
7

1

IMPLEMENTATION OF 16 BIT RISC
MiCROCONTROLLER ON FPGA

A DISSERTATION
Sisbmlttsd In pa,iisl fulfillment of the

esquk.m.nts kr ti award of dw degree
of

MASTER OF TECHNOLOGY
in

ELECTRICAL ENGINEERING
wm $pse*dIzaN to Syduns EmMs.hig & Opsr sns Rah)

BY
HOHITE ARUN PANDURANG

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247167 (INDIA)
JUNE, 2006

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this dissertation entitled,
"IMPLEMENTATION OF 16 BIT RISC MICROCONTROLLER ON FPGA", submitted
towards the partial fulfillment of the requirements for the award of the degree of Master of
Technology in Electrical Engineering, with specialization in System Engineering and

Operations Research, I. I. T. Roorkee, India, is an authentic record of my own work carried
out from June 2005 to June 2006 under the supervision of Dr. G. N. Pillai & Prof. M. K.
Vasantha, Electrical Engineering Department, Indian Institute of Technology, Roorkee, India.

The matter, embodied in this dissertation report, has not been submitted for the award
of any other degree or diploma.

Dated:
Place: Roorkee 	 MOHITE ARUN PANDURANG

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

our knowledge.

Dr. G. N. llai
Associate Professor
Electrical Department
UT Roorkee
Roorkee-247667 (India)

cr1r \
Prof. 'IM. K Va antha
Prof4or
Electrical Department
IIT Roorkee
Roorkee-247667 (India)

ACKNOWLEDGEMENT

I would like to take this opportunity to express my deepest sense of gratitude to my
supervisors Dr. G. N. Pillai and Prof. M. K. Vasantha, Department of Electrical
Engineering, LIT. Roorkee, for their invaluable support, guidance and suggestions at various
stages of this Dissertation. I feel privileged to be associated under them and it was a great
pleasure in learning the practical aspects of digital design and verification under their aegis
and guidance. Jam very much thankful to them for giving me an opportunity to work on a topic
which was very much interesting and challenging for me. I remember with great emotion, the
constant encouragement and help extended to me by him that went even beyond the realm of-
academics.

Special mention has to be made of Dr. (Ms.) Indra Gupta, in-charge Microprocessor
and Computer Laboratory for providing me the computer in the lab and all other facilities
including FPGA Kit required for this project as and when needed.

The department of Electrical Engineering of this institute provided me with all kinds of
necessary facilities for carrying out my work. My sincere thanks are due to Prof. S. P. Gupta,
Head of Electrical Engineering 'department and Prof. H. O. Gupta, Ex-head of the department,
for making the opportunities available although. My sincere thanks go to all the faculty

members of the department for the voluntary help, direct and indirect, extended to me during
the course of the work.

I am also thankful to Dr. S. Dasgupta, Department of Electronics and
telecommunication, IIT Roorkee, for his invaluable discussion and suggestions, regarding
various issues of VHDL coding and FPGA implementation.

My sincere regards to staff and my friends at the Department who have directly and
indirectly helped me in completing this .Report. I am grateful to my hostel mates and my
colleagues, for helpful and fruitful discussions and for the-good time we spent together.

Last, but not least by any means, I wish to acknowledge my family members for giving
me the moral strength and constant encouragement. The work could never reach ° its present
status without their constant support and love.

Dated: 	 MOHITE ARUN PANDURANG
M-Tech (System Engineering & Operations Research)

Place : Roorkee 	 Department of Electrical engineering, I. I. T. Roorkee.

ii

CONTENTS

Title Page
Candidate's Declaration i
Acknowledgement ii
Acronyms vi
Abstract vii

Ch 1: INTRODUCTION
1.1 	Introduction 1

1.2 	Motivation behind the work 2

• 1.3 	Objective of dissertation work 5

1.4 	Introduction to Atmel AVR AT90S1200 5

1.5 	Overview of Microcontroller and Microprocessors 5

1.6 	Comparison of Microcontrollers and Microprocessors 5
1.7 	Microcontroller Performance Factors 8
1.8 	CISC vs. RISC Architecture 9
1.9 	Microcontroller applications 11

Ch 2: MICROCONTROLLER ORGANISATION
2.1 Tradeoffs in Microcontroller Design 13

2.2 The Microcontroller Operation 13

2.3 Microcontroller organization 15

2.4 Description of the microcontroller design Steps 17

Ch 3: INSTRUCTION SET ARCHITECTURE
3.1 Atmel RISC microcontroller Architecture. 29

3.2 Atmel RISC microcontroller Instruction Set & Addressing Modes 31

3.3 Machine Cycle Sequence 32

3.4 Modeled Architecture 32

3.5 Instruction format 33

3.6 Instruction set summary 35

3.7 Addressing Modes 	 • 36

3.8 Brainstorming the Design, the Creative Process 36

iii

CONTENTS

Title Page

Ch 4: PIPELINE UNIT DESIGN
4.1 Instruction fetch unit 41

4.1.1 	Program counter 41
4.1.2 	Instruction memory 42
4.1.3 	Branch Decide Unit 42

4.2 Instruction decode unit 42

4.2.1 	Control unit 42

4.2.2 	Register file organization 42

4.2.3 	Sign extension unit 43

4.3 Execution unit. 43

4.3.1 	Branch adder unit 43

4.3.2 	Arithmetic and logical unit 44

4.3.3 	ALU control unit 45

4.4 Write back unit 45

4.4.1 	Data memory organization 45

4.4.2 	Register write unit 45

4.4.3 	Interrupts and exception handling 45

4.5 Hazards in pipeline unit 46
4.5.1 	Structural hazard 46
4.5.2 	Data hazard 46
4.5.3 	Control hazard 47

4.6 Hazard detection unit 47
4.7 Data forward unit 47

Ch 5: CONTROL UNIT DESIGN
5.1 Overview of control unit 49
5.2 Instruction decode unit 50
5.3 Control unit 50
5.4 Synchronous Mealy Model Finite State Machine 51
5.5 - Finite State Machine States 53

iv

CONTENTS

Title 	 Page
5.6 	External Interrupt 	 56
5.7 	1/0 Decoder 	 57
5.8 	Branch Evaluation Unit 	 57
5.9 Timer 	 58
5.10 Implementation Problems 	 58

Ch 6: DESIGNING WITH FPGA
6.1 	FPGA Architecture 	 59
6.2 Programming with FPGA 	 60
6.3 FPGA Design Environment 	 63
6.4 	FPGA design flow for implementation 	 64
6.5 	Verification and testing 	 66

Ch 7: Results and conclusion

7.1 Results 	 67
7.2 Conclusion 	 67
7.3 	future scopes of the work 	 69

REFERENCES 	 70
APPENDIX
A: Atmel AVR microcontroller instruction set 	 72
B: Complete instruction set of RISC Microcontroller 	 74
C: Simulation results 	 75
D: Synthesis report 	 80

V

ABBREVIATION AND ACRONYMS

FPGA Field Programmable Gate Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

RISC Reduced Instruction Set Computer

MIPS Million Instructions per Second

SOPC System on Programmable Chip

VERILOG An Industry standard HDL (IEEE std. 1364)

XST Xilinx's Synthesis Tool

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Processor

CLB Configurable Logic Block (For Xilinx FPGA)

LUT Look Up Table

LAB Logic Array Block

LE Logic Element (For Altera FPGA)

CPLD Complex Programmable logic Devices

PLD Programmable Logic Device

DDR Double Data Rate Interface

FCRAM Fast Cycle RAM

PLL Phase Locked Loops

Floor planning process of choosing best connectivity in a design

IEEE Institute of Electrical and Electronics Engineering

IOB Input/Output Buffer

IOE Input/Output Element

VGA Video Graphic Adaptor

vi

ABSTRACT

The work presented in this dissertation report describes the implementation of 16-bit

RISC Microcontroller in FPGA chip, using VHDL programming at Xilinx ISE 7.1 i platform

supported by Xilinx .ISE and Aldec Active HDL simulation environment. This work explores

an application area of FPGA to develop application specific integrated circuit (ASIC) as an

independent System on Programmable Chip (SOPC) design. The design is targeted to make a
feel of a 16-bit Microcontroller available in FPGA. Microcontroller is organized with 4 stage

pipelined RISC architecture and supports a total of 81 instructions. Successful synthesis is

done and design is downloaded in Xilinx Spartan II FPGA. Output along with internal states of

the embedded processor can be seen on seven segment display of Xilinx Spartan II FPGA kit,

available with us in microprocessor and computer lab. Synthesis reports and Place & route

reports are also provided to verify the design implementation.

This work focuses on the design methodology based on tools and techniques to capture

the design and develop a Hardware Prototype of it. Like any other engineering design,

Microcontroller designed is tested consistently and made modifications throughout whenever

any problem arose. Pipeline has been modified and remapped for the better performance.

Simulation is done using Xilinx ISE and Aldec Active HDL simulation environment to

perform functionality test of this code. Synthesis optimization tools were used to convert the

chip design in to smaller and faster design. Lastly the synthesized design is verified and

various synthesis reports are analyzed to evaluate and. verify the performance of the designed
chip.

Atmel AVR RISC microcontroller (AT90S1200) is chosen as prototype, model for

design and all the necessary features of AT90S200 is implemented successfully in Xilinx

Spartan 2 FPGA. Microcontroller designed in this dissertation can process 74-86 instructions

simulation result of all the instructions are been tested and validated successfully by means of

hand calculations. All the important features of a microcontroller are implemented in FPGA,

which now behaves as is a microcontroller core.

vii

CHAPTER 1: INTRODUCTION

1.1 Introduction
In the ever-changing world of technology, new ideas are born and legacy

technologies are left aside to be chronicled in the history books. Although new
technologies become available, sometimes it is necessary to maintain older technology
when servicing electrical systems for maintenance and redesign of existing systems.
The lack of money usually prevents the redesign of systems. Since some systems

cannot be replaced using new technology, technicians are challenged to maintain

electrical systems with parts that are not procurable by commercial buyers and or

government purchasers.
Microcontrollers and microprocessors are the most used devices in electronic

equipment. Modem technology demands from any engineer, a basic microcontroller or
microprocessor knowledge. The basic difference between them is that microprocessors

can be configured for the amount of memory and the input / output system used. The
microcontroller has all the computing system (1/0 system and memory) built in it.

Designer's judgment determines which one should be used [1].

The emphasis of this work will be in the design of complete microcontroller

with CPU, RAM, ROM and I/O system in FPGA; microcontroller and microprocessor

layout, fabrication process and technology are beyond the scope of this work and will

not be considered at all. Design performance parameters like speed, power dissipation,
wiring, packing, and transistor sizing are also beyond the scope of this world.

The design methodologies used to develop a Behavioral and Instruction Set

model for the Atmel AVR AT90S 1200 RISC microcontroller and the results of testing

these models.will be presented. VHDL is used to create the Behavioral model and the

Instruction Set model. It is the intent of this dissertation to develop a model for the

Atmel AVR AT90S1200 RISC microcontroller. This will allow for an understanding of

how to best replace obsolete parts with new components, especially complex parts: The
replacement of obsolete or singled sourced parts by emulation of the existing chip or

using remaining die at. chip supply houses usually yields a cost effective. Sometimes

board or system redesigns are necessary to eliminate a high percentage of_ system or

board level obsolete components. This is often very expensive and time consuming.

1

The state-of-the-art of digital circuit design now provides for an efficient, CAD

oriented methodology for implementing digital designs, by using VHDL. During the

60's-70's system level and microcomputer design entailed building systems out of

many individual logic gates manufactured on Integrated Circuits (IC). This design

technique was very costly and time consuming. As the technology moved forward from

medium-scale integration (MSI) to large-scale integration (LSI), to. very large-scale

integration (VLSI), the need for, new design tools became apparent. With the ability to

incorporate many functions on one IC, engineers needed a way to quickly design a

function and or circuit and test, the design. The standard known as VHDL was first

created in 1987, [6].

VHDL allows for hardware description in a text based language. VHDL is

similar to Ada, a government standardized, portable, and object oriented software

language. VHDL allows a design to model a digital system at many levels of

abstraction. A description can be as simple as a 2-input logic circuit or an entire digital

system. There are five different levels of modeling: Performance modeling, Behavioral

modeling, Instruction Set modeling, RTL modeling, and Gate-Level modeling.

The Behavioral model developed is an abstract model of the Atmel RISC

microcontroller that demonstrates a basic understanding of how instructions are fetched

and executed. The model was written to give a starting point of understanding to the

overall design. Hence the Behavioral model will not have any physical implications

pertaining to the"original microcontroller.

Once the Behavioral model has been written one can then focus on developing

an Instruction Set model. The Instruction Set model developed here allows for

exercising a subset of Intel MCS-51 instructions. Since Atmel RISC microcontroller is

a feature-reduced version of Atmel RISC microcontroller, it uses MCS-51 instructions.

Increasing performance and gate capacity of recent FPGA devices permits

complex logic systems to be implemented on a single programmable device. Such a

growing complexity demands design approaches, which can cope with designs

containing hundreds of thousands of logic gates, memories, high-speed interfaces, and

other high-performance components [26].

1.2 Motivation behind the work

The motivation for .this work comes after the author took the course, "online

Computer Application techniques". The author realizes that microcontroller design

2

could be an opportunity to summarize and apply most of the electronic engineering

basic and advanced courses. Basic electronic course, digital logic circuits and advanced

digital design are some of the electrical engineering courses used in this work.

Another motivation for this work lies in the author's desire. to learn and master

the microcontroller concepts, design and operation. For many years literature has been

published regarding microcontroller and digital design. Techniques, methods, and

procedures have been. published, but most of them are usually explained using, a

symbolic or algorithmic approach. Some examples of this kind of approach can be

found in "Computer Organization and Architecture Principles of Structure and Function

[8]. Computer Organization and Design The Hardware / Software Interface" [9], The

Intel Microprocessors 808X, Pentium and Pentium Pro" [10] , "Embedded Systems and

Computer Architecture"[3],

To grasp the basic concepts at the starting stage, one may feel more comfortable

when they see the theoretical materialization, simulation and execution of hardware

circuits, instead of large equations, diagrams, algorithms and symbols that most of the

microcontroller information' sources offer. The hardware implementation of every

concept is what makes this work useful for beginners to learn and understand

microcontroller concepts.

One of the main features of this. work lies in the fact that it follows a series of

steps• and makes emphasis on 'the most important points in each and everyone of those

steps: Beginners just have to follow those steps in order to design and simulate their

own microcontroller. This work illustrates the design, simulation, testing, and

implementation of all microcontroller circuits in each step. Through the whole process

you will appreciate the complete microcontroller evolution and transformation from

zero to a functional unit.

This method provides mechanisms to change some of the microcontroller parts

without affecting others. It makes emphasis on modularization. Through the whole

process, modules of each part are designed and can be changed individually without

affecting the entire system. This allows experimentation and circuit changes to examine

what is happening inside [3].

One possible application of this work is that one can transform microcontroller

schematic into VHDL.code and download it to an FPGA for prototype simulation. This

increases understanding of microcontroller concepts and .operation, with hands-on

experience; one - can examine how the' instruction execution is and how the

r

microcontroller circuits work in every instruction. Also multiple versions of one

microcontroller can be developed with slight changes, allowing you to observe the

effect of those changes in each design and simulate each prototype on FPGA.

