
FPGA IMPLEMENTATION
OF

REPROGRAMMABLE CONTROLLER FOR NCAP

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the .award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRICAL ENGINEERING

(With Specialization in Measurement and Instrumentation)

By
RATHNAKAR REDDY JUNUTHULA

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE, 2008

CANDIDATE'S DECLARITION

I hereby declare that the work which is being presented in this dissertation

entitled,"FPGA IMPLEMENTATION OF REPROGRAMMABLE CONTROLLER

FOR NCAP" submitted in the partial fulfillment of the requirements for the award of the

degree "Master of Technology" with specialization in Measurement &

Instrumentation, to the Department of Electrical Engineering, HT Roorkee, Roorkee

is an authentic record of my own work carried out during the period from August 2007 to

June 2008 under the supervision of Dr. H.K.Verma, Professor, Department of Electrical

Engineering, IIT Roorkee, Roorkee.

The matters embodied in this report have not been submitted by me for the

award of any other degree or diploma.

Date: June 2008

Place: Roorkee

(RATHNAKAR REDDY JUNUTHULA)

This is to certify that above statement made by candidates is correct to the best of my

knowledge.

Date: 3 0 6. 2x---z)
Place: Kerriks2-sz

Dr H.K.Verma
Professor
Department of Electrical Engineering,
Indian. Institute of Technology ,
Roorkee.

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude towards
my supervisor, Prof. H.K.Verma, Professor, Electrical Engineering

Department, IIT Roorkee for the guidance, advice and encouraging

support which were invaluable for the completion of this dissertation work.

I feel it is my fortune to have opportunity of working under his valuable

guidance. This thesis work was enabled and sustained by his vision and

ideas.

I am indebted to all the faculty of Measurement and

Instrumentation group for their encouragement and suggestions, which

helped me in finishing this work.

There are no words that adequately express my gratitude to my

parents, for the wealth of love, support, guidance and practical

assistance they have given me life-long.

Last, but not the least, I wish to thank all my friends and well wishers

for their constant encouragement and support at various stages of this

work.

Date: June 2008

Place: Roorkee.

a-kY4j>1./
(RATHNAKAR REDDY JUNUTHULA)

ii

Abstract

Sensor networking is a fast growing technology. Networked transducers offer many

advantages • to users. Today multiple control and sensor networking solutions are

emerging, each requiring a separate and significant effort on the part of transducer

manufacturers. It is too costly for transducer manufacturers to make unique smart

transducers for each network on the market. Therefore a universally accepted transducer

interface standard, the IEEE 1451 standard, has been evolved. The family of IEEE 1451

standards provides a common interface and enabling technology for the connectivity of

transducers to microprocessors, control and field networks, and data acquisition and

instrumentation systems.

IEEE 1451.1 defines Network Capable Application Processor for connecting

communication networks on one side, and sensors (or actuators) on the other. An

Interface controller is required while connecting the NCAP to the communication

network. This report presents the successful development of a reprogrammable interface

controller that is important part of network capable application processor (NCAP). This

NCAP features low redundancy of hardware because interfaces are implemented by

software. The RIC is implemented on FPGA board so that NCAP get the ability to

reconfigure types and parameters of the communication Interfaces according to meet

user requirements so required flexibility of our NCAP can be achieved. The interface

controller has been designed in VHDL, and targeted to Spartan 3E FPGA kit. Important

aspects of these tools are described in detail in various sections of the report. Design,

simulation and FPGA implementation of a protocol controller for the Controller

Area Network (CAN) 2.0A multi-master serial communication protocol are

described. The design method of each functional block is also presented in the report as

an experience of how to easily design digital systems to be reused in different

applications, assuring its quality and reliability.

iii

CONTENTS

Candidate's Declaration

Acknowledgements 	 ii

Abstract 	 iii

Table of Contents 	 iv

List of Figures 	 viii

List of Tables 	 ix

1 Introduction 	 1

1.1 The IEEE 1451 standard 	 1

1.1.1 IEEE 1451 goals 	 1

1.1.2 History 	 2

1.1.3 How can IEEE 1451 are applied 	 3

1.L4 Benefits 	 4

1.2 The Family of standards 	 4

1.2.1 IEEE 1451.2 	 4

1.2.2 IEEE 1451.1 	 5

1.2.3 IEEE 1451.3 	 5

1.2.4 IEEE 1451.4 	 6

1.3 Objective and scope of work 	 8

1.4 Organization of report 	 8

	

2. NCAP Development 	 10

2.1 Network Capable Application Processor 	 10

	

2.1.1 Introduction 	 10

iv

2.1.2Physical view 	 11

2.1.3Logical view 	 11

2.1.4 Information model 	 12

2.1.5 Data model 	 13

2.2 IEEE 1451.1 goals 	 13

2.3 IEEE 1451.1 users 	 14

2.4 IEEE 1451.1 benefits 	 15

2.5 Implementation of network smart sensors 	 15

2.5.1 Description of IEEE 1451.2 standard 	 15

2.5.2 NCAP 	 17

2.5.3 Hardware Implementation of network smart sensor 	17

2.5.4 NCAP for CAN bus 	 18

3. Hardware software platforms 	 20

3.1 Software platforms 	 20

3.1.1 Hardware Description Language 	 20

3.1.2 Designing FPGA devices with Synthesis tools 	 20

3.2 Design flow 	 21

3.2.1 Steps in Implementation 	 22

3.3 Hardware platform 	 25

4. Controller Area Network (CAN) protocol 	 28

4.1 CAN 	 28

4.2 CAN network protocol 	 28

4.2.1 CAN properties 	 30

4.2.2 Layered structure of a CAN node 	 30

4.3 Messages 	 31

4.3.1 Data frame 	 31

4.3.2 Remote frame 	 34

4.3.3 Error frame 	 35

4.3.4 Overload frame 	 35

4.4 Bit stuffing 	 36

4.5 Error Detection 	 36

4.6 Error signaling and Recovery time 	 37

4.7 Fault Confinement 	 37

4.8 Connections 	 37

4.9 Single channel 	 37

4.10 Bus values 	 37

4.11 Acknowledgment 	 37

4.12 Error handling 	 37

4.13 Error signaling 	 38

4.14 Definition of Transmitter/Receiver 	 39

5. Design and Implementation of RIC 	 40

5.1 Reprogrammability requirement 	 40

5.2 Design of IEEE 1451 based smart module for

network communications 	 41

5.3 Functional Description 	 42

5.3.1 Interface Management logic 	 43

5.3.2 Transmit Buffer 	 43

5.3.3 Receive Buffer 	 43

5.3.4 Acceptance checker 	 43

5.3.5 Bit Stream processor 	 43

Vi

5.3.6 Bit Timing Logic 	 44

5.3.7 Error Management logic 	 44

5.4 Implementation and state machine diagrams 	 44

5.4.1 Parameter registers 	 47

5.4.2 Transmitter buffer 	 48

5.4.3 Data/Remote frame generation 	 49

5.4.4 par-ser converter 	 50

5.4.5 CRC generator 	 51

5.4.6 Bit stuff unit 	 52

5.4.7 Overload/Error frame generation 	 53

5.4.8 Serialized frame transmitter 	 55

5.4.9 Message processor 	 55

5.4.10 Arbitration controller 	 56

5.4.11 Synchronizer 	 56

5.4.12 Bit destuff unit 	 57

5.4.13 Error checkers 	 58

5.4.14 Acceptance checker 	 60

5.4.15 Receive buffer 	 61

5.4.16 serial to parallel converter 	 61

5.4.17 Interface Management logic 	 62

6. Results 	 64

6.1 Simulation Results 	 64

6.2 Synthesis Results 	 67

7. Conclusion and Future scope 	 75

7.1 Conclusion 	 75

vii

7.2 Scope of future work 	 75

REFERENCES

APPENDIX

List of Figures:

1.1 How IEEE 1451 can be applied 	 3

1.2 IEEE 1451.2 STIM and NCAP Interface 	 5

1.3 IEEE 1451.4 mixed mode transducer 	 6

1.4 The family of IEEE 1451 standards 	 7

2.1 Network Capable Application Processor 	 11

2.2 Hardware model of Network Interface module 	 15

2.3 Conversion of 1451.2 models in different network 	 16

2.4 Whole structure of NCAP 	 18

2.5 NCAP structure for CAN 	 18

3.1 Design flow 	 21

3.2 create a new project 	 23

3.3post implementation summary at a glance 	 23

3.4 assigning package pins 	 24

3.5 Impact dialogue box 	 24

3.6 Assigning configuration file 	 25

3.7 SPARTAN 3E FPGA kit 	 26

4.1 Layers of CAN 	 30

5.1 IEEE 1451 based smart module for a network 	 41

5.2 NCAP and CAN bus Interface 	 42

viii

5.3 Blocks of Interface controller 	 42

5.4 Complete block diagram with internal blocks (modules) 	45

5.5 State diagram for registers 	 48

5.6Synthesized RTL of Tx_buffer and loadmsg signal 	 49

5.7 CAN data/remote frame generation 	 49

5.8 Dataflow diagram of parallel to serial converter 	 50

5.9 State diagram' parallel to serial converter 	 51

5.10 CRC (14:0) out synthesized RTL 	 52

5.11 Overload frame generation 	 54

5.12 Arbitration mechanism 	 56

5.13 Dataflow diagram of clock divider 	 57

5.14 Bit destuffing 	 58

5.15 CRC checker 	 58

5.16 Dataflow diagram of CRC checker 	 59

5.17 CAN acknowledgement process 	 60

5.18 SM chart for serial to parallel converter 	 63

List of Tables

1.1 History of Standards 	 2

2.1 Transducer Independent Interface 	 17

4.1 Data bytes for corresponding DLC 	 33

5.1 Interface Management logic 	 62

CHAPTER 1

Introduction

1.1 The IEEE 1451 Standard:
The IEEE 1451 smart transducer interface standards provide the common interface and

enabling technology for the connectivity of transducers to microprocessors, control and

field networks, and data acquisition and instrumentation systems.

The standardized TEDS specified by IEEE 1451.2 allows the self-description of

sensors and the interfaces provide a standardized mechanism to facilitate the 'plug

and play" of sensors to networks. The network-independent smart transducer object

model defined by IEEE 1451.1 allows sensor manufacturers to support multiple networks

and protocols. Thus, transducer-to-network interoperability is on the horizon. The

inclusion of 1451.3 and 1451.4 to the family of 1451 standards will meet the needs of the

analog transducer users for high-speed applications. In the long run, transducer vendors

and users, system integrators, and network providers can all benefit from the IEEE 1451

interface standards.

1.1.1 IEEE 1451 Overview/ Goals:
1. Provide standardized communication interfaces for smart transducers, both sensors and

actuators. In the form of a standard hardware and software definition/specification.

2. Simplify the connectivity and maintenance of transducers to device networks' through

such mechanisms as common Transducer Electronic Data Sheet (TEDS) and

Standardized Application Programming Interfaces (API).

3. Allow plug-and-play with 1451 compatible transducers among different devices using

multiple control networks

4. Give sensor manufacturers, system integrators, and end -users the ability to support

multiple networks and transducer families in a cost effective way

1

1.1.2 History:

In September 1993, the National Institute of Standards and Technology (NIST) and the

Institute of Electrical and Electronics Engineers (IEEE)'s Technical Committee on Sensor

Technology of the Instrumentation and Measurement Society co-sponsored a meeting to

discuss smart sensor communication interfaces and the possibility of creating a standard

interface. The response was to establish a common communication interface for smart

transducers. Since then, a series of five workshops have been held and four technical

working groups have been formed to address different aspects of the interface standard.

The 1451.1 working group aims at defining a common object model for smart transducers

along with interface specifications for the components of the model. The 1451.2 working

group aims at defining a smart transducer interface module (STIM), a transducer

electronic data sheet (TEDS), and a digital interface to access the data.. The 1451.3

working group aims at defining a digital communication interface for distributed multi

drop systems. The 1451.4 working group aims at defining a mixed-mode communication

protocol for smart transducers. This family of IEEE 1451 standards is designed to work

in concert with each other to ease the connectivity of sensors and actuators into a device

or field network.

The working groups created the concept of smart sensors to control networks

interoperability. So far, the project has produced a set of specifications which is approved

and published by IEEE as IEEE Std 1451.2-1997, Standard for a Smart Transducer

interface for Sensors and Actuators - Transducer to Microprocessor Communication

Protocols and Transducer Electronic Data Sheet (TEDS) Formats. The table 1.1 describes

the complete history of standards

Table 1.1 History of standards

IEEE 1451.0 2007

IEEE 1451.1 1999

IEEE 1451.2 1997

2

Sc,1$111

ADDRESS
I OGIC.

Actuator

EPBAIIMbeiga

14120—=1

42° 	

.Colkhe rata Memmiunt end te•rdrol

Sensor 	ADDIMS LOGIC

Actuator A0011055 LOGIC IMI■EMM

Figure 1.1 How IEEE 451 can be applied

IEEE 1451.3 	 1999

IEEE 1451.4 	 2004

IEEE 1451.5 	 2007

IEEE 1451.6 	 Proposed(PAR approved in

2004)

IEEE 1451.7 	 Proposed(PAR approved in

2007)

1.1.3 How can IEEE 1451 be applied?

• Remote monitoring.

• Distributed control.

