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ABSTRACT 

The work presented in this dissertation report describes the implementation of 16-bit 

RISC Microcontroller in FPGA chip, using VHDL programming at Xilinx ISE 7.1 i platform 

supported by Xilinx .ISE and Aldec Active HDL simulation environment. This work explores 

an application area of FPGA to develop application specific integrated circuit (ASIC) as an 

independent System on Programmable Chip (SOPC) design. The design is targeted to make a 
feel of a 16-bit Microcontroller available in FPGA. Microcontroller is organized with 4 stage 

pipelined RISC architecture and supports a total of 81 instructions. Successful synthesis is 

done and design is downloaded in Xilinx Spartan II FPGA. Output along with internal states of 

the embedded processor can be seen on seven segment display of Xilinx Spartan II FPGA kit, 

available with us in microprocessor and computer lab. Synthesis reports and Place & route 

reports are also provided to verify the design implementation. 

This work focuses on the design methodology based on tools and techniques to capture 

the design and develop a Hardware Prototype of it. Like any other engineering design, 

Microcontroller designed is tested consistently and made modifications throughout whenever 

any problem arose. Pipeline has been modified and remapped for the better performance. 

Simulation is done using Xilinx ISE and Aldec Active HDL simulation environment to 

perform functionality test of this code. Synthesis optimization tools were used to convert the 

chip design in to smaller and faster design. Lastly the synthesized design is verified and 

various synthesis reports are analyzed to evaluate and.  verify the performance of the designed 
chip. 

Atmel AVR RISC microcontroller (AT90S1200) is chosen as prototype, model for 

design and all the necessary features of AT90S200 is implemented successfully in Xilinx 

Spartan 2 FPGA. Microcontroller designed in this dissertation can process 74-86 instructions 

simulation result of all the instructions are been tested and validated successfully by means of 

hand calculations. All the important features of a microcontroller are implemented in FPGA, 

which now behaves as is a microcontroller core. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 
In the ever-changing world of technology, new ideas are born and legacy 

technologies are left aside to be chronicled in the history books. Although new 
technologies become available, sometimes it is necessary to maintain older technology 
when servicing electrical systems for maintenance and redesign of existing systems. 
The lack of money usually prevents the redesign of systems. Since some systems 

cannot be replaced using new technology, technicians are challenged to maintain 

electrical systems with parts that are not procurable by commercial buyers and or 

government purchasers. 
Microcontrollers and microprocessors are the most used devices in electronic 

equipment. Modem technology demands from any engineer, a basic microcontroller or 
microprocessor knowledge. The basic difference between them is that microprocessors 

can be configured for the amount of memory and the input / output system used. The 
microcontroller has all the computing system (1/0 system and memory) built in it. 

Designer's judgment determines which one should be used [1]. 

The emphasis of this work will be in the design of complete microcontroller 

with CPU, RAM, ROM and I/O system in FPGA; microcontroller and microprocessor 

layout, fabrication process and technology are beyond the scope of this work and will 

not be considered at all. Design performance parameters like speed, power dissipation, 
wiring, packing, and transistor sizing are also beyond the scope of this world. 

The design methodologies used to develop a Behavioral and Instruction Set 

model for the Atmel AVR AT90S 1200 RISC microcontroller and the results of testing 

these models.will be presented. VHDL is used to create the Behavioral model and the 

Instruction Set model. It is the intent of this dissertation to develop a model for the 

Atmel AVR AT90S1200 RISC microcontroller. This will allow for an understanding of 

how to best replace obsolete parts with new components, especially complex parts: The 
replacement of obsolete or singled sourced parts by emulation of the existing chip or 

using remaining die at. chip supply houses usually yields a cost effective. Sometimes 

board or system redesigns are necessary to eliminate a high percentage of_ system or 

board level obsolete components. This is often very expensive and time consuming. 
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The state-of-the-art of digital circuit design now provides for an efficient, CAD 

oriented methodology for implementing digital designs, by using VHDL. During the 

60's-70's system level and microcomputer design entailed building systems out of 

many individual logic gates manufactured on Integrated Circuits (IC). This design 

technique was very costly and time consuming. As the technology moved forward from 

medium-scale integration (MSI) to large-scale integration (LSI), to. very large-scale 

integration (VLSI), the need for, new design tools became apparent. With the ability to 

incorporate many functions on one IC, engineers needed a way to quickly design a 

function and or circuit and test, the design. The standard known as VHDL was first 

created in 1987, [6]. 

VHDL allows for hardware description in a text based language. VHDL is 

similar to Ada, a government standardized, portable, and object oriented software 

language. VHDL allows a design to model a digital system at many levels of 

abstraction. A description can be as simple as a 2-input logic circuit or an entire digital 

system. There are five different levels of modeling: Performance modeling, Behavioral 

modeling, Instruction Set modeling, RTL modeling, and Gate-Level modeling. 

The Behavioral model developed is an abstract model of the Atmel RISC 

microcontroller that demonstrates a basic understanding of how instructions are fetched 

and executed. The model was written to give a starting point of understanding to the 

overall design. Hence the Behavioral model will not have any physical implications 

pertaining to the"original microcontroller. 

Once the Behavioral model has been written one can then focus on developing 

an Instruction Set model. The Instruction Set model developed here allows for 

exercising a subset of Intel MCS-51 instructions. Since Atmel RISC microcontroller is 

a feature-reduced version of Atmel RISC microcontroller, it uses MCS-51 instructions. 

Increasing performance and gate capacity of recent FPGA devices permits 

complex logic systems to be implemented on a single programmable device. Such a 

growing complexity demands design approaches, which can cope with designs 

containing hundreds of thousands of logic gates, memories, high-speed interfaces, and 

other high-performance components [26]. 

1.2 Motivation behind the work 

The motivation for .this work comes after the author took the course, "online 

Computer Application techniques". The author realizes that microcontroller design 
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could be an opportunity to summarize and apply most of the electronic engineering 

basic and advanced courses. Basic electronic course, digital logic circuits and advanced 

digital design are some of the electrical engineering courses used in this work. 

Another motivation for this work lies in the author's desire. to learn and master 

the microcontroller concepts, design and operation. For many years literature has been 

published regarding microcontroller and digital design. Techniques, methods, and 

procedures have been. published, but most of them are usually explained using, a 

symbolic or algorithmic approach. Some examples of this kind of approach can be 

found in "Computer Organization and Architecture Principles of Structure and Function 

[8]. Computer Organization and Design The Hardware / Software Interface" [9], The 

Intel Microprocessors 808X, Pentium and Pentium Pro" [10] , "Embedded Systems and 

Computer Architecture"[3], 

To grasp the basic concepts at the starting stage, one may feel more comfortable 

when they see the theoretical materialization, simulation and execution of hardware 

circuits, instead of large equations, diagrams, algorithms and symbols that most of the 

microcontroller information' sources offer. The hardware implementation of every 

concept is what makes this work useful for beginners to learn and understand 

microcontroller concepts. 

One of the main features of this. work lies in the fact that it follows a series of 

steps• and makes emphasis on 'the most important points in each and everyone of those 

steps: Beginners just have to follow those steps in order to design and simulate their 

own microcontroller. This work illustrates the design, simulation, testing, and 

implementation of all microcontroller circuits in each step. Through the whole process 

you will appreciate the complete microcontroller evolution and transformation from 

zero to a functional unit. 

This method provides mechanisms to change some of the microcontroller parts 

without affecting others. It makes emphasis on modularization. Through the whole 

process, modules of each part are designed and can be changed individually without 

affecting the entire system. This allows experimentation and circuit changes to examine 

what is happening inside [3]. 

One possible application of this work is that one can transform microcontroller 

schematic into VHDL.code and download it to an FPGA for prototype simulation. This 

increases understanding of microcontroller concepts and .operation, with hands-on 

experience; one - can examine how the' instruction execution is and how the 
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microcontroller circuits work in every instruction. Also multiple versions of one 

microcontroller can be developed with slight changes, allowing you to observe the 

effect of those changes in each design and simulate each prototype on FPGA. 

A weak point of this method is that it does not achieve an efficient 

implementation. Performance is not the main- point of this work; just delivering the 

most important microcontroller concepts. The focus of this work is in the methodology, 

not in the computational capabilities and features of the microcontroller. Besides its 

educational approach, another important point is that this method provides a 

mechanism to design a microcontroller that can be simulated, as said before, on FPGA, 

but also can be used on real applications. In other words, slight changes can produce a 

different microcontroller for new applications , as needed. Users do not have to buy a 

new microcontroller but try a different one using this method. Of course this is 

convenient for experimentation or academic purposes only, not for applications where 

performance is the critical point. 

Modem microcontroller costs are relatively low, and are very useful for many 

applications but sometimes there are situations that are better handled with specially 

designed microcontrollers for specific applications. For example, a designer may want 

to build and control his/her own personal robot, with a specific instruction set. 

Designers can find in the market some inexpensive microcontrollers that suit design 

requirements. But those popular microcontrollers perhaps are for general use, but 

probably lacking features - that designers would be looking for. Then, sometimes 

designers invest huge amounts of time and effort designing and programming assembly 

routine codes in order to achieve the required microcontroller performance, as to take 

full control of their robot [4]. 

Designing a microcontroller for specific needs allows designers to minimize the 

programming complexity and enhance designers system's performance. Designers also 

should keep in mind that microcontroller programming is as important as the micro-

controller hardware design. Although it is not the intention of this work to discuss the 

microcontroller programming, this work illustrates the instruction execution of the 

microcontroller. This helps a lot when we are trying to understand the basic concepts of 

assembly programming like the addressing modes, clock cycles, and operands. 

The quality of the microprogramming is what makes it possible to transform the 

complex circuits of the microcontroller, into something useful. - One of the main 

motivations for this work will be that inexperienced designers will not only gain an 

L, 



insight of microcontroller design and operation, but also, designers will get a better 
understanding of the microcontroller assembly programming [2]. 

1.3 Objectives . 
The main objective of this dissertation is to design a RISC microcontroller using 

VHDL and implement it in an FPGA. The microcontroller instruction set and features 
are based on Atmel AVR AT90S1200 RISC microcontroller. The microcontroller must 
be able to fit into the targeted FPGA device, which is Xilinx Spartan II xc2s200-

5pq208. Features which cannot be implemented on an FPGA (analog comparator, pull-
up resistors, etc) and which are not critical to the operation of the CPU (watchdog reset) 

will be ignored. 

1.4 Introduction to Atmel AVR AT90S1200 
The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR 

RISC architecture. By executing powerful instructions in a single clock cycle, the 

AT90S 1200 - achieves throughputs approaching 1 MIPS per MHz allowing the system 

designer to optimize power consumption versus processing speed. The AVR 'core 

combines a rich instruction set (89 powerful instructions) with the 32 general purpose 

working registers. All the 32 registers are directly connected to the Arithmetic Logic 

Unit.(ALU), allowing two independent registers to be accessed in one single instruction 

executed in one clock cycle. The resulting architecture is more code efficient while 

achieving throughputs up to ten times faster than conventional CISC microcontrollers.[] 

The microcontrolle'r also comes with 1K Bytes of in-system programmable flash 
as the program memory and 64 bytes of in-system programmable EEPROM. The 

AT90S1200 is equipped with one 8-bit timer/counter with separate prescaler, one on-
chip analog comparator, a watchdog timer with on-chip oscillator and SPI for in system 

programming. It also features the, external and internal interrupt. There are a total of 15 

programmable 1/0 lines. The IC come in 20-pin PDIP and SOIC. with 2 speed grades, 0 

- 4 MHz for AT90S1200-4 and 0 — 12 MHz for AT90S1200 [25]. 

1.5 Overview of the Microprocessor and Microcontrollers 
1.5.1 Microprocessors 

A microprocessor, as the term has come to be known, is a general purpose digital 
computer's central processing unit (CPU). Microprocessor CPU contains arithmetic and 
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logic unit (ALU), a program counter (PC), a stack pointer (SP), some working, 

registers, a clock timing circuit, and interrupts circuits. 

To make a complete microcomputer, one must add memory; usually read only 

program memory (ROM) and random-access data memory (RAM), memory decoders, 

an oscillator, and a number of input/output (I/O) devices, such as parallel and serial 

data ports. In addition, special-purpose devices, such as interrupt handlers and counters, 

may be added to relieve the CPU from time consuming counting or timing chores. 

Equipping the microcomputer with mass storage devices, commonly a floppy and hard 

disk drives, and I/O peripherals, such as a keyboard and a CRT display, yields a small 

computer that can be applied to a range of general-purpose software applications [1]. 

The hardware design of a microprocessor CPU is arranged so that a small or very 

large system can be configured around the CPU as the application demands. The 

internal CPU architecture, as well as the resultant machine level code that operates that 

architecture, is comprehensive but as flexible as possible. 

The prime use of a microprocessor is to read data, perform extensive cal-

culations on that data, and store those calculations in a mass storage device or display 

the results for human use. The programs used by the microprocessor are stored in the 

mass storage device and loaded into RAM as the user directs. A few microprocessor 

programs are stored in ROM. The ROM-based programs are primarily small fixed. 

programs that operate peripherals and other fixed devices that are connected to the 

system. The. design of microprocessor is driven by the desire to make it as expandable 

and flexible as possible, in the expectation of commercial success in the marketplace. 

1.5.2 Microcontrollers 

Typically microcontroller is a true .computer on a chip. The design incorporates all 

of the features found in a microprocessor CPU (ALU, PC, SP, and registers). It also has 

added the other features needed to make a complete computer: ROM, RAM, parallel 

I/O, serial I/O, timer / counters, interrupt control and a clock circuit. 

Like the microprocessor, a microcontroller is a general purpose device, but one that. 

is meant to read data, performs limited calculations on that data, and control its 

environment based on those calculations. The prime use of a microcontroller is to 

control the operation of a machine using a fixed program that is stored in ROM and that 

does not change over the lifetime of the system. 

The design approach, of the microcontroller mirrors that of the 'microprocessor: 
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make a single design that can be used in as many applications as possible in order to 
sell, hopefully, as many as possible. The microprocessor design accomplishes this goal 

by having a very flexible and extensive repertoire of multi-byte instructions. These 
instructions work in a hardware configuration that enables large amounts of memory 
and I/O to be connected to address and data 'bus pins on the integrated circuit package. 
Much of the activity in the microprocessor has to do with moving code and data to and 
from external memory to the CPU. The architecture features working registers that can 
be programmed to take part in the memory access process, and the instruction set is 

aimed at expediting this activity in order to improve throughput. The pins that connect 
the microprocessor to external memory are unique, each having a single function. Data 
is handled in byte, or larger, sizes [2]. 

The microcontroller design uses a much more limited set of single and double byte 
instructions that are used to move code and data from internal memory to the ALU. 

Many instructions are coupled with "programmable" pins on the IC package. The 

microcontroller is concerned with getting-  data from and to its own pins; architecture 
and instruction set are optimized to handle data in bit and byte size. 

1.6 Comparison of Micro controllers and Microprocessors 
The microprocessor is an integrated circuit composed by the Control Unit, 

Arithmetic Logic Unit, Registers and Digital circuit support. The microprocessor uses 

its data bus pins, address bus pins, and control lines pins to allow connection to other 
circuits to configure the entire system. The main characteristic of the microprocessor is 

that it is an open system, which means that its configuration is variable, and can be 

adapted to many different applications [4]. 

The microcontroller is a closed system. In which all parts are fixed in the same 

chip. Just the lines-that control the peripherals are the ones that go outside the chip. 

This characteristic makes microcontrollers suitable for specific applications or for 

general use. The microcontroller applications range is narrower than the 

microprocessor's range. The reason is that microcontrollers have all their computing 
system integrated on the same chip. This reduces the available space inside the 
microcontroller to include components that the microprocessor has externally like 

memory and I/O system. This means that a microprocessor can be used for 

microcontroller applications but microcontrollers cannot always be used for most 
microprocessor applications. Microcontrollers are preferred when the application is 
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defined and specific. In those situations where important system modifications are 

needed or applications are not specialized a microprocessor is more convenient. 

