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ABSTRACT 

Thermostatically controlled electrical devices contribute a major portion of the 

entire power demand of a power distribution system. Restoration of these systems 

after prolonged outage produces higher load demand than the preoutage load. This 

condition is known as cold load pickup. 

The situation arises owing to loss of diversity. Due to loss of diversity of loads, the 

restoration of distribution feeders after long interruptions creates cold load pickup 

conditions. As a result, the total load briefly exceeds the substation transformer 

rated load. In order to prevent overheating of these transformers, the distribution 

system load may have to be restored in a step-by-step manner using sectionalizing 

switches. 

In this work we have taken a distribution system (Roorkee) from this network data 

we have calculated loading limits of the transformer as well as minimum 

restoration time of the network by using different algorithms (GA & ACO) and 

finally checking the convergence of these methods. The distribution system 

(Roorkee) data is analyzed with comparison of delayed exponential model given 

by author. The ambient temperature has been taken from National Institute of 

Hydrology for finding the transformer loss of life. The loss of life is checked with 

IEEE Std. C57.92.1981. 



Contents 

Page No. 
List of Tables 
List of Figures 

CHAPTER 1 INTRODUCTION 	 1-7 

1.1 General 	 1 

1.2 Causes of outage 	 3 

1.3 Genetic Algorithms (GA) 	 3 

1.4 Ant Colony Optimization (ACO) 	 4 

1.5 Objective of the Thesis Work 	 5 

1.6 Literature Review 	 5 
1.7 Organization of the Dissertation 	 7 

CHAPTER 2 CLPU AND LOAD MODELING 	 8-21 

2.1 Cold Load Pickup (CLPU) 	 8 

2.2 Causes of CLPU 	 9 

2.2.1. Electric Heating and Cooling Loads 	 9 

2.2.2. Electrical Illumination 	 9 

2.2.3. Other Electrical Loads 	 9 

2.3 Phases of Cold Load Pickup 	 10 

2.4 Load Modeling 	 13 

2.4.1. Aggregated Load Model 	 13 

2.4.2 First Order Deterministic Model of Air Conditioner 	15 

2.5 Results for Modeling 	 20 

CHAPTER 3 METHODS 	 22-37 

3.1 Genetic Algorithms 	 22 

3.2 Ant Colony Optimization 	 31 



CHAPTER-4 SIZE AND LOSS OF LIFE OF TRANSFORMER 38-49 

4.1 Techniques for Solving the CLPU Problem 	 38 

4.1.1 Reduced Voltage 	 38 

4.1.2 Sectionalizing the Network 	 39 

4.1.3 Adaptive Protection 	 39 

4.2 Delayed Exponential Model 	 40 

4.3 Optimal Size of Transformer 	 42 

4.3.1 Transformer Cost 	 43 

4.3.2 Distribution System 	 44 

4.3.3 Roorkee Substation Distribution System 	 45 

4.4 Loss of Life (LOL) 	 47 

CHAPTER-5 OPTIMAL RESTORATION TIME 	 50-56 

5.1 Step-by-Step Restoration with GA 	 50 

5.2 Step-by-Step Restoration with ACO 	 54 

CHAPTER-6 RESULTS AND DISCUSSIONS 	 57-66 
6.1 Summer Season 	 57 

6.2 Winter Season 	 59 

6.3 Transformer Size and Loss of Life 	 62 

6.4 Optimal Restoration Time of the Network 	 63 

CHAPTER 7 Conclusion and Scope of Future Work 	 67 

REFERENCES 	 68-70 
Appendix-A 	 71-73 



1 

List of Tables 

Sr. 

No. 

Table 

No. 
Title Page No. 

1 5.1 Load of the network for distribution system 52 

2 6.1 Summer season piran kaliyar data 58 

3 6.2 Winter season piran kaliyar data 60 
Table for size and cost of transformer with ranges 

4 A.1 
lower and upper 

71 

5 A.2 Table for size and cost of transformer with range 71 



11 

List of Figures 

Si No Figure No. Title 

The power consumption of an incandescent lamp 
Page No. 

11 
1 2.1 

after an outage. 

The power consumption of a refrigerator and 12 
2 2.2 

freezer after two outages. 

3 2.3 A residential area the power consumption 13 

4 2.4 CLPU model of aggregated load of 	section in 
distribution system 

14 

The difference between exact and approximated 17 
5 2.5 

duty cycle as a function of Oa  

6 2.6 House temperature during an outage 18 

Undiversified load duration At as a function of 19 
7 2.7 

outage duration 

8 3.1 Flow chart for genetic algorithms 30 

9 3.2 Ants shortest path 32 

Building of solutions by an ant from the source to 37 
10 3.3 

the destination node 

11 4.1 Transformer load pre and post outage 40 

A distribution system with 4 feeders divided into 44 
12 4.2 

12 sections 

A distribution system with 2 feeders divided into 45 
13 4.3 

4 sections 

14 4.4 Life expectancy curve 48 

15 4.5 The top — oil and hottest — spot temperature during CLPU 49 



16 5.1 The distribution system 51 

17 5.2 Model of cold load pickup-  52 

18 6.1 Current Vs Time 57 

19 6.2 Active power vs. Time 57 

20 6.3 Active power vs. Time 59 

21 6.4 Current Vs Time 59 

22 6.5 Active power vs. Time 61 

23 6.6 Reactive power vs. Time 61 

24 6.7 Load Vs Time 61 

25 6.8 Transformer size from GA 63 

26 6.9 Cost function 63 

27 6.10 GA easel restoration time 64 

28 6.11 GA case2 restoration time 65 

29 6.12 ACO case 1 restoration time 66 

30 6.13 ACO case2 restoration time 66 

111 



CHAPTER-1 

INTRODUCTION 

1.1 GENERAL 

Distribution systems deliver power to various kinds of loads (Residential, 

Commercial, and Industrial) such as air conditioners, lighting, heating, and various 

electronic equipments. These loads can be classified as cyclic or non-cyclic loads. 

Cyclic loads are those that draw power intermittently and at somewhat evenly spaced 

intervals. Examples of such loads include air conditioners, refrigerators, space 

heaters, water heaters, etc [1]. 

These loads are usually thermostatically controlled. On the other hand, non-cyclic 

loads, such as lighting or washing machines, display no such regularity. They are 

often manually controlled by the consumer. During normal operating conditions in 

the distribution system only a fraction of the cyclic loads consume power at a time. In 

other words, under normal conditions, load diversity within the distribution system is 

established. The aggregate load on the substation is significantly less than the sum 

total of all the load ratings. The ratings on the substation transformers are chosen 

keeping this situation in view. However, when power is restored to a system 

following an extended power outage, there is a tendency for all cyclic loads to turn 

on simultaneously. As a result, the diversity of the loads is lost and undiversified load 

demand may be much higher than the distribution substation capacity during 

restoration [1]. 

Thermostatically controlled devices contribute a major portion of the entire power 

demand of a power distribution system. Restoration of these systems after prolong 

shut down produces a very high load demand than the normal condition load. This 

condition is known as cold load pickup (CLPU) [2]. This situation arises because of 
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loss of diversity. During the normal operation all the connected loads never switched 

on or off simultaneously and diversity is maintained. But if a system faces a prolong 

outage then all thermostatically controlled loads get switched on simultaneously at 

the beginning of restoration and diversity is lost. The aggregated load reduces with 

time, as it is evident by different CLPU models available in literature. As it is clear 

by every model that the loss of diversity produces 2 to 5 time higher load than the 

normal load which creates violation of substation transformer loading limits, 

permissible voltage range of buses and current capacity of feeders [2]. 

The literature reveals that the CLPU came in to the picture more than sixty years ago, 

in 1940, but it was then not of much concern, because the enduring behavior of the 

load current was not so prominent, and initial phases were taken care of [3, 4]. 

Researchers started paying attention to this problem from late 1970s. Then, after 

several efforts were made in the modeling of load demands and network elements, 

we have seen the optimal designing of distribution networks including for CLPU, and 

the development of restoration techniques. 

Then after several models of different types like empirical technique based, 

physically based, random variable model, regression model etc. were developed for 

CLPU [2,12-13]. In most of analytical methods of restoration, delayed exponential 

model [5-6] has been used. The extensive efforts to handle the problem optimally can 

be seen during last ten years [7-8]. 

Issues to handle: 

1. Restoration of distribution networks under CLPU 

2. Design optimization of distribution networks with CLPU 

Diversity 

Diversity factor —  Sum of individual maximum demands 
Maximum demand on the power. station 
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A power station supplies power to various types of consumers whose maximum 

demand do not occur at the same time. Therefore the maximum demand on power 

station is always less than the sum of individual maximum demands of the customers. 

Obviously diversity factor will always be greater than 1. The greater the diversity 

factor, the lesser is cost of generation of power [9]. Connected load defined as some 

of continuous rating of all equipment connected to the supply system. Maximum 

demand defined as the greatest demand of load on the power station during a given 

period [9]. 

1.2 Causes of outage 

The root cause of CLPU is power outages, so prevent the outages so that we can 

automatically control the CLPU problem [2]. 

> High winds blowing trees and branches onto power lines 

• Vehicles striking and breaking utility poles 

• High winds breaking utility poles 

> High winds blowing lines into trees 

• Cold-load pick-up problems 

> Animals such as birds, snakes and squirrels climbing poles and contacting 

both pole and the power line 

> Snow and ice build-up that causes power lines to break or touch tree branches 

> Problems at substations 

1.3 Genetic Algorithms 

A genetic algorithm is a search technique used to find approximate solutions to 

optimization and search problems. Genetic algorithms are a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such as 

natural selection, inheritance, mutation and crossover. The evolution starts from a 
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population of completely random individuals and happens in generations. In each 

generation, the fitness of the whole population is evaluated, multiple individuals are 

stochastically selected from the current population (based on fitness), modified to 

form a new population, which becomes current in the next iteration of the algorithm. 

After a finite number of iterations, we can check the solution (encoding is done if 

necessary) [10]. 