• Remote actuating.

• Collaborative Measurement

and Control.

These applications are shown in blocks

in figure1.1.

1.1.4 BENEFITS:

3

1. Enable any smart transducer to interface with any network protocol.

2. Enables any smart transducer with any network protocol.

3. Facilitate network interoperability

4. Concept of TEDS

5. Concept of self diagnosis

6. Eliminates wiring incase of wireless sensors

1.2 The Family of standards:

1.2.1 IEEE 1451.2 Transducer-to-Microprocessor Communication Interface:

The IEEE 1451.2 defines a Transducer Electronic Data Sheet (TEDS) and its data format,

along with a 10-wire digital interface and communication protocol between transducers

and a microprocessor. The framework of the IEEE 1451.2 interface [2] is shown in

Figure 1.2. The TEDS, stored in a nonvolatile memory, contains fields that describe the

type, attributes, operation, and calibration of the transducer. A transducer integrated with

a TEDS provides a feature that makes the self-description of transducers to the network

possible. Since the transducer manufacturer data in the TEDS always goes with the

transducer and this information is electronically transferred to a Network Capable

Application Process (NCAP) or host, human errors associated with entering sensor

parameters manually is completely eliminated. Since the manufacturer data and

calibration data (optional) are stored in the TEDS, losing transducer paper data sheet is

no longer a concern. With the TEDS feature, upgrading transducers with higher accuracy

and enhanced capability and replacing transducers for maintenance purposes are simply

"plug and play". The 1451.2 interface defines the Smart Transducer Interface Module

(STIM). Up to 255 sensors or actuators of various digital and analog mixes can be

connected to a STIM. The STIM is connected to a network node called NCAP

4

1451.1 Object model

	 •

•

Trans

Actuat

ADC

DAC

Addr
ess
logic

Trans

DIO

NCAP

through the 10-wire Transducer Independent Interface using a modified Serial

Peripheral Interface (SPI) for data transfer.

Figure 1.2 1451.2 STIM and NCAP Interface

1.2.2 IEEE 1451.1 - Networked Smart Transducer Model:

The IEEE 1451.1 project defines a common object model for a networked smart

transducer and the software interface specifications for each class representing the model.

Some of these classes form the blocks, components, and services of the conceptual

transducer. The networked smart transducer object model encapsulates the details of the

transducer hardware implementation within a simple programming model. This makes

programming the sensor or actuator hardware interface less complex by using an

input/output (110)-driver paradigm. The network services interfaces encapsulate the

details of the different network protocol implementations behind a small set of

communications methods [1].

1.2.3 IEEE 1451.3 — Multi drop Distributed System:

Interfacing Smart Transducers During the course of the development of the IEEE

1451.1 and 145 1.2 standards, some sensor manufacturers and users recognized the need

for a standard interface for multi drop distributed smart sensor systems. In a distributed

system a large array of sensors, in the order of hundreds, needs to be read in a

synchronized manner. The bandwidth requirements of these sensors might be relatively

high, in the order of several hundred kilohertz, with time correlation requirements in

the range of nanoseconds. The IEEE 1451.3 was created to define the specification for

such a standard. A single transmission line is proposed to be used to supply power to the

transducers and to provide the communications between the bus controller and the

5

TEDS Conversion

4\

NCAP

1.3 IEEE 1451.4 mixed mode transducer

Transducer Bus Interface Modules (TBIM)[8]. A transducer bus is expected to have one

bus controller and many TBIMs. A TBIM may contain one or more different transducers.

The NCAP contains the controller for the bus and the interface to the network that may

support many other buses.

1.2.4 IEEE 1451.4 - Mixed-mode Transducer and Interface:

In order to reduce cabling and interfacing costs, a model using different wiring

configurations is chosen as a transducer connection interface. If a single wire model is

used, the analog transducer signal transmission and communication of the digital TEDS

data to an instrument or a network are done on the same wire, but at separate times. If a

multi-wire model is used, communication of digital data and analog signal can be

accomplished simultaneously. The digital communication can be used to read the TEDS

information and to configure an IEEE 1451.4 Transducer. The context of the mixed-mode

transducer and its interface(s) are shown in Figure 1.3.

In the condition-based monitoring and maintenance industry, analog transducers such

as piezoelectric, piezoresistive, and accelerometer-based transducers are used with

electronics instruments to measure the conditional state of machinery. Transducer

measurements are sent to an instrument or computer for analysis. The idea of having a

small TEDS on an analog transducers and the ability to connect the transducers to a

network have attracted transducer companies to work on the IEEE 1451.4 interface

6

Analog + Digital

IEEE 1451.41)1
TEDS Mixed-Mode

Transducer

Wireless

IEEE 1451.5
Wireless
Transducer

Network-Capable
Application
Processor

(NCAP)

IEEE
1451.0

Common
Function-

ality &
TEDS

CANOpen

IEEE P1451.6

Distributed
Multidrop Bus

IEEE 1451.3

Txdcr

3

AiD Txdcr

TEDS

AiD

Intrinsically safe
system

Smart Transducer
Interface Module
(STIM)

Transducer Bus
Interface Module
(TBIM)

Any
Network

Txdcr

Txdcr = Transducer (Sensor or Actuator)

IEEE 1451.2

standard. An IEEE 1451.4 Transducer, which could be a sensor or actuator with typically

one addressable device, is referred to as a node containing a TEDS. The IEEE 1451.4

Transducer may be used to sense or control multiple physical phenomena. Each

phenomenon sensed or controlled is associated with a node.

IEEE 1451 Family of Smart Transducer Interface Standards

Figure 1.4 The family of IEEE 1451 standards[8]

7

1.3 Objective and scope of work:
Broadly major objective is to present the development of a Network capable Application

Processor (NCAP) compatible with IEEE 1451 standard.

In this work, the features of reprogrammable Interface controller (RIC) development are

considered. RIC is the main part of Network Capable Application Processor.

This NCAP features low redundancy of hardware because interfaces are implemented by

software. The RIC is implemented on FPGA board so that NCAP get the ability to

reconfigure types and parameters of the communication Interfaces according to meet user

requirements. So required flexibility of our NCAP can be achieved.

Considering the application areas of most of the sensors (like fire detector, glass break

detector) CAN (Controller area Network) bus is selected as field network. CAN bus have

some merits such as lowcost, high security and better anti jamming [7]. CAN (Controller

Area Network) is a standard protocol for control networks . It was initially

developed for control networks in automobiles, but now its is being used for other

control applications as home systems, medical devices, industrial control, etc. The

interest in CAN is increasing rapidly due to the different applications that are foreseen

and the availability of devices integrating CAN in the market. Some of these applications

will require higher levels of integration to reduce the size, the power consumption

and the price of the final system.

In this work detailed description of design and implementation of RIC is presented.

1.4 Organization of report:
➢ Chapter 1 includes a brief introduction about family of IEEE 1451 standards. The

various goals and benefits of the 1451 standard for smart transducer interface and

how it can be applied is discussed along with different sub standards.

➢ In Chapter 2, concentrates on development of Network Capable Application

Processor (NCAP) i.e. IEEE 1451.1 standard and explains the implementation of

network smart sensor on a single chip.

➢ The Chapter 3 explains about the various softwares and hardware kits utilized for

this dissertation. The softwares and the FPGA development kits are listed.

Detailed explanation about each of them is included for a better understanding.

8

> The chapter 4 describes the CAN 2.0A network protocol for which Interface

controller is designed in this work

➢ In Chapter 5, the implementation details of all the blocks of CAN controller is

explained, results, schematics, synthesis details, simulations are all included

wherever required.

➢ Chapter 6 summarizes the various results and discussions. The results included in

this chapter are those which cannot be provided as a part of the other chapters but

have overall significance.

➢ Chapter 7 gives the Conclusions and Scope for Future work. This includes the

concluding remarks and the future developments expected in the field of sensor

networks.

9

CHAPTER 2

NCAP Development

2.1 Network Capable Application Processor:
1451.1: Standard for Smart Transducer Interface for Sensors and Actuators-Network

Capable Application Processor Information Model.

This standard defines an object model with a network-neutral interface for connecting

processors to communication networks, sensors, and actuators. The object model

containing blocks, services, and components specifies interactions with sensors and

actuators and forms the basis for implementing application code executing in the

processor.

2.1.1 Introduction:

The objective of the IEEE/NIST Working Group on transducer interface standards is to

utilize existing control networking technology and develop standardized connection

methods for Smart Transducers to control networks. Little or no changes would be

required to use different methods of analog-to-digital (A/D) conversion, different

microprocessors, or different network protocols and transceivers. This objective is

achieved through the definition of a common object model for the components of a

Networked Smart Transducer, together with interface specifications to these components.

The Networked Smart Transducer model shows two key views of a smart transducer[1].

1. Physical view.

2. Logical view.

Figure 2.1 physical and logical views of IEEE 1451.1.

10

e 	
t Netwo

rk
protoc

01
Server
object

dispatch

Application software
function details

NCAP BLOCK

OS firmware

i/0

N

E
R
F
A
C
E

Trans
ducer
firmwa

re

Microprocessor hardware

Transduc
er block

Figure 2.1 Network Capable Application Processor

2.1.2 Physical view:
The first view shows the physical components of the system. This view is indicated by

components drawn in solid lines in Figure 2.1. Figure 2.1 shows a model composed of

sensors and actuators connected to form a transducer. The transducer is connected over

an interface to a microprocessor or controller that is in turn interfaced to the network. The

Hardware Interface Specification between the sensor/actuator and the rest of the device

hardware, known as the network capable application processor (NCAP), is indicated by

the rightmost thick, dashed line in the figure. A typical specification is described in the

companion standard [IEEE STD 1451.2-1997].

The NCAP hardware consists of the microprocessor and its supporting circuitry as well

as hardware implementing the physical layer of the attached network and the input/output

(I/O) interface to the transducer, as shown in Figure2.1.

2.1.3 Logical view:

The second view is the logical view of the system and is indicated by components shown

in dotted lines in Figure 2.1.

The logical components may be grouped into application and support components.

The support components are the

11

• Operating system

The operating system provides an interface to applications, indicated by the dashed

line labeled "Logical Interface to NCAP support."

• The network protocol

A second logical interface, labeled "Network Abstraction Logical Interface

Specification," consists of Port and Server Object Dispatch components defined in

this standard. This interface provides an abstraction to hide communication details

specific to a given network within a small set of communication methods. The details

of this interface are defined by this standard.

• Transducer firmware components

The third logical interface, labeled "Transducer Abstraction Logical Interface

specification" performs the same abstraction function for the specifics of the

transducer I/O hardware and firmware. In effect, this inter-face makes all such

transducer interfaces look like I/O drivers. The details of this interface are defined by

this standard.

Applications are modeled as Function Blocks in combination with Components and

Services. The NCAP block provides application organization and support for the other

blocks. All of these Blocks, Components, and Services are defined by this standard.

These interfaces are optional in the sense that not all must be exposed in an

implementation.

2.1.4 Information Model:
The IEEE 1451.1 standard specifies software architecture. This architecture is applicable

to distributed systems consisting of one or more Network Capable Application Processors

(NCAPs), communicating over a network. The NCAPs may interact with the physical

world via attached transducers.

The standard provides

• A network abstraction layer

• A transducer abstraction layer

The standard specifies[1]

12

• The software interfaces between application functions on an NCAP and a

communication network in a manner independent of any specific network.

• The software interfaces between application functions on an NCAP and

transducers attached to that NCAP in a manner independent of any specific

transducer driver interface.

Systems implemented according to IEEE 1451.1 standard will achieve a high degree of

interoperability regardless of the underlying network or transducer technologies.

The IEEE 1451.1 software architecture is defined via three types of models[1]

➢ An object model (for the software components of IEEE 1451.1 systems)

➢ A data model (for the information communicated across the specified object

interfaces)

➢ Two network communications models.

2.1.5 Data model:

The IEEE 1451.1 data model specifies the type and form of the information

communicated across the IEEE 1451.1-specified Object interfaces in both local and

remote communications. The model is realized in an implementation of IEEE 1451.1 as a

collection of primitive data types and a collection of structure data types.

2.2 IEEE 1451.1 Goals:
"The specifications provide a comprehensive data model for the factory floor, and a

simple application framework to build interoperable distributed applications." Dr. Jay

Warrior, Agilent Technologies, Chair IEEE 1451.1 WG.

In general, IEEE 1451.1 accomplishes this by providing:

• Transducer application portability (software reuse)

• Plug-and-play software capabilities (components)

• Network independence (network abstraction layer)

. The standard specifies these capabilities by defining software interfaces for:

• Application functions in the NCAP that interact with the network that are

Independent of any network

13

• Application functions in the NCAP that interact with the transducers that are

Independent of any specific transducer driver interface

2.3 IEEE 1451.1 users:
There are three primary categories of users of the IEEE 1451.1 standard. These user

categories are referred to throughout the remaining clauses of the standard.

The primary categories of users of the IEEE 1451.1 standard are

• System developers

• Component developers

• End users

2.3.1 System developers:
These are primarily manufacturers of

o NCAPs

o NCAP Block classes

o Transducer Block classes

o Other Object classes

o Network-specific infrastructure libraries

2.3.2 Component developers:
These are primarily manufacturers of reusable Function Block classes to be used as

components in IEEE 1451.1 systems

2.3.3 End users:
These are primarily builders or installers of specific end-use Application Systems.

2.3.4 A minimal IEEE 1451.1 application consists [11:

■ An NCAP Block (consolidates system and communication housekeeping).

