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Abstract 

Sensor networking is a fast growing technology. Networked transducers offer many 

advantages • to users. Today multiple control and sensor networking solutions are 

emerging, each requiring a separate and significant effort on the part of transducer 

manufacturers. It is too costly for transducer manufacturers to make unique smart 

transducers for each network on the market. Therefore a universally accepted transducer 

interface standard, the IEEE 1451 standard, has been evolved. The family of IEEE 1451 

standards provides a common interface and enabling technology for the connectivity of 

transducers to microprocessors, control and field networks, and data acquisition and 

instrumentation systems. 

IEEE 1451.1 defines Network Capable Application Processor for connecting 

communication networks on one side, and sensors (or actuators) on the other. An 

Interface controller is required while connecting the NCAP to the communication 

network. This report presents the successful development of a reprogrammable interface 

controller that is important part of network capable application processor (NCAP). This 

NCAP features low redundancy of hardware because interfaces are implemented by 

software. The RIC is implemented on FPGA board so that NCAP get the ability to 

reconfigure types and parameters of the communication Interfaces according to meet 

user requirements so required flexibility of our NCAP can be achieved. The interface 

controller has been designed in VHDL, and targeted to Spartan 3E FPGA kit. Important 

aspects of these tools are described in detail in various sections of the report. Design, 

simulation and FPGA implementation of a protocol controller for the Controller 

Area Network (CAN) 2.0A multi-master serial communication protocol are 

described. The design method of each functional block is also presented in the report as 

an experience of how to easily design digital systems to be reused in different 

applications, assuring its quality and reliability. 

iii 



CONTENTS 

Candidate's Declaration 

Acknowledgements 	 ii 

Abstract 	 iii 

Table of Contents 	 iv 

List of Figures 	 viii 

List of Tables 	 ix 

1 Introduction 	 1 

1.1 The IEEE 1451 standard 	 1 

1.1.1 IEEE 1451 goals 	 1 

1.1.2 History 	 2 

1.1.3 How can IEEE 1451 are applied 	 3 

1.L4 Benefits 	 4 

1.2 The Family of standards 	 4 

1.2.1 IEEE 1451.2 	 4 

1.2.2 IEEE 1451.1 	 5 

1.2.3 IEEE 1451.3 	 5 

1.2.4 IEEE 1451.4 	 6 

1.3 Objective and scope of work 	 8 

1.4 Organization of report 	 8 

	

2. NCAP Development 	 10 

2.1 Network Capable Application Processor 	 10 

	

2.1.1 Introduction 	 10 

iv 



2.1.2Physical view 	 11 

2.1.3Logical view 	 11 

2.1.4 Information model 	 12 

2.1.5 Data model 	 13 

2.2 IEEE 1451.1 goals 	 13 

2.3 IEEE 1451.1 users 	 14 

2.4 IEEE 1451.1 benefits 	 15 

2.5 Implementation of network smart sensors 	 15 

2.5.1 Description of IEEE 1451.2 standard 	 15 

2.5.2 NCAP 	 17 

2.5.3 Hardware Implementation of network smart sensor 	17 

2.5.4 NCAP for CAN bus 	 18 

3. Hardware software platforms 	 20 

3.1 Software platforms 	 20 

3.1.1 Hardware Description Language 	 20 

3.1.2 Designing FPGA devices with Synthesis tools 	 20 

3.2 Design flow 	 21 

3.2.1 Steps in Implementation 	 22 

3.3 Hardware platform 	 25 

4. Controller Area Network (CAN) protocol 	 28 

4.1 CAN 	 28 

4.2 CAN network protocol 	 28 

4.2.1 CAN properties 	 30 

4.2.2 Layered structure of a CAN node 	 30 

4.3 Messages 	 31 



4.3.1 Data frame 	 31 

4.3.2 Remote frame 	 34 

4.3.3 Error frame 	 35 

4.3.4 Overload frame 	 35 

4.4 Bit stuffing 	 36 

4.5 Error Detection 	 36 

4.6 Error signaling and Recovery time 	 37 

4.7 Fault Confinement 	 37 

4.8 Connections 	 37 

4.9 Single channel 	 37 

4.10 Bus values 	 37 

4.11 Acknowledgment 	 37 

4.12 Error handling 	 37 

4.13 Error signaling 	 38 

4.14 Definition of Transmitter/Receiver 	 39 

5. Design and Implementation of RIC 	 40 

5.1 Reprogrammability requirement 	 40 

5.2 Design of IEEE 1451 based smart module for 

network communications 	 41 

5.3 Functional Description 	 42 

5.3.1 Interface Management logic 	 43 

5.3.2 Transmit Buffer 	 43 

5.3.3 Receive Buffer 	 43 

5.3.4 Acceptance checker 	 43 

5.3.5 Bit Stream processor 	 43 

Vi 



5.3.6 Bit Timing Logic 	 44 

5.3.7 Error Management logic 	 44 

5.4 Implementation and state machine diagrams 	 44 

5.4.1 Parameter registers 	 47 

5.4.2 Transmitter buffer 	 48 

5.4.3 Data/Remote frame generation 	 49 

5.4.4 par-ser converter 	 50 

5.4.5 CRC generator 	 51 

5.4.6 Bit stuff unit 	 52 

5.4.7 Overload/Error frame generation 	 53 

5.4.8 Serialized frame transmitter 	 55 

5.4.9 Message processor 	 55 

5.4.10 Arbitration controller 	 56 

5.4.11 Synchronizer 	 56 

5.4.12 Bit destuff unit 	 57 

5.4.13 Error checkers 	 58 

5.4.14 Acceptance checker 	 60 

5.4.15 Receive buffer 	 61 

5.4.16 serial to parallel converter 	 61 

5.4.17 Interface Management logic 	 62 

6. Results 	 64 

6.1 Simulation Results 	 64 

6.2 Synthesis Results 	 67 

7. Conclusion and Future scope 	 75 

7.1 Conclusion 	 75 

vii 



7.2 Scope of future work 	 75 

REFERENCES 

APPENDIX 

List of Figures: 

1.1 How IEEE 1451 can be applied 	 3 

1.2 IEEE 1451.2 STIM and NCAP Interface 	 5 

1.3 IEEE 1451.4 mixed mode transducer 	 6 

1.4 The family of IEEE 1451 standards 	 7 

2.1 Network Capable Application Processor 	 11 

2.2 Hardware model of Network Interface module 	 15 

2.3 Conversion of 1451.2 models in different network 	 16 

2.4 Whole structure of NCAP 	 18 

2.5 NCAP structure for CAN 	 18 

3.1 Design flow 	 21 

3.2 create a new project 	 23 

3.3post implementation summary at a glance 	 23 

3.4 assigning package pins 	 24 

3.5 Impact dialogue box 	 24 

3.6 Assigning configuration file 	 25 

3.7 SPARTAN 3E FPGA kit 	 26 

4.1 Layers of CAN 	 30 

5.1 IEEE 1451 based smart module for a network 	 41 

5.2 NCAP and CAN bus Interface 	 42 

viii 



5.3 Blocks of Interface controller 	 42 

5.4 Complete block diagram with internal blocks (modules) 	45 

5.5 State diagram for registers 	 48 

5.6Synthesized RTL of Tx_buffer and loadmsg signal 	 49 

5.7 CAN data/remote frame generation 	 49 

5.8 Dataflow diagram of parallel to serial converter 	 50 

5.9 State diagram' parallel to serial converter 	 51 

5.10 CRC (14:0) out synthesized RTL 	 52 

5.11 Overload frame generation 	 54 

5.12 Arbitration mechanism 	 56 

5.13 Dataflow diagram of clock divider 	 57 

5.14 Bit destuffing 	 58 

5.15 CRC checker 	 58 

5.16 Dataflow diagram of CRC checker 	 59 

5.17 CAN acknowledgement process 	 60 

5.18 SM chart for serial to parallel converter 	 63 

List of Tables 

1.1 History of Standards 	 2 

2.1 Transducer Independent Interface 	 17 

4.1 Data bytes for corresponding DLC 	 33 

5.1 Interface Management logic 	 62 



CHAPTER 1 

Introduction 

1.1 The IEEE 1451 Standard: 
The IEEE 1451 smart transducer interface standards provide the common interface and 

enabling technology for the connectivity of transducers to microprocessors, control and 

field networks, and data acquisition and instrumentation systems. 

The standardized TEDS specified by IEEE 1451.2 allows the self-description of 

sensors and the interfaces provide a standardized mechanism to facilitate the 'plug 

and play" of sensors to networks. The network-independent smart transducer object 

model defined by IEEE 1451.1 allows sensor manufacturers to support multiple networks 

and protocols. Thus, transducer-to-network interoperability is on the horizon. The 

inclusion of 1451.3 and 1451.4 to the family of 1451 standards will meet the needs of the 

analog transducer users for high-speed applications. In the long run, transducer vendors 

and users, system integrators, and network providers can all benefit from the IEEE 1451 

interface standards. 

1.1.1 IEEE 1451 Overview/ Goals: 
1. Provide standardized communication interfaces for smart transducers, both sensors and 

actuators. In the form of a standard hardware and software definition/specification. 

2. Simplify the connectivity and maintenance of transducers to device networks' through 

such mechanisms as common Transducer Electronic Data Sheet (TEDS) and 

Standardized Application Programming Interfaces (API). 

3. Allow plug-and-play with 1451 compatible transducers among different devices using 

multiple control networks 

4. Give sensor manufacturers, system integrators, and end -users the ability to support 

multiple networks and transducer families in a cost effective way 

1 



1.1.2 History: 

In September 1993, the National Institute of Standards and Technology (NIST) and the 

Institute of Electrical and Electronics Engineers (IEEE)'s Technical Committee on Sensor 

Technology of the Instrumentation and Measurement Society co-sponsored a meeting to 

discuss smart sensor communication interfaces and the possibility of creating a standard 

interface. The response was to establish a common communication interface for smart 

transducers. Since then, a series of five workshops have been held and four technical 

working groups have been formed to address different aspects of the interface standard. 

The 1451.1 working group aims at defining a common object model for smart transducers 

along with interface specifications for the components of the model. The 1451.2 working 

group aims at defining a smart transducer interface module (STIM), a transducer 

electronic data sheet (TEDS), and a digital interface to access the data.. The 1451.3 

working group aims at defining a digital communication interface for distributed multi 

drop systems. The 1451.4 working group aims at defining a mixed-mode communication 

protocol for smart transducers. This family of IEEE 1451 standards is designed to work 

in concert with each other to ease the connectivity of sensors and actuators into a device 

or field network. 

The working groups created the concept of smart sensors to control networks 

interoperability. So far, the project has produced a set of specifications which is approved 

and published by IEEE as IEEE Std 1451.2-1997, Standard for a Smart Transducer 

interface for Sensors and Actuators - Transducer to Microprocessor Communication 

Protocols and Transducer Electronic Data Sheet (TEDS) Formats. The table 1.1 describes 

the complete history of standards 

Table 1.1 History of standards 

IEEE 1451.0 2007 

IEEE 1451.1 1999 

IEEE 1451.2 1997 

2 
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IEEE 1451.3 	 1999 

IEEE 1451.4 	 2004 

IEEE 1451.5 	 2007 

IEEE 1451.6 	 Proposed(PAR approved in 

2004) 

IEEE 1451.7 	 Proposed( PAR approved in 

2007) 

1.1.3 How can IEEE 1451 be applied? 

• Remote monitoring. 