A weak point of this method is that it does not achieve an efficient

implementation. Performance is not the main- point of this work; just delivering the

most important microcontroller concepts. The focus of this work is in the methodology,

not in the computational capabilities and features of the microcontroller. Besides its

educational approach, another important point is that this method provides a

mechanism to design a microcontroller that can be simulated, as said before, on FPGA,

but also can be used on real applications. In other words, slight changes can produce a

different microcontroller for new applications , as needed. Users do not have to buy a

new microcontroller but try a different one using this method. Of course this is

convenient for experimentation or academic purposes only, not for applications where

performance is the critical point.

Modem microcontroller costs are relatively low, and are very useful for many

applications but sometimes there are situations that are better handled with specially

designed microcontrollers for specific applications. For example, a designer may want

to build and control his/her own personal robot, with a specific instruction set.

Designers can find in the market some inexpensive microcontrollers that suit design

requirements. But those popular microcontrollers perhaps are for general use, but

probably lacking features - that designers would be looking for. Then, sometimes

designers invest huge amounts of time and effort designing and programming assembly

routine codes in order to achieve the required microcontroller performance, as to take

full control of their robot [4].

Designing a microcontroller for specific needs allows designers to minimize the

programming complexity and enhance designers system's performance. Designers also

should keep in mind that microcontroller programming is as important as the micro-

controller hardware design. Although it is not the intention of this work to discuss the

microcontroller programming, this work illustrates the instruction execution of the

microcontroller. This helps a lot when we are trying to understand the basic concepts of

assembly programming like the addressing modes, clock cycles, and operands.

The quality of the microprogramming is what makes it possible to transform the

complex circuits of the microcontroller, into something useful. - One of the main

motivations for this work will be that inexperienced designers will not only gain an

L,

insight of microcontroller design and operation, but also, designers will get a better
understanding of the microcontroller assembly programming [2].

1.3 Objectives .
The main objective of this dissertation is to design a RISC microcontroller using

VHDL and implement it in an FPGA. The microcontroller instruction set and features
are based on Atmel AVR AT90S1200 RISC microcontroller. The microcontroller must
be able to fit into the targeted FPGA device, which is Xilinx Spartan II xc2s200-

5pq208. Features which cannot be implemented on an FPGA (analog comparator, pull-
up resistors, etc) and which are not critical to the operation of the CPU (watchdog reset)

will be ignored.

1.4 Introduction to Atmel AVR AT90S1200
The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR

RISC architecture. By executing powerful instructions in a single clock cycle, the

AT90S 1200 - achieves throughputs approaching 1 MIPS per MHz allowing the system

designer to optimize power consumption versus processing speed. The AVR 'core

combines a rich instruction set (89 powerful instructions) with the 32 general purpose

working registers. All the 32 registers are directly connected to the Arithmetic Logic

Unit.(ALU), allowing two independent registers to be accessed in one single instruction

executed in one clock cycle. The resulting architecture is more code efficient while

achieving throughputs up to ten times faster than conventional CISC microcontrollers.[]

The microcontrolle'r also comes with 1K Bytes of in-system programmable flash
as the program memory and 64 bytes of in-system programmable EEPROM. The

AT90S1200 is equipped with one 8-bit timer/counter with separate prescaler, one on-
chip analog comparator, a watchdog timer with on-chip oscillator and SPI for in system

programming. It also features the, external and internal interrupt. There are a total of 15

programmable 1/0 lines. The IC come in 20-pin PDIP and SOIC. with 2 speed grades, 0

- 4 MHz for AT90S1200-4 and 0 — 12 MHz for AT90S1200 [25].

1.5 Overview of the Microprocessor and Microcontrollers
1.5.1 Microprocessors

A microprocessor, as the term has come to be known, is a general purpose digital
computer's central processing unit (CPU). Microprocessor CPU contains arithmetic and

5

logic unit (ALU), a program counter (PC), a stack pointer (SP), some working,

registers, a clock timing circuit, and interrupts circuits.

To make a complete microcomputer, one must add memory; usually read only

program memory (ROM) and random-access data memory (RAM), memory decoders,

an oscillator, and a number of input/output (I/O) devices, such as parallel and serial

data ports. In addition, special-purpose devices, such as interrupt handlers and counters,

may be added to relieve the CPU from time consuming counting or timing chores.

Equipping the microcomputer with mass storage devices, commonly a floppy and hard

disk drives, and I/O peripherals, such as a keyboard and a CRT display, yields a small

computer that can be applied to a range of general-purpose software applications [1].

The hardware design of a microprocessor CPU is arranged so that a small or very

large system can be configured around the CPU as the application demands. The

internal CPU architecture, as well as the resultant machine level code that operates that

architecture, is comprehensive but as flexible as possible.

The prime use of a microprocessor is to read data, perform extensive cal-

culations on that data, and store those calculations in a mass storage device or display

the results for human use. The programs used by the microprocessor are stored in the

mass storage device and loaded into RAM as the user directs. A few microprocessor

programs are stored in ROM. The ROM-based programs are primarily small fixed.

programs that operate peripherals and other fixed devices that are connected to the

system. The. design of microprocessor is driven by the desire to make it as expandable

and flexible as possible, in the expectation of commercial success in the marketplace.

1.5.2 Microcontrollers

Typically microcontroller is a true .computer on a chip. The design incorporates all

of the features found in a microprocessor CPU (ALU, PC, SP, and registers). It also has

added the other features needed to make a complete computer: ROM, RAM, parallel

I/O, serial I/O, timer / counters, interrupt control and a clock circuit.

Like the microprocessor, a microcontroller is a general purpose device, but one that.

is meant to read data, performs limited calculations on that data, and control its

environment based on those calculations. The prime use of a microcontroller is to

control the operation of a machine using a fixed program that is stored in ROM and that

does not change over the lifetime of the system.

The design approach, of the microcontroller mirrors that of the 'microprocessor:

C.1

make a single design that can be used in as many applications as possible in order to
sell, hopefully, as many as possible. The microprocessor design accomplishes this goal

by having a very flexible and extensive repertoire of multi-byte instructions. These
instructions work in a hardware configuration that enables large amounts of memory
and I/O to be connected to address and data 'bus pins on the integrated circuit package.
Much of the activity in the microprocessor has to do with moving code and data to and
from external memory to the CPU. The architecture features working registers that can
be programmed to take part in the memory access process, and the instruction set is

aimed at expediting this activity in order to improve throughput. The pins that connect
the microprocessor to external memory are unique, each having a single function. Data
is handled in byte, or larger, sizes [2].

The microcontroller design uses a much more limited set of single and double byte
instructions that are used to move code and data from internal memory to the ALU.

Many instructions are coupled with "programmable" pins on the IC package. The

microcontroller is concerned with getting- data from and to its own pins; architecture
and instruction set are optimized to handle data in bit and byte size.

1.6 Comparison of Micro controllers and Microprocessors
The microprocessor is an integrated circuit composed by the Control Unit,

Arithmetic Logic Unit, Registers and Digital circuit support. The microprocessor uses

its data bus pins, address bus pins, and control lines pins to allow connection to other
circuits to configure the entire system. The main characteristic of the microprocessor is

that it is an open system, which means that its configuration is variable, and can be

adapted to many different applications [4].

The microcontroller is a closed system. In which all parts are fixed in the same

chip. Just the lines-that control the peripherals are the ones that go outside the chip.

This characteristic makes microcontrollers suitable for specific applications or for

general use. The microcontroller applications range is narrower than the

microprocessor's range. The reason is that microcontrollers have all their computing
system integrated on the same chip. This reduces the available space inside the
microcontroller to include components that the microprocessor has externally like

memory and I/O system. This means that a microprocessor can be used for

microcontroller applications but microcontrollers cannot always be used for most
microprocessor applications. Microcontrollers are preferred when the application is

7

defined and specific. In those situations where important system modifications are

needed or applications are not specialized a microprocessor is more convenient.

The contrast between a microcontroller and a microprocessor is best exemplified by

the fact that most microprocessors have many operational codes (opcodes) for moving

data from external memory to the CPU; microcontrollers may have one or two.

Microprocessors may have one or two types . of bit handling instructions;

microcontrollers will have many.

Microcontrollers are found in small, minimum component designs performing

control oriented activities, •such as the traffic lights. These designs were often

implemented in the past using dozens or even hundreds of ICs. A microcontroller aids

• in reducing the overall component count. All that is requires is microcontroller, a small

• number of support components, and a control program in ROM.

To summarize, the microprocessor is concerned with rapid movement of code.

and data from external addresses to the chip; the microcontroller is concerned• with

rapid movement of data within the chip. Microcontroller can function as a computer

without the addition of any external hardware; microprocessor must have many

additional parts to be operational [1]. 	- 	 -

1:7 Microcontroller Performance Factors
Microcontroller performance can be defined in terms of speed, size, power,

cost, design time and manufacture cost. Each depends on concepts beyond the scope of

this work. The main factor that determines the microcontroller performance [5] are its

architecture, design features and manufacture process. Thus the microcontroller

performance depends on designer's judgment at the design stage. The architecture

features determine the remaining microcontroller characteristics. The architecture

depends on the microcontroller application. Different applications differ in features and

data processing requirements. The Von Neumann architecture and Harvard architecture

[3] are the two main architectures used in microcontroller design.

The Harvard architecture is the most :popular nowadays. The Von Neumann

architecture main characteristic is that it uses one main memory where data and

instructions are stored. Only one system bus is used for control, data transfer,

processing and addressing. Harvard architecture consists of two different and

independent memories in which one contains instructions and .the other one contains

6

8

data. Both have their own data bus systems for control, data transfer, processing and

addressing. Both memories -can be accessed simultaneously.,

The Architecture and the hardware implementation features transform an idea

into a circuit with specific characteristics. Computer simulation allows designers to

verify that circuit works as required. When specification constraints and performance.

requirements are met, it is time for testing and manufacture.. Design aspects defined by

the architecture determines which manufacture process will be used.

1.8 CISC vs. RISC Architecture
1.8.1 Complex Instruction Set Computer (CISC)

In early days, computers had only. a small number of instructions and used

simple instruction sets, forced mainly by the need to minimize the hardware used to

implement them. As , digital -hardware become cheaper, computer instructions tend to

increase both in number and complexity. These computers also employ a variety of data

types and a large number of addressing modes.. A computer with a large number of

instructions, are known as complex instruction set computer, abbreviated CISC.

Major characteristics of CISC architecture are:

• A large. number of instructions - typically from 100 to 250 instructions

• Some instructions that perform specialized tasks and are used infrequently

• A large variety of addressing modes — typically from 5 to 20 different modes

• Variable-length instruction formats

• Instructions that manipulate operands in memory

1.8.2 Reduce Instruction Set.Computer (RISC)
In the early 1980s, a number of computer designers were questioning the need

for complex instruction sets used in the computer of the time. In studies of popular

computer systems, almost 80% of the instructions are rarely being used. So they

recommended that computers should have fewer instructions and with simple

constructs. This type of computer is classified as reduced instruction set computer.

The first characteristic of RISC is the uniform series of single cycle fetch and

execute operations for each instruction implemented on the computer system - being

developed [9]. A single cycle fetch can be achieved by keeping all the instructions -a

standard size. The standard instruction size should be equal to the number of data lines

E

in the system bus, connecting the memory (where the program is stored) to the CPU. At

any fetch cycle, a complete single instruction will be transferred to the CPU. For

instance, if the basic word size is 16 bits, and the data port of the system bus (the data

bus) has , 16 lines, the standard instruction length should be 16 bits.

Achieving uniform execution of all instructions is much more difficult than

achieving a uniform fetch. Some instructions may involve simple logical operations on

a CPU register (such as clearing a register) and can be executed in a single CPU' clock.

cycle. without any problem. Other instructions may involve memory access (load from

or store to memory, fetch data) or multi-cycle operations (multiply, divide, floating

point), and may be impossible to be executed in a single cycle.

Some of the necessary conditions to achieve a streamlined operation are:

1. Standard, fixed size of the instruction, equal to the computer word length and to

the width of the data bus.

2. Standard execution time of all instructions, desirably within a single CPU cycle

Which instructions should be selected to be on the reduced instruction list? The

obvious answer is: the ones used most often. It has been established in a number of

earlier studies that a relatively small percentage of instructions (10 — 20%) take up

about 80% — 90% of execution time in an extended selection of benchmark programs.

Among the most .often executed instructions were data moves, arithmetic and logic

operations. As mentioned earlier, one of the reasons preventing an instruction from

being able to execute in a single cycle is the possible need to access memory to fetch

operands and/or store results. The conclusion is therefore obvious we should minimize

as much as possible number instructions that access memory during execution stage.

This consideration brought forward the following RISC principles:

1. Memory access, during execution stage, is done by load/store instructions only.

2. All operations, except load/store, are register-to-register, within the CPU.

Most of the CISC systems are microprogrammed; because of the flexibility that

microprogramming offers the designer. Different instructions usually, have

microroutines of different lengths. This means that each instruction will take a number

of different cycles to execute. This contradicts the principle of a uniform, streamlined

handling of all instructions.- An exception to this rule can be made when each

instruction has a one to one correspondence with a single microinstruction. That is,

each micro routine consists of a single control word, and still let the designer benefit

from the advantages of microprogramming. However, contemporary CAD tools allow

10

the designer of hardwired control units almost as easy as micro programmed ones. This

enables the single cycle rule to be enforced, while reducing transistor count.

In order to. facilitate , the implementation- of most instruction as register-to

register operations, a sufficient amount of CPU general purpose registers has to be

provided. A sufficiently large register set will permit temporary storage of intermediate
results, needed as operands in : subsequent operations, in the CPU register file. This, in

turn, will reduce the number of memory accesses by reducing the number of load/store

operations in the program, speeding up its run time. A minimal number of 32 general

purpose CPU registers has been adopted, by most of the industrial . RISC system

designers.

The characteristics of RISC architecture are summarized as follow:

• Single-cycle instruction execution

• Fixed-length, easily decoded instruction format

• Relatively few instructions

• Relatively few addressing modes

• Memory access limited to load and store instructions

• All operations done within the registers of the CPU

• Hardwired rather than micro programmed control unit

• Relatively large (at least 32) general purpose register file

1.9 Microcontroller Applications

The microcontroller is one of the most important electronic devices on which

modern technology is based on. Microcontroller uses are endless; from toys to TV sets,

microwaves, ovens, computers, printers, cars and so on. Digital circuits become larger

and larger as more functions need to be executed. In modem digital world, most of the

individual digital circuit components are sold in a single chip. Those individual chips

need power and space to operate. When the circuit becomes huge, the traditional logic

design approach is not the best option and microcontrollers become convenient.

Microcontrollers are basically sequential machines because their operation depends on

their current status and its inputs. Their power lies in the fact that the hardwire

configuration allows its operation to be changed depending on programming. It is not

required to use additional logic circuits if the operation is changed [4].

11

12

CHAPTER 2: MICROCONTROLLER ORGANIZATION

2.1 Tradeoffs in Microcontroller Design
An important question that must be answered before attempting to implement a

microcontroller is, Is it necessary to use a special purpose microcontroIler?[3] In addition
to having the basic instruction set, special purpose microcontrollers usually have -
instructions specialized to perform specific tasks. Those microcontrollers include in
their design, special hardware that is used for execution and calculation support to

execute instructions in their specific applications. The application determines the
microcontroller operation, and the operation is executed with specific instructions.
Then, the real deal in the design process consists in -making tradeoffs between
designing more powerful and complex instructions that reduce the programming- code,

or as another alternative, the operation can be implemented in hardware to save the

time-consuming programming of certain tasks and achieve faster execution.
Should an operation be implemented in hardware or software? Is it worth? 131

Answer to those questions depends on many factors like design requirements, available

budget, technology used and so on. Hardware instructions implementation result in

faster executions but increase design cost. Software implemented operations save
hardware and costs but increases the instruction execution time and the programming

complexity. There are not defined rules. Designers have to make their choices based on

design constraints and available resources to produce the best system performance at

lower cost.