■ A Transducer Block (provides the software connection to the transducer device).

■ A Function Block (provides the transducer application algorithm (i.e., obtain and

multicast temperature data every second)).

■ Parameters (contains the network accessible variables that hold and update the

data)

14

■ Ports (network communication objects for publishing and subscribing to

information or interacting with other NCAP s using client/server.

2.4 IEEE 1451.1 Benefits:
Using 1451.1 provides:

➢ An extensible object-oriented model for smart transducer application

development and deployment

D Application portability achieved through agreed upon application programming

interfaces (API)

➢ Network neutral interface allows the same application to be plug-and-play across

multiple network technologies

➢ Leverages existing networking technology, does not re-implement any control

network software or protocols

➢ A common software interface to transducer hardware i/o

2.5 Implementation of Network smart sensor:
2.5.1 Description of IEEE 1451.2 standard:

The dominant idea of IEEE1451.2 Standard is to turn intelligent transducer into separate

unit, which makes it easier for transducers to install, uninstall and interchange. Plug and

play transducers/sensors are achieved. In IEEE1451.2 Standard, a hardware model of

network interface module is discussed, as fig 2.2

Fig 2.2 hardware model of network interface module

In the model, IEEE1451.2 Standard defines a Smart Transducer Interface Module, a ten-

wire digital interface TII and NCAP. Information is collected by transducer, and then it is

15

Converted from analog to digital and becomes standard data format in STIM. A

transducer electronic data sheet is also defined, which is called TEDS. The information,

with the TEDS, is sent to the upper level through the ten-wire interface TII. The upper

level is called NCAP in the standard.

This standard has two main characters:

a) TEDS: This is used for self-identification of transducers. Basic information about the

transducer and the way to use them is stored in a non-volatile memory. This information

includes the manufacturer, the number of channels, the magnitude measured by each of

them, the data format, calibration or tolerance among others. All the information is read

under demand from the upper level, and it is sent through the same TII interface [2].

Reading this information after start-up allows identifying new transducers without any

other configuration or network redesign. This is necessary for true sensor-to-network

interoperability.

Transducers based on IEEE1451.2 can convert different network through the standard

interface TII, as Fig 2.3
Network A 	Network B

Fig 2.3 Conversion of 1451.2 models in different network.

b) STIM:

STIM module controls the data conversion, as ADCs and DACs. It also manages the TII

interface, answering the NCAP requests. Besides, the STIM module is in charge of the

TEDS, sending its data when demanded. The standard defines the different fields of data

sheet and purposes. Some of them are mandatory, while others are optional. In addition,

STIM module is described in state machine. There are three state-machines in STIM

module: Main State-Machine, Data State-Machine and Trigger State-Machine. The Main

State-Machine implements STIM behavior coordinating the other state machines, trigger

16

State-Machine operates on the physical channel while Data- State-Machine is dedicated

to data transfer [9].

c) TII:

IEEE1451.2 proposes a ten-wire digital interface, which is called Transducer Independent

Interface, and defines series of reading and writing functions. Functions of TII interface

footprints are described in table 2.1.

Table 2.1 Transducer Independent Interface(TII).

DCLK Driven by NCAP,data transfers are

based on SPI

NTRIG Driven 	by 	NCAP 	To 	initiate

measurement

NTRACK o 	acknowledge 	the 	requested

function has been performed

NIO INT By STIM if any exception

Power supply +5V for STIM and NCAP

DIN,DOUT Data In, Data Out

Status Registers To notify exceptions such as busy

channels, calibration failure

2.5.2 NCAP

NCAP is a microcontroller module between STIM and network with part intelligent.

STIM can connect with network through NCAP. NCAP also can calibrate the original

data from STIM transducer. Its operation processes are not defined in the IEEE1451.2

standard. It just needs to comply with the TII electrical and timing requirements.

2.5.3 Hardware Implementation of Network Smart sensor:

A network sensor based on IEEE1451.2 is divided into four parts: field network, a

network capable application processor, a Smart Transducer Interface Module and a ten

wire digital interface connecting between STIM and NCAP. Network can select field

Bus, Ethernet or Internet. In this work, CAN is chosen.

The whole structure is as in Fig. 2.4. XDCR denotes transducer.

17

Network
Interface

•

Correction
Engine

Processing

STIM 411■...110.

V

NCAP TII
Transceiver

Interface
controller

(CAN
Controller)

Flash• Optional
SRAM

Network

Fig 2.4 Whole structure of network sensor.

As stated in the previous section, a STIM module can connect up to 255 transducers

(sensors or actuators).

2.5.4 NCAP for CAN BUS:

CAN

Fig 2.5 NCAP structure for CAN (source [5]).

18

As a part of development SoC for smart sensors, the CAN protocol controller is

developed in HDL and complete design and implementation of interface controller is

described in later chapters.

19

CHAPTER 3

Hardware and Software Platforms

In present work, soft wares were used for simulation and synthesis purposes. Hardware

here is the FPGA spartan3E kit. Understanding FPGA architecture allows you to create

HDL code that effectively uses FPGA system features.

3.1 Software platforms:
Software tools used are

1. Hardware Descriptive Language (HDL)

2. Xilinx ISE 9.2 1

This section discusses the above software details and provides a general overview of

designing Field Programmable Gate Arrays (FPGA devices) with Hardware Description

Languages (HDLs).

3.1.1 Hardware Description Language:
Designers use Hardware Description Languages (HDLs) to describe the behavior'and

structure of system and circuit designs.

Advantages of Using HDLs to Design FPGA Devices:

Using HDLs to design high-density FPGA devices has the following advantages:

• Top-Down Approach for Large Projects

• Functional Simulation Early in the Design Flow

• Synthesis of HDL Code to Gates

• Early Testing of Various Design Implementations

• Reuse of RTL Code

3.1.2 Designing FPGA Devices with Synthesis Tools:

Xilinx ISE 9.24141:

20

Xilinx ISE stands for Xilinx Integrated System Environment (ISE). ISE controls all

aspects of the design flow. Through the Project Navigator interface, one can access all of

the design entry and design implementation tools. One can also access the files and

documents associated with your project. Project Navigator maintains a flat directory

structure; therefore, the project should be updated through the use of snapshots.

The Xilinx ISE] system is an integrated design environment that consists of a set of

programs to create (capture), simulate and implement digital designs in a FPGA or CPLD

target device. All the tools use a graphical user interface (GUI) that allows all programs

to be executed from toolbars, menus or icons.

Most of the commonly-used FPGA synthesis tools have special optimization algorithms

for Xilinx FPGA devices. Constraints and compiling options perform differently

depending on the target device. Some commands and constraints in ASIC synthesis tools

do not apply to FPGA devices. If you use them, they may adversely impact your results.

You should understand how your synthesis tool processes designs before you create

FPGA designs.

3.2 Design Flow [14]:

Design Entry
Behavioural
Simulation

Design
Synthesis Functional

Simulation
•
Design

Implementation Static Timing
Analysis

Back
Annotati Timing

Simulation on

Xilinx Device
Programming

In circuit
Verification

Figure 3.1 Design flow[14]

21

a) Functional Simulation

b) Synthesizing and Optimizing

It includes recommendations for compiling your designs to improve your results and

decrease the run time.

c) Creating an Initialization File

Most synthesis tools provide a default initialization with default options. You may

modify the initialization file or use the application to change compiler defaults, and to

point to the applicable implementation libraries.

d) Placing and Routing

The overall goal when placing and routing your design is fast implementation and high-

quality results. However, depending on the situation and your design, you may not

always accomplish this goal, as described in the following examples.

• Earlier in the design cycle, run time is generally more important than the quality of

results, and later in the design cycle, the converse is usually true.

• If the taigeted device is highly utilized, the routing may become congested, and your

design may be difficult to route. In this case, the placer and router may take longer to

meet your timing requirements.

• If design constraints are rigorous, it may take longer to correctly place and route your

design, and meet the specified timing.

3.2.1 Steps in Implementation[14]:
1. Create a New Project

2. Design Simulation

3. Create Timing Constraints

4. Implement Design and verify Constraints

5. Implementing the design

a. Assigning Pin location constraints

6. Download Design to Spartan 3E starter kit

These steps are clearly shown in the figures

22

e3t eAt 44.4- 	 44434-i, $3$3,44. 344
-3' 	734 	- 	t?

Or A .f."4 t1. XX 	33,

-''t 	 :IklAk
113

..•
`'.:` • 	

Y,.< 	

47=13,73. 237 '33$31 9rtiP44,443443$44$
•

3,
,4•;,. • 	44,34:4-34-$.33‘334t.

	

7744: 	 $34,

	

41 	*774-
44

4,

4$$$434434444. iiii.334,4:••• • .. 	. 	44'

$344414 444, 444 •
:ioiroca
, .4.4-4-4 e7444441:773

•
4-4-4.44143 *4444
3.3

tze
4;4;3;33 	• " 	' ' • • 4434,

•.• : 44 *A 	3.4.„444.3447.443 	i43444.344.$ • A.444443
' f,n0.ptif

*.4'.4' :•• 	:
74 t 	-44 ..3$3344.3r4 34.3-,34-4 	43.$4433

4- 	744- '442474-444.44
j

4, 444-4

X :',07,43742,, •

133,3 a 3:134,
• —

k•94,4,1$2 	 *4.3,0,31,

•.:41 	 4344 	$•444,
1.33,34: E44444„,344

3 4,440$ $4,4434444? ,f334.33
.. 3 43.3 4%34

•

4,44,41-444444334 03347$4i4A3444$334‘34434444,

	

- 4434 •,3$4344494.3 	44444444.
$ 	444344 	 - 4-7

.50:-

	

XII 	C3t1u4040tiulpy441,Pos. -*Iwo e.vj

	

A ti,, 	 `As, 	4.4.4 Of

d 	 44

■,:3 CI 4, r5,74 3,1 	 :n 	 . XI a* 11,4 .̀

i0304 44 33c 	 f3̂ ,,09k7,0 	
.4.202 	 t;tto., 	g

C3 44.33.33C44344:.;4343.
rtY*3,94 34444 -13,443, 4 •••34.444:344.t

r.i140,044 34,34,r47

e 1v1-•••
H.- 3 $3fir ,.Viii ,"3■`
1/ C44-44-tt

.3
C 11 3.3t 3 A i

7337,113.4):3,PW4-1::
e

e.34. • 14.73,3 4•4313t) 	■7

.A$ti 4344,3$: 343 421433'4$ •

' r7x
C53.3.1a1,4-

77')f7 :CAA, 	;
77 is$1,443. C3.43433..K$ 3. 3 	1.43A.334 ;341361T iC.C$ A 4 	44.4-43;:A.4 	33-0 	4.1:7:3,434 3447.$3
4 31^t 	43,34Q47341-i.-

- 44-43,44

L4.14443.$ 4.3$43.4 	Viti3$

Fig 3.2 Create a new project[14]

Fig 3.3 Post Implementation design Summary at a glance[14]

23

.45,4w445.:440J.354,54-5.tn=54(.452455445-.14.4.551.3::,4?v- Z.L.z,e.Y.,"'r,e

rteveet4 A MCP, F?,,

0 4,55,54.5.5 ,45Jact5e=„54.4.5a5,55.4,5

C4er=115.1t=.444.4.4

77) 	

Package pin locations:

Specify the pin locations for the ports of the design so that they are connected correctly

on the Spartan-3E Startup Kit demo board.

.1•41 von% PAct: ,t,:o.,.:ttytn* 0 tir,iief 	 . ,--:
t,̀.; 	-eteaOie. 	.4.4;4 	444' 'ay.= 	 . 	.

4' 	t': ';* 	:'!

I: 	11.,ft 	1 	*;- ,,!1 	- 	1J!!'5 	' 	•, In P40041n4101#347004417.50 ,.'
.P
 ? 	4 :15 115 I 	4 1 UM 1? 	:1St Z4

..,

• .. -j VOVm

ta ti34:451.

C 	. 	. V 	 V 	
.1

 •

 :

,-11 ii. ,: 	': ,.::i, : atit;::it,Is

0.: ir it 111 f!

' 	' 	' : 1;,-iliti *OS US
V 	V 	A 11 011111 .1111111*..

1111 f7'. 	r•,..,-i0
• • 	iCs • 	-
1st. 	- 	n 0'). 	•

:, 	Y .

IL'A,J5.5;.,

i.1"3 4'7. -fj,I.S4 	;1?..

IL;.:,,,,,E

iiii2tc!;,:',,,.._;:::

0-4 .
-• 	:.;:::

 0
• 0
M:Xi

',,.:

r.
L.a = 	P • 146t-t1 	'. ; 	

•

	

14.11*,. 	:1, 	't 	i't 	Lot

. ,.....

43454:45,4 	04 	ii4 ;
•

= 	,,, 	= 	„

ra1.5)41„,0,.)74Z5. 1):554#4 	J1Z 	V"4 i

	

Ct,r 	li.0.$ 	F,.!_..I 	., 	*.! .;

N 	Stoup 	inta 	1 	Luc

7.;• : 	-1.,:flr 	Ay; (me

' 	 ...,

3 	e 7 0 9 10111212;-“,t;:4
..,

I HJ , Mc' w, 1

Fig 3.4 Assigning package pins[14].