• Distributed control. 

• Remote actuating.  

• Collaborative Measurement 

and Control. 

These applications are shown in blocks 

in figure1.1. 

1.1.4 BENEFITS: 
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1. Enable any smart transducer to interface with any network protocol. 

2. Enables any smart transducer with any network protocol. 

3. Facilitate network interoperability 

4. Concept of TEDS 

5. Concept of self diagnosis 

6. Eliminates wiring incase of wireless sensors 

1.2 The Family of standards: 

1.2.1 IEEE 1451.2 Transducer-to-Microprocessor Communication Interface: 

The IEEE 1451.2 defines a Transducer Electronic Data Sheet (TEDS) and its data format, 

along with a 10-wire digital interface and communication protocol between transducers 

and a microprocessor. The framework of the IEEE 1451.2 interface [2] is shown in 

Figure 1.2. The TEDS, stored in a nonvolatile memory, contains fields that describe the 

type, attributes, operation, and calibration of the transducer. A transducer integrated with 

a TEDS provides a feature that makes the self-description of transducers to the network 

possible. Since the transducer manufacturer data in the TEDS always goes with the 

transducer and this information is electronically transferred to a Network Capable 

Application Process (NCAP) or host, human errors associated with entering sensor 

parameters manually is completely eliminated. Since the manufacturer data and 

calibration data (optional) are stored in the TEDS, losing transducer paper data sheet is 

no longer a concern. With the TEDS feature, upgrading transducers with higher accuracy 

and enhanced capability and replacing transducers for maintenance purposes are simply 

"plug and play". The 1451.2 interface defines the Smart Transducer Interface Module 

(STIM). Up to 255 sensors or actuators of various digital and analog mixes can be 

connected to a STIM. The STIM is connected to a network node called NCAP 

4 
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through the 10-wire Transducer Independent Interface using a modified Serial 

Peripheral Interface (SPI) for data transfer. 

Figure 1.2 1451.2 STIM and NCAP Interface 

1.2.2 IEEE 1451.1 - Networked Smart Transducer Model: 

The IEEE 1451.1 project defines a common object model for a networked smart 

transducer and the software interface specifications for each class representing the model. 

Some of these classes form the blocks, components, and services of the conceptual 

transducer. The networked smart transducer object model encapsulates the details of the 

transducer hardware implementation within a simple programming model. This makes 

programming the sensor or actuator hardware interface less complex by using an 

input/output (110)-driver paradigm. The network services interfaces encapsulate the 

details of the different network protocol implementations behind a small set of 

communications methods [1]. 

1.2.3 IEEE 1451.3 — Multi drop Distributed System: 

Interfacing Smart Transducers During the course of the development of the IEEE 

1451.1 and 145 1.2 standards, some sensor manufacturers and users recognized the need 

for a standard interface for multi drop distributed smart sensor systems. In a distributed 

system a large array of sensors, in the order of hundreds, needs to be read in a 

synchronized manner. The bandwidth requirements of these sensors might be relatively 

high, in the order of several hundred kilohertz, with time correlation requirements in 

the range of nanoseconds. The IEEE 1451.3 was created to define the specification for 

such a standard. A single transmission line is proposed to be used to supply power to the 

transducers and to provide the communications between the bus controller and the 

5 



TEDS Conversion 

4\ 

NCAP 

1.3 IEEE 1451.4 mixed mode transducer 

Transducer Bus Interface Modules (TBIM)[8]. A transducer bus is expected to have one 

bus controller and many TBIMs. A TBIM may contain one or more different transducers. 

The NCAP contains the controller for the bus and the interface to the network that may 

support many other buses. 

1.2.4 IEEE 1451.4 - Mixed-mode Transducer and Interface: 

In order to reduce cabling and interfacing costs, a model using different wiring 

configurations is chosen as a transducer connection interface. If a single wire model is 

used, the analog transducer signal transmission and communication of the digital TEDS 

data to an instrument or a network are done on the same wire, but at separate times. If a 

multi-wire model is used, communication of digital data and analog signal can be 

accomplished simultaneously. The digital communication can be used to read the TEDS 

information and to configure an IEEE 1451.4 Transducer. The context of the mixed-mode 

transducer and its interface(s) are shown in Figure 1.3. 

In the condition-based monitoring and maintenance industry, analog transducers such 

as piezoelectric, piezoresistive, and accelerometer-based transducers are used with 

electronics instruments to measure the conditional state of machinery. Transducer 

measurements are sent to an instrument or computer for analysis. The idea of having a 

small TEDS on an analog transducers and the ability to connect the transducers to a 

network have attracted transducer companies to work on the IEEE 1451.4 interface 
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standard. An IEEE 1451.4 Transducer, which could be a sensor or actuator with typically 

one addressable device, is referred to as a node containing a TEDS. The IEEE 1451.4 

Transducer may be used to sense or control multiple physical phenomena. Each 

phenomenon sensed or controlled is associated with a node. 

IEEE 1451 Family of Smart Transducer Interface Standards 

Figure 1.4 The family of IEEE 1451 standards[8] 
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1.3 Objective and scope of work: 
Broadly major objective is to present the development of a Network capable Application 

Processor (NCAP) compatible with IEEE 1451 standard. 

In this work, the features of reprogrammable Interface controller (RIC) development are 

considered. RIC is the main part of Network Capable Application Processor. 

This NCAP features low redundancy of hardware because interfaces are implemented by 

software. The RIC is implemented on FPGA board so that NCAP get the ability to 

reconfigure types and parameters of the communication Interfaces according to meet user 

requirements. So required flexibility of our NCAP can be achieved. 

Considering the application areas of most of the sensors (like fire detector, glass break 

detector) CAN (Controller area Network) bus is selected as field network. CAN bus have 

some merits such as lowcost, high security and better anti jamming [7]. CAN (Controller 

Area Network) is a standard protocol for control networks . It was initially 

developed for control networks in automobiles, but now its is being used for other 

control applications as home systems, medical devices, industrial control, etc. The 

interest in CAN is increasing rapidly due to the different applications that are foreseen 

and the availability of devices integrating CAN in the market. Some of these applications 

will require higher levels of integration to reduce the size, the power consumption 

and the price of the final system. 

In this work detailed description of design and implementation of RIC is presented. 

1.4 Organization of report: 
➢ Chapter 1 includes a brief introduction about family of IEEE 1451 standards. The 

various goals and benefits of the 1451 standard for smart transducer interface and 

how it can be applied is discussed along with different sub standards. 

➢ In Chapter 2, concentrates on development of Network Capable Application 

Processor (NCAP) i.e. IEEE 1451.1 standard and explains the implementation of 

network smart sensor on a single chip. 

➢ The Chapter 3 explains about the various softwares and hardware kits utilized for 

this dissertation. The softwares and the FPGA development kits are listed. 

Detailed explanation about each of them is included for a better understanding. 
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> The chapter 4 describes the CAN 2.0A network protocol for which Interface 

controller is designed in this work 

➢ In Chapter 5, the implementation details of all the blocks of CAN controller is 

explained, results, schematics, synthesis details, simulations are all included 

wherever required. 

➢ Chapter 6 summarizes the various results and discussions. The results included in 

this chapter are those which cannot be provided as a part of the other chapters but 

have overall significance. 

➢ Chapter 7 gives the Conclusions and Scope for Future work. This includes the 

concluding remarks and the future developments expected in the field of sensor 

networks. 
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CHAPTER 2 

NCAP Development 

2.1 Network Capable Application Processor: 
1451.1: Standard for Smart Transducer Interface for Sensors and Actuators-Network 

Capable Application Processor Information Model. 

This standard defines an object model with a network-neutral interface for connecting 

processors to communication networks, sensors, and actuators. The object model 

containing blocks, services, and components specifies interactions with sensors and 

actuators and forms the basis for implementing application code executing in the 

processor. 

2.1.1 Introduction: 

The objective of the IEEE/NIST Working Group on transducer interface standards is to 

utilize existing control networking technology and develop standardized connection 

methods for Smart Transducers to control networks. Little or no changes would be 

required to use different methods of analog-to-digital (A/D) conversion, different 

microprocessors, or different network protocols and transceivers. This objective is 

achieved through the definition of a common object model for the components of a 

Networked Smart Transducer, together with interface specifications to these components. 

The Networked Smart Transducer model shows two key views of a smart transducer[ 1]. 

1. Physical view. 

2. Logical view. 

Figure 2.1 physical and logical views of IEEE 1451.1. 
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Figure 2.1 Network Capable Application Processor 

2.1.2 Physical view: 
The first view shows the physical components of the system. This view is indicated by 

components drawn in solid lines in Figure 2.1. Figure 2.1 shows a model composed of 

sensors and actuators connected to form a transducer. The transducer is connected over 

an interface to a microprocessor or controller that is in turn interfaced to the network. The 

Hardware Interface Specification between the sensor/actuator and the rest of the device 

hardware, known as the network capable application processor (NCAP), is indicated by 

the rightmost thick, dashed line in the figure. A typical specification is described in the 

companion standard [IEEE STD 1451.2-1997]. 

The NCAP hardware consists of the microprocessor and its supporting circuitry as well 

as hardware implementing the physical layer of the attached network and the input/output 

(I/O) interface to the transducer, as shown in Figure2.1. 

2.1.3 Logical view: 

The second view is the logical view of the system and is indicated by components shown 

in dotted lines in Figure 2.1. 

The logical components may be grouped into application and support components. 

The support components are the 

11 



• Operating system 

The operating system provides an interface to applications, indicated by the dashed 

line labeled "Logical Interface to NCAP support." 

• The network protocol 

A second logical interface, labeled "Network Abstraction Logical Interface 

Specification," consists of Port and Server Object Dispatch components defined in 

this standard. This interface provides an abstraction to hide communication details 

specific to a given network within a small set of communication methods. The details 

of this interface are defined by this standard. 

• Transducer firmware components 

The third logical interface, labeled "Transducer Abstraction Logical Interface 

specification" performs the same abstraction function for the specifics of the 

transducer I/O hardware and firmware. In effect, this inter-face makes all such 

transducer interfaces look like I/O drivers. The details of this interface are defined by 

this standard. 

Applications are modeled as Function Blocks in combination with Components and 

Services. The NCAP block provides application organization and support for the other 

blocks. All of these Blocks, Components, and Services are defined by this standard. 

These interfaces are optional in the sense that not all must be exposed in an 

implementation. 

2.1.4 Information Model: 
The IEEE 1451.1 standard specifies software architecture. This architecture is applicable 

to distributed systems consisting of one or more Network Capable Application Processors 

(NCAPs), communicating over a network. The NCAPs may interact with the physical 

world via attached transducers. 

The standard provides 

• A network abstraction layer 

• A transducer abstraction layer 

The standard specifies[1] 

12 



• The software interfaces between application functions on an NCAP and a 

communication network in a manner independent of any specific network. 

• The software interfaces between application functions on an NCAP and 

transducers attached to that NCAP in a manner independent of any specific 

transducer driver interface. 

Systems implemented according to IEEE 1451.1 standard will achieve a high degree of 

interoperability regardless of the underlying network or transducer technologies. 

The IEEE 1451.1 software architecture is defined via three types of models[1] 

➢ An object model (for the software components of IEEE 1451.1 systems) 

➢ A data model (for the information communicated across the specified object 

interfaces) 

➢ Two network communications models. 