The contrast between a microcontroller and a microprocessor is best exemplified by 

the fact that most microprocessors have many operational codes (opcodes) for moving 

data from external memory to the CPU; microcontrollers may have one or two. 

Microprocessors may have one or two types . of bit handling instructions; 

microcontrollers will have many. 

Microcontrollers are found in small, minimum component designs performing 

control oriented activities, •such as the traffic lights. These designs were often 

implemented in the past using dozens or even hundreds of ICs. A microcontroller aids 

• in reducing the overall component count. All that is requires is microcontroller, a small 

• number of support components, and a control program in ROM. 

To summarize, the microprocessor is concerned with rapid movement of code. 

and data from external addresses to the chip; the microcontroller is concerned• with 

rapid movement of data within the chip. Microcontroller can function as a computer 

without the addition of any external hardware; microprocessor must have many 

additional parts to be operational [1]. 	- 	 - 

1:7 Microcontroller Performance Factors 
Microcontroller performance can be defined in terms of speed, size, power, 

cost, design time and manufacture cost. Each depends on concepts beyond the scope of 

this work. The main factor that determines the microcontroller performance [5] are its 

architecture, design features and manufacture process. Thus the microcontroller 

performance depends on designer's judgment at the design stage. The architecture 

features determine the remaining microcontroller characteristics. The architecture 

depends on the microcontroller application. Different applications differ in features and 

data processing requirements. The Von Neumann architecture and Harvard architecture 

[3] are the two main architectures used in microcontroller design. 

The Harvard architecture is the most :popular nowadays. The Von Neumann 

architecture main characteristic is that it uses one main memory where data and 

instructions are stored. Only one system bus is used for control, data transfer, 

processing and addressing. Harvard architecture consists of two different and 

independent memories in which one contains instructions and .the other one contains 
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data. Both have their own data bus systems for control, data transfer, processing and 

addressing. Both memories -can be accessed simultaneously., 

The Architecture and the hardware implementation features transform an idea 

into a circuit with specific characteristics. Computer simulation allows designers to 

verify that circuit works as required. When specification constraints and performance. 

requirements are met, it is time for testing and manufacture.. Design aspects defined by 

the architecture determines which manufacture process will be used. 

1.8 CISC vs. RISC Architecture 
1.8.1 Complex Instruction Set Computer (CISC) 

In early days, computers had only. a small number of instructions and used 

simple instruction sets, forced mainly by the need to minimize the hardware used to 

implement them. As , digital -hardware become cheaper, computer instructions tend to 

increase both in number and complexity. These computers also employ a variety of data 

types and a large number of addressing modes.. A computer with a large number of 

instructions, are known as complex instruction set computer, abbreviated CISC. 

Major characteristics of CISC architecture are: 

• A large. number of instructions - typically from 100 to 250 instructions 

• Some instructions that perform specialized tasks and are used infrequently 

• A large variety of addressing modes — typically from 5 to 20 different modes 

• Variable-length instruction formats 

• Instructions that manipulate operands in memory 

1.8.2 Reduce Instruction Set.Computer (RISC) 
In the early 1980s, a number of computer designers were questioning the need 

for complex instruction sets used in the computer of the time. In studies of popular 

computer systems, almost 80% of the instructions are rarely being used. So they 

recommended that computers should have fewer instructions and with simple 

constructs. This type of computer is classified as reduced instruction set computer. 

The first characteristic of RISC is the uniform series of single cycle fetch and 

execute operations for each instruction implemented on the computer system - being 

developed [9]. A single cycle fetch can be achieved by keeping all the instructions -a 

standard size. The standard instruction size should be equal to the number of data lines 
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in the system bus, connecting the memory (where the program is stored) to the CPU. At 

any fetch cycle, a complete single instruction will be transferred to the CPU. For 

instance, if the basic word size is 16 bits, and the data port of the system bus (the data 

bus) has , 16 lines, the standard instruction length should be 16 bits. 

Achieving uniform execution of all instructions is much more difficult than 

achieving a uniform fetch. Some instructions may involve simple logical operations on 

a CPU register (such as clearing a register) and can be executed in a single CPU' clock. 

cycle. without any problem. Other instructions may involve memory access (load from 

or store to memory, fetch data) or multi-cycle operations (multiply, divide, floating 

point), and may be impossible to be executed in a single cycle. 

Some of the necessary conditions to achieve a streamlined operation are: 

1. Standard, fixed size of the instruction, equal to the computer word length and to 

the width of the data bus. 

2. Standard execution time of all instructions, desirably within a single CPU cycle 

Which instructions should be selected to be on the reduced instruction list? The 

obvious answer is: the ones used most often. It has been established in a number of 

earlier studies that a relatively small percentage of instructions (10 — 20%) take up 

about 80% — 90% of execution time in an extended selection of benchmark programs. 

Among the most .often executed instructions were data moves, arithmetic and logic 

operations. As mentioned earlier, one of the reasons preventing an instruction from 

being able to execute in a single cycle is the possible need to access memory to fetch 

operands and/or store results. The conclusion is therefore obvious we should minimize 

as much as possible number instructions that access memory during execution stage. 

This consideration brought forward the following RISC principles: 

1. Memory access, during execution stage, is done by load/store instructions only. 

2. All operations, except load/store, are register-to-register, within the CPU. 

Most of the CISC systems are microprogrammed; because of the flexibility that 

microprogramming offers the designer. Different instructions usually, have 

microroutines of different lengths. This means that each instruction will take a number 

of different cycles to execute. This contradicts the principle of a uniform, streamlined 

handling of all instructions.-  An exception to this rule can be made when each 

instruction has a one to one correspondence with a single microinstruction. That is, 

each micro routine consists of a single control word, and still let the designer benefit 

from the advantages of microprogramming. However, contemporary CAD tools allow 

10 



the designer of hardwired control units almost as easy as micro programmed ones. This 

enables the single cycle rule to be enforced, while reducing transistor count. 

In order to. facilitate , the implementation- of most instruction as register-to 

register operations, a sufficient amount of CPU general purpose registers has to be 

provided. A sufficiently large register set will permit temporary storage of intermediate 
results, needed as operands in : subsequent operations, in the CPU register file. This, in 

turn, will reduce the number of memory accesses by reducing the number of load/store 

operations in the program, speeding up its run time. A minimal number of 32 general 

purpose CPU registers has been adopted, by most of the industrial . RISC system 

designers. 

The characteristics of RISC architecture are summarized as follow: 

• Single-cycle instruction execution 

• Fixed-length, easily decoded instruction format 

• Relatively few instructions 

• Relatively few addressing modes 

• Memory access limited to load and store instructions 

• All operations done within the registers of the CPU 

• Hardwired rather than micro programmed control unit 

• Relatively large (at least 32) general purpose register file 

1.9 Microcontroller Applications 

The microcontroller is one of the most important electronic devices on which 

modern technology is based on. Microcontroller uses are endless; from toys to TV sets, 

microwaves, ovens, computers, printers, cars and so on. Digital circuits become larger 

and larger as more functions need to be executed. In modem digital world, most of the 

individual digital circuit components are sold in a single chip. Those individual chips 

need power and space to operate. When the circuit becomes huge, the traditional logic 

design approach is not the best option and microcontrollers become convenient. 

Microcontrollers are basically sequential machines because their operation depends on 

their current status and its inputs. Their power lies in the fact that the hardwire 

configuration allows its operation to be changed depending on programming. It is not 

required to use additional logic circuits if the operation is changed [4]. 
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CHAPTER 2: MICROCONTROLLER ORGANIZATION 

2.1 Tradeoffs in Microcontroller Design 
An important question that must be answered before attempting to implement a 

microcontroller is, Is it necessary to use a special purpose microcontroIler?[3] In addition 
to having the basic instruction set, special purpose microcontrollers usually have -
instructions specialized to perform specific tasks. Those microcontrollers include in 
their design, special hardware that is used for execution and calculation support to 

execute instructions in their specific applications. The application determines the 
microcontroller operation, and the operation is executed with specific instructions. 
Then, the real deal in the design process consists in -making tradeoffs between 
designing more powerful and complex instructions that reduce the programming- code, 

or as another alternative, the operation can be implemented in hardware to save the 

time-consuming programming of certain tasks and achieve faster execution. 
Should an operation be implemented in hardware or software? Is it worth? 131 

Answer to those questions depends on many factors like design requirements, available 

budget, technology used and so on. Hardware instructions implementation result in 

faster executions but increase design cost. Software implemented operations save 
hardware and costs but increases the instruction execution time and the programming 

complexity. There are not defined rules. Designers have to make their choices based on 

design constraints and available resources to produce the best system performance at 

lower cost. 

2.2 The MicrocontrolIer Operation 
The microcontroller operation consists in four steps: 

1. Fetch process; the fetch process consists in retrieving one instruction from 

memory and loads it in the Instruction Register. 

2. Decoding; once the instruction is in the Instruction Register, the control unit 

receives the operational code from it. The control unit decodes the operational 

code to identify the instruction to be executed. 

3. Executing; after the control unit identify the - instruction, if start a series of 

microcontroller hardware signal activations. The control unit ensures that the 
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necessary elements are on and off in each clock cycle to accomplish the 

instruction execution. 

4. Storing results: after the execution of the instruction results obtained must be 

stored at appropriate place. 

Clock 

Reset 

PORT A 

Figure 2.1: Microcontroller basic block 

Basically the CPU addresses a memory location, obtains (fetches) a program 

instruction that is stored there, and , carries out (executes) the - instruction.' After 

completing one instruction, the CPU moves on to the next one. This fetch and execute 

process is repeated until all of the instructions in a specific program are done. The fetch 

process clock cycle depend on the Instruction Register size (instruction word) and the 

number of bits of the data bus. For example if the IR size is 16 bits and the data path is 

four bits, then four clock cycles will be needed for the fetch process. The memory size 

will determine how many instructions can be stored in it and indeed the program size 

that can be stored. 

The first step in the hardware design is to prepare the specification of the 

design. The architecture and the instruction set must be understood thoroughly. The 

design ideas are then described with VHDL in a text editor. Then, the VHDL code is 

synthesized with xilinx ISE 7.1 i. If synthesized successfully, Xilinx ISE 7.1 i will 

generate a net list files (EDF file). This file is then sent to xilinx ISE 7.1i - for 

compilation and simulation. Results are verified by simulation. 

The hardware design process is repeated until the microcontroller is complete 

without any errors. Hardware implementation is performed by downloading the design 

into the targeted FPGA device (Xilinx Spartan II xc2s200-5pg208). The hardware 

implementation tests the design in real physical environment by some control 

applications. A microcontroller can perform thousands of control applications. For 

every application, different programs must be written and store into the program ROM 

of the microcontroller before it can do the job. So,before the microcontroller is 

• downloaded into the FPGA device, the specific program for the application must be 

written. This program file, together with the EDF file of the complete microcontroller is 
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then sent to xilinx ISE 7.1 i for compilation and device programming. Once 
programmed into the device, the FPGA is reset to_execute the application.- 

2.3 Microcontroller organization 

The microcontroller has 2 input pins (reset & clock) and 2 bi-directional UO 
ports. Each I/O port consists of 16 individual 1/0 pins, total of 32 I/O pins. The clock 
signal will drive the whole microcontroller directly. Reset is active high; when asserted 
it resets the microcontroller to the default state even if the clock is not running. Port A 

and Port B are all 16-bits port. Each bit can be configured to be input or output. All port 
pins are tri-stated when the microcontroller is reset. Pin B.7 also serves as the external 
interrupt source and external timer clock source. 
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Figure 2.2: Top-level block diagram of the Microcontroller [5]. 

Figure 2.2 shows the top-level block diagram of the design, the bus structure 

has been simplified, but every block represents a module to be designed. At first glace, 

there are 11 modules in the top-level, with the. 2 ports sharing the same module. These 
11 modules are to be design separately using the top down design approach. Some 
modules like the instruction register and status register are easy to design, but modules 

like ALU and the control unit require a lot of understanding. The overall dataflow and 

bus structure between all the modules must be understood before designing the modules 
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individually. Buses provide connection between modules. There are many direct buses, 

such as the connection between program counter and program ROM, between program 

ROM and IR, between register file and ALU, etc. No control signals are required for 

direct buses. A common bus is a bus shared by many modules. The data bus is the only 

common bus in this design. The data bus provides connection between the general 

purpose register file, ALU, status register, SRAM and all the I/O features. Since there 

are so many possible data flows, control signals are required to control the correct flow 

direction. Only one source to the data bus is allowed at a time. If not, logic contentions 

will happen and the value of the data bus will be invalid. Tri-state bus is used to 

implement the common data bus. Only the correct source is connected to the data bus 

while others are in high impedance state. The impedance is so high that it can be seen 

as unconnected to the bus system. If the ALU is the data source, the data bus will be 

flooded with the result of the ALU and is available to all the . connected modules. 

Control logic will generate an enable signal for the real destination to receive the data. 

Next is a brief introduction to the whole system. The system can be divided into 

5 units, the fetch unit, .decode unit, execute unit, write back unit, and I/O unit. Fetch 

unit is in charge of fetching the next instruction, decode unit decodes instruction and 

generates necessary control signals, execute unit is in charge of executing the current 

instruction and the write back unit stores result of various operations performed by 

microcontroller and interrupt handling is also done. I/O unit provide a connection with 

the outside world. The fetch unit and execute unit form the CPU of the microcontroller. 

The first module of the fetch unit is the program counter (PC). The PC contains 

the address of the next instruction to be executed. It points to the program ROM to 

locate the instruction. The instruction from the ROM is then latched into the instruction 

register (IR). The control unit takes the content of the IR and decodes it. It then asserts 

the appropriate control signals to execute the instruction. All modules are connected 

with direct buses. 

The execute unit in charge of executing most instructions. Normally, to execute 

an instruction, 2 operands are output from the register file to the ALU. The ALU then 

perform the operation and send the result to the data bus. Contents of the data bus 
(result) are then stored back to the register file. The ALU also evaluate the status 

register flags and send.them directly to the status register (SR). The whole execution 

process is done in a single cycle. The ALU perform many operations - include passing 

the contents of a general register to the data bus. SR also has a direct.bus connection to 
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the control unit required for branch evaluation. The register file (destination and source 

register) is addressed directly by some bits in IR. 
A RISC Microcontroller has memory access limited to only LOAD and STORE 

instructions. Load and store instructions can only transferred data between the RAM 
and the register file. A load operation sends the RAM data to the general registers 
through the data bus. A store operation sends the data to ALU, the ALU pass the data to 

data bus and store into the RAM. 
To implement the fetch and execute pipeline in this microcontroller, memory 

are implemented using the Harvard architecture. Program and data are store in separate 
memories. As seen in the block diagram, program is stored in the program ROM while 

data are stored in the data RAM. The advantage of Harvard architecture is the ability to 

fetch the pre-fetch the next instruction easily. A normal RAM will have initial value 
zero when powered on. In FPGA, the RAM can have initial values and thus can make it 

act as a ROM. 
All the I/O modules contain many control registers. Data are sent to and receive 

from it through the common data bus. The Status Register is also mapped into one of 

the I/O' address. IN and OUT instructions are used to transfer data between these 

control registers and the general registers. The lower half of the control registers (00 h -

1F h, shaded in gray) are directly bit-accessible using the SBI and CBI (Set/Clear Bit in 

I/O) instructions. In this design, the lower half of control registers is all the I/O ports 

control registers. 

2.4 Description of the microcontroller design Steps 

2.4.1 Justification for the design 
The following are some questions that could guide designers at the 

implementation decision stage and decide need of microcontroller for the application.. 

. 1. What is the application? Can the application be implemented with logic circuits? 