Downloading design to the kit:

Fig 3.5 Impact welcome dialogue box[14].

24

,&*444.4.t44 4.4.44.4.4

•" to: a; a".44 	4 	4- 4
•,* 	.4, , 4,

•,' 	<;44 	-44,4 f..,4

Assigning Configuration file:

Fig 3.6 Assigning configuration file[14]

3.3 Hardware Details:
The FPGA architecture consists of three types of configurable elements - a perimeter of

input/output blocks (I0Bs), a core array of configurable logic blocks (CLBs), and

resources for interconnection. The IOBs provide a programmable interface between the

internal array of logic blocks (CLBs) and the device's external package pins. CLBs

perform user-specified logic functions, and the interconnect resources carry signals

among the blocks.

A configuration program stored in internal static memory cells determines the logic

functions and the interconnections. The configuration data is loaded into the device

during power-up reprogramming functions.

FPGA devices are customized by loading configuration data into internal memory cells.

The FPGA device can either actively read its configuration data out of an external serial

or byte-wide parallel PROM (master modes), or the configuration data can be written to

the FPGA device (slave and peripheral modes). FPGA kit used is

1. Spartan 3E FPGA Starter kit (XC3S500E-4FG-320)

25

Spartan 3E FPGA starter kit:

Fig 3.7 Spartan 3E FPGA kit[16]

Key Features[16]:

The key features of the Spartan-3E Starter Kit board are:

• Xilinx XC3S500E Spartan-3E FPGA

• Up to 232 user-I/O pins

o 320-pin FPGA package

• Over 10,000 logic cells

• Xilinx 4 Mbit Platform Flash configuration PROM

o Xilinx 64-macrocell XC2C64A CoolRunner CPLD

o 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz

o 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash)

• FPGA configuration storage

• MicroBlaze code storage/shadowing

• 16 Mbits of SPI serial Flash (STMicro)

o FPGA configuration storage

o MicroBlaze code shadowing

26

• 2-line, 16-character LCD screen

• PS/2 mouse or keyboard port

• VGA display port

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA)

• Two 9-pin RS-232 ports (DTE- and DCE-style)

• On-board USB-based FPGA/CPLD download/debug interface

• 50 MHz clock oscillator

• SHA-1 1-wire serial EEPROM for bitstream copy protection

• Hirose FX2 expansion connector

• Three Digilent 6-pin expansion connectors

• Four-output, SPI-based Digital-to-Analog Converter (DAC)

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-

gain

• pre-amplifier

• ChipScopeTM SoftTouch debugging port

• Rotary-encoder with push-button shaft

• Eight discrete LEDs

• Four slide switches

• Four push-button switches

• SMA clock input

• 8-pin DIP socket for auxiliary clock oscillator

27

CHAPTER 4

Controller Area Network (CAN) protocol

4.1 CAN:

Controller Area Network (CAN) is a shared serial bus communication protocol,

originally developed in 1986 by Robert Bosch GmbH. The increasing number of

distributed control systems in cars and the increasing wiring costs of car body electronics

led to the birth of the "Automotive Serial Controller Area Network" protocol[15].

Although initially developed for use in the automotive industry, its use quickly

spread to a wide variety of embedded systems applications like industrial control

where high-speed communication is required. With growing acceptance in various

industrieS not necessarily related to the automotive industry, the protocol was

renamed the Controller Area Network (CAN).

4.2 CAN network protocol:
The CAN communications protocol describes the method by which information is passed

between devices.

It conforms to the Open Systems Interconnection model, which is defined in terms of

layers. Each layer in a device apparently communicates with the same layer in another

device. Actual communication is between adjacent layers in each device and the devices.

are only connected by the physical medium via the physical layer of the model[15].

In the basic CAN specification, it has a transmission rate of up to 250 KBaud while full

CAN runs at 1 MBaud.

To achieve design transparency and implementation flexibility CAN has been subdivided

into different layers.

• The (CAN) object layer
• The (CAN) transfer layer

• The physical layer

The object layer and the transfer layer comprise all services and functions of the data link

layer defined by the ISO/OSI model. The scope of the object layer includes

28

• Finding which messages are to be transmitted

• Deciding which messages received by the transfer layer is actually to be used,

• Providing an interface to the application layer related hardware.

There is much freedom in defining object handling. The scope of the transfer

layer mainly is the transfer protocol, i.e. controlling the framing, performing arbitration,

error checking, and error signaling and fault confinement.

Within the transfer layer it is decided whether the bus is free for starting a new

transmission or whether a reception is just starting.

Also some general features of the bit timing are regarded as part of the transfer layer. It is

in the nature of the transfer layer that there is no freedom for modifications.

The scope of the physical layer is the actual transfer of the bits between the

different Nodes with respect to all electrical properties. Within one network the physical

layer, of Course, has to be the same for all nodes. There may be, however, much freedom

in selcting a physical layer.

The scope of this specification is to define the transfer layer and the consequences

of the CAN protocol on the surrounding layers.

Data Link LLC(Logic Link Layer)

Layer Acceptance filtering
Overload Notification
Recovery Management
MAC(Medium Access Control)
Data Encapsulation/Decapsulation
Stuffing/Destuffing
Bus Arbitration
Error Detection
Error Signaling
Fault Confinement
Acknowledgement
Serialization/Deserial ization

Physical Layer PLS(Physical signaling)
Bit Encoding/Decoding
Bit Timing
Synchronization

Figure 4.1 Layers of CAN

29

4.2.1 CAN properties

• Prioritization of messages

• Guarantee of latency times

• Configuration flexibility

• Multicast reception with time synchronization

• System wide data consistency

• Multimaster

• Error detection and signaling

•'Automatic retransmission of corrupted messages as soon as the bus is idle again

• Distinction between temporary errors and permanent failures of nodes and

Autonomous switching off of defect nodes

4.2.2 Layered Structure of a CAN Node

Object Layer

- Message Filtering

- Message and Status Handling

Transfer Layer

- Fault Confinement

- Error Detection and Signaling

- Message Validation

- Acknowledgment

- Arbitration

- Message Framing

- Transfer Rate and Timing

Physical Layer

- Signal Level and Bit Representation

- Transmission Medium

Application Layer

30

The Physical Layer defines how signals are actually transmitted. Within this specification

the physical layer is not defined so as to allow transmission medium and signal level

implementations to be optimized for their application.

• The Transfer Layer represents the kernel of the CAN protocol. It presents messages

received to the object layer and accepts messages to be transmitted from the object layer.

The transfer layer is responsible for bit timing and synchronization, message framing,

arbitration, acknowledgment, error detection and signaling, and fault confinement.

The Object Layer is concerned with message filtering as well as status and Message

handling. The scope of this specification is to define the transfer layer and the

consequences of the CAN protocol on the surrounding layers.

4.3 Messages [151:

Information on the bus is sent in fixed format messages of different but limited length

When the bus is free any connected unit may start to transmit a new message.

CAN have four frame types:

• Data frame: a frame containing node data for transmission

• Remote frame: a frame requesting the transmission of a specific identifier

• Error frame: a frame transmitted by any node detecting an error

• Overload frame: a frame to inject a delay between data and/or remote frames

4.3.1 Data frame

The data frame is the only frame for actual data transmission. There are two message
formats:

• Base frame format: with 11 identifier bits
• Extended frame format: with 29 identifier bits

The CAN standard requires the implementation must accept the base frame format and
may accept the extended frame format, but must tolerate the extended frame format.

Base frame format

The frame format is as follows:

Start-of-frame 	1 	Denotes the start of frame transmission

31
ti

Identifier 	 11
Remote 	transmission 1 request (RTR)
Identifier extension bit 1 (IDE)

Reserved bit (r0) 	1

Data length code (DLC) 4
0-8
bytes

CRC 	 15

A (unique) identifier for the data

Must be dominant (0)Optional

Must be dominant (0)Optional

Reserved bit (it must be set to dominant (0), but
accepted as either dominant or recessive)
Number of bytes of data (0-8 bytes)

Data to be transmitted (length dictated by DLC field)

Cyclic redundancy check

Data field

CRC delimiter 	1 	Must be recessive (1)
Transmitter sends recessive (1) and any receiver can
assert a dominant (0)

1 	Must be recessive (1)
End-of-frame (EOF) 	7 	Must be recessive (1)

One restriction placed on the identifier is that the first 7 bits cannot be all recessive bits.
(I.e., the 16 identifiers 1111111xxxx are invalid.)

a) Start of frame:

Marks the beginning of data frames and remote frames. It consists of a single

'dominant' bit. A station is only allowed to start transmission when the bus is idle. All

stations have to synchronize to the leading edge caused by start of frame of the station

starting transmission first.

b) Arbitration Field:

The arbitration field consists of the identifier and the RTR-bit identifier.

The identifier's length is 11 bits. These bits are transmitted in the order from ID-10 to ID-

0. The least significant bit is ID-0. The 7 most significant bits (ID-10 - ID-4) must not be

all 'recessive'.

c) RTR bit

Remote Transmission Request BIT

In data frames the RTR BIT has to be 'dominant'. Within a remote frame the RTR BIT

has to be 'recessive'.

ACK slot

ACK delimiter

1

32

d)Control Field:

The control field consists of six bits. It includes the data length code and two bits

reserved for future expansion. The reserved bits have to be sent 'dominant'. Receivers

accepts 'dominant' and 'recessive' bits in all combinations.

Data length code:

The number of bytes in the data field is indicated by the data length code.

This data length code is 4 bits wide and is transmitted within the control field.

e)Data frame:

Admissible numbers of data bytes:{0, 1... 7, 8}.

Other values may not be used.

Data field:

The data field consists of the data to be transferred within a data frame. It can

Table 4.1 data bytes for corresponding DLC

DLC Number of bytes

1000 8

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

f) CRC Field:

CRC field Contains the. CRC sequence followed by a CRC delimiter.

CRC sequence:

The frame check sequence is derived .from a cyclic redundancy code best suited for

frames with bit counts less than 127 bits (BCH Code).

In order to carry out the CRC calculation the polynomial to be divided is defined as the

Polynomial, the coefficients of which are given by the de stuffed bit stream consisting of

33

start of frame, arbitration field, control field, data field(if present) and, for the 15 lowest

coefficients, by 0. This polynomial is divided (the coefficients are calculated modulo-2)

by the generator-polynomial:

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1.

The remainder of this polynomial division is the CRC sequence transmitted over the

bus. In order to implement this function, a 15 bit shift register CRC_rg(14:0) can be

used.

After the transmission / reception of the last bit of the data field, CRC_rg contains the

CRC sequence.

CRC delimiter: The CRC SEQUENCE is followed by the CRC DELIMITER which

consists of a single 'recessive' bit.

g) ACK field:
The ack field is two bits long and contains the ack slot and the ack delimiter. In the ack

field the transmitting station sends two 'recessive' bits.A receiver which has received a

valid message correctly, reports this to the transmitter by sending a 'dominant' bit during

the ack slot (it sends 'ACK').

ACK slot :

All stations having received the matching CRC sequence report this within the ACK

slot by super scribing the 'recessive' bit of the transmitter by a 'dominant' bit.

ACK Delimiter:

The ACK Delimiter is the second bit of the ACK field and has to be a 'recessive' bit. As

a consequence, the ACK slot is surrounded by two 'recessive' bits (CRC Delimiter, ACK

Delimiter).

h) End of Frame:

Each data frame and remote frame is delimited by a flag sequence consisting of seven

'recessive' bits.

4.3.2 Remote frame

Generally data transmission is performed on an autonomous basis with the data source

node (e.g. a sensor) sending out a Data Frame. It is also possible, however, for a

34

destination node to request the data from the source by sending a Remote Frame. •There

are 2 differences between a Data Frame and a Remote Frame. Firstly the RTR-bit is

transmitted as a dominant bit in the Data Frame and secondly in the Remote Frame there

is no Data Field.

i.e.

RTR = 0; DOMINANT in data frame

RTR = 1; RECESSIVE in remote frame

In the very unlikely event of a Data Frame and a Remote Frame with the same identifier

being transmitted at the same time, the Data Frame wins arbitration due to the dominant

RTR bit following the identifier. In this way, the node that transmitted the Remote Frame

receives the desired data immediately.

4.3.3 Error frame
Error frame consists of two different fields. The first field is given by the superposition of

Error flags contributed from different stations. The following second field is the Error

Delimiter

There are two types of error flags

Active Error Flag: Transmitted by a node detecting an error on the network that is in error

state "error active".

Passive Error Flag: Transmitted by a node detecting an active error frame on the network

that is in error state "error passive".

4.3.4 Overload frame:
The overload frame contains the two bit fields Overload Flag and Overload Delimiter,

There are two kinds of overload conditions that can lead to the transmission of an

overload flag:

1. The internal conditions of a receiver, which requires a delay of the next data

frame or remote frame.

2. Detection of a dominant bit during intermission.

35

The start of an overload frame due to case 1 is only allowed to be started at the first bit

time of an expected intermission, whereas overload frames due to case 2 start one bit

after detecting the dominant bit. Overload Flag consists of six dominant bits. The overall

form corresponds to that of the active error flag. The overload flag's form destroys the

fixed form of the intermission field. As a consequence, all other stations also detect an

overload condition and on their part start transmission of an overload flag. Overload

Delimiter consists of eight recessive bits. The overload delimiter is of the same form as

the error delimiter.