2.1.5 Data model: 

The IEEE 1451.1 data model specifies the type and form of the information 

communicated across the IEEE 1451.1-specified Object interfaces in both local and 

remote communications. The model is realized in an implementation of IEEE 1451.1 as a 

collection of primitive data types and a collection of structure data types. 

2.2 IEEE 1451.1 Goals: 
"The specifications provide a comprehensive data model for the factory floor, and a 

simple application framework to build interoperable distributed applications." Dr. Jay 

Warrior, Agilent Technologies, Chair IEEE 1451.1 WG. 

In general, IEEE 1451.1 accomplishes this by providing: 

• Transducer application portability (software reuse) 

• Plug-and-play software capabilities (components) 

• Network independence (network abstraction layer) 

. The standard specifies these capabilities by defining software interfaces for: 

• Application functions in the NCAP that interact with the network that are 

Independent of any network 
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• Application functions in the NCAP that interact with the transducers that are 

Independent of any specific transducer driver interface 

2.3 IEEE 1451.1 users: 
There are three primary categories of users of the IEEE 1451.1 standard. These user 

categories are referred to throughout the remaining clauses of the standard. 

The primary categories of users of the IEEE 1451.1 standard are 

• System developers 

• Component developers 

• End users 

2.3.1 System developers: 
These are primarily manufacturers of 

o NCAPs 

o NCAP Block classes 

o Transducer Block classes 

o Other Object classes 

o Network-specific infrastructure libraries 

2.3.2 Component developers: 
These are primarily manufacturers of reusable Function Block classes to be used as 

components in IEEE 1451.1 systems 

2.3.3 End users: 
These are primarily builders or installers of specific end-use Application Systems. 

2.3.4 A minimal IEEE 1451.1 application consists [11: 

■ An NCAP Block (consolidates system and communication housekeeping). 

■ A Transducer Block (provides the software connection to the transducer device). 

■ A Function Block (provides the transducer application algorithm (i.e., obtain and 

multicast temperature data every second)). 

■ Parameters (contains the network accessible variables that hold and update the 

data) 

14 



■ Ports (network communication objects for publishing and subscribing to 

information or interacting with other NCAP s using client/server. 

2.4 IEEE 1451.1 Benefits: 
Using 1451.1 provides: 

➢ An extensible object-oriented model for smart transducer application 

development and deployment 

D Application portability achieved through agreed upon application programming 

interfaces (API) 

➢ Network neutral interface allows the same application to be plug-and-play across 

multiple network technologies 

➢ Leverages existing networking technology, does not re-implement any control 

network software or protocols 

➢ A common software interface to transducer hardware i/o 

2.5 Implementation of Network smart sensor: 
2.5.1 Description of IEEE 1451.2 standard: 

The dominant idea of IEEE1451.2 Standard is to turn intelligent transducer into separate 

unit, which makes it easier for transducers to install, uninstall and interchange. Plug and 

play transducers/sensors are achieved. In IEEE1451.2 Standard, a hardware model of 

network interface module is discussed, as fig 2.2 

Fig 2.2 hardware model of network interface module 

In the model, IEEE1451.2 Standard defines a Smart Transducer Interface Module, a ten-

wire digital interface TII and NCAP. Information is collected by transducer, and then it is 
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Converted from analog to digital and becomes standard data format in STIM. A 

transducer electronic data sheet is also defined, which is called TEDS. The information, 

with the TEDS, is sent to the upper level through the ten-wire interface TII. The upper 

level is called NCAP in the standard. 

This standard has two main characters: 

a) TEDS: This is used for self-identification of transducers. Basic information about the 

transducer and the way to use them is stored in a non-volatile memory. This information 

includes the manufacturer, the number of channels, the magnitude measured by each of 

them, the data format, calibration or tolerance among others. All the information is read 

under demand from the upper level, and it is sent through the same TII interface [2]. 

Reading this information after start-up allows identifying new transducers without any 

other configuration or network redesign. This is necessary for true sensor-to-network 

interoperability. 

Transducers based on IEEE1451.2 can convert different network through the standard 

interface TII, as Fig 2.3 
Network A 	Network B 

Fig 2.3 Conversion of 1451.2 models in different network. 

b) STIM: 

STIM module controls the data conversion, as ADCs and DACs. It also manages the TII 

interface, answering the NCAP requests. Besides, the STIM module is in charge of the 

TEDS, sending its data when demanded. The standard defines the different fields of data 

sheet and purposes. Some of them are mandatory, while others are optional. In addition, 

STIM module is described in state machine. There are three state-machines in STIM 

module: Main State-Machine, Data State-Machine and Trigger State-Machine. The Main 

State-Machine implements STIM behavior coordinating the other state machines, trigger 
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State-Machine operates on the physical channel while Data- State-Machine is dedicated 

to data transfer [9]. 

c) TII: 

IEEE1451.2 proposes a ten-wire digital interface, which is called Transducer Independent 

Interface, and defines series of reading and writing functions. Functions of TII interface 

footprints are described in table 2.1. 

Table 2.1 Transducer Independent Interface(TII). 

DCLK Driven by NCAP,data transfers are 

based on SPI 

NTRIG Driven 	by 	NCAP 	To 	initiate 

measurement 

NTRACK o 	acknowledge 	the 	requested 

function has been performed 

NIO INT By STIM if any exception 

Power supply +5V for STIM and NCAP 

DIN,DOUT Data In, Data Out 

Status Registers To notify exceptions such as busy 

channels, calibration failure 

2.5.2 NCAP 

NCAP is a microcontroller module between STIM and network with part intelligent. 

STIM can connect with network through NCAP. NCAP also can calibrate the original 

data from STIM transducer. Its operation processes are not defined in the IEEE1451.2 

standard. It just needs to comply with the TII electrical and timing requirements. 

2.5.3 Hardware Implementation of Network Smart sensor: 

A network sensor based on IEEE1451.2 is divided into four parts: field network, a 

network capable application processor, a Smart Transducer Interface Module and a ten 

wire digital interface connecting between STIM and NCAP. Network can select field 

Bus, Ethernet or Internet. In this work, CAN is chosen. 

The whole structure is as in Fig. 2.4. XDCR denotes transducer. 
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Network 
Interface 

• 

Correction 
Engine 

Processing 

STIM 411■...110. 

V 

NCAP TII 
Transceiver 

Interface 
controller 

(CAN 
Controller) 

Flash• Optional 
SRAM 

Network 

Fig 2.4 Whole structure of network sensor. 

As stated in the previous section, a STIM module can connect up to 255 transducers 

(sensors or actuators). 

2.5.4 NCAP for CAN BUS: 

CAN 

Fig 2.5 NCAP structure for CAN (source [5]). 
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As a part of development SoC for smart sensors, the CAN protocol controller is 

developed in HDL and complete design and implementation of interface controller is 

described in later chapters. 
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CHAPTER 3 

Hardware and Software Platforms 

In present work, soft wares were used for simulation and synthesis purposes. Hardware 

here is the FPGA spartan3E kit. Understanding FPGA architecture allows you to create 

HDL code that effectively uses FPGA system features. 

3.1 Software platforms: 
Software tools used are 

1. Hardware Descriptive Language (HDL) 

2. Xilinx ISE 9.2 1 

This section discusses the above software details and provides a general overview of 

designing Field Programmable Gate Arrays (FPGA devices) with Hardware Description 

Languages (HDLs). 

3.1.1 Hardware Description Language: 
Designers use Hardware Description Languages (HDLs) to describe the behavior'and 

structure of system and circuit designs. 

Advantages of Using HDLs to Design FPGA Devices: 

Using HDLs to design high-density FPGA devices has the following advantages: 

• Top-Down Approach for Large Projects 

• Functional Simulation Early in the Design Flow 

• Synthesis of HDL Code to Gates 

• Early Testing of Various Design Implementations 

• Reuse of RTL Code 

3.1.2 Designing FPGA Devices with Synthesis Tools: 

Xilinx ISE 9.24141: 
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Xilinx ISE stands for Xilinx Integrated System Environment (ISE). ISE controls all 

aspects of the design flow. Through the Project Navigator interface, one can access all of 

the design entry and design implementation tools. One can also access the files and 

documents associated with your project. Project Navigator maintains a flat directory 

structure; therefore, the project should be updated through the use of snapshots. 

The Xilinx ISE] system is an integrated design environment that consists of a set of 

programs to create (capture), simulate and implement digital designs in a FPGA or CPLD 

target device. All the tools use a graphical user interface (GUI) that allows all programs 

to be executed from toolbars, menus or icons. 

Most of the commonly-used FPGA synthesis tools have special optimization algorithms 

for Xilinx FPGA devices. Constraints and compiling options perform differently 

depending on the target device. Some commands and constraints in ASIC synthesis tools 

do not apply to FPGA devices. If you use them, they may adversely impact your results. 

You should understand how your synthesis tool processes designs before you create 

FPGA designs. 

3.2 Design Flow [14]: 

Design Entry 
Behavioural 
Simulation 

Design 
Synthesis Functional 

Simulation 
• 
Design 

Implementation Static Timing 
Analysis 

Back 
Annotati Timing 

Simulation on 

Xilinx Device 
Programming 

In circuit 
Verification 

Figure 3.1 Design flow[14] 
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a) Functional Simulation 

b) Synthesizing and Optimizing 

It includes recommendations for compiling your designs to improve your results and 

decrease the run time. 

c) Creating an Initialization File 

Most synthesis tools provide a default initialization with default options. You may 

modify the initialization file or use the application to change compiler defaults, and to 

point to the applicable implementation libraries. 

d) Placing and Routing 

The overall goal when placing and routing your design is fast implementation and high-

quality results. However, depending on the situation and your design, you may not 

always accomplish this goal, as described in the following examples. 

• Earlier in the design cycle, run time is generally more important than the quality of 

results, and later in the design cycle, the converse is usually true. 

• If the taigeted device is highly utilized, the routing may become congested, and your 

design may be difficult to route. In this case, the placer and router may take longer to 

meet your timing requirements. 

• If design constraints are rigorous, it may take longer to correctly place and route your 

design, and meet the specified timing. 

3.2.1 Steps in Implementation[14]: 
1. Create a New Project 

2. Design Simulation 

3. Create Timing Constraints 

4. Implement Design and verify Constraints 

5. Implementing the design 

a. Assigning Pin location constraints 

6. Download Design to Spartan 3E starter kit 

These steps are clearly shown in the figures 
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Fig 3.2 Create a new project[14] 

Fig 3.3 Post Implementation design Summary at a glance[14] 
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Package pin locations: 

Specify the pin locations for the ports of the design so that they are connected correctly 

on the Spartan-3E Startup Kit demo board. 
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Fig 3.4 Assigning package pins[14]. 

Downloading design to the kit: 

Fig 3.5 Impact welcome dialogue box[14]. 
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Assigning Configuration file: 

Fig 3.6 Assigning configuration file[14] 

3.3 Hardware Details: 
The FPGA architecture consists of three types of configurable elements - a perimeter of 

input/output blocks (I0Bs), a core array of configurable logic blocks (CLBs), and 

resources for interconnection. The IOBs provide a programmable interface between the 

internal array of logic blocks (CLBs) and the device's external package pins. CLBs 

perform user-specified logic functions, and the interconnect resources carry signals 

among the blocks. 