1.4 Ant Colony Optimization 

Ant communication is primarily through chemicals called pheromones. Because most 

ants spend their time in direct contact with the ground, these chemical messages are 

more developed than in other Hymenopterans. it will leave a trail along the ground, 

which in a short time other ants will follow. When they return home they will 

reinforce the trail, bringing other ants, until the food is exhausted [11]. 

Ants are capable of finding the shortest path from a food source to the nest. They are 

also capable of adapting to changes in the environment, for example, finding a new 

shortest path when the old one is blocked off due to a new obstacle. The main means 

used by ants to form and mantain the line is a pheromone trail. Ants deposit a certain 

amount of pheromone while walking, and each ant prefers to follow a certain 

direction rich in pheremone than a poorer one. This elementary behaviour of ants can 

be used to explain how they can find the shortest path when the sudden appearance of 

an unexpected obstacle has interrupted the initial path. 

Ant colony optimization has been applied successfully to a large number of difficult 

discrete optimization problems including the traveling salesman problem, the 

quadratic assignment problem, scheduling, vehicle routing, etc., as well as to routing 

in telecommunication networks [11]. 
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1.5 Objective of the Thesis work: 

The research work is done in the area of Cold Load Pickup in power distribution 

network. Restoration of this power distribution network after CLPU (Outage) with 

minimum time for this author proposed so many methods. 

➢ Load Modeling 

> Finding the Optimal Size and Loss of Life of Transformer by using CLPU 

data collected from Roorkee substation. 

> Applying Genetic algorithm to the Size and LOL optimization problem. 

> Optimized the restoration time for 4-feeder and 12 sections distribution 

system. 

> Applying Genetic algorithm to the non-identical section optimization 

problem. 

> Applying Ant Colony Optimization to restoring the network 

> Comparison of the Genetic algorithms and the proposed method Ant colony 

optimization for minimum restoration time. 

1.6 Literature review: 

The literature reveals that the CLPU came in to the picture more than sixty years ago, 

in 1940, but it was then not of much concern, because the enduring behavior of the 

load. Research has started on CLPU since 1970s. Then, after So many authors put 

several efforts on modeling of load demands and network elements, we have seen the 

optimal designing of transformer size for CLPU, and restoration techniques. 

Pahwa and wakileh[5-6] suggested for system designing and restoration of network 

and they was taken a simplified cost function for to minimize the total cost of the 

system so that we can reduce the cost of the customer interruption and they had also 
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given for transformer loss of life in IEEE std. in C52.92.1981. The paper presents a 

study on the optimal design of power distribution systems. Distribution substation 

transformer size and feeder sectionalizing switches are selected such that a cold load 

pickup situation can be handled while minimizing an annual cost function. 

Chavali[1] giving the sequence of sectionalizing devices with minimum restoration 

time taken into consideration with genetic algorithms [10]. 

Padhy[10] demonstrated algorithms about the Genetic Algorithm and Ant Colony 

Optimization with suitable examples. 

Kumar[2] has given full view of CLPU about causes, phases, modeling of CLPU and 

solution strategies also given in detail. The paper looks into the various aspects 

associated with the problem of CLPU and explains the phenomenon of CLPU. It 

reviews various modeling approaches and means of solving CLPU problems together 

with the affecting factors. 

Agneholm[l 8] dissertation he was divided the total report into three parts one for 

residential loads, second for individual loads and one for paper and pulp industry. In 

each paper he has discussing different types of outages. Data on the power 

consumption after these outages have been used for deriving models of the cold load 

pick-up. 

Ucak[12, 14] proposed an analytical method for restoration distribution system 

during CLPU condition. Delayed exponential model is used to represent the load. 

And also thermodynamic model has proposed for transformer loading limits and 

whenever loading limits are reached section are restored by step-by-method [1, 5-6, 

14]. 
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Gupta[21] described the enduring phases of CLPU and about voltage drops along the 

feeders. Because of CLPU condition system restoration is very difficult. The paper 

discusses an approach to include restoration under CPLU conditions in distribution 

system planning and expansion. The approach can be applied to determine the most 

optimal transformer size [5-6] and feeder sizes while ensuring the minimal 

restoration time and acceptable voltages and transformer heating during CLPU 

conditions. 

Aoki proposes new algorithm to quickly restore the de-energized load in a 

distribution system by using the sectionalizing switches. In new algorithm 

computional burden and the solution accuracy of algorithm is improved by using 

concept of dual effective gradient method. 

1.7 Organization of the Thesis: 

This dissertation is organized in seven distinct chapters. 

Chapter 1 introducing my topic 

Chapter 2 details the causes of the arising of the CLPU condition, Phases of CLPU 

and fmally hierarchical development of different load models. 

Chapter3 Optimization technique which used in my programming (GA&ACO). 

Chapter 4 deals with CLPU condition (with Roorkee data) and sectionalizing the 

network for finding the Optimal Size and Loss of Life of Transformer. 

Chapter 5 describes step—by—step restoration method to get optimal restoration time 

with both GA and ACO. 

Chapter 6 Results and Discussions 



CHAPTER-2 

CLPU and Load Modeling 

General: 

Here I explain about why Cold load pickup (CLPU) is coming into picture, causes 

of CLPU, finally phases of CLPU and after this load modeling under CLPU. In 

modeling we have taken temperature of the house and surrounding from we 

develop one model to fmd the CLPU behavior. 

2.1 CLPU: 

The main cause for CLPU is power outage. Individual loads on a residential feeder 

can be categorized into two groups 

1. Thermostatically-controlled 

2. manually-controlled. 

Thermostatically-controlled devices such as air-conditioners, heaters, and heat 

pumps provide the largest contribution to the total load in a typical house. 

Manually-controlled loads are switched on and off by occupants of the house in 

undetermined fashion. The life-style of the occupants of the house has a 

significant influence on the contribution of these loads to the total load of the 

house. During normal conditions, diversity among loads is present, and therefore, 

the aggregate load of a number of houses is less than the connected load. If an 

abnormal condition such as an extended outage occurs in a distribution system, 

some or all thermostatically-controlled devices will be on as soon as the power is 

restored. Similarly, the aggregate load of manually-controlled devices will be 

higher than normal upon restoration because more people may want to use 

different devices. If an outage involves a large number of customers and has a 

long duration, it may result in excessive load during restoration. Restoring power 

to a circuit under such conditions is called cold load pickup (CLPU) [14]. 
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2.2 Causes of CLPU 

The power outage is the root cause for the cold load pickup condition. The outage 

can take place for several reasons: faults, blackouts, maintenance and extension 

work, forced load curtailment, lack of power transmission, generation capacity, 

etc. Once the power outage has taken place, the load behavior is the key factor that 

governs the CLPU condition [2]. 

2.2.1. Electric Heating and Cooling Loads 

Thermostatically controlled appliances share a high portion of the total load 

demand. A large group of cooling and heating equipment such as refrigerators, 

freezers, air conditioners, water heaters, and heat radiators maintains the diversity 

during normal operation. During an outage the inside temperature approaches 

ambient temperature. Because of this, following the outage, a large number of the 

appliances come into the ON state by thermostat operation, and diversity is 

broken. The system faces higher load during this post outage period. The 

magnitude and duration of this demand hike mainly depends on the duration of the 

outage and the outside temperature. Section 4 deals with various models 

discussing the behavior of a thermostatically controlled load [2]. 

2.2.2. Electrical Illumination 

Mercury lamps, high-pressure sodium lamps, and fluorescent lamps have lower 

power consumption subsequent to an outage than their rated power. These loads 

take some minutes to reach the rated values, so they ease doWn the CLPU 

probleni, but the effect is nominal because of their small share in total demand [2]. 
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2.2.3. Other Electrical Loads 

Other domestic electric appliances such as stoves, ovens, washing and drying 

machines, electric irons, radios, and computers are used when users have a 

particular need. In the load demand of this group, more depends on the user's 

behavior and living style and is difficult to predict. 

The load demand can also be categorized as industrial and residential loads. The 

behavior of industrial and residential loads following planned and forced outages 

has been analyzed, and models have been generated with the measured data [15— 

16]. There are other factors like weather conditions, usage statistics, outage 

duration, restoration procedure, and power system paranieters that also affect the 

CLPU condition directly or indirectly. 

2.3 Phases of Cold Load Pickup 

On the basis of the magnitude and the duration, the CLPU current can be 

categorized into four phases [7]: 

1. Inrush 

2. Motor starting 

3. Motor running and 

4. Enduring phases of current 

The first inrush phase is because of the flow of current to the cold lamp filament 

and the magnetization of the distribution transformers. The current magnitude can 

be up to 10 to 15 times the pre outage value, and it exists for the duration of some 

cycles. 

In the second phase, the starting current of a motor raises the value of the current 

up to 6 times the normal value, and this phase sustains for about a second. 

The third phase is due to the current needed in the acceleration of a motor, and this 

phase takes nearly 15 seconds. The first three phases last approximately in 15 

seconds. 
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The fourth and final phase is due to the loss of diversity among thermostatically 

controlled loads, and it continues until the normal diversity among the loads is 

reestablished. The value of the duration depends upon various factors such as the 

weather, the use pattern, and the duration of the outage [7]. It varies from one to 

several hours. The load current in this enduring phase may vary from 2 to 5 times 

the diversified load value. It can also be seen in the literature that some authors 

have divided CLPU into two phases [8, 17]. The first three are aggregated and are 

taken as phase one phases, whereas the fourth has been taken as phase two, which 

is because of the loss of diversity. Other authors only divide cold load pick-up in 

two phases [2]. The first phase then includes the inrush, motor starting and 

accelerating currents whereas • the second phase is due to the loss of diversity 

among thermostatically controlled loads. 

In figure 2.1 the power consumption of an incandescent lamp is shown and as can 

be seen there is initially a peak which after some periods dies out [18]. For a 

refrigerator and freezer combination the power consumption after two outages is 

shown in figure 2.2 and for a residential area the power consumption is shown 

after two outages in figure 2.3. These three figures can be considered to be typical 

examples of different phases of the cold load pick-up for residential load [18]. 
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Fig: 2.1 the power consumption of an incandescent lamp after an outage. 
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Fig 2.2 the power consumption of a refrigerator and freezer after two outages. 
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2.4 Load Modeling: 

They are so many types modeling are proposed here I am discussing some 

methods given below and methods are... 