4.4 Bit stuffing:
In CAN frames, a bit of opposite polarity is inserted after five consecutive bits of the

same polarity. This practice is called bit stuffing, and is due to the "Non Return to Zero"

(NRZ) coding adopted. The "stuffed" data frames are destuffed by the receiver. Since bit

stuffing is used, six consecutive bits of the same type (111111 or 000000) are considered

an error. Bit stuffing implies that sent data frames could be larger than one would expect

by simply enumerating the bits shown in the tables above.

4.5 Error Detection:
For detecting errors the following measures have been taken:

- Monitoring (transmitters compare the bit levels to be transmitted with the bit

Levels detected on the bus)

- Cyclic Redundancy Check

- Bit Stuffing

- Message Frame Check

Performance of Error Detection

The error detection mechanisms have the following properties:

- All global errors are detected.

- All local errors at transmitters are detected.

- Up to 5 randomly distributed errors in a message are detected.

- Burst errors of length less than 15 in a message are detected.

- Errors of any odd number in a message are detected.

36

4.6 Error Signaling and Recovery Time:

Corrupted messages are flagged by any node detecting an error. Such messages are

aborted and will be retransmitted automatically. The recovery time from detecting an

Error until the start of the next message is at most 29 bit times, if there is no further error.

4.7 Fault Confinement:

CAN nodes are able to distinguish short disturbances from permanent failures. Defective

nodes are switched off.

4.8 Connections:

The CAN serial communication link is a bus to which a number of units may be

connected. This number has no theoretical limit. Practically the total number of units will

be limited by delay times and/or electrical loads on the bus line.

4.9 Single Channel:

The bus consists of a single channel that carries bits. From this data resynchronization

information can be derived. The way in which this channel is implemented is not fixed in

this specification. E.g. single wire (plus ground), two differential wires, optical fibres,etc.

4.10 Bus values:

The bus can have one of two complementary logical values: 'dominant' or 'recessive'.

During simultaneous transmission of 'dominant' and 'recessive' bits, the resulting bus

Value will be 'dominant'. For example, in case of a wired-AND implementation of the

bus, the 'dominant' level would be represented by a logical '0' and the 'recessive' level

by a logical ' 1' . Physical states (e.g. electrical voltage, light) that represent the logical

Levels are not given in this specification.

4.11 Acknowledgment

All receivers check the consistency of the message being received and will acknowledge

a consistent message and flag an inconsistent message.

4.12 Error Handling:
Error Detection

There are 5 different error types (which are not mutually exclusive):

• Bit Error:

37

A unit that is sending a bit on the bus also monitors the bus. A bit error has to be detected

at that bit time, when the bit value that is monitored is different from the bit value that is

sent. An exception is the sending of a 'recessive' bit during the stuffed bit stream of the

arbitration field or during the ack slot. Then no bit error occurs when a 'dominant' bit is

monitored. A transmitter sending passive error flag and detecting a 'dominant' bit does

not interpret this as a bit error.

• Stuff Error:

A stuff error has to be detected at the bit time of the 6th consecutive equal bit level in a

message field that should be coded by the method of bit stuffing.

• CRC Error:

The CRC sequence consists of the result of the CRC calculation by the transmitter. The

receivers calculate the CRC in the same way as the transmitter. A CRC error has to be

detected, if the calculated result is not the same as that received in the CRC sequence.

• Form Error:

A form error has to be detected when a fixed-form bit field contains one or more illegal

bits.

• Acknowledgment error:

An acknowledgment error has to be detected by a transmitter whenever it does not

monitor a 'dominant' bit during the ack slot.

4.13 Error Signaling:
A station detecting an error condition signals this by transmitting an error flag. For an

'error active' node it is an active error flag, for an 'error passive' node it is a passive error

flag. Whenever a bit error, a stuff error, a form error or an acknowledgment error is

detected by any station, transmission of an error flag is started at the respective station at

the next bit.

Whenever a CRC error is detected, transmission of an error flag starts at the bit following

the ack delimiter, unless an error flag for another condition has already been started.

38

4.14 Definition of transmitter/Receiver:
Transmitter:

A unit originating a message is called "transmitter" of that message. The unit stays

transmitter until the bus is idle or the unit loses arbitration.

The message is valid for the transmitter, if there is no error until the end of end of frame.

If a message is corrupted, retransmission will follow automatically and according to

prioritization. In order to be able to compete for bus access with other messages,

retransmission has to start as soon as the bus is idle [19].

Receiver:

A unit is called "receiver" of a message, if it is not transmitter of that message and the

bus is not idle. The message is valid for the receivers, if there is no error until the last but

one bit of End of frame[19].

39

CHAPTER 5

Design and Implementation of RIC

5.1 Reprogrammability Requirement:
Complex data processing algorithms in industrial application require substantial

multiprocessor and hierarchical systems. Each processor in such a system executes the set

of functions which are connected both with data processing and communications with

other processors.

The IEEE-1451 set of standards which regulate the development of the smart systems are

a very complete and comprehensive set of standards. An IEEE-1451-based smart system

consists of:

a) Lower level modules — STIM, TBIM, Mixed-Mode Transducer, Wireless Transducer,

which are connected to sensors and actuators.

b) Network Capable Application Processors (NCAPs) which form the intermediate

(middle) level for current data processing and service of low level modules (sensor and

actuator polling)

c) The information customers who are connected to the upper network (some NCAPs can

also be considered information customers).

The IEEE-1451 standards regulate the lower level interface of a NCAP, but do not

regulate the higher level interface. As a consequence, the known NCAPs have varying

upper network interfaces and this fact decreases their universality.

Thus, universal NCAP should support the following [4]:

1. A wide set of standard communication interfaces, including high performance ones.

2. The ability to reconfigure the types and parameters of the communication interfaces

according to meet user requirements.

3. The ability to remotely change NCAP software in on-line mode.

It is clear that the required flexibility of our ideal NCAP can only be achieved through

software. However, this software must have a very fast hardware base to be effective.

40

5.2 Design of IEEE 1451 based smart module for Network

Communications:
The IEEE 1451 based smart module for a specific network communications is shown in

figure 5.1.

Actuates
Sensor
Actuar-/

STIM

ST {VI

NCAP

NCAP

Interface
Controller

Interface
Controller

Network

Fig 5.1 IEEEE 1451 based smart module for a network

Considering the application areas of most of the sensors (like fire detector, glass break

detector) CAN (Controller area Network) bus is selected as field network.

CAN bus have some merits such as low cost, high security and better anti jamming. It has

been used on large scale in vehicle systems. CAN (Controller Area Network) is a

standard protocol for sensor networks.

To implement an IEEE 1451 based smart module for CAN communications a suitable

interface controller is designed and implemented on FPGA. These details are described in

later sections.

The interfacing of NCAP and designed RIC is shown in figure 5.2.

41

Cs

IRO
Txd

DBUS

RIC. NCAP. ADDR2 S.
Rxd

RW

rst

•

network

Fig 5.2 NCAP and CAN bus interface

5.3 Functional Description:

Txd

Transmit buffer

• CLK
Clock RST

Interface 	4—CS

Management
R_W

divider
(Baud rate
Generator)

Bit stream
Processor

And
Bit timing

logic

Logic
—DATA

DATA 4

Rxd Error
Management

Logic •
Acceptance
checker

Receive Buffer IRQ

Fig 5.3 Blocks of Interface controller

42

Description of the controller blocks

5.3.1 Interface Management logic (IML):

The interface management logic interprets commands from the NCAP, controls

addressing of the registers and provides interrupts and status information to the host

processor.

5.3.2 Transmit Buffer (TXB):

The transmit buffer is an interface between the NCAP and the Bit Stream Processor

(BSP) that is able to store a complete message for transmission over the CAN network.

The buffer is 13 bytes long, written to by the host processor (NCAP) and read out by the

bit stream processor.

5.3.3 Receive Buffer (RXB):

The receive buffer is an interface between the acceptance filter and the NCAP(CPU) that

stores the received and accepted messages from the CAN-bus line. The Receive Buffer

(RXB) represents a CPU-accessible 13-byte window of the Receive FIFO (RXFIFO.With

the help of this FIFO the CPU is able to process one message while other messages are

being received.

5.3.4Acceptance Checker (AC):

The acceptance checker compares the received identifier with the acceptance checker

register contents and decides whether this message should be accepted or not.

In the event of a positive acceptance test, the complete message is stored in the RX

buffer.

5.3.5 Bit Stream Processor (BSP):

The bit stream processor is a sequencer which controls the data stream between the

transmit buffer, RXFIFO and the CAN-bus. It also performs the error detection,

arbitration, stuffing and error handling on the CAN-bus.

43

5.3.6 Bit Timing Logic (BTL):
The bit timing logic monitors the serial CAN-bus line and handles the bus line-related bit

timing. It is synchronized to the bit stream on the CAN-bus on a 'recessive-to-dominant'

bus line transition at the beginning of a message (hard synchronization) and re-

synchronized on further transitions during the reception of a message (soft

synchronization). The BTL also provides programmable time segments to compensate for

the propagation delay times and phase shifts (e.g. due to oscillator drifts) and to define

the sample point and the number of samples to be taken within a bit time.

5.3.7 Error Management Logic (EML):
The EML is responsible for the error confinement of the transfer-layer modules. It

receives error announcements from the BSP and then informs the BSP and IML about

error statistics.

5.4 Implementation and State Machine diagrams:

The CAN Protocol Controller receives unformatted message from the microprocessor,

frames the messages as per the protocol specifications and also de-frames the received

CAN message frames. The digital signals transmitted by the protocol controller are

converted into electrical signals compatible with the CAN differential transmission

medium by the CAN Transceiver which can also designed as a separate entity.

The integration of these individual blocks would constitute the entire CAN interface

Controller.

44

10—

N
C
A
P

Serialize
d

frame tx CAN bus
out

CAN bus
in

Bit fr-
destuff

CRC Bit stuff Form Bit Ack
checker monitor checker monitor checker

i I I I • I 	A

Param
register

Tx
buffer

Acceptance

Rx
buffer

Par to
serial

converter

Messag
e

process

CRC
generator

Error/overlo
ad

frame
generator

Bit stu

Figure 5.4 Complete Block diagram with Internal blocks(modules).

Data/Remot
e 	

frame
generator

checker .4

Rx
CRC

generat

Bit
synchron'I♦

zer

Arbitratio 4 	
n

controller4—

The various functional blocks in the diagram are described as follows:

• NCAP: This is the interfacing application which provides the CAN controller with the

data to be transmitted across the CAN bus and also reads the received messages

from the controller

• Parameter Registers: The control field register and identifier register specified for the

CAN node.

• TX Buffers: There are thirteen transmit buffers. Each buffer can hold one byte of data.

The controller receives the message to be transmitted from the host CPU and stores the

message in the transmit buffer before further message processing takes place.

• Data / Remote Frame Generator: Data / Remote Frame Generator is responsible for

generating the message frame as specified by the CAN protocol.

• Par-Ser Converter: This unit serializes the message to facilitate the CRC

computation.

45

• TX CRC Generator: Before transmission, this unit computes the CRC for the

message to be transmitted. The generated CRC frame is appended to the message being

transmitted before bit-stuffing is performed.

• Bit Stuff Unit: This unit performs bit-stuffing as specified by the CAN protocol,

making the message suitable for transmission across the CAN network.

• Overload / Error Frame Generator: Generates Error or Overload frame whenever

error or overload condition occurs.

• Serialized Frame Transmitter: This unit transmits the data/ remote frame or

the error / overload frame or a dominant bit during the acknowledgment slot based on the

prevalent conditions.

• Message Processor: This is the central unit which provides all the control and the

status signals to the various other blocks in the controller. This unit routes the

different signals generated in various blocks to the necessary target blocks.

• Arbitration Controller: The arbitration controller is responsible for indicating the

arbitration status of the node.

• Synchronizer: This unit performs the bit timing logic necessary for synchronizing the

CAN controller to the bit stream on the CAN bus. The recessive to dominant transition

edges present on the received bit stream are used for synchronization and re-

synchronization.

• Bit De-stuff Unit: This unit performs the de-stuffing of the messages received from the

CAN network. This unit also extracts the relevant information from the received

message.

• RX CRC Generator: After reception, this unit computes the CRC for the message

received.

• Cyclic Redundancy Checker: This unit compares the generated CRC for the

received message with the CRC frame received by the node. An error is generated if the

two CRC values do not match.

• Bit Stuff Monitor: This unit signals a stuff error when six consecutive bits of equal

polarity is detected in the received message.

46

• Form Checker: A form error is generated if any of the fixed-form fields in a

received CAN message is violated. The fixed form fields include the CRC delimiter,

ACK delimiter and the EOF field.

• Bit Monitor: A CAN node acting as the transmitter of a message, samples back the bit

from the CAN bus after putting out its own bit. If the bit transmitted and the bit sampled

by the transmitter are not the same, a bit error is generated.

• Acknowledgment Checker: During the transmission of the acknowledgement slot a

transmitter transmits a recessive bit and expects to receive a dominant bit. If the node

receives a recessive bit in the acknowledgement slot an ACK error is signaled.