A configuration program stored in internal static memory cells determines the logic 

functions and the interconnections. The configuration data is loaded into the device 

during power-up reprogramming functions. 

FPGA devices are customized by loading configuration data into internal memory cells. 

The FPGA device can either actively read its configuration data out of an external serial 

or byte-wide parallel PROM (master modes), or the configuration data can be written to 

the FPGA device (slave and peripheral modes). FPGA kit used is 

1. Spartan 3E FPGA Starter kit (XC3S500E-4FG-320) 

25 



Spartan 3E FPGA starter kit: 

Fig 3.7 Spartan 3E FPGA kit[16] 

Key Features[16]: 

The key features of the Spartan-3E Starter Kit board are: 

• Xilinx XC3S500E Spartan-3E FPGA 

• Up to 232 user-I/O pins 

o 320-pin FPGA package 

• Over 10,000 logic cells 

• Xilinx 4 Mbit Platform Flash configuration PROM 

o Xilinx 64-macrocell XC2C64A CoolRunner CPLD 

o 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz 

o 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash) 

• FPGA configuration storage 

• MicroBlaze code storage/shadowing 

• 16 Mbits of SPI serial Flash (STMicro) 

o FPGA configuration storage 

o MicroBlaze code shadowing 
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• 2-line, 16-character LCD screen 

• PS/2 mouse or keyboard port 

• VGA display port 

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA) 

• Two 9-pin RS-232 ports (DTE- and DCE-style) 

• On-board USB-based FPGA/CPLD download/debug interface 

• 50 MHz clock oscillator 

• SHA-1 1-wire serial EEPROM for bitstream copy protection 

• Hirose FX2 expansion connector 

• Three Digilent 6-pin expansion connectors 

• Four-output, SPI-based Digital-to-Analog Converter (DAC) 

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-

gain 

• pre-amplifier 

• ChipScopeTM SoftTouch debugging port 

• Rotary-encoder with push-button shaft 

• Eight discrete LEDs 

• Four slide switches 

• Four push-button switches 

• SMA clock input 

• 8-pin DIP socket for auxiliary clock oscillator 
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CHAPTER 4 

Controller Area Network (CAN) protocol 

4.1 CAN: 

Controller Area Network (CAN) is a shared serial bus communication protocol, 

originally developed in 1986 by Robert Bosch GmbH. The increasing number of 

distributed control systems in cars and the increasing wiring costs of car body electronics 

led to the birth of the "Automotive Serial Controller Area Network" protocol[15]. 

Although initially developed for use in the automotive industry, its use quickly 

spread to a wide variety of embedded systems applications like industrial control 

where high-speed communication is required. With growing acceptance in various 

industrieS not necessarily related to the automotive industry, the protocol was 

renamed the Controller Area Network (CAN). 

4.2 CAN network protocol: 
The CAN communications protocol describes the method by which information is passed 

between devices. 

It conforms to the Open Systems Interconnection model, which is defined in terms of 

layers. Each layer in a device apparently communicates with the same layer in another 

device. Actual communication is between adjacent layers in each device and the devices. 

are only connected by the physical medium via the physical layer of the model[15]. 

In the basic CAN specification, it has a transmission rate of up to 250 KBaud while full 

CAN runs at 1 MBaud. 

To achieve design transparency and implementation flexibility CAN has been subdivided 

into different layers. 

• The (CAN) object layer 
• The (CAN) transfer layer 

• The physical layer 

The object layer and the transfer layer comprise all services and functions of the data link 

layer defined by the ISO/OSI model. The scope of the object layer includes 
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• Finding which messages are to be transmitted 

• Deciding which messages received by the transfer layer is actually to be used, 

• Providing an interface to the application layer related hardware. 

There is much freedom in defining object handling. The scope of the transfer 

layer mainly is the transfer protocol, i.e. controlling the framing, performing arbitration, 

error checking, and error signaling and fault confinement. 

Within the transfer layer it is decided whether the bus is free for starting a new 

transmission or whether a reception is just starting. 

Also some general features of the bit timing are regarded as part of the transfer layer. It is 

in the nature of the transfer layer that there is no freedom for modifications. 

The scope of the physical layer is the actual transfer of the bits between the 

different Nodes with respect to all electrical properties. Within one network the physical 

layer, of Course, has to be the same for all nodes. There may be, however, much freedom 

in selcting a physical layer. 

The scope of this specification is to define the transfer layer and the consequences 

of the CAN protocol on the surrounding layers. 

Data Link LLC(Logic Link Layer) 

Layer Acceptance filtering 
Overload Notification 
Recovery Management 
MAC(Medium Access Control) 
Data Encapsulation/Decapsulation 
Stuffing/Destuffing 
Bus Arbitration 
Error Detection 
Error Signaling 
Fault Confinement 
Acknowledgement 
Serialization/Deserial ization 

Physical Layer PLS(Physical signaling) 
Bit Encoding/Decoding 
Bit Timing 
Synchronization 

Figure 4.1 Layers of CAN 
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4.2.1 CAN properties 

• Prioritization of messages 

• Guarantee of latency times 

• Configuration flexibility 

• Multicast reception with time synchronization 

• System wide data consistency 

• Multimaster 

• Error detection and signaling 

•'Automatic retransmission of corrupted messages as soon as the bus is idle again 

• Distinction between temporary errors and permanent failures of nodes and 

Autonomous switching off of defect nodes 

4.2.2 Layered Structure of a CAN Node 

Object Layer 

- Message Filtering 

- Message and Status Handling 

Transfer Layer 

- Fault Confinement 

- Error Detection and Signaling 

- Message Validation 

- Acknowledgment 

- Arbitration 

- Message Framing 

- Transfer Rate and Timing 

Physical Layer 

- Signal Level and Bit Representation 

- Transmission Medium 

Application Layer 
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The Physical Layer defines how signals are actually transmitted. Within this specification 

the physical layer is not defined so as to allow transmission medium and signal level 

implementations to be optimized for their application. 

• The Transfer Layer represents the kernel of the CAN protocol. It presents messages 

received to the object layer and accepts messages to be transmitted from the object layer. 

The transfer layer is responsible for bit timing and synchronization, message framing, 

arbitration, acknowledgment, error detection and signaling, and fault confinement. 

The Object Layer is concerned with message filtering as well as status and Message 

handling. The scope of this specification is to define the transfer layer and the 

consequences of the CAN protocol on the surrounding layers. 

4.3 Messages [151: 

Information on the bus is sent in fixed format messages of different but limited length 

When the bus is free any connected unit may start to transmit a new message. 

CAN have four frame types: 

• Data frame: a frame containing node data for transmission 

• Remote frame: a frame requesting the transmission of a specific identifier 

• Error frame: a frame transmitted by any node detecting an error 

• Overload frame: a frame to inject a delay between data and/or remote frames 

4.3.1 Data frame 

The data frame is the only frame for actual data transmission. There are two message 
formats: 

• Base frame format: with 11 identifier bits 
• Extended frame format: with 29 identifier bits 

The CAN standard requires the implementation must accept the base frame format and 
may accept the extended frame format, but must tolerate the extended frame format. 

Base frame format 

The frame format is as follows: 

Start-of-frame 	1 	Denotes the start of frame transmission 
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Identifier 	 11 
Remote 	transmission 1 request (RTR) 
Identifier extension bit 1 (IDE) 

Reserved bit (r0) 	1 

Data length code (DLC) 4 
0-8 
bytes 

CRC 	 15 

A (unique) identifier for the data 

Must be dominant (0)Optional 

Must be dominant (0)Optional 

Reserved bit (it must be set to dominant (0), but 
accepted as either dominant or recessive) 
Number of bytes of data (0-8 bytes) 

Data to be transmitted (length dictated by DLC field) 

Cyclic redundancy check 

Data field 

CRC delimiter 	1 	Must be recessive (1) 
Transmitter sends recessive (1) and any receiver can 
assert a dominant (0) 

1 	Must be recessive (1) 
End-of-frame (EOF) 	7 	Must be recessive (1) 

One restriction placed on the identifier is that the first 7 bits cannot be all recessive bits. 
(I.e., the 16 identifiers 1111111xxxx are invalid.) 

a) Start of frame: 

Marks the beginning of data frames and remote frames. It consists of a single 

'dominant' bit. A station is only allowed to start transmission when the bus is idle. All 

stations have to synchronize to the leading edge caused by start of frame of the station 

starting transmission first. 

b) Arbitration Field: 

The arbitration field consists of the identifier and the RTR-bit identifier. 

The identifier's length is 11 bits. These bits are transmitted in the order from ID-10 to ID-

0. The least significant bit is ID-0. The 7 most significant bits (ID-10 - ID-4) must not be 

all 'recessive'. 

c) RTR bit 

Remote Transmission Request BIT 

In data frames the RTR BIT has to be 'dominant'. Within a remote frame the RTR BIT 

has to be 'recessive'. 

ACK slot 

ACK delimiter 

1 
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d)Control Field: 

The control field consists of six bits. It includes the data length code and two bits 

reserved for future expansion. The reserved bits have to be sent 'dominant'. Receivers 

accepts 'dominant' and 'recessive' bits in all combinations. 

Data length code: 

The number of bytes in the data field is indicated by the data length code. 

This data length code is 4 bits wide and is transmitted within the control field. 

e)Data frame: 

Admissible numbers of data bytes:{0, 1... 7, 8}. 

Other values may not be used. 

Data field: 

The data field consists of the data to be transferred within a data frame. It can 

Table 4.1 data bytes for corresponding DLC 

DLC Number of bytes 

1000 8 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

f) CRC Field: 

CRC field Contains the.  CRC sequence followed by a CRC delimiter. 

CRC sequence: 

The frame check sequence is derived .from a cyclic redundancy code best suited for 

frames with bit counts less than 127 bits (BCH Code). 

In order to carry out the CRC calculation the polynomial to be divided is defined as the 

Polynomial, the coefficients of which are given by the de stuffed bit stream consisting of 
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start of frame, arbitration field, control field, data field(if present) and, for the 15 lowest 

coefficients, by 0. This polynomial is divided (the coefficients are calculated modulo-2) 

by the generator-polynomial: 

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1. 

The remainder of this polynomial division is the CRC sequence transmitted over the 

bus. In order to implement this function, a 15 bit shift register CRC_rg(14:0) can be 

used. 

After the transmission / reception of the last bit of the data field, CRC_rg contains the 

CRC sequence. 

CRC delimiter: The CRC SEQUENCE is followed by the CRC DELIMITER which 

consists of a single 'recessive' bit. 

g) ACK field: 
The ack field is two bits long and contains the ack slot and the ack delimiter. In the ack 

field the transmitting station sends two 'recessive' bits.A receiver which has received a 

valid message correctly, reports this to the transmitter by sending a 'dominant' bit during 

the ack slot (it sends 'ACK'). 

ACK slot : 

All stations having received the matching CRC sequence report this within the ACK 

slot by super scribing the 'recessive' bit of the transmitter by a 'dominant' bit. 

ACK Delimiter: 

The ACK Delimiter is the second bit of the ACK field and has to be a 'recessive' bit. As 

a consequence, the ACK slot is surrounded by two 'recessive' bits (CRC Delimiter, ACK 

Delimiter). 

h) End of Frame: 

Each data frame and remote frame is delimited by a flag sequence consisting of seven 

'recessive' bits. 