➢ Aggregated Load Model (analytical model) 

➢ Electric Space Heating or Cooling Loads. 

2.4.1. Aggregated Load Model 

This analytical model has been used extensively in optimization for distribution 

system designing because of its simple mathematical definition. It is expressed by 

(1), which actually shows a delayed exponent [12]. The difficult aspect of the 

work is the selection of a suitable model to represent dynamics of aggregated load 

for the enduring portion of CLPU. The model should be mathematically simple 

and yet it must account for the behavior of aggregated load as closely as possible. 

In extended outages, diversity is completely lost and the load is the highest 

immediately upon restoration. Generally, it is considered that the diversity is 

completely lost if the outage lasts more than half an hour. Higher than normal load 

may be expected for shorter outages but their effect on distribution system may 

not be as important as extended outages. Therefore, the aggregated load model 

does not need to account for the behavior of the partial loss of load diversity in the 

system. 

In this, load change from undiversified to diversified level in the circuit may be 

closely represented by an exponential function. However, an exponential function 

model does not take into account the duration of undiversified load. It assumes 

that the diversity starts just after restoration. Therefore, to include the duration of 

undiversified load in an analytical model, a delayed exponential function is used to 

model CLPU behavior of aggregated loads in distribution system as shown in 

Figure 2.4 [12]. Also, a delayed exponential model for cold load pickup of 
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thermostatically-controlled devices has been suggested by Anil Pahwa [5]. The 

Simulation results using physically based load models confirm that a delayed 

exponential model is a good representation of the CLPU load dynamic [12]. The 

delayed exponential model offers accuracy and simplicity and thus is very 

attractive for representing cold load pickup of thermostatically-controlled loads, 

particularly, if a large number of houses are considered to determine the aggregate 

load. 

SDi 

Ti  ti 	Time 

Fig 2.4 CLPU model of aggregated load of eh  section in distribution system 

Si (t)=[S A  + (Sui  — SA ) e-ai(t-4) ]/4 (t — + Sui  [1 u (t — )]/1 (t — 	... (2.1) 

Where a, is the rate of decay of load on ith  section, and S1(t) is load of ith  section. 

u(t) is a unit step function given by (2)[2] 

{1 for t 0 
u(t)= 

Ofort<0 

 

(2.2) 
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For Ti<Kti, diversity is completely lost and all thermostatically-controlled devices 

are in the ON state. After tI, devices start entering the cyclic state and the load in 

that section will decrease until full diversity is restored [5]. 

2.4.2 First Order Deterministic Model of Air Conditioner: 

In this model, a discussion based on a simple model for a thermostatically-

controlled load developed by Canbolat Ucak [12] is presented. According to 

this model, the temperature of a house having an air-conditioner is given by: 

dO(t) 	1 [OW - - w(t)0 
dt 	r 

(2.3) 

The value 0(t) is the inside temperature of the house, Oa  is the ambient 

temperature, 0g is the temperature gain of the air-conditioner, and r is the 

time constant of the house. The variable w(t) is a binary variable denoting the 

state of the air-conditioner (OFF=O and ON=1.) The state changes when the 

temperature of the house reaches the thermostat upper or lower limit given by 

BS  + A /2 and, 19, — A/2 respectively. Heating loads will also have the same type 

of characteristic. The only difference is the sign of binary variable or 

thermostat state w(t). 

Figure 2.5 shows the state of thermostat and house temperature as a 

function of time during normal conditions. When the inside temperature of the 

house reaches the thermostat upper limit, air-conditioner state changes from 

zero to one, and when the lower limit is reached, the state changes from one to 

zero. During steady state condition one could define the duty cycle "D" of an air 

conditioner as 
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D = 
d„+doff  

Here,- don  is the ON duration and doff  is the OFF duration of thermostat during 

one period as shown in Figure 2.5. Average power demand of an air-

conditioner can be calculated as the product of the duty cycle and the rating 

of the air-conditioner. Both d on  and doff  can be written as a function of out 

side temperature 

d„ =Tow  , doff  = At 

Gain of air-conditioner, dead band, and thermostat setting of the house [12]. 

A good approximation for dw is 

zA(2w-1) 
dw= 

	

	  
Os — Al2-60a—w(A+19g ) 

 

(2.5) 

 

We get an expression for the duty cycle, which varies between 0 and 1, as a 

function of outside temperature and air-conditioner parameters [12] 

D _ Oa  — (Os  A / 2)  
6I   (g  + A 	 2.6)  

If the ambient temperature is less then the thermostat lower limit, then the air-

conditioner will be . OFF all the time. An extreme case is when the outside 

temperature exceeds Og  + Os  + A /2 . In this case, the air-conditioner will 

stay ON and average inside temperature of the house will never reach the 

thermostat lower limit. This case corresponds to a duty cycle of one which 

means that the size of air-conditioner is too small to cool the house. 

Undersized and oversized air-conditioners could exist in a distribution 

system. The duty cycle of an undersized air-conditioner is closer to one whereas 

don  
(2.4) 
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the duty cycle of an oversized air-conditioner is closer to zero when compared 

to a normal-sized air-conditioner. 

The exact formula for 4 can be derived from above Equation. And thermostat 

upper and lower limits. The result is given by 

Os  +0/2 —ea  —w(0-0g ) 
( dw=  	 2.7)Os — Al2 — Oa + w(A+ 0 g ) 	 

Figure 2.6 shows the difference between the exact and approximated duty 

cycle as a function of ambient temperature for O, = 22 °C, A = 3 ° C , and Og  = 

30 °C. Duty cycle changes approximately linearly in the range 25 °C to 50 °C 

and it does not depend on the time constant of the house. This is true since 

both di  and do  will be affected with the same ratio r when changes. 

In Figure 2.7 [12] the change in house temperature as a function of time during an 

outage of duration Toot  is shown. In this case undiversified load duration which is 

shown as & can be calculated from a first order differential equation based on the 

house and air conditioner parameters. 
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Fig 2.5 the difference between exact and approximated duty cycle as a function of Oa 
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Time 

0 
Thermostat State 

Fig: 2.6. House temperature during an outage 

Let us assume that the outage occurred when the house temperature was 

at Os  . After the outage, the house temperature will start to increase to target 

temperature, Oa  and at Tout  the temperature inside the house becomes [12] 

0 (Tout ). (Oa  — es )(1 — 1"/rj+ Os  (2.8) 

When the power is restored the house will start to cool down as shown in Figure 

3.3. Thermostat will change its state from one to zero when the temperature 

reaches Os  —A/2 , that is, the state will change when 

T X- +e —®f 	 (2.9) 60 —(8a —eje 	s  — f  e 	f 
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Of = ea g  

From this above eq modified into 
T„,,/ 	_At/ 

es  — A/2 —  f 	 (ea  eje 	± eg  e 
it 

 

Take logarithms to both sides to get At 

Undiversified load duration can be solved from this equation to give 

At = —y In Tout 
08. — (Oa  — Oje ir 

	  (2.10) 
(es 	) ea  + eg  

In Figure 2.8 undiversified load duration At as a function of outage duration. 

The figure shows that for very long outages, undiversified load duration has a 

saturation characteristic. The physical meaning of this is that the temperatures 

of houses reach the ambient temperature during a long outage. This also shows 

that using a linear relationship between undiversified load duration and 

outage duration may not be a correct representation of load for the wide 

spectrum of outage durations ranging from 30 minutes to a few hours. 

2 	3 	4 	5 	 7 	9 	9 	10 
Outage Duration (hr.) 

Fig: 2.7 undiversified load duration At as a function of outage duration 
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2.5 Results for modeling: 

From the modeling we can get the load of the transformer and CLPU duration. 

Load of the transformer calculated from the aggregated model if we know the 

diversified and undiversified load of the transformer. From our Roorkee data 

Apply to this model u got... 

Su  = 2.8 MVA, 

SD = 9.3 MVA, 

Outage duration = 120 mints 

From this the unit function is 

u(2.01-2) = u(0.01) 	and remaining one is less than zero so it is zero 

Si  = 2.8+(9.3-2.8)e  (2/2) *1+0 

Si  =5.19MVA 

For getting the CLPU duration we have to use second model for this data is as 

follows: 

r (Time constant)= 3 hrs, Os  (set temp)=22°c, 

°a  (Ambient temp)=40°c, °g (gain temp)= 30°c, 

• = a.'Og=1 
00c,  _30c  ; 

OS + % = 23.5°c, Os -AA = 20.5°c; 

Duty cycle 
— (O — A / 2)  

Og  + A 
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D= 40-20.5/30+3= 0.5909 

At = 
	(es  — 6/2)— ea  + 

Og  - (Oa  - Oje r  

At=-3* 30-18e-40118° 

At= —3 * ln 10.5  

At = -3* -0.395=1.185 hrs =78mints CLPU duration.  

As observed in the figure given fig 2.8 in that according to outage duration CLPU 

duration given and above results are matched. 

20.5 — 40 + 30 

30-14.41 



CHAPTER-3 

METHODS 

Here I am giving techniques which I have used in my thesis work. These two 

methods are random search techniques. The two methods are [10] 

1) Genetic Algorithms (GA) 

2) Ant Colony Optimization (ACO) 

GA is works based on "Darwin theory of survival of the fittest". This is search 

algorithms based on the mechanics of natural selection and natural genetics. 

ACO is finding the shortest path between source and nets (food). Ants can smell 

pheromones: while choosing their path, they tend to choose the paths marked by 

strong pheromone concentrations. The pheromone trail allows ants to find their 

way back to the food. 

We take brief introduction about each method. 