2.2 The MicrocontrolIer Operation
The microcontroller operation consists in four steps:

1. Fetch process; the fetch process consists in retrieving one instruction from

memory and loads it in the Instruction Register.

2. Decoding; once the instruction is in the Instruction Register, the control unit

receives the operational code from it. The control unit decodes the operational

code to identify the instruction to be executed.

3. Executing; after the control unit identify the - instruction, if start a series of

microcontroller hardware signal activations. The control unit ensures that the

13

necessary elements are on and off in each clock cycle to accomplish the

instruction execution.

4. Storing results: after the execution of the instruction results obtained must be

stored at appropriate place.

Clock

Reset

PORT A

Figure 2.1: Microcontroller basic block

Basically the CPU addresses a memory location, obtains (fetches) a program

instruction that is stored there, and , carries out (executes) the - instruction.' After

completing one instruction, the CPU moves on to the next one. This fetch and execute

process is repeated until all of the instructions in a specific program are done. The fetch

process clock cycle depend on the Instruction Register size (instruction word) and the

number of bits of the data bus. For example if the IR size is 16 bits and the data path is

four bits, then four clock cycles will be needed for the fetch process. The memory size

will determine how many instructions can be stored in it and indeed the program size

that can be stored.

The first step in the hardware design is to prepare the specification of the

design. The architecture and the instruction set must be understood thoroughly. The

design ideas are then described with VHDL in a text editor. Then, the VHDL code is

synthesized with xilinx ISE 7.1 i. If synthesized successfully, Xilinx ISE 7.1 i will

generate a net list files (EDF file). This file is then sent to xilinx ISE 7.1i - for

compilation and simulation. Results are verified by simulation.

The hardware design process is repeated until the microcontroller is complete

without any errors. Hardware implementation is performed by downloading the design

into the targeted FPGA device (Xilinx Spartan II xc2s200-5pg208). The hardware

implementation tests the design in real physical environment by some control

applications. A microcontroller can perform thousands of control applications. For

every application, different programs must be written and store into the program ROM

of the microcontroller before it can do the job. So,before the microcontroller is

• downloaded into the FPGA device, the specific program for the application must be

written. This program file, together with the EDF file of the complete microcontroller is

14

then sent to xilinx ISE 7.1 i for compilation and device programming. Once
programmed into the device, the FPGA is reset to_execute the application.-

2.3 Microcontroller organization

The microcontroller has 2 input pins (reset & clock) and 2 bi-directional UO
ports. Each I/O port consists of 16 individual 1/0 pins, total of 32 I/O pins. The clock
signal will drive the whole microcontroller directly. Reset is active high; when asserted
it resets the microcontroller to the default state even if the clock is not running. Port A

and Port B are all 16-bits port. Each bit can be configured to be input or output. All port
pins are tri-stated when the microcontroller is reset. Pin B.7 also serves as the external
interrupt source and external timer clock source.

Fetch Unit 	 Execution Unit 	 [to

Program Counter 	 j 	Genera!
Purpose
Register

r 	 Fite 	 Port B

Programu :ROM
_J 	V

Port A

	

- - -- 	 ALU
fns#ructkjn. Register

m

	

Si tars Re ist r 	~' — 	Timer

Control Unit

	

DataHtaRA1v1 	 External
„_ ... 	 lnterrOpt

	

COr ` 1; Signals 	 '.. 	7

Figure 2.2: Top-level block diagram of the Microcontroller [5].

Figure 2.2 shows the top-level block diagram of the design, the bus structure

has been simplified, but every block represents a module to be designed. At first glace,

there are 11 modules in the top-level, with the. 2 ports sharing the same module. These
11 modules are to be design separately using the top down design approach. Some
modules like the instruction register and status register are easy to design, but modules

like ALU and the control unit require a lot of understanding. The overall dataflow and

bus structure between all the modules must be understood before designing the modules

15

individually. Buses provide connection between modules. There are many direct buses,

such as the connection between program counter and program ROM, between program

ROM and IR, between register file and ALU, etc. No control signals are required for

direct buses. A common bus is a bus shared by many modules. The data bus is the only

common bus in this design. The data bus provides connection between the general

purpose register file, ALU, status register, SRAM and all the I/O features. Since there

are so many possible data flows, control signals are required to control the correct flow

direction. Only one source to the data bus is allowed at a time. If not, logic contentions

will happen and the value of the data bus will be invalid. Tri-state bus is used to

implement the common data bus. Only the correct source is connected to the data bus

while others are in high impedance state. The impedance is so high that it can be seen

as unconnected to the bus system. If the ALU is the data source, the data bus will be

flooded with the result of the ALU and is available to all the . connected modules.

Control logic will generate an enable signal for the real destination to receive the data.

Next is a brief introduction to the whole system. The system can be divided into

5 units, the fetch unit, .decode unit, execute unit, write back unit, and I/O unit. Fetch

unit is in charge of fetching the next instruction, decode unit decodes instruction and

generates necessary control signals, execute unit is in charge of executing the current

instruction and the write back unit stores result of various operations performed by

microcontroller and interrupt handling is also done. I/O unit provide a connection with

the outside world. The fetch unit and execute unit form the CPU of the microcontroller.

The first module of the fetch unit is the program counter (PC). The PC contains

the address of the next instruction to be executed. It points to the program ROM to

locate the instruction. The instruction from the ROM is then latched into the instruction

register (IR). The control unit takes the content of the IR and decodes it. It then asserts

the appropriate control signals to execute the instruction. All modules are connected

with direct buses.

The execute unit in charge of executing most instructions. Normally, to execute

an instruction, 2 operands are output from the register file to the ALU. The ALU then

perform the operation and send the result to the data bus. Contents of the data bus
(result) are then stored back to the register file. The ALU also evaluate the status

register flags and send.them directly to the status register (SR). The whole execution

process is done in a single cycle. The ALU perform many operations - include passing

the contents of a general register to the data bus. SR also has a direct.bus connection to

16

the control unit required for branch evaluation. The register file (destination and source

register) is addressed directly by some bits in IR.
A RISC Microcontroller has memory access limited to only LOAD and STORE

instructions. Load and store instructions can only transferred data between the RAM
and the register file. A load operation sends the RAM data to the general registers
through the data bus. A store operation sends the data to ALU, the ALU pass the data to

data bus and store into the RAM.
To implement the fetch and execute pipeline in this microcontroller, memory

are implemented using the Harvard architecture. Program and data are store in separate
memories. As seen in the block diagram, program is stored in the program ROM while

data are stored in the data RAM. The advantage of Harvard architecture is the ability to

fetch the pre-fetch the next instruction easily. A normal RAM will have initial value
zero when powered on. In FPGA, the RAM can have initial values and thus can make it

act as a ROM.
All the I/O modules contain many control registers. Data are sent to and receive

from it through the common data bus. The Status Register is also mapped into one of

the I/O' address. IN and OUT instructions are used to transfer data between these

control registers and the general registers. The lower half of the control registers (00 h -

1F h, shaded in gray) are directly bit-accessible using the SBI and CBI (Set/Clear Bit in

I/O) instructions. In this design, the lower half of control registers is all the I/O ports

control registers.

2.4 Description of the microcontroller design Steps

2.4.1 Justification for the design
The following are some questions that could guide designers at the

implementation decision stage and decide need of microcontroller for the application..

. 1. What is the application? Can the application be implemented with logic circuits?

What will be the resulting circuit size? Is it affordable?
2. What could be the microcontroller implementation advantage? Microcontroller

has hardwired circuits that change its' their operation using programming.

Designers should analyze if amount of different applications justify the use of a

microcontroller or if the use of individual operational circuits is more convenient.

17

3. What are the advantages or disadvantages of using a microcontroller in terms of

efficiency, time, design- complexity and cost? Budget and design requirements

analyses are necessary to decide if a microcontroller use is convenient or not.

Sometimes the use of a micro controller results in a waste of hardware resources

and sometimes it is less expensive option: There are situations in which

programming is avoided using logic circuit, but this choice could result in larger,
expensive and more complex circuits.

4. Is a microcontroller result in the best option? How many different operations will

be used? How many times one operation is executed? Is it better to use individual
circuits for every operation or using a microcontroller is more efficient? Is this

difference in time response needed for the application? Is the microcontroller

programming complexity worth instead of using individual circuits?

PC actually does
incrementingby 1 	 LIT 	• l h r~ resents got

elements Add and ALU
'I

~F1ID 	- 	- icy€Ex
	 EX/MEM

	
NiEMAMB

M
U
x

PC

iJiVUi

_ I MAU U x

Figure 2.3: Architectural block diagram of microcontroller[9]

2.4.2 The-Operation Definition

After a careful study of the application, the next step consists in defining the
amount of different operations required for the application.

18

1. What are the application operation requirements? Are those operations complex
or simple? How many different operations does the application have? Do•

designers need a new microcontroller to execute one operation or can use an
existing one? Does it execute the instruction as required in terms of clock cycle,

power & speed?
2. Is it more, convenient to divide those ' operations in more simple tasks or not?

Depending on the application and design requirements this could or could not be
possible. Can the microcontroller with its instruction set, execute those individual

and simple tasks, or a new one is needed?

3. Can those tasks be executed using more than one instruction, or is one instruction

enough?

2.4.3 The Instruction Set Definition
The instruction set should contain those instructions that the application

requires. Tasks executed, amount of hardware used and clock cycles are very important

parameters of an instruction.

• How powerful is the instruction? The term powerful means that how 'manytasks

can be executed by single that instruction. This may result in more hardware or

more clock cycles per instruction.

• How many instructions are required to perform the operation? This will be

determined by the power of the instruction set. The more powerful the instruction

set is, fewer instructions are needed per operation.

• What kind of instructions does every microcontroller must have? Every micro-

controller must have at least; logic, arithmetic, branch and data transfer

instructions.

• How many complex tasks can be executed using the simplest instruction set? The

basic instruction set can be combined to execute complex tasks. E.g.,

multiplication operation can be executed with successive execution of the

addition instruction.

• What instructions should be implemented in hardware and which ones in software

and why? Instructions frequently executed must be implemented in hardware.
This saves programming time and size, allowing faster instruction execution.

• Software instructions are used depending on the application.

19

2.4.4 The Architecture Definition
The Computer architecture refers to the basic ideas and principles in which a

computer system is based on [8]. The Architectural design steps include: -

• The Instruction Set.

• The number of used bits to represent data (4, 8, 16, 32 or 64 bits).

• Instruction Format and addressing modes.

• Number of data buses.

• Instruction execution algorithm (best arrangement of hardware to process

software).

• Clock cycles per instruction.

• -Input / Output mechanisms.

The computer organization must be specially designed to implement a particular

architectural specification. The microcontroller task is to execute each and every

instruction it receives. This means that each instruction reflects the architecture in use

by the microcontroller. -After the selection, of the desired instructions for the

microcontroller, the next step consists in specifying the rest of the architecture.

1. The instruction operation:
The first task must always be to specify each instruction operation. After designers

identify the instruction set, they must document: the instruction's name, as well as

operands and execution in symbols for each one.

2. The instruction length:
The instruction length refers to the size of the group of bits processed during

instruction execution. Using more than the necessary bits may result in excessive

hardware use and an increase in circuit size, cost and power consumption.

3. The instruction format:

The instruction format specifies the order of the instruction parameters in the

instruction word. Those parameters include the operational code, registers used, and

additional necessary data for the instruction execution.

Each instruction word has a group of bits that identifies its specific code. The

group of bits used for this code is called, the instruction operational code or opcode.

This work uses 16 main instructions, so, the minimum number of bits for the opcode

decoder is 4, enough to assign each instruction a specific code. There are no standard

FA

rules for .the order and meaning of the different groups of bits that compose the

instruction word. That depends on designers' judgment and system architecture.
a. Bits 15-12 stand for opcode. Those bits specifies instruction that will be executed
b. Bits. 11 to 10 represents as function code which gives function of instruction, used

depending on the operation.
c. Bits 9 to 5 labeled as Ra specify the register file address location to store the

processed data or the one that has been transferred from memory.
d. Bits 4 to 0 labeled as Rb, represent register file address location of one operand.

4. The instruction format organization.
The instruction word parameters can be organized as designers want. In this

work the operational code will be at the left most side, next are the functional codes, the

additional data used for the instruction execution, and finally to the right most side is

the registers used during the operation.

5. The Operational Code (Opcode).
The number of instructions decides the necessary bits for the operational code.

The operational code identifies each instruction with a unique code for its execution.

6. Addressing modes
The addressing modes decide the amount of registers used for data processing.

The addressing modes used during the instruction execution decides if more bits have

to be used to address the data or not and this affects the size of the instruction word.

7. Bits used for the Register File.
The number of registers used in the Register File determines how many address

bits in the instruction word are required to address one specific location in it.

8. Number of data buses.
.~

	

	The number of data buses in use determines the amount of data processed per

clock cycle. Using more than one data bus can save clock cycles per instructions, but

increases the data path and control unit circuit complexity.

9. Address Bus:
Depending on design requirements the address bus is not necessary if the

address bits can be transferred using data bus. A dual role requires additional hardware.

10.1/0 Handling:
Will the I/O ports be memory mapped or handled separately? Memory mapped

ports do. not require special I/O instructions.

21

2.4.5 The Arithmetic Logic Unit

In step V, the goal is to design the Arithmetic Logic Unit circuit, which is one

of the most fundamental CPU components, where mathematical and logical operations

are executed. Techniques used in this work for the ALU .design consist in designing all

its individual circuits and connecting them in parallel.

1. ALU components: The individual circuits that execute all the arithmetic and logical

operations are joined together as one unit to compose the Arithmetic Logic Unit.

2. Testing: Designers must. ensure that every individual circuit in the ALU correctly

does every calculation; flags are added for that purpose.

All mathematical and logical calculations are executed at the same time, but

only the desired calculation will be the one released to the ALU output port by means

of the tristate buffer activated. Caution should be taken with significance of the input

and output bits of every circuit. Mistakes can lead to miscalculations and continue

through the rest of the instruction execution.

2.4.6 The Register File

A register is a small high-speed memory circuit that holds binary data. Register

File is a group of registers used to store data during the instruction execution. In this

step, the Register File is developed. The Register File stores data retrieved from

Register, memory or input port resulting from various operations in ALU. All

temporary data used by the microcontroller to perform its operations is also stored in

the register file. Register File design consists of three stages: register selection stage,

input stage and output stage.

1. Implementation alternatives

The number of data buses in the microcontroller determines the Register File

design. Sometimes more than one data bus is used to accept and release the data

simultaneously in one clock cycle. Designers must decide how many data. buses

will be used in the microcontroller because Register File will use the same number.

2. The number of registers for the application

The number of registers is an important design parameter because it affects not only

The Register File size but also the Instruction Register size because the IR has bits

dedicated for the Register File address. Designers must select the number of

necessary registers to hold data in each instruction clock cycle.

22

2.4.6.2 The Register File Selection Stage

The instruction word identifies two parameters: Ra and Rb. Each of this

parameter, when referring to registers, is actually addresses that identify a register from

the register file. Since Ra and Rb have five bits, the register file has 32 registers. One
register is selected by means of a decoder 5x 32. The control unit will activate signals
to indicate which register is assigned to Ra or Rb of the instruction word.