4.3.2 Remote frame 

Generally data transmission is performed on an autonomous basis with the data source 

node (e.g. a sensor) sending out a Data Frame. It is also possible, however, for a 
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destination node to request the data from the source by sending a Remote Frame. •There 

are 2 differences between a Data Frame and a Remote Frame. Firstly the RTR-bit is 

transmitted as a dominant bit in the Data Frame and secondly in the Remote Frame there 

is no Data Field. 

i.e. 

RTR = 0; DOMINANT in data frame 

RTR = 1; RECESSIVE in remote frame 

In the very unlikely event of a Data Frame and a Remote Frame with the same identifier 

being transmitted at the same time, the Data Frame wins arbitration due to the dominant 

RTR bit following the identifier. In this way, the node that transmitted the Remote Frame 

receives the desired data immediately. 

4.3.3 Error frame 
Error frame consists of two different fields. The first field is given by the superposition of 

Error flags contributed from different stations. The following second field is the Error 

Delimiter 

There are two types of error flags 

Active Error Flag: Transmitted by a node detecting an error on the network that is in error 

state "error active". 

Passive Error Flag: Transmitted by a node detecting an active error frame on the network 

that is in error state "error passive". 

4.3.4 Overload frame: 
The overload frame contains the two bit fields Overload Flag and Overload Delimiter, 

There are two kinds of overload conditions that can lead to the transmission of an 

overload flag: 

1. The internal conditions of a receiver, which requires a delay of the next data 

frame or remote frame. 

2. Detection of a dominant bit during intermission. 
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The start of an overload frame due to case 1 is only allowed to be started at the first bit 

time of an expected intermission, whereas overload frames due to case 2 start one bit 

after detecting the dominant bit. Overload Flag consists of six dominant bits. The overall 

form corresponds to that of the active error flag. The overload flag's form destroys the 

fixed form of the intermission field. As a consequence, all other stations also detect an 

overload condition and on their part start transmission of an overload flag. Overload 

Delimiter consists of eight recessive bits. The overload delimiter is of the same form as 

the error delimiter. 

4.4 Bit stuffing: 
In CAN frames, a bit of opposite polarity is inserted after five consecutive bits of the 

same polarity. This practice is called bit stuffing, and is due to the "Non Return to Zero" 

(NRZ) coding adopted. The "stuffed" data frames are destuffed by the receiver. Since bit 

stuffing is used, six consecutive bits of the same type (111111 or 000000) are considered 

an error. Bit stuffing implies that sent data frames could be larger than one would expect 

by simply enumerating the bits shown in the tables above. 

4.5 Error Detection: 
For detecting errors the following measures have been taken: 

- Monitoring (transmitters compare the bit levels to be transmitted with the bit 

Levels detected on the bus) 

- Cyclic Redundancy Check 

- Bit Stuffing 

- Message Frame Check 

Performance of Error Detection 

The error detection mechanisms have the following properties: 

- All global errors are detected. 

- All local errors at transmitters are detected. 

- Up to 5 randomly distributed errors in a message are detected. 

- Burst errors of length less than 15 in a message are detected. 

- Errors of any odd number in a message are detected. 
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4.6 Error Signaling and Recovery Time: 

Corrupted messages are flagged by any node detecting an error. Such messages are 

aborted and will be retransmitted automatically. The recovery time from detecting an 

Error until the start of the next message is at most 29 bit times, if there is no further error. 

4.7 Fault Confinement: 

CAN nodes are able to distinguish short disturbances from permanent failures. Defective 

nodes are switched off. 

4.8 Connections: 

The CAN serial communication link is a bus to which a number of units may be 

connected. This number has no theoretical limit. Practically the total number of units will 

be limited by delay times and/or electrical loads on the bus line. 

4.9 Single Channel: 

The bus consists of a single channel that carries bits. From this data resynchronization 

information can be derived. The way in which this channel is implemented is not fixed in 

this specification. E.g. single wire (plus ground), two differential wires, optical fibres,etc. 

4.10 Bus values: 

The bus can have one of two complementary logical values: 'dominant' or 'recessive'. 

During simultaneous transmission of 'dominant' and 'recessive' bits, the resulting bus 

Value will be 'dominant'. For example, in case of a wired-AND implementation of the 

bus, the 'dominant' level would be represented by a logical '0' and the 'recessive' level 

by a logical ' 1' . Physical states (e.g. electrical voltage, light) that represent the logical 

Levels are not given in this specification. 

4.11 Acknowledgment 

All receivers check the consistency of the message being received and will acknowledge 

a consistent message and flag an inconsistent message. 

4.12 Error Handling: 
Error Detection 

There are 5 different error types (which are not mutually exclusive): 

• Bit Error: 
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A unit that is sending a bit on the bus also monitors the bus. A bit error has to be detected 

at that bit time, when the bit value that is monitored is different from the bit value that is 

sent. An exception is the sending of a 'recessive' bit during the stuffed bit stream of the 

arbitration field or during the ack slot. Then no bit error occurs when a 'dominant' bit is 

monitored. A transmitter sending passive error flag and detecting a 'dominant' bit does 

not interpret this as a bit error. 

• Stuff Error: 

A stuff error has to be detected at the bit time of the 6th consecutive equal bit level in a 

message field that should be coded by the method of bit stuffing. 

• CRC Error: 

The CRC sequence consists of the result of the CRC calculation by the transmitter. The 

receivers calculate the CRC in the same way as the transmitter. A CRC error has to be 

detected, if the calculated result is not the same as that received in the CRC sequence. 

• Form Error: 

A form error has to be detected when a fixed-form bit field contains one or more illegal 

bits. 

• Acknowledgment error: 

An acknowledgment error has to be detected by a transmitter whenever it does not 

monitor a 'dominant' bit during the ack slot. 

4.13 Error Signaling: 
A station detecting an error condition signals this by transmitting an error flag. For an 

'error active' node it is an active error flag, for an 'error passive' node it is a passive error 

flag. Whenever a bit error, a stuff error, a form error or an acknowledgment error is 

detected by any station, transmission of an error flag is started at the respective station at 

the next bit. 

Whenever a CRC error is detected, transmission of an error flag starts at the bit following 

the ack delimiter, unless an error flag for another condition has already been started. 
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4.14 Definition of transmitter/Receiver: 
Transmitter: 

A unit originating a message is called "transmitter" of that message. The unit stays 

transmitter until the bus is idle or the unit loses arbitration. 

The message is valid for the transmitter, if there is no error until the end of end of frame. 

If a message is corrupted, retransmission will follow automatically and according to 

prioritization. In order to be able to compete for bus access with other messages, 

retransmission has to start as soon as the bus is idle [19]. 

Receiver: 

A unit is called "receiver" of a message, if it is not transmitter of that message and the 

bus is not idle. The message is valid for the receivers, if there is no error until the last but 

one bit of End of frame[19]. 
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CHAPTER 5 

Design and Implementation of RIC 

5.1 Reprogrammability Requirement: 
Complex data processing algorithms in industrial application require substantial 

multiprocessor and hierarchical systems. Each processor in such a system executes the set 

of functions which are connected both with data processing and communications with 

other processors. 

The IEEE-1451 set of standards which regulate the development of the smart systems are 

a very complete and comprehensive set of standards. An IEEE-1451-based smart system 

consists of: 

a) Lower level modules — STIM, TBIM, Mixed-Mode Transducer, Wireless Transducer, 

which are connected to sensors and actuators. 

b) Network Capable Application Processors (NCAPs) which form the intermediate 

(middle) level for current data processing and service of low level modules (sensor and 

actuator polling) 

c) The information customers who are connected to the upper network (some NCAPs can 

also be considered information customers). 

The IEEE-1451 standards regulate the lower level interface of a NCAP, but do not 

regulate the higher level interface. As a consequence, the known NCAPs have varying 

upper network interfaces and this fact decreases their universality. 

Thus, universal NCAP should support the following [4]: 

1. A wide set of standard communication interfaces, including high performance ones. 

2. The ability to reconfigure the types and parameters of the communication interfaces 

according to meet user requirements. 

3. The ability to remotely change NCAP software in on-line mode. 

It is clear that the required flexibility of our ideal NCAP can only be achieved through 

software. However, this software must have a very fast hardware base to be effective. 
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5.2 Design of IEEE 1451 based smart module for Network 

Communications: 
The IEEE 1451 based smart module for a specific network communications is shown in 

figure 5.1. 
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Fig 5.1 IEEEE 1451 based smart module for a network 

Considering the application areas of most of the sensors (like fire detector, glass break 

detector) CAN (Controller area Network) bus is selected as field network. 

CAN bus have some merits such as low cost, high security and better anti jamming. It has 

been used on large scale in vehicle systems. CAN (Controller Area Network) is a 

standard protocol for sensor networks. 

To implement an IEEE 1451 based smart module for CAN communications a suitable 

interface controller is designed and implemented on FPGA. These details are described in 

later sections. 

The interfacing of NCAP and designed RIC is shown in figure 5.2. 
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Fig 5.2 NCAP and CAN bus interface 

5.3 Functional Description: 
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Fig 5.3 Blocks of Interface controller 
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Description of the controller blocks 

5.3.1 Interface Management logic (IML): 

The interface management logic interprets commands from the NCAP, controls 

addressing of the registers and provides interrupts and status information to the host 

processor. 

5.3.2 Transmit Buffer (TXB): 

The transmit buffer is an interface between the NCAP and the Bit Stream Processor 

(BSP) that is able to store a complete message for transmission over the CAN network. 

The buffer is 13 bytes long, written to by the host processor (NCAP) and read out by the 

bit stream processor. 

5.3.3 Receive Buffer (RXB): 

The receive buffer is an interface between the acceptance filter and the NCAP(CPU) that 

stores the received and accepted messages from the CAN-bus line. The Receive Buffer 

(RXB) represents a CPU-accessible 13-byte window of the Receive FIFO (RXFIFO.With 

the help of this FIFO the CPU is able to process one message while other messages are 

being received. 

5.3.4Acceptance Checker (AC): 

The acceptance checker compares the received identifier with the acceptance checker 

register contents and decides whether this message should be accepted or not. 

In the event of a positive acceptance test, the complete message is stored in the RX 

buffer. 

5.3.5 Bit Stream Processor (BSP): 

The bit stream processor is a sequencer which controls the data stream between the 

transmit buffer, RXFIFO and the CAN-bus. It also performs the error detection, 

arbitration, stuffing and error handling on the CAN-bus. 
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5.3.6 Bit Timing Logic (BTL): 
The bit timing logic monitors the serial CAN-bus line and handles the bus line-related bit 

timing. It is synchronized to the bit stream on the CAN-bus on a 'recessive-to-dominant' 

bus line transition at the beginning of a message (hard synchronization) and re-

synchronized on further transitions during the reception of a message (soft 

synchronization). The BTL also provides programmable time segments to compensate for 

the propagation delay times and phase shifts (e.g. due to oscillator drifts) and to define 

the sample point and the number of samples to be taken within a bit time. 

5.3.7 Error Management Logic (EML): 
The EML is responsible for the error confinement of the transfer-layer modules. It 

receives error announcements from the BSP and then informs the BSP and IML about 

error statistics. 

5.4 Implementation and State Machine diagrams: 

The CAN Protocol Controller receives unformatted message from the microprocessor, 

frames the messages as per the protocol specifications and also de-frames the received 

CAN message frames. The digital signals transmitted by the protocol controller are 

converted into electrical signals compatible with the CAN differential transmission 

medium by the CAN Transceiver which can also designed as a separate entity. 

