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This thesis report deals with the application of probabilistic load 

flow computation using Gram-Charlier expansion and Probabilistic load flow 

using Complex Random Variable analysis to the radial distribution system. 

Two types of load distributions have been considered namely, normally 

distributed loads and discrete random loads. A typical system is analyzed for 

nodal powers when they are (a) independent and when they are (b) 

dependent. The mean and standard deviations of bus voltages, active and 

reactive powers have been calculated. The results obtained have been 

compared with Deterministic load flow, basic probabilistic distribution load 

flow and Monte Carlo simulation and are found to be in good agreement. The 

probability density functions for these variables also have been plotted. In 

this thesis, for probabilistic load flow with method of moments, the input 

parameters viz, loads and line data are assumed as complex random 

variables. The probability distribution functions for bus voltages have been 

calculated. The results can be used for adequacy analysis of the distribution 

system. 
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Chapter1 

1.1 General 

Electrical power system is an interconnected structured system composed of 

generating stations and distribution substations together. In terms of operations and 

characteristics, the transmission system is distinctly different from the distribution system. 

The principal difference between these two is in their associated voltage levels and 

network structure. The former usually featured as a loop structure, while the latter 

generally is of radial structure. It has been realized that the precise solution state of 

distribution system can be acquired with a robust and efficient power (load) flow solution 

method [1-2]. These power flow solution methods must be able to model the specific 

features of radial distribution system in sufficient detail. Some of the more prominent 

features of radial distribution systems are as follows. 

:• Multiphase, unbalanced, grounded or ungrounded operation. 

❖ Imperfection and uncertainties of network parameters. 

❖ Unbalanced distributed loads. 

❖ Extremely large number of nodes and branches 

Since then power flow analysis has been one of the most fundamental and widely used tool 

by power engineers. The power flow analysis yields the system's solution state on solving a 

set of precisely known non-linear algebraic equations simultaneously. Due to peculiar 

features of radial structure and wide-ranging resistance, reactance values, the distribution 

system got status as ill-conditioned power system. 

The popularly used Newton-Raphson and fast-decoupled load flow (FDLF) solution 

techniques are unsuitable for solving load flow for radial distribution systems. 

Consequently many other load flow analysis methods have been developed that suits to 
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distribution system characteristics on assumption that input parameters (line resistance, 

reactance and load at different buses) as fixed quantities [3-5]. However, in realistic 

condition, the situation is quite different and input parameters for the load flow study are 

relatively uncertain [6]. These uncertainties arises by virtue of 

1. Error in calculation or measurement of the feeder parameters (resistance 

and reactance) 

2. Error in the magnitude of assumed load demand at system buses 

Even if parameter uncertainties were.: not an issue, the power flow problem would be 

nothing more than a "snapshot" of the system at a given instant. Solutions obtained would 

be valid only for a single specific system configuration and operation condition. However, 

the system evolves through time. It appears that it would be reasonable to ask not what the 

system looks like at a given instant, but rather ask for the ranges of all plausible system 

conditions that might be encountered as result of expected uncertainties in power injection 

and other parameters. 

1.2 Types of uncertainties: Broadly, speaking uncertainties can be classified in to two 

types. 

1. Quantitative uncertainty: The uncertainty is quantifiable in numerical terms by a 

mathematical function with deterministic parameters. 

Examples are: 

a). Probabilistic variables. The uncertainty is defined by a probability density function: 

uniform, normal, Poisson, etc. [7] or by means of moments of a distribution and the method 

of cumulants. 

b). Interval variables. An interval variable is a closed set of real numbers [x1, x2] such that 

any x in the interval x1<x<x2 is in the set [6, 8]. 

2. Qualitative uncertainty: This uncertainty is initially expressed in vague, non-numeric 

(usually verbal) terms such as "approximately equal to" and "a small percentage." By using 
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the concept of degree of membership of a value to a set, it is possible to establish the notion 

of fuzzy sets and fuzzy arithmetic. Qualitative uncertainty is quantified using fuzzy:sets [9]. 

The purpose of a formal characterization of uncertainty is to gain a greater 

understanding of a system or process. Single-solution answers, although pleasing in 

traditional engineering terms, often give an incomplete picture of the behavior of a system. 

A characterization that explicitly considers uncertainty allows us to create models and 

answer questions that are either impossible or difficult to answer with deterministic 

methods. Several roles in the characterization of uncertainty are: 

a). Uncertainty as an aid in the decision making process. Decision makers often consider 

the risk associated with a particular decision. The nature of the uncertainty also has an 

influence on the decision: overestimating a number may result in slightly higher costs of 

operation, but underestimating the same number could result in severe effects on a system, 

which will translate into considerably higher costs. 

b). Deterministic solutions in the presence of uncertainty give deterministic answers that 

are guaranteed to almost never take place. Of greater value would be to bracket the 

solution and either give intervals guaranteed to contain the solution, or probabilistic 

measures guaranteed to contain the solution at a given level of confidence. 

c). Uncertainty is essential when reconciling mathematical models with measurements on 

physical systems. The classic example of this use of uncertainty is the state estimation 

problem in power systems, where more measurements. than strictly needed are made on a 

system, and the state of the system is determined under the assumption that 

measurements are subject to error. 

Methods for handling uncertainty can be applied to determine both :engineering and 

economic parameters, such as current flows, voltages, cost and reliability (or security). Of 

increasing interest are methods capable of characterizing important externalities of a 

power system, such as environmental effects. These externalities are often associated with 
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greater degrees of uncertainty than is customary within-  traditional engineering models. 

The fact that uncertainty exists is no reason, however, for simply ignoring an important 

concern. Rather, methods for capturing the inherent uncertainty must be used and 

incorporated into the more traditional ways of assessing the system. 

1.3 Representation of Uncertainty: 

Many papers have been published to deal with uncertain power flow analysis problem [6-

10]. According, applied mathematical techniques these works can be classifieds in to the 

three categories. 

a. Interval analysis load flow methods 

b. Fuzzy load flow methods 

c. Probability power flow methods 

Each method uses the notion of an "uncertain variable." An uncertain variable is a variable 

that can take more than one numeric value according to the point of view of the method. 

For probabilistic methods and Monte Carlo Simulation (MCS), uncertain variables are 

better known as random variables, for interval methods they are known as interval 

variables and for fuzzy arithmetic methods are known as fuzzy or possibility variables. 

This thesis mainly focuses on Probabilistic Load Flow (PLF) Methods. 

1.4 Probabilistic methods: 

Probabilistic methods are based on the interpretation of belief in the 

possibility of an event outcome as a numeric probability. The determination of the 

probabilities of basic event outcomes is done either by heuristic reasoning or based on 

historical information [7]. The fundamental characterization of probability is the 

probability density function (PDF). Areas under this curve denote probabilities. Fig. 1.1 

illustrates the most commonly used probability density functions for representation of 

loads. These are. 

(a) Uniform. 
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(b) Gaussian. 

(c) Binomial. 

(a) Uniform. 

(b) Gaussian. 

... 4 	t. 	ê 
(c) Binomial. 

Fig. 1.1: Probability Density Functions. 

Probabilistic Load Flow (PLF) uses linear or quadratic approximations of 

deterministic load flow equations. With these approximations, load, flow equations are 

solved in a direct fashion and the probabilistic density function (PDF) of state variables 

(voltages and currents) are obtained from the given probabilistic description of measured 

variables (generation outputs and loads). PLF calculates both possible power flows and 

their possibilities of occurrence. There are two methods adopted in past research to obtain 
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the probabilistic distribution functions of the state vector and line flows: Monte Carlo 

simulation and convolution method. 

Monte Carlo Simulation is one of the methods to compute the Probabilistic 

Distribution Function (PDF) of line flows and voltages. This method consists of running 

and probabilistically processing several cases of individual load flows, where the data. are 

generated by pseudo-random numbers. Monte Carlo solutions have been the backbone of 

probabilistic computation. This also serves as benchmark for comparison with other 

methods. 

The Convolution technique is another method to compute Probabilistic 

Distribution Function (PDF) of line flows and voltages based on probabilistic distribution 

of data [11-15]. The probabilistic load flow transforms these input random variables, 

defined in terms of probability density functions, into output random variables also 

defined in terms of density functions using statistic theory. 

1.5 Problem Statement: 

The purpose of this thesis is avoids complex convolution and replaces them 

with simple arithmetic process due to unique properties of cumulants. This method 

combines the cumulants and Gram-Charlier Expansion theory to compute the power flows 

and voltages in balanced radial distribution system. This method has significantly reduced 

the computational time while maintaining a high degree of accuracy. 

The deregulated and competitive power markets are widely spread in the 

world and bring about new aspects to system planning [16]. Probabilistic Load Flow 

solution based on the method of moments is one of the method used for security 

assessment of bus voltages in power systems. In this method, bus loads and network 

parameters are treated as complex random variables. Probabilistic Load Flow solution 

using method of moments is fast, because the process of convolution of various complex 

random variables is performed in moment and cumulant domain. 
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1.6 Overview of the thesis: This thesis is organized as follows 

Chapter 1 as stated above serves as a general introduction to Probabilistic Load Flow. 

Chapter 2 provides the research contribution from the past to present in the area of 

probabilistic load flow in distribution as well as transmission system. 

Chapter 3 provides the brief discussion on moments, cumulants, relationship between 

moments and cumulants, properties of cumulants, complex random variables, Gram-

Charlier expansion and correlation between the input nodal powers. 

Chapter 4 describes the Probabilistic Load Flow (PLF) using Gram-Charlier detailed 

algorithm and also describes the PLF with Method of moments and its algorithm used in 

this thesis. 

Chapter 5 provides the details on the simulation program results. 

Chapter 6 concludes the thesis with a final regard to the improvements for future 

development. 
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Chapter 2 

4tctrie aeuieu~ 

Literature survey shows that the most commonly used techniques for radial 

distribution load flow (DISTFLOW) are, one based on a Newton like method involving 

formation of jacobians and computation of power mismatches at the end of the feeder and 

laterals [1] and the . other based on the backward and forward sweeps involving 

computation of branch flows [2-3]. This method is an efficient solution for weakly meshed 

distribution and transmission networks. Nanda and Srinivas [4] proposed a method 

similar to the previous method, but differing in the formulation of its algorithm and in the 

convergence criterion. Chiag and Zimmerman et al [5] presented a load flow methodology 

based on current computations, was applied for multi phase radial distribution networks. 

Load flow analysis of a distribution system, when the load demand is varying 

over an interval, can be performed by either repeated application of normal load flow or by 

the use of interval arithmetic load flow. Wang and Alvarado [6-7] first proposed the 

application of interval arithmetic method for power flow analysis of transmission 

networks. This paper, discusses uncertainty in power flow computations by coming up 

with simple bounds on the solutions that are, in some sense, as small as possible. These 

results were compared with Monte Carlo Simulation (MCS) results. Later Das [8] extended 

this technique for power flow analysis in balanced radial distribution systems. This paper, 

uncertainties only in the input load parameters are considered and the results are 

compared with the results obtained from repeated load flow simulation. 

Satpathy and Das [9] proposed the application of the fuzzy set theory and 

possibility theory for power flow analysis of transmission networks. The uncertain power 

injections are usually given in fuzzy numbers with known possibility distributions. The 
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modeling part, the system loads and available generations are modeled with the help of 

trapezoidal membership functions. This paper also discusses a case study on IEEE 14- bus 

test system. The most important results of these models are membership functions, for 

instance of branch flows or voltages, that reflected, in aggregated way, the uncertainty of a 

set of specified power scenarios. Later Ghosh [10] applied fuzzy techniques for radial 

distribution systems. This paper also discusses real, reactive power losses and voltage 

magnitude at every node with respect to membership function. 

The first notion of probabilistic power flow appeared in the early 1970s. 

Borkowska, Allen et al. [11, 12] have proposed a simplified probabilistic load flow. In this 

paper two assumptions were introduced: (1) the electric power system is represented with 

dc network model (2) The real part of the bus electric loads are independent random 

variables with these assumptions, a conventional deterministic power flow is solved. Later, 

this basic method has been extended to AC network model [13-14]. This paper presents 

two possible formulations of the problem that permit the probability density curves of 

angles, voltages, injected active and reactive power flows to be computed. 

The papers [11-14] assumed that the nodal powers are independent. The assumption 

of independence of the nodal electric loads is unrealistic. However, there are various 

reasons for correlations.to exist between nodal powers. These reasons depend on whether 

load/load, generation/load or generation/generation behavior is being considered. For 

example, a group of loads existing in the same area will tend to increase and decrease in a 

like manner due to environmental or social factors. Therefore there will be certain degree 

of dependence between them. Al-Shakarchi et al. [15, 16] proposed a method in which he 

has taken all correlations in to account as explained above. Da Silva et al.[17] proposed a 

linear dependence model of electric loads. Using a linearized power flow model, they 

proposed a method, which combines Monte Carlo Simulations and convolutions. DopaZo et 

al. [18] proposed a method, which models the correlation between the loads at any two 
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buses. Their proposed method assumes that circuit flows and bus voltage magnitude are 

Gaussian distributed and, thus, only the variance must be computed With Monte Carlo 

Simulation Technique. 