3.1 Genetic Algorithms 

3.1.1 Introduction: 

Genetic algorithms are search algorithms based on the mechanics of natural. 

selection and natural genetics. They combine survival of the fittest among string 

structures known as population with a randomized structure to form a search 

algorithm which resemblances the genetic nature of the human being. In every 

generation, a new set of artificial creatures (strings) are created using bits and 

pieces of the fittest of the old. From all the parents and children in the mating pool, 

the fittest is again selected so that after every iterations, the performance is 

improved. This algorithm is computationally simple yet powerful in its search for 

improvement [10] . 
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The GA maintains a set of possible solutions (population) represented as a string 

of typically, binary numbers (0/1). New strings are produced in each and every 

generation by the repetition of a two-step cycle [10]. 

1. First step involves first decoding each individual string and assessing its ability 

to solve the problem. Each string is assigned fitness values, depending on how 

well it is performed in an environment. 

2. In the second stage, the fittest string is preferentially chosen for recombination, 

which involves the selection of two strings, and the switching of the segments 

this is called crossover. Another genetic operator is mutation. It is used to 

maintain genetic diversity within a small population of strings. There is a small 

probability that any bit in a string will be flipped from '0' to P. This prevents 

certain bits from becoming fixed at a specific value due to every string in the 

population having the same value, often causing premature convergence to a 

non-optimal solution. 

There are many kinds of search techniques which are classified in to calculus 

based, enumerative and random. Genetic algorithms are different from other 

normal optimization and search procedures in following ways [10]. 

• GAs work with a coding of the parameter set, not the parameters 

themselves. Therefore, they can easily handle integral or discrete variables. 

• GAs use probabilistic transition rules, not deterministic rules. 

• GAs search from a population of points, not a single point. 

• GAs use only objective function information, not derivatives or other 

auxiliary knowledge. 

• Sometimes near optimal solution that can be generated quickly, using Gas, 

are desirable than optimal solutions which require a large amount of time. 
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3.1.2 Tools of Genetic algorithm: 

1. Cromosome: 
In biological terms, a cromosome means a DNA which carries genetic 

information in cells. Similarly in artificial cromosome (i.e. cromosome 

used in genetic algorithms), each element is a competitor for the final 

solution which carries the fitness related to the fitness function (objective 

function). The cromosome can be of any type (decimal, binary, octal etc..,) 

The cromosome format used in this thesis is a binary format and is 

generally represented as (16 bit cromosome) 
1011010100101010 

2. Population: 

In genetic algorithms, the processing is not done.  on a single cromosome, 

but on a set of cromosome, which is called population. The population is 

updated for each and every iteration, where the population of the current 

iteration has children which are better in fitness than the population in the 

previous iteration [10]. 

General form of population is 
Cromosomel 
Cronzosome2 

Population = 
• 

cromosome in 

Where 'n' is the population size (pop size). 

3. Crossover rate: 

In the mating pool, different cromosomes are selected for crossover based 

on some selection criteria. Crossover rate is the rate at which the number of 

cromosomes that are selected for crossover over the total number of 

cromosomes present in the mating pool. 
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Number of cromosomes selected for crossover Crossover rate = 	  
Total number of cromosomes in the matingpool 

4. Mutation rate: 

To avoid some abnormal conditions which show direct effect on the 

convergence of the algorithm, we will mutate the cromosomes, based on 

mutation rate. Mutation rate is the number of cromosomes that are selected 

for mutation over the number of cromosomes present in the mating pool 

[10]. 

Mutation rate — 
Total number of cromosomes in the matingpool 

3.1.3 Genetic Representation: 

Encoding: 

Representing or encoding the problem in hand when applying GA is a vital task. 

Genetic representation of a cromosome is called encoding. There are a few ways 

of encoding the chromosomes, such as integer, real-valued but one of the most 

popular ways is binary encoding (bit string), because it is a simpler string to 

operate [10]. 

For binary encoding each chromosome is constructed by stringing binary 

representations of vector components. The length of each chromosome depends on 

the vector dimension and the desired accuracy. A sample binary representation is 

shown-here. 

S = 1010101111101011 

An 'n' bit string can represent integers from 0 to 2 -1 i.e. 2' integers. 

The main advantage of binary encoding is that it maximizes for greater sampling 

of the solution space. The other kinds of encoding include octal encoding, 

hexadecimal encoding etc.., 

Number of cromosomes selected for mutation 
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Decoding [10] 

In order to retrieve original information from the cromosome, it must be decoded 

to its original format. If a cromosome (S) in binary format is considered, the 

decoding value of the binary string is 
It=n-1 

2kSk  
=0 

 

(3.1) 

  

The original value of X, the integer is 

  

gcu —xL ) 
= XL. ± 	(2' „,-1) X decoded value of the string 	  (3.2) 

A simple genetic algorithm: 

Genetic algorithm has got a simple structure, basically consisting of three 

operators. 

1. Reproduction/Selection. 

2. Crossover. 

3. Mutation. 

The primary step prior to the start of genetic algorithm is the initialization of the 

tools of the GA (population, crossover rate etc..,). The next step is reproduction. 

3.1.4 Reproduction: 

Reproduction is the first operator applied on population. Reproduction is a process 

in which individual strings are copied according to their objective function values, 

f Cromosomes are selected from the population to be parents to crossover and 

produce offspring. Strings with higher value of fitness have more probability to be 

selected from the mating pool. Hence this process is also called selection. 
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Roulette wheel selection: 

This selection procedure is so called because it works in a way that is analogous to 

a roulette wheel. Each individual in a population is allocated a share of a 
wheel, the size of the share being in proportion to the individual's fitness. A 
pointer is spun (a random number generated) and the individual to which it points 
is selected. This continues until the pre-requisite number of individuals has been 

selected. An individual's probability of selection is thus related to its fitness 

ensuring that fitter individuals are more likely to leave offspring [10]. 
First the fitness values are then calculated using the fitness function for 

each chromosome Vi  (i=1....pop size). The total fitness of the population is given 
by 

popsize 

E fitesss fun (V i  

 

(3.3) 

 

The probability of selection for each chromosome Vi  (i=1... pop size) is 
fitnessfun(Vi) 

P- — 	  
(3.4) 

And the cumulative probability is 

Q = E P  

   

(3.5) 

   

A roulette wheel is constructed with the cumulative probabilities of all the 
cromosomes. A cromosome with greater fitness function will have more 

probability and hence will be selected number of times to the mating pool. The 
selection process is based on spinning the roulette wheel pop size times, each time 

selecting a single chromosome for the mating pool. 
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5% 

15% 

17% 

21% 
	 6%. 

In the Simulation of Roulette wheel, a random number is generated between 0 and 
1 and the cromosome is selected such that the generated random number is in the 

arc of the cumulative probabilities. 

3.1.5 Crossover Algorithms: 

Crossover is a process where two cromosomes are mixed in different means to 

produce two different off-springs. After the process of reproduction/selection, the 
parents in the mating pool are selected for crossover. The selection of parents is 

purely based on random techniques and the number of parents selected for 

crossover is decided by crossover rate which is defined before the genetic 

algorithm [1 0] . 

Single-point crossover: 

The most basic crossover algorithm is Single Point Crossover. A random number 

is generated which indexes the bits along the string and the strings are swapped 

over at this index to form two new off-springs. 
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Parent 1: 1 0 0 1  1 1 1 0 1 Childl =1 0 0 0 1 0 01 

1 1 101 Parent 2:1101 01001 Child2 = 1.1 0 

Multi-point crossover: 

Multipoint crossover algorithms extend simple crossover by selecting multiple 

crossover points and swapping the part of the two chromosomes between these 

two random numbers. 
Parent1:1001111101  	Child1=10001000 

Parent2: 1 1 0 1  0 1 01  0 0 	 Child2 =1 1 0 1 1 1 0 1 

Mutation Process: 
Mutation is a process in which a bit is taken from a chromosome at random and 

flips that bit from '0' to '1' or vice-versa. The selection of chromosome from the 
mating pool is also random. Mutation is done mainly to deal two special cases. 

1. If all the chromosomes in the mating pool are equal, the crossover produces 

children which are identically equal to the parents. Due to this, the 

convergence is never achieved. 

2. If bits of all the chromosomes are either zeros or ones, mutation helps to get 

convergence. 
To simulate mutation, two random numbers are required, one for selection a 

particular chromosome in the mating pool and second one is to select a particular 

bit in the chromosome to flip that bit. 

Before mutation =11011101 

After mutation = 1 1 0 0 1 10 1 

At the end of the two processes, crossover and mutation, the population is updated 

with the new population, the update must be in such a manner that the new 

population must have good finesses when compared to old population. 
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Fig 3.1 Flow chart for genetic algorithms 
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3.2 Ant Colony Optimization 

Ants are one of the most successful groups of insects in the animal kingdom and 
are of particular interest because they are a social insect and form highly organized 

colonies or nests, sometimes consisting of millions of individuals. Colonies of 
invasive ant species will sometimes work together and form super colonies, 
spanning a very wide area of land [11]. 

Ant communication is primarily through chemicals called pheromones. Because 

most ants spend their time in direct contact with the ground, these chemical 

messages are more developed than in other Hymenopterans. It will leave a trail 

along the ground, which in a short time other ants will follow. When they return 
home they will reinforce the trail, bringing other ants, until the food is exhausted. 

Ants are capable of finding the shortest path from a food source to the nest. They 
are also capable of adapting to changes in the environment, for example, finding a 

new shortest path when the old one is blocked off due to a new obstacle. The main 

means used by ants to form and mantain the line is a pheromone trail. Ants deposit 
a certain amount of pheromone while walking, and each ant prefers to follow a 

certain direction rich in pheremone than a poorer one. this elementary behaviour 

of ants can be used to explain how they can fmd the shortest path when the sudden 
appearance of an unexpected obstacle has interrupted the initial path [11]. 

Ant colony optimization has been applied successfully to a large number of 

difficult discrete optimization problems including the traveling salesman problem, 

the quadratic assignment problem, scheduling, vehicle routing, etc., as well as to 
routing in telecommunication networks. 