• Acceptance Checker: This unit checks the incoming message ID and determines if the

received frame is valid.

• Receive Buffer: There are two 13 byte buffers that are used alternatively to store the

messages received from the CAN bus. This enables the host CPU to process a message

while another message is being received by the controller.

Building Blocks of the CAN Controller:
Each block of the CAN controller performs a specific operation. The functionality of the

basic building blocks of the CAN Controller along with its operation is described below.

5.4.1 Parameter Registers:

The controller receives the control field register, the identifier register and specified

for the CAN node from the host CPU and stores them in the parameter registers.

The content of the control field , identifier registers are used to determine the

acceptance of the message. The Synchronous Jump Width register content is used for

bit synchronization. The state diagram for the Parameter Registers is shown in Fig 5.5

47

R_w=1 &&
Addr2="10"

Send two
Bytes of
data by
DBUS

Idle

rst

Load
registers

Figure 5.5 State diagram for registers.

Initially the identifier and control field need to be loaded into the CAN controller. The

R 	ADDR2= "10" is asserted by the CPU when it needs to load new values in

registers. This indicates to the CAN controller that the CPU wishes to load the

parameters into the corresponding registers.

Following the high assertion of the R_W=1 ' signal the CPU proceeds to send the data

on the 8 bit DBUS in bytes. The 8 least significant bits of the identifier register are

transferred first. This is followed by the transfer of the 8 bit data formed by the

concatenation of the 5 least significant bits of the control field register and the 3

most significant bits of the identifier register.

Once the transmission is complete the registers retain the values stored in them. A new

value is loaded only when the CPU initializes another parameter load by asserting the

R w='1' ADDR2= "10" signals. A global reset to the system removes the parameters

stored in these registers.

5.4.2 Transmitter Buffer:

There are thirteen transmit buffers. Each buffer can hold one byte of data. The

controller receives the message to be transmitted from the host CPU and stores

the message in the transmit buffer before further message processing takes place.

The CPU sends the message in the order of the message identifier first, followed by the

control bits, and then the data bytes with the most significant byte of the data being sent

first. The signal loadmsg goes high when the controller completes loading the transmit

buffer and stays high till the message has been transmitted successfully. On

48

DBUS(7:0)

DLC(3:0)

message(63:0)

Frame
generat

ion

Crc_generated

successful transmission the buffers are reset, the loadmsg signal goes low and the

controller is ready to receive the next message.

rst loadmsg

Figure 5.6 Synthesized RTL diagram of Tx buffer and loadmsg signal are shown

5.4.3 Data / Remote Frame Generation:

Data / Remote Frame Generator is responsible for generating the message frame

as specified by the CAN protocol. The state diagram for the Data / Remote Frame

Generation is shown in Fig. 5.7

Fig. 5.7 CAN Data / Remote Frame Generation

On loading the final transmit buffer the data / remote frame generation is

initialized.. Based on the Data Length Code (DLC) and the Remote Transfer Request

(RTR) bit the par_ser_data frame is generated. If the RTR bit is recessive, the message

to be transmitted is a Remote. Inthis case the par_ser_data frame does not have any

Data Field and will be formed by the concatenation of the dominant Start Bit, the

Message Identifier and the Control Field.

49

In case the RTR bit is dominant, the message to be transmitted is a Data Frame and

hence will contain a Data Field. In this case the par ser_data frame is formed by

the concatenation of the dominant Start Bit, the Message Identifier, the Control Field and

the Data Field.

The Data Field is of variable length given by the DLC. The Data Field can contain zero

to eight bytes of data. The data is transmitted with the MSB first.

In case of a Remote Frame or a Data Frame, with DLC less than 8 the frame is

appended with dominant bits to counter for the trailing bits which are not defined by the

message. The parser_data frame is serialized using a Parallel to Series converter and

fed as input to a CRC generator. The high assertion of the crcgenerated signal

indicates the completion of the CRC calculation.

The generated CRC frame is then appended to the end of the Data Field in a Data Frame

or to the end of the Control Field in case of a Remote Frame. The message is

appended with recessive bits to counter for the trailing bits which are not defined by the

message. The message frame generated after appending the CRC frame is the

transmessage. The transmessage is then bit stuffed before transmission.
<PI°

5.4.4Par-SerConverter:

Figure 5.8 Dataflow diagram of parallel to serial converter.

50

Fig. 5.9 State diagram Parallel — Serial Conversion

Consists of a data register DR and Shift Register SR and the transmit control.

It interfaces with DRE data register empty and the data bus (DBUS). The first process

represents the combinational network, which generates the next state control signals. The

second process updates the registers on the rising edge of the clock.

In the Idle state the state machine(SM) waits until DR has been loaded and DRE is

cleared. In the SYNCH state, the SM waits for the rising edge of clock and then clears the

lower order bit of SR to transmit '0' for one bit time.

In the TDATA state, each time rising edge of clock is detected SR shifted right to

transmit the next data bit and the bit counter is incremented This unit serializes the

message to facilitate the CRC computation. The state diagram for the Par-Ser Converter

is shown in Fig. 5.9

5.4.5 CRC Generator:

For the input serial data the 15 bit CRC is calculated and appended to the data message

While transmitting. While receiving acts like a crc checker The CRC frame calculation

commences with the high assertion of the CRC enable signal. The CRC frame is

51

initialized to fifteen zeros with the CRC initialize signal. In order to carry out the

CRC calculation the polynomial to be divided is defined as the

Polynomial, the coefficients of which are given by the de stuffed bit stream consisting of

start of frame, arbitration field, control field, data field(if present) and, for the 15 lowest

coefficients, by 0. This, polynomial is divided (the coefficients are calculated modulo-2)

by the generator-polynomial:

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1.

The remainder of this polynomial division is the CRC sequence transmitted over the

bus. In order to implement this function, a 15 bit shift register CRC (14:0) can be

used.

After the transmission / reception of the last bit of the data field, CRC (14:0) contains the

CRC sequence.

cik

data

enable

initialize

Figure 5.10 CRC(14:0) out synthesized RTL.

5.4.6 Bit Stuff Unit:

This unit performs the bit-stuffing mechanism as specified by the CAN protocol,

making the message suitable for transmission across the CAN network. As per

specifications, bit stuffing is done only on Data or Remote Frames. The input to

the stuffing unit is the 98 bit transmessage. The concatenated 98 bit register,

transmessage contains the input to the stuffing input and the bits are in the order

[97:0] 	[Start bit, messageidentifier [10:0], RTR bit, Control Field [5:0], Data

Field [MSB:LSB], CRC Frame[14:0]].

52

The register may not always be full due to the variation in the data length, to ensure that

the remaining bits do not contain junk data they are padded with recessive bits, l's in

this case.

The bit stuffing is initialized by the bit_stuf signal that goes high on appending the CRC

frame to the message and stays high for one clock cycle. To bit stuff the message stream,

the message stream is serialized and then checked for the bit stuffing condition. The

stuffed bit stream being put out on the CAN bus has the Start Bit being transmitted first,

followed by the message identifier's most significant bit and so on .

On receiving the bit_stuf the message stream to be stuffed, transmessage is stored

in a temporary register transmsg. Then the 98th bit of transmsg is checked during each

clock cycle. If it is a 1, a counter variable for one, one's count is incremented or if it is a

0, a counter variable for zero_count is incremented. The states machine stays in state

outputs logic 1, if the sequence of ones is less than five. If the sequence of ones is equal

to five then it enters next state and outputs a logic 1, the next state would be the zero

stuff state as the protocol requires a stuff bit of opposite polarity to be transmitted after

every sequence of five similar bits. In the zero stuff state the output is logic 0. Similarly

when a sequence of five zero's is detected the state machine enters the one stuff state and

outputs a logic 1.

As long as the sequence of ones or zeros is less than five the contents of transmsg are

shifted by 1 to the left, thus discarding the bit already transmitted. The bit count is

also incremented. However if there is a sequence of five consecutive ones or zeros

then the transmsg register remains the same, without being shifted. The bit count

is also not incremented and remains the same. The stuffing process is stopped when

the bit count equals the length of the frame to be transmitted given by DLC.

The CRC Delimiter, ACK slot, ACK delimiter and EOF bits are appended to the bit

stuffed message to form the Data / Remote Frame; these bits are transmitted as

recessive bits.

5.4.7 Overload / Error Frame Generation:

On detecting an overload or error condition, an Overload Frame or an Error

Frame is transmitted. A message received when both the buffers are full cannot be stored

53

L_I L_1 	L_J" 	"L.1 "LI Li 	"1_1 t_i 	 Li 1...i."-L..1-""1_1""L_F-

.1 	=

I

in the receive buffers and will be lost. To avoid this situation an Overload Frame is

generated by the receiver to indicate an overload condition to the other

participating nodes. The transmission of the next message on the Bus is delayed by the

transmission of the Overload Frame.

Similarly when an error is detected the node sends out an Error Frame. The

transmission of the Error Frame produces an error condition in the other

participating nodes and causes the message to be retransmitted.

The Error Confinement process is also taken care of by the Overload / Error

Frame Generation unit. It is designed as per the specifications in the Data Link Layer of

the CAN protocol.

5.4.7.1 Overload Frame:

The overload signaling and overload frame generation is demonstrated in Fig. 5.11. As

discussed earlier in the Receive Buffer Storage section the rx_buff 0_wrtn and

rx buff 1 _wrtn signals indicate that the buffers have been written into when they _ _

are asserted high. When both the buffers are loaded the node asserts the over Id flag

high to indicate an overload condition. The high assertion of the overid signal

initiates the transmission of an Overload Frame. This is indicated by the ovld_flg_tx flag

going high. The other nodes in the network detect a stuff error in the arbitration

field and send out their respective Error Flag. When a stuff error is detected in the

arbitration field the error counters are not incremented. Thus the overload flag delays

the transmission of the next frame giving it sufficient time for the host controller

to read the data from the receive buffers

Figure 5.11 Overload frame generation.

54

5.4.8 Serialized Frame Transmitter:

This unit transmits the Data / Remote Frame or the Error / Overload Frame or a dominant

bit during the acknowledgment slot based on the prevalent conditions. The

transmitting node continues to transmit the message until the last bit, provided there is no

error condition encountered during the transmission. In the event of an error the node

starts transmitting the Error / Overload Frame. The node does not transmit an

Error Frame when the node is in Bus Off state. Once the transmission is complete

the node returns to the idle state.

The node transmits a dominant bit during the acknowledge slot, when functioning as a

receiver. The node transmits recessive bits during the idle state.

5.4.9 Message Processor:

The message processor is the central unit which provides all the control and the status

signals to the various other blocks in the controller. This unit routes the different

signals generated in various blocks to the necessary target blocks.

The success of a transmission or reception is indicated by this block. A successful

transmission is indicated by the high assertion of the tx_success signal similarly

the successful reception is signaled by the high assertion of the rx_success signals. These

two signals facilitate the registers to be reset.

'During arbitration messages if a node loses arbitration it has to contend for bus

access only after the completion of the current transmission. The high assertion of

the re tran signal initializes the retransmission of the message that lost arbitration.

The overload condition is also indicated by the message processor. If both the

receive buffers are full and the rd en signal of the node is not low the node signals

an overload condition by asserting the over_ld signal high.

The message processor also provides information to other modules if an error

occurred during the current transmission or reception. In case of an error it ensures

that the error is recorded for further use. This module also acknowledges the

successful reception of a message till the end of the CRC Field by asserting the

55

send_ack signal high. This ensures that a dominant bit is transmitted during the

acknowledgement slot.

5.4.10 Arbitration Controller:

The arbitration controller is responsible for indicating the arbitration status of the node.

If the output of arbitration controller of the node is logic 1 then the node is a

transmitter if it is logic 0 then the node has lost arbitration and functions as a

receiver of the ongoing message. The node which loses arbitration asserts a signal to

indicate that a message is due for transmission.

ID
SO

10
11) 	11)

'7
II) -

3
ID 	I1 	III)
2 	1 	0

Figure 5.12 Arbitration mechanism (source: www.can-cia.de)

5.4.11 Synchronizer:

This unit configures the timing parameters of the bit time for the CAN node. Each CAN

node is configured individually to create a common bit rate for all the nodes on the

network even though the CAN nodes oscillator periods may be different.

Synchronizations and resynchronizations are performed on the recessive to dominant

transition edges. The purpose is to control the distance between edges and Sample Points.

The specifications used for the design have been obtained from are given below:

• Bit Rate for CAN transmission: 1Megabits/second

• CAN bus length: 20 meters

• Main oscillator frequency: 8 MHz

The design for the bit timing

56

and synchronization unit involves the calculation of the time quanta required for the Bit

timing Parameters. With a baud rate prescaler (BRP) value of 1, the CAN system clock

frequency is 8MHz.

Figure 5.13 Dataflow diagram of clock divider(pre scaler)

5.4.12 Bit De-stuff Unit:
This unit has similar operation of Bitstuff unit. It performs the de-stuffing of the

messages received from the CAN network. This unit also extracts the relevant

information from the received message.

The CAN bus bit stream is sampled by the Synchronizer of the CAN controller.

This sampled bit stream is then de-stuffed before the relevant information is

extracted from the received message. Due to the bit stuffing process of the CAN protocol

a:stuff bit of opposite polarity follows a sequence of 5 consecutive bits of the same

polarity. The function of the de-stuffing unit is to remove the stuffed bits from the

received message.