What will be the resulting circuit size? Is it affordable? 
2. What could be the microcontroller implementation advantage? Microcontroller 

has hardwired circuits that change its' their operation using programming. 

Designers should analyze if amount of different applications justify the use of a 

microcontroller or if the use of individual operational circuits is more convenient. 
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3. What are the advantages or disadvantages of using a microcontroller in terms of 

efficiency, time, design- complexity and cost? Budget and design requirements 

analyses are necessary to decide if a microcontroller use is convenient or not. 

Sometimes the use of a micro controller results in a waste of hardware resources 

and sometimes it is less expensive option: There are situations in which 

programming is avoided using logic circuit, but this choice could result in larger, 
expensive and more complex circuits. 

4. Is a microcontroller result in the best option? How many different operations will 

be used? How many times one operation is executed? Is it better to use individual 
circuits for every operation or using a microcontroller is more efficient? Is this 

difference in time response needed for the application? Is the microcontroller 

programming complexity worth instead of using individual circuits? 
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Figure 2.3: Architectural block diagram of microcontroller[9] 

2.4.2 The-Operation Definition 

After a careful study of the application, the next step consists in defining the 
amount of different operations required for the application. 
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1. What are the application operation requirements? Are those operations complex 
or simple? How many different operations does the application have? Do• 

designers need a new microcontroller to execute one operation or can use an 
existing one? Does it execute the instruction as required in terms of clock cycle, 

power & speed? 
2. Is it more, convenient to divide those ' operations in more simple tasks or not? 

Depending on the application and design requirements this could or could not be 
possible. Can the microcontroller with its instruction set, execute those individual 

and simple tasks, or a new one is needed? 

3. Can those tasks be executed using more than one instruction, or is one instruction 

enough? 

2.4.3 The Instruction Set Definition 
The instruction set should contain those instructions that the application 

requires. Tasks executed, amount of hardware used and clock cycles are very important 

parameters of an instruction. 

• How powerful is the instruction? The term powerful means that how 'manytasks 

can be executed by single that instruction. This may result in more hardware or 

more clock cycles per instruction. 

• How many instructions are required to perform the operation? This will be 

determined by the power of the instruction set. The more powerful the instruction 

set is, fewer instructions are needed per operation. 

• What kind of instructions does every microcontroller must have? Every micro-

controller must have at least; logic, arithmetic, branch and data transfer 

instructions. 

• How many complex tasks can be executed using the simplest instruction set? The 

basic instruction set can be combined to execute complex tasks. E.g., 

multiplication operation can be executed with successive execution of the 

addition instruction. 

• What instructions should be implemented in hardware and which ones in software 

and why? Instructions frequently executed must be implemented in hardware. 
This saves programming time and size, allowing faster instruction execution. 

• Software instructions are used depending on the application. 
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2.4.4 The Architecture Definition 
The Computer architecture refers to the basic ideas and principles in which a 

computer system is based on [8]. The Architectural design steps include: - 

• The Instruction Set. 

• The number of used bits to represent data (4, 8, 16, 32 or 64 bits). 

• Instruction Format and addressing modes. 

• Number of data buses. 

• Instruction execution algorithm (best arrangement of hardware to process 

software). 

• Clock cycles per instruction. 

• -Input / Output mechanisms. 

The computer organization must be specially designed to implement a particular 

architectural specification. The microcontroller task is to execute each and every 

instruction it receives. This means that each instruction reflects the architecture in use 

by the microcontroller. -After the selection, of the desired instructions for the 

microcontroller, the next step consists in specifying the rest of the architecture. 

1. The instruction operation: 
The first task must always be to specify each instruction operation. After designers 

identify the instruction set, they must document: the instruction's name, as well as 

operands and execution in symbols for each one. 

2. The instruction length: 
The instruction length refers to the size of the group of bits processed during 

instruction execution. Using more than the necessary bits may result in excessive 

hardware use and an increase in circuit size, cost and power consumption. 

3. The instruction format: 

The instruction format specifies the order of the instruction parameters in the 

instruction word. Those parameters include the operational code, registers used, and 

additional necessary data for the instruction execution. 

Each instruction word has a group of bits that identifies its specific code. The 

group of bits used for this code is called, the instruction operational code or opcode. 

This work uses 16 main instructions, so, the minimum number of bits for the opcode 

decoder is 4, enough to assign each instruction a specific code. There are no standard 
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rules for .the order and meaning of the different groups of bits that compose the 

instruction word. That depends on designers' judgment and system architecture. 
a. Bits 15-12 stand for opcode. Those bits specifies instruction that will be executed 
b. Bits. 11 to 10 represents as function code which gives function of instruction, used 

depending on the operation. 
c. Bits 9 to 5 labeled as Ra specify the register file address location to store the 

processed data or the one that has been transferred from memory. 
d. Bits 4 to 0 labeled as Rb, represent register file address location of one operand. 

4. The instruction format organization. 
The instruction word parameters can be organized as designers want. In this 

work the operational code will be at the left most side, next are the functional codes, the 

additional data used for the instruction execution, and finally to the right most side is 

the registers used during the operation. 

5. The Operational Code (Opcode). 
The number of instructions decides the necessary bits for the operational code. 

The operational code identifies each instruction with a unique code for its execution. 

6. Addressing modes 
The addressing modes decide the amount of registers used for data processing. 

The addressing modes used during the instruction execution decides if more bits have 

to be used to address the data or not and this affects the size of the instruction word. 

7. Bits used for the Register File. 
The number of registers used in the Register File determines how many address 

bits in the instruction word are required to address one specific location in it. 

8. Number of data buses. 
.~ 

	

	The number of data buses in use determines the amount of data processed per 

clock cycle. Using more than one data bus can save clock cycles per instructions, but 

increases the data path and control unit circuit complexity. 

9. Address Bus: 
Depending on design requirements the address bus is not necessary if the 

address bits can be transferred using data bus. A dual role requires additional hardware. 

10.1/0 Handling: 
Will the I/O ports be memory mapped or handled separately? Memory mapped 

ports do. not require special I/O instructions. 
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2.4.5 The Arithmetic Logic Unit 

In step V, the goal is to design the Arithmetic Logic Unit circuit, which is one 

of the most fundamental CPU components, where mathematical and logical operations 

are executed. Techniques used in this work for the ALU .design consist in designing all 

its individual circuits and connecting them in parallel. 

1. ALU components: The individual circuits that execute all the arithmetic and logical 

operations are joined together as one unit to compose the Arithmetic Logic Unit. 

2. Testing: Designers must. ensure that every individual circuit in the ALU correctly 

does every calculation; flags are added for that purpose. 

All mathematical and logical calculations are executed at the same time, but 

only the desired calculation will be the one released to the ALU output port by means 

of the tristate buffer activated. Caution should be taken with significance of the input 

and output bits of every circuit. Mistakes can lead to miscalculations and continue 

through the rest of the instruction execution. 

2.4.6 The Register File 

A register is a small high-speed memory circuit that holds binary data. Register 

File is a group of registers used to store data during the instruction execution. In this 

step, the Register File is developed. The Register File stores data retrieved from 

Register, memory or input port resulting from various operations in ALU. All 

temporary data used by the microcontroller to perform its operations is also stored in 

the register file. Register File design consists of three stages: register selection stage, 

input stage and output stage. 

1. Implementation alternatives 

The number of data buses in the microcontroller determines the Register File 

design. Sometimes more than one data bus is used to accept and release the data 

simultaneously in one clock cycle. Designers must decide how many data. buses 

will be used in the microcontroller because Register File will use the same number. 

2. The number of registers for the application 

The number of registers is an important design parameter because it affects not only 

The Register File size but also the Instruction Register size because the IR has bits 

dedicated for the Register File address. Designers must select the number of 

necessary registers to hold data in each instruction clock cycle. 
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2.4.6.2 The Register File Selection Stage 

The instruction word identifies two parameters: Ra and Rb. Each of this 

parameter, when referring to registers, is actually addresses that identify a register from 

the register file. Since Ra and Rb have five bits, the register file has 32 registers. One 
register is selected by means of a decoder 5x 32. The control unit will activate signals 
to indicate which register is assigned to Ra or Rb of the instruction word. 

2.4.6.4 Register Transfer 

The whole design contains many registers, special purpose, registers (IR, PC, 

MAR, MBR), general purpose registers (R0,- Rl....R31, I/O control registers) etc. The 

whole system works by transferring data between these registers (register transfer). 

Some data are transferred without modification while some are manipulated before 

transfer to the next register. If the data are to be manipulated, they are manipulated by 

the combinational logic between these registers. How these data are transferred, how 

are they being manipulated before transfer, and what does different data inside the 

register means, will determine whether the design can work as microcontroller. The 

design will perform a long series of register transfer to form the functioning of a 

microcontroller. Registers are transferred to another through many levels of the 

combinational logic. 

A read of the status register will bring the contents of the status register to one 

of the general register directly without manipulation The combinational logic Perform 

AND operation between two general registers, will pass the two registers through a 

combinational logic (the logic unit) before writing back to one of the register. Memory 

(program ROM and data RAM) are treated_ as a kind of combinational logic. PC is 

passed through the program ROM to the instruction register. The instruction register 

will receive instruction in from program ROM pointed by PC. 

So, the design process is to design all the registers along with combinational 

logic and the interconnection between. them. This is called the data path of the system. 

Control signals are then used to determine how the register transfer takes place. Control 

signals are asserted by the control unit. The data path, along with the control unit forms 

complete microcontroller. It is important to know what registers exists in the system. 
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Figure 2.4: Implementation of register transfer 

2.4.7. The Instruction Register (IR) 
The Instruction Register holds the instruction word that will be executed. The 

IR is connected to the control unit, the Register File & data path. 

1. Implementation alternative: 

The IR implementation consists of a register or a group of registers that holds the 

instruction word. 

2. Size: 

It will be easier if the size is equal to the word size because then, the instruction 

word holds all the required information for the instruction execution. 

The memory output is connected to the IR to load every single program 

instruction line. The IR does not have to be the same size of the data bus because- it just 

transfers data and does not contain any other information about the instruction. 

2.4.8 Data Path 

The microcontroller data path is the configuration of all the circuits used for 

data processing. Some key points are very important in this step. 

1. Layout: Designers must be creative and use strategic thinking to make the best 

circuit arrangement in order to achieve the instruction execution using the minimum 

amount of hardware and clock cycles. 

2. Clock cycles:. More data can be processed at the same time depending on the 
•amount of RegisterFile input and output ports. Another important element is the 

number of additional registers in data path used to hold data between clock cycles. 

This can make a difference in number of CPI if designers know how to use them. 

24 



2.4.8.2 Basic Data Path 
In order to make useful all the elements it is necessary to provide a path for 

communication between them to transfer data from one to another. This data path can 

perform the basic instructions and will be used as the basis to develop more complex 

instructions. As more complex instructions are added, this data path undergoes an 
evolution into a more complex one, adding more hardware in parallel. 

To test the feasibility of basic instructions this data path can process data 
provided by switches. Switches can be used to store values in the Register File. Address 

lines of Ra and Rb are connected from the IR to Register File to access the data. 
Register File output port is connected to the ALU input ports to perform logic and 

mathematical operations. The ALU output port is connected to the Register File input 

port to store results. 

2.4.8.3 Data Path with Immediate Operations 
At this point, when adding new hardware to implement new instructions, there 

are some details that should be taken care of, in particular: 

1) Control signals, IR related logic and Connection to buses and other blocks 

2) Overall issues such Signal conflict and Delays. 

The data path is next modified to include other ALU operations, like, immediate 

addressing mode operands. The immediate values are put in bits 0 — 7 of the instruction 

register. The data path modification consists in making a connection between those 
immediate values in the IR and the ALU. But the connection cannot be done directly 

because the values in the Register File can cause conflict, with those in the data path. To 
solve this problem a tristate buffer is used to isolate the data in the Register File from 

those in the data bus. New parts added in the data path are identified with lines. 

2.4.9 The PC, Jump and data transfer instructions 
The instructions developed at this stage use the existing data path hardware and 

additional necessary circuits added in it for instruction execution. 

1. Those instructions need additional circuit support because some of them make 
instructions are executed. It is very important to test those circuits before using 

them for support. Another reason for using additional hardware is that more than 

one task per clock cycle is executed in those instructions. 



2. Draw the block diagram to show the added elements: It is convenient to show 

added elements to the data path to see its transformation into a more complex one. 

3. Program counter: The program counter is developed at this step. This step 

presents the PC implementation and interconnection in the microcontroller circuit. 

2.4.10. The Control Unit 

The control unit is the CPU section that decodes program instructions and 

controls their execution. It takes control of every signal in the -microcontroller, 

activating or deactivating those signals in each clock cycle. The signal activation and 

deactivation per clock cycle make possible the flow of data through all data path 

circuits. The circuit arrangement determines the amount of processed data in each clock 

cycle. Then, as more data is processed per clock cycle fewer of them are needed. The 

developing method used in this work requires that designers "run" by hand every single 

instruction and take notes of which circuit signals are activated and 'deactivated per 

clock cycle. 

1. Operational Code Decoder: 

This element receives one specific instruction code and release one signal , that 

indicates the microcontroller to execute it. 

2. Control Unit Encoder: 

This element receives input signals from opcode decoder and from timer. The 

Control Unit Encoder activates the corresponding circuit signals that have to be 

active in the specified instruction in,  every clock cycle. 

3. Implementation Alternatives: 

The preceding explanation of the controlunit operation is implemented using logic 

circuits for the control unit encoder and the opcode decoder. The control unit 

implementingthis approach uses the opcode to identify the instruction location in 

ROM. Each line code in ROM represents each instruction clock cycle and the code 

in every line just controls (activates or deactivates) all the data path circuit signals. 
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4. Control Signals Characteristics 

If the control signals are used to control the data path"then the characteristics of 

the control signals must be understood before one can proceed further. First, a control 

signal will have at least a length of one clock cycle. It usually asserted at falling clock 

transition and deactivated a short delay after another falling clock. The data path 

consists of many registers and combinational logic between them, so there are basically 

2 kinds of control signals. The first kind controls the combinational logic and the 

second kind controls the registers. 

When a combinational logic encounters a control signal, it will act towards the 

signal immediately. The delay to get the valid result is the delay for the input to 

propagate through the combinational logic. The combinational logic can be functional 

unit such as adder and shifter, steering logic such as multiplexers and decoders or 

memory (program ROM and data RAM). 

A register control signal requires a falling clock to operate. WR REG signal 

will only latch the data into the destination register of the register file when it 

encounters the falling clock, the operations is actually happened at the end of the 

control signal where it meet the falling clock. These kinds of control signals are the 

enable signals for the registers, or the increment/decrement signal for a counter. 
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to many embedded control applications. The AT90S1200 AVR is supported with a full 

suite of program and system development tools including: macro assemblers, program 

debugger/simulators, in-circuit emulator's, and evaluation kits. 

The Atmel RISC microcontroller is a rather simple machine with quite a bit of 

flexibility. The 4 I/O ports are perfect for communicating with many external 

applications. The rich interrupt structure aides well in a control environment. Fig. 3.1 is 

an architecture block diagram of the Atmel RISC microcontroller. More specifically, 

register organization is more pronounced and the bus structure is well defined. Atmel 

RISC microcontroller design is based on Harvard architecture; the data space and the 

program space are separated. One feature that is noteworthy is the memory-mapped 

ports. All of the external ports are memory mapped, which simplifies programming 

control projects. These external data port addresses reside in the memory where 

registers are given term Special Function Register (SFR). Careful study of architecture 

gives rise to several SFRs. 

Although the special function registers seem to exist as individual registers 

within the architecture, they are part of the Atmel RISC microcontroller internal RAM 

structure. The . internal RAM of the Atmel RISC microcontroller has four distinct 

spaces. The upper 128 bytes of RAM contain the SFRs. The lower half of the RAM is 

further divided into three segments, scratch pad, bit addressing segment, and the 

register bank area 

Though the SFRs as being within the structure of the RAM, it is more likely and 

is hypothesized that most of the SERs are physically located outside of the RAM space. 

