁts are
1. @,(Z) = a,(X) +ja, (¥)
Where
a,(Y) =Y (value of the random variable Y)
2. a(Z) = ay(X) — a(Y) + 2jE(XY}
Whefe
a,(Y)=Y?
3. @3(2) = a5(X) — 3EXY? + jBE(X2Y} — a5(Y)
Where, if Y is a constant one has
a3(Z) = a3(X) - 3Y2a, (X) + j[3Y e (X) — V]
4. ay(Z) = ay(X) — ay(Y) — 6E{X?Y? } + j[4E(X3Y) —.4E{XY3]
Where, if Y is a constant, one has |
0,(2) = a,(X) - Y* ~ 6Y2a2(X) + j[4¥a; (X) - 4%, ()]

G!:am-Charlier type A series expansion: Consider a random variable £ with a distribution

of a continuous type and denote the mean value as p and the standard deviation asc . For the



standardized variable (£ —a)( 0), its density function is denoted as f(x). According to Gram-

Charlier expansion, the Probability density function is

f®= T c;H (96

J=0
Where
12 r_\F 1B,
C =ljz ["_IJ J—2k 1
J o Zo\2) H(G-2k)| 572k
B k. j-2k
) _]/2 - 4 J
Hw=T (F] 2
N
#(x)= e

V2I1

[n/2] denotes the largest integer<=n/2
The expression H i (x) are known as Hermite Polynomials

Some of these expressions are

Ho(x) =1
H(x)=x
Hy(x) =x%-1
H3(x) = x3 —3x

Hy(x) =x*—-6x%+43
Hs(x) = x5 — 10x3 + 15x

Hg(x) = x® — 15x* + 45x% - 15
The expression Cis known as Gram-Charlier coefficients.

Some of those expressions are



C=-2+10%
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Test data for 30 bus distribution system

Base MVA=1.0MVA
BASEKV=11KV

Table B1: Network data in per units

Line no | From node | TO node | R(p.u) | X(p.u)
1 1 2 0.0236(0.0233
2 2 3 0.0003|0.0002
3 3 4 0.0051]0.0005
4 3 5 0.0062 | 0.0006
5 3 6 0.0032(0.0011
6 6 7 0.003 j0.0003
7 6 . 8 0.003 |0.0003
8 6 9 0.007910.0008
9 6 - 10 0.0013}0.0008
10 10 11 0.0033]|0.0003
11 10 12 0.0050] 0.0005
12 10 13 0.0027|0.0003
13 10 14 0.0008 | 0.0005
14 14 15 0.0025(0.0003
15 14 16 0.0026 | 0.0003
16 14 17 0.0065|0.0007
17 14 18 0.00410.0004
18 3 19 0.0012]0.0007
19 19 20 ]10.0011|0.0001
20 19 21 0.006110.0006
21 19 22 0.0012{0.0008
22 22 23 0.0008 | 0.0003
23 22 24 0.0034(0.0003
24 22 25 0.0009|0.0006
25 25 26 0.003 | 0.0003
26 25 27 0.0032./0.0003
27 25 28 0.0009|0.0006
28 28 29 0.006 | 0.0006
29 28 30 0.0016 | 0.0002




TABLE B2: Load data in per units

BUS NO | MEAN (P) | SIGMA(P) | MEAN(Q) | SIGMA(Q)
1 0 o - 0 0
2 0 0 0 0
3 0 0 0 0
4 0.16 0.016 0.08 0.008
5 0.16 0.01lo 0.08 0.008
6 0 0 0 0
7 0.16 0.016 0.08 0.008
8 0.16 0.016 0.08 0.008
9 0.16 0.016 0.08 0.008
10 0 0 0 0
11 0.16 0.016 0.08 0.008
12 0.16 0.016 0.08 0.008
13 0.16 0.016 0.08 0.008
14 0 0 0 0
15 0.16 0.016 0.08 0.008
16 0.16 0.016 0.08 0.008
17 0.16 0.016 0.08 0.008
18 0.16 0.016 0.08 0.008
19 0 0 0 0
20 0.16 0.016 0.08 0.008
21 0.16 0.016 0.08 0.008
22 0 0 0 0
23 0.16 0.016 0.08 0.008
24 0.16 0.016 0.08 0.008
25 0 0 0 0
26 0.16 0.016 0.08 0.008
27 0.16 0.016 0.08 0.008
28 0 0 0 0
29 0.16 0.016 0.08 0.008
30 0.016 0.08 0.008




1EEE 13 BUS RADIAL SYSTEM :

BASE KV=11KV
' BASE MVA=10MVA

TABLE B3: NETWORK UNCERTAINTY DATA in (p.u)

Line no | from to node | Resistance | Reactance | availability
node (p.n) (p.u)
1 1 2 | 0.00148 | 0.00287 0.91
2 2 3 0.00044 | 0.00124 0.86
3 3 4 - 0.00028 | 0.00078 0.95
4 4 5 | 0.0006 0.00167 0.83
5 5 6 0.00034 | 0.00097 0.87
6 6 7 0.00032 | 0.00092 0.93
7 4 8 0.0016 0.0031 0.87
8 8 9 0.00029 | 0.00083 0.92
9 9 10 0.00053 | 0.00151 0.89
10 10 11 0.00059 | 0.00166 0.88
11 9 12 0.00038 -| 0.00107- | 093
12 12 13 0.00037 | 0.00104 0.94

TABLE B4: LOAD UNCERTAINITY DATA

bus no | active | reactive | availability
power | power
MW) | (MW)
1 0 0 | 091
2 4.73 155 |  0.88
3 1.27 | 041 -0.96
4 0.35 0.11 1
S ~ 4.38 1.44 0.89
6 2.11 0.69 0.87
7 0.42 0.13 0.89
- 8 4.73 1.55 1
9 1.27 0.41 .92
10 0.35 0.11 0.88
* 11 438 | 1.44 0.97
12 2.11 0.69 0.83
13 042 0.13 0.81
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