Burchett [19] has proposed a method for obtaining a probabilistic load flow 

solution using a discrete frequency domain convolution technique which is based on the 

Fast Fourier Transform (FFT). Patra [20] proposed a method, probabilistic load flow using 

method of moments to consider the network outages. In this method, the load and 

generated power was considered as complex random variables. The probability density 

functions of bus voltage and line currents are evaluated using method of moments and 

cumulants. Tae-KyunKim [21] proposed a method of probabilistic load flow analysis using 

method of moments for the security assessment of bus voltages. The PDF of bus voltage 

readily provide probabilities of threshold violations for the entire planning period, 

reflecting the random variation of loads, generation uncertainties, dispatching effects and 

outages. Zhang [22] used a dc load-flow model combining the concept of Cumulants and 

Gram-Charlier expansion theory to consider the bus injection uncertainties and to compute 

Probabilistic and cumulative distributions of network branch flows with less computation 

effort. Chun-Lien [23] proposed a method for probabilistic load flow based on an efficient 

point estimate method and the uncertainty of bus injections and line parameters can be 

estimated or measured efficiently. 	 _ 

When considering distribution networks the problem is simplified since there 

are no generation/generation relations [24-25]. These papers, discuss derivation of much 

simpler relations between input, output and state random variables based on the following 

assumptions. At every node voltage is considered as rated voltage and imaginary part of 

voltage drop is neglected. Karakatsanis and Hatziargyriou [26-27] presented a load flow in 

distribution network with dispersed wind power. This paper discusses probabilistic model 

for the Active power produced and reactive power absorbed by the wind turbines 
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equipped with induction generator, which takes in to account the probabilistic nature of 

short-term wind velocity forecasts. 

Tande [28, 30] discusses Probabilistic load flow calculation using Monte Carlo 

Simulation (MCS) for distribution network with wind generation. This paper, the total 

number of hours with over voltage per year was estimated for a distribution network with 

several wind turbines. 

From literature review it is evident that the application of Gram-Charlier 

expansion in Distribution system probabilistic load flow has not been explored in-depth. 

This thesis application of Gram-Charlier expansion in distribution probabilistic load flow 

has been carried out 
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Chapter 3 

Suppose X is a random variable and that all of the moments E(Xk) exist. The 

probability distribution of X is completely determined by its moments, i.e., there is no other 

probability distribution with the same sequence of moments. If limE (X)1L = E(X") for all 

values of k, then the sequence {X„} converges to X in distribution. 

3.1 Significance of the moments [33]: 

The First moment about zero, if it exists, is the expectation of X, i.e. the mean of 

the probability distribution of X, designated a. In higher orders, the central moments are 

more interesting than the moments about zero. The first central moment is thus 0; the 

second central moment is the variance, the square root of which is the standard deviation. 

The normalized nth central moment is the nth central moment divided by ; the nth 

moment of t=(x-a)/. These normalized central moments are dimensionless quantities, 

which represent the distribution independently of any linear change of scale. 

3.1.1 Skewness: the third central moment represents the lopsidedness of the 

distributional any symmetric distribution will have a third central moment of zero. The 

normalized third central moment is called the skewness. Fig 3.1 represents the skewness 

of the probability distribution functions have the same mean and standard deviation. The 

one on the left is positive skewness. The one on the right is negative skewness. 

Figure 3.1: skewness 
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6 

3.1.2 Kurtosis: the fourth central moment determines whether the distribution is tall 

and skinny or short and squat, compared to the normal distribution of the same variance. 

Since it is the expectation of fourth power, the fourth central moment is always positive. 

Fig.3.2 represents the kurtosis. The PDF on the right has higher kurtosis than the PDF on 

the left. It is more peaked at the center, and it has fatter tails. 

Figure 3.2: kurtosis 

3.2 Moments about origin 

If, for a positive integer v, the function X" is integrable with respect to F(x) 

over interval (-oo, +oo), 

cc,, = E( ) = ExdF(x) 	Where v =1,2 ....n 	 ... (3.1) 

The above equation is called the moment of order v or the with moment of the 

distribution [22]. 

3.3 Moments about mean 

The most important set of moments in statistical theory is obtained by shifting 

the origin to the arithmetic mean. These moments, m, are often called central moments. 

Qv = E[( -m)'}=  I±~ (x—m)1'dF(x) 	Where v=1, 2...n 	..... (3.2) 

3.4 Cumulants 

The mean value of the particular function elt will be written 

~p(r) = E(eit) = f 	eitxdF(x) Where t=1, 2...n 	 ..... (3.3) 
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This is a function of the real variable t, and will be called the characteristic function of the 

variable If the k th moment of the distribution exists, the characteristic function can be 

developed in MacLaurin's series for small values oft: 

.co(t)=l+Eat (it)1'+o(tk ) 	 .... (3.4) 
l v 

log q(t) =1 y ~ (it)V + o(tk ) 	 .., (3.5) 
l v 

The coefficient yv is called the semi-invariants or cumulants of the distribution. 

3.5 Relation ship between Moments and cumulants 

The relationship between the moments and the cumulants can be deduced by 

substituting q (t) in (3.4) to (3.5). 

log(1+z  --(it)") = E Y'' (it)'' +o(tk ) 
1 A  1 A 

.... (3.6) 

It is seen that yn is polynomial in a1 a2 ........a„ and conversely a, is a polynomial in 

71,Y2, • ......Yn , 

.... (3.7) 

y3 = a, — 3a1a2 + 2ai 

And conversely 

al =m=yl 

a2 ~Y2+Y1 	 (3.8) 

a3 = Y3 + 3Y2Yi +Y1 

Where 

m denotes the mean value. 
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In order to facilitate calculation of higher order cumulants, a recursive 

relationship between the moments and cumulants of any order of a , Probability 

Distribution Function (PDF) has been developed [31]. The relationship is as follows. 

Y~=a1 =m 	 ......(3.9) 

k k 

Yk+1 = ak+~ — frk-J+1 	 ..... (3.10) 
j=1 i 

And conversely 

a1 =m=yl 	 .....(3.11) 

k k 

ak+1 - Yk+1 + j1 j JYk- j+1 	 ..... (3.12) 

Where 	are the binomial coefficients and y, and a, are the kth order cumulants and 

moments respectively. 

The binomial coefficient (
k ) 	ki

= 
J j!(k — j) 

In terms of the central moments fly, the expression of the y,, become 

Y~ = m 
2 

Ya =A =a 
Y3 =P3 

2 
Ya=fla -3P2 

Where a denotes standard deviation and conversely 

Q1=0 

,82 =Y2 =a2 

/33 -,v3 
2 fl4 = Y4 +3y2 

..... (3.13) 

.... (3.14) 
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A new recursive relationship between the central moments and cumulants of any order of 

a Probability Distribution Function (PDF) has been developed. The relationship is as 

follows. 

y1=m 	 ....(3.15) 

yr+l — ~r+l 	 j jar— j+l 	 ...... (3.16) 

And conversely 

	

/31=0 	 ......(3.17). 

r-1 r 
'r+1 — yr+l + j 2 j j rr— j+1 	 ...... (3.18) 

Where 	are the binomial coefficients and yi and /3 are the kth order cumulants and 

central moments respectively. 

The binomial coefficient r = 	r! 
j J!(r — j) 

3.6 Properties of cumulants [22] 

	

Let 	and r be independent random variables with known cumulative 

function F1 and F2. The cumulative function F(x) of the sum of two independent variables is 

given by 

F(x) , Fl(x—z)dF2(z)_ f ~F2(x—z)dF. (z) 	 .... (3.19) 

F(x) = F1(x) * F2(x) 	 .... (3.20) 

For the sum 1 +~2 +......+ fin of n independent variables, the cumulative function 

F=F1*F2*.......* n 	 ..... (3.21) 
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Let l (t),p2(t), and q'(t) denote the characteristic function of 	, rJ, and 	+r~ 

respectively. 

ço(t) = E[elt +7/)] = E[eit ] * E[elthl ] _ 91(t) * P2 (t) 	 .... (3.22) 

If ~l , ~2.......... ~n are independent variables with the characteristic function 91 (t) , P2 (t) 

.......4pn(t), the characteristic function q (t) of the sum 4+ +......+ fin is thus given by 

*9n(t) 	 ...... (3.23) 

The multiplication theorem for characteristic function gives 

log 9(t) = log 'p1(t)+ log P2(t.)+........logqn(t) 	 ..... (3.24) 

Therefore 

+ yv 	 ..... (3.25) 

According to (3.13) to (3.18) it can be observed that 

m = ml +m2 ..........+mn 	 ..... (3.26)  

+0 	 (3.27) ..... (3.27) 

3.7 Complex Random Variable (CRV) 

Let Z = X + jY be a complex random variable (CRV) with a Probability 

density Function f (Z) . Clearly X and Y are real random variables (RRV), defined in the 

same probability space with a joint Probability Density Function f(x, y). Similarly in terms 

of magnitude and phase angle, let Z=e~B then joint Probability Density Function (PDF) is 

defined as shown in Fig. 3.3. This Probability Density Function (PDF) consists of three 

discrete functions at Zl, Z2and Z3 these are the values which Complex Random Variable Z 

may assume) with corresponding probabilities PI, P2 and P3 respectively. 
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S 112 

pl  p3  •0 

Figure: 3.3 Discrete PDF of Complex Random Variable 

Where Zl, Z2and Z3  are clearly complex random numbers and the sum of each 

probability pi, P2, p3  is one. The interpretation to be the given above Probability Density 

Function (PDF) is as follows [21]. 

The complex random variable Z assumes three complex values: Z= z1  with 

probability p1,  Z= z2  with probability p2  and Z= z3  with probabilityp3. Therefore, for 

the case Z= z1  = x1  + jy1, with probability of existence pl  , is equivalent to X=x1  and 

both with the same probability existence, i.e. p1. Another way of interpreting this is to 

think of occurrence of xi  and y1  together as one event, 

3.8 Moments and Cumulants of Complex Random Variable 

Referring to the Probability Density Function of Complex Random Variable as 

shown in Fig 3.3, the moments about origin of order t, of the Complex Random Variable Z 

are defined as [20] 

3 
at  = E[Zt 3 = E Z i ppi 	Where t=1, 2...n  

i=1 

Where, 

E [.]: the expected value of random variable 

F3 



Zl : i- th value of t-th order Complex Random Variable Z 

p.: Probability of i-th value of Complex Random Variable Z 

For t= 1, 2, 3, 4 the above expression is 

a, = Z1p1 + Z2p2 + Z3p3 

a2 = Z1731 + 4p2 + Z3 p3 

a3 = Z1 p1 + Z2 2p2 + Z3 p3 

a4 = Z1 p1 + Z2 p2 + 4p3 

(3.29) 

Clearly these moments are Complex Random Variables. The corresponding cumulants 

are obtained using the relationship between moments and cumulants. 

3.9 Relation ship between CRY moments and cumulants [20]: the recursive 

relation between cumulants and moments is 

Y~ = a1 

j-1 1-1 	Where t=1, 2...nth order 
7=1 

For t=2, 3, 4 the above expression is 
a 

Y2 = a2 — a1 

Y3 = a3 — 3a2a1 + 2ai 

Y4 = a4 — 4a3a1 + 6a2a1 — 3a4 

Similarly the recursive relation between moments and cumulants is 

..... (3.30) 

.... (3.31) 

ai =Yi 

J-'j-1 
at = yt + 	i 	.i-jar 0>2) 

Where t= 1, 2...nth order .... (3.32) 

For t=2, 3, 4 the above expression is 

as = Y2 + Y1 

a3 = Y3 + 3Y2Y1 + Y1 
	

... (3.33) 

a4 = Y4 + 4y3y1 + 3y2 + 6a2a1 + ai 
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The above moments and cumulants in Probabilistic Load Flow calculation are used each in 

multiplication and addition. 

3.10 Random Variables used in Load Flow Analysis 

To model the load of the system discrete distribution is considered in this 

thesis. However, continuous distribution like normal distribution or any general 

distribution can also be used. The load is assumed to be expressible in terms of active and 

reactive powers. The simplest way to stimulate this is by means of the Probability density 

Function shown in Fig. 3.4. 

p~  p̀  
Pl 	P3 

fES of I_i4 
5d1 Sd2. Sd3 Sd4 Sd5 

S o _—' 

Figure: 3.4 Probability Distribution Function of load with uncertainty 

The Probability Distribution Function (PDF) as shown in Fig. 3.4 assumes that 

the uncertainty applies to both active and reactive powers. If only the active power is in 

with an assumed uncertainty; while reactive power is constant. In this case there is no 

difficulty in obtaining the moments of complex load. The moments can be obtained from 

the knowledge of the moments of active and reactive components [appendix A]. From the 

Fig. 3.4 various moments can be obtained as follows. 

5 
m(SD) = E sdipl 	Where t=1, 2...nth order 	 ..... (3.34) 

i=1 

where sd = p + jq 
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p.: Probability of i-th value of Complex Random Variable sd 

The transmission lines are represented by their series impedance or 

admittance. The impedance of the line is assumed to be a random variable ZL. In its 

simplest form this random variable may take two values. 

p,! 
f(Z) 

9~ 

Z 

Figure: 3.5 Probability Distribution Function of Available impedance 

ZL =z when the line is in operation with probability pi and ZL =0 when the line is down, 

with probability qi, clearly pl+q1=1.The probability Density Function (PDF) of available 

line impedance is shown in Fig. 3.3. 

3.11 Gram-Charlier Type-A Series [32] 

Consider a random variable with a distribution of a continuous type and 

denote the mean value as µ and the standard deviation as o. For the standardized variable 

( —a)/(a), its cumulative and Probability density function are denoted as F(x) and f(x) 

respectively. According to Gram-Charlier expansion, the cumulative and the Probability 

density functions can be written as 

00 

F(x)=—j 0 c j H —1(x)O (x) 
	

(3.35) 
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00 

f(x) = E c .H j (x)O(x) 
j=0 

..... (3.36) 

Where 

1 j/2 —1 k j! /3 j-2k 	1 
c j ^ j! kY p 	k!(j -2k)! o j —2k 

j12 —1 k .,j -2k 
H (x) 

 
k.=0 L2) k!(J -2k)! 