However, when they act as a community, they are able to solve the complex 
problems emerging in their daily lives through mutual cooperation. This emergent 

behavior of self organization in a group of social insects is known as swarm 
intelligence, which has four basic ingredients 
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(a) Positive feedback 
(b) Negative feedback (e.g., saturation, exhaustion, competition) 
(c) Amplification of fluctuations (e.g., random walk, random task switching) 
(d) Multiple interactions (Bonabeau et at, 1999). 

Swarm intelligent systems are hard to program since the paths to problem solving 
are not predefined, but emergent in the system itself due to the interactions 
between individuals, those between individuals and their environment, or the 

behavior of the individuals themselves. An important and interesting behavior of 
ant colonies is their foraging behavior and, in particular, ability to find the shortest 

paths between food sources and their nests. While walking from food sources to 
their nest and vice versa, ants deposit a chemical substance called, pheromone on 

the ground. Forming in this way a pheromone trail. The sketch shown in the Fig. 
3.2 gives a general idea of the pheromone trail [10]. 

Fig 3.2 how real ants find a shortest path. (a) Ants arrive at a decision point. (b) Some 
ants choose the upper path and some the lower path. The choice is random. (c) Since ants 
move at approximately a constant speed, the ants which choose the lower, shorter, path 
reach the opposite decision point faster than those which choose the upper, longer, path. 
(d) Pheromone accumulates at a higher rate on the shorter path. The number of dashed 
lines is approximately proportional to the amount of pheromone deposited by ants. 
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3.2.1 Development of the Ant Colony System 
The ant system (AS) was the first example of an ant colony optimization (ACO) 
algorithm and, in fact, originally a set of three algorithms called ant-cycle, ant 
density; and ant-quantity. These three algorithms were proposed in Dorigo's 
doctoral dissertation (Dorigo 1992). While in ant-density and ant-quantity, ants 
can update the pheromone trail directly after a move from one node to an adjacent 

one, in ant- cycle the pheromone update was carried out only after all the ants had 

constructed their tours and the amount of pheromone deposited by each ant was 
set to a function denoting the tour quality. Since ant-cycle performed better than 

the other two variants, it was later simply called ant system, while the other two 
algorithms were no longer studied [10]. 

The major merit of the AS, whose computational results were promising but not 
competitive enough as compared to other more established approaches, was to 
stimulate a number of researchers to develop extensions and improvements of its 

basic ideas so as to produce more performing, and often state-of-the-art, 
algorithms. The ACO meta-heuristic was defined a posteriori with the goal of 

providing a common characterization of this new class of algorithms and a 

reference framework for the design of new instances of AGO algorithms (Dorigo 
et al. 1996; Dorigo &Gambardella 1997 [24-25]). 

3.2.2 Applications of Ant Colony Intelligence 

There are now numerous successful implementations of the ACO meta-heuristic 

applied to a number of different combinatorial optimization problems. Looking at 

these implementations, it is possible to distinguish between two classes of 
applications [10] 

1. Static combinatorial optimization problems and 
2. Dynamic combinatorial optimization problems 

Also, classification-rule-based problems. as well as  problems where decision 

making is very important are being tried out and are showing significant 



Methods I 34 

improvement. Researchers are trying to use ACO in hybrid models, which are a 

combination of different intelligent techniques. 

3.2.3 Static Combinatorial Optimization Problems 
Static problems are those in which the characteristics of the problem are given 

once and for all when the problem is defined, and do not change while the problem 

is being solved. The application of the ACO meta-heuristic to a static 

combinatorial optimization problem is more or less straightforward, once a 

mapping of the problem is defined, which allows the incremental construction of a 

solution; a neighborhood structure and a stochastic state transition rule are locally 

used to direct the constructive procedure. A strictly implementation-dependent 

aspect of the ACO meta-heuristic regards the timing of pheromone updates. In 

ACO algorithms for static combinatorial optimization, the way ants update 

pheromone trails changes across algorithms: any combination of online step-by-

step pheromone updates and online delayed pheromone updates is possible. 

A typical example of such problems is the classic traveling salesman problem in 

which city locations and their relative distances are a part of the problem 

definition and do not change at run-time. Other applications such as quadratic 

assignment, job shop scheduling, vehicle routing; sequential ordering, graph 

coloring, and shortest common super-sequence are seine combinatorial 

optimization problems that have been successfully implemented. 

3.14 Dynamic Combinatorial Optimization Problems 
Dynamic combinatorial optimization problems are defined as functions of some 

quantities whose values are set by the dynamics of an underlying system. The 

problem changes therefore at run-time and the optimization algorithm must be 

capable of adapting online to the changing environment. A paradigmatic example 

is the problem of network routing. Research on the applications of ACO 

algorithms to dynamic combinatorial optimization problems has focused mainly 
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on communication networks. This is primarily due to the fact that network 

optimization problems have characteristics like inbuilt information and 
computation distribution, non-stationary stochastic dynamics, and asynchronous 
evolution of the network status, which well match those of the ACO meta-

heuristic. In particular, the ACO approach has been applied to routing problems 
such as connection-oriented network routing and connection-less network routing. 
Routing is one of the most critical components of network control and concerns 

the network-wide distributed activity of building and using routing tables to direct 
data traffic. 

3.2.5 The working of Ant colony systems: 

Essentially, an ACS algorithm performs a loop, applying two basic procedures: 
> specifying how ants construct or modify a solution for the problem in hand, 

and 

> Updating the pheromone trail. 

The construction or modification of a solution is performed in a probabilistic way. 
The probability of adding a new term to the solution under construction is, in turn, 

a function of a problem-dependent heuristic and the amount of pheromone 
previously deposited in this trail. The pheromone trails are updated considering the 

evaporation rate and the quality of the current solution. 
3.2.5.1 Probabilistic Transition Rule 

In a simple ACO algorithm, the main task of each artificial ant, similar to their 
natural counterparts, is to fmd a shortest path between a pair of nodes on a graph 

on which the problem representation is suitably mapped. Let G = (N, A) be a 

connected graph with n = [N] nodes. The simple ant colony optimization (S-ACO) 

algorithm can be used to fmd the solution to a shortest path problem defined on 

the graph G, where a solution is a path on the graph connecting a source node S to 
a destination node D shown in Fig. 3.3, and the path length given by the number of 
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loops in the path to each arc (i, j) of the graph is associated with a variable, called 

an artificial pheromone trail. At the beginning of the search process, a small 

amount of .pheromone ro  is assigned to all the arcs. Pheromone trails are read and 

written by ants. The amount (intensity) of a pheromone trail is proportional to the 

utility, as estimated by the ants, of that arc to build good solutions. Each ant 

applies a step-by-step constructive decision policy to build the problem's solution. 

At each node, local information maintained in the node itself and/or in its outgoing 

arcs is used in a stochastic way to decide the next node [10]. 

The decision rules of an ant k located in node i use the pheromone trails 1-  if  to 

compute the probability with which it should choose node j E Ni  as the next node 

to move to, Where Ni  is the set of one-step neighbors of node i: 

P = 

if j 

if 10 NI 

 

(3.6) 

  

3.2.5.2 Pheromone Updating 

While building a solution, ants deposit pheromone information on the arcs they 

use. In S-ACO, ants deposit a constant amount it of pheromone. Consider an ant 

that at time t moves from node i to node j. It will change the pheromone value Ty 

as follows: 

T (t) E— T (t) + AT 

 

(3.7) 

 

Using this rule, which simulates real ants' pheromone deposits on arc (i.j), an ant 

using the arc connecting node i to node j increases the probability that other ants 

will use the same arc in the future. As in the case of real ants, autocatalysis and 
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Source 

Destinations 
Fig. 3.3 Building of solutions by an ant from the source to the destination node 

differential path length are at work to favor the emergence of short paths. To avoid 

a quick convergence of all the ants towards a sub-optimal path, an exploration 
mechanism is added: similar to real pheromone trails, artificial pheromone trails 

evaporate. In this way, the pheromone intensity decreases automatically, favoring 
the exploration of different arcs during the whole search process. The evaporation 

is carried out in a simple way, decreasing pheromone trails exponentially, 

r = (1— p)z-  , p e(0,1)   (3.8) 

in each iteration of the algorithm. The way the pheromone trail is updated can be 

classified mainly into three types as detailed below Online step-by-step 
pheromone update When moving from node i to neighboring node j, the ant can 

update the pheromone trail t on the arc (i, j). 
Online delayed pheromone update Once a solution is built; the ant can retrace 
the same path backward and update the pheromone trails on the traversed arcs. 
Off-line pheromones update Pheromone updates performed using the global 
information available are called off-line pheromone updates. 
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SIZE AND LOSS OF LIFE OF TRANSFORMER 

To fmd out the size and LoL (loss of life) of transformer we need data for cold 
load pickup, so I have taken the data from substation (jadugar Road and Piran 

Kaliyar in Roorkee) which is 8MVA, 11 KV and it has two sections. To fmd out 

solution for Cold load pickup as well as find out size and LoL of transformer they 

are so many ways authors proposed [1-2-5], methods are... 

4.1 Techniques for Solving the CLPU Problem 

Following an extended power outage, a fast and smooth restoration is very 
important. A number of restoration strategies have been adopted to cover various 

aspects associated with power system restoration. In the case of the CLPU 

condition, load demand varies with time, and the handling of high-magnitude 

current during restoration is the main task in controlling the CLPU problem. 

Depending on the situation, an appropriate technique or combination of techniques 

can be used. Different techniques used for the CLPU situation are discussed as 
follows [2]. 

1. Reduced Voltage 

2. Sectionalizing the Network 
3. Adaptive Protection 

4.1.1 Reduced Voltage 

The current demand depends on the distribution voltage. A reduction in service 

voltage can also reduce the value of the current. However, there is prescribed 
voltage range for service voltage, which must be followed. Hence, the control of 

load demand through voltage variation is restricted to a limited operation bend. 
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Lefebvre and Disbiens [19] have shown the impact of system voltage on CLPU by 

changing the voltage 15%. 

4.1.2 Sectionalizing the Network 

Presently it is the commonly used method to restore a network after an extended 
outage. It is based on planned area-wise load curtailment to limit the peak current, 
i.e., step-by-step restoration. The operation is optimized so that the restoration can 

be performed in minimum time and at minimum cost. The method is very effective 

[2]. 