2.4.6.4 Register Transfer

The whole design contains many registers, special purpose, registers (IR, PC,

MAR, MBR), general purpose registers (R0,- Rl....R31, I/O control registers) etc. The

whole system works by transferring data between these registers (register transfer).

Some data are transferred without modification while some are manipulated before

transfer to the next register. If the data are to be manipulated, they are manipulated by

the combinational logic between these registers. How these data are transferred, how

are they being manipulated before transfer, and what does different data inside the

register means, will determine whether the design can work as microcontroller. The

design will perform a long series of register transfer to form the functioning of a

microcontroller. Registers are transferred to another through many levels of the

combinational logic.

A read of the status register will bring the contents of the status register to one

of the general register directly without manipulation The combinational logic Perform

AND operation between two general registers, will pass the two registers through a

combinational logic (the logic unit) before writing back to one of the register. Memory

(program ROM and data RAM) are treated_ as a kind of combinational logic. PC is

passed through the program ROM to the instruction register. The instruction register

will receive instruction in from program ROM pointed by PC.

So, the design process is to design all the registers along with combinational

logic and the interconnection between. them. This is called the data path of the system.

Control signals are then used to determine how the register transfer takes place. Control

signals are asserted by the control unit. The data path, along with the control unit forms

complete microcontroller. It is important to know what registers exists in the system.

23

Register

G/t<: Combinational Logic

;L

G-L 	t

Figure 2.4: Implementation of register transfer

2.4.7. The Instruction Register (IR)
The Instruction Register holds the instruction word that will be executed. The

IR is connected to the control unit, the Register File & data path.

1. Implementation alternative:

The IR implementation consists of a register or a group of registers that holds the

instruction word.

2. Size:

It will be easier if the size is equal to the word size because then, the instruction

word holds all the required information for the instruction execution.

The memory output is connected to the IR to load every single program

instruction line. The IR does not have to be the same size of the data bus because- it just

transfers data and does not contain any other information about the instruction.

2.4.8 Data Path

The microcontroller data path is the configuration of all the circuits used for

data processing. Some key points are very important in this step.

1. Layout: Designers must be creative and use strategic thinking to make the best

circuit arrangement in order to achieve the instruction execution using the minimum

amount of hardware and clock cycles.

2. Clock cycles:. More data can be processed at the same time depending on the
•amount of RegisterFile input and output ports. Another important element is the

number of additional registers in data path used to hold data between clock cycles.

This can make a difference in number of CPI if designers know how to use them.

24

2.4.8.2 Basic Data Path
In order to make useful all the elements it is necessary to provide a path for

communication between them to transfer data from one to another. This data path can

perform the basic instructions and will be used as the basis to develop more complex

instructions. As more complex instructions are added, this data path undergoes an
evolution into a more complex one, adding more hardware in parallel.

To test the feasibility of basic instructions this data path can process data
provided by switches. Switches can be used to store values in the Register File. Address

lines of Ra and Rb are connected from the IR to Register File to access the data.
Register File output port is connected to the ALU input ports to perform logic and

mathematical operations. The ALU output port is connected to the Register File input

port to store results.

2.4.8.3 Data Path with Immediate Operations
At this point, when adding new hardware to implement new instructions, there

are some details that should be taken care of, in particular:

1) Control signals, IR related logic and Connection to buses and other blocks

2) Overall issues such Signal conflict and Delays.

The data path is next modified to include other ALU operations, like, immediate

addressing mode operands. The immediate values are put in bits 0 — 7 of the instruction

register. The data path modification consists in making a connection between those
immediate values in the IR and the ALU. But the connection cannot be done directly

because the values in the Register File can cause conflict, with those in the data path. To
solve this problem a tristate buffer is used to isolate the data in the Register File from

those in the data bus. New parts added in the data path are identified with lines.

2.4.9 The PC, Jump and data transfer instructions
The instructions developed at this stage use the existing data path hardware and

additional necessary circuits added in it for instruction execution.

1. Those instructions need additional circuit support because some of them make
instructions are executed. It is very important to test those circuits before using

them for support. Another reason for using additional hardware is that more than

one task per clock cycle is executed in those instructions.

2. Draw the block diagram to show the added elements: It is convenient to show

added elements to the data path to see its transformation into a more complex one.

3. Program counter: The program counter is developed at this step. This step

presents the PC implementation and interconnection in the microcontroller circuit.

2.4.10. The Control Unit

The control unit is the CPU section that decodes program instructions and

controls their execution. It takes control of every signal in the -microcontroller,

activating or deactivating those signals in each clock cycle. The signal activation and

deactivation per clock cycle make possible the flow of data through all data path

circuits. The circuit arrangement determines the amount of processed data in each clock

cycle. Then, as more data is processed per clock cycle fewer of them are needed. The

developing method used in this work requires that designers "run" by hand every single

instruction and take notes of which circuit signals are activated and 'deactivated per

clock cycle.

1. Operational Code Decoder:

This element receives one specific instruction code and release one signal , that

indicates the microcontroller to execute it.

2. Control Unit Encoder:

This element receives input signals from opcode decoder and from timer. The

Control Unit Encoder activates the corresponding circuit signals that have to be

active in the specified instruction in, every clock cycle.

3. Implementation Alternatives:

The preceding explanation of the controlunit operation is implemented using logic

circuits for the control unit encoder and the opcode decoder. The control unit

implementingthis approach uses the opcode to identify the instruction location in

ROM. Each line code in ROM represents each instruction clock cycle and the code

in every line just controls (activates or deactivates) all the data path circuit signals.

26

4. Control Signals Characteristics

If the control signals are used to control the data path"then the characteristics of

the control signals must be understood before one can proceed further. First, a control

signal will have at least a length of one clock cycle. It usually asserted at falling clock

transition and deactivated a short delay after another falling clock. The data path

consists of many registers and combinational logic between them, so there are basically

2 kinds of control signals. The first kind controls the combinational logic and the

second kind controls the registers.

When a combinational logic encounters a control signal, it will act towards the

signal immediately. The delay to get the valid result is the delay for the input to

propagate through the combinational logic. The combinational logic can be functional

unit such as adder and shifter, steering logic such as multiplexers and decoders or

memory (program ROM and data RAM).

A register control signal requires a falling clock to operate. WR REG signal

will only latch the data into the destination register of the register file when it

encounters the falling clock, the operations is actually happened at the end of the

control signal where it meet the falling clock. These kinds of control signals are the

enable signals for the registers, or the increment/decrement signal for a counter.

27

28

to many embedded control applications. The AT90S1200 AVR is supported with a full

suite of program and system development tools including: macro assemblers, program

debugger/simulators, in-circuit emulator's, and evaluation kits.

The Atmel RISC microcontroller is a rather simple machine with quite a bit of

flexibility. The 4 I/O ports are perfect for communicating with many external

applications. The rich interrupt structure aides well in a control environment. Fig. 3.1 is

an architecture block diagram of the Atmel RISC microcontroller. More specifically,

register organization is more pronounced and the bus structure is well defined. Atmel

RISC microcontroller design is based on Harvard architecture; the data space and the

program space are separated. One feature that is noteworthy is the memory-mapped

ports. All of the external ports are memory mapped, which simplifies programming

control projects. These external data port addresses reside in the memory where

registers are given term Special Function Register (SFR). Careful study of architecture

gives rise to several SFRs.

Although the special function registers seem to exist as individual registers

within the architecture, they are part of the Atmel RISC microcontroller internal RAM

structure. The . internal RAM of the Atmel RISC microcontroller has four distinct

spaces. The upper 128 bytes of RAM contain the SFRs. The lower half of the RAM is

further divided into three segments, scratch pad, bit addressing segment, and the

register bank area

Though the SFRs as being within the structure of the RAM, it is more likely and

is hypothesized that most of the SERs are physically located outside of the RAM space.

Not having these registers in the RAM space would allow for easier placement and

access within the datapath. For example, the SFRs for ports P0, P1, P2, and P3 are

probably close to the peripheral of the chip, yet they are accessed as though they are

physically in the RAM. This could not be verified since Intel keeps these secrets to

themselves. Within the lower portion is a scratch pad area for general use.

A bit addressable segment has been included for control applications. The

lowest portion of the RAM block contains a bank of registers. The register banks can be

accessed by direct or register addressing. The Program Status Word (PSW), which is a

SFR located at DOh, contains two bits that shift a pointer to specify with bank to use.

Otherwise a programmer may directly request or write data to this space.

30

i'~YQIIfCNy~hS~Yi 	 yy.JYA~w.t.. if

i 	 +f

1 	F(14

s 	 ~

■
t 	_

i 	to?3t.~m 	~~'Citi

f 	 ,

t 	i
o 	 ! r 	g; 	rk

$

t Y 	~
6

~3" 	AR1sR~ C! Y 	t3 ~l=frt5

 tiltit

Figure 3.1: Architecture block diagram of the Atmel RISC microcontroller

3.2 Atmel RISC microcontroller Instruction Set and Addressing Modes
When one writes a program for a microcontroller, close attention is paid to what

kind of addressing modes are available to the programmer. The Atmel RISC

microcontroller program space is interfaced by four addressing modes: immediate,

register, direct, and indirect. [25]

In direct addressing the operand is specified by an 8-bit address field in the

instruction. Only internal data RAM and SFRs can be directly addressed. With indirect

addressing both internal and 'external RAM can be indirectly addressed. The address
register for an 16-bit address can be any register in register bank, or the stack pointer.

When using register addressing, the register bank, contain registers RO through R19.
These registers can be accessed by . certain instructions that include a 5-bit register
specification within the opcode.

31

The instruction set available to the programmer of the Atmel RISC

microcontroller contains 255 instructions. Dividing these instructions up into main

groups, there are 4 major classifications. These groups, are: arithmetic and logical

operations, data transfers, program branching, and Boolean variable manipulations. The

details of each instruction will not be discussed. Appendix A has been included to

provide some detail about each instruction. The appendix includes the hex code,

mnemonic, number of cycles,, and byte count for each instruction. For this thesis the

main thrust of the modeling effort was on the register addressing mode instructions. For

the Behavioral model only certain basic instructions where modeled. Basically over

half of the instruction set was modeled for the Instruction Set model: Certain

instructions will be discussed in detail as needed.

3.3 Machine Cycle Sequence
More than just study of addressing modes, instructions and - general block

diagrams is needed when modeling a microcontroller. If a model is to emulate its

predecessor, the timing of data transactions must be accurate. The "clock" input is the

base for the figure. The most critical bit of information is when Port 0 and Port 2 are

read and updated. In the Intel literature, the engineers have divided a machine cycle

into six major states, S1-S6. The port interaction information detailed here is essential

for timing accurate models.

3.4 Modeled Architecture
For the purpose of this dissertation, certain parts of Atmel RISC microcontroller

architecture were modeled and others were not. Since the end result of this work is an

Instruction Set model that. tests the Register addressing mode using only one register

bank, the architecture to support this modeling will be discussed. The Atmel RISC

microcontroller instruction set contains 255 instructions. The Instruction Set VHDL

model discussed can support 74 instructions. 61 of 74 instructions are register

addressing mode instructions. The five remaining instructions . were modeled to allow

for simulation. The functions and registers listed account for 35% of the complete

architecture. Items like the counter/timers and the UART were also modeled. The

Instruction Set VHDL model was written such that more instructions could easily be

added. The remaining functional blocks would also integrate easily.

32

3.5 Instruction format
I have implemented a total of 81 instructions; each instruction is having its

particular format. There are three basic types of instructions supported by this
processor. These are the Register Type, Branch Type, and the Immediate Type. The

specification for each'type of instructions is given below.[8]

3.5.1 Register type instruction format
In this format bits 15-12 represents the opcode. Bits 11-10 represent the

function code that represents the ALU. function that is to be performed: A bit 9-5
represents the address of the first source register, which is also the address of the

destination register. Last Bits 4-0 give the address of the second source. register. 'If the
opcode bits, 15-12, do not indicate an ALU function, then the function bits are ignored.

Instruction format for this type is shown below.

Register type instructions include MOVE ,-ADD, ADC, SUB, SBB, AND, OR, XOR,

CMP, and SHIFT.
15 	12 11 	10 9 5' 	4 	0

opcode Function Rd Rs

Figure 3.1: Register Type Instruction
3.5.2 Immediate data type instruction format

As with the Register Type instruction, bits 15-12 represents the opcode, and bits

11-8 represents the destination source register which is also the address of the

destination register. Bits 7-0 of this instruction type represent an 8-bit immediate value
given in 2's complement form. When the opcode represents a unary operation, the value ,

in this immediate field is used as the operand (instead of the value in Rd).

Immediate type instructions include MVI, ADI, SBI, ANI, ORI, XRI, and CPI

Instruction format for this type is shown below.

15 12 11 	87 	 0.

opcode Rd 	Immediate

Figure 3.2: Immediate Type Instruction

33

3.5.3 Branch type instruction format
Bits 15-12 of this instruction format represent the type of branch

operation to be performed. The remaining 12 bits, 11-0, represent the branch offset in

2's complement format. This number is added to the value of the PC to. obtain - the

branch target address.

Instruction format for this type is shown below.

15 12 11 	 'O

opcode 	 -Branch target

Figure 3.3: Branch Type Instruction

Branch type instructions include SJMP, LJMP, JCC, INT, IRET, CALL, and RET.

Table 3.1 below- summarizes all the instructions supported by the microcontroller. A

more detailed table of the instruction set along with the description for each instruction

can be found in Appendix B.

As mention earlier, RISC instructions have a fix length and are easily decoded.

For this microcontroller, all instructions have a fixed length of 16-bits. The instruction

format is simple in order to be decoded easily.

3.6 Instruction Set Summary
The operation of the CPU is determined by the instruction it executes, referred

to as machine instructions or computer instructions. The collection of different

instructions that the CPU can execute is referred to as the CPU's instruction set. Since

the instruction set defines the data path and everything else in a processor, it is

necessary to study it first.

There are 81 instructions grouped into four categories: arithmetic and logic

instructions, branch instructions, data transfer instructions and the bit and bit-test

instructions. As mentioned earlier, instruction set of the design is based on Atmel AVR

AT90S 1200 instruction set. In this way, the design can use the same assembler and

simulator provided by Atmel since the final design is actually an AT90S1200

compatible microcontroller.

34

Table 1 INSTRUCTION SET OF RISC MICROCONTROLLER

Instruction Description Arguments
ADD Addition of content of two registers Register-Register
ADC Addition with carry Register-Register
ADI Addition (immediate) Register-Immediate value
INC Increment content of register Register ,

SUB Subtraction of content of two registers Register-Register
SBB Subtraction with barrow Register-Register
SBI .. Subtraction (immediate) Register-Immediate value
DEC Decrement content of register Register
CMP Compare Register-Register
AND AND Register-Register
ANI AND (immediate) Register-Immediate value.
OR OR Register-Register
ORI OR (immediate) Register-Immediate value
NOT NOT Register
XOR XOR Register-Register
SLL Logical shift left Register
SRL Logical shift right Register
SHL Arithmetic shift left Register
SHR Arithmetic shift right Register
ROL Rotate left Register
ROR Rotate right Register
RLC Rotate left through carry Register
RRC. Rotate right through carry Register
LOAD Load word Register-Register
STORE Store word Register-Register
MOVE• Move data between registers Register-Register
MVI Move data (immediate) Register-Immediate value
SETB Set bit in register Register
CLRB Clear bit in register Register
SWAP Exchange bytes in register Register- Register
IN Get input data from I/O port Register-I/O
OUT Output data to I/O port Register- I/O
JMP Unconditional Jump Branch
JCC Conditional Jump Branch
CALL Call the subroutine Branch
RET Return from the subroutine Branch
INT Interrupt CPU to service routine Branch
HALT Stop instruction execution N/A
NOP , No operation N/A

One of the RISC characteristics mentioned earlier is single-cycle execution for

most instructions. Most instructions are single cycle except. branch instructions, the

LOAD/ STORE instructions. Of course, some of the instructions will have different

characteristics as the original AT90S 1200 instructions. They are:

1. Unconditional branch instructions now take 2 cycles.

2. Conditional branch instructions take I cycle if the branch is not taken and 3

cycles if the branch is taken.