— x2 
1 

e 
2 

[n/2] denotes the largest integer<=n/2 

The expression H3(x)  are known as Hermite Polynomials. 

Some of the expressions for probability distribution function are given in Appendix A 

3.12 Edgeworth form of the Gram-Charlier Type-A series 

Any Probability Density Function f(x), with finite moments, may be expressed 

in terms of orthogonal polynomials. Consider the Probability Density Function f(x) of a 

random variable. ~, expanded in terms of a standardized random variable x and its 

corresponding normal Probability Density Function c(x), as follows 

f(x)=f$(x)— G1g3(x) /3!±G2i 4(x)I4!+GGO6(x)/6!+.... 	....(3.37) 

Where 

x= ( —a)I(o) 
—x2 

O(x)= 2~e 2 
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The parameters G1  and G2  determines the skewness and peakedness of the distribution 

and defined in terms of the cumulants of the random variable x, as follows. 

3 

G1=73(X)/[Y2(X)]2  

G2 =74(X)"[72(X)]2  

The equation (3.37) is referred to as the Edgeworth form Gram-Charlier expansion. 

The equation (3.36) is formally identical to equation (3.37), even though it has 

some difference between them. The probability distribution function is obtained by Edge 

worth form Gram-Charlier expansion in terms of the cumulants of the desired random 

variable whose probability distribution is to be evaluated where as Gram-Charlier type-A 

series in terms of central moments of the desired random variable whose probability 

distribution is to be evaluated. For practical purposes it is necessary to take only a finite 

number of terms in the series and to neglect the remainder [31]. 

3.13 Correlation between nodal powers 

In long-term planning studies, possible variations in load demands are due 

to forecast uncertainties. The demands can only be predicted within certain statistical 

uncertainties and are described by the normal distribution. In these cases, demands are 

completely random and can be independent. When the behavior of the system for 

relatively short term, say a few months or less, is being considered, assumption of 

independence between the load demands is less valued. The demands may be 

characteristically independent, e.g. for different types of consumer, but may be correlated 

owing to common effects such as weather conditions and human-behavior patterns [15]. 

There are various reasons for correlation between nodal powers to exist, and 

these reasons tend to depend on whether load/load, generation/generation, or 

generation/load correlation behavior is being considered. The extreme case would be the 
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total correlation. A group of loads existing in the same area, will for example, for which all 

demands would rise and fall "in step" because of environmental or social factors. Some of 

the most relevant reasons are discussed below [16-17]. 

3.13.1 Load/load correlation 

In long term-planning problems, the probabilistic variation of loads is, 

generally, not one involving time, but, instead, is associated with load forecasting at a 

specific time in the future. In such cases, total independence between loads is a reasonable 

assumption. In operational planning problems, however, the probabilistic variation of 

loads is associated with time and a group of loads existing in the same area will tend to 

increase and decrease in a like manner; i.e. a certain degree of correlation exists between, 

them. The most important reasons for this correlation are due mainly to common' 

environmental factors such as temperature, sunset, rainfall etc., and to social factors such 

as sporting events, television programmes, meal times, working habits etc. As these factors 

are likely to affect all loads of a similar nature in a like manner, a degree of correlation will 

exist. When the loads rise and fall together, the correlation is positive. Similarly, in the 

event of a load failing while another rises, the correlation is negative. 

3.13.2 Generation/generation correlation 

In practice, generation output into the system may sometimes.be controlled so 

that the output of a specific group of generation is kept constant. Consequently, if the 

output of one source of generation in that group is decreased for one reason or another,. 

the output of the other sources of generation is increased by the same amount within the 

output limits of each source. In.this case, the correlation is such that, as one nodal power 

increases, another decreases and therefore generation/generation correlation is negative. 

3.13.3 Generation/load correlation 

Frequently, in the operation of a power system, a group of generators is 

controlled to meet the load within a certain load area, this being known as area control. In 
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such cases, there must be correlation between those generation assigned to the area load 

and the load itself; i.e. as the load rises and falls, the output from the relevant group of 

generators is increased and decreased likewise. In this case, the correlation is again 

positive. 

All of the above types of correlations are utilized in .operational planning of 

power system. 

3.14 Representation of correlation of nodal powers 

As discussed above that load/load, generation/generation, and 

generation/load correlations are approximately linear. Therefore, for many practical 

applications a linear representation of such correlations is all that is required, and the 

approximations introduced because of this assumption can be neglected [17]. 

If two random variables, X and Y, are linearly dependent, they can be related 

simply using the equation of a straight.line; i.e. 

Y=aX+b 	 ..... (3.38) 

Where 

a and b are constants 

If the correlation is positive, then 'a' is positive value. In other words, if the correlation is 

negative, then `a' has negative value. These will be referred to as positive and negative 

linear dependence, respectively. If the assumption of linear dependence is considered 

inappropriate, then the above representation can be modified quite readily to give a 

relationship between X and Y when they are not exactly linear. In this case the variable Y 

can be divided in to two random variables Y' and Y. Where Y' is linearly dependent on Z 

and obeys equation (3.38). Y" Is relatively small, has an expected value of zero and is 

independent of X. this is shown in Fig. 3.6 for two arbitrary variables related by positive 

linear dependency. 
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Figure: 3.6 Two independent random variables that are not exactly linear 

To include linear dependence in probabilistic load flow, each group of linearly 

Dependent random variables is considered to be independent of all other groups and all 

other independent random variables including the variables Y" introduced to account for 

dependence that is not exactly linear. If it is considered that all the random variables are 

linearly dependent (positive or negative), then only one such group exists, and there are no 

independent groups or random variables i.e. Y" does not exist. 

3.15 Linear dependence between random variables 

Consider the case of two random variables X and Y having expected values ,u x 

and pt , standard deviation cr and cT , respectively. The covariance and correlation 
Y 	 x Y 

functions [33] are convenient parameters for indicating the measure of linear dependence 

between them. 

The covariance of 77 of X and Y is 

qXY  = E{(X —,ux )(Y— .ay )} 	 ...... (3.39) 
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Where E{ } represents the expected value. 

Equation (3.4) can be expressed as 

11zy = E{XY — X,u y —,upY + px p y } 

E{XY} — ptpE{x} - ju E{Y} + ~cx ,uy 
..... (3.40) = E{XY} —,uy,ux —,uxy +,ux py 

= E{XY} 

The correlation coefficient yxy is defined as 

11 
yxy = 	 (3.41) 

O 6 
x y 

Where the value y is between -1 and 1 xy 

yX =0 if X and Y are linearly independent and I y I =1 if X and Y are linearly dependent 

[17]. 

Consider now the case of two linearly dependent random variables X and Y represented by 

the discrete distribution and consider that they are to be combined to give a third random 

variable Z, such that 

Z=cX+eY+d 	 ..... (3.42) 
Where 

c,d,e are constants. 

Since X and Y are linearly dependent. They are related by equation (3.38), and since they 

are linearly combined to give Z. For each value of X, there are corresponding values of Y 

and Z all of which have the same value of probability. Therefore if X takes a value xi with 

probability fl , then Y takes the value yi with probability fi and Z takes the value z. with 

probability fi this is shown in Fig.3.7 
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Figure: 3.7 discrete distribution functions of dependent random variables 

Z. = cxi +eyi +d 	 ..... (3.43) 

The resultant derivation function is [32] 

,uz = cPx + efJ y + d 	 ..... (3.44) 

az = cox +eay (For positive correlation) 	(3.45) 

az = ccx —e y 	(For negative correlation) 	 (3.46) 

This concept can be extended to any number of random variables therefore, if 

Z=cc X1+c2X2+.......+c.X +cn n+c 	 (3.47) n+l .....  

Then 

	

+ci pi + cn,un + cn + l 	...... (3.48) 

0 = c1cj1 f c2"2 f......±c.crr ±cncy fl 	 ... (3.49) 



In equation (3.49), the positive sign is used if the relationship between X and Xl  is a 

positive linear dependence, i.e. Xl  = a.X1  + bi  and the negative sign is used if the 

relationship is a negative linear dependence. 

The above equation has been derived by assuming the random variables were 

represented by the discrete distributions. It is, also applicable for normally distributed 

random variables. This is evident since a normal distribution can be approximated to a 

very large number of discrete impulses. Therefore, if all X. in equation (3.45) are normal 

distributions, Z will also be a normally distributed with an expected value of ,uz  and a 

standard deviation of o-  z 

d 
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Chapter4 

In this chapter the following probabilistic load flow methods for distribution 

system have been discussed. 

1. Monte Carlo simulation method 

2. Probabilistic load flow using Laplace transform Method 

3. Probabilistic load flow computation using Gram-Charlier expansion 

4. Probabilistic load flow using Complex Random Variable analysis. 

Methods 3 and 4 have been modified in this work and applied to 

distribution system and results have been compared those of 1 and 2. 

4.1 Monte Carlo Simulation [34] 

4.1.1 Introduction: 

In fact, simulation methods can often be the only means of obtaining the solution to the 

system model, especially when the system studied is large and complex or when the 

probability distributions rather than only the means and variances, are required. A 

numerical simulation is a process of selecting a set of values of system parameters and 

obtaining a solution of the system model for a selected set. Repeating the simulation 

process for different sets of system parameters, obtain different sample solutions. The key 

activity in the simulation process is the selection of system parameters to obtain sample. 

solutions. 

Monte Carlo simulation is repeating the simulation process. In each simulation 

process a particular set of values of the random variables generated in accordance with the 

corresponding probability distribution function. 
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4.1.2 Algorithm: 

Step1. Generate random numbers from the given distribution function .(normal or 

discrete or binomial distribution). 

Step2. This step is deterministic, in which the mathematical model is solved to obtain 

the parameters voltage, angle and power flows. 

Step3. Above two steps are repeated.a sufficient number of times, a statistical analysis 

of simulation results is then performed. 

4.1.3 Generation of random numbers [35]: 

Generation of appropriate values of random numbers in accordance with respective 

given probability distribution. For each variable is first generate a uniformly distributed 

random number between 0 and 1.0 and then, through appropriate transformations, obtain 

the corresponding random numbers with the specified probability distribution. 

Generating uniformly distributed random numbers is based on recursive calculations 

of residues of modulus m from a linear transformation. The multiplicative congruential 

method (or power residue method) is frequently used at present. In this method one takes 

residues of successive powers of a number 'x' to be the successive numbers in the random 

sequence: that is, 

Xi = Xt(mod m) 	 (4.1) 

Equation (4.1) an equivalent expression is 

Xi=pXi-1(mod m) 	 ..... (4.2) 

Where p is constant, m=modulus=231-1. The uniform variates are obtained from 

u j=xi/m 	 .....(4.3) 

Equation (4.2) and (4.3) are used for generation of uniform random numbers. 

The value of variable 'x' therefore is obtained by evaluating an inverse of cumulative 

distribution of respective distribution function. 

Xi=F,~ 1(ui ) where i=1, 2 ... n 	 ....(4.4) 
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4.1.4: Discrete random variable generation: The probability mass function p(Xi), 

p(X2)....p(X,), on the integers S(xi, X2.....xi), is shown in Fig.4.1. The Cumulative Probability 

distribution function is shown in. Fig.4.2. In Fig.4.2 represents P(Xj)= p(X1), 

P(X2)=p(X1)+p(X2) P(Xj)=p(xi)+p(Xz)+............+p(Xi) =1.0 

• p() 	P(X)- •
I 	

P(X) 	PCB) 

	

 

X1  X2 X3 	xi 
Load (3C) 

Figure 4.1: Probability Mass Function 

	

I' )r 	--- P(X') 

.0 	FCXQj 

o 	 ' 

	

Xl  X2.1 X3 	,x. U 
Load (X) 

Figure 4.2: Cumulative density function 
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The generation of discrete random variable for the probability mass function 

is as follows. 

Step1: Generate u random value between 0 and 1: u (0, 1) 

Step2: the integer X =Xi if it satisfies the following equation 

I —1 	 I 
Y, P(J) Su < >P(j)  
J=o 	j=1 

Step 3: return 

4.1.5 Flow chart: 

Generate a random number 
between 0 and 1: u (0, 1) 

Start simulation n=1 

If u5P(Xl) 
X=X1 

If P(X1) < u~P(X2) 
X=X2 

n=n+1 	 If P(X2) <U:5 P(X3) 
X=X3 

If P(X (i_I)) <u 5 P(Xi) 
X=X; 

No 
If n=N 

Yes 

End 

Figure 4.3: discrete random generation 
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4.1.6 Solution of Deterministic equations: 

1. Nodal current calculation: 

The nodal current injection Ii(k), at network node i is calculated as  

= (SI V~k-1)) —YV"x-' i= 1, 2...n 	 .... (4.5) 

Where 

k l) 
Is the voltage at node i calculate during (k-1) th iteration 

Si is the specified power injection at node i 

Y, is the sum of all shunt elements at node i 

2. Branch current calculation: 

Starting from the branches in the last layer and moving towards the branches connected to 

the root node. The current in branch L, is calculated as 

JL2 (k) = -IL2 (k) +Z( currents in branches emanating from node L2) 	 ...... (4.6) 

L=b, b-1.......1 

Where h2(k) is the current injection at node L2. 