Not having these registers in the RAM space would allow for easier placement and 

access within the datapath. For example, the SFRs for ports P0, P1, P2, and P3 are 

probably close to the peripheral of the chip, yet they are accessed as though they are 

physically in the RAM. This could not be verified since Intel keeps these secrets to 

themselves. Within the lower portion is a scratch pad area for general use. 

A bit addressable segment has been included for control applications. The 

lowest portion of the RAM block contains a bank of registers. The register banks can be 

accessed by direct or register addressing. The Program Status Word (PSW), which is a 

SFR located at DOh, contains two bits that shift a pointer to specify with bank to use. 

Otherwise a programmer may directly request or write data to this space. 
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Figure 3.1: Architecture block diagram of the Atmel RISC microcontroller 

3.2 Atmel RISC microcontroller Instruction Set and Addressing Modes 
When one writes a program for a microcontroller, close attention is paid to what 

kind of addressing modes are available to the programmer. The Atmel RISC 

microcontroller program space is interfaced by four addressing modes: immediate, 

register, direct, and indirect. [25] 

In direct addressing the operand is specified by an 8-bit address field in the 

instruction. Only internal data RAM and SFRs can be directly addressed. With indirect 

addressing both internal and 'external RAM can be indirectly addressed. The address 
register for an 16-bit address can be any register in register bank, or the stack pointer. 

When using register addressing, the register bank, contain registers RO through R19. 
These registers can be accessed by . certain instructions that include a 5-bit register 
specification within the opcode. 
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The instruction set available to the programmer of the Atmel RISC 

microcontroller contains 255 instructions. Dividing these instructions up into main 

groups, there are 4 major classifications. These groups, are: arithmetic and logical 

operations, data transfers, program branching, and Boolean variable manipulations. The 

details of each instruction will not be discussed. Appendix A has been included to 

provide some detail about each instruction. The appendix includes the hex code, 

mnemonic, number of cycles,, and byte count for each instruction. For this thesis the 

main thrust of the modeling effort was on the register addressing mode instructions. For 

the Behavioral model only certain basic instructions where modeled. Basically over 

half of the instruction set was modeled for the Instruction Set model: Certain 

instructions will be discussed in detail as needed. 

3.3 Machine Cycle Sequence 
More than just study of addressing modes, instructions and - general block 

diagrams is needed when modeling a microcontroller. If a model is to emulate its 

predecessor, the timing of data transactions must be accurate. The "clock" input is the 

base for the figure. The most critical bit of information is when Port 0 and Port 2 are 

read and updated. In the Intel literature, the engineers have divided a machine cycle 

into six major states, S1-S6. The port interaction information detailed here is essential 

for timing accurate models. 

3.4 Modeled Architecture 
For the purpose of this dissertation, certain parts of Atmel RISC microcontroller 

architecture were modeled and others were not. Since the end result of this work is an 

Instruction Set model that. tests the Register addressing mode using only one register 

bank, the architecture to support this modeling will be discussed. The Atmel RISC 

microcontroller instruction set contains 255 instructions. The Instruction Set VHDL 

model discussed can support 74 instructions. 61 of 74 instructions are register 

addressing mode instructions. The five remaining instructions . were modeled to allow 

for simulation. The functions and registers listed account for 35% of the complete 

architecture. Items like the counter/timers and the UART were also modeled. The 

Instruction Set VHDL model was written such that more instructions could easily be 

added. The remaining functional blocks would also integrate easily. 
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3.5 Instruction format 
I have implemented a total of 81 instructions; each instruction is having its 

particular format. There are three basic types of instructions supported by this 
processor. These are the Register Type, Branch Type, and the Immediate Type. The 

specification for each'type of instructions is given below.[8] 

3.5.1 Register type instruction format 
In this format bits 15-12 represents the opcode. Bits 11-10 represent the 

function code that represents the ALU. function that is to be performed: A bit 9-5 
represents the address of the first source register, which is also the address of the 

destination register. Last Bits 4-0 give the address of the second source. register. 'If the 
opcode bits, 15-12, do not indicate an ALU function, then the function bits are ignored. 

Instruction format for this type is shown below. 

Register type instructions include MOVE ,-ADD, ADC, SUB, SBB, AND, OR, XOR, 

CMP, and SHIFT. 
15 	12 11 	10 9 5' 	4 	0 

opcode Function Rd Rs 

Figure 3.1: Register Type Instruction 
3.5.2 Immediate data type instruction format 

As with the Register Type instruction, bits 15-12 represents the opcode, and bits 

11-8 represents the destination source register which is also the address of the 

destination register. Bits 7-0 of this instruction type represent an 8-bit immediate value 
given in 2's complement form. When the opcode represents a unary operation, the value , 

in this immediate field is used as the operand (instead of the value in Rd). 

Immediate type instructions include MVI, ADI, SBI, ANI, ORI, XRI, and CPI 

Instruction format for this type is shown below. 

15 12 11 	87 	 0. 

opcode Rd 	Immediate 

Figure 3.2: Immediate Type Instruction 
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3.5.3 Branch type instruction format 
Bits 15-12 of this instruction format represent the type of branch 

operation to be performed. The remaining 12 bits, 11-0, represent the branch offset in 

2's complement format. This number is added to the value of the PC to. obtain - the 

branch target address. 

Instruction format for this type is shown below. 

15 12 11 	 'O 

opcode 	 -Branch target 

Figure 3.3: Branch Type Instruction 

Branch type instructions include SJMP, LJMP, JCC, INT, IRET, CALL, and RET. 

Table 3.1 below-  summarizes all the instructions supported by the microcontroller. A 

more detailed table of the instruction set along with the description for each instruction 

can be found in Appendix B. 

As mention earlier, RISC instructions have a fix length and are easily decoded. 

For this microcontroller, all instructions have a fixed length of 16-bits. The instruction 

format is simple in order to be decoded easily. 

3.6 Instruction Set Summary 
The operation of the CPU is determined by the instruction it executes, referred 

to as machine instructions or computer instructions. The collection of different 

instructions that the CPU can execute is referred to as the CPU's instruction set. Since 

the instruction set defines the data path and everything else in a processor, it is 

necessary to study it first. 

There are 81 instructions grouped into four categories: arithmetic and logic 

instructions, branch instructions, data transfer instructions and the bit and bit-test 

instructions. As mentioned earlier, instruction set of the design is based on Atmel AVR 

AT90S 1200 instruction set. In this way, the design can use the same assembler and 

simulator provided by Atmel since the final design is actually an AT90S1200 

compatible microcontroller. 
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Table 1 INSTRUCTION SET OF RISC MICROCONTROLLER 

Instruction Description Arguments 
ADD Addition of content of two registers Register-Register 
ADC Addition with carry Register-Register 
ADI Addition (immediate) Register-Immediate value 
INC Increment content of register Register , 

SUB Subtraction of content of two registers Register-Register 
SBB Subtraction with barrow Register-Register 
SBI ..  Subtraction (immediate) Register-Immediate value 
DEC Decrement content of register Register 
CMP Compare Register-Register 
AND AND Register-Register 
ANI AND (immediate) Register-Immediate value. 
OR OR Register-Register 
ORI OR (immediate) Register-Immediate value 
NOT NOT Register 
XOR XOR Register-Register 
SLL Logical shift left Register 
SRL Logical shift right Register 
SHL Arithmetic shift left Register 
SHR Arithmetic shift right Register 
ROL Rotate left Register 
ROR Rotate right Register 
RLC Rotate left through carry Register 
RRC. Rotate right through carry Register 
LOAD Load word Register-Register 
STORE Store word Register-Register 
MOVE• Move data between registers Register-Register 
MVI Move data (immediate)  Register-Immediate value 
SETB Set bit in register Register 
CLRB Clear bit in register Register 
SWAP Exchange bytes in register Register- Register 
IN Get input data from I/O port Register-I/O 
OUT Output data to I/O port Register- I/O 
JMP Unconditional Jump Branch 
JCC Conditional Jump Branch 
CALL Call the subroutine Branch 
RET Return from the subroutine Branch 
INT Interrupt CPU to service routine Branch 
HALT Stop instruction execution N/A 
NOP , No operation N/A 

One of the RISC characteristics mentioned earlier is single-cycle execution for 

most instructions. Most instructions are single cycle except. branch instructions, the 

LOAD/ STORE instructions. Of course, some of the instructions will have different 

characteristics as the original AT90S 1200 instructions. They are: 



1. Unconditional branch instructions now take 2 cycles. 

2. Conditional branch instructions take I cycle if the branch is not taken and 3 

cycles if the branch is taken. 

3. WDR (watch-dog reset) instruction is not available since the watch-dog timer 

features is not included in the designed 

4. SLEEP will not enter any sleep modes (there are no sleep modes in the design), 

it will however stop the processor and wait for an interrupt (acts as a HALT). If 

an interrupt occurs, the processor will `wake up', execute the interrupt routine 

and resumes execution from the instruction following HALT. 

5. Data RAM is included in the design although AT90S 1200 does not contain any 

data RAM. So 4 instructions are added, which are load and store instructions 

with post-increment and pre-decrement. 

6. General purpose registers and UO control registers are not mapped into the data 

addressing space for LOAD and STORE. instructions. 

3.7 Addressing Modes 

There are 45 addressing modes in the microcontroller. Rd and Rr are devoted to the 

destination register and source register. 

1. Register Direct Addressing: The operand is in Rd. 

2. Immediate addressing: Immediate data in given in the instruction itself. 

3-. I/O Direct Addressing: First operand is one of the I/O registers. The address is 

contained in the instruction word. The second operand is either Rd or Rr. Used by .IN, 

and OUT instructions to read from or write to the UO registers. 

4. Direct Memory Addressing: Operand address is specified in the instruction itself. 

Used when accessing the SRAM with LOAD and STORE instructions. 

3.8Brainstorming the Design, the Creative Process 

A challenge for this dissertation was that there was no book to aid in breaking 

down the instruction set of the Atmel RISC microcontroller. %The Atmel RISC 

microcontroller,, as mentioned before, is an 8-bit micro controller. This implies that the 

instruction set could have a total of 256 .instructions and indeed the Atmel RISC 

microcontroller instruction set does have 256 instructions including one NOP, i.e. no 

operation instruction. The Atmel RISC microcontroller instruction set seems to have a 

natural pattern to how the instruction set was structured. A most crucial aspect of this 
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work was to determine how to decompose the instruction set and use the discovered 
pattern in the most efficient manner. When writing a Behavioral model, one does not 
want to create a 256 entry case structure. This is a little cumbersome and would not 
translate well into a RTL VHDL model. A RTL model would be used to synthesize the 

design to a specific technology. 
Essentially the instruction set code had to be "cracked" as how to break the - 

-instruction set up in a logical manner which would facilitate coding the instruction set 
into the Behavioral and Instruction Set VHDL model. Please refer to appendix A for an 

"as is" version of the Atmel RISC microcontroller instruction set.- This view will give 

. the reader an idea of the decomposition challenge. It was finally decided that the 

instructions should be broken in the middle. 
The four bit grouping consisting of the most significant bit (MSB) down to the 

(MSB = 3). bit of the 16 bit instruction, commonly referred to as the upper nibble, 

would identify what type of instruction was being decoded. The four bit grouping 
consisting of the next 4 bits of the 16 bit instruction would indicate what type of 

addressing would be needed to complete that instruction. 
After the instruction set was studied, the addressing modes were analyzed. As 

mentioned in chapter 3, register addressing, one of four modes, would end up being the 

primary focus of this thesis. For behavioral modeling, six instructions were selected. 

Next, as discussed in [1], it is suggested that the design process continue with 

the construction of a register transfer table. The next table illustrates the transaction 

needed to execute the above selected instructions. 
Table 2 maps out the necessary register transfers to complete each instruction. 

In column one the different addressing modes are noted for each instruction. Column 

two identifies the instruction being described. The next 4 columns represent needed 

transactions. First register transfer necessary for any of the instructions is a fetch from 

the memory. The next transfer is a read from Register file/memory that contains the 

data that will be required for instruction execution. The Tempt register assists. by 

holding the data read. It was decided that the actual addition described with the register 

transfer notation in cycle three could -  be stored during the next cycle. The transfer 

explanation would follow a similar pattern for the other instructions. 
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instruction Addressing 1st  2°  cycle 3rd cycle 4t  cycle 

mode cycle (decode) (execute) (write back) 
MVIL REG, - 	immediate fetch TEMP14—SXT(DATA,16) Result4—TEMP1 REG*—Result 

DATA 

ADI REG, immediate fetch -  TEMPIF—(REG) Result <-- REG+—Result 
DATA TEMP24—SXT(DATA,16) TEMP 1+TEMP2 

STOR Memory fetch. TEMP14— (REG) Result*—TEMPI MEMF—Result 
MEM, REG direct 

LOAD REG, Memory fetch TEMP 14— (MEM) Result4 —TEMPI REGF—Result 
MEM direct 

MOVE Register fetch 'TEMP1F— (REG) Result*--TEMPI REGIF--Result 
REG1,REG2 direct 

ADD REG1, Register fetch TEMP14— (REG1) Result F-- REG2<—Result 
REG2 direct TEMp24— (REG2) TEMP 1+TEMP2 

Table 2 Register transfer (RTL) table 

Now that states have been identified for each instruction, a state diagram can be 

constructed covering all the instructions. The state diagram in Fig. 5.3 was used to 

construct the Behavioral VHDL model. These states were added to allow for 

configuration of SFRs. 

Following state diagram creation, a Behavioral VHDL model was developed 

based on following completed tasks: instruction review, addressing mode review, 

register transfer diagramming, & state diagramming. Behavioral VHDL model is 

primarily comprised of a control process with a case statement that emulates the state 

diagram. An arithmetic function, used to emulate the ALU of the Atmel RISC 

microcontroller, is called during the fetch state of the control process. The program 

memory was not modeled based on true architecture. The Atmel RISC microcontroller 

is a ROM-less microcontroller that normally communicates through ports 0 and 2 to 

retrieve instructions. For the Behavioral model program memory is simply designed 

into the same abstract structure as the process that models the states of the controller. 

This simplifies the model allowing for attention to be paid to the instruction decoding 

and execution. 
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The organization of the Instruction Set model is similar to that of the Behavioral 
model. Both models have a control process that controls the state of the model. With 
•the Behavioral model, a single process handles instruction decoding and state control. 
In the Instruction Set model, these functions are separated. 

The main process in the Instruction Set model is a lengthy simple looping state 
machine that steps through 4 cycles for every machine cycle required for instruction 

execution. The state machine cycle process monitors the status of the Ports, initiates 
control signals at the proper time according to the decoded instruction, and updates the 
Program Counter (PC). See appendix D for a listing of example code. 

Supporting the main state machine process is a process that decodes the 
instructions as they are retrieved from Port 0. When the state machine enters state "ID", 

decoding of the-incoming instruction is initiated. The IR used during decoding is "split" 

in to two pieces. OPN CODE for operation alludes to the upper nibble of the 8-bit 

register IR and FUN CODE alludes to the lower nibble of IR. A two level case 

statement structure is used for decoding process. The first case statement looks at the '4-

bit nibble FUN_CODE to determine what addressing mode the incoming instruction is 

to use. Once the addressing mode is determined, additional case statement structures 

within the case statement for each addressing mode type analyzes the 4-bit nibble 

OPN_CODE. Once the type instruction is determined, control signals are generated 

according to the specific instruction. 
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CHAPTER 4: PIPELINE UNIT DESIGN 

Microcontroller architecture, designed in this dissertation work, consists of a 
four stage pipeline. The stages are Instruction Fetch, Instruction Decode, Execute, and 
Write Back. Along with four stage pipeline, Data Forward and Hazard Detection unit is 
designed to maintain proper data flow through the pipeline stages in case of any 
possible pipeline conflict. Each of the stages of the pipeline along with the data forward 

and Hazard Detection unit are described in detail as below. 