The integration of these individual blocks would constitute the entire CAN interface 

Controller. 
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The various functional blocks in the diagram are described as follows: 

• NCAP: This is the interfacing application which provides the CAN controller with the 

data to be transmitted across the CAN bus and also reads the received messages 

from the controller 

• Parameter Registers: The control field register and identifier register specified for the 

CAN node. 

• TX Buffers: There are thirteen transmit buffers. Each buffer can hold one byte of data. 

The controller receives the message to be transmitted from the host CPU and stores the 

message in the transmit buffer before further message processing takes place. 

• Data / Remote Frame Generator: Data / Remote Frame Generator is responsible for 

generating the message frame as specified by the CAN protocol. 

• Par-Ser Converter: This unit serializes the message to facilitate the CRC 

computation. 
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• TX CRC Generator: Before transmission, this unit computes the CRC for the 

message to be transmitted. The generated CRC frame is appended to the message being 

transmitted before bit-stuffing is performed. 

• Bit Stuff Unit: This unit performs bit-stuffing as specified by the CAN protocol, 

making the message suitable for transmission across the CAN network. 

• Overload / Error Frame Generator: Generates Error or Overload frame whenever 

error or overload condition occurs. 

• Serialized Frame Transmitter: This unit transmits the data/ remote frame or 

the error / overload frame or a dominant bit during the acknowledgment slot based on the 

prevalent conditions. 

• Message Processor: This is the central unit which provides all the control and the 

status signals to the various other blocks in the controller. This unit routes the 

different signals generated in various blocks to the necessary target blocks. 

• Arbitration Controller: The arbitration controller is responsible for indicating the 

arbitration status of the node. 

• Synchronizer: This unit performs the bit timing logic necessary for synchronizing the 

CAN controller to the bit stream on the CAN bus. The recessive to dominant transition 

edges present on the received bit stream are used for synchronization and re-

synchronization. 

• Bit De-stuff Unit: This unit performs the de-stuffing of the messages received from the 

CAN network. This unit also extracts the relevant information from the received 

message. 

• RX CRC Generator: After reception, this unit computes the CRC for the message 

received. 

• Cyclic Redundancy Checker: This unit compares the generated CRC for the 

received message with the CRC frame received by the node. An error is generated if the 

two CRC values do not match. 

• Bit Stuff Monitor: This unit signals a stuff error when six consecutive bits of equal 

polarity is detected in the received message. 
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• Form Checker: A form error is generated if any of the fixed-form fields in a 

received CAN message is violated. The fixed form fields include the CRC delimiter, 

ACK delimiter and the EOF field. 

• Bit Monitor: A CAN node acting as the transmitter of a message, samples back the bit 

from the CAN bus after putting out its own bit. If the bit transmitted and the bit sampled 

by the transmitter are not the same, a bit error is generated. 

• Acknowledgment Checker: During the transmission of the acknowledgement slot a 

transmitter transmits a recessive bit and expects to receive a dominant bit. If the node 

receives a recessive bit in the acknowledgement slot an ACK error is signaled. 

• Acceptance Checker: This unit checks the incoming message ID and determines if the 

received frame is valid. 

• Receive Buffer: There are two 13 byte buffers that are used alternatively to store the 

messages received from the CAN bus. This enables the host CPU to process a message 

while another message is being received by the controller. 

Building Blocks of the CAN Controller: 
Each block of the CAN controller performs a specific operation. The functionality of the 

basic building blocks of the CAN Controller along with its operation is described below. 

5.4.1 Parameter Registers: 

The controller receives the control field register, the identifier register and specified 

for the CAN node from the host CPU and stores them in the parameter registers. 

The content of the control field , identifier registers are used to determine the 

acceptance of the message. The Synchronous Jump Width register content is used for 

bit synchronization. The state diagram for the Parameter Registers is shown in Fig 5.5 
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Figure 5.5 State diagram for registers. 

Initially the identifier and control field need to be loaded into the CAN controller. The 

R 	ADDR2= "10" is asserted by the CPU when it needs to load new values in 

registers. This indicates to the CAN controller that the CPU wishes to load the 

parameters into the corresponding registers. 

Following the high assertion of the R_W=1 ' signal the CPU proceeds to send the data 

on the 8 bit DBUS in bytes. The 8 least significant bits of the identifier register are 

transferred first. This is followed by the transfer of the 8 bit data formed by the 

concatenation of the 5 least significant bits of the control field register and the 3 

most significant bits of the identifier register. 

Once the transmission is complete the registers retain the values stored in them. A new 

value is loaded only when the CPU initializes another parameter load by asserting the 

R w='1' ADDR2= "10" signals. A global reset to the system removes the parameters 

stored in these registers. 

5.4.2 Transmitter Buffer: 

There are thirteen transmit buffers. Each buffer can hold one byte of data. The 

controller receives the message to be transmitted from the host CPU and stores 

the message in the transmit buffer before further message processing takes place. 

The CPU sends the message in the order of the message identifier first, followed by the 

control bits, and then the data bytes with the most significant byte of the data being sent 

first. The signal loadmsg goes high when the controller completes loading the transmit 

buffer and stays high till the message has been transmitted successfully. On 
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Figure 5.6 Synthesized RTL diagram of Tx buffer and loadmsg signal are shown 

5.4.3 Data / Remote Frame Generation: 

Data / Remote Frame Generator is responsible for generating the message frame 

as specified by the CAN protocol. The state diagram for the Data / Remote Frame 

Generation is shown in Fig. 5.7 

Fig. 5.7 CAN Data / Remote Frame Generation 

On loading the final transmit buffer the data / remote frame generation is 

initialized.. Based on the Data Length Code (DLC) and the Remote Transfer Request 

(RTR) bit the par_ser_data frame is generated. If the RTR bit is recessive, the message 

to be transmitted is a Remote. Inthis case the par_ser_data frame does not have any 

Data Field and will be formed by the concatenation of the dominant Start Bit, the 

Message Identifier and the Control Field. 
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In case the RTR bit is dominant, the message to be transmitted is a Data Frame and 

hence will contain a Data Field. In this case the par ser_data frame is formed by 

the concatenation of the dominant Start Bit, the Message Identifier, the Control Field and 

the Data Field. 

The Data Field is of variable length given by the DLC. The Data Field can contain zero 

to eight bytes of data. The data is transmitted with the MSB first. 

In case of a Remote Frame or a Data Frame, with DLC less than 8 the frame is 

appended with dominant bits to counter for the trailing bits which are not defined by the 

message. The parser_data frame is serialized using a Parallel to Series converter and 

fed as input to a CRC generator. The high assertion of the crcgenerated signal 

indicates the completion of the CRC calculation. 

The generated CRC frame is then appended to the end of the Data Field in a Data Frame 

or to the end of the Control Field in case of a Remote Frame. The message is 

appended with recessive bits to counter for the trailing bits which are not defined by the 

message. The message frame generated after appending the CRC frame is the 

transmessage. The transmessage is then bit stuffed before transmission. 
<PI°  

5.4.4Par-SerConverter: 

Figure 5.8 Dataflow diagram of parallel to serial converter. 
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Fig. 5.9 State diagram Parallel — Serial Conversion 

Consists of a data register DR and Shift Register SR and the transmit control. 

It interfaces with DRE data register empty and the data bus (DBUS). The first process 

represents the combinational network, which generates the next state control signals. The 

second process updates the registers on the rising edge of the clock. 

In the Idle state the state machine(SM) waits until DR has been loaded and DRE is 

cleared. In the SYNCH state, the SM waits for the rising edge of clock and then clears the 

lower order bit of SR to transmit '0' for one bit time. 

In the TDATA state, each time rising edge of clock is detected SR shifted right to 

transmit the next data bit and the bit counter is incremented This unit serializes the 

message to facilitate the CRC computation. The state diagram for the Par-Ser Converter 

is shown in Fig. 5.9 

5.4.5 CRC Generator: 

For the input serial data the 15 bit CRC is calculated and appended to the data message 

While transmitting. While receiving acts like a crc checker The CRC frame calculation 

commences with the high assertion of the CRC enable signal. The CRC frame is 
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initialized to fifteen zeros with the CRC initialize signal. In order to carry out the 

CRC calculation the polynomial to be divided is defined as the 

Polynomial, the coefficients of which are given by the de stuffed bit stream consisting of 

start of frame, arbitration field, control field, data field(if present) and, for the 15 lowest 

coefficients, by 0. This, polynomial is divided (the coefficients are calculated modulo-2) 

by the generator-polynomial: 

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1. 

The remainder of this polynomial division is the CRC sequence transmitted over the 

bus. In order to implement this function, a 15 bit shift register CRC (14:0) can be 

used. 

After the transmission / reception of the last bit of the data field, CRC (14:0) contains the 

CRC sequence. 

cik 

data 

enable 

initialize 

Figure 5.10 CRC(14:0) out synthesized RTL. 

5.4.6 Bit Stuff Unit: 

This unit performs the bit-stuffing mechanism as specified by the CAN protocol, 

making the message suitable for transmission across the CAN network. As per 

specifications, bit stuffing is done only on Data or Remote Frames. The input to 

the stuffing unit is the 98 bit transmessage. The concatenated 98 bit register, 

transmessage contains the input to the stuffing input and the bits are in the order 

[97:0] 	[Start bit, messageidentifier [10:0], RTR bit, Control Field [5:0], Data 

Field [MSB:LSB], CRC Frame[14:0]]. 
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The register may not always be full due to the variation in the data length, to ensure that 

the remaining bits do not contain junk data they are padded with recessive bits, l's in 

this case. 

The bit stuffing is initialized by the bit_stuf signal that goes high on appending the CRC 

frame to the message and stays high for one clock cycle. To bit stuff the message stream, 

the message stream is serialized and then checked for the bit stuffing condition. The 

stuffed bit stream being put out on the CAN bus has the Start Bit being transmitted first, 

followed by the message identifier's most significant bit and so on . 

On receiving the bit_stuf the message stream to be stuffed, transmessage is stored 

in a temporary register transmsg. Then the 98th  bit of transmsg is checked during each 

clock cycle. If it is a 1, a counter variable for one, one's count is incremented or if it is a 

0, a counter variable for zero_count is incremented. The states machine stays in state 

outputs logic 1, if the sequence of ones is less than five. If the sequence of ones is equal 

to five then it enters next state and outputs a logic 1, the next state would be the zero 

stuff state as the protocol requires a stuff bit of opposite polarity to be transmitted after 

every sequence of five similar bits. In the zero stuff state the output is logic 0. Similarly 

when a sequence of five zero's is detected the state machine enters the one stuff state and 

outputs a logic 1. 

As long as the sequence of ones or zeros is less than five the contents of transmsg are 

shifted by 1 to the left, thus discarding the bit already transmitted. The bit count is 

also incremented. However if there is a sequence of five consecutive ones or zeros 

then the transmsg register remains the same, without being shifted. The bit count 

is also not incremented and remains the same. The stuffing process is stopped when 

the bit count equals the length of the frame to be transmitted given by DLC. 

The CRC Delimiter, ACK slot, ACK delimiter and EOF bits are appended to the bit 

stuffed message to form the Data / Remote Frame; these bits are transmitted as 

recessive bits. 