3. Voltage calculation: 

Nodal voltages are updated in a forward sweep starting from branches in the first layer 

toward those in the last. For each branch, L, the voltage at node L2 is calculated using the 

up dated voltage at node Li and the branch current calculated in the preceding backward 

sweep 

V12 =Vi1 -- ZLJ 	L= 1,2........b 	 ....(4.7) 

Where 

ZL is the series impedance of branch L 
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Flow chart: 	 I Read network data 
and initial conditions 

Set no.of simulation 
start simulation n=1 

Set bus count i =1 

Random generation of load according 
to their distribution function using eq 

(4.3) and (4.4) 

Check 	No 
"=°+1 	 bus count 

if i=n 

Yes 

Run conventional load flow using flow 
chart of fig (4.3) 

NO 	Is no of 
simulations 
maximum? 

Yes 
Calculate mean and variance of 

simulation results according eq (4.8) 
and (4.9) 

Print results 

Figure 4.4: Flow chart of Monte Carlo Simulation 
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START 

NUMBER THE BRANCHES 

SET ITERATION COUNT 
K=1 

CALCULATE NODAL CURRENT 
USING EUATION (4.5) 

CALCULATE BRANCH CURRENT BACKWARD 
K=K+1 	 SWEEP USING EQUATION (4.6) 

CALCULATE NODE VOLTAGES FORWARD 
SWEEP USING EQUATION (4.7) 

CALCULATE MAXIMUM REAL AND REACTIVE 
POWER MISMATCHES AT EACH BUS 

CONVERGED ~~4 PRINT RESULTS STOP 

MAXIMUM ITERATION 	 PRINT 
DIAGNOISTICS 

Figure 4.5: Flow chart of load flow solution 
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4:1.7 General evaluation: 

The Monte Carlo Simulation is a synthetic sampling process. Generation of n values y1, 

y2..........yn of Y and computed sample mean and its variance is 
1 n 

n  i=1 	 ..... (4.8) 

Var(Y)=E[(Y-E(Y))2] 	 .....(4.9) 

Where E(Y) is the expected or average value of Y 

In any sampling experiment, the accuracy of results increases with the number of 

samples; therefore the accuracy of Monte Carlos analysis will depend on the number of 

simulations. Flow chart of Monte Carlo. Simulation method is given in Fig.4.4. 

4.2 Probabilistic Distribution Load Flow Technique Using Laplace transforms: 

4.2.lGeneral formulation: 

The load flow problem can be mathematically described by two. sets of nonlinear equations 

[6-7] as: 

Y=g[x] 

Z=h[x] 

Where, in the case of probabilistic load flow (PLF) 

Y- Input random vector (real and reactive injections) 

X-state random vector (voltage magnitudes and angles) 

Z-output random vector (power flows) 

g, h-load flow functions. 

..... (4.10) 

.... (4.11) 

Once the input vector Y is specified, the state vector X must be evaluated in order to 

determine the output vector Z. As it is a well-known fact, the main problem is solving 

(4.10) since it is not possible to explicitly express X in terms of Y. Therefore, (4.10) is 

linearized around the specified values Yo. In the case of probabilistic load flow (PLF) 

where input 'variables are given in terms of their respective probability distribution 
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function (PDF) s, the most appropriate values to linearize around are the expected values. 

So, let Yo denotes the expected value of Y. 

Yo=g[Xo] 	 ..... (4.12) 

Zo=h[Xo] 	 ..... (4.13) 

Zo and Xo are only approximations for the expected values of Z and X due to the 

nonlinear load flow functions. 

Linearizing (4.10) and (4.11) around the points (Yo, Xo) and. (Zo, Xo), respectively, 

gives the following: 

Where 

X X0 +A. AY=Xo+A.Y 

Z = Zo+A. AY=Zo+B.Y 

A=(ax Ix =xo)-1  

B= (axIx =xo ).A 

... (4.14) 

..... (4.15) 

AY=Y—Yo  

Xo = Xa — A.Yo, Zo = Zo  — B.Yo  

Equations (4.14) and (4.15) express each element of the random vectors X and Z as a 

linear combination of random elements of the input vector Y. The random elements of 

vectors X and Z can be computed from a "weighted" sum of the random elements of vector 

AY. The weighting coefficients are defined sensitivity coefficients. The sum of independent 

(or in some cases linearly dependent) random variables can be made [7J using 

mathematical convolution techniques. The convolution implied by equations (4.14) and 

(4.15) can be written as 

f(K) = f (Y1') * f (Yz) * ...........f(Y) 	 ... (4.16) 

Where 

Yk represents (Yk  — Yok )ak  

* Denotes convolution. 



aik  is an element of A 

Equation (4.16) can be evaluated with different ways. One is to use numerical 

methods based on Laplace transforms, which is referred to as the conventional method. 

Another method, transforms the equation in to frequency domain using fast Fourier (FFT) 

techniques. The remaining deterministic part of (4.14) and (4.15), xoi and zoj, which is 

related to the point of linearization, affects only the position of the resultant PDF. 

4.2.2 Algorithm: Step1: 

When the system being considered has radial operating structure, the linearization of 

(4.10) and (4.11) can be significantly simplified. Firstly, if we neglect power losses in the 

elements of the system, i.e. AP = AQ = U, real and reactive power flow in the element "i-j" 

would be. 

Pi-j = EkEAJ  Pk 	 ..... (4.17) 

Qi-1 = GkEAjQk 	 ..... (4.18) 

Where 4,  denotes the set of all nodes supplied via node "j", including "j" itself. 

Because of the radial operating structure of the system, each element of the output 

vector (whether they are random or not) can be determined directly as a sum of some or 

all the elements of the input vector (injected real and reactive powers). 

Step2: 

When calculating the voltages in distribution networks, having in mind that those are 

operating on medium and low voltage level, the following two approximations can be made 

➢ The imaginary part of voltage drop in any element of the network compared to 

the real one is much smaller; hence, can be neglected. 

➢ Since voltages in every node of the network do not differ much from the 

rated Voltage, it can be used rated voltage can be used instead of the actual 

voltage, when calculating the voltage drop. 
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Consequently, for the voltage drop in the element "i-j", AV-1  we can write the 

following: 

AV = Pi-IRi-I+Qt-IXi-j  +  Pi-JXi-J-Qi-JRi-1 t-J 	V1 	 VI 
..... (4.19) 

Where I1_ J  , and X denote resistance and reactance of the element "i-j". 

One consequence of the first approximation is that the voltages in all the nodes of the 

network have the same phase angle. Therefore, the voltage drop in any sequence of the 

consecutive elements in the network is the algebraic sum of the respective voltage drops 

calculated in accordance with (4.19). Thus, the total voltage drop from the feeding node to 

the node "k" will be sum of voltage drops in all the elements found on the path of supply, 

starting from the feeding point up to the node "k", Le: 

AVk = Z(i-j)E,rkAVi-I 	 ..... (4.20) 

Where irk denotes the set- of elements found on the supply path for the node k. 

Step3: 

For the voltage in node "k", we can write: 

Vk  = Vo  — D. Vk 	 ..... (4.21) 

Where Vo  denotes the voltage of the feeding point. 

Expression (4.19) from which we calculate (4.20) and (4.21) is not quite suitable, 

however, for evaluation of the resultant PDF of the voltage in node "k", because it contains 

output random variables (Pa , Q,) Although these variables are not just numbers, but 

random variables defined with their respective PDFs which need not be statistically 

independent. Therefore, it is much more suitable to express the voltage drops in terms of 

input random variables. Real and reactive power in (4.19) should be substituted with 

(4.18) and (4.19). When this new expression for the element's voltage drop is entered in 

(4.20) and the summations are interchanged, the total voltage drop from the feeding node 

to the node "k" is given as: 
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4.2.3 Flow chart: 

I 	Read network data and initial 
conditions 

Start bus count k=1 

Is distribution of 	No 
load? 
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1 	Calculate power flow using 
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kk+1 	Calculate power flow at each bus 
using (L.T) convolution 
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No 	Bus count 
k=n 
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Print results 

Plot Probability function of V, 
P, and Q 

End 

Figure 4.6: Flow chart 
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1 DYk = 	~(PRk +Q1Xik) 
V,wm ti 

..... (422) 

Where R=k and X,k denote total resistance and reactance of the common 

elements found on the supplying paths of nodes "i" and "k" (intersection). The flow chart 

for this method is given in Fig.4.6. 

4.3 Probabilistic Load flow Computation using Gram-Charlier expansion 

P. Zhang and S. T. Lee [22] first proposed the application of probabilistic load 

flow computation using combined cumulants and Gram-Charlier expansion for power flow 

analysis of transmission networks. They also compared their results with the results 

obtained from Monte-Carlo Simulation method. In their study they have taken WSCC test 

system for illustration. 

In this thesis the probabilistic load flow computation using Gram-Charlier 

expansion for power flow solution of a balanced radial distribution system has been 

developed. In this study, the load demands in the system at different buses are uncertain. 

The load flow algorithm chosen is essentially a probabilistic load flow algorithm [24]. This 

proposed method has been tested with '30 bus test system and the results have been 

compared with Monte Carlo and Probabilistic Load flow using L.T convolution method. 

The major problem in the conventional convolution method is to compute the 

equivalent discrete function since a function represented by r impulses convolved with 

another represented by s impulses will have r times s impulses. Reference [11] clearly 

stated that, even to obtain the PDF of a single line flow, the final number of discontinuous 

points could be extremely large when the number of discontinuous curve to be convoluted 

are large or each curve is represented by a large number of points. This process requires a 

large amount of storage and time. Compared with other methods used by previous 

researchers [7]-[12], the method incorporate in this thesis avoids complex convolution 
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calculation and replaces them with simple arithmetic process due to unique properties of 

Cumulants. Moreover, this method is able to obtain the PDF of line flows With one load 

flow. This method significantly reduces the storage since low order Gram-Charlier 

expansion is able to achieve enough accuracy to approximate PDF of line flows. Study 

results have shown that the proposed method can calculate the probability distribution 

accurately with much less computation effort. 

4.3.1 Algorithm: 

Step1: Read the given Probabilistic load data and network data 

Step2: Set the order of moments and cumulants 

Step 3: check the type of distribution of load data 

Step 4: if the distribution of load is normal go to step 6 else stepS. 

Step 5: Calculate the moments of injected active power as well as reactive power according 

to the equation (3.1). 

Step 6: Compute the cumulants of injected power according to the relationship between 

moments and cumulants of equation (3.7) or (3.9 & 3.10). 

Step 7: Compute the moments of resistance and reactance from the given network 

probabilistic data based on the equation (3.1) 

Step 8: Calculate the cumulants of line flow from the following equation 

For the i th line flow. 

	

Plinei = h 1  p1  + hl2  p2  +............+ hTn  pn 	 (4.23). 

Q 

	

 liner = h Q +h.t2  Q2  +............+hlnQn 	 ...... (4.24) t7 1  
Where 

hid  represents the sensitivity coefficient 

hid  =1 if jth load is in the path to the ith line else 0 

For the cumulants (y) related with ill line flow 
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it v 	i2 v . 	in v 

Where V=1, 2...,..... 

Step 9: Compute the central moments of each line according to the relation ship between 

central moments and cumulants expressed using equation (3.14) or (3.17 & 3.18), 

Step 10: Calculate the Gram-Charlier expansion coefficients using equation (3.38) 

Step 11: the Probability Distribution Function of line flow can be obtained using equation 

(3.38) 

Step 12: Compute resultant _ moments of active and reactive voltage drops using the. 

following equations. 

av(AVfk)active - av(pak)av(Rik) 	 ..... (4.26) 

av(Li'k)reactive = av(Qfk)av(X(k) 	 ..... (4.27) 

Where 

a denotes moments about origin 

Step 13: Calculate cumulants of voltage drop from their moments using equation (3.6) 

Step 14: Compute the voltage drop cumulants using the following equation 

yv(AVk) — yv( PkR k)+yv~ikR k ) 	 .... (4.28) 
Step 15: Compute the voltage cumulants at each node. 

yv(V.)=yv(V.)—yv(.V.) 	 .....(4.29) 

Where 

= Voltage cumulants at substation node 

yv(LVk ) = Voltage drop cumulants 

Step 16: Calculate central moments of voltage at each node based on equation (3.14) or 

(3.17 & 3.18). 

Step 17: Compute the Gram-Charlier'coefficients using equation (3.36). 
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Step 18.: Compute the Probability Distribution Function of voltage using equation (3.38). 

4.4Probabilistic Load Flow using Complex Random Variable Analysis: 

S.Patra and RB.Misra [20] first proposed the probabilistic load flow using. 

Method of moments for power flow analysis of transmission networks. Later Tae-Kyunkim 

[21] applied this method for security assessment of bus voltages in transmission network 

In this thesis the probabilistic load flow using Complex random Variable 

analysis for power flow solution of distribution system has been carried out In this study, 

the load outages and network outages has also been considered. The load flow algorithm 

chosen is essentially a Z Loop load flow algorithm [24]. This method has been tested with 

13 and 30. bus test system. 

4.4.1 Slack Bus Representation: At the slack bus the voltage remains constant. If the 

slack bus is usually assumed to be bus number one, this constancy of bus voltage may be 

probabilistically simulated by a PDF as depicted in Fig. 4.7. 

Figure 4.7: PDF of Slack bus voltage 

The moments of this CRV V1, are simply given by 

a(V1)=Vl, t =1,2....... 	 ....(4.30) 

The cumulants are given by 

r(V1) = a1(V1) = Vi 	 ..... (4.31) 

Yt(VI)=0 	t>2 	 .....(4.32) 
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The slack bus is, therefore, assumed capable, by means of the generating unit connected to 

it, to maintain a constant voltage for all possible contingencies of the generating units, 

distribution lines as well as load variation and uncertainty. This clearly implies that a 

100% reliable generating unit is appropriately fixed so as to provide the required active 

and reactive powers for all contingencies. 