4.1 Instruction fetch 
Instruction fetch stage consists of the following units 

1. Program Counter, 

2. Program Memory, and 

3. Branch Decide Unit 

Figure 4.1: Processing in a four stage Pipelined Architecture 

4.1.1 Program Counter 
The Program Counter contains the address of the instruction that will be fetched 

from the Program Memory (ROM) during the next clock cycle. Normally the PC is 

incremented by one during each clock cycle unless a branch instruction is executed. 
When a branch instruction is encountered, the new PC is calculated in execute stage is 

loaded directly in Program counter (Branch adder increments or decrements PC by the 

amount indicated by the branch offset).. The PC write , input of the Program Counter 
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register serves as an enable signal (output of ALU). When PC write signal is high, the 

contents of the PC are incremented during the next clock cycle, and when it is low, the 

contents of the PC remain unchanged. 

4.1.2 Program Memory 
The Program Memory contains the instructions that are executed by the 

processor. The input to this unit is a 16-bit address from the Program Counter and the 

output is a 16-bit instruction word. This module supports up to 2K words of memory. 

4.1.3 Branch Decide Unit 
The Branch Decide Unit is responsible for determining whether a branch is to 

take place or not based on the Branch signal from the Arithmetic Logic Unit (ALU). 

The output of this unit is a 1-bit value which is high when a branch is to take place, and 

otherwise it is low. This output controls a multiplexer which in turn controls whether 

the PC gets incremented by one or by the amount indicated by the branch offset. 

4.2 Instruction decode Unit 
Instruction decode stage consists of the following units 

1. Control Unit, 

2. Register File, and 

3. Sign Extension Unit. 

4.2.1 CONTROL UNIT 

The control unit generates all the control signals needed to control the 

coordination among all the components of the processor. The input to this unit is the 4-

bit opcode field of the instruction word. This unit generates signals that control all the 

read and write operations of the Register File, and the Data Memory. 

4.2.2 Register file organization 
Register file is implemented using special FSM to take care of two simultaneous 

read and one write operation. This is a single port register file which can perform two 

simultaneous read and one write operation. It contains 32 16-bit general purpose 

registers. The registers are named RO through R3 1. When the Reg_write signal is high, 

42 



a write operation is performed to the register indicated by the write address, otherwise 
the value contained in the registers indicated by the read addresses are outputted. 

4.2.3 Sign extension unit 
The input to this unit is an 8-bit immediate value provided by all the immediate 

type instructions. This unit sign extends the 8-bit value to a 16-bit value signed value. 

6 

4.3 Execute 
Execute stage consists of the following units 

1. Branch Adder, 

2. Arithmetic and Logic Unit(ALU), and 

3. ALU Control Unit. 

4.3.1 Branch adder 
The branch adder adds the 12-bit signed branch offset with the current value of 

the PC to calculate the branch target. The 12-bit offset is provided by the branch 

instruction. The output of this unit goes to the PC control multiplexer which updates the 

PC with-this value only when a branch is to be taken. 

4.3.2 Arithmetic and logic unit (ALU) 
The ALU is responsible for all arithmetic and logic operations that take place 

within the processor. These operations can have one operand or two, with these values 

coming from either the register file or from the immediate value from the instruction 
directly. The low power design of the ALU involves the gating the input signals to each 

of the separate .components of the ALU. These inputs are gated using transmission 

gates. When a particular component of the ALU is not being used, the input to that 

component will be in a High Z state due to the output of the transmission gate. The 

operations supported by the ALU include add, subtract, compare, and, or, not, xor, 

logical shift, and arithmetic shift. The output of the ALU goes either to the data 

memory (in the case where the output is an address) or through a multiplexer back to 

the register file. 
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Figure 4.2: Block Diagram of ALU 

4.3.4 ALU control unit 
This unit is responsible for providing signals to the ALU that indicates the 

operation that the ALU will perform. The input to this unit is the 4-bit opcode and the 

4-bit function field of the instruction word. It uses these bits to decide the correct ALU 

operation for the current instruction cycle. This unit also provides another set of output 

that is used to gate the signals to the parts of the ALU that it will not be using for the 

current operation. 

4.4 Write Back Unit 
4.4.1 Data memory 

The Load and Store instructions are used to access Data memory module. This 

module supports up to 32 data words. When new data is to be written to the memory, 

the `Mem write' signal is asserted. When ' the `Mem write' signal is low, a read 

operation is performed for the given memory location. 

44 



FIGURE 4.3 PIPELINED RISC ARCHITECTURE 
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4.4.2 Register Write unit 

Results generated in execute unit should be transferred to register file in next 

clock cycle. This stage consists of some control circuitry that forwards. the appropriate 

data, generated by the ALU or read from the Data Memory, to the register files to be 

written into the designated register. 

4.5 Hazards in the Pipeline unit 

4.5.1 Pipeline hazards: [9j 
There are situations which prevents next instruction in pipeline from executing 

during its designated clock cycle. Elimination of hazards often requires that some 

instructions in pipeline are allowed to proceed While others are delayed. 

1. Structural hazards: 

These hazards result from resource conflicts where hardware cannot support all 

possible combinations of instructions in pipeline. This occurs when some functional 

unit is not fully utilized in pipeline, then sequence of instruction through that unit could 

not proceed at rate of one pre clock cycle. 

Some times structural hazards are introduced to reduce cost and latency of unit 

in pipeline, shorter latency comes from lack of pipeline register that introduced• 

overhead 

Solution to these hazards is stall pipeline till unit causing hazard does its work 

2. Data hazards 
The Data hazards arise when operands of instruction in decode stage depends on 

result of previous instruction which is actually being evaluated in Execute stage and 

results are not available as yet. Also when operands of instruction in decode stage.  

depends on result of previous instruction whose results are in Write back stage but not 

yet stored in register. file. 

Solution to the Data hazard is data forwarding, ALU results in the execute stage 

is fed back to ALU. If the forwarding hardware detects that previous ALU operation 

has written register/memory corresponding to source for the current ALU operation, 

control logic selects the forwarded results as ALU inputs rather than the value supplied 

by instruction decode unit. 
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3. Control hazards: 

Control hazards occur when branching of program execution is required (branch 

instruction causes change of the PC). If instruction takes a branch then PC is changed at• 

the end of execute cycle, this .requires stall the pipeline as soon as branch is detected 

until instruction at new PC location in program memory reach execute stage. 

Solution for Control hazards is flushing the pipeline stages and restarting 

program execution with new PC, 2 NOP instructions are inserted to prevent any faulty 

operation. 

All the hazards are checked during the instruction decoding and proper action is 

taken by generating hazard signals to inform the execute stage, forwarding of necessary 

data is done in the execute stage 

4.5.2 Hazard detection unit 

• This unit detects conditions under which data forwarding is not possible and 

stalls the pipeline for one or two block cycles in order to make sure that instructions are 

executed with.. the correct data set. When it detects that a stall is necessary, it disables 

any write operation in the instruction decode pipeline registers, stops the PC from 

incrementing, and clears all the control signals generated by the control unit.. By taking 

these steps it can delay the execution of any instruction by one clock cycle. It can do 

this as many times as necessary to ensure proper execution of instructions. 

4.5.3 Data Forward unit 

Forward unit is responsible for maintaining proper data flow to the ALU. The 

primary function of this unit is to compare the destination register address, of the data 

waiting in the Memory, and Write Back pipeline registers, to be written back to the 

register file, with the current data needed by the ALU, and forward the most up-to-date 

data to these units. By forwarding the data at the appropriate time, this unit makes sure 

that the pipeline works smoothly and does not stall as a result of data dependencies. 



Chapter 5: CONTROL UNIT DESIGN 

5.1 Overview 
We have touched the instruction set, pipeline processing and many control 

.signals, which controls the datapath. The control unit plays the role on decoding the 
instruction, implements the. pipeline processing and asserts the control signals for the 
datapath at the correct timing. This chapter covers the decoding of the instruction and 

the design of the finite state machine (FSM). 

5.2 Instruction Decoder 
The inputs of the control unit are the instruction machine code from instruction 

register, the flags value, from status register, Branch request, timer interrupt request 
(timer IRQ) and external interrupt request (external IRQ). The machine code is decoded 
first before sending to the FSM, while the others inputs: are connected directly to the 
FSM. 

As discussed in chapter 3, the design- process involves 74 machine codes. The 

instruction decoder takes the 16-bit machine code from the IR and generates 16 output 

signals to represents the 74 instructions. At any time, the IR can only have one 

instruction. So, it will not have more than one output signal active at a time. However, 

if the machine code received does not match any of the 74 instructions, or is actually 

NOP instruction, then none of the decoder output signal is active. When none of output 

signal is active, FSM will not assert any control signal to perform an operation, so no 

operation is executed in that cycle. Any undetermined instruction is executed as NOP. 

5.3 The control unit 
The control unit is essentially a sequential circuit. The control unit is the final 

stage for the microcontroller development in this work. The control unit takes control 

of signal activation of microcontroller circuits in each clock.cycle. 

The Fetch Process: 
The fetch process consists in loading one memory address value in the PC, and 

delivering it to the memory device address port to' obtain a specific programming code. 



How many clock cycles were needed for fetch process can be guessed using following: 
1. The data bus size. 
2. The amount of memory used to store the program. 
3. Program Counter size. 
4. The Existing data path circuitry: It must provide necessary circuits to ensure that 

PC is incremented in every instruction execution, and that no signal conflict occurs. 
5. The fetch process: Designers must ensure that PC is incremented in each 

instruction, but they must decide how the data moves between the microcontroller 

circuits. Designers have to make a trade off between different alternatives for fetch 
process and decide number of the fetch process clock cycles and their data 
processing route in the data path circuits. 

OPCODE - #. 
C3kODE CONTROL 
DECODER SIGNALS 

t IT 
Tt1ER 	E3 CODER 

CLOCK 

Figure 5.1: control unit implementation 
' The fetch process used in this work uses just one clock cycles, on rising clock 

edge the Control Unit activates the IR read signal to load from memory the instruction 

word to be executed. Also, the tristate buffer is activated to release the current PC value 
to the data path. On falling edge of clock, Control Unit activates the add PC signal from 

the ALU to increase the current PC value by one. Finally in that same clock cycle, the 

Program counter clock is activated to load the incremented value to the PC. 

The fetch process needs one circuit that increment the PC by one. We just add one 
adder to the increment circuit that takes the pc reg data and add one to it. One of the 

advantages of the technique used in this work is that it allows users to add circuit 

elements without making significant design changes to the entire system. 

5.4 Synchronous Mealy Model Finite State Machine 
RISC control unit should be hard-wired (logic gates) rather than micro 

programmed (ROM implementation). Micro programmed control unit is used by CISC 
because the instruction has different length and execution cycles. So micro 

programmed can make the 	 The disadvantage is slower speed 
performance. In RISC, 	 mostly single cycle execution. 
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So design using hard-wired is not that complicated and it will have the advantage of 
speed. The FSM in this design is hard-wired, using logic gates to generate the next state 
and output signals rather than a ROM. The FSM is implemented using synchronous 
Mealy model. Figure 5.2 shows block diagram of a synchronous Mealy model FSM. 

input 	 ;€ : 	C rrewt 
Next State 	state. 	Si 	 Nx ... 

- 	 r------Output 	Ocr- 	D I 	-
uiput 

Lt s. 	
F 

L_______ 

Figure 5.2: block diagram of a synchronous Mealy model FSM. 

There are two combinational logics in the state.  machine, one to generate the 

next state base on the input and current state, while the other is used to generate the 

outputs base also on the input and current state. Different with the normal Mealy FSM, 
the synchronous Mealy FSM has their output connected to flip-flops. 

There are basically 2 advantages from using a synchronous Mealy FSM. For a 

Moore or Mealy FSM, the outputs are generated by the output combinational logic. 

They will be delay for the signals to pass through the combinational logic before the 

output is generated. This will slow down the control signals output speed. If the 
datapath receives control signals later, then will perform their operation later. In 
synchronous case, outputs are .still generated by the combinational logic, but they are 

now gated to D flip flops. 
The first advantage is, on the next clock transition, the outputs are asserted 

immediately. The datapath receives the control signals at the very beginning of a cycle 

and therefore can complete its operation faster. 
The second advantage is, FSM contains only 7 states, such a small number of 

states are results of using synchronous Mealy implementation. Since state machine 
outputs are now gated to flip-flops, all single cycle instruction can share the same state. 
The state is unchanged but the input changed, so it can determine the next'output. 
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5.5 Finite State Machine States 
Figure 5.3 shows the state diagram of the finite state machine (FSM). The 7 

states are FETCH, DECODE, EXECUTE, WRITE BACK, WAIT, BRANCH, 

BRANCH2,. The state diagram shows the state flow but does not clearly show the 

inputs. The inputs to the FSM are the output. lines of the instruction decoder, timer IRQ, 

external IRQ, and branch request. Branch request is generated by the branch evaluation 

unit when the condition of the conditional branch instruction is fulfilled. We now 

assume all instructions are single cycle and there are no IRQ, or branch request. The 

state machine will have no state change in this case and remain at EXE state. All 

instructions have a fetch, decode, execute and write back cycle and are pipelined 

together as discussed in chapter 4. When the first instruction is fetched, its 

corresponding output line of the instruction decoder will become active. It happens in 

the fetch stage. The next state combinational logic. - finds that the next state is 

unchanged. However, the output combinational logic has prepared the control signals 

based on the decoder's active line. On the next clock transition, the instruction enter the 

execute stage and the control signals is asserted (latch into the output flip-flops). The 

ALU then executes the instruction. 

RESET  FETCH 

Next 
opcode 	insruction 

E., 

Next DECODE: s: 
insruction corn! 	$ N 

branch 

EXECUTE 	halt 
result 

HALT 
VRITE 	T  
IACI4 uncond 	mt req 

branch 

interrupt 
request 

B RAN CHI 

Figure 5.3: The state diagram of FSM. 

On the forth clock transition results are . stored in write back cycle, Because of 
pipeline processing, the next instruction has been fetched at the same clock transition. 
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The instruction decoder decodes it and asserts another output line. Again, the output 

logic will prepare the correct control signals and asserts it on the next clock transition. 
So the FSM can perform the pipeline processing without any difficulty. 

We now consider the one of the unconditional branch instruction, SJMP. When 
SJMP is fetched, the SJMP output line of the decoder is active. The next state logic 
determined that there would be a state change to BRANCHI state on the next cycle. 
The output logic also prepared the control signals for SJMP, which will load the PC 
with the destination address. On the next clock transition, state changes to BRANCH1 

and the control signals are asserted. At BRACH1, the next state must be BRANCH2. 

Although the pre-fetched instruction asserts one of the decoder output. lines, the output 

logic does not prepared any control signals for the next cycle. So this instruction is 
being flushed from the pipeline, as discussed in chapter 5. So on the following clock 

transition, state changes to BRANCH2 and at the same time, PC is loaded with the new 
value. The next state will, be returned to EXE state. Again, no output signal is asserted 

based on the fetched instruction because it is flushed. On the next clock transition, the 

FSM enters EXE state and the destination instruction has been fetched. The decoder's 
destination instruction output line is active and will be.executed on the next cycle. The 
discussion above is for the SJMP instruction. 