The de-stuffing process is initialized by the high assertion of the bit_destuff intl

signal. As soon as the de-stuffing process is initialized the CRC calculation of the

received bit stream is enabled by asserting the enable signal high. A 64 bit

temporary register message stores the received and de-stuffed bits. The temporary

register is shifted to the left by one bit position for every de-stuffed bit and the incoming

de-stuffed bit is moved into the Oth bit position of the temporary register. Figure

demonstrates the method of De-stuffing.

57

C locs1

Stu e
13A Stream

6 	Z 	e I Step

Or;sinol
Stream 5

	
11 	12

Figure 5.14 Bit destuffing(source www.can-cia.de)

5.4.13 Error checkers:
These consist of checking blocks for CRC, Stuff, Form, Bit and Acknowledgement

errors according to the CAN specification.

Cyclic Redundancy Checker :

The CAN controller on receiving the rcvd crc fig performs the CRC sequence

comparison. The rcvd crc fig register holds the received CRC Frame and the rxcrc_frm

register holds the generated CRC for the received application data. A CRC Error is

flagged by asserting the crc_err signal high if the received CRC frame and the generated

CRC do not match.

Received CRC

CRC_ error

Compare

Generated CRC

Figure 5.15 CRC checker

58

Figure 5.16 Dataflow diagram of CRC generator

Bit Stuff Monitor

This unit signals a stuff error when six consecutive bits of equal polarity are

detected in between Start of Frame and the CRC Delimiter of the received message.

The one's count and zero's count are fed as input to the bit stuff monitor module. A stuff

error is flagged if the one's count is equal to five and the serial input is equal to

logic 1 or if the zero's count is equal to five and the serial input is equal to logic

0. The occurrence of a stuff error is signaled by asserting the stf err signal high.

Form Checker:

This unit checks for the serial input at the fixed from fields which are the

• CRC Delimiter bit

• Acknowledge Delimiter bit

• End of Frame Space bits.

If the receiver detects a dominant bit in any of these fields a Form Error is

signaled by asserting the frm_err signal high.

Bit Monitor:

59

A CAN node acting as the transmitter of a message, samples back the bit from the CAN

bus after putting out its own bit. A Bit Error occurs if a transmitter sends a dominant bit

but detects a recessive bit on the bus line or, sends a recessive bit but detects a

dominant bit on the bus line. A Bit Error is signaled by asserting the bt_err signal high.

Acknowledgment Checker

During the transmission of the acknowledgement slot a transmitter transmits a

recessive bit and expects to receive a dominant bit. If the transmitting node

receives a recessive bit in the acknowledgement slot it is understood that none of the

nodes in the network received the message correctly and an ACK error is signaled. If the

node receives a dominant bit in the acknowledgement slot then it is understood that

at least one other node, has received the frame correctly. The presence of an

acknowledgement error is signaled by asserting the ackerr signal high. Figure 5.17

demonstrates the CAN acknowledgement process.

CAN Bits

Node A
TX

Node It
RX

Nude C
R.X

LEL] 	I 	I 	
I 171 Li

Dominant
Bus State

Recessive
Acknowledge Bit

Dominant
Acknowledge Bit

Recessive
Acknowledge Bit

Figure 5.17 CAN acknowledgment process

5.4.14 Acceptance Checker :

This unit checks the incoming message ID and determines valid frame. The

Acceptance Filter, based on the identifier,control field register of the host application,

filters the received messages and stores only those required by the host application.

Thus the filtering mechanism ensures only relevant messages are processed and the rest

are ignored. All messages that are let through the filter must be read and checked

by the CPU. This means that the final filtering is done in software.

The design of the Acceptance Filter is defined by two parameters, identifier

register and control field register. These specify which particular bits to compare in

the acceptance parameter with the identifier of the message.

60

5.4.15 Receive Buffer:

There are two 10 byte buffers, rx_buff0 and rx_buffl that are used alternatively to store

the messages received from the CAN bus. This enables the host CPU to process a

message while another message is being received by the controller.

If the rx_buff0 is not written into the rx_ buff 0 wr stat signal is asserted high. If _ _

rx buff° is written into rx buff 0 _wrtn is asserted high. Similarly the status of rx_buffl _

is also indicated. The received message is stored into the first buffer that is free on

passing the acceptance filtering. The CAN controller checks the status of rx_buff0, if

rx buff° is written then rx buffl is checked and written into. As soon as the data is

written into the buffers the corresponding buffer written signal is asserted high.

The data is written into the buffer in the following order the received message Id

given by rcvd_msg_id, rcvd_rtr, the rcvd dlc and the rcvd_datafrm with the MSB first.

The data is read from the receive buffers by the host application by asserting the

rd en signal low. This initializes the read operation.

Two signals rx_buff °active and rx_buff l_active ensure that the data is read in the

correct order. These signals go high as soon as the read operation for a particular

buffer is initialized. At end of the read operation of a particular buffer the

controller checks if the other buffer has been written into. If the other buffer is

written into the controller asserts the active signal of the other buffer high, if not the

active signal of the other buffer is asserted low. This ensures that the controller reads the

data in the order in which the data arrives.

Once a buffer is read the rx buff 0 read or the rx buff I read signal is asserted high _ _ _ 	 _ _ I_ read
 the corresponding buffer. With the high assertion of the buffer read signal the

contents of the corresponding buffer is reset and the buffer is ready to take in a

new message. The data is sent out on the data_out bus one byte at a time.

5.4.16 Serial to parallel converter:

In Receiver logic serial to parallel converter is used and is based on the SM chart given.

Receiver contains DR and SR registers and the receive control.

61

The control interfaces with status register and DR can drive data onto the data bus. The

first process represents the combinational network, which generates the next state and

control signals. The second process updates the registers on the rising edge of the clock.

The SM chart is shown in fig 5.18 on next page

5.4.17 Interface Management Logic:
1. Interprets commands from NCAP.

2. Provides Interrupt and status information to the NCAP.

Used two eight bit registers as status and control registers for the interface controller.

Control register has the information about interrupt enabling signals for transmitter and

receiver while the status register consists of the information about errors and status

information of bus. These bits work like inputs and outputs for bit stream processor.

Table 5.1 Interface Management Logic

ADDR2 R W action

00 0 DBUSE-DR

00 1 DBUS->DR

01 0 DBUSk-Status Register

01 1 --

1X 0 DBUS 	control register

lx 1 DBUS-> control register

The blocks are Implemented in VHDL and synthesized with xilinx ISE 9.2i.

The simulation and synthesized RTLs are discussed in next chapter.

62

RECEIVE
DATA

No

rxd=.0'

Ye%

START_D
ETECTED

7 N.

N'aS

Rxcl='0'.> 	 Val

ctrl

Vnx

incl

„IN
=7> 	Yes

shift SR
inc2
cirl

Yes

ra s
register

No

ia;:co--TN)„

set data
egister ful

clr2

load data
register

Figure 5.18 SM chart for serial to parallel converter:

cnt2=8

63

CHAPTER 6
RESULTS

6.1 Simulation results

a) Interface Management logic:

When the addr2="10" and R_w='1' the host processor writes the message to the

parameter registers of the node.

The control register enable the sci_irq(Interrupt request to processor) when the node

needs attention. After each transmission of 8 bits from DBUS the irq has become high is

shown in simulation diagram.

. lart/scisel
/Mir tv

• *, iartick
" , /ark/r4

	

g 	iart/rst_b

	

11)---` 	lart/addr2
at" , iart/dbus

	

, 	/art/sci_irq
- / /art/txd

	

p--':j. 	lartirdr 	•
IMMEMINIMINEMUNIMMI

	

0---- . 	iart/sccr
- , Iartitdre

	

-" 	.. 	lart/rdrf

	

4 , 	/art/oe
, , /art/fa

	

--, 	iart/tie

	

, 	/att/rie
0-4,, iart/baudsel

4'). latt/settdre
, lartisetrdrf

4.42...c.

1
1
U
1 	 'Li
00
Z2272ZZZ

1IL1J1.11:1MINI=11_111J11_11111.1111.FLWL-111111111,1111111

WM 00
0
n

(101010,,0
1
0
UUUUUUUU

--1
1...11JULIIJUULI

10000010
1
0
0
0
1
0
010
0
0
v

. 1:1= 1000
1000000 10E000000 LI00000000 1

L—I —1 7

/
-L____

U... --aiinli=.1111.1111111111.=1

b) Tx Buffer:

In the simulation diagram shown below with the given DLC of "1000" after cnt reaches

the eight the loadmsg signal becomes high and this initiates the data/remote frame

generator. Now the message is tx buffer and this message is converted to serial by

parallel to serial converter.

64

/sr/clk
/sr/1st

	

1:1-d 	/sr/dic

	

D-4 	/sr/dbus

	

Ei-' 	/srimessage

	

" 	/sr/loadmsg

	

'' 	/sr/cnt

	

[B---" 	/sr/message1

fl
0
1000
10101001
1 01 01 00110101001
0
9
1 0101 00110101001

i-Rilifit1111.111Lian-rillinfl-n-11-=11_ -1.1
(1000
'101 01 001
UUUUUUUU UUU... 	X1 01 0- 00110101001101010011011 001101 01 001' 0101 0011 01 0..

Fl
:2 	0 14 1',5)(6 :71{8 1C9

10101001101010011010100110101(3110101001101 11001101010(...

c) Parallel to serial converter:

11-11-j-r-r-f-r
1ST_ SISIL SSfJ sss.r

, /transmeter/bck
• Aransmitter/sysolk

/transrritter/rst_b
4.„ /transmitter/die

/transmitter/loaddr
/transmitter/dbus
/transmitterisetdre
/transmitter/txd

• /transmitter/state
/transmitter/nextstate

„, /transmitter/sr

1

0

10101001
0
0
tdata
tdata
111111111

10101001

idle
idle
1111 1

tdata
U..

tdata

11141011•011111111111ELIMMIDOITirregillaffilEIMEENIO01111111111

tdata
data

ILF_F_FL 51_11 -11_11

Il

tdata
tdata

, /transmitter/dr 	10101001

lirk===.111001.11 0

/transmitter/inc 	1
,• /transroitterich 	0

/transmitter/loadsr 	0
Aransmitter/shftsr 	1

• /transmitter/start 	0
/transmitter/bac rising 1

UUUU 10101001

OINAKIIIIIMWC111111111011,11100afileKICIIIIMINNEICKII

The simulation result shows the parallel to serial converter. The message is written to this

component byte by byte on eight bit DBUS. When dre(data register empty) signal goes

`0' the state machine goes to tdata state and transmits data serially on the line txd.This

txd input is given to the data input of CRC generator/checker..

d) TX CRC generator:

	

'. 	ican_vhdLerc/cik

	

' ,, 	/can_vhdl crc/data
/can vhdl_crc/enable
/can vhdl crc/initial...

	

(D--' 	/can_vhdt crc/crc
', /can_yhdi crclorc_...

0- 	/can_vhdl_crckrc_...

0
1
1
0
10001001011 0011
0
0001001 0110011 0

-till= 11J11L1f11 Ul1L1 arl li11111111:ffialiTLIIRI
I

00000000000(000 001111111100011111111411111111•1111000,111000
___I 	L

00000000000 000 .01506100.1.10......1.1.100.
lcan_vhdl_crr/crc_x... 1 COW 1.jul 0110011 00000000000 000 Iiiii..../INDIMIIIIISOUSIII04110

The output of parallel to serial converter isgiven to the data input pin and crc calculation

is initiated by data frame generator when settdre signal goes high in the previous

65

1001011

00000000000
looloimooi twoolomioolomi o 0111100101 1001011110

0
0

0
0
1
1000 	 000
1n1_1011itinniiiinii I UUUUUUUU-1... (MO eilliell0111161111111101111111111111111116•111111M1111111

ifinal/tywk
/final/fstb
/final/bad-dr
/final/dbut
/final/bid
/final/crecut
/final/message
/final/tdre
/final/settdre
/final/ereenable
/final/inAigas
/1,nal/loadmsg
/final/acgenerated
/final/die

11001011
0
111010011001001
1100101111001011'

5.2171: 	nal,' 7.ranm,,E.2zt.zge El .5991. ins
100011.0111L' 	dji_, j, „UU11J11110011_111/ /00101 /111_1,310 	1.00 lit 1 1 1 lijilli_11111 LO jij11'1 UJU1

The above result shows the complete CAN message before bit stuffing.

e) Bit stuffing:

simulation diagram. And initialize becomes `0'.The calculated CRC is stored in

CRC(14:0) register.

The bit stuffing mechanism is demonstrated in Figrith the initialization of bit stuffing

the contents of the 98 bit register dt rm-Irm are transferred to a temporary _

register msg. The contents of the msg register are serialized and then checked for the bit

stuffing condition. At every positive edge of the clock the contents of the msg register are
shifted left by 1.

The left shifted bit is placed on the dt_rmout bus which is connected to the CAN bus. A

count of the bits in the original un-stuffed message stream is kept in the register

bit count. The stuffed bit stream being put out on the CAN bus has the Start Bit being

transmitted first, followed by the message identifier's most significant bit and so on.