4.4.2 PQ-Bus Representation: At a PQ- bus the active and reactive powers are known 

since the bus powers are given by the difference between the generated powers and the 

demand as 

S =SG — SD 	 .(4.33) 

This assumes that the PDF of generated power as well as the PDF of demand are known. 

There are clearly three cases to consider 

(i) PQ-bus with no generation such that S = SD , ( ii) PQ-bus with no demand such that 

S = SG  and (iii) PQ-bus with both generation and demand such that S = SG  — SD  

In the first case, the PDF of demand is assumed to be expressible in terms of 

active and reactive powers. In this thesis two types of loads have been considered. 

a. Deterministic load: 	 .F - 

. The load is represented by SD  = PD  + jQD  with known probability Pd  = 1.0 

and may be depicted as in Fig.4.8. 

Figure: 4.8 PDF of available Load or demand 
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b. Load with Uncertainty: 
The simplest way to simulate this is by means of The PDF as shown inmFig. 4.9. 

Figure 4.9: PDF of load with Uncertainty 

The moments and cumulants may be evaluated, therefore, from these PDFs in a straight 

forward manner. 

In the second case, the PDF of available capacity is assumed known. A typical 

PDF for a unit may be depicted as shown in Fig. 4.10. The total PDF of available capacity at 

a bus may be obtained convolving the individual PDFs of the units connected at that bus. 

The implicit assumption that is made is that outages of these units occur independently. 

I 
PA(X) 	

p 

9 

XA = C 

XA 

Figure: 4.10 PDF of available capacity of a generating unit 
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In the third case, the PDF of generation must be convolved with PDF of 

demand (negative demand SD) to obtain the PDF of bus power. Since these CRVs are 

assumed independent. That cumulants can be added. The procedure can be put into the 

following algorithm. 

4.4.2.1 Algorithm: 

1. Obtain the, moments of Sr  and —SD  

2. Obtain the cumulants using the relation between moments and cumulants using 

equation (3.30) 

3. Add the cumulants of SG  and —SD  

4. Obtain the moments of the sum using the relation between cumulants and moments 

using equation (3.32) 

4.4.3 Formulation of Stochastic equations: 

Assume that voltage (V) and power (S) are independent complex random variables 

with known probability density functions. The moments of arbitrary i-th bus currents are 

calculated by the complex power equation 

I.V* =S* 	 ..... (4.34) 

(4.35) 

Where 

t: the t-th order moments, 

is the i-th bus 

a = moments about origin 

Branch current stochastic equation 

yt (1) 	yt (l 	+ yt  (E currents eminating from (i-1) th node) 	.....(4.36) 



Start 

Read Probabilistic load 
and network data 

Calculate Net Injected 
Power 

Moments of Injected Power 
using equation (3.28) 

Moments of Injected Current 
using equation (4.35) 

Cumulants of Branch flow 
using equation (4.36) 

Cumulants of Voltage using 
equation (4.37) 

Moments of voltage using 
equation (3.32) 

Moments of 
voltage is [4.38] 	}-r Moments of power 
is converged? 

PDF of voltage and 
Stop 	 power 

Figure 4.11: Flow chart 
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Voltage equation in the stochastic form 

r,(V )  — Yv(V —1 )  yv(Z.  .) 	 ..... (4.37) 

The cumulants of y (ZJi ) can be calculated using transformation between the moments 

and cumulants. 

av(Z1J1) = av(Zg)av(lt) 	 (4.38) 

Moments of Voltage Converge if 

Ia(V(k-1)) — a(V k)I : E 	 ..... (4.39) 

Where 

a (V k ) = moment of k th iteration of voltage 

a (V ( k-1) ) = moment of (k — 1)th iteration of voltage  

E = 1 X 10-3  

The flow chart of. Probabilistic Load Flow using Complex Random Variable 

analysis is given in Fig 4.11. 

In the next chapter the simulation results are presented 
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14. 

10 

Chapters 

Probabilistic Load Flow using Laplace Transform, Probabilistic load flow 

computation using Gram-Charlier have been applied on a test system as shown in Fig 3.1, 

and the data are given in table B1 an B2 in appendix B. Out of the total number of 30 buses, 

20 buses are load buses. The root node has a specified voltage of 1.05p.u. Two types of load 

probability distribution function (normal and discrete) with four different cases have been 

considered. The results have been compared with Monte Carlo Simulation and 

deterministic load flow methods. 

., 

IU 

Figure 5.1 Radial distribution network 

51 



In deterministic load flow the loads are deterministic i.e. loads are with out 

uncertainty. The power losses and voltage drops have been considered. In Monte Carlo 

Simulation method the loads are probabilistic instead of deterministic. 

To select appropriate number of simulations for Monte Carlo Simulation 

method the bus voltages, the bus active power and the bus reactive power variations with 

number of simulations were plotted (FIG. 5.2) and compared with base case load flow 

results. The Monte Carlo Method converges after 800 simulations for voltages, 1400 

simulations for bus active power and 1400 simulations for bus reactive power. Hence 1400 

simulations are used in Monte Carlo Simulations. 

	

0919 ;; 	_ 	., 
0 9l eej 	; » . 	,r::, 
0 61 i6 	V  d4' 	300 

	
40 	500 	X04 	700 	6DC1 	900.; 	IOdO. 

0.A 62 o... 
sue, 

016: 

Q0795 

Figure5.2: Variation of bus voltage, bus active power, bus reactive power with no of 

simulations 
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5.1.1 Case (1): When all Bus loads are independent and normal: 

Load flow using Monte Carlo Technique, probabilistic using L.T technique and 

PLF using Gram-Charlier have been carried out for the case when all loads are 

independent and have normal distribution. The. results for bus voltage, bus active powers 

and bus reactive powers are given below. 

Table 5.1: Comparison of bus voltage PDF 

DETERMINISTIC MONTE-CARLO PROBABILISTIC 

USING (L.T) 

GRAM-CHARLIER 

Bus no base (V) ) mean (V) ) std mean Std(V) mean(  Std(V)  
1 1.05 1.05 0 1.05 0 1.05 0 
2 0.9265 0.9264 0.0025 0.9372 0.0019 0.9372 0.0019 
3 0.9252 0.9251 0.0026 0.936 0.0019 0.936 0.0019 
4 0.9243 0.9242 0.0026 0.9352 0.0019 0.9352 0.0019 
5 0.9241 0.924 0.0026 0.935 0.0019 0.935 0.0019 
6 0.9187 0.9186 0.0027 0.93 0.002 0.93 0.002 
7 0.9181 0.9181 0.0027 0.9295 0.002 0.9295 0.002 
8 0.9181 0.9181 0.0027 0.9295 0.002 0.9295 0.002 
9 0.9172 0.9172 0.0027 0.9287 0.002 0.9287 0.002',  
10 0.9166 0.9165 0.0027 0.9282 0.0021 0.9282 0.0021 
11 0.916 0.9159 0.0027 0.9276 0.0021 0.9276 0.0021 
12 0.9157 0.9156 0.0027 0.9273 0.0021 0.9273 0.0021 
13 0.9161 0.916 0.0027 0.9277 0.0021 0.9277 0.0021 
14 0.9159 0.9158 0.0027 0.9275 0.0021 0.9275 0.0021 
1.5 0.9.154 0.9154. 0.0028 0.9271 0.0021 0.9271 0.0021 
16 0.9154 0.9153 0.0028: ; 0.9271 0.0021 0.9271 0.0021 
17 0.9147 0.9146 0.0028 0.9264 0.0021 0.9264 0.0021 
18 0.9151 0.9151 0.0028 0.9268 0.0021 0.9268 0.0021 
19 0.923 0.923 0.0026. 0.934 0.0019 0.934 0.0019 
20. 0.9228 0.9228 0.0026. 0.9339 0.0019 0.9339 0.0019 
21 0.9219 0.9219 0.0026 0.933 0.002 0.933 0.002 
22 0.9214 0.9213 0.0026 0.9325 0.002 0.9325 0.002 
23 0.9213 0.9212 0.0027 0.9324 0.002 0.9324 0.002 
24 0.9208 0.9207 0.0027 0.932 0.002 0.932 0.002 
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25 0.9206 0.9205 0.0027 0.9318 0.002 0.9318 	. 0.002 
26 0.9201 0.92 0.0027 0.9313 0.002 0.9313 0.002 
27 0.92 0.9199 0.0027 0.9313 0.002 0.9313 0.002 
28 0.9202 0.9201 0.0027 0.9314 0.002 0.9314 0.002 
29 0.9191 0.919 0.0027 0.9304 0.002 0.9304 0.002 
30 0.9199 0.9198 0.0027 0.9311 0.002 0.9311 0.002 

From the table (5.1) it can be observed that Monte Carlo Simulation results are• 

closer to the results obtained from deterministic load flow method. The probabilistic using 

L.T method and Gram-Charlier results are exactly matching. The probabilistic load flow 

using L.T method, Gram-Charlier results are also in good agreement with Monte Carlo 

simulation. The maximum error in both cases is 1.2737%. 

This difference in bus voltages in both cases due to 

(a) Assuming 1.0p.0 voltage at all busses. . 

(b) Using approximate expression for calculating the line voltage drop. 

Table 5.2: Comparison of bus active power PDF 

DETERMINISTIC MONTE-CARLO PROBABILISTIC 

USING (L.T) 

GRAM-CHARLIER 

Bus no . P mean(P) std (P) mean (P) std (P) mean(P) std (P)  
1 3.5849 3.5866 0.0871 3.2 0.0716 3.2 0.0716 
2 3.2271 3.2282 0.0723 3.2 0.0716 3.2 0.0716 
3 3.223 3.2241 0.0721 3.2 0.0716 3.2 0.0716 
4 0.16 0.1601 0.0157 0.16 0.016 0.16 0.016 
5 0.16 0.16 0.0163 0.16 0.016 0.16 0.016 
6 1.6044 1.6055 0.05 1.6 0.0506 1.6 0.0506 
7 0.16 0.1604 0.016 0.16. 0.016 0.16 0.016 
8 0.16 0.1597 0.0161 0.16 0.016 0.16 0.016 
9 0.16 0.1605 0.016 0.16 0.016 0.16 0.016 
10 1.1215 1.1221 0.042 1.12 0.0423 1.12 0.0423 
11 0.16 0.1601 0.0161 0.16 0.016 0.16 0.016 
12 0.16 0.1602 0.0159 0.16 0.016 0.16 0.016 
13 0.16 0.1601 0.0161 0.16 0.016 0.16 0.016 
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14 0.6406 0 640 0.0318 0.64 0.032 .  0.64 0.032 

15 0.16 0.1597 0.0163 0.16 	' 0.016 0.16 0.016 

16 0.16 0.1601 0.0159 0.16 0.016 0.16 0.016 

17 0.16 0.1601 0.0159 0.16 0.016 0.16 0.016 

18 0.16 0.1603 0.016 0.16 0.016 0.16 0.016 

19 1.2833: 1.2831 0.046 1.28 0.0453 1.28 0.0453 

20 0.16 0.1603 0.0159 0.16 0.016 0.16 0.016 

21 0.16 0.16 0.0162 0.16 0.016 0.16 0.016 

22 0.9614 0.9609 0.0396 0.96 0.0392 0.96 0.0392 

23 0.16 0.1599 0.0159 0.16 0.016 0.16 0.016 

24 0.1.6 0.1598 0.0159 0.16 0.016 0.16 	. 0.016 
25 0.6407 0.6405 0.0321 0.64 0.032 0.64 0.032 

26 0.16 0.1597 0.0161 0.16 0.016 0.16 0.016 

27 0.16 0.16 0.0163 0.16 0.016 0.16 0.016 
28 0.3203 0.3204 0.0228 0.32 0.0226 0.32 0.0226 

29 0.16 0.1601.: 0.0161 0.16 0.016 0.16 0.016 
30 0.16 '.0.16 0.016 0.16 0.016 0.16 0.016 

Table 5:3: Comparison of bus reactive power PDF 

DETERMINISTIC MONTE-CARLO PROBABILISTIC 

USING (L.T) 

GRAM-CHARLIER 

Bus no Q 
mean (Q) std(Q) mean (Q) std(Q) mean(Q) std(Q)  

1 1.966 1.9672 0.0431 1.6 0.0358 1.6 0.0358.8- 

2 1.6127 1.6133 0.0362 1.6 0.0358 1.6 0.0358 
3 1.6097 1.6103 0.0362' 1.6 0.0358 1.6 0.0358 
4 0.08 0.0801 0.008 0.08 0.008 0.08 0.008 
5 0.08 0.08 0.0078 0.08 0.008 0.08 0.008 
6 0.802 0.8024 0.0256 0.8 0.0253 0.8 0.0253 
7 0.08 0.0799 0.0079 0.08 0.008 0.08 0.008 
8 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
9 0.08 0.08 0.0081 0.08 0.008 0.08 0.008 
10 0.5604 0.5611 0.0215 0.56 0.0212 0.56 0.0212 
11 0.08 0.0801 0.008 0.08 0.008 0.08 0.008 
12 0.08 0.0801 0.0081 0.08 0.008 0.08 0.008 
13 0.08 0.0801 0.0081 0.08 0.008 0.08 0.008 
14 0.3201 0.3203 0.0161 0.32 0.016 0.32 0.016 
15 0.08 0.0801 0.0079 0.08 0.008 0.08 0.008 
16 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
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0 
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0.93 	0.935 
	U..4 

voltage in (R.U) 

Gram-Charlier 

.0L 
0.94 	0.925 

17 0.08 0.0801 0.0081 0.08 0.008 0.08 0.008 
18 0.08 0.0802 0.0082 0.08 0.008 0.08 0.008 
19 0.6415 0.6416 0.0226 0.64 0.0226 0.64 0.0226. 
20 0.08 0.0801 0.0081 0.08 0.008 0.08 0.008 
21 0.08 0.0799 0.0079 0.08 0.008 0.08 0.008 
22 0.4805 0.4806 0.0194 0.48 0.0196 0.48 0.0196 
23 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
24 0.08 0.0802 0.0081 0.08 0.008 0.08 0.008 
25 0.3201 0.3202 0.016 0.32 0.016 0.32 0.016 
26 0.08 0.08 0.0081 0.08 0.008 0.08 0.008 
27 0.08 0.08 0.0082 0.08 0.008 0.08 0.008 
28 0.16 0.1601 0.0114 0.16 0.0113 0.16 0.0113 
29 0.08 0.08 0.008 0.08 0.008 0.08 0.008 
30 0.08 0.0801 0.008 0.08 0.008 0.08 0.008 

From the tables (5.2) and (5.3) comparing the bus active and reactive powers 

A good agreement in results between the four methods can be seen. Differences can be 

observed in the bus powers at the slack bus. The difference is of the order of 10.77%. 