The same concept can be applied to RCALL, RET RETI instructions as well as 

serving an IRQ. An IRQ (timer or external) is sent by the timer or external interrupt 

module in the datapath. An IRQ can only be served if the I-flag is set, else it will be 
-ignored. To make sure all instructions are completely executed, an IRQ can be only be 

served in the WRITE BACK state. On WRITE BACK EXE state, the FSM first check 

for any IRQ (must have the I-flag set)._;If there is any, it will ignore the pre-fetched 

instruction and determines the next state to be BRANCH. The output logic prepare 

control signal to load PC with the interrupt vector and to clear the I-flag. I-flag is 

cleared so that if there is a new IRQ occurred while serving the current one, it will not 
be served. After loading the interrupt vector to the PC, execution continues as normal 

but there will not be any IRQ served until the RETI instruction is fetched and executed. 
It will then set back the , I-flag and allowed another IRQ to be served. All conditional 

branch instruction will take 3 cycles to complete. This can be count from the transitions 

make to complete the execution from EXE state back to EXE state. (EXE, BRANCH I, 
BRANCH2, EXE) 
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The next case to consider is the execution of conditional branch instructions 

Different from conditional branch instruction, the branch may or may not be taken. 

They test a bit in the SR to determine whether the branch should be taken. The branch 

evaluation unit will do the job on testing the SR flags base on the condition specified. If 

the condition is fulfilled, it will immediately generate a branch request to the FSM. 

When JCC is fetched, the shared instruction decoder output line become active. 

Different from unconditional branch instructions, there will be no state chance on the 

next cycle. The FSM will assert the branch test signal on the next cycle to request the 

branch evaluation unit to perform a branch test. If the condition is not fulfilled, no 

branch request is generated. The .pre-fetched instruction is not flushed from the pipeline 

and is executed. So it takes only one cycle for a conditional branch instruction if the 

branch if not taken. 

If the condition is fulfilled, the branch evaluation unit will send back a branch 

request to the control unit immediately. At the same time, the control unit will also 

instruct the PC to loads the PC with the destination address. With the branch request, 

the FSM will transfer to BRANCH2 state on the next clock and the pre-fetched 

instruction is flushed. On the next clock, the second pre-fetched instruction is also 

flushed but the FSM now return to EXE state. The next instruction is the destination 

instruction and will be. executed on next cycle. So it takes 3 execution cycles if the 

branch is taken for conditional branch instructions. Note that the control signal to load 

the PC is not asserted according to clock transition. It is asserted only after the branch 

evaluation unit has received the branch test signal and performs the test successfully. 

So there is delay for the PC to receive the signal in this case. 

When the: FSM sees the HALT instruction, it will jump to the WAIT state. 

When in the WAIT state, the PC is stopped and no instruction is executed. Only when 

there is an IRQ (with the I-flag set), the FSM jumps to BRANCH1 state to serve the 

interrupt request. The process is exactly the same as serving an IRQ from the EXES. 

For single cycle instruction, the instruction will not need to be remembered after the 

control a signal is asserted because it is completed in one cycle. When enter the execute 

cycle, the next instruction is fetched and the current instruction is lost.However, 

instructions that require 2 cycles to complete must have some way to remember the 

instruction in order to assert the correct control signals at the second cycle. So, the FSM 

provides the second state to remember the instruction. Control signals are based on the 

state itself without considering the decoder's output line. 
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If the second cycle of the instructions asserts the same control signals, then the 
state can be shared, else it will require another one. There are 4 states each requires One 
cycle for executing instruction, FETCH, DECODE, EXECUTE, and WRITE BACK. 
The FSM jump to FETCH state, when reset pin is asserted; next state is DECODE then 

EXECUTE, and lastly WRITE BACK.' When one of these instructions is found, the 
control unit will need to hold the pipeline. The EN signal send to the PC module and IR 
module will not be asserted for one cycle: So the PC is not incremented and the IR is 
still holding the pre-fetched instruction. 

When the FSM sees a branch request, it will send control signals, to the ALU to 

perform new address calculation. The ALU will send a branch request back to the FSM 

if the branching condition is fulfilled. 
After.the long discussion, we should notice When in the EXE state, it will first 

check to see if there are any branch request or skip request to processed (two of them 

will never occurred at the same time). If none, it will then check the IRQ. The IRQ 
must be enabled by the I-flag in order to be served. Only after then it checks the 

instruction decoder's output to execute an instruction. 

5.6 External Interrupt 
The external interrupt is triggered by an external pin.' In this design, the external 

pin shares the pin with PORTs. This pin can be easily changed to share with one of the 

241/0 pins by modifying a single line in the VHDL code. The MCUCR of AT90S1200 

has the bits 4 and 5 for controlling the sleep modes of the microcontroller., Since the 

design does not include this feature, these bits are taken away from the register. The 

interrupt can be triggered by the external-  pin on rising edge, falling edge of low level 

and is selected by the ISCO 1 and ISC00 bits (interrupt sense control 0). 
The interrupt can also be triggered when the external pin is configured as 

output. The difference now is that the interrupt signal is provided internally from the 
microcontroller instead of external signal. This provides a way to generate software 

interrupt by the programmer. 
Transitions (falling edge and rising edge) are not detected. using the clock input 

of a flip-flop. The external pin is sampled on every system clock to detect the 

transitions. A low sample follows by a high sample sense a rising edge while a.  high 

sample follows by a low sample sense a falling edge. When the interrupt source is set to 

falling or rising edge, the external interrupt flag will be set when the require edge is 
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detected. The external interrupt flag are not accessible by the user. It is not placed 

inside any of the control register. The flag will stay until the interrupt request is served 

or after a reset. Figure 5.4 shows how interrupt request is generated. To generate an 

interrupt request to the control unit, INTO bit (external interrupt request 0 enable) must 

be set. This bit is ANDed with the flag to generate interrupt request (with ISC /= 00). 

Figure 5.4 Generating external interrupt request 

Low-level interrupt are difference from edge interrupt just discussed. It does not 

set the external interrupt flag to generate an interrupt request. Instead, it never touches 

the flag. The complement of the.external pin (detect low-level) is directly ANDed with 

the INTO bit to generate an interrupt request. So if INTO is set, it will generate an 

interrupt request as long as the pin is held low. If the interrupt is not enabled when the 

pin is held low, it will be forgotten when the pin goes high. If the external interrupt is 

set to edge triggered, the external signal must have sharp transition. If a physical switch 

is used to generate the interrupt, switch-bounce will occur. It will generate a second, 

third or more interrupt request even if interrupt request has already been served. So, it 

is recommended that the low-level interrupt is used, or the switch is hardware de-

bounced. Figure 5.4 shows the symbol of the external interrupt module. CLR_INTF is 

sent by the control unit to clear the external interrupt flag when the interrupt request is 

served. RD and WR signals provide reading and writing the control registers through 

the system data bus. 

5.7 I/O Decoder 

When either the RD _JO or WR IO is asserted, the UO decoder will decode the 

I/O address to know exactly which I/O register are to be read of write. Then it sends out 

the specific read or write control signal for that I/O. In the instruction format section in 

chapter 4, it is shown that there are two instruction formats for instructions that 
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accessed the UO. So the bits location for the I/O address is different. The I/O decoder 
must be able to know which bits are to be used as the I/O address. 

5.8 Branch Evaluation Unit 
A conditional branch instruction will test one of the 8 bits in the SR. BRBC will 

take the branch if the specific bit is cleared while BRBS will take the branch if that bit 
is set. The branch evaluation unit is enabled when the BRANCH TEST signal is active. 
It will then test whether the specific bit meets the branch condition (clear/set). If it does 
meet the condition, a branch request is generated immediately to the control unit to 
generate the ADDOFFSET control signal; the . next state will now be BRANCH2 state. 

If the condition is not fulfilled, nothing happens and CPU will execute next instruction. 

5.9 Timer: 
It is important to note that the timer clock source does not drive the TCNTO 

• directly. Instead, TCNTO . is driven by the system clock. The timer clock source are 
sampled at the rising edge of the system clock. If a low to high transition is detected (a 

low is sampled followed by a high), the increment signal for TCNTO is asserted to 

increment it. Every transition detected will generate an increment signal pulse. If the 

timer clock source is the system clock, then no detection of rising edge is required the 

increment signal is always asserted. To assure proper sampling of the external clock 

source, the frequency of the external clock should be smaller than the system clock 

frequency, and the smaller the better. 
Every time the increment signal is active, TCNTO will be incremented by 1. If 

TCNTO is $FF before increment, it will .:become $00 after increment and at the same 

time the timer/counter 0 overflow flag (TOVO) will be set. The timer/counter 0 

interrupt overflow interrupt enable flag (TOVO) is ANDed with TOVO to generate the• 

timer overflow interrupt request. If the TOVO is set (timer overflow interrupt enabled) 

and TOVO is also set (timer overflow occurred), the timer will assert an interrupt 

request to the control unit. If the I-flag in the SR is. enabled, the control unit will serve 

the interrupt request and clear the TOVO flag by sending a clear TOVO signal to the 

timer module. 
Just like other control registers, the 4 timer registers can be read and write 

through the data bus. However, reserved bits are always read as zero; and the TOVO 
flag' can be cleared by writing a one to it. In this way, TOVO flag can never be set by 

57. 



the user. Reserved bits, are not implemented with flip-flops, they are connected directly 

to ground and this will save a.lot of flip-flops. This is why the reserved bits are always 

read as zero and there are no ways data can be written to them. It can easily configured 

to point to any of the 24 I/O pins. CLR TOVO is sent from the control unit to clear the 

TOVO flag when the interrupt request is served. The 4 RD signals.read the timer control 

registers to the data bus while the 4 WR signals write the data bus value to . the 

corresponding register. 

5.10 Shift register: 
Shift register is used for serial transmission /reception. Data can be transmitted 

or' received serially with start stop bits for serial communication, all necessary 

handshaking signals are generated according to requirement of program or external 

devices. Shift register behaves as parallel in serial out register (PISO) when 

transmitting and serial in parallel out in case of reception 

5.11 Implementation Problems 
The following is a small list of problems and important points to keep in mind 

at Control Unit implementation stage. 

1. Due to the many existing control lines, designers must ensure that every signal 

that goes from the control unit is properly connected to its corresponding circuit. 

2. Care should be taken at the interconnection stage because involuntary 

disconnections may happen. 

3. More than one signal is activated per clock cycle, this means that some circuits 

have to wait for data because probably it is not ready for processing at the circuit 

signal activation moment. To solve this problem, once the control unit is 

connected to all circuits, designers have to run manually with the control unit 

clock, each and every one of the instructions to see per clock its performance. 

4. Once a time delay problem has found (you will know that this problem happen 

because in its respective instruction clock cycle, when you run it manually, there 

is not data in some circuits that is supposed to be. This means that a time delay 

must be added to the circuit element that does not receive the data. 
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CHAPTOR 6: DESIGNING WITH FPGA 

6.1 FPGA Architecture [27] 
FPGA's are introduced first by the Xilinx Inc. in 1985. Since that time, the 

FPGA market has expanded dramatically with many different competing designs 

developed by companies including, Altera, AMID, Intel, Motorola, AT&T, Actel, 
Atmel, Cypress, Texas Instruments, Quick Logic, and Lattice semiconductor. Field 
Programmable Gate Arrays are a relatively new class of integrated circuit. A FPGA is 
of similar kind as a CPLD (complex programmable logic devices), which consists of 

programmable logic blocks (combinational logic blocks, programmable IO blocks and 
programmable interconnection matrix). The logic is broken into large number of 

programmable logic blocks that are individually smaller than a PLD, as shown in Fig. 

6.1. 
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Figure 6.1: Basic Spartan II family FPGA block diagram [27] 

They are distributed across the entire chip in a sea of programmable 
interconnections which can be configured by the user at the point of application, & the 

entire array is surrounded by programmable I/O blocks. User programming specifies 

both the logic function of each block and the connections between the blocks. An 
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`FPGA's.programmable logic block is less capable 'than a typical PLD, but an FPGA 

chip contains a lot more logic blocks than a CPLD of the same die size has PLDs. 

6.2 Programming with FPGA 
Although early PLD and FPGA designs were generated largely by hand, access 

to today's CPLDs requires the use of an integrated Computer Aided Design (CAD) 

system. Figure 6.2 illustrates the typical sequence of operations needed to go from 

concept to programmed chip. Both commercial CAD tool vendors and FPGA 

companies offer appropriate tools. For example, traditional Electronic Design 

Automation (EDA) vendors such As Mentor Graphics, Synopsys, Cadence, and 

ViewLogic all offer tools to support FPGA design. These tools are typically used for 

the front-end design entry and simulation operations and provide the necessary 

interfaces to vendor-specific back-end tools for chip placement and routing. 

Examples of vendor specific tools are the Xilinx XST. system and the Altera 

Quartus II software. It is worth noting that Xilinx ISE 7.1 i software, which supports the 

entire design flow, as illustrated in Figure 6.5 on either PC or workstation platforms. 

The following discussion is meant to be indicative of the general operations and steps 

required in FPGA design. Where appropriate, examples are taken from the Xilinx and 

Altera CAD design flows to illustrate the generic operations. 

Traditionally, a designer uses schematic capture tools for graphical entry of a 

logic design which has been manually generated to meet the architectural or behavioral 

specifications. The upper left hand arrow in Figure 6.2 identifies some of the 

commercial CAD tools available for FPGA schematic capture. 

One of the more significant recent innovations in the EDA industry is the 

development of tools which allow the designer to move from the gate level to the 

behavioral level for design entry. A behavioral design specification is created using a 

Hardware Description Language (HDL), and then a synthesis tool automatically 

compiles the gate level schematic or netlist from the behavioral description. The upper 

right hand arrow in Figure 6.2 indicates some of the HDLs currently being used for 

FPGA behavioral modeling. 

Options for behavioral description of designs include the VHSIC Hardware 

Description Language (VHDL), the Verilog hardware, description language, timing 

diagrams, logic state diagrams, and PLD description languages such as ABEL. As an 



example of how pervasive the behavioral design style has become, the PC-based. Xilinx 

ISE 7.1i software provides multiple options for behavioral design entry. In addition to 

traditional schematic capture it will accept , VHDL, text design description in the 

Hardware Description Language (including truth tables and Boolean expressions), and 

Timing Diagrams which describe the desired input and output waveforms. Whichever 

behavioral design entry method is chosen, the design system provides logic synthesis 

which automatically creates gate-level schematics. 
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Figure.6.2 Typical CAD system design flow for FPGAs[26] 

No matter what method is used for initial design entry, the next step in FPGA 

design is to translate the entire design into a standard form which can be processed by a 

logic optimization tool. The goal of logic optimization is to perform minimization of 

theBoolean expressions and eliminate redundancy, thus minimizing the area of the 

final circuit. The tool may also be constrained to maximize speed at the expense of area 

by limiting the number of logic levels between clocked registers. This optimization 

process is usually merged with the logic synthesis step when behavioral design entry is 
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employed. Simulation is performed both before and after the logic optimization steps to 

verify that the design meets the original system requirements for functionality and 

timing. The next step is to convert the generic gate level design into one which uses the 

FPGA circuit building blocks of the target technology. 
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To provide a concrete example, the Xilinx XST design system flow will be used 

to illustrate the steps needed to go from logic design to programmed FPGA. In the 

Xilinx design flow, the native format of the logic design (Cadence, ViewLogic, 

OrCAD, etc.) must first be translated . into the Xilinx Netlist Format (XNF) which is. 

understood by the Xilinx tools. Next, the XNF circuit description must be mapped into 

Xilinx Configurable Logic Blocks (CLBs). This is the technology mapping step 

referred to in Figure 6.4. Xilinx calls this step "partitioning", and the XST tools also 

attempt to optimize the circuit during this step. For example, circuitry associated with 

unused logic block inputs or outputs is eliminated from the design. In addition, the 

partitioning program attempts to minimize either the total number of CLBs used -or the 

number of logic stages in the critical delay path.The next step is to place and route the 

design on the selected chip image. The XST system allows manual and/or automatic 

placement and routing. In the automatic placement operation, each CLB generated 

during the "partitioning" step is assigned to a physical location on the chip. Xilinx uses 
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a-  Simulated Annealing algorithm which starts with a,random placement, and then goes 

through a series- of improvement passes. This program can be run multiple times with 

different starting random seeds in an attempt to generate a more optimal placement. 