3. WDR (watch-dog reset) instruction is not available since the watch-dog timer

features is not included in the designed

4. SLEEP will not enter any sleep modes (there are no sleep modes in the design),

it will however stop the processor and wait for an interrupt (acts as a HALT). If

an interrupt occurs, the processor will `wake up', execute the interrupt routine

and resumes execution from the instruction following HALT.

5. Data RAM is included in the design although AT90S 1200 does not contain any

data RAM. So 4 instructions are added, which are load and store instructions

with post-increment and pre-decrement.

6. General purpose registers and UO control registers are not mapped into the data

addressing space for LOAD and STORE. instructions.

3.7 Addressing Modes

There are 45 addressing modes in the microcontroller. Rd and Rr are devoted to the

destination register and source register.

1. Register Direct Addressing: The operand is in Rd.

2. Immediate addressing: Immediate data in given in the instruction itself.

3-. I/O Direct Addressing: First operand is one of the I/O registers. The address is

contained in the instruction word. The second operand is either Rd or Rr. Used by .IN,

and OUT instructions to read from or write to the UO registers.

4. Direct Memory Addressing: Operand address is specified in the instruction itself.

Used when accessing the SRAM with LOAD and STORE instructions.

3.8Brainstorming the Design, the Creative Process

A challenge for this dissertation was that there was no book to aid in breaking

down the instruction set of the Atmel RISC microcontroller. %The Atmel RISC

microcontroller,, as mentioned before, is an 8-bit micro controller. This implies that the

instruction set could have a total of 256 .instructions and indeed the Atmel RISC

microcontroller instruction set does have 256 instructions including one NOP, i.e. no

operation instruction. The Atmel RISC microcontroller instruction set seems to have a

natural pattern to how the instruction set was structured. A most crucial aspect of this

36

work was to determine how to decompose the instruction set and use the discovered
pattern in the most efficient manner. When writing a Behavioral model, one does not
want to create a 256 entry case structure. This is a little cumbersome and would not
translate well into a RTL VHDL model. A RTL model would be used to synthesize the

design to a specific technology.
Essentially the instruction set code had to be "cracked" as how to break the -

-instruction set up in a logical manner which would facilitate coding the instruction set
into the Behavioral and Instruction Set VHDL model. Please refer to appendix A for an

"as is" version of the Atmel RISC microcontroller instruction set.- This view will give

. the reader an idea of the decomposition challenge. It was finally decided that the

instructions should be broken in the middle.
The four bit grouping consisting of the most significant bit (MSB) down to the

(MSB = 3). bit of the 16 bit instruction, commonly referred to as the upper nibble,

would identify what type of instruction was being decoded. The four bit grouping
consisting of the next 4 bits of the 16 bit instruction would indicate what type of

addressing would be needed to complete that instruction.
After the instruction set was studied, the addressing modes were analyzed. As

mentioned in chapter 3, register addressing, one of four modes, would end up being the

primary focus of this thesis. For behavioral modeling, six instructions were selected.

Next, as discussed in [1], it is suggested that the design process continue with

the construction of a register transfer table. The next table illustrates the transaction

needed to execute the above selected instructions.
Table 2 maps out the necessary register transfers to complete each instruction.

In column one the different addressing modes are noted for each instruction. Column

two identifies the instruction being described. The next 4 columns represent needed

transactions. First register transfer necessary for any of the instructions is a fetch from

the memory. The next transfer is a read from Register file/memory that contains the

data that will be required for instruction execution. The Tempt register assists. by

holding the data read. It was decided that the actual addition described with the register

transfer notation in cycle three could - be stored during the next cycle. The transfer

explanation would follow a similar pattern for the other instructions.

37

instruction Addressing 1st 2° cycle 3rd cycle 4t cycle

mode cycle (decode) (execute) (write back)
MVIL REG, - 	immediate fetch TEMP14—SXT(DATA,16) Result4—TEMP1 REG*—Result

DATA

ADI REG, immediate fetch - TEMPIF—(REG) Result <-- REG+—Result
DATA TEMP24—SXT(DATA,16) TEMP 1+TEMP2

STOR Memory fetch. TEMP14— (REG) Result*—TEMPI MEMF—Result
MEM, REG direct

LOAD REG, Memory fetch TEMP 14— (MEM) Result4 —TEMPI REGF—Result
MEM direct

MOVE Register fetch 'TEMP1F— (REG) Result*--TEMPI REGIF--Result
REG1,REG2 direct

ADD REG1, Register fetch TEMP14— (REG1) Result F-- REG2<—Result
REG2 direct TEMp24— (REG2) TEMP 1+TEMP2

Table 2 Register transfer (RTL) table

Now that states have been identified for each instruction, a state diagram can be

constructed covering all the instructions. The state diagram in Fig. 5.3 was used to

construct the Behavioral VHDL model. These states were added to allow for

configuration of SFRs.

Following state diagram creation, a Behavioral VHDL model was developed

based on following completed tasks: instruction review, addressing mode review,

register transfer diagramming, & state diagramming. Behavioral VHDL model is

primarily comprised of a control process with a case statement that emulates the state

diagram. An arithmetic function, used to emulate the ALU of the Atmel RISC

microcontroller, is called during the fetch state of the control process. The program

memory was not modeled based on true architecture. The Atmel RISC microcontroller

is a ROM-less microcontroller that normally communicates through ports 0 and 2 to

retrieve instructions. For the Behavioral model program memory is simply designed

into the same abstract structure as the process that models the states of the controller.

This simplifies the model allowing for attention to be paid to the instruction decoding

and execution.

38

The organization of the Instruction Set model is similar to that of the Behavioral
model. Both models have a control process that controls the state of the model. With
•the Behavioral model, a single process handles instruction decoding and state control.
In the Instruction Set model, these functions are separated.

The main process in the Instruction Set model is a lengthy simple looping state
machine that steps through 4 cycles for every machine cycle required for instruction

execution. The state machine cycle process monitors the status of the Ports, initiates
control signals at the proper time according to the decoded instruction, and updates the
Program Counter (PC). See appendix D for a listing of example code.

Supporting the main state machine process is a process that decodes the
instructions as they are retrieved from Port 0. When the state machine enters state "ID",

decoding of the-incoming instruction is initiated. The IR used during decoding is "split"

in to two pieces. OPN CODE for operation alludes to the upper nibble of the 8-bit

register IR and FUN CODE alludes to the lower nibble of IR. A two level case

statement structure is used for decoding process. The first case statement looks at the '4-

bit nibble FUN_CODE to determine what addressing mode the incoming instruction is

to use. Once the addressing mode is determined, additional case statement structures

within the case statement for each addressing mode type analyzes the 4-bit nibble

OPN_CODE. Once the type instruction is determined, control signals are generated

according to the specific instruction.

39

.o

CHAPTER 4: PIPELINE UNIT DESIGN

Microcontroller architecture, designed in this dissertation work, consists of a
four stage pipeline. The stages are Instruction Fetch, Instruction Decode, Execute, and
Write Back. Along with four stage pipeline, Data Forward and Hazard Detection unit is
designed to maintain proper data flow through the pipeline stages in case of any
possible pipeline conflict. Each of the stages of the pipeline along with the data forward

and Hazard Detection unit are described in detail as below.

4.1 Instruction fetch
Instruction fetch stage consists of the following units

1. Program Counter,

2. Program Memory, and

3. Branch Decide Unit

Figure 4.1: Processing in a four stage Pipelined Architecture

4.1.1 Program Counter
The Program Counter contains the address of the instruction that will be fetched

from the Program Memory (ROM) during the next clock cycle. Normally the PC is

incremented by one during each clock cycle unless a branch instruction is executed.
When a branch instruction is encountered, the new PC is calculated in execute stage is

loaded directly in Program counter (Branch adder increments or decrements PC by the

amount indicated by the branch offset).. The PC write , input of the Program Counter

41

register serves as an enable signal (output of ALU). When PC write signal is high, the

contents of the PC are incremented during the next clock cycle, and when it is low, the

contents of the PC remain unchanged.

4.1.2 Program Memory
The Program Memory contains the instructions that are executed by the

processor. The input to this unit is a 16-bit address from the Program Counter and the

output is a 16-bit instruction word. This module supports up to 2K words of memory.

4.1.3 Branch Decide Unit
The Branch Decide Unit is responsible for determining whether a branch is to

take place or not based on the Branch signal from the Arithmetic Logic Unit (ALU).

The output of this unit is a 1-bit value which is high when a branch is to take place, and

otherwise it is low. This output controls a multiplexer which in turn controls whether

the PC gets incremented by one or by the amount indicated by the branch offset.

4.2 Instruction decode Unit
Instruction decode stage consists of the following units

1. Control Unit,

2. Register File, and

3. Sign Extension Unit.

4.2.1 CONTROL UNIT

The control unit generates all the control signals needed to control the

coordination among all the components of the processor. The input to this unit is the 4-

bit opcode field of the instruction word. This unit generates signals that control all the

read and write operations of the Register File, and the Data Memory.

4.2.2 Register file organization
Register file is implemented using special FSM to take care of two simultaneous

read and one write operation. This is a single port register file which can perform two

simultaneous read and one write operation. It contains 32 16-bit general purpose

registers. The registers are named RO through R3 1. When the Reg_write signal is high,

42

a write operation is performed to the register indicated by the write address, otherwise
the value contained in the registers indicated by the read addresses are outputted.

4.2.3 Sign extension unit
The input to this unit is an 8-bit immediate value provided by all the immediate

type instructions. This unit sign extends the 8-bit value to a 16-bit value signed value.

6

4.3 Execute
Execute stage consists of the following units

1. Branch Adder,

2. Arithmetic and Logic Unit(ALU), and

3. ALU Control Unit.

4.3.1 Branch adder
The branch adder adds the 12-bit signed branch offset with the current value of

the PC to calculate the branch target. The 12-bit offset is provided by the branch

instruction. The output of this unit goes to the PC control multiplexer which updates the

PC with-this value only when a branch is to be taken.

4.3.2 Arithmetic and logic unit (ALU)
The ALU is responsible for all arithmetic and logic operations that take place

within the processor. These operations can have one operand or two, with these values

coming from either the register file or from the immediate value from the instruction
directly. The low power design of the ALU involves the gating the input signals to each

of the separate .components of the ALU. These inputs are gated using transmission

gates. When a particular component of the ALU is not being used, the input to that

component will be in a High Z state due to the output of the transmission gate. The

operations supported by the ALU include add, subtract, compare, and, or, not, xor,

logical shift, and arithmetic shift. The output of the ALU goes either to the data

memory (in the case where the output is an address) or through a multiplexer back to

the register file.

43

Figure 4.2: Block Diagram of ALU

4.3.4 ALU control unit
This unit is responsible for providing signals to the ALU that indicates the

operation that the ALU will perform. The input to this unit is the 4-bit opcode and the

4-bit function field of the instruction word. It uses these bits to decide the correct ALU

operation for the current instruction cycle. This unit also provides another set of output

that is used to gate the signals to the parts of the ALU that it will not be using for the

current operation.

4.4 Write Back Unit
4.4.1 Data memory

The Load and Store instructions are used to access Data memory module. This

module supports up to 32 data words. When new data is to be written to the memory,

the `Mem write' signal is asserted. When ' the `Mem write' signal is low, a read

operation is performed for the given memory location.

44

FIGURE 4.3 PIPELINED RISC ARCHITECTURE

45

m

4.4.2 Register Write unit

Results generated in execute unit should be transferred to register file in next

clock cycle. This stage consists of some control circuitry that forwards. the appropriate

data, generated by the ALU or read from the Data Memory, to the register files to be

written into the designated register.

4.5 Hazards in the Pipeline unit

4.5.1 Pipeline hazards: [9j
There are situations which prevents next instruction in pipeline from executing

during its designated clock cycle. Elimination of hazards often requires that some

instructions in pipeline are allowed to proceed While others are delayed.

1. Structural hazards:

These hazards result from resource conflicts where hardware cannot support all

possible combinations of instructions in pipeline. This occurs when some functional

unit is not fully utilized in pipeline, then sequence of instruction through that unit could

not proceed at rate of one pre clock cycle.

Some times structural hazards are introduced to reduce cost and latency of unit

in pipeline, shorter latency comes from lack of pipeline register that introduced•

overhead

Solution to these hazards is stall pipeline till unit causing hazard does its work

2. Data hazards
The Data hazards arise when operands of instruction in decode stage depends on

result of previous instruction which is actually being evaluated in Execute stage and

results are not available as yet. Also when operands of instruction in decode stage.

depends on result of previous instruction whose results are in Write back stage but not

yet stored in register. file.

Solution to the Data hazard is data forwarding, ALU results in the execute stage

is fed back to ALU. If the forwarding hardware detects that previous ALU operation

has written register/memory corresponding to source for the current ALU operation,

control logic selects the forwarded results as ALU inputs rather than the value supplied

by instruction decode unit.

47

3. Control hazards:

Control hazards occur when branching of program execution is required (branch

instruction causes change of the PC). If instruction takes a branch then PC is changed at•

the end of execute cycle, this .requires stall the pipeline as soon as branch is detected

until instruction at new PC location in program memory reach execute stage.

Solution for Control hazards is flushing the pipeline stages and restarting

program execution with new PC, 2 NOP instructions are inserted to prevent any faulty

operation.

All the hazards are checked during the instruction decoding and proper action is

taken by generating hazard signals to inform the execute stage, forwarding of necessary

data is done in the execute stage

4.5.2 Hazard detection unit

• This unit detects conditions under which data forwarding is not possible and

stalls the pipeline for one or two block cycles in order to make sure that instructions are

executed with.. the correct data set. When it detects that a stall is necessary, it disables

any write operation in the instruction decode pipeline registers, stops the PC from

incrementing, and clears all the control signals generated by the control unit.. By taking

these steps it can delay the execution of any instruction by one clock cycle. It can do

this as many times as necessary to ensure proper execution of instructions.

4.5.3 Data Forward unit

Forward unit is responsible for maintaining proper data flow to the ALU. The

primary function of this unit is to compare the destination register address, of the data

waiting in the Memory, and Write Back pipeline registers, to be written back to the

register file, with the current data needed by the ALU, and forward the most up-to-date

data to these units. By forwarding the data at the appropriate time, this unit makes sure

that the pipeline works smoothly and does not stall as a result of data dependencies.

Chapter 5: CONTROL UNIT DESIGN

5.1 Overview
We have touched the instruction set, pipeline processing and many control

.signals, which controls the datapath. The control unit plays the role on decoding the
instruction, implements the. pipeline processing and asserts the control signals for the
datapath at the correct timing. This chapter covers the decoding of the instruction and

the design of the finite state machine (FSM).