5.4.7 Overload / Error Frame Generation: 

On detecting an overload or error condition, an Overload Frame or an Error 

Frame is transmitted. A message received when both the buffers are full cannot be stored 
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in the receive buffers and will be lost. To avoid this situation an Overload Frame is 

generated by the receiver to indicate an overload condition to the other 

participating nodes. The transmission of the next message on the Bus is delayed by the 

transmission of the Overload Frame. 

Similarly when an error is detected the node sends out an Error Frame. The 

transmission of the Error Frame produces an error condition in the other 

participating nodes and causes the message to be retransmitted. 

The Error Confinement process is also taken care of by the Overload / Error 

Frame Generation unit. It is designed as per the specifications in the Data Link Layer of 

the CAN protocol. 

5.4.7.1 Overload Frame: 

The overload signaling and overload frame generation is demonstrated in Fig. 5.11. As 

discussed earlier in the Receive Buffer Storage section the rx_buff 0_wrtn and 

rx buff 1 _wrtn signals indicate that the buffers have been written into when they _ _  

are asserted high. When both the buffers are loaded the node asserts the over Id flag 

high to indicate an overload condition. The high assertion of the overid signal 

initiates the transmission of an Overload Frame. This is indicated by the ovld_flg_tx flag 

going high. The other nodes in the network detect a stuff error in the arbitration 

field and send out their respective Error Flag. When a stuff error is detected in the 

arbitration field the error counters are not incremented. Thus the overload flag delays 

the transmission of the next frame giving it sufficient time for the host controller 

to read the data from the receive buffers 

Figure 5.11 Overload frame generation. 
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5.4.8 Serialized Frame Transmitter: 

This unit transmits the Data / Remote Frame or the Error / Overload Frame or a dominant 

bit during the acknowledgment slot based on the prevalent conditions. The 

transmitting node continues to transmit the message until the last bit, provided there is no 

error condition encountered during the transmission. In the event of an error the node 

starts transmitting the Error / Overload Frame. The node does not transmit an 

Error Frame when the node is in Bus Off state. Once the transmission is complete 

the node returns to the idle state. 

The node transmits a dominant bit during the acknowledge slot, when functioning as a 

receiver. The node transmits recessive bits during the idle state. 

5.4.9 Message Processor: 

The message processor is the central unit which provides all the control and the status 

signals to the various other blocks in the controller. This unit routes the different 

signals generated in various blocks to the necessary target blocks. 

The success of a transmission or reception is indicated by this block. A successful 

transmission is indicated by the high assertion of the tx_success signal similarly 

the successful reception is signaled by the high assertion of the rx_success signals. These 

two signals facilitate the registers to be reset. 

'During arbitration messages if a node loses arbitration it has to contend for bus 

access only after the completion of the current transmission. The high assertion of 

the re tran signal initializes the retransmission of the message that lost arbitration. 

The overload condition is also indicated by the message processor. If both the 

receive buffers are full and the rd en signal of the node is not low the node signals 

an overload condition by asserting the over_ld signal high. 

The message processor also provides information to other modules if an error 

occurred during the current transmission or reception. In case of an error it ensures 

that the error is recorded for further use. This module also acknowledges the 

successful reception of a message till the end of the CRC Field by asserting the 
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send_ack signal high. This ensures that a dominant bit is transmitted during the 

acknowledgement slot. 

5.4.10 Arbitration Controller: 

The arbitration controller is responsible for indicating the arbitration status of the node. 

If the output of arbitration controller of the node is logic 1 then the node is a 

transmitter if it is logic 0 then the node has lost arbitration and functions as a 

receiver of the ongoing message. The node which loses arbitration asserts a signal to 

indicate that a message is due for transmission. 
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Figure 5.12 Arbitration mechanism (source: www.can-cia.de) 

5.4.11 Synchronizer: 

This unit configures the timing parameters of the bit time for the CAN node. Each CAN 

node is configured individually to create a common bit rate for all the nodes on the 

network even though the CAN nodes oscillator periods may be different. 

Synchronizations and resynchronizations are performed on the recessive to dominant 

transition edges. The purpose is to control the distance between edges and Sample Points. 

The specifications used for the design have been obtained from are given below: 

• Bit Rate for CAN transmission: 1Megabits/second 

• CAN bus length: 20 meters 

• Main oscillator frequency: 8 MHz 

The design for the bit timing 
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and synchronization unit involves the calculation of the time quanta required for the Bit 

timing Parameters. With a baud rate prescaler (BRP) value of 1, the CAN system clock 

frequency is 8MHz. 

Figure 5.13 Dataflow diagram of clock divider(pre scaler) 

5.4.12 Bit De-stuff Unit: 
This unit has similar operation of Bitstuff unit. It performs the de-stuffing of the 

messages received from the CAN network. This unit also extracts the relevant 

information from the received message. 

The CAN bus bit stream is sampled by the Synchronizer of the CAN controller. 

This sampled bit stream is then de-stuffed before the relevant information is 

extracted from the received message. Due to the bit stuffing process of the CAN protocol 

a:stuff bit of opposite polarity follows a sequence of 5 consecutive bits of the same 

polarity. The function of the de-stuffing unit is to remove the stuffed bits from the 

received message. 

The de-stuffing process is initialized by the high assertion of the bit_destuff intl 

signal. As soon as the de-stuffing process is initialized the CRC calculation of the 

received bit stream is enabled by asserting the enable signal high. A 64 bit 

temporary register message stores the received and de-stuffed bits. The temporary 

register is shifted to the left by one bit position for every de-stuffed bit and the incoming 

de-stuffed bit is moved into the Oth  bit position of the temporary register. Figure 

demonstrates the method of De-stuffing. 
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Figure 5.14 Bit destuffing(source www.can-cia.de) 

5.4.13 Error checkers: 
These consist of checking blocks for CRC, Stuff, Form, Bit and Acknowledgement 

errors according to the CAN specification. 

Cyclic Redundancy Checker : 

The CAN controller on receiving the rcvd crc fig performs the CRC sequence 

comparison. The rcvd crc fig register holds the received CRC Frame and the rxcrc_frm 

register holds the generated CRC for the received application data. A CRC Error is 

flagged by asserting the crc_err signal high if the received CRC frame and the generated 

CRC do not match. 

Received CRC 

 

CRC_ error 

  

Compare 

 

Generated CRC 

  

Figure 5.15 CRC checker 

58 



Figure 5.16 Dataflow diagram of CRC generator 

Bit Stuff Monitor 

This unit signals a stuff error when six consecutive bits of equal polarity are 

detected in between Start of Frame and the CRC Delimiter of the received message. 

The one's count and zero's count are fed as input to the bit stuff monitor module. A stuff 

error is flagged if the one's count is equal to five and the serial input is equal to 

logic 1 or if the zero's count is equal to five and the serial input is equal to logic 

0. The occurrence of a stuff error is signaled by asserting the stf err signal high. 

Form Checker: 

This unit checks for the serial input at the fixed from fields which are the 

• CRC Delimiter bit 

• Acknowledge Delimiter bit 

• End of Frame Space bits. 

If the receiver detects a dominant bit in any of these fields a Form Error is 

signaled by asserting the frm_err signal high. 

Bit Monitor: 
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A CAN node acting as the transmitter of a message, samples back the bit from the CAN 

bus after putting out its own bit. A Bit Error occurs if a transmitter sends a dominant bit 

but detects a recessive bit on the bus line or, sends a recessive bit but detects a 

dominant bit on the bus line. A Bit Error is signaled by asserting the bt_err signal high. 

Acknowledgment Checker 

During the transmission of the acknowledgement slot a transmitter transmits a 

recessive bit and expects to receive a dominant bit. If the transmitting node 

receives a recessive bit in the acknowledgement slot it is understood that none of the 

nodes in the network received the message correctly and an ACK error is signaled. If the 

node receives a dominant bit in the acknowledgement slot then it is understood that 

at least one other node, has received the frame correctly. The presence of an 

acknowledgement error is signaled by asserting the ackerr signal high. Figure 5.17 

demonstrates the CAN acknowledgement process. 
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Figure 5.17 CAN acknowledgment process 

5.4.14 Acceptance Checker : 

This unit checks the incoming message ID and determines valid frame. The 

Acceptance Filter, based on the identifier,control field register of the host application, 

filters the received messages and stores only those required by the host application. 

Thus the filtering mechanism ensures only relevant messages are processed and the rest 

are ignored. All messages that are let through the filter must be read and checked 

by the CPU. This means that the final filtering is done in software. 

The design of the Acceptance Filter is defined by two parameters, identifier 

register and control field register. These specify which particular bits to compare in 

the acceptance parameter with the identifier of the message. 
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5.4.15 Receive Buffer: 

There are two 10 byte buffers, rx_buff0 and rx_buffl that are used alternatively to store 

the messages received from the CAN bus. This enables the host CPU to process a 

message while another message is being received by the controller. 

If the rx_buff0 is not written into the rx_ buff 0 wr stat signal is asserted high. If _ _  

rx buff° is written into rx buff 0 _wrtn is asserted high. Similarly the status of rx_buffl _  

is also indicated. The received message is stored into the first buffer that is free on 

passing the acceptance filtering. The CAN controller checks the status of rx_buff0, if 

rx buff° is written then rx buffl is checked and written into. As soon as the data is 

written into the buffers the corresponding buffer written signal is asserted high. 

The data is written into the buffer in the following order the received message Id 

given by rcvd_msg_id, rcvd_rtr, the rcvd dlc and the rcvd_datafrm with the MSB first. 

The data is read from the receive buffers by the host application by asserting the 

rd en signal low. This initializes the read operation. 

Two signals rx_buff °active and rx_buff l_active ensure that the data is read in the 

correct order. These signals go high as soon as the read operation for a particular 

buffer is initialized. At end of the read operation of a particular buffer the 

controller checks if the other buffer has been written into. If the other buffer is 

written into the controller asserts the active signal of the other buffer high, if not the 

active signal of the other buffer is asserted low. This ensures that the controller reads the 

data in the order in which the data arrives. 

Once a buffer is read the rx buff 0 read or the rx buff I read signal is asserted high _ _ _ 	 _ _ I_ read 
 the corresponding buffer. With the high assertion of the buffer read signal the 

contents of the corresponding buffer is reset and the buffer is ready to take in a 

new message. The data is sent out on the data_out bus one byte at a time. 

5.4.16 Serial to parallel converter: 

In Receiver logic serial to parallel converter is used and is based on the SM chart given. 

Receiver contains DR and SR registers and the receive control. 
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The control interfaces with status register and DR can drive data onto the data bus. The 

first process represents the combinational network, which generates the next state and 

control signals. The second process updates the registers on the rising edge of the clock. 

The SM chart is shown in fig 5.18 on next page 

5.4.17 Interface Management Logic: 
1. Interprets commands from NCAP. 

2. Provides Interrupt and status information to the NCAP. 

Used two eight bit registers as status and control registers for the interface controller. 

Control register has the information about interrupt enabling signals for transmitter and 

receiver while the status register consists of the information about errors and status 

information of bus. These bits work like inputs and outputs for bit stream processor. 

Table 5.1 Interface Management Logic 

ADDR2 R W action 

00 0 DBUSE-DR 

00 1 DBUS->DR 

01 0 DBUSk-Status Register 

01 1 -- 

1X 0 DBUS 	control register 

lx 1 DBUS-> control register 

The blocks are Implemented in VHDL and synthesized with xilinx ISE 9.2i. 