Ucak and Pahwa [12-5] derived the restoration time as a function of the restoration'  

order and CLPU model parameters and then minimized the total restoration time 
and customer interruption duration, considering transformer temperature and 

loading limits. 

4.1.3 Adaptive Protection 

In case of adaptive protection, the devices that protect power systems change their 

characteristics or settings according to the condition of the system. As in the case 

of CLPU, over current relays are unable to differentiate between fault current and 
inrush current, so relays trip the network. If phenomenal logic associated with 

CLPU is incorporated in the protecting devices, it can act according to conditions. 

Removal of an instantaneous relay for a period of time is one of the commonly 

used techniques. Digital relays can be designed to adjust the characteristics 

according to conditions. It was observed that this technique, adapted relaying, has 

been used mostly for short times or initial phases of CLPU. In 1952, a study was 
performed to find out increased load capacity for increasing the time setting of 

existing relays. The adjustment of characteristics of over current relays was done 

by set points, so that the high current of the initial phases could be handled. 
Extreme inverse relays were recommended over inverse relays to achieve more 

time for the inrush current to subside [2]. 
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The adaptive protection scheme can be efficiently applied with digital relays, but 
at the same time, the large number of in-service electromagnetic relays will have 

to be taken into consideration for optimal operation. 
The optimization problem is finally applied to a real-life distribution feeder. 

Solving the problem using a genetic algorithm, the optimal values of the decision 

variables were obtained such that transformer overloading does not violate 

ANSI/IEEE C57.92-1981 [20] recommended limits. 

4.2 Delayed Exponential model 

Fig.4.1. Transformer load pre and post outage 

A delayed exponential model has been proposed to characterize the aggregate load 

during cold load pickup. Figure 4.1 shows the variation of the load with time when 

cold load pickup conditions persist according to this model. Here, S(t) is the load 

as a function of time, Tout is the outage duration, Su is the undiversified load, SD is 

the diversified load, a is the rate of load decay, and A is the undiversified load 

duration. Following an outage, the section load reaches the undiversified 
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maximum value Su  for duration A. Thereafter, the load decays exponentially 

towards the diversified load SD, at a rate a [5]. 

The design constraints [21]: 

➢ During normal operating conditions voltage at any service point should be 

within 5% of the system voltage and during emergency conditions the 

service voltage could range between plus 6% to minus 8% (ANSI/IEEE). 

> Feeder conductors should not be loaded beyond 33% of their normal 

capacity 

> Time of customer interruption should be minimized in case of sectional 

restoration. 

> Transformer loss of life and temperatures should be within IEEE limits. 

Ideally, a power transformer can be loaded up to its name-plate rating 24 

hours a day with normal loss of life. If the distribution system experiences a 

peak load, for example as in a CLPU situation, overloading of transformers may 

be necessary for a short duration. Limitations for short term loading of 65 °C 

winding rise transformers are given in ANSI/IEEE C57.92-1981 [20] and they 

are summarized as [14] 

> 4% loss of life in any one emergency operation 

> 180 °C hottest-spot temperature 

➢ 110 °C top-oil temperature 

> Maximum short term loading of 2 p.u. 
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4.3 Optimal Size of Transformer 

For finding out optimal size of transformer PAHVVA [5-6] proposed one cost 

model on the basis of this model we fmd out the size and loss of Life of 

transformer with minimizing the cost how? It is going on from now onwards 

It is desired to fmd the optimal size of substation transformer(s) and number of 

sectionalizing switches that result in minimizing a total annual cost that is broken 

down into the following components: 

> Cost of transformers and sectionalizing switches 

> Cost of energy interruption 

> Revenue of energy sold during power restoration 

> Cost of transformer loss of life due to overloading. 

Z- 	is the total cost function, $/year 
X - is the number of substation transformers 
ST  - is the transformer rating, MVA 
f(ST)- is the transformer cost function, $/MVA.year 
Ks- is the cost of a sectionalizing switch, $/switch. year 
Ns- is the number of sectionalizing switches 
p- 	is the average number of extended outages per year, 1/2 
Kc- is the cost of service interruption to customers,1.59 $/kWh 

for residential customers and an average outage 2 hrs 
TEl- is the total energy interruption, kWh/outage 
Ke- is the cost of energy to customers, 0.05 $/kWh 
E (t) - is the energy sold during restoration, kWh/outage 
K101 - is the cost of transformer loss of life, $/outage. 
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Thus, our objective function can be formulated for as 

min Z = XST  + f (ST ) + KsN s  + p(KcTEI — KeE(t) + 	... (4.1) 

s.t 	XST 	< Su  
XST 	< SD  

(ST — SD/x )n > Su  — SD  

1.0 Kp  

ST , NS  0 

Su  - is the substation total undiversified load 
SD  - is the substation total diversified load 

is the transformer maximum capacity,STM  = KpST  
Kp- is the transformer overloading factor 
n- 	is the total number of sections,n=Ns+f 
f- 	is the number of feeders 

Flow chart for this problem with genetic algorithm is given in appendix-A 

4.3.1 Transformer Cost: 

A preliminary step involves obtaining the transformer cost function. The data 

given in Table 1 is for a 115 kV A /12.47 kV Y OA/FA/FA 65 °C transformer and 
was obtained from a utility-type transformer manufacturer. For a 12 % interest rate 

and a 30-year life, Burke [22] calculates the total levelized annual carrying 

charges factor as 20.19 %. The annual cost/MVA, shown in the fourth column of 

the table, has been calculated using this factor. Both linear and quadratic functions 
were fit to the data. These in addition to the original data points are plotted in 

Figure 4.2. Transformer cost can, now, be approximated as [5-6] 
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g ST) =-1(  TO ± K T1 ST +K.2 S2T 

{5283.52 - 70.28ST  , linearly 

7199.263 - 235.015Sr  + 2.728 S2T,quadratically 
	 (4.2) 

Also, taking the cost of a sectionalizing switch to be $ 11000, one finds KS  = 

2220.9. 

Cost of the transformer increased as decreasing the size of the transformer and we 

increase size some extent it decreasing if you are increasing further cost of the 

transformer increased. This is how happened? That will show in appendix-A [5]. 

4.3.2 Distribution system: 
1 2 3 O 

4 5 6 

7 8 9 O —1D-0 	  

. • 10 11 12 	O 	 

 

   

El Circuit breaker 

CD sectionalizing switch 

Fig 4.2 a distribution system with 4 feeders divided into 12 sections. 

Background 

Consider a distribution substation with x. transformers that has experienced an 
extended outage with duration of Tout. If we shift our reference so that the instant 
power restoration starts corresponds to zero time, and with only one section being 

restored, then the transformer load before and after the outage will be as shown in 

Figure 4.1, where A t is the undiversified load duration. 
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When n sections are to be restored by x transformers, each transformer would be 
responsible for restoring n / x of the sections. Transformer load would then be the 
sum of the loads of n/x sections. Based on the work of Ucak [12] and considering 
identical sections, the load of any section i following an extended outage would be 

equation (4.3) 

4.3.3 Roorkee Substation Distribution system 

In this distribution system [Roorkee] substation with one transformer that has 

experienced an extended outage with duration of Lid. If we shift our reference so 

that the instant power restoration starts corresponds to zero time, and with only 

one section being restored, then the transformer load before and after the outage 

will be as shown in Figure 4.1, where A t is the undiversified load duration. 

It has 2 sections and it should be restored by one transformer only. Transformer 

load would then be the sum of the loads in 2 sections. Based on the work of Ucak 

[12] and considering identical sections, the load of any section i following an 
extended outage would be equation (4.3) 

Roorkee distribution system: 

1 
	

CD 	
 2 

3 	 4 
	 CD 	 

111 	Circuit breaker 

O — Sectionalizing switch 

Fig 4.3 a distribution system with 2 feeders divided into 4 sections. 
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Si  (t) .—{Su  [u(t —7)—u(t —1.1 )]+[SD+(Su  —SD ).e-a(" )1.u(t —4)1 
... (4.3) 

Where . 

Si(t)- is the load of the ith  section 

Ti  -is the restoration time of the ith  section, minutes 
ti -is the time at which the load of the restored ith  section begins to gain diversity 

a -is the load rate of decay 

Su- is the substation total undiversified load 

SD -is the substation total diversified load 

n -is the total number of sections 
{  

u(t) is a unit step function, u(t) = 1 for t 0 
0 for t < 0. 

If the transformer maximum capacity STm  is not to be exceeded, then the total 

number of sections restored in the first, step would be [5] 

( 	) s = x Floor nS  ---1'n Su  

= K pST  

TK  =0 , k < s  
xo  

n 
nS - Su  - (k -1)S D  < k < 	 (4.4) 	• k-1 	 3 
(Su  — SD  )E ea(TI+Al) 	

X0 	X0  

1=1 

4.3.4 Customer interruption and customer average interruption 
Total customer interruption duration and customer average interruption duration 

index are, respectively, given by [5] 

a 
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TCID = xC 

 

(4.5) n 

 

CAIDI = :LET; 
n i=i  

Where 

 

(4.6) 

 

Variable 'C' is the total number of customers in the system. 

 

Total energy interruption is calculated as... 

  

TEI = 1000xSDPf 	=1000S DPf 
CAIDI  

60n 	i=1 	 60  

 

(4.7) 

  

Where 

Pf is the power factor as measured at the distribution substation CAIDI is the 

customer average interruption duration, minutes. Assuming a constant power 

factor, the total energy supplied while n sections are being restored by x 

transformers is [5] 

X ni x  E(t) = pf[(Su  — SD ) At +SDO --E TO+ Su  —SD  (1  X 2 
n 

  

(4.8) 

  

   

4.4 LOL (Loss of Life): 

Finally, Substation transformer loss of life due to overloading is taken into 

consideration; Temperatures inside a transformer determine its loading ca-

pability. The highest temperatures occur in the top section of transformer. 