Following placement, interconnections between the CLBs must be routed -using the 

available interconnect segments and switch matrix elements. XST uses an automatic 

Maze Routing Algorithm to perform this operation. With the physical placement and. 

routing completed, exact timing values can now be used to determine chip 

performance. The . XST tools provide a critical path timing analyzer which provides 

delay information on longest / shortest paths through the chip. 

In addition, the physical layout timing information can also be back-annotated 

to the schematics to get more accurate functional simulation results. The final step in 

the Xilinx or Altera design flow is the creation of the BIT file which contains the binary 

programming data needed to configure the .SRAM bits of the target chip. This file is 

then downloaded to configure the chip for final functional & timing tests of 

programmed chip. 

6.3 FPGA Design Environment 
1 Software Environment: 

Operating System Windows XP-Pro sp 2 
Development Tool VHDL 
Synthesis Tool Xilinx ISE 7.11 
Simulation Tool Aldec Active HDL 6.3,. Xilinx ISE 7.1i 
Implementation FPGA (Xilinx Spartan II) 

2 Hardware Environments: 
2.1 For simulation and Synthesis: 	;: =. 

Processor Pentium 4 
RAM 512 MB 
Processor Speed 2.66 GHz. 

2.2 For Implementation: 
FPGA Device Family Xilinx Spartan II 
Device XC2S200-5PQ208 
Speed Grade 5 
Output Display Seven segment LED display 
Top-level Module Type HDL 
Synthesis Tool Xilinx ISE XST 7.1 i (using VHDL) 
Simulator Aldec Active HDL 6.3, Xilinx ISE 7.1i 
Generated Simulation Language VHDL 



6.4 FPGA design flow for implementation 
Since the goal of this dissertation is to create a full custom processor design in• 

FPGA, for this reason the implementation of Microcontroller requires FPGA design 

flow steps to be followed. Figure 6.4 shows a standard design flow for a FPGA design: 

Verification 

Verification 

Verification 

Figure 6.4: FPGA Design Flow 

1 Schematic entry 
The design is entered into a synthesis design system using a hardware 

description language. The language used here is VHDL. 

2 Syntheses 
A netlist is generated, using the VHDL code and a logic synthesis tool using 

Xilinx ISE 7.Ii EDA tool, synthesis report gives idea about possible shortfalls in the 

generated RTL model 

3 Place and Route 
The place process decides the best location of -the cells in a block based on the 

logic and desired performance. The route process makes the connections between the 

cells and the blocks. Automatic place. and route is done by the synthesis tool after 

generating netlist. 
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4 Configuration: 

This is done by loading the configuration data into the internal memory. 

Synthesis tool generates a bit stream file after placing and routing, which is then 

downloaded in FPGA. I used JTAG cable to load my design in the FPGA. 

5 Verification 
At each step of the design, process, I verified my architecture using software -

simulation using Aldec Active HDL 6.3 software package. Each instruction is 

simulated and its impact is studied to make any changes in design to optimize the 

performance. 

6.5 Verification and Testing 
• For the testing purpose, .I designed my own ROM for simulation of my 

program. I used binary representation of the instructions in that ROM. So it was very 

easy to check all - the instructions just by changing the binary instruction and then 

comparing the simulated results with expected results. 

Application program is written initially in ROM module before design is 

implemented in FPGA. I wrote entire program in 16 bit binary machine codes, In that 

program, I wrote the binary representation of all the instructions that were to be 

verified. The reason for using binary representation is that otherwise it would take too 

much time to develop a new assembler to interpret text based assembly code. 

I tested designed microcontroller architecture by running many test programs 

that were created using the method mentioned above. The basic verification approach 

was to compare the simulated output results with the expected results that I computed 

by hand. Whenever I found a mismatch `between the two, I identified the problem(s) 

and took care of them appropriately. I tested the functionality of all the instructions, the 

interactions among the instructions in the pipeline, and the correctness of the data as a 

result of executing those instructions. 
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CHAPTER 7: RESULTS AND CONCLUSION 

7.1 Results 

In the recent years several embedded cores of well known microcontrollers have 

been implemented. ASICs encompassing these cores have proven successful and have 

been manufactured without complications. Compared to the standard products (genuine 

microcontrollers) microcontroller designed in this dissertation reach considerably 

higher performance; on the one hand because of higher clock rates due to newer 

technologies and on the other hand because of an improved internal architecture. 

In this dissertation work a 16 bit RISC microcontroller modeled as the structural 

design using VHDL and is 'successfully implemented on the Xilinx Spartan II kit 

(xc2s200-5pq208), special provision for register file is made by using xilinx coregent to 

eliminate any possibility of error, a synchronous finite state machine is designed for 

updating registers as well as data memory, generated core for regfile and data memory 

works fine in simulation. 

This dissertation-  has detailed the results of creating and simulating two VHDL 

models for the Atmel RISC microcontroller. These models were written to help support 

an effort to eradicate the component obsolescence problem faced. A simple Behavioral 

model_ was written and tested to verify proper abstract modeling. Next, an Instruction 

model was written for almost all of the instruction set of the Atmel RISC 

microcontroller. The Instruction Set model results were compared against the results 

from an actual Atmel RISC microcontroller accessed and simulated by using a actel 

active HDL 6.3 as well as Xilinx ISE 7.1i For the modeled instructions, it was found 

that the Instruction Set model accurately emulates functionality of the original Atmel 

RISC microcontroller. The efforts of this dissertation will help support the overall goal 

to fabricate an 16-bit microcontroller that emulates with form, fit, and function the 

original Atmel RISC microcontroller. 

7.2 Conclusion 

As a conclusion, this project has been completed successfully fulfilling are the 

objectives and scopes specified. The author has used his extra time to optimize the 

speed of the design until 12 MHz. also code is optimized to minimum utilizsation of 
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resources in FPGA The data RAM that is not specified in the scope of the project has 

also been included. The stack is also incorporated in design and a total of 24 I/O lines 

are available for I/O device programming. Since the project now occupies 92% of the 

FPGA device (Spartan II xc2s200-5pg208), the author recommends that the laboratory 

provides a larger FPGA device. Table 7.1 is the comparison chart between atmel RISC 

Microcontroller AT90S1200 and the RISC Microcontroller designed in the dissertation 

work. 

Table 7.1 comparison between Atmel microcontroller and current design 

FEATURES AT90S1200 RISC MICROCONTROLLER 

SRAM . NONE 32 WORD 

PROGRAM ROM 1KB 4KB 

INSTRUCTION SET 89 74 

GP REGISTERS 32 32 

IO PORTs 2 (8 BIT EACH) 2 (16 BIT EACH) 

TIMMER 1 2 (16 BIT) 

EXTERNAL 

INTERRUPTS 

1 5 

ADDRESSING MODE 5 4 

SPEED 4-12 MHz 12 MHz 

ANOLOG 

COMPARATOR 

1 NONE 

IMPLEMENTATION CMOS FPGA 

Developing a (VHDL) model compatible to an industry-standard component 

involves previously unidentified technical constraints when intended to be reused as an 

IP core. Implementing a building block for future integration includes issues like, 

thorough and exhaustive verification of both the RTL model and the gate level netlist to . 

achieve highest quality possible; considering the trade-off between compatibility and 

performance improvement; In this dissertation work I have focused these issues and 

proposed some approaches how to tackle them. 

I have tested my processor architecture by running many test programs that were 

created using the method mentioned above. The basic verification approach was to 

compare the simulated output results with the expected results that I - computed by 
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hand. Whenever I found a mismatch between the two, I identified the problem(s) and 

took care of them appropriately. I tested the functionality of all the instructions, the 

interactions among the instructions in the pipeline, and the correctness of the data as a 

result of executing those instructions. 	- 

7.3: Recommendation on Future Works 

Items to research and complete include: full utilization of instruction set, 

finishing the Instruction Set model, writing an RTL model, synthesizing the RTL 

model, and testing all models. Some of this work has been completed, but was not 

documented in this thesis. RTL models and synthesis results have been made available 

to department. 
A serious design problem is encountered by author while updating register file 

and also data memory, it is been found that because of some FPGA kit constraints 

selected RAM Block is not functioning properly, author is trying to sort out problems at 

various stages of design. Special care has been taken for removing any pipeline hazards 

and appropriate results are always been sent to ALU. 

There are many more extra features available in the AVR RISC microcontroller 

family, such as the UART serial interface, SPI serial interface, the 16-bit timer (with 

output compare and input capture), etc. This works from this project should be used as 

a platform to implement these features in. 
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APPENDIX A: Atmel AVR RISC Microcontroller data sheet 

Instruction Set Summary 
Mnemonic Operands  Description 	 Operation Flags • 
ARITHMETIC AND LOGIC INS RlUCTIONS 
ADi? 	• Rd Rr ittl ';n R 	ls#crs Rai 	Rri+ Rr 
ADC  Rc Rr Add %titleCary Two R gistero 	• Rd -Rd+Rr+G 	• 2C,td.u•H 

— r Z;GwH 
r—m te.  alu irarn Fl 	sty -u r 	m, 	—.: Ftst i = Fc 

t 580 iR Rd iomom~ #trcm Ft Rc~i-"F2d 	t~" .` 
~' 

RNo Ur o-gfCd A tl3 F55 rf— _.. 	.. d. 

Tar 1s rr if'fiiFfr  

ORIi tRd. K Loc OR RIr aid C* t m +- Rd v K Z 11Y, 
EOR Rc Hr EduweOR Rt4r Rd @- Rd. 	r Zj V  
COM Rd u MOrnp1nnt Rd<- 	. , 
NEG Rd Twos C 	IA€nent Rd -$00-Rd Z,C:FJ. )i ..... 
Bt 	

.
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R i G wiinr 
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GLF x Gef Fgr » r Rd~ 

tiFt 	4Jt° Er a- w 
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fd, Ir omp ra  
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BR j Branchd&vneor 	r ( 	(C=0)thenPG'-PC+k+1 None 
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s BFIFL [# BranchP(u~ 
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 r€ nc 	. ag 	a NOW 
rnnc 	r Flag i; St ifV1jihn 
ranchrfOieI1lcwFlagICGleád dV=Q)thenPC-PC+k+ 1  
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lnstruction,Set Summary (Continued) 
Mnemonic 	Operands 	Description Operation Flags 
bIT AND r 	° "°'~.."' 	B1t "in A 	sa"aie - 	 ~~} 	t _ 	 and_ ........._._ . _; 

s air 	m 	756 ter ~ - u ssna 
LcL 	Rd Lac.31 shltt Left Rd (n+t) - Rd(n , Rd(0) ±--0 ZC,IIN  L 	 Atl-- 	_ 

L9F €i ~~sF Shift Rt ht Rd n ~) 	1 Rdi7} r 0 Z,C,Fd,V  
F tat$ 	thrvu9 	 jrp }~ 	 fi)+- 	in}. 
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WC*I WomIds Flscel 	 3( G orcIrm Iescr. 	r 	1 mer None 

Table 1. The AT9081 200 I/O Space 
Aldrese Hex Name Function 

F  SPEG Status REGister 

3B MSK Gene 	[ntenupt MaKer 
TIIMSK Ti n r/CouFnter Interrupt MaSK register 

8 T(FR Tim r,Vaunter Interrupt FIAg reji ,ter 

ASS MUCK  MCU gener& Control Rji~ter 
$33 TCGRO TinieilCount 	Control Re(ister 
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1E EEAR EEP'RQFA Address Register 

$I[7 EEDR EEPROM Data Register 
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APPENDIX B: INSTRUCTION SET 

Table: INSTRUCTION SET OF RISC MICROCONTROLLER 

• Opcode Mnemonic Function 
0000 00 xx xxxx xxxx NOP No operation 

0000 01 xx xxxx xxxx HALT Halts execution 

0000 10 xx xxxx xxxx SWAP Exchange lower byte with higher byte 
and vice versa of register 

0000 11 xx xxxx xxxx SWAPA Exchange lower byte with higher byte 
and vice versa of accumulator 

0001 000x bits(4) reg(4) ROL A, bits Rotate left accumulator 

0001 001x bits(4) reg(4) RLC A, bits Rotate left accumulator through carry 

0001 010x bits(4) reg(4) ROR A, bits Rotate right accumulator 

0001 011x bits(4) reg(4) RRC A, bits Rotate right through carry accumulator 

0001 100x bits(4) reg(4) ROL reg, bits Rotate left register 

0001 101x bits(4) reg(4) RLC reg, bits Rotate left through carry register 

0001 110x bits(4) reg(4) ROR reg, bits Rotate right register 

0001 11 lx bits(4) reg(4) RRC reg, bits Rotate right through carry register 

0100 reg(4) imm(8) MVIL reg, imm8 Move data. as lower byte of register 

0101 reg(4) imm(8) MVIH reg, imm8 Move data as upper byte of register 

0011 reg(4) imm(8) MVIS sp-reg, imm8 Move data as lower byte of register 

0010 000x reg(4) reg(4) MOV 1 reg1, reg2 Move contents of reg2 to regl 

0010.00lx reg(4) reg(4) MOV2 sp-reg,reg2 Move contents of reg2 to sp-reg 

0010 01 Ox reg(4) reg(4) MOV3 regl,, sp-reg Move contents of sp-reg to regl 

0010 OI 1x reg(4) reg(4) MOV4 sp-regl, sp-reg2 Move contents of sp-reg2 to sp-regl 

0010 100x reg(4) mem(4) LOAD reg, mem Move contents of mem to register 

0010 101x mem(4) reg(4) STORE mem, reg Move contents of register to mem 

0010 11Ox reg(4) mem(4) LDA mem Move contents of mem to ACC 

0010 111x mem(4) reg(4) STA mem Move contents of ACC to mem 

0101 00xx bits(4) reg(4) SETB reg, bit Set specified bit of register 

0101 O lxx bits(4) reg(4) CLRB reg, bit Clear specified bit of register 

0101 lOxx bits(4) reg(4) CPLB reg, bit complement bit of register 
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0101 11xx bits(4) reg(4) GETB reg, bit output specified bit of register 

0110 000x reg(4) reg(4) ADD regl, reg2 add contents of reg2 to regl 

0110 001x reg(4) reg(4) ADC regl, reg2 add contents of reg2 to regl, add carry 
to result, store result in regl 

0110 O 1Ox reg(2) imm(8) ADI reg, imm8 add data byte to register 

0110 011x reg(4) xxxxx INC reg Increment register by one 

0110 100x reg(4) xxxxx INCA. Increment ACC by one 

0111 000x reg(4) reg(4) SUB regl, reg2 Subtract contents of reg2 to regl 

0111 001x reg(4) reg(4) SBB regl, reg2 Subtract contents of reg2 to reg1;  

Subtract carry from result 

011110 reg(2) imm(8) SBI reg, imm8 Subtract data byte from register 

011111 reg(4) xxxxx DEC reg Decrement register by one 

100 00 reg(3) imm(8) ANI reg, imm8 AND data byte with register 

100 01 reg(3) imm(8) ORI reg, imm8 OR data byte with register 

100 10 reg(3) imm(8) XRI reg, imm8 XOR data byte with register 

100 110 reg(2) imm(8) CPI reg, imm8 compare data byte with register 

1.00 111 reg(4) reg(4) CMP reg 1, reg2 compare content of regl with reg2 

1010 00xx reg(4) reg(4) AND regl, reg2 AND contents of regl with reg2 

1010 01 xx reg(4) reg(4) OR reg 1, reg2 OR contents of reg 1 with reg2 

1010 1Oxx reg(4) reg(4) XOR regl, reg2 XOR contents of regl with reg2 

1010 11xx reg(4) xxxxx NOT reg Complement content of register 

1011 000x xxxx reg(4) IN reg, portO Input data from portO to register 

1011 001x xxxx reg(4) IN reg, portl Input data from portl to register 

1011 O l Ox xxxx reg(4) OUT portO, reg Output content of register to portO 

1011 01 lx xxxx reg(4) OUT portl, reg Output content of register to portl 

1100 00 	offset(10) LJMP offset Long Jump (within 1K) 