5.2 Instruction Decoder
The inputs of the control unit are the instruction machine code from instruction

register, the flags value, from status register, Branch request, timer interrupt request
(timer IRQ) and external interrupt request (external IRQ). The machine code is decoded
first before sending to the FSM, while the others inputs: are connected directly to the
FSM.

As discussed in chapter 3, the design- process involves 74 machine codes. The

instruction decoder takes the 16-bit machine code from the IR and generates 16 output

signals to represents the 74 instructions. At any time, the IR can only have one

instruction. So, it will not have more than one output signal active at a time. However,

if the machine code received does not match any of the 74 instructions, or is actually

NOP instruction, then none of the decoder output signal is active. When none of output

signal is active, FSM will not assert any control signal to perform an operation, so no

operation is executed in that cycle. Any undetermined instruction is executed as NOP.

5.3 The control unit
The control unit is essentially a sequential circuit. The control unit is the final

stage for the microcontroller development in this work. The control unit takes control

of signal activation of microcontroller circuits in each clock.cycle.

The Fetch Process:
The fetch process consists in loading one memory address value in the PC, and

delivering it to the memory device address port to' obtain a specific programming code.

How many clock cycles were needed for fetch process can be guessed using following:
1. The data bus size.
2. The amount of memory used to store the program.
3. Program Counter size.
4. The Existing data path circuitry: It must provide necessary circuits to ensure that

PC is incremented in every instruction execution, and that no signal conflict occurs.
5. The fetch process: Designers must ensure that PC is incremented in each

instruction, but they must decide how the data moves between the microcontroller

circuits. Designers have to make a trade off between different alternatives for fetch
process and decide number of the fetch process clock cycles and their data
processing route in the data path circuits.

OPCODE - #.
C3kODE CONTROL
DECODER SIGNALS

t IT
Tt1ER 	E3 CODER

CLOCK

Figure 5.1: control unit implementation
' The fetch process used in this work uses just one clock cycles, on rising clock

edge the Control Unit activates the IR read signal to load from memory the instruction

word to be executed. Also, the tristate buffer is activated to release the current PC value
to the data path. On falling edge of clock, Control Unit activates the add PC signal from

the ALU to increase the current PC value by one. Finally in that same clock cycle, the

Program counter clock is activated to load the incremented value to the PC.

The fetch process needs one circuit that increment the PC by one. We just add one
adder to the increment circuit that takes the pc reg data and add one to it. One of the

advantages of the technique used in this work is that it allows users to add circuit

elements without making significant design changes to the entire system.

5.4 Synchronous Mealy Model Finite State Machine
RISC control unit should be hard-wired (logic gates) rather than micro

programmed (ROM implementation). Micro programmed control unit is used by CISC
because the instruction has different length and execution cycles. So micro

programmed can make the 	 The disadvantage is slower speed
performance. In RISC, 	 mostly single cycle execution.

l M:.c) *
	

c

t r. Roof;►

So design using hard-wired is not that complicated and it will have the advantage of
speed. The FSM in this design is hard-wired, using logic gates to generate the next state
and output signals rather than a ROM. The FSM is implemented using synchronous
Mealy model. Figure 5.2 shows block diagram of a synchronous Mealy model FSM.

input 	 ;€ : 	C rrewt
Next State 	state. 	Si 	 Nx ...

- 	 r------Output 	Ocr- 	D I 	-
uiput

Lt s. 	
F

L_______

Figure 5.2: block diagram of a synchronous Mealy model FSM.

There are two combinational logics in the state. machine, one to generate the

next state base on the input and current state, while the other is used to generate the

outputs base also on the input and current state. Different with the normal Mealy FSM,
the synchronous Mealy FSM has their output connected to flip-flops.

There are basically 2 advantages from using a synchronous Mealy FSM. For a

Moore or Mealy FSM, the outputs are generated by the output combinational logic.

They will be delay for the signals to pass through the combinational logic before the

output is generated. This will slow down the control signals output speed. If the
datapath receives control signals later, then will perform their operation later. In
synchronous case, outputs are .still generated by the combinational logic, but they are

now gated to D flip flops.
The first advantage is, on the next clock transition, the outputs are asserted

immediately. The datapath receives the control signals at the very beginning of a cycle

and therefore can complete its operation faster.
The second advantage is, FSM contains only 7 states, such a small number of

states are results of using synchronous Mealy implementation. Since state machine
outputs are now gated to flip-flops, all single cycle instruction can share the same state.
The state is unchanged but the input changed, so it can determine the next'output.

51

5.5 Finite State Machine States
Figure 5.3 shows the state diagram of the finite state machine (FSM). The 7

states are FETCH, DECODE, EXECUTE, WRITE BACK, WAIT, BRANCH,

BRANCH2,. The state diagram shows the state flow but does not clearly show the

inputs. The inputs to the FSM are the output. lines of the instruction decoder, timer IRQ,

external IRQ, and branch request. Branch request is generated by the branch evaluation

unit when the condition of the conditional branch instruction is fulfilled. We now

assume all instructions are single cycle and there are no IRQ, or branch request. The

state machine will have no state change in this case and remain at EXE state. All

instructions have a fetch, decode, execute and write back cycle and are pipelined

together as discussed in chapter 4. When the first instruction is fetched, its

corresponding output line of the instruction decoder will become active. It happens in

the fetch stage. The next state combinational logic. - finds that the next state is

unchanged. However, the output combinational logic has prepared the control signals

based on the decoder's active line. On the next clock transition, the instruction enter the

execute stage and the control signals is asserted (latch into the output flip-flops). The

ALU then executes the instruction.

RESET FETCH

Next
opcode 	insruction

E.,

Next DECODE: s:
insruction corn! 	$ N

branch

EXECUTE 	halt
result

HALT
VRITE 	T
IACI4 uncond 	mt req

branch

interrupt
request

B RAN CHI

Figure 5.3: The state diagram of FSM.

On the forth clock transition results are . stored in write back cycle, Because of
pipeline processing, the next instruction has been fetched at the same clock transition.

52

The instruction decoder decodes it and asserts another output line. Again, the output

logic will prepare the correct control signals and asserts it on the next clock transition.
So the FSM can perform the pipeline processing without any difficulty.

We now consider the one of the unconditional branch instruction, SJMP. When
SJMP is fetched, the SJMP output line of the decoder is active. The next state logic
determined that there would be a state change to BRANCHI state on the next cycle.
The output logic also prepared the control signals for SJMP, which will load the PC
with the destination address. On the next clock transition, state changes to BRANCH1

and the control signals are asserted. At BRACH1, the next state must be BRANCH2.

Although the pre-fetched instruction asserts one of the decoder output. lines, the output

logic does not prepared any control signals for the next cycle. So this instruction is
being flushed from the pipeline, as discussed in chapter 5. So on the following clock

transition, state changes to BRANCH2 and at the same time, PC is loaded with the new
value. The next state will, be returned to EXE state. Again, no output signal is asserted

based on the fetched instruction because it is flushed. On the next clock transition, the

FSM enters EXE state and the destination instruction has been fetched. The decoder's
destination instruction output line is active and will be.executed on the next cycle. The
discussion above is for the SJMP instruction.

The same concept can be applied to RCALL, RET RETI instructions as well as

serving an IRQ. An IRQ (timer or external) is sent by the timer or external interrupt

module in the datapath. An IRQ can only be served if the I-flag is set, else it will be
-ignored. To make sure all instructions are completely executed, an IRQ can be only be

served in the WRITE BACK state. On WRITE BACK EXE state, the FSM first check

for any IRQ (must have the I-flag set)._;If there is any, it will ignore the pre-fetched

instruction and determines the next state to be BRANCH. The output logic prepare

control signal to load PC with the interrupt vector and to clear the I-flag. I-flag is

cleared so that if there is a new IRQ occurred while serving the current one, it will not
be served. After loading the interrupt vector to the PC, execution continues as normal

but there will not be any IRQ served until the RETI instruction is fetched and executed.
It will then set back the , I-flag and allowed another IRQ to be served. All conditional

branch instruction will take 3 cycles to complete. This can be count from the transitions

make to complete the execution from EXE state back to EXE state. (EXE, BRANCH I,
BRANCH2, EXE)

53

The next case to consider is the execution of conditional branch instructions

Different from conditional branch instruction, the branch may or may not be taken.

They test a bit in the SR to determine whether the branch should be taken. The branch

evaluation unit will do the job on testing the SR flags base on the condition specified. If

the condition is fulfilled, it will immediately generate a branch request to the FSM.

When JCC is fetched, the shared instruction decoder output line become active.

Different from unconditional branch instructions, there will be no state chance on the

next cycle. The FSM will assert the branch test signal on the next cycle to request the

branch evaluation unit to perform a branch test. If the condition is not fulfilled, no

branch request is generated. The .pre-fetched instruction is not flushed from the pipeline

and is executed. So it takes only one cycle for a conditional branch instruction if the

branch if not taken.

If the condition is fulfilled, the branch evaluation unit will send back a branch

request to the control unit immediately. At the same time, the control unit will also

instruct the PC to loads the PC with the destination address. With the branch request,

the FSM will transfer to BRANCH2 state on the next clock and the pre-fetched

instruction is flushed. On the next clock, the second pre-fetched instruction is also

flushed but the FSM now return to EXE state. The next instruction is the destination

instruction and will be. executed on next cycle. So it takes 3 execution cycles if the

branch is taken for conditional branch instructions. Note that the control signal to load

the PC is not asserted according to clock transition. It is asserted only after the branch

evaluation unit has received the branch test signal and performs the test successfully.

So there is delay for the PC to receive the signal in this case.

When the: FSM sees the HALT instruction, it will jump to the WAIT state.

When in the WAIT state, the PC is stopped and no instruction is executed. Only when

there is an IRQ (with the I-flag set), the FSM jumps to BRANCH1 state to serve the

interrupt request. The process is exactly the same as serving an IRQ from the EXES.

For single cycle instruction, the instruction will not need to be remembered after the

control a signal is asserted because it is completed in one cycle. When enter the execute

cycle, the next instruction is fetched and the current instruction is lost.However,

instructions that require 2 cycles to complete must have some way to remember the

instruction in order to assert the correct control signals at the second cycle. So, the FSM

provides the second state to remember the instruction. Control signals are based on the

state itself without considering the decoder's output line.

54

If the second cycle of the instructions asserts the same control signals, then the
state can be shared, else it will require another one. There are 4 states each requires One
cycle for executing instruction, FETCH, DECODE, EXECUTE, and WRITE BACK.
The FSM jump to FETCH state, when reset pin is asserted; next state is DECODE then

EXECUTE, and lastly WRITE BACK.' When one of these instructions is found, the
control unit will need to hold the pipeline. The EN signal send to the PC module and IR
module will not be asserted for one cycle: So the PC is not incremented and the IR is
still holding the pre-fetched instruction.

When the FSM sees a branch request, it will send control signals, to the ALU to

perform new address calculation. The ALU will send a branch request back to the FSM

if the branching condition is fulfilled.
After.the long discussion, we should notice When in the EXE state, it will first

check to see if there are any branch request or skip request to processed (two of them

will never occurred at the same time). If none, it will then check the IRQ. The IRQ
must be enabled by the I-flag in order to be served. Only after then it checks the

instruction decoder's output to execute an instruction.

5.6 External Interrupt
The external interrupt is triggered by an external pin.' In this design, the external

pin shares the pin with PORTs. This pin can be easily changed to share with one of the

241/0 pins by modifying a single line in the VHDL code. The MCUCR of AT90S1200

has the bits 4 and 5 for controlling the sleep modes of the microcontroller., Since the

design does not include this feature, these bits are taken away from the register. The

interrupt can be triggered by the external- pin on rising edge, falling edge of low level

and is selected by the ISCO 1 and ISC00 bits (interrupt sense control 0).
The interrupt can also be triggered when the external pin is configured as

output. The difference now is that the interrupt signal is provided internally from the
microcontroller instead of external signal. This provides a way to generate software

interrupt by the programmer.
Transitions (falling edge and rising edge) are not detected. using the clock input

of a flip-flop. The external pin is sampled on every system clock to detect the

transitions. A low sample follows by a high sample sense a rising edge while a. high

sample follows by a low sample sense a falling edge. When the interrupt source is set to

falling or rising edge, the external interrupt flag will be set when the require edge is

55

detected. The external interrupt flag are not accessible by the user. It is not placed

inside any of the control register. The flag will stay until the interrupt request is served

or after a reset. Figure 5.4 shows how interrupt request is generated. To generate an

interrupt request to the control unit, INTO bit (external interrupt request 0 enable) must

be set. This bit is ANDed with the flag to generate interrupt request (with ISC /= 00).

Figure 5.4 Generating external interrupt request

Low-level interrupt are difference from edge interrupt just discussed. It does not

set the external interrupt flag to generate an interrupt request. Instead, it never touches

the flag. The complement of the.external pin (detect low-level) is directly ANDed with

the INTO bit to generate an interrupt request. So if INTO is set, it will generate an

interrupt request as long as the pin is held low. If the interrupt is not enabled when the

pin is held low, it will be forgotten when the pin goes high. If the external interrupt is

set to edge triggered, the external signal must have sharp transition. If a physical switch

is used to generate the interrupt, switch-bounce will occur. It will generate a second,

third or more interrupt request even if interrupt request has already been served. So, it

is recommended that the low-level interrupt is used, or the switch is hardware de-

bounced. Figure 5.4 shows the symbol of the external interrupt module. CLR_INTF is

sent by the control unit to clear the external interrupt flag when the interrupt request is

served. RD and WR signals provide reading and writing the control registers through

the system data bus.

5.7 I/O Decoder

When either the RD _JO or WR IO is asserted, the UO decoder will decode the

I/O address to know exactly which I/O register are to be read of write. Then it sends out

the specific read or write control signal for that I/O. In the instruction format section in

chapter 4, it is shown that there are two instruction formats for instructions that

56

accessed the UO. So the bits location for the I/O address is different. The I/O decoder
must be able to know which bits are to be used as the I/O address.

5.8 Branch Evaluation Unit
A conditional branch instruction will test one of the 8 bits in the SR. BRBC will

take the branch if the specific bit is cleared while BRBS will take the branch if that bit
is set. The branch evaluation unit is enabled when the BRANCH TEST signal is active.
It will then test whether the specific bit meets the branch condition (clear/set). If it does
meet the condition, a branch request is generated immediately to the control unit to
generate the ADDOFFSET control signal; the . next state will now be BRANCH2 state.

If the condition is not fulfilled, nothing happens and CPU will execute next instruction.

5.9 Timer:
It is important to note that the timer clock source does not drive the TCNTO

• directly. Instead, TCNTO . is driven by the system clock. The timer clock source are
sampled at the rising edge of the system clock. If a low to high transition is detected (a

low is sampled followed by a high), the increment signal for TCNTO is asserted to

increment it. Every transition detected will generate an increment signal pulse. If the

timer clock source is the system clock, then no detection of rising edge is required the

increment signal is always asserted. To assure proper sampling of the external clock

source, the frequency of the external clock should be smaller than the system clock

frequency, and the smaller the better.
Every time the increment signal is active, TCNTO will be incremented by 1. If

TCNTO is $FF before increment, it will .:become $00 after increment and at the same

time the timer/counter 0 overflow flag (TOVO) will be set. The timer/counter 0

interrupt overflow interrupt enable flag (TOVO) is ANDed with TOVO to generate the•

timer overflow interrupt request. If the TOVO is set (timer overflow interrupt enabled)

and TOVO is also set (timer overflow occurred), the timer will assert an interrupt

request to the control unit. If the I-flag in the SR is. enabled, the control unit will serve

the interrupt request and clear the TOVO flag by sending a clear TOVO signal to the

timer module.
Just like other control registers, the 4 timer registers can be read and write

through the data bus. However, reserved bits are always read as zero; and the TOVO
flag' can be cleared by writing a one to it. In this way, TOVO flag can never be set by

57.

the user. Reserved bits, are not implemented with flip-flops, they are connected directly

to ground and this will save a.lot of flip-flops. This is why the reserved bits are always

read as zero and there are no ways data can be written to them. It can easily configured

to point to any of the 24 I/O pins. CLR TOVO is sent from the control unit to clear the

TOVO flag when the interrupt request is served. The 4 RD signals.read the timer control

registers to the data bus while the 4 WR signals write the data bus value to . the

corresponding register.