Two counters one_count and zero_count keep tab of the number of consecutive

ones and zeros encountered respectively in the message stream

DLC. On detecting five zeros at bit_count 17 a recessive bit is stuffed into the bit stream.

The bit_count is not incremented and the msg register is not shifted left as

explained

above. The bit stuffing mechanism is demonstrated in Figure.

66

isimmumm. um. mom 001
mum

III 111111111111111111111111111111 III 111I IIII III 	1111111111 I1!I 1111 III 	III IIII III 1111 III! III 	III 1111111111111111111 iii 1111111111111111111 l 11 IIII 11111

11111111MEIMM 1•21101111111111E =WM MEWED
H11111111111111EMIK11= 	1111111111111111111 rowel-rim'

011

ca
crlYcanbusout
can_Uidt rm_out
can_01dt urdcm
can_Cl/n-mg
cao_ClibiL:alja

oan_Ohne_count
can_Ohero count
can_Clib count

Mil

1

X01110111011111000001 0110011 001011 1010111 111111 111111 1 11111111111111 111'
0000001... iiiniliiinianalinientliiiiii MOM Aiaitliinnaiiiiait
_j 	1
0 101111411010111111111MINIVIIIMC_MMO ...0..........i. MAIM '
0 iilli 0 INNS ill o 1■1 •■•11M1- I CIIII 	illigaillialla• 0 IMMOMM.P.M."+....41+.1.11.0.114 MI
0 IMEIIIIMCIIIM 6 	MICORIIIIKUIffiliElliKiliElliEllillIt 7 	CI -

Bit destuffing in receiving is similar to bit stuffing in transmission and CRC generator

can be used as CRC checker.

RX buffer is implemented same as TX Buffer.

Bus arbitration block is implemented by using XNOR gate with the two inputs. One is

Rxd from other CAN node and second one is txd.

The clock prescaler (baud rate generator) provides the required clock of 8MHz.

.Three bits in control register can be used to select any one of eight baud rates.

ck divider/sysck
ck_dividevirst_b
'clk_droder:,30
ck_crivideribdkx0

011

ck divider/1)A 1
ck_dividerk41 1010
ck_dividefictO 01000100
ck_dyider/c43 111
ck.„divideuickdiv13 1

6.2 Synthesis Results:
0) Clock divider synthesized RTL:

sel(2:0)
	

bclk

rst b

sysclk
	

bclkx8

67

b) CRC generator/checker:

elk

data

	 enable

initialize

Synthesized RTL:

68

st b

DBUS(7:0) setTDRE

-1 Belk

loadTDR

syscik

	 TDRE
•

txd

c) Parallel to serial Converter:

69

Synthesized RTL

1

d) Receiving component:

bclkx8

RDRF

rst b

RxD

syscik

RDR(7:0)

setFE

setflE

setRDRF

Receiver synthesized RTL

e) Interface management logic:

ADDR2(1 :0)

cl k

rst.

Rxd

rw

SCI_sel

SCI_IRQ

Txd

DBUS(7: 0) 1

1

71

Synthesized RTL

f) Before bit stuffing :

DBUS(7:0) crcout(14:0)

bclk

IoadTDR

rst b

sysclk 	 txd

Synthesized RTL:

Final Synthesized RTL schematic:

73

Some: for Synthesis/Implementation

-Om
a CI sc,3s500e-44320

canird_top • RTL fLkstpast

	TI
S tbalies

I PGA Design Swam

Wes* 0 yasiew

5 Sammy

DOB Replies

oliii4Consthints
oPiout Repo t

- D 13xk Report

• Enos and Watric

Q Synthesis Messages

- olfantizlion Messages

DMap Messages

DPlace and Route Messages

D Tinkg Messages

oBigenMessags
01AI arrant Messages

Delaied Reports

0 Synthesis Repot

Tiansbea Repat.

Map Repot

nPtyp amf RN 7 Rana

it

tY

Ram 	
Enable Enhanced Design Summary

- 0 Enable Message Fitairg

0 Display Inuerrent4 Hes:nap
Enhated Design &may Contents

--El Show Pekin D4a

-0 Show bon
0 Showl Warnings

- 0 Sh0V4 Fang Cons:trivia

❑ Show Clods Repot

Rome= for can ytd_lop • RTL

-171 Add Eislig Sauce

❑ Cmate New Souice

-E Vow Desigm Surrerap

41i De4ukiti.
a)-v Useu coreals

)1synthein 4st
Cie View Synihesis Report

View RTL Schematic

-.2 Yew Technology Schematic

() peck Syslex

Gewalt Pest-Synthesis Sin

at) 	inplament nig"

Prnrwet.

Device Utilization Summary:

L _ 	.. CAN Pre get Status ___,I
Puiect Fie: CAN.Ue ! Current State: Syribasized

Module Nage: can_vhcitq) s 	* Elm:
191

No Eros
Wamivg if aiget Device Hc3s500e-41g33 i 	• Waning::

I [induct Version: ISE az • Updatett Sus Aug 241956152000

CAN Partition Swam
Na pudic(' &relation rya feud

Device UbTuabon Stamm lestenated values)

Logic UnTeation Used 	 Available Utifization

likriber of Slco 704 4656 15%

Nutt of Six Flp Flops 549 I 9312 5%

Nude, ol 4 'we W Ts 1322 I 9312 144

141.111±€1 of horded 100s 36 1 232 15%

Hobe of GCas 2 24 at

1_ 	 Detailed Repoits
_ 	_ 	— .. 	_ _ __

Report Nape i Status 6eneiated 	Erroll 	• Warnings 	: Mrs

itilth... Cunent Sun ism 24195&44 2038 0 91 Wailes 	itr4tos
Translation Report
Hap Repot
Race and Route Report

Static Tiring Repast

Eligen Re*

74

CHAPTER 7

Conclusion and Future scope

7.1 Conclusion:
The design of the RIC (In present case CAN controller) for this project has been

described in detail in Chapter 4 and the results obtained from the simulation of the

post layout model, have been elucidated in Chapter 6. Thus the FPGA implementation

of a basic protocol controller for CAN 2.0A protocol has been accomplished.

The software Implementation of communication interfaces by RIC allows having

minimal redundancy for supporting additional interfaces and giving opportunity to

change set of supported interfaces by development of new software for RIC.

The interface controllers for I2C and SPI are simplified versions of the structure of the

RIC designed for CAN bus.

The reconfiguration of FPGA by the NCAP (micro controller) provides an

implementation of the set of interfaces. The requirements of FPGA size are determined

by the complexity of the interface controller.

.Network sensors based on IEEE 1451 will share more quotients in the sensors market as

a dominant product. We can see that network sensors have more extensive application in

the future.

7.2 Scope of Future work:
Future work for the presented work consists of the following:

• Complete an Application Specific Integrated Circuit (ASIC) for this IEEE 1451

single chip solution discussed in chapter 2.

• Design a completely re-configurable TIM block. This proposed block would

have a database of TEDS associated with it that contains information about a

variety of transducers. Then, using this database we can select the transducer(s)

that we would like to implement, and the complete transducer channel TIM

block would be instantiated. In order to accomplish this, we would need to

design a Graphical User Interface (GUI) that has the capability of dynamically

setting the I/O ports of the control unit as well as the individual transducer

channels.

75

REFERENCES
[1] IEEE standard for a Smart transducer Interface for sensors and actuators-Network

Capable Application Processor (NCAP)

Information Model, IEEE standard 1451.1-1999, 1999.

[2] IEEE Standard for a Smart Transducer Interface for sensors and actuators-

Transducer to Microprocessor Communication Protocols and transducer

Electronic Data Sheet (TEDS) formats, IEEE Standard 1451.2-1997, 1997

[3] J.Camara, J.Samitier, and O.Ruiz, "Complete IEEE 1451 Node, TIM and NCAP,

Implemented 	for 	a 	CAN 	network," 	in 	Proc.IEEE

Instrum.Meas.Tech.Conf.IMTC2000, Baltimore, MD, May2000

[4] Raman Kochan,Volodymyr Kochan,Antoly Sachenko,Ihor Maykiv,Iryna

Turchenko "Network Capable Application Processor Based on a

FPGA"IMTC2005,0ttawa,Canada,17-19 May 2005

[5] Jingjun Cui,Dagui Huang,Zhonglai Wang,Dongxing Qin "Implementation of

Network Smart Sensors for Ultraviolet Fire Detector" international .confon

mechatronics and automation, June 2006,china

[6] D. Wobshall. "An Implementation of IEEE 1451 NCAP for Internet Access of

Serial Port-Based Sensor", Proceedings of second Sensor for Industry Conference

Slcon/02, 19-21 November 2002. Houston, Texas, ISBN 1-55617-X344, pp.157-

160.

[7] Kyung Chang Lee, Man Ho Kim, Suk Lee and Hong Hee Lee, "IEEE 1451-Based

Smart module for In vehicle Networking Systems of Intelligent Vehicles", IEEE

transactions on Industrial Electronic,vol 51,no. 6,December 2004.

[8] Kang Lee, "IEEE 1451: A standard in Support of Smart transducer Networking",

IEEE Instrumentation and Measurement Technical conference, Baltimore,MD

USA May,2000.

[9] P.Ferrari,A.Flemmini,D.Marioli,A.Taroni," VHDL Implementation of IEEE

1451.2 Smart Sensor", IEEE Instrumentation and Measurement Technology

Conference proceedings, vol 1, pages 716-720, 2003

76

[10] Angel de Castro, Esteban, Teresa, "A System on Chip for Smart sensors" IEEE

Instrumentation and Measurement Technology Conference proceedings, 2002.

[11] J Bhaskar , " A VHDL Primer" third edition, Pearson Prentice Hall.

[12] R. Kochan', K. Lee', V. Kochan', A. Sachenko' "Development of a Dynamically

Reprogrammable NCAP", IMTC 2004 Instrumentation and Measurement

Technology Conference Coma Italy. May 18-20, 2004.

[13] R. Kochan, V. Kochan, A. Sachenko, I. Maykiv, A. Stepanenko "Interface and

Reprogramming Controller for Dynamically reprogrammable Network Capable

Application Processor (NCAP)"IEEE Workshop on Intelligent Data Acquisition

and Advanced Computing Systems: Technology and Applications 5-7 September

2005, Sofia, Bulgaria

[14] Design flow at www.xilinx.com/support/software_manuals

[15] CAN Specification Version 2.0, Robert Bosch GmbH, Stuttgart, Germany, 1991.

[16] Spartan 3E FPGA starter kit manuals.

[17] Randy Frank, "Understanding Smart Sensors", Second Ed., Artech House, April

2000

[18] NIST website describes IEEE 1451 standard at ttp://ieee1451.nist.gov/

[19] Blagomir Donchev, Marin Hristov, Implementation of CAN Controller With

FPGA Structures, 7th International Conference, CADSM, 2003.

77

APPENDIX

FPGA configuration options

A few system-level design trade-offs were required in order to provide the Spartan-3E

Starter Kit board with the most functionality.

> Download FPGA designs directly to Spartan-3E FPGA via JTAG (Joint Test

Action Group (JTAG) is the usual name used for the IEEE 1149.1 standard),

using the onboard USB interface. .The on-board USB-JTAG logic also provides

in-system programming for the on-board platform Flash PROM and the Xilinx

XC2C64A CPLD.

> Program the on-board 4Mbit Xilinx XCF04S serial Platform Flash PROM, then

configure the FPGA from the image stored in the Platform Flash PROM using

Master Serial mode.

> Program the on-board 16 Mbit ST Microelectronics SPI serial Flash PROM, then

configure the FPGA from the image stored in the SPI serial Flash PROM using

SPI mode.

> Program the on-board 128Mbit Intel StrataFlash parallel NOR Flash PROM, then

configures the FPGA from the image stored in the Flash PROM using BPI Up or

BPI Down configuration modes. Further, an FPGA application can dynamically

load two different FPGA configurations using the Spartan-3E FPGA's MultiBoot

mode.

78

16 M bit ST Micro SRI Serial Flash
SreieA Peripheral Interlace (SPI) mode

USB-based Download/Debug Port
Uses 5tandard USS cable

Configuration Options
?ROLLS button. PiBibtill Flash PROM, mods pine

128 Mbit Intel StrataFiash
Parallel NOR Flesh memory
Syle Perialleral Interlace (SP!) mode

uCzac„c-Lccuramee

Configuration Mode Jumpers:
As shown in the Table, the J30 jumper block settings control the FPGA's

configuration mode. Inserting a jumper grounds the associated mode pin. Insert or

remove individual jumpers to select the FPGA's configuration mode and

associated configuration memory source.

Configuration

Mode

Mode Pins

M2:M1:MO

FPGA Configuration Image

Source

Jumper Settings

Master Serial 0:0:0 Platform Flash PROM

. r

SPI 1:1:0 SPI Serial Flash PROM starting at

address 0

/

0, , 04 ■

79

BPI UP

StrataFlash parallel Flash PROM,

0:1:0 starting at address 0 and

incrementing through address

space. The CPLD controls address

lines A[24:20]

configuration.

during BPI

BPI Down 0:1:1

StrataFlash parallel Flash PROM,

starting at address Ox1FF_FFFF

and decrementing through address

space. The CPLD controls address

lines 	A [24:20] during BPI

configuration.

JTAG 0:1:0 	II Downloaded from host via USB-

JTAG port

80

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