The simulation and synthesized RTLs are discussed in next chapter. 
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CHAPTER 6 
RESULTS 

6.1 Simulation results 

a) Interface Management logic: 

When the addr2="10" and R_w='1' the host processor writes the message to the 

parameter registers of the node. 

The control register enable the sci_irq(Interrupt request to processor) when the node 

needs attention. After each transmission of 8 bits from DBUS the irq has become high is 

shown in simulation diagram. 
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-L____ 
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b) Tx Buffer: 

In the simulation diagram shown below with the given DLC of "1000" after cnt reaches 

the eight the loadmsg signal becomes high and this initiates the data/remote frame 

generator. Now the message is tx buffer and this message is converted to serial by 

parallel to serial converter. 
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/sr/clk 
/sr/1st 

	

1:1-d 	/sr/dic 

	

D-4 	/sr/dbus 

	

Ei-' 	/srimessage 

	

" 	/sr/loadmsg 

	

'' 	/sr/cnt 

	

[B---" 	/sr/message1 

fl 
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c) Parallel to serial converter: 

11-11-j-r-r-f-r 
1ST_ SISIL SSfJ sss.r 

, /transmeter/bck 
• Aransmitter/sysolk 

/transrritter/rst_b 
4.„ /transmitter/die 

/transmitter/loaddr 
/transmitter/dbus 
/transmitterisetdre 
/transmitter/txd 

• /transmitter/state 
/transmitter/nextstate 

„, /transmitter/sr 

1 

0 

10101001 
0 
0 
tdata 
tdata 
111111111 
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1111 1 

tdata 
U.. 
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11141011•011111111111ELIMMIDOITirregillaffilEIMEENIO01111111111 
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Il  
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The simulation result shows the parallel to serial converter. The message is written to this 

component byte by byte on eight bit DBUS. When dre(data register empty) signal goes 

`0' the state machine goes to tdata state and transmits data serially on the line txd.This 

txd input is given to the data input of CRC generator/checker.. 

d) TX CRC generator: 

	

'. 	ican_vhdLerc/cik 

	

' ,, 	/can_vhdl crc/data 
/can vhdl_crc/enable 
/can vhdl crc/initial... 

	

(D--' 	/can_vhdt crc/crc 
', /can_yhdi crclorc_... 

0- 	/can_vhdl_crckrc_... 

0 
1 
1 
0 
10001001011 0011 
0 
0001001 0110011 0 

-till= 11J11L1f11 Ul1L1 arl li11111111:ffialiTLIIRI 
I 

00000000000( 000 001111111100011111111411111111•1111000,111000 
___I 	L 

00000000000 000 .01506100.1.10......1.1.100. 
lcan_vhdl_crr/crc_x... 1 COW 1.jul 0110011 00000000000 000 Iiiii..../INDIMIIIIISOUSIII04110 

The output of parallel to serial converter isgiven to the data input pin and crc calculation 

is initiated by data frame generator when settdre signal goes high in the previous 
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The above result shows the complete CAN message before bit stuffing. 

e) Bit stuffing: 

simulation diagram. And initialize becomes `0'.The calculated CRC is stored in 

CRC(14:0) register. 

The bit stuffing mechanism is demonstrated in Figrith the initialization of bit stuffing 

the contents of the 98 bit register dt rm-Irm are transferred to a temporary _  

register msg. The contents of the msg register are serialized and then checked for the bit 

stuffing condition. At every positive edge of the clock the contents of the msg register are 
shifted left by 1. 

The left shifted bit is placed on the dt_rmout bus which is connected to the CAN bus. A 

count of the bits in the original un-stuffed message stream is kept in the register 

bit count. The stuffed bit stream being put out on the CAN bus has the Start Bit being 

transmitted first, followed by the message identifier's most significant bit and so on. 

Two counters one_count and zero_count keep tab of the number of consecutive 

ones and zeros encountered respectively in the message stream 

DLC. On detecting five zeros at bit_count 17 a recessive bit is stuffed into the bit stream. 

The bit_count is not incremented and the msg register is not shifted left as 

explained 

above. The bit stuffing mechanism is demonstrated in Figure. 

66 



isimmumm. um. mom 001 
mum 

III 111111111111111111111111111111 III 111I IIII III 	1111111111 I1!I 1111 III 	III IIII III 1111 III! III 	III 1111111111111111111 iii 1111111111111111111 l 11 IIII 11111 

11111111MEIMM 1•21101111111111E =WM MEWED 
H11111111111111EMIK11= 	1111111111111111111 rowel-rim' 

011 

ca  
crlYcanbusout 
can_Uidt rm_out 
can_01dt urdcm 
can_Cl/n-mg 
cao_ClibiL:alja 

oan_Ohne_count 
can_Ohero count 
can_Clib  count 

Mil 

1 

X01110111011111000001 0110011 001011 1010111 111111 111111 1 11111111111111 111' 
0000001... iiiniliiinianalinientliiiiii MOM Aiaitliinnaiiiiait 
_j 	1 
0 101111411010111111111MINIVIIIMC_MMO ...0..........i. MAIM ' 
0 iilli 0  INNS ill o 1■1 •■•11M1- I CIIII 	illigaillialla• 0 IMMOMM.P.M."+....41+.1.11.0.114 MI 
0 IMEIIIIMCIIIM 6 	MICORIIIIKUIffiliElliKiliElliEllillIt 7 	CI - 

Bit destuffing in receiving is similar to bit stuffing in transmission and CRC generator 

can be used as CRC checker. 

RX buffer is implemented same as TX Buffer. 

Bus arbitration block is implemented by using XNOR gate with the two inputs. One is 

Rxd from other CAN node and second one is txd. 

The clock prescaler (baud rate generator) provides the required clock of 8MHz. 

.Three bits in control register can be used to select any one of eight baud rates. 

ck divider/sysck 
ck_dividevirst_b 
'clk_droder:,30 
ck_crivideribdkx0 

011 

ck divider/1)A 1 
ck_dividerk41 1010 
ck_dividefictO 01000100 
ck_dyider/c43 111 
ck.„divideuickdiv13 1 

6.2 Synthesis Results: 
0) Clock divider synthesized RTL: 

sel(2:0) 
	

bclk 

rst b 

sysclk 
	

bclkx8 
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b) CRC generator/checker: 

elk 

data 

	 enable 

initialize 

Synthesized RTL: 
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st b 

DBUS(7:0) setTDRE 

-1  Belk 

loadTDR 

syscik 

	 TDRE 
• 

txd 

c) Parallel to serial Converter: 
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Synthesized RTL 

  

  

 

1 

  

  

  

d) Receiving component: 

bclkx8 

RDRF 

rst b 

RxD 

syscik 
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setFE 

setflE 
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Receiver synthesized RTL 

e) Interface management logic: 

ADDR2(1 :0) 

cl k 

rst.  

Rxd 

rw 

SCI_sel 

SCI_IRQ 

Txd 

DBUS(7: 0) 1  

1 
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Synthesized RTL 

f) Before bit stuffing : 

  

DBUS(7:0) crcout(14:0) 

bclk 

IoadTDR 

rst b 

sysclk 	 txd 

  

 



Synthesized RTL: 

Final Synthesized RTL schematic: 
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CHAPTER 7 

Conclusion and Future scope 

7.1 Conclusion: 
The design of the RIC (In present case CAN controller) for this project has been 

described in detail in Chapter 4 and the results obtained from the simulation of the 

post layout model, have been elucidated in Chapter 6. Thus the FPGA implementation 

of a basic protocol controller for CAN 2.0A protocol has been accomplished. 

The software Implementation of communication interfaces by RIC allows having 

minimal redundancy for supporting additional interfaces and giving opportunity to 

change set of supported interfaces by development of new software for RIC. 

The interface controllers for I2C and SPI are simplified versions of the structure of the 

RIC designed for CAN bus. 

The reconfiguration of FPGA by the NCAP (micro controller) provides an 

implementation of the set of interfaces. The requirements of FPGA size are determined 

by the complexity of the interface controller. 

.Network sensors based on IEEE 1451 will share more quotients in the sensors market as 

a dominant product. We can see that network sensors have more extensive application in 

the future. 

7.2 Scope of Future work: 
Future work for the presented work consists of the following: 

• Complete an Application Specific Integrated Circuit (ASIC) for this IEEE 1451 

single chip solution discussed in chapter 2. 

• Design a completely re-configurable TIM block. This proposed block would 

have a database of TEDS associated with it that contains information about a 

variety of transducers. Then, using this database we can select the transducer(s) 

that we would like to implement, and the complete transducer channel TIM 

block would be instantiated. In order to accomplish this, we would need to 

design a Graphical User Interface (GUI) that has the capability of dynamically 

setting the I/O ports of the control unit as well as the individual transducer 

channels. 
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APPENDIX 

FPGA configuration options 

A few system-level design trade-offs were required in order to provide the Spartan-3E 

Starter Kit board with the most functionality. 

> Download FPGA designs directly to Spartan-3E FPGA via JTAG (Joint Test 

Action Group (JTAG) is the usual name used for the IEEE 1149.1 standard), 

using the onboard USB interface. .The on-board USB-JTAG logic also provides 

in-system programming for the on-board platform Flash PROM and the Xilinx 

XC2C64A CPLD. 

> Program the on-board 4Mbit Xilinx XCF04S serial Platform Flash PROM, then 

configure the FPGA from the image stored in the Platform Flash PROM using 

Master Serial mode. 

> Program the on-board 16 Mbit ST Microelectronics SPI serial Flash PROM, then 

configure the FPGA from the image stored in the SPI serial Flash PROM using 

SPI mode. 

> Program the on-board 128Mbit Intel StrataFlash parallel NOR Flash PROM, then 

configures the FPGA from the image stored in the Flash PROM using BPI Up or 

BPI Down configuration modes. Further, an FPGA application can dynamically 

load two different FPGA configurations using the Spartan-3E FPGA's MultiBoot 

mode. 
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16 M bit ST Micro SRI Serial Flash 
SreieA Peripheral Interlace (SPI) mode 

USB-based Download/Debug Port 
Uses 5tandard USS cable 

Configuration Options 
?ROLLS button. PiBibtill Flash PROM, mods pine 

128 Mbit Intel StrataFiash 
Parallel NOR Flesh memory 
Syle Perialleral Interlace (SP!) mode 

uCzac„c-Lccuramee 

Configuration Mode Jumpers: 
As shown in the Table, the J30 jumper block settings control the FPGA's 

configuration mode. Inserting a jumper grounds the associated mode pin. Insert or 

remove individual jumpers to select the FPGA's configuration mode and 

associated configuration memory source. 

Configuration 

Mode 

Mode Pins 

M2:M1:MO 

FPGA Configuration Image 

Source 

Jumper Settings 

Master Serial 0:0:0 Platform Flash PROM  

. r 

SPI 1:1:0 SPI Serial Flash PROM starting at 

address 0 

/ 

0, , 04 ■ 
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BPI UP 

StrataFlash parallel Flash PROM, 

0:1:0 starting at address 0 and 

incrementing through address 

space. The CPLD controls address 

lines A[24:20] 

configuration. 

during BPI 

BPI Down 0:1:1 

StrataFlash parallel Flash PROM, 

starting at address Ox1FF_FFFF 

and decrementing through address 

space. The CPLD controls address 

lines 	A [24:20] during BPI 

configuration. 

JTAG 0:1:0 	II Downloaded from host via USB- 

JTAG port 
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