5.10 Shift register:
Shift register is used for serial transmission /reception. Data can be transmitted

or' received serially with start stop bits for serial communication, all necessary

handshaking signals are generated according to requirement of program or external

devices. Shift register behaves as parallel in serial out register (PISO) when

transmitting and serial in parallel out in case of reception

5.11 Implementation Problems
The following is a small list of problems and important points to keep in mind

at Control Unit implementation stage.

1. Due to the many existing control lines, designers must ensure that every signal

that goes from the control unit is properly connected to its corresponding circuit.

2. Care should be taken at the interconnection stage because involuntary

disconnections may happen.

3. More than one signal is activated per clock cycle, this means that some circuits

have to wait for data because probably it is not ready for processing at the circuit

signal activation moment. To solve this problem, once the control unit is

connected to all circuits, designers have to run manually with the control unit

clock, each and every one of the instructions to see per clock its performance.

4. Once a time delay problem has found (you will know that this problem happen

because in its respective instruction clock cycle, when you run it manually, there

is not data in some circuits that is supposed to be. This means that a time delay

must be added to the circuit element that does not receive the data.

58

aM
s m
E-
s—

a

a r

a —

ac

M

LJ

CHAPTOR 6: DESIGNING WITH FPGA

6.1 FPGA Architecture [27]
FPGA's are introduced first by the Xilinx Inc. in 1985. Since that time, the

FPGA market has expanded dramatically with many different competing designs

developed by companies including, Altera, AMID, Intel, Motorola, AT&T, Actel,
Atmel, Cypress, Texas Instruments, Quick Logic, and Lattice semiconductor. Field
Programmable Gate Arrays are a relatively new class of integrated circuit. A FPGA is
of similar kind as a CPLD (complex programmable logic devices), which consists of

programmable logic blocks (combinational logic blocks, programmable IO blocks and
programmable interconnection matrix). The logic is broken into large number of

programmable logic blocks that are individually smaller than a PLD, as shown in Fig.

6.1.

DLL
	

iiiiii 	'ii i
IILII

L
1 ILL] CLBs L 	 CLBs

LJLLLLJLJLJELiL]LJU
LLILLLJLJL1LJLJLLJLJ__

C10

= 0

¢

Y

 C

LIJLIJLLLLIETJLEJ
n f 	 '~Y

lnl-M l 	 '1

DuLJCJmLELJLTL

DLJLLEILThLJLJUULJ__

C.1

~0

=0
©❑

uu1ii~m;i1iJ11!111111111111111111111.f111111.~
1110 LOGIC 	 XC2S15

Figure 6.1: Basic Spartan II family FPGA block diagram [27]

They are distributed across the entire chip in a sea of programmable
interconnections which can be configured by the user at the point of application, & the

entire array is surrounded by programmable I/O blocks. User programming specifies

both the logic function of each block and the connections between the blocks. An

59

`FPGA's.programmable logic block is less capable 'than a typical PLD, but an FPGA

chip contains a lot more logic blocks than a CPLD of the same die size has PLDs.

6.2 Programming with FPGA
Although early PLD and FPGA designs were generated largely by hand, access

to today's CPLDs requires the use of an integrated Computer Aided Design (CAD)

system. Figure 6.2 illustrates the typical sequence of operations needed to go from

concept to programmed chip. Both commercial CAD tool vendors and FPGA

companies offer appropriate tools. For example, traditional Electronic Design

Automation (EDA) vendors such As Mentor Graphics, Synopsys, Cadence, and

ViewLogic all offer tools to support FPGA design. These tools are typically used for

the front-end design entry and simulation operations and provide the necessary

interfaces to vendor-specific back-end tools for chip placement and routing.

Examples of vendor specific tools are the Xilinx XST. system and the Altera

Quartus II software. It is worth noting that Xilinx ISE 7.1 i software, which supports the

entire design flow, as illustrated in Figure 6.5 on either PC or workstation platforms.

The following discussion is meant to be indicative of the general operations and steps

required in FPGA design. Where appropriate, examples are taken from the Xilinx and

Altera CAD design flows to illustrate the generic operations.

Traditionally, a designer uses schematic capture tools for graphical entry of a

logic design which has been manually generated to meet the architectural or behavioral

specifications. The upper left hand arrow in Figure 6.2 identifies some of the

commercial CAD tools available for FPGA schematic capture.

One of the more significant recent innovations in the EDA industry is the

development of tools which allow the designer to move from the gate level to the

behavioral level for design entry. A behavioral design specification is created using a

Hardware Description Language (HDL), and then a synthesis tool automatically

compiles the gate level schematic or netlist from the behavioral description. The upper

right hand arrow in Figure 6.2 indicates some of the HDLs currently being used for

FPGA behavioral modeling.

Options for behavioral description of designs include the VHSIC Hardware

Description Language (VHDL), the Verilog hardware, description language, timing

diagrams, logic state diagrams, and PLD description languages such as ABEL. As an

example of how pervasive the behavioral design style has become, the PC-based. Xilinx

ISE 7.1i software provides multiple options for behavioral design entry. In addition to

traditional schematic capture it will accept , VHDL, text design description in the

Hardware Description Language (including truth tables and Boolean expressions), and

Timing Diagrams which describe the desired input and output waveforms. Whichever

behavioral design entry method is chosen, the design system provides logic synthesis

which automatically creates gate-level schematics.

>-.entier~ttr' 	i 	— -,. — 	~
 BEHAVIORAL ~.v 	F

` 	SPECiFICATIQN 	- 	Pi Dzs ynsf Stc Simulation

LO 	 "SYNTHESIS
TI

including Cptmiaatran

Technology Mapping

Circuit of PFGA Cells

Automatc P:ACEMENT

CircuI Mapped to
target FPGA Image

UOCtStltR T(N3

FPGA Physical Design Complete
cridcat path Goring analysis and
back-annotafon to simulation Evaluate Design
'.w 	 h in Target Application

Figure.6.2 Typical CAD system design flow for FPGAs[26]

No matter what method is used for initial design entry, the next step in FPGA

design is to translate the entire design into a standard form which can be processed by a

logic optimization tool. The goal of logic optimization is to perform minimization of

theBoolean expressions and eliminate redundancy, thus minimizing the area of the

final circuit. The tool may also be constrained to maximize speed at the expense of area

by limiting the number of logic levels between clocked registers. This optimization

process is usually merged with the logic synthesis step when behavioral design entry is

61

coy„'
YB

Y

Y©

Xa,

X

XQ

Figure 6.3: Spartan II CLB slice[27]

employed. Simulation is performed both before and after the logic optimization steps to

verify that the design meets the original system requirements for functionality and

timing. The next step is to convert the generic gate level design into one which uses the

FPGA circuit building blocks of the target technology.

G+F

Cs3

G2

[3,1

F N

€iY

8Ft

E4

F3

F2

F'1

BX

Cth9

CLK

CE

To provide a concrete example, the Xilinx XST design system flow will be used

to illustrate the steps needed to go from logic design to programmed FPGA. In the

Xilinx design flow, the native format of the logic design (Cadence, ViewLogic,

OrCAD, etc.) must first be translated . into the Xilinx Netlist Format (XNF) which is.

understood by the Xilinx tools. Next, the XNF circuit description must be mapped into

Xilinx Configurable Logic Blocks (CLBs). This is the technology mapping step

referred to in Figure 6.4. Xilinx calls this step "partitioning", and the XST tools also

attempt to optimize the circuit during this step. For example, circuitry associated with

unused logic block inputs or outputs is eliminated from the design. In addition, the

partitioning program attempts to minimize either the total number of CLBs used -or the

number of logic stages in the critical delay path.The next step is to place and route the

design on the selected chip image. The XST system allows manual and/or automatic

placement and routing. In the automatic placement operation, each CLB generated

during the "partitioning" step is assigned to a physical location on the chip. Xilinx uses

62. 	,

a- Simulated Annealing algorithm which starts with a,random placement, and then goes

through a series- of improvement passes. This program can be run multiple times with

different starting random seeds in an attempt to generate a more optimal placement.

Following placement, interconnections between the CLBs must be routed -using the

available interconnect segments and switch matrix elements. XST uses an automatic

Maze Routing Algorithm to perform this operation. With the physical placement and.

routing completed, exact timing values can now be used to determine chip

performance. The . XST tools provide a critical path timing analyzer which provides

delay information on longest / shortest paths through the chip.

In addition, the physical layout timing information can also be back-annotated

to the schematics to get more accurate functional simulation results. The final step in

the Xilinx or Altera design flow is the creation of the BIT file which contains the binary

programming data needed to configure the .SRAM bits of the target chip. This file is

then downloaded to configure the chip for final functional & timing tests of

programmed chip.

6.3 FPGA Design Environment
1 Software Environment:

Operating System Windows XP-Pro sp 2
Development Tool VHDL
Synthesis Tool Xilinx ISE 7.11
Simulation Tool Aldec Active HDL 6.3,. Xilinx ISE 7.1i
Implementation FPGA (Xilinx Spartan II)

2 Hardware Environments:
2.1 For simulation and Synthesis: 	;: =.

Processor Pentium 4
RAM 512 MB
Processor Speed 2.66 GHz.

2.2 For Implementation:
FPGA Device Family Xilinx Spartan II
Device XC2S200-5PQ208
Speed Grade 5
Output Display Seven segment LED display
Top-level Module Type HDL
Synthesis Tool Xilinx ISE XST 7.1 i (using VHDL)
Simulator Aldec Active HDL 6.3, Xilinx ISE 7.1i
Generated Simulation Language VHDL

6.4 FPGA design flow for implementation
Since the goal of this dissertation is to create a full custom processor design in•

FPGA, for this reason the implementation of Microcontroller requires FPGA design

flow steps to be followed. Figure 6.4 shows a standard design flow for a FPGA design:

Verification

Verification

Verification

Figure 6.4: FPGA Design Flow

1 Schematic entry
The design is entered into a synthesis design system using a hardware

description language. The language used here is VHDL.

2 Syntheses
A netlist is generated, using the VHDL code and a logic synthesis tool using

Xilinx ISE 7.Ii EDA tool, synthesis report gives idea about possible shortfalls in the

generated RTL model

3 Place and Route
The place process decides the best location of -the cells in a block based on the

logic and desired performance. The route process makes the connections between the

cells and the blocks. Automatic place. and route is done by the synthesis tool after

generating netlist.

64

4 Configuration:

This is done by loading the configuration data into the internal memory.

Synthesis tool generates a bit stream file after placing and routing, which is then

downloaded in FPGA. I used JTAG cable to load my design in the FPGA.

5 Verification
At each step of the design, process, I verified my architecture using software -

simulation using Aldec Active HDL 6.3 software package. Each instruction is

simulated and its impact is studied to make any changes in design to optimize the

performance.

6.5 Verification and Testing
• For the testing purpose, .I designed my own ROM for simulation of my

program. I used binary representation of the instructions in that ROM. So it was very

easy to check all - the instructions just by changing the binary instruction and then

comparing the simulated results with expected results.

Application program is written initially in ROM module before design is

implemented in FPGA. I wrote entire program in 16 bit binary machine codes, In that

program, I wrote the binary representation of all the instructions that were to be

verified. The reason for using binary representation is that otherwise it would take too

much time to develop a new assembler to interpret text based assembly code.

I tested designed microcontroller architecture by running many test programs

that were created using the method mentioned above. The basic verification approach

was to compare the simulated output results with the expected results that I computed

by hand. Whenever I found a mismatch `between the two, I identified the problem(s)

and took care of them appropriately. I tested the functionality of all the instructions, the

interactions among the instructions in the pipeline, and the correctness of the data as a

result of executing those instructions.

65

L.

CHAPTER 7: RESULTS AND CONCLUSION

7.1 Results

In the recent years several embedded cores of well known microcontrollers have

been implemented. ASICs encompassing these cores have proven successful and have

been manufactured without complications. Compared to the standard products (genuine

microcontrollers) microcontroller designed in this dissertation reach considerably

higher performance; on the one hand because of higher clock rates due to newer

technologies and on the other hand because of an improved internal architecture.

In this dissertation work a 16 bit RISC microcontroller modeled as the structural

design using VHDL and is 'successfully implemented on the Xilinx Spartan II kit

(xc2s200-5pq208), special provision for register file is made by using xilinx coregent to

eliminate any possibility of error, a synchronous finite state machine is designed for

updating registers as well as data memory, generated core for regfile and data memory

works fine in simulation.

This dissertation- has detailed the results of creating and simulating two VHDL

models for the Atmel RISC microcontroller. These models were written to help support

an effort to eradicate the component obsolescence problem faced. A simple Behavioral

model_ was written and tested to verify proper abstract modeling. Next, an Instruction

model was written for almost all of the instruction set of the Atmel RISC

microcontroller. The Instruction Set model results were compared against the results

from an actual Atmel RISC microcontroller accessed and simulated by using a actel

active HDL 6.3 as well as Xilinx ISE 7.1i For the modeled instructions, it was found

that the Instruction Set model accurately emulates functionality of the original Atmel

RISC microcontroller. The efforts of this dissertation will help support the overall goal

to fabricate an 16-bit microcontroller that emulates with form, fit, and function the

original Atmel RISC microcontroller.

7.2 Conclusion

As a conclusion, this project has been completed successfully fulfilling are the

objectives and scopes specified. The author has used his extra time to optimize the

speed of the design until 12 MHz. also code is optimized to minimum utilizsation of

67

resources in FPGA The data RAM that is not specified in the scope of the project has

also been included. The stack is also incorporated in design and a total of 24 I/O lines

are available for I/O device programming. Since the project now occupies 92% of the

FPGA device (Spartan II xc2s200-5pg208), the author recommends that the laboratory

provides a larger FPGA device. Table 7.1 is the comparison chart between atmel RISC

Microcontroller AT90S1200 and the RISC Microcontroller designed in the dissertation

work.

Table 7.1 comparison between Atmel microcontroller and current design

FEATURES AT90S1200 RISC MICROCONTROLLER

SRAM . NONE 32 WORD

PROGRAM ROM 1KB 4KB

INSTRUCTION SET 89 74

GP REGISTERS 32 32

IO PORTs 2 (8 BIT EACH) 2 (16 BIT EACH)

TIMMER 1 2 (16 BIT)

EXTERNAL

INTERRUPTS

1 5

ADDRESSING MODE 5 4

SPEED 4-12 MHz 12 MHz

ANOLOG

COMPARATOR

1 NONE

IMPLEMENTATION CMOS FPGA

Developing a (VHDL) model compatible to an industry-standard component

involves previously unidentified technical constraints when intended to be reused as an

IP core. Implementing a building block for future integration includes issues like,

thorough and exhaustive verification of both the RTL model and the gate level netlist to .

achieve highest quality possible; considering the trade-off between compatibility and

performance improvement; In this dissertation work I have focused these issues and

proposed some approaches how to tackle them.