The difference in the slack bus power is due to the assumption of neglecting 

power losses in the lines, in this case active power loss is 0.3849pu and reactive power loss 

is 0.366pu. These losses are nearly equal to the difference in the value of P and Q at slack 

bus. 
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Figure 5.3: Probability distribution function of the Voltage at node 28 
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Figure 5.5: Probability distribution function 

of Reactive power flow in element 25-28 

In figures 5.3, 5.4 and 5.5 are shown Probability distribution function(PDF) of 

the voltage at node 28, the real and reactive power flow in element 25-28, for the case 

when all input variables independent and normal with Monte Carlo technique, 

Probabilistic technique using ;L.T and Gram-Charlier respectively. As it can be seen, these 

functions have the similar "bell" shape of the normal probability distribution functions. 

This is what should be expected for all the resultant variables in this case, since all inputs 

are normal. The PDF of above techniques compare well with each other. 
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The time taken by the probabilistic load flow computation using Gram-Charlier 

method is 1.9375sec, while the Monte Carlo Simulation requires 15sec (1400simulations). 

The results obtained by Monte Carlo Simulation are very accurate while the probabilistic 

load flow Computation using Gram-Charlier results are slightly less accurate. But the 

maximum error is 1- 2% and is with in acceptable limits. The results are of acceptable 

accuracy. The slight inaccuracy is attributed to the simplifying assumptions. How ever, 

these assumptions result in substantial simplification in the modeling. 

5.1.2 Case (ii): At least one load has a discrete distribution function: 

In order to demonstrate the impact on the resultant probability distribution 

function of the shape of the input probability distribution functions, for the load in 30 has 

been assumed to be a discrete distribution as shown in Fig 5.6, in percentage of the mean 

value. All the other inputs are independent and normal. 

discrel distribution function of load 

M 

a 0. 
0 
I 

I 

0.2 0.4 0.6 0.8 1 1.2 
load 

Figure 5.6: Probability mass function for the load at 30th bus 

Load flow using probabilistic method using L.T and Gram-Charlier have been 

carried out and the results have been compared with Monte Carlo Simulation, Probabilistic 

load flow using Laplace transform and deterministic load flow, for the case when at least 

one of the load has been considered as a discrete distribution function and remain loads 
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are independent and normal. The results for bus voltage, bus active powers are given 

below. 

Table 5.4: Comparison of Bus Voltages 

DETERMINISTIC 
• 

MONTE-CARLO PROBABILISTIC 

USING L.T 

GRAM-CHARLIER 

Bus no base(V) mean std (V) mean(V) std(V) mean(V) std (V)  
1 1.05 1.05 0 1.05 0 1.05 0 

• 2 0.9265 0.9263 0.0038 0.9372 0.0024 0.9372 0.0024 
3 0.9252 0.9251 0.0038 0.936 0.0025 0.936 0.0025 
4 0.9243 0.9241 0.0038 0.9352 0.0025 0.9352 0.0025 
5 0.9241 0.9239 0.0038 0.935 0.0025 0.935 0.0025 
6 0.9187 0.9185 0.0039 0.93 0.0026 0.93 0.0026 
7 0.9181 0.918..:  0.0039 0.9295 0.0026 0.9295 0.0026 
8 0.9181 0.918 0.0039 0.9295 0.0026 0.9295 0.0026 
9 0.9172 0.9171 0.0039 0.9287 0.0026 0.9287 0.0026 
10 0.9166 0.9165 0.0039 0.9282 0.0026 0.9282 0.0026 
11 0.916 0.9159 0.004 0.9276 0.0026 0.9276 0.0026 
12 0.9157 0.9156 0.004 0.9273 0.0026 0.9273 0.0026 
13 0.9161 0.916 0.004 0.9277 0.0026 0.9277 0.0026 
14 0.9159 0.9158 0.004 0.9275 0.0026 0.9275 0.0026 
15 0.9154 0.9153 0.004 0.9271 0.0026 0.9271 0.0026 
16 0.9154 0.9153 0.004 0.9271 .0.0026 0.9271 0.0026 
17 0.9147 0.9146 0.004 0.9264 0.0026 0.9264 0.0026 
18 0.9151 0.915 0.004 0.9268 0.0026 0.9268 0.0026 
19 0.923 0.9229 0.0039 0.934 0.0026 0.934 0.0026 
20 0.9228 0.9227 0.0039 0.9338 0.0026 0.9338 0.0026 
21 0.9219 0.9218 0.0039 0.933 0.0026 0.933 0.0026 
22 0.9214 0.9213 0.004 0.9325 0.0026 0.9325 0.0026 
23 0.9213 0.9211 0.004 0.9324 0.0026 0.9324 0.0026 
24 0.9208 0.9206 0.004 0.932 0.0026 0.932 0.0026 
25 0.9206 0.9205 0.0041 0.9318 0.0027 0.9318 0.0027 
26 0.9201 0.9199 0.0041 0.9313 0.0027 0.9313 0.0027 
27 • 0.92 0.9199 0.0041 0.9313 0.0027 0.9313 0.0027 
28 0.9202 0.92 0.0041 0.9314 .0.0027 0.9314 0.0027 
29 0.9191 0.9189 0.0042 0.9304 0.0027 0.9304 0.0027 
30 0.9199 0.9197 0.0042 0.9311 0.0028 0.9311 0.0028 
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Table 5.5; Comparison of Bus active power flow 

DETERIVIINISTIC MONTE-CARLO PROBABILISTIC 
Using (L.T). 

GRAM-CHARLIER 

bus no P mean (P) std (P) mean (P) std (P) mean(r) std (P)  
1 3.5849 3.5895 0.1167 3.2002 0.0931 3.2002 0.0931 
2 3.2271 3.2305 0.0951 3.2002 0.0931 3.2002 0.0931 
3 3.223 3.2264 0.0948 3.2002 0.0931 3.2002 0.0931 
4 0.16 0.1597 0.0159 0.16 0.016 0.16 0.016 
5 0.16 0.1599 0.016 0.16 0.016. 0.16 0.016 
6 1.6044 1.6057 0.051 1.6 0.0506 1.6 0.0506 
7 0.16 0.1602 0.016 0.16 0.016 0.16 0.016 
8 0.16 0.1604 0.0161 0.16 0.016 0.16 0.016 
9 0.16 0.1602 0.0161 0.16 0.016 0.16 0.016 

10 1.1215 1.122. 0.0426 1.12 0.0423 1.12 .0.0423 
11 0.16 0.1599 0.0161 0.16 0.016 0.16 0.016 
12 0.16 0.1603 0.0159 0.16 0.016 0.16 0.016 
13 . 0.16 0.1601 0.016 0.16 0.016. 0.16 0.016 
14 0.6406 0.6408 0.0322 0.64 0.032 0.64 0.032 
15 0.16 0.1603 0.0158 0.16 0.016 0.16 0.016 
16 0.16 0.1599 0.016 0.16 0.016 0.16 0.016 
17 0.16 0.1602 0.016 0.16 0.016 0.16 0.016 
18 0.16 0.1598 0.0159 0.16 0.016 0.16 0.016 
19 1.2833 1.2857 0.0749 1.2802 0.0748 1.2802 0.0748 
20 0.16 0.16 0.0157 0.16 0.016 0.16 0.016 
21 0.16 0.1602 0.0159 0.16 0.016 0.16 0.016 
22 0.9614 0.9636 0.0714 0.9602 0.0713.  . 0.9602 0.0713 
23 0.16 0.1602 0.0161 0.16 0.016 0.16 0.016 
24 0.16 0.16 0.0159 0.16 0.016 0.16 0.016 
25 0.6407 0.6427 0.0677 0.6402 0.0676 0.6402 0.0676 
26 0.16 0.1598 0.0159 0.16 0.016 0.16 0.016 
27 0.16 0.1602 0.0159 0.16 0.016 0.16 0.016 
28.. 0.3203 0.3223 0.0635 0.3202 0.0637 0.3202 0.0637 
29 0.16 0.1604 0.0156 0.16 0.016 0.16 0.016 
30 0.16 0.1616 0.0617 0.1602 0.0617 0.1602 0.0617 
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Table 5.6: Comparison of bus Reactive power Flow 

DETERMINISTIC MONTE CARLO PROBABILISTIC 
Using (L.T)  

GRAM-CHARLIER 

bus no Q mean (Q) std (Q) mean (Q) std (Q) mean (Q) std (Q)  
1 1.966 1.9674 0.0631 1.6001 0.0465 1.6001. 0.0465 
2 1.6127 1.6129 0.0469 1.6001 0.0465 1.6001 0.0465 
3 1.6097 1.6099 0.0468 1.6001 0.0465 1.6001 0.0465 
4 0.08 0.0801 0.0081 0.08 0.008 0.08 0.008 
5 0.08 0.08 0.0079 0.08 0.008 .0.08 0.008 
6 0.802 0.8015 0.0251 0.8 0.0253 0.8 0.0253 
7 0.08 0.08 0.008 0.08 0.008 0.08 0.008 
8 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
9 0.08. 0.0799 0.0081 0.08 0.008 0.08 0.008 

10 0.5604 0.5602 0.021 0.56 0.0212 0.56 0.0212 
11 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
12 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
13 0.08 0.08 0.0079 0.08 0.008 . 	0.08 0.008 
14 0.3201 0.32 0.0158 0.32 0.016 0.32 0.016 
15 0.08 0.0803 0.008 0.08 0.008 0.08 0.008 
16 0.08 0.0799 0.0079 0.08 0.008 0.08. 0.008 
17 0.08 0.0799 0.0079 0.08 .0.008 0.08 0.008 
18 0.08 0.0798 0.0081 0.08 0.008 0.08 0.008 
19 0.6415 0.6421 0.0376 0.6401 0.0374 0.6401 0.0374 
20 0.08 0.08 0.008 0.08 0.008 0.08 0.008 
21 0.08 0.0798 0.0081 0.08 0.008 0.08 0.008 
22 0.4805 0.4812 0.0358 0.4801 0.0356 0.4801 0.0356 
23 0.08 0.08 0.008 0.08 0.008 0.08 0.008 
24 0.08 0.0799 0.0081 0.08 0.008 0.08 0.008 
25 0.3201 0.3208 0.034 0.3201 0.0338 0.3201 0.0338. 
26 0.08 0.0799 0.008 0.08 0.008 0.08 0.008 
27 0.08 0.08 0.0081 0.08 0.008 0.08 0.008 
28 0.16 0.1608 0.032 0.1601 0.0318 0.1601 0.0318 
29 0.08 0.08 0.008 0.08 0.008 0.08 0.008 
30 0.08 0.0808 0.0309 0.0801 0.0308 0.0801 0.0308 
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The shape of the voltage probability distribution function remains the bell 

shaped and is shown in Fig 5.7, but the impact on the active and reactive power flow 

probability distribution function is as shown in Fig.5.8 and 5.9. The probability distribution 

functions (PDF) becomes non-normal. The difference in the shape of PDF in Gram-Charlier 

method can. be attributed to the fact that Gram-Charlier series is based on normal 

probability function, and the resultant function in this case is multi model. 
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But the expected values.. and the range of random variables are predicted 

accurately by Gram-Charlier. 

5.1.3 Case (iii): When All Bus loads have a discrete distribution function: 

To stimulate a practical system the IEEE Discrete hourly load data has been 

considered. From these data, the probabilistic distribution of load at each bus has been 

calculated. The Probabilistic method . using Laplace transform and Probabilistic using 

Gram=Charlier has been carried out when the case of all bus loads have discrete 

distribution function as shown in Fig 5.10, in percentage of the mean value. 

Yuri 
Figure 5.10: IEEE Probabilistic discrete distribution of load 
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The bus powers and voltages are given below. 