1100 01 	xx offset(8) SJMP offset' Short Jump (up to 246) 

1100 1000 offset(8)  JZ offset Jump if Zero flag is set 

1100 1001 offset(8) JNZ offset Jump if Zero flag is reset 

1100 1010 offset(8) JC offset Jump if Carry flag is set 

1100 1011 offset(8) INC offset Jump if Carry flag is reset 
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1100 1100 offset(8) JPS offset Jump if parity flag is set 

1100 1101 offset(8) JNP offset Jump if parity flag is reset 

1100 1110 offset(8) JOY offset Jump if overflow flag is set 

1100 1111 offset(8) JNO offset Jump if overflow flag is reset 

1101 000 xxxx xxxxx INTO Interrupt on signal on pin INTO 

1101 001 xxxx xxxxx INTI Interrupt on signal on pin INT1 

1101 010 xxxx xxxxx INT2 Interrupt on signal on pin INT2 

1101 011 xxxx xxxxx INT3 Interrupt on signal on pin INT3 

1101 100 xxxx xxxxx INT4 Interrupt on signal on pin INT4 

1101 101 xxxx xxxxx IRET Return from Interrupt 

1110 0000 irnm(8) CALL address Call subroutine at given address 

1110 0001 xxx xxxxx RET Return from subroutine call 

1110 0100 imm(8) CC Call if Carry flag is set 

1110 0101 xxxxxxxx RC Return if Carry flag is set 

1110 0110 imm(8) CNC Call if Carry flag is reset 

1110 0111 xxxxxxxx RNC Return if Carry flag is reset 

1110 1000 imm(8) - CZ Call if Zero flag is set - 

1110 1001 xxxxxxxx RZ Return if Zero flag is set 

1110 1010 imm(8) CNZ Call if Zero flag is reset 

1110 1011 xxxxxxxx RNZ Return if Zero flag is reset 

1110 1100 imm(8) COV Call if overflow flag is set 

1110 1101 xxxxxxxx ROV Return if overflow flag is set 

1110 1110 imm(8) CNO Call if overflow flag is reset 

1110 1111 xxxxxxxx RNO Return if overflow flag is reset 



APPENDIX B: SIMULATION RESULTS 

Simulation of program with JMP Instruction (active HDL 6.3) 
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Simulation of program with CALL instruction (active HDL 6.3) 
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Simulation of program with LOAD, STORE instructions (active HDL 6.3) 
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Simulation of program with LOAD, STORE instructions (continued....) 
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APPENDIX C: SYNTHESIS RESULTS. 

F ' 
	-izciv, ~ 

	~"~R'" ~ ;^: x 	_ ... ... 	_;, viz. n+ . "Gig xr.rFn: ;~ '7~~Y h . K.~~'..,» 	~ 

Synthesized RTL description of RISC microcontroller in xilinx ise7.li 
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Synthesized RTL description of RISC microcontroller in xilinx ise 8.1i 
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SYNTHESIS REPORT 
Release 8.1 i - xst I.24 Copyright (c) 1995-2005 Xilinx, Inc. All rights reserved. 
--> Reading design: RISC_TOP.prj 

* 	 Synthesis Options Summary 

---- Source Parameters 
Input File Name 	: "RISC TOP.prj" 
Input Format 	 : mixed 
Ignore Synthesis Constraint File : NO 

---- Target Parameters 
Output File Name 	: "RISC TOP" 
Output Format 	: NGC 
Target Device 	 : xc2s200-5-pg208 

---- Source Options 
Top Module Name : RISC TOP 
Automatic FSM Extraction : YES 
FSM Encoding Algorithm : Auto 
FSM Style : lut 
RAM Extraction : Yes 
RAM Style : Auto 
ROM Extraction : Yes 
Mux Style : Auto 
Decoder Extraction : YES 
Priority Encoder Extraction : YES 
Shift Register Extraction : YES 

• Logical Shifter Extraction : YES 
XOR Collapsing : YES 

• ROM Style : Auto 
Mux Extraction : YES 
Resource Sharing : YES 

• Multiplier Style : lut 
Automatic Register Balancing 	: No 

---- Target Options 
Add IO Buffers : YES 
Global Maximum Fanout : 100 
Add Generic Clock Buffer(BUFG): 4 
Register Duplication : YES 
Slice Packing : YES 
Pack IO Registers into IOBs : auto 
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Equivalent register Removal 	: YES 

---- General Options 
Optimization Goal 
Optimization Effort 
Keep Hierarchy 
RTL Output 
Global Optimization 
Write Timing Constraints 
Hierarchy Separator 
Bus Delimiter : <> 
Case Specifier : maintain 
Slice Utilization Ratio : 100 
Slice Utilization Ratio Delta : 5 

---- Other Options 
lso : RISC TOP.Iso 
Read Cores : YES 
cross_clock analysis : NO 
verilog2001 : YES 
safe_implementation : No 
Optimize Instantiated Primitives 	: NO 
tristate2logic : Yes 
use clock enable : Yes 
use_sync_set : Yes 
use_sync reset : Yes 

* 	 HDL Synthesis 

Synthesizing Unit <ALU>. 
Related source file is "E:/thesis/RISC 16JNTIGHT/alu.vhd". 
Summary: 

inferred 62 D-type flip-flop(s). 
inferred 2 Adder/Subtractor(s). 
inferred 2 Comparator(s). 
inferred 33 Multiplexer(s). 
inferred 77 Tristate(s). 

Unit <ALU> synthesized. 

Synthesizing Unit <forward>. 
Related source file is "E:/thesis/RISC 16JNIGHT/forward.vhd".. 

Speed 
:1 
:NO 

Yes 
Al1ClockNets 
NO 

:/ 

84 



Summary: inferred 16 Multiplexer(s). 
Unit <forward> synthesized. 

Synthesizing Unit <hazzard>. 
Related source file is "E:/thesis/RISC 16JNIGHT/hazard.vhd". 
Summary: inferred 2 Comparator(s). 

inferred 16 Tristate(s), 
Unit <hazzard> synthesized. 

Synthesizing Unit <CONTROL UNTT>. 
Related source file is "E:/thesis/RISC 16JNIGHT/control unit.vhd". 
Summary: inferred 5 Tristate(s). 

Unit <CONTROL UNIT> synthesized. 

Synthesizing Unit <decoder>. 
Related source file is "E:/thesis/RISC 16JNIGHT/decoder.vhd". 
Summary: inferred 7 Tristate(s). 

Unit <decoder> synthesized. 

Synthesizing Unit <rom>. 
Related source file is "E:/thesis/RISC 16JNIGHT/rom.vhd". 
Found 32x16-bit ROM for signal <instn>. 
Summary: inferred 1 ROM(s). 

Unit <rom> synthesized. 

Synthesizing Unit <PC REG>. 
Related source file is "E:/thesis/RISC_16JNIGHT/pc_reg.vhd". 
Summary: inferred 12 D-type flip-flop(s). 

inferred 1 Adder/Subtractor(s). 
Unit <PC REG> synthesized.. 

Synthesizing Unit <data ram>. 
Related source file is "E:/thesis/RISC16JNIGHT/ram.vhd". 
Found finite state machine <FSM 0> for signal <PS>. 
Summary: inferred I Finite State Machine(s). 

inferred 5 Tristate(s). 
Unit <data ram> synthesized. 

Synthesizing Unit <myregfile>. 
Related source file is "E:/thesis/RISC_16JNIGHT/myregfile.vhd". 
'Found finite state machine <FSM_1> for signal <PS>. 
Summary: inferred 1 Finite State Machine(s). 

85 



inferred 5 Tristate(s). 
Unit <myregfile> synthesized. 

Synthesizing Unit <REG_RD>. 
Related source file is "E:/thesis/RISC_16JNIGHT/LATCH RD.vhd". 

Unit <REG RD> synthesized. 

Synthesizing Unit <LATCH_NPC>. 
Related source file is "E:/thesis/RISC_16JNIGHT/latch.vhd". 
Summary: inferred 12 Multiplexer(s). 

Unit <LATCH NPC> synthesized. 

Synthesizing Unit <WRITE_BACK>. 
Related source file is "E:/thesis/RISC_16JNIGHT/write back.vhd". 
Summary: inferred 22 D-type flip-flop(s). 

Unit <WRITE BACK> synthesized. 

Synthesizing Unit <REG_EX_WB>. 
Related source file is "E:/thesis/RISC_16JNIGHT/reg ex wb.vhd". 

Summary: 	inferred 33 D-type flip-flop(s). 
Unit <REG_EX WB> synthesized. 
Synthesizing Unit <EXECUTE>. 

Related source file is "E:/thesis/RISC 16JNIGHT/execute.vhd". 
Summary: inferred 17 D-type flip-flop(s). 

inferred 17 Tristate(s). 
Unit <EXECUTE> synthesized. 

Synthesizing Unit <REG_ID_EX>. 
Related source file is "E:/thesis/RISC_16JNIGHT/reg_id_ex.vhd". 
Summary: inferred 30 D-type flip-flop(s). 

Unit <REG ID EX> synthesized. 

Synthesizing Unit <DECODE>. 
Related source file is "E:/thesis/RISC_16JN1GHT/decode.vhd". 
Summary: inferred 46 D-type flip-flop(s). 

inferred 43 Tristate(s). 
Unit <DECODE> synthesized. 

Synthesizing Unit <REG_F_ID>. 
Related source file is "E:/thesis/RISC_16JNIGHT/reg_f id.vhd". 
Summary: inferred 30 D-type flip-flop(s). 

inferred 28 Tristate(s). 
Unit <REG F ID> synthesized. 
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Synthesizing Unit <fetch>. 
Related source file is "E:/thesis/RISC_16JNIGHT/fetch.vhd". 
Summary: inferred 28 D-type flip-flop(s). 

inferred 28 Tristate(s). 
Unit <fetch> synthesized. 

Synthesizing Unit <DISPLAY>. 
Related source file is "E:/thesis/RISC_16JNIGHT/display.vhd". 
Summary: 

inferred 4 ROM(s). 
inferred 2 Counter(s). 
inferred 12 Adder/Subtractor(s). 
inferred 6 Comparator(s). 
inferred 17 Multiplexer(s). 

Unit <DISPLAY> synthesized. 

Synthesizing Unit <RISC_TOP>. 
Related source file is "E:/thesis/RISC 16JNIGHT/risc micro.vhd". 

Unit <RISC TOP> synthesized. 

Advanced HDL Synthesis 

Analyzing FSM <FSM_1> for best encoding. 
Optimizing FSM <REG/PS> on signal <PS[1:3]> with gray encoding. 

Analyzing FSM <FSM Q> for best encoding. 	 0 

Optimizing FSM <RAM/PS> on signal <PS[1:3]> with gray encoding. 

Reading module "mymemory.ngo" ("mymemory.ngo" unchanged since last run )... 
Loading core <mymemory> for timing and area information for instance <REG>.. 
Loading core <mymemory> for timing and area information for instance <REG>. 

Advanced IiDL Synthesis Report 

Macro Statistics 
#FSMs :2 
# ROMs . :5 

• 16x8-bit ROM : 4 
32x16-bit ROM : 1 

# Adders/Subtractors : 15 
12-bit adder : 3 
32-bit adder : 12 
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# Counters : 2 
31-bit up counter : 	1 
32-bit up counter : 1 

# Registers : 286 
Flip-Flops : 286 

# Latches : 26 
1-bit latch : 21 
12-bit latch : 1 
16-bit latch : 3 
8-bit latch : 1 

# Comparators : 10 
16-bit comparator equal : 	1 
16-bit comparator less : 	1 
31-bit comparator greatequal : 3 
31-bit comparator less : 2 
31-bit comparator lessequal : 1 
4-bit comparator equal : 2 

# Multiplexers : 23 
1-bit 4-to-1 multiplexer : 17 
1-bit 8-to-1 multiplexer : 	1 
12-bit 4-to-1 multiplexer : 	1 
16-bit 4-to-1 multiplexer : 	1 
16-bit 8-to-1 multiplexer : 	1 
8-bit 4-to-1 multiplexer : 	1 
8-bit 8-to-1 multiplexer : 	I 

# Xors : 54 
1-bit xor2 : 53 
16-bit xor2 : 	I 

Mapping all equations... 
Building and optimizing final netlist ... 
Found area constraint ratio of 100 (+ 5) on block RISC TOP, actual ratio is 25. 

* 	 Final Report 

Final Results 
RTL Top Level Output File Name : RISC TOP.ngr 
Top Level Output File Name : RISC TOP 
Output Format : NGC 
Optimization Goal : Speed 
Keep Hierarchy : NO 
Design Statistics 
#TOs 	 :35 
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Cell Usage : 

# BELS :1361 
# GND :3 
# INV :4 
# LUTI :46 
# LUT2 : 105 
# LUT2_D :8 
# LUT2 _L :14 
# - LUT3 :122 
# LUT3 _D : 9 
# LUT3 _L :62 
# LUT4 :454 
# LUT4_D : 64 
# LUT4_L :210 
# MUXCY :130 
# MUXF5 :62 
# NIUXF6 :1 
# VCC :1 
# XORCY :66 

# FlipFlops/Latches : 392 
# FD :96 
# FD I :12 
# FDC :19 
# FDC_I :3 
# FDE :25 
# FDR :33 
# FDS :52 
# FDS _1 :76 
# LD :48 
# LD1 :16 
# LDC :2 
# LDCP :10 
# RAMS :2 
# RAMB4 S 16 :2 
# Clock Buffers : 2 
# BUFG :1 
# BUFGP :1 
# IO Buffers :34 
# IBUF :6 
# OBUF :28 
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D914ce 9filka 	n summary: 
Selected Device : 2s200pg208-5 

Number of Slices: 589 out of 2352 	25% 
Number of Slice Flip Flops: 381 out of 4704 	8% 
Number of 4 input LUTs: 1094 out of 4704 	23% 
Number of bonded IOBs: 35 out of 	144 	24% 

IOB Flip Flops: 11 
Number of BRAMs: 2 out of 	14 	14% 
Number of GCLKs: 2 out of 	4 	50% 

TIMING REPORT 
Clock Information: 
-------------------------------------------+------- -----------------+-------+ 
Clock Signal 	 I Clock buffer(FF name) I Load 
-------------------------------------------+------------------------+-------+ 
DSP/div clk_31 	 I BUFG 	1 323 1 
DSP/div clk_0 	 I NONE 	1 8 1 
REG/DATA_EN(REG/PS_Out01:O) I NONE(*)(REG/rd_data_3)  116 
hltout(IDU/CNT/ n00051:0) 	I NONE(*)(IFU/hlt) 	1 1 1 
DSP/ n0043(DSP/Mcompar n0043_norcy_rn_5:0) NONE(*)(DSP/LCD_1) 1 111 
clk 	 I BUFGP 	1 35  1 
-------------------------------------------+------------------------+-------+ 
(*) These 3 clock signal(s) are generated by combinatorial logic, and XST is not able to 
identify which are the primary clock signals. 
Please use the CLOCK SIGNAL constraint to specify the clock signal(s) generated by 
combinatorial logic. 

Timing Summary: 
Speed Grade: -5 

Minimum period: 40.716ns (Maximum Frequency: 24.560MHz) 
Minimum input arrival time before clock: 7.873ns 
Maximum output required time after clock: 8.329ns 
Maximum combinational path delay: No path found 

Total memory usage is 127580 kilobytes 
Number of errors : 0 ( 0 filtered) 
Number of warnings : 17 ( 0 filtered) 
Number of infos : 20 ( 0 filtered) 
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