Winding outlet oil temperature which is also called top-oil temperature is the 

hottest part of oil and average temperature of the uppermost disc is the hottest 

section of winding. The hottest-spot temperature is temperature of the 

conductor which has the maximum temperature in the uppermost disc and it is 
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generally a few degrees higher than the average temperature of the uppermost 

disc. The highest deterioration of insulation material will be in the location of the 
hottest-spot temperature. Therefore, this temperature is used to calculate the He 
expectancy of a transformer [20]. 

Loss of life is a cumulative process. Thus, when the hottest-spot temperature is a 
function of time, the total loss of life for a period of T can be determined by 
[14] 

T  dt  %(loss of life) =100 f  A  
° 108hs (t)+B  

   

(4.9) 

   

A - 6972.15 and B = - 	.39 

,u .,* 
4' 

0 
in 	q 0 	tif) 

/4 

4cr„ 
.w4 ' 

280 	240 	200 180 	160 	140 	120 	100 	80 	60 	41 
Hottest - spot temprature in 0 c 

Fig 4.4 life expectancy curve [20] 
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Where 9  hs  is given by 

hs 

And 
A and B are constants from desired life expectancy curve. For 65 °C 

winding rise transformer, A= 6972.15 and B = —13.391 [14]. 

The cost of loss of life would therefore be 

K  _ ST  AST )  LOL  
" ACCF 100 

 

(4.10) 

 

Where ACCF is the annual carrying charges factor and its value is 0.2019. 

Figure 4.6 shows during CLPU condition temperatures (top-oil and hottest-spot) 

changes [23]. 

60 

40 

2 

Oil  

. t.op,* i 1- *—.. 
t 	t* 

11951 14 7Fr 

Fig 4.5 the top – oil and hottest – spot temperature during CLPU 



CHAPTER-5 

OPTIMAL RESTORATION TIME 

General 

Due to loss of diversity of loads, the restoration of distribution feeders after long 

interruptions creates cold load pickup conditions. As a result, the total load briefly 

exceeds the substation transformer rated load. In order to prevent overheating of 

these transformers, the distribution system load may have, to be restored in a step-

by-step manner using sectionalizing switches [1]. The restoration time is dependent 

on the order in which sections are restored. We propose genetic algorithms and ant 

colony algorithms as two stochastic optimization algorithms [10-11] to compute the 

globally best restoration sequence of sections. Both approaches belong to a class of 

algorithms known as evolutionary algorithms. While genetic algorithms are well 

known techniques for optimization, ant colony algorithms have been proposed very 

recently. Results obtained using both methods for two test cases are presented. 

5.1 Step - by - Step Restoration 

Here we have taken all section are non-identical so that each section operating at 

different loads. For this purpose Sudhakar Chavali [1] proposed step-by step 

restoration to get optimal sequence would ensure that the system is restored as 

quickly as possible. The distribution system used for the present study is shown in 

Figure 5.1. The system contains four feeders with three sections in each feeder, 

which are numbered. 

A sequence is represented as S = 	s2. sn ) where each sf  is a section number. 

Some of the sections in a distribution system can be restored simultaneously at the 

beginning if the sum total of their undiversified loads is less than the maximum 

allowable transformer loading, Ste. Furthermore, during restoration, a section can 
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only be restored if all prior sections located in its own feeder have already been 

restored. Therefore, in Figure 4.1, section 9 can be restored only after sections 7 and 

8 since they are located on the same feeder. We will refer to this as the precedence 

-constraint. Because of this precedence constraint of the restoration sequence, some 

of the sequences of sectionalizing switches to be turned on would be rendered 

invalid. For example, (1 4 5 7 6 8 9 10 11 2 3 12) is a valid sequence whereas (1 8 4 

2 3 5 7 6 9 10 11 12) is not since section 8 appears before section 7 in the sequence. 

1 
	

2 	 3 

4 	 5 	 6 
	CD 	  

7 
	

8 	 9 

10 11 12 

Circuit breaker 

sectionalizing switch 

Figure 5.1 the distribution system 

A delayed exponential model has been proposed to characterize the aggregate load 

during cold load pickup [14]. Figure 5.2 shows the variation of the load with time 

when cold load pickup conditions persist according to this model. Here, S(t) is the 

load as a function of time, Tout  is the outage duration, Su  is the undiversified load, 

SD is the diversified load, a is the rate of load decay, and t is the undiversified load 

duration. Following an outage, the section load reaches the undiversified-  maximum 
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value Su  for duration A. Thereafter, the load decays exponentially towards the 

diversified load SD, at a rate a. 

Su  
up 
-,:=, cvi 0 

El 0utae e o 
w 

power restored 
at t=0 

E.1.24  
S 

Time (t) 

Figure 5.2 model of Cold load pickup 

Table 5.1: Load of the network 

S 1 no Section Number Diversified Load 

(MVA) 

Undiversified Load 

(MVA) 

1 1 2.5 7.5 

2 2 2.5 4.5 

3 3 2.0 3.0 

4 4 1.5 6.0 
• 5 5 2.5 5.6 

6 6 2.0 6.5 

7 7 2.5 4.0 

8 8 2.0 9.0 

9 9 3.0 6.0 

10 10 3.0 6.0 
• 11 11 1.5 4.8 

12 12 2.0 6.0 
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The restoration time of the ith  section to be restored, T[1] , can be calculated using 

the following equation [1] 
i 

S M T  — S  u [ i ] — E s D Di 

Where 
Sm.' is the maximum allowable transformer loading. The quantities Sum and SD[1]  are 

the undiversified and diversified loads respectively of this section. The number 

shown within square brackets is an index representing the order of restoration, 

which is not to be confused with the section number. The set R contains all the 

previously restored sections. The total restoration time is the time required before 

the last section is restored. It is clearly dependent on the order in which the step-by-

step restoration is carried out [1]. 

For finding the optimal restoration time I have chosen genetic algorithm, this 

method I have already explained in chapter-3. In this fitness function evaluates the 

best individuals are selected randomly from the population. 

Iffi  denotes the fitness of the th  individual, then the probability of selection is given 

by [1] 

T ai] = 	 I e R 

E (s 
U 
 „, — s „, 	a (T [1]  + A ) 

\ Ie R 
(5.1) 

 

(5.2) 

 

It is iteratively assembled by picking and adding individuals from the parent pool 

stochastically based on fitness, and with replacement. The process is repeated until 

the intermediate population has 2N sequences of sections. 

Letting the total restoration time corresponding to the /th  individual of a population 

of sequences, we denote as TI, its fitness was computed as 
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maxk  (Tk  ) — Ti  

   

max k(Tk ) - mink  (Tk  ) 

  

(5.3) 

  

Where 

Each T1  is determined by Eq. (5.1). The fitness computed in this manner is scaled to 

lie between zero and unity [1]. 

After this cross over and mutation ... 

As an example, in the sequence parent = (1 4 7 2 8 5 10 9 3 6 11 12), sections 4 and 

2 can be swapped to obtain a new offspring (1 2 7 4 8 5 10 9 3 6 11 12). But 

sections 1 and 9 cannot be swapped as that will result into an invalid sequence of (9 

4 7 2 8 5 10 1 3 6 11 12), in which section 2 appears before section 1 and section 9 

appears before sections 7 and 8. 

Results are shown in chapter-6 

5.2 Ant Colony Optimization Algorithms: 

5.2.1. Description of the Algorithm 

The ant colony approach is a new method of solving combinatorial optimization 

problems. It is derived from the foraging behavior of ants, cooperates to obtain an 

optimal path from their nest to a food source. Ant colony algorithms [23, 24] were 

originally proposed as a method for the traveling salesperson problem, where the 

problem is also one of determining a minimum distance path. 

In each turn of the algorithm, an ant produces a candidate solution for the 

optimization problem, which in our case is a sequence of sections for restoration. 

Each ant defines a candidate solution piece-by-piece starting from an empty 

sequence, probabilistically adding a new section at a time, until an entire sequence 

is obtained. Although each ant's traversal yields a single solution of the 

optimization problem, the ants cooperatively compute better solutions with 

increasing iterations. Therefore, the ant colony approach can be regarded as a search 
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through the solution space of the problem instance. As we will see, the search 

converges gradually onto regions where potentially good solutions can be found. 

The ant's traversal is guided by the pheromone trail. The stronger the pheromone 

concentration along any path, the more likely an ant is to include that path in 

defining a solution. However, the ant is guided not solely by pheromones, but by 

another factor called the desirability. The desirability is computed initially and 

remains constant throughout the algorithm W. 

5.2.2 Desirability 

An ant's traversal is biased to wards picking up more desirable components of the 

solution. In the present problem, restoring sections with larger undiversified loads 

allows these loads to assume stable diversified levels at an earlier stage of the 

restoration. This usually results in quicker overall restoration. Hence, the 

desirability 77i  of picking a section j for restoration is simply set to ri j  = SUS  . 

5.3. Path Traversal 

In each iteration, a new ant, starting from an empty sequence, assembles a full 

sequence, which is a valid solution. Each path that the ant takes towards this 

solution sequence results in a new section being appended to a partially completed 

sequence as a new section for restoration. The probability that an ant will select an 

=restored section q in the set Ready of sections that are ready for restoration as the 

next section for restoration, following any other section r, is equal to the normalized 

product of the desirability and trail concentration, exponentiated appropriately. It is 

given by [I], 

Pqr 
( q ,-)7  0/0"'  

ioofl 

 

(5.4) 
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In the above equation, the exponent's y and /3 are two parameters associated with 

the ant colony algorithm. The variable rqr  is the pheromone concentration along the 

path from section q to section r. For the very first element that is inserted in to the 

sequence, the pheromone concentration is simply assumed to be unity [1]. 

5.4. Pheromone Updating 

The process of pheromone deposition is a very important aspect of the algorithm. 