Table 5.7: Comparison of Bus voltages 

DETERMINISTIC MONTE-CARLO PROBABILISTIC 

USING (L.T) 

GRAM-CHARLIER 

Bus 
. no base(V) mean (V) std(V) mean(V) std mean(V) std(V)  

1 1.05 1.05 0 1.05 0 1.05 0 
2 0.9265 0.9264 0.0073 0.9372. 0.0041 0.9372 0.0041 
3 0.9252 0.9251 0.0073 0.936 0.0041 0.936 0.0041 
4 0.9243 0.9242 0.0074 0.9352 0.0041 0.9352. 0.0041 
5 0.9241 0.924 0.0074 0.935 0.0042 0.935 0.0042 
6 0.9187 0.9186 0.0077 0.93 0.0044 0.93 0.0044 
7 0.9181 0.9181: 0.0077 0.9295 0.0044 0.9295 0.0044 
8 0.9181 0.9181 0.0077 0.9295 0.0044 0.9295 0.0044 
9 0.9172 0.9172 0.0078 0.9287 0.0044 0.9287 0.0044 
10 - 0.9166.  0.9166 0.0078 0.9282 0.0044 0.9282 0.0044 
11 0.916 0.916 0.0078 0.9276 0.0045,  0.9276 0.0045 
12 0.9157 0.9156 0.0079 0.9273 0.0045 0.9273 0.0045 
13 0.9161. 0.9161 0.0078 0.9277 0.0045 0.9277 0.0045 
14 0.9159 0.9158 0.0079 0.9275 0.0045 0.9275 0.0045 
15 0.9154 0.9154 0.0079 0.9271 0.0045 0.9271 0.0045 
16 0.9154 0.9154 0.0079 0.9271 0.0045 0.9271 0.0045 
17 0.9147 0.9147 0.0079 0.9264 0.0045 0.9264 0.0045 
18 0.9151 0.9151 0.0079 0.9268 0.0045 0.9268 0.0045 
19 0.923 0.923 0.0075 0.934 0.0042 0.934 0.0042 
20 0.9228 0.9228 0.0075 0.9339 0.0042 0.9339 0.0042 
21 0.9219 0.9219 0.0075 0.933 0.0042 0.933 0.0042 
22 0.9214 0.9214 0.0076 0.9325 0.0042 0.9325 0.0042 
23 0.9213 0.9212 0.0076 0.9324 0.0042 0.9324 0.0042 
24 0.9208 0.9208 0.0076 0.932 0.0043 0.932 0.0043 
25 0.9206 0.9206 0.0076 0.9318 0.0043 0.9318 0.0043 
26 0.9201 0.92 0.0076 0.9313 0.0043 0.9313 0.0043 
27 0.92 0.92 0.0076 0.9313 0.0043 0.9313 0.0043 
28 0.9202 0.9201 0.0076 0.9314 0.0043 0.9314 0.0043 
29 0.9191 0.919 0.0077 0.9304 0.0043 0.9304 0.0043 
30 0.9199 0.9198 0.0076 0.9311 0.0043 0.9311 0.0043 
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Table 5.8: Comparison of Bus active power 

DETERMINISTIC MONTE-CARLO PROBABILISTIC 

USING (LT) 
GRAM-CHARLIER 

Bus no P mean (P) std (P) mean (P) std (P) mean (P) std (PL  
1 3.5849 3.5855 0.1975 3.1998 0.1543 3.1998 0.1543 
2 3.2271 3.2264 0.1571 3.1998 0.1543 3.1998 0.1543 
3 3.223 3.2223 0.1567 3.1998 0.1543 3.1998 0.1543 
4 0.16 0.1598 0.0345 0.16 0.0345 0.16 0.0345 
5 0.16 0.1593 0.0348 0.16 0.0345 0.16 0.0345 
6 1.6044 1.6055 0.1097 1.5999 0.1091 1.5999 0.1091 
7 0.16 0.1595.-: 0.0347 0.16 0.0345 0.16 0.0345 
8 0.16 0.1599 0.0342 0.16 0.0345 0.16 0.0345 
9 0.16 0.1602 0.0348 0.16 0.0345 0.16 0.0345 
10 1.1215 1.1229 0.0916 1.1199 0.0913 1.1199 0.0913 
11 0.16 0.1603 0.0346 0.16 0.0345 0.16 0.0345 
12 0.16 0.1601 0.0344 0.16 0.0345 0.16 0.0345 
13 0.16 0.1603 0.035 0.16 0.0345 0.16 0.0345. 
14 0.6406 0.6412 0.0693 0.64 0.069 0.64 0.069 
15 0.16 0.1615 0.0347 0.16 0.0345 0.16 0.0345 
16 0.16 0.1596 0.0344 0.16 0.0345 0.16 0.0345 
17 0.16 0.1597 0.0346 0.16 0.0345 0.16 0.0345 
18 0.16 0.1597 0.0348 0.16 0.0345 0.16 0.0345 
19 1.2833 1.2822 0.0989 1.2799 0.0976 1.2799 0.0976 
20 0.16 0.1603 0.0343 0.16 0.0345 0.16 0.0345 
21 0.16 0.1601 0.0345 0.16 0.0345 0.16 0.0345 
22 0.9614 0.9598 0.0855 0.9599 0.0845 0.9599 0.0845 
23 0.16 0.1598 0.035 0.16 0.0345 0.16 0.0345 
24 0.16 0.1591 0.0348 0.16 0.0345 0.16 0.0345 
25 0.6407. 0.6402 0.0685 0.64 0.069. 0.64 0.069 
26 0.16 0.1601 0.0347 0.16 0.0345 0.16 0.0345 
27 0.16 0.1601 0.0343 0.16 0.0345 0.16 0.0345 
28 0.3203 0.3197 0.049 0.32 0.0488 0.32 0.0488 
29 0.16 0.1595 0.0346 0.16 0.0345 0.16 0.0345 
30 0.16 0.1599 0.0345 0.16 0.0345 0.16 0.0345 
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Table 5.9: Comparison of bus reactive power 

DETERMINISTIC MONTE-CARLO PROBABILISTIC 
USING (L.T) 

GRAM-CHARLIER 

Bus no P mean P std(! mean std (P) mean(P) std(P)  
1 1.966 1.9671 0.1183 1.5999 0.0772 1.5999 0.0772 
2 1.6127 1.6125 0.0785 1.5999 0.0772 1.5999 0.0772 
3 1.6097 1.6094 0.0781 1.5999 0.0772 1.5999 0.0772 
4 0.08 0.0799 0.0173 0.08 0.0173 0.08 0.0173 
5 0.08 0.0797 0.0174 0.08 0.0173 0.08 0.0173 
6 0.802 0.8026 0.0548 0.7999 0.0546 0.7999 0.0546 
7 0.08 0.0798 0.0173 0.08 0.0173 0.08 0.0173 
8 0.08 0.08 0.0171 0.08 0.0173 0.08 0.0173 
9 0.08 0.0801 0.0174 0.08 0.0173 0.08 0.0173 
10 0.5604 0.5611 0.0458 0.56 0.0457 0.56 0.0457 
11 0.08 0.0802 0.0173 0.08 0.0173 0.08 0.0173 
12 0.08 0.0801 0.0172. 0.08 0.0173 0.08 0.0173 
13 0.08 0.0802 0.0175 0.08 0.0173 0.08 0.0173 
14 0.3201 0.3204 0.0346 0.32 0.0345 0.32 0.0345 
15 0.08 0.0808 0.0173 0.08 0.0173 0.08 0.0173 
16 0.08 0.0798 0.0172 0.08 0.0173 0.08 0.0173 
17 0.08 0.0799 0.0173 0.08 0.0173 0.08 0.0173 
18 0.08 0.0799 0.0174 0.08 0.0173 0.08 0.0173 
19 0.6415 0.6411 0.0494 0.64 0.0488 0.64 0.0488 
20 0.08 0.0802 0.0172 0.08 0.0173 0.08 0.0173 
21 0.08 0.0801 0.0172 0.08 0.0173 0.08 0.0173 
22 0.4805 0.4798 0.0427 0.48 0.0423 0.48 0.0423 
23 0.08 0.0799 0.0175 0.08 0.0173 0.08 0.0173 
24 0.08 0.0796. 0.0174 0.08 0.0173 0.08 0.0173 
25 0.3201 , 0.3199 0.0342 0.32 0.0345 0.32 0.0345 
26 0.08 0.08 0.0174 0.08 0.0173 0.08 0.0173 
27 0.08 0.08 0.0172 0.08 0.0173 0.08 0.0173 
28 0.16 0.1597 0.0245 0.16 0.0244 0.16 0.0244 
29 0.08 0.0797 0.0173 0.08 0.0173 0.08 0.0173 
30 0.08 0.08 0.0173 0.08 0.0173 0.08 0.0173 
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While the voltage PDFs match well slight difference in, the shape of active and reactive 

power PDFs are slightly difference from Monte Carlo Simulation. The difference is due to 

omission of line losses and approximations in voltage drops. 

5.1.4 Case (IV): When all the loads are dependent and normal with positive 

correlation: 

Probabilistic method using Laplace transform and Gram-Charlier has been 

carried out when the case of all loads. are dependent and normal with positive correlation. 

The bus voltages, active and reactive power flow are given below. 

Table 5.10: Bus Voltages: 

Bus no base (V) mean(V) std(V) mean(V) std(V)  
1 1.05 1 0 1.05 0 
2 0.9265 0.9372 0.0113 0.9372 0.0113 
3 0.9252 0.936 0.0114 0.936 0.0114 
4 0.9243 0.9352 0.0115 0.9352 0.0115 
5 0.9241 0.935 0.0115 0.935 0.0115 
6 0.9187 0.93 0.012 0.93 0.012 
7 0.9181 0.9295 0.012 0.9295 0.012 
8 0.9181 0.9295 0.012 0.9295 0.012 
9 0.9172 0.9287 0.0121 0.9287 0.0121 
10 0.9166 .0.9282 0.0122 0.9282 0.0122 
11 0.916 0.9276 0.0122 0.9276 0.0122 
12 0.9157 0.9273 0.0123 0.9273 0.0123 
13 0.9161 0.9277 0.0122 0.9277 0.0122 
14 0.9159 0.9275 0.0122 0.9275 0.0122 
15 0.9154 0.9271 0.0123 0.9271 0.0123 
16 0.9154 0.9271 0.0123 0.9271 0.0123 
17 0.9147 0.9264 0.0124 0.9264 0.0124 
18 0.9151 0.9268 0.0123 0.9268 0.0123 
19 0.923 0.934 0.0116 0.934 0.0116 
20 0.9228 0.9339 0.0116 0.9339 0.0116 
21 0.9219 0.933 0.0117 0.933 0.0117 
22 0.9214 0.9325 0.0117 0.9325 0.0117 
23 0.9213 0.9324 0.0118 0.9324 0.0118 
24 0.9208 0.932 0.0118 0.932 0.0118 
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25 0.9206 0.9318 0.0118 0.9318 0.0118 
26 0.9201 0.9313 0.0119 0.9313 0.0119 
27 0.92 0.9313 0.0119 0.9313 0.0119 
28 0.9202 0.9314 0.0119 0.9314 0.0119 
29 0.9191 0.9304 0.012 0.9304 0.012 
30 0.9199 0.9311 0.0119 0.9311 0.0119 

Table 5.11: Bus active power Flow 

Bus no P mean (P) std (P) mean(P) std 
1 3.5849 3.2 0.32 3.2 0.32 
2 3.2271 3.2 0.32 3.2 0.32 
3 3.223 3.2 0.32 3.2 0.32 
4 0.16 0.16 0.016 0.16 0.016 
5 0.16 0.16 0.016 0.16 0.016 
6 1.6044 1.6 0.16 1.6 0.16 
7 0.16 0.16 0.016 0.16 0.016 
8 0.16 0.16 0.016 0.16 0.016 
9 0.16 0.16 0.016 0.16 0.016 
10 1.1215 1.12 0.112.  1.12 0.112 
11 0.16 .0.16 0.016 0.16 0.016 
12 0.16 0.16 0.016 0.16 0.016 
13 0.16 0.16 0.016 0.16 0.016 
14 0.6406 0.64 0.064 0.64 0.064 
15 0.16 0.16 0.016 0.16 0016 
16 0.16 . 	0.16 0.016 0.16 0.016 
17 0.16 0.16 0.016 0.16 0.016 
18 0.16 0.16 0.016 0.16 0.016 
19 1.2833 1.28 0.128 1.28 0.128 
20 0.16 0.16 0.016 0.16 0.016 
21 0.16 0.16 0.016 0.16 0.016 
22 0.9614 0.96. 0.096 0.96 0.096 
23 0.16 0.16 0.016 0.16 0.016 
24 016 0.16 0.016 0.16 0.016 
25 0.6407 0.64 0.064 0.64 0.064 
26 0.16 0.16 0.016 0.16 0.016 
27 0.16 0.16 0.016 0.16 0.016 
28 0.3203 0.32 0.032 0.32 0.032 
29 ,0.16 0.16 0.016 0.16 0.016 
30 0.16 0.16 0.016 0.16 0.016 



Table 5.12: Bus reactive power flow 

11: 11: tfl: fl: tll: 

1 	.1' 1. 1 	1 	. 1• 1 	1 	. 

11: 11: 111: 1 	is 111: 

11: 11: Ilf: 11: 111: 
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From Table 5.10 to 5.12 It can be seen that, in all cases, the standard deviation 

of voltages, active and reactive power were greater when the nodal powers were to be 

dependent than when the load loads are independent and normal (Table 5.1 to 5.3). The 

standard deviation increases or decreases, is dependent upon the impact between the 

linear dependence of the nodal powers as well as sign of the sensitivity coefficients. In this 

particular case it is seen that there is increase in the standard deviation of voltages and 

active power, when nodal powers were assumed dependent with positive correlation. 

Fig 5.14 shows the probability distribution function of voltage, when the loads are 

correlated with positive linear dependency 
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Figure 5.14: Probability Distribution function of voltage plot at node 28 

The parameters for the input probability density function are the same as before. As it can 

be seen that there is significant increase in the deviation of the fig 5.14 probability 

distribution, as compared to the Fig. 51 

5.2 Simulation Results for Complex Random Variable analysis: 

The probabilistic load flow using complex random variable analysis has been 

applied to IEEE 13 bus system and 30 bus test system is shown in Fig.5.15 and 5.1. The 

failure data of each distribution line and bus are assumed shown in Table B3, B4 and slack 

bus is 1 in this test system. 
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1.1 

Figure 5.15: 13 bus test system 

The moments of 13 bus and 30bus system, voltages are shown in table 5.13 and 5.14. 