I have tested my processor architecture by running many test programs that were

created using the method mentioned above. The basic verification approach was to

compare the simulated output results with the expected results that I - computed by

68

hand. Whenever I found a mismatch between the two, I identified the problem(s) and

took care of them appropriately. I tested the functionality of all the instructions, the

interactions among the instructions in the pipeline, and the correctness of the data as a

result of executing those instructions. 	-

7.3: Recommendation on Future Works

Items to research and complete include: full utilization of instruction set,

finishing the Instruction Set model, writing an RTL model, synthesizing the RTL

model, and testing all models. Some of this work has been completed, but was not

documented in this thesis. RTL models and synthesis results have been made available

to department.
A serious design problem is encountered by author while updating register file

and also data memory, it is been found that because of some FPGA kit constraints

selected RAM Block is not functioning properly, author is trying to sort out problems at

various stages of design. Special care has been taken for removing any pipeline hazards

and appropriate results are always been sent to ALU.

There are many more extra features available in the AVR RISC microcontroller

family, such as the UART serial interface, SPI serial interface, the 16-bit timer (with

output compare and input capture), etc. This works from this project should be used as

a platform to implement these features in.

REFERENCES:

1. Mazidi and Mazidi, "The 8051 microcontrollers and Embedded systems",

Pearson education, 2006.
2. Myke Predko, Programming-and customizing 8051 microcontrollers, Tata

McGraw hill company, New Delhi, 2001.
3. Steve heath, "Embedded system design", second edition, EDN series for design

engineers 2000.

4. Kenneth.ayala, "The 8051 microcontroller Architecture, Programming and

applications", second edition, 1998

5. Todd Morton, "Embedded microcontrollers", Pearson education, 2003.

6. Perry, D. L. 2004. - VHDL: Programming By Example, 4th edition. New York:

McGraw-Hill Companies inc.

7. Bhasker, J. 1997. A VHDL Primer. Allentown, PA: Star Galaxy Press

8. Stallings William, 1993, Computer Organization and Architecture, 3rd edition,

Macmillan Publishing Company.

9. Patterson David A, Hennessy John, 1994, Computer Organization & Design,

Morgan Kaufmann Publishers, Inc.

10. Brey Barry, the Intel Microprocessors 808X, 80286, 80386, 80486, Pentium &

Pentium Pro, Prentice Hall, 1997.

11. RISC Pipelining, Stanford University, HTTP:
http://cse. stanford.edu/class/sophomore-college/projects-OO/RISC/pipel ining/

12. John peatman, Design with PIC microcontroller", Pearson education, 2003.

13. Mano, M. M. 2001.Logic and Computer Design Fundamentals, 2nd ed. Upper

Saddle River, NJ: Prentice Hall

14. Shashi Raj Kapoor, "advanced processor design implementation using FPGA

architecture", A dissertation report M-Tech Electrical, HT Roorkee, 2003

Other Useful References
15. Melear, C.; "The MPC5005 RISC microcontroller", Southcon/95.

Conference Record 7-9 March 1995 Page(s):79 — 83.

16. Ozaki, Nishimichi, Kakiage, Yamamoto, Sumita, Inoue, Urano, Yamashita,

Maeda, Nishiyama, "A 100 Mhz Embedded RISC Microcontroller", 1994.

70

17. Digest of Technical Papers., 1994 Symposium on VLSI Circuits, JUNE 9-11,
1994 Page(s):67 — 68

18. Qing-Lan Lv; Ping Li;A 8-bit MCU design using a four-pipeline architecture
IEEE 2002 International Conference on Communications, Circuits and Systems,
Volume 2, 29 June-1 July 2002 Page(s): 1462 - 1465 vol.2

19. Christian, masgonty, claude, durand "low power 8 bit embedded coolRISC
microcontroller cores", IEEE journal of solid state circuits vo132 no 7jully 97

20. Jan gray, "Designing a simple FPGA optimized RISC CPU and system on
chip"

21. Ferreira, L.F.; Matos, E.L.; Menendez, L.M.; Mandado, E.; MILES: A

Microcontroller Learning System combining Hardware and Software tools
2005. FIB '05. Proceedings 35th Annual Conference Frontiers in Education,

19-22 Oct. 2005 Page(s):F4E-7 - F4E-11

22. FPGA World "Demos on Demand" [Online Demos are available by vendors of

VLSI firm, HTTP: http://www.demosondemand.com/dod/

23. VHDL Tutorial: Learn by Example

http://www.cs.ucr.edu/content/esd/labs/tutoriaI/

24. IBM RESEARCH http://www.research.ibm.com.

25. INTEL http://www.intel.com.

26. Atmel http://www.atmel.com.

27. Altera http://www.altera.com.

28. xilinx http://ww.w.xilinx.com.

71

APPENDIX A: Atmel AVR RISC Microcontroller data sheet

Instruction Set Summary
Mnemonic Operands Description 	 Operation Flags •
ARITHMETIC AND LOGIC INS RlUCTIONS
ADi? 	• Rd Rr ittl ';n R 	ls#crs Rai 	Rri+ Rr
ADC Rc Rr Add %titleCary Two R gistero 	• Rd -Rd+Rr+G 	• 2C,td.u•H

— r Z;GwH
r—m te. alu irarn Fl 	sty -u r 	m, 	—.: Ftst i = Fc

t 580 iR Rd iomom~ #trcm Ft Rc~i-"F2d 	t~" .`
~'

RNo Ur o-gfCd A tl3 F55 rf— _.. 	.. d.

Tar 1s rr if'fiiFfr

ORIi tRd. K Loc OR RIr aid C* t m +- Rd v K Z 11Y,
EOR Rc Hr EduweOR Rt4r Rd @- Rd. 	r Zj V
COM Rd u MOrnp1nnt Rd<- 	. ,
NEG Rd Twos C 	IA€nent Rd -$00-Rd Z,C:FJ.)i
Bt 	

.
mRW' negtctar R €- 	v

_w

-, 0z, n RVg ter
R i G wiinr

DEGH ir " DAcrament . ~- R- i Zr;
T~1' '~C ǹ 1`e~t far 	rd or 	r;us R~ €-
GLF x Gef Fgr » r Rd~

tiFt 	4Jt° Er a- w

BRANCU IN$TIU(TIQN
MIS" air 	mp 	 PCT{ 	

-` 	..~.

Cc' _f4 fats 	tvuin 	 _ 	Q -FC+k+ 	 _ 	®-tt
rouut►e 	urn 	 t G4Ar

i RETt tnte-rwupt WE PC- STACK 1

CFSE Rsi Rr csnptre, Skip if Equal it (Rd= RI) PC - PC + 2 or 3 None
fd, Ir omp ra

C G ' RT Rr 	- C sm~ 	~i terry Rir -F{r- C
`~. t aX-- * R asf 	, h nvml nta

R % f8ii i 	rGroared fi R 	w FG IG+ft-3 1a_n~
~R~# r, Skp~ i Bi# m Rai~tar~st It (R KbP~ FG+Tors t ,.. 	Me,. i 11i1 Tf gg ter G{2~"'. rf PrtS 	 G 	"R 	+ 2 or

R.bWpiBitret
' n__ O, , ranG 	atus 	aq 	t I 	+ 	+ one

x,'rr i+r ine
l f1G1rEr 151W
r 	q m = 	Zen 	+ 	+
rant 	n y Se (0-) ie n 	+ 	+ one

branch? 	 arry. denied. (0= W Ihen 	`* 	+ 	+ I None
BR j Branchd&vneor 	r ((C=0)thenPG'-PC+k+1 None

i BRLO (k Branch if Laver i (C=1)then PG,--PC+ + t NOW
j, 	iy RnPG: FG+ +t 	_ F1orre

s BFIFL [# BranchP(u~
I BAJG

 =GittnGRk+i
--

'r ~n. E~ean h If 	s Than 	r , i ie
Be nab 	calf 	iry_F 	Y t {T

wit { i =1 } tEt n t 	fact+ + 	~

A 	R C is i 	a eany~?aFor— fey+(t 	
i,`.,. 	,.

k 	: ; . R'YeK- >NAS. 	 ++>a >OnK '4'4ae't>.rcm3,¢ -nYnmrc- 	v~>'r^?[: > ~r€~nct (~f~a 	o~ m-~ 	-s- 	~°`--N 	wv..:wwn~- 	M.;-̂ 41tlC-?m >n'.bitt M. :!:.: Yt .`M it;T=ri twdj' G e FCC`+ k+ t
(_ t 	en 	+ 	+

r-a-•-,•.,'^.•••• Pty°.. 	..:...:.

 r€ nc 	. ag 	a NOW
rnnc 	r Flag i; St ifV1jihn
ranchrfOieI1lcwFlagICGleád dV=Q)thenPC-PC+k+ 1

Branch 	n .nu if Q = 	+--:. C+ K + 1 None
ID L rnnch ii tntenut 	it =u;then 	+ K +1 None

$

LG Rd, 2 Load Re I ter Inftreet Rd ,- (Z t None
ST Z,Rr St~sreF 	rI 	it {Z},-Rr rn

v9OV RE Move b tr $n R g sr ra Nate

72

lnstruction,Set Summary (Continued)
Mnemonic 	Operands 	Description Operation Flags
bIT AND r 	° "°'~.."' 	B1t "in A 	sa"aie - 	 ~~} 	t _ 	 and__._ . _;

s air 	m 	756 ter ~ - u ssna
LcL 	Rd Lac.31 shltt Left Rd (n+t) - Rd(n , Rd(0) ±--0 ZC,IIN L 	 Atl-- 	_

L9F €i ~~sF Shift Rt ht Rd n ~) 	1 Rdi7} r 0 Z,C,Fd,V
F tat$ 	thrvu9 	 jrp }~ 	 fi)+- 	in}.

i Ratata 	tgF~'""}ri"di~nc~iiW 	rry ~t~9~=C,l~sttn}+M~l'FC>:nr~7`G<-Ac1d0? Z.C.

S 	i &SW 	N

.CEaar

F~LR 	
-*

BY 	fl" BW Y
it Lead0111 1 .

i `"u@F t78gafiVO
ecI arNAtI6 	iag - u

I 	i t 	ro€ N
CLZ G acrZEra kj Z
r _ 	_..... 0665 U terrupt 1 . _ i 	... _ . Iab 	InterrUP Ctt bT f 	 _ 1

t
T r1- t Flag

Set vivomenirGart V .= ` 	 ' 	"~`:''

carryg in b 	a
ow ear 	-o01ty Ftaç n 5 	 i H '-0 II

 peratton

SLEEP eep r 	spec iscieccr tfor 	aap Iunthn) None
WC*I WomIds Flscel 	 3(G orcIrm Iescr. 	r 	1 mer None

Table 1. The AT9081 200 I/O Space
Aldrese Hex Name Function

F SPEG Status REGister

3B MSK Gene 	[ntenupt MaKer
TIIMSK Ti n r/CouFnter Interrupt MaSK register

8 T(FR Tim r,Vaunter Interrupt FIAg reji ,ter

ASS MUCK MCU gener& Control Rji~ter
$33 TCGRO TinieilCount 	Control Re(ister

2 TCWTO Tii 	rlCounte 	(&-lire
$21 WDTCR Watchdog Tinier Control Reinter
1E EEAR EEP'RQFA Address Register

$I[7 EEDR EEPROM Data Register
SiC EECR EEPROM Control Register
$18 PORIB Data Regis; Pc Ft E ~:,u::.: 	a~..
$ 17 I I RB C to Direction F egister Port B

1 G PINB Input Pins fort 8
x'12 PORTD l at€t R 	FS 	r Port D

R }Rt Data Dire tion'Register, Port G
$10

xwe:«xnHU 	- ,.eat+
PIt
xrz+u1 KH 	WrcK

Input Pins, Port D
kNxN.«m 3n aryxr«nn~+ww.vkNwtu....b 	 NWy

ER Analog Gon para~torC 	t
r

rot and Status Regist..r
St

;a~a%uv:as*_ rn5 nre>zeew..a'b~.<.:uw, * 	Aa 	 —nmrw<.,.oww ,~<wnmexe

73

APPENDIX B: INSTRUCTION SET

Table: INSTRUCTION SET OF RISC MICROCONTROLLER

• Opcode Mnemonic Function
0000 00 xx xxxx xxxx NOP No operation

0000 01 xx xxxx xxxx HALT Halts execution

0000 10 xx xxxx xxxx SWAP Exchange lower byte with higher byte
and vice versa of register

0000 11 xx xxxx xxxx SWAPA Exchange lower byte with higher byte
and vice versa of accumulator

0001 000x bits(4) reg(4) ROL A, bits Rotate left accumulator

0001 001x bits(4) reg(4) RLC A, bits Rotate left accumulator through carry

0001 010x bits(4) reg(4) ROR A, bits Rotate right accumulator

0001 011x bits(4) reg(4) RRC A, bits Rotate right through carry accumulator

0001 100x bits(4) reg(4) ROL reg, bits Rotate left register

0001 101x bits(4) reg(4) RLC reg, bits Rotate left through carry register

0001 110x bits(4) reg(4) ROR reg, bits Rotate right register

0001 11 lx bits(4) reg(4) RRC reg, bits Rotate right through carry register

0100 reg(4) imm(8) MVIL reg, imm8 Move data. as lower byte of register

0101 reg(4) imm(8) MVIH reg, imm8 Move data as upper byte of register

0011 reg(4) imm(8) MVIS sp-reg, imm8 Move data as lower byte of register

0010 000x reg(4) reg(4) MOV 1 reg1, reg2 Move contents of reg2 to regl

0010.00lx reg(4) reg(4) MOV2 sp-reg,reg2 Move contents of reg2 to sp-reg

0010 01 Ox reg(4) reg(4) MOV3 regl,, sp-reg Move contents of sp-reg to regl

0010 OI 1x reg(4) reg(4) MOV4 sp-regl, sp-reg2 Move contents of sp-reg2 to sp-regl

0010 100x reg(4) mem(4) LOAD reg, mem Move contents of mem to register

0010 101x mem(4) reg(4) STORE mem, reg Move contents of register to mem

0010 11Ox reg(4) mem(4) LDA mem Move contents of mem to ACC

0010 111x mem(4) reg(4) STA mem Move contents of ACC to mem

0101 00xx bits(4) reg(4) SETB reg, bit Set specified bit of register

0101 O lxx bits(4) reg(4) CLRB reg, bit Clear specified bit of register

0101 lOxx bits(4) reg(4) CPLB reg, bit complement bit of register

74.

0101 11xx bits(4) reg(4) GETB reg, bit output specified bit of register

0110 000x reg(4) reg(4) ADD regl, reg2 add contents of reg2 to regl

0110 001x reg(4) reg(4) ADC regl, reg2 add contents of reg2 to regl, add carry
to result, store result in regl

0110 O 1Ox reg(2) imm(8) ADI reg, imm8 add data byte to register

0110 011x reg(4) xxxxx INC reg Increment register by one

0110 100x reg(4) xxxxx INCA. Increment ACC by one

0111 000x reg(4) reg(4) SUB regl, reg2 Subtract contents of reg2 to regl

0111 001x reg(4) reg(4) SBB regl, reg2 Subtract contents of reg2 to reg1;

Subtract carry from result

011110 reg(2) imm(8) SBI reg, imm8 Subtract data byte from register

011111 reg(4) xxxxx DEC reg Decrement register by one

100 00 reg(3) imm(8) ANI reg, imm8 AND data byte with register

100 01 reg(3) imm(8) ORI reg