The pheromones are updated only at the end of each iteration when the ant 

completely defines a sequence. Furthermore, the increment is inversely related to 

the quality of the solution generated. For those pairs of sections (q, r) that appear in 

the sequence that the ant generated, the trail is updated according to the equation 

below [1] 

= (1— prr + '1-  qr 	- qr A  P qr 

 

(5.5) 

 

Where p is the evaporation rate and the quantity L rqr  is a pheromone intensity 

increment, which is equal to the following 

	

Arqr  = T   (5.6) 

Where T is the total restoration time and Q is one of the parameters associated with 

the algorithm. For all other pairs of sections, the pheromone concentrations are 
simply subject to evaporation as [1] 

-1-qr = (1- 	qr 	 (5.7) 

Results are shown in chapter-6. 
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CHAPTER-6 

RESULTS AND DISCUSSIONS 

In this I have given only results. I have taken the data (CLPU) from substation in 

winter as well as in summer. First of all I want show the variations of all 

parameters. The variation of active power, reactive power, load and current with 

time are shown below. 

6.1 Summer season: 

Fig 6.1 Current Vs Time 

Fig 6.2 Active power vs. Time 
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Table 6.1: Piran Kaliyar 
	 Date: 4/05/06 

S No Time I(A) V(KV) Temp P.f P(VA) Q(VAr) S 

1 18:10 138 11.0 62 0.86 1437.92 853.21162 1672.0 

2 18:30 0 0 - 0.86 0 0 0.0 

3 19:00 0 0 - 0.87 0 0 0.0 

4 19:30 0 0 - 0.87 0 0 0.0 

5 19:50 0 0 - 0.92 0 0 0.0 

6 20:00 180 11.7 64 0.90 2106 1019.9824 2340.0 

7 20:05 180 11.7 64 0.92 2152.8 917.08896 2340.0 

8 20:10 180 11.7 65 0.85 1989 1232.6715 2340.0 

9 20:15 180 11.6 65 0.92 2134.4 909.25059 2320.0 

10 20:20 180 11.6 66 0.90 2088 1011.2646 2320.0 

11 20:25 180 11.6 64 0.87 1917.48 1086.686 2204.0 

12 20:30 180 11.5 65 0.87 1900.95 1077.318 2185.0 

13 20:35 175 11.3 66 0.87 1818.74 1030.7246 2090.5 

14 20:50 170 11.2 65 0.87 1753.92 993.99227 2016.0 

15 21:05 160 11.1 64 0.90 1798.2 870.90801 1998.0 

16 21:20 , 	155 11.0 65 0.85 1589.5 985.08363 1870.0 

17 21:35 150 11.0 66 0.9 1633.5 791.14016 1815.0 

18 21:50 145 11.0 65 0.87 1579.05 894.88887 1815.0 

19 22:00 145 10.8 64 0.86 1486.08 881.78809 1728.0 

20 22:15 145 10.7 62 0.89 1466.08 871.98 1708.25 
_, 
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Fig 6.3 Load Vs Time 

6.2 Winter season 

As compare to the summer season winter season draws more power 

because of thermostatically-controlled devices such as air-conditioners, heaters, 

and heat pumps these devices draws 2 to 5 than normal load. 

Fig: 6.4 Current Vs Time 
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Table 6.2: Piran Kaliyar 
	 Date: 07/01/06 

S No Time I(A) V(KV) Temp P.f P(VA) Q(VAr) S 

1 10:00 190 10.8 59 0.88 1805.76 974.646 2052.0 

2 10:30 0 0 - 0.88 0 0 0.0 

3 11:00 0 0 - 0.87 0 0 0.0 

4 11:30 0 0 - 0.89 0 0 0.0 

5 12:00 0 0 - 0.89 0 0 0.0 

6 12:10 240 11.1 58 0.90 2397.6 1161.2107 2664.0 

7 12:15 240 11.1 59 0.90 2397.6 1161.2107 2664.0 

8 12:20 240 •11.1 60 0.91 2424.24 1104.5164 2664.0 

9 12:25 240 11.1 60 0.92 2450.88 1044.0705 2664.0 

10 12:30 240 11.1. 61 0.94 2504.16 908.88871 2664.0 

11 12:35 240 11.1 62 0.92 2450.88 1044.0705 2664.0 

12 12:40 230 11.0 62 0.91 2302.3 1048.9589 2530.0 

13 12:50 220 11.0 63 0.92 2226.4 948.44243 2420.0 

14 12:55 210 10.8 64 0.89 2018.52 1034.1185 2268.0 

15 13:10 210 10.8 62 0.9. 2041.2 988.59828 2268.0 

16 13:25 200 10.8 61 0.91 1965.6 895.55382 2160.0 

17 13:40 200 10.8 60 0.89 1922.4 984.87473 2160.0 

18 13:55 190 10.8 60 0.88 1805.76 974.646 2052.0 

19 14:10 185 10.8 61 0.87 1738.26 985.11734 1998.0 

20 14:20 180 10.8 61 0.89 1730.16 886.38726 1944.0 
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Fig 6.5 Active power vs. Time 

Q(VAr) Vs time 
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Fig 6.6 Reactive power vs. Time 
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As per above graphs I concluded that after outage sudden variation is coming 

because of these thermostatically-controlled devices and it is satisfying with 

delayed exponential model which is I explained in chapter 4. Expect reactive 

power reaming all are decreasing exponentially. 

6.3 Transformer Size and Loss of Life 

In order to find the size and loss of life we need below values: 

From the above graph I have chosen one graphs (transformer load), in this graph 

Diversified, undiversified loads and At are 2.8 MVA, 9.3 MVA and 30 mints. 

K p = 150% , 

No of transformers = 1 

No of feeders = 2 (jadugar road and Piran Kaliyar) 

Average no of outges per year (1 per two days) = 0.5 

Ambient temperature = 39°  c 

For this data I have been applied optimization technique Genetic Algorithm from 

this GA I got following results with MATLAB. 

From this above data I found that 

Size of the transformer (Roorkee substation) = 6 MVA 

Number of sectionalizing devices = 0 

Transformer Loss of Life (in %) = 0.2376 
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Fig 6.8 Transformer size 

Fig 6.9 Cost function 

6.4 optimal restoration time of the network 

Network is having 4 sections and 12 feeders for this total average minimum 

restoration time is calculated by using two methods for comparison purpose of 

methods with MATLAB programming. 

In first method (GA) we have two more cases and Table 6.3 shows the diversified 

and undiversified loads for the distribution system. 

Case lA mild case of cold load pickup and Case 2 is an extreme case of cold load 

pickup. In Case 1, the transformer maximum loading capacity (Sm.) was 1.5 times 

the rated capacity , the rate of load decay (a) was 1.25 per hour, and the 



Fig: 6.10 GA casel restoration time 
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undiversified load duration (A) was 0.33 hours. In Case 2, the transformer 

maximum loading capacity (SA was 1.45 times the rated capacity, the rate of 

load decay (a) was 0.5 per hour, and the undiversified load duration (A) was 0.5 

hours. The maximum transformer loading was reduced for Case 2 to avoid 

overheating of the transformer due to extreme conditions. Such extreme situations 

may not occur very often, but are becoming more possible with loading of 

transformers increasing gradually 

Case 1: 

Average minimum restoration time is = 62 mints 

Case 2: 

Average minimum restoration time is = 260 mints 
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Fig: 6.11 GA case2 restoration time 

Ant Colony Optimization: 

The pheromone evaporation rate is p = 0.02, 

The exponents were y = 0.5, fl = 0.5, 

And Q = 104  in the ant colony algorithm. 

By comparison of the two methods it's observed that GA convergent more faster 

than ACO 



Results I 66 

Fig: 6.12 ACO easel restoration time 

Fig: 6.13 ACO case2 restoration time 
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CHAPTER-7 

Conclusions and Scope of Future Work 

The Cold Load Pickup is one of the most severe conditions that a power 

distribution system faced. This thesis work gives a formulation of an 

Optimization problem for the design of power distribution system, taking cold 

load pickup into consideration. A solution was obtained for the optimization 

problem and the results were compared with the different optimization 

techniques. By this solution, the distribution substation transformer size, 

number of sectionalizing switches and transformer Loss of Life is determined. 

This transformer size minimizes the annual cost function. 

Genetic Algorithms and Ant Colony Optimization techniques are used for 

optimal designing of a distribution system. The optimal restoration time of the 

network got from these two methods are compared and genetic algorithms are 

found to be effective among the two. 

Results obtained for the system (Roorkee substation), and are compared with 

the IEEE standards (C57.92.1981). It is observed that as the size of the 

transformer increases, its cost function decreases gradually (Eg: S=6MVA the 

cost is 5887.32 and up to S=40MVA its decreasing and further means 

S=50MVA its increasing and the cost is 2261.28) and vice versa. If the 

transformer size is further increased, its cost function also increases. 

Future scope of work is to reduce the Annual cost of the system for this instead 

of using sectionalizing switch we use Distribution generators so that we can 

minimize the cost to some extent. 
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Appendix-A 

Cost of Transformer 

Cost of the transformer increased as decreasing the size of the 

transformer and we increase size some extent it decreasing if you are increasing 

further cost of the transformer increased. 

Table A.1: 

ST,MVA 

COST 

$ $/MVA $/MVA,YEAR 

7.5/8.5/9.5 246000 25894.7 5228.15 

12/16/20 350000 17500 3533.25 

15/20/25 380000 15200 3068.88 

24/32/40 430000 10750 2170.42 

30/40/50 560000 11200 2261.28 

Table A.2: 

S1 No Size (ST) MVA Cost (Linear) Cost (Quadra) 
1 6 4861.32 5887.38 
2 9 4700 5228.15 
3 : 20 3900 3533.25 
4 . 25 3450 3068.88 
5 40 2450 2170.42 
6 50 1800 2261.28 
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Fig A.1 Transformer least square approximation of data 



4-- 
Calculation of the fitness 
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ST=SD/X0 	Su/X0 
Kp = 1.0.♦  2.0 
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X„=X 

Xo=X-1 

-1110 

Restoration 

•	 
• 

Production of 
individuals 

Calculate 
T [K] 

Production of the 
Initial Population 

Input data 

Selection 
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Flow chart: 

Crossover and Mutation 

 

Replacing the old population 
with new one 

• 
Calculate percentage 
loss of life 

Caluculate energy sold 
during restoration 
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(End 
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