Table 5.13: Moments of bus voltage using complex random variable for 13 bus system 

Bus 
no 

First order 
moments 

Second order 
moments 

Third order 
moments 

Fourth order 
moments 

1 1.0500 1.1025 1.1576 1.2155 
2 1.0017 - 0.0603i 0.9999 - 0.1214i 0.9945 - 0.1830i 0.9852 - 0.2448i 
3 0.9892 - 0.0818i 0.9720 - 0.1624i 0.9484 - 0.24131 0.9186 - 0.3180i 
4 0.9810 - 0.0958i 0.9534 - 0.1886i 0.9174 - 0.2776i 0.8734 - 0.3620i 
5 0.9759 - 0.1040i 0.9418 - 0.2037i 0.8981 - 0.2979i 0.8455 - 0.3860i 
6 0.9748 - 0.1058i 0.9393 - 0.2070i 0.8939 - 0.3024i 0.8394 - 0.3912i 
7 0.9747 - 0.1062i 0.9389 - 0.2075i 0.8932 - 0.3032i 0.8384 - 0.3921i 
8 0.9558 - 0.1290i 0.8972 - 0.2475i 0.8258 - 0.3540i 0.7435 - 0.4473i 
9 0.9525 - 0.1351i 0.8892 - 0.2583i 0.8123 - 0.3678i 0.7238 - 0.4624i 
10 0.9491 - 0.1414i 0.8810 - 0.2692i 0.7982 - 0.3817i 0.7034 - 0.4775i 
11 0.9456 - 0.1477i 0.8725 - 0.2802i 0.7838 - 0.3955i 0.6825 - 0.4921i 
12 0.9513 - 0.1372i 0.8864 - 0.26191 0.8075 - 0.37251 0.7169 - 0.4675i 
13 0.9511 - 0.1376i 0.8860 - 0.2625i 0.8067 - 0.3732i 0.7158 - 0.4683i 
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Table 5.14: Moments of bus voltage using Complex random variable for 30 bus system. 

Bus 
no 

First order 
moments 

Second order 
moments 

Third order 
moments 

Fourth order 
moments 

1 1.0500 1.1025 1.1576 1.2155 
2 0.9419 - 0.0405i 0.8856 - 0.0763i 0.8312 - 0.1077i 0.7787 - 0.1350i 
3 0.9408 - 0.0408i 0.8835 - 0.07671 0.8281 - 0.1081i 0.7748 - 0.1354i 
4 0.9399 - 0.04051 0.8819 - 0.0761i 0.8259 - 0.1072i 0.7721- 0.1341i 
5 0.9398 - 0.0405i 0.8816- 0.0760i 0.8256 - 0.10701 0.7717 - 0.1339i 
6 0.9349 - 0.0403i 0.8725 - 0.0754i 0.8128 - 0.1056i 0.7558 - 0.1315i 
7 0.9344 - 0.0402i 0.8716 - 0.0750i 0.8115 - 0.1051i 0.7542 - 0.1307i 
8 0.9344 - 0.0402i 0.8715 - 0.07501 0.8114 - 0.1050i 0.7541- 0.1307i 
9 0.9337 - 0.0399i 0.8702 - 0.0745i. 0.8096 - 0.1042i 0..7518 - 0.1296i 
10 0.9332 - 0.0406i 0.8692 - 0.07571 0.8081 - 0.1059i 0.7499 - 0.1315i 
11 0.9326 - 0.0404i 0.8682 - 0.0754i 0.8068 - 0.1053i 0.7483 - 0.1307i 
12 0.9323 - 0.04031 0.8677 - 0.0752i 0.8060 - 0.10501 0.7474 - 0.1303i 
13 0.9327 - 0.0404i 0.8683 - 0.0754i 0.8068 - 0.1053i 0.7484 - 0.1308i 
14 0.9325 - 0.0407i 0.8680 - 0.0758i 0.8065 - 0.1060i 0.7479 - 0.1315i 
15 0.9322 - 0.0406i 08673 - 0.0756i 0.8055 - 0.1055i 0.7467 = 0.1310i 
16 0.9321- 0.04061 0.8673 - 0.0756i 0.8054 - 0.1055i 0.7466 - 0.1309i 
17 0.9314 - 0.04031 0.8660 - 0.0751i 0.8036 - 0.1048i 0.7444 - 0.1299i 
18 0.9319 - 0.04051 0.8669 - 0.07541 0.8049 - 0.1053i 0.7460 - 0.1306i 
19 0.9389 - 0.0411i 0.8798 - 0.0771i 0.8230 - 0.1084i 0.7684 - 0.1355i 
20 0.9387 - 0.04101 0.8795 - 0.0769i 0.8225 - 0.1082i 0.7678 - 0.1352i 
21 0.9378 - 0.0407i 0.8779 - 0.0763i 0.8204 - 0.1073i 0.7651 - 0.1339i 
22 0.9374 - 0.0413i 0.8771- 0.07731 0.8191- 0.10861 0.7635 - 0.1355i 
23 0.9373 - 0.04131 0.8768 - 0.07731 0.8187 - 0.1085i 0.7630 - 0.1354i 
24 0.9368 - 0.0411i 0.8760 - 0.07691 0.8176 -0.10801 0.7617 - 0.13461 
25 0.9367 - 0.0414i 0.8757 - 0.0774i 0.8171- 0.10871 0.7610 - 0.13551 
26 0.9362 - 0.0412i 0.8748 - 0.0771i 0.8159 - 0.10821 0.7595 - 0.1348i 
27 0.9362 - 0.0412i 0.8747 - 0.07711 0.8158 - 0.10811 0.7594 - 0.1347i 
28 0.9363 - 0.0414i 0.8749 - 0.0775i 0.8160 - 0.1087i 0.7596 - 0.1355i 
29 0.9352 - 0.04111 0.8729 - 0.0767i 0.8132 - 0.1075i 0.7562 - 0.13391 
30 0.9360 - 0.0413i 0.8744 - 0.0773i 0.8153 - 0.1084i 0.7588 - 0.1351i 

The cumulants are calculated from the moments of each bus voltages and they can be 

converted into normal distribution using the Edge worth type of Gram-Charlier expansion. 

The PDF of each bus voltage is shown in Fig.5.16and 5.17. 
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Figure 5.17: PDF of bus voltage using Gram-Edgeworth 

The realization of PDF using Probabilistic Load Flow with method of moments 

measures the probability of bus voltages instability through determining bus indices. The• 

bus voltage levels depend mainly on the reactive power production of the generators and 

failure rate by unplanned outage, this method can provides a measure of the severity of 

abnormal voltages. 

The advantage of the method using Complex Random Variable analysis 

is that that network uncertainties is directly incorporated in this method. This would 

greatly simplify contingency analysis as there is no need of repeated load flows for 

different contingencies. 
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Chapter5 

The application of Probabilistic load flow method using Gram-Charlier Series 

Expansion for distribution system has been presented. The probability distribution 

function of bus voltages, bus active powers and bus reactive powers have been calculated 

and compared with Probabilistic Load flow and Monte Carlo simulation method. The 

probabilistic load flow using Gram-Charlier series expansion method adopted in this thesis 

provides a new way of computing probabilistic distribution function of line flows for 

distribution system. Correlations between the nodal loads of the system were taken in to 

account using a simple expression based on their standard deviations. 

In Comparison with Monte Carlo with 5000 iterations, this method is 10-20 

times faster and significant reduction in memory requirement in comparison to 

probabilistic load flow using Laplace transform this method has reducing the complexity 

of calculation and significant improvement in reduction of calculation time. 

This thesis also presents a method of solution of the stochastic load flow 

problem based on the method of moments of complex random variables for radial 

distribution system. In comparison to the probabilistic load flow computation using Gram-

Charlier expansion, this method can easily incorporate network uncertainty. 

The probabilistic load flow study gives qualitatively more information about 

the system analyzed as compared to the conventional deterministic method. In this thesis 

the loads are modeled as statistical uncertainties that always exist in the process of 

planning and operation of practical systems. The various conditions, situations and 
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constrains in a much more flexible way by weighting them with appropriate probabilities. 

This should result in a more realistic picture about the observed system. 

Gram-Charlier series is valid for (-co, +oo), some negative probabilistic values 

can occur as the random variable is in power system varies between 0 to co. Laguerre and 

Legendre series are valid for random variable between 0 to co and their application to the 

Probabilistic Load Flow can be explored. 
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Consider a Complex Random Variable with real and imaginary components X and Y, 

also random variables. Assume that the moments and cumulants of X are known and that Y is 

completely known i.e. it has a probability density function with only one impulse with 

probability one. The first four moments are 

1. al(Z) = al (X) + jai(Y) 

Where 

a1(Y) = Y (value of the random variable Y) 

2. a2(Z) = a2(X) — a2(Y) + 2jE{XY} 

Where 

a2(Y) = .Y2 

3. a3(Z) = a3(X) — 3E{XY 2  + j[3E{X 2.Y) — a3(Y) 

Where, if Y is a constant one has 

a3(Z) = a3(X) — 3Y2a1(X) +j [3Ya2(X) — Y 3 ] 

4. a4(Z) = a4(X) — a4(Y) — 6E{X 2Y 2  } + j[4E(X 3Y) — 4E{XY 3 ] 

Where, if Y is a constant, one has 

a4  (Z) = a4(X) — Y4  — 6Y 2  a2  (X) + j [4Ya3  (X) — 4Y 3  a, (X)] 

Gram-Charlier tie A series expansion:  Consider a random variable with a distribution 

of a continuous type and denote the mean value as g and the standard. deviation as 0. For the 



standardized variable (~ - a)( c) , its density function is denoted as f(x). According to Gram-

Charlier expansion, the Probability density function is 

00 
f(x) = E c .H (x)o(x) 

j=0 

Where 

j/2 1 1
k flfj-2k 	1 

J j ! k=0 2 k!(j -2k) O.j-2k 

j/2 -1 k .,j-2k 
H.(x)= 	- 

k=0 2 k!(j-2k) 

- x2 
O(x) = 2 e 2 

[n/2] denotes the largest integer<=n/2 

The expression H (x) are known as Hermite Polynomials 

Some of these expressions are 

HO(x) = 1 

H1(x) = x 

H2(x) =x2 -1 

H3(x) = x3 - 3x 

H4(x)=x4 -6x2 +3 

H5(x)=X5 -10x3 +15x 

H6(x) =x6 - 15x4 +45x2 -15 

The expression Cis known as Gram-Charlier coefficients. 

Some of those expressions are 

Co = 1 

Cl = C2=0 



C3— — /.'3 
o3 

C4 _ ~4 

Cs = —9 + 10aa 

C6 =- ~6-15L4+30 



Test data for 30 bus distribution system 
Base MVA=I.OMVA 

BASEKV=IIKV 

Table BE Network data in per units 
Line no From node TO node R(p.u) X(p.u) 

1 1 2 0.0236 0.0233 
2 2 3 0.0003 0.0002 
3 3 4 0.0051 0.0005 
4 3 5 0.0062 0.0006 
5 3 6 0.0032 0.0011 
6 6 7 0.003 0.0003 
7 6 8 0.003 0.0003 
8 6 9 0.0079 0.0008 
9 6 10 0.0013 0.0008 

10 10 11 0.0033 0.0003 
11 10 12 0.0050 0.0005 
12 10 13 0.0027 0.0003 
13 10 14 0.0008 0.0005 
14 14 15 0.0025 0.0003 
15 14 16 0.0026 0.0003 
16 14 17 0.0065 0.0007 
17 14 18 0.0041 0.0004 
18 3 19 0.0012 0.0007 
19 19 20 0.0011 0.0001 
20 19 21 0.0061 0.0006 
21 19 22 0.0012 0.0008 
22 22 23 0.0008 0.0003 
23 22 24 0.0034 0.0003 
24 22 25 0.0009 0.0006 
25 25 26 0.003 0.0003 
26 25 27 0.0032. 0.0003 
27 25 28 0.0009 0.0006 
28 28 29 0.006 0.0006 
29 28 30 0.0016 0.0002 



TABLE B2: Load data in per units 
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IEEE 13 BUS RADIAL SYSTEM: 

BASE KV=11KV 
BASE MVA=I.OMVA 

TABLE B3: NETWORK UNCERTAINTY DATA in (p.u) 
Line no from 

node 
to node Resistance 

.0 
Reactance 

.0 
availability 

1 1 2 0.00148 0.00287 0.91 
2 2 3 0.00044 0.00124 0.86 
3 3 4 0.00028 0.00078 0.95 
4 4 5 0.0006 0.00167 0.83 
5 5 6 0.00034 0.00097 0.87 
6 6 7 0.00032 0.00092 0.93 
7 4 8 0.0016 0.0031 0.87 
8 8 9 0.00029 0.00083 0.92 
9 9 10 0.00053 0.00151 0.89 
10 10 11 0.00059 0.00166 0.88 
11 9 12 0.00038 0.00107 0.93 
12 12 13 0.00037 0.00104 0.94 

TABLE B4: LOAD UNCERTAINITY DATA 
bus no active 

power 
(MW) 

reactive 
power 
(MW)  

availability 

1 0 0 0.91 
2 4.73 1.55 0.88 
3. 1.27 0.41 .0.96 
4 0.35 0.11 1 
5 4.38 1.44 0.89 
6 2.11 0.69 0.87 
7 0.42 0.13 0.89 
8 4.73 1.55 1 
9 1.27 0.41 0.92 
10 0.35 0.11 0.88 
11 4.38 1.44. 0.97 
12 2.11 0.69 0.83 
13 0.42 0.13 0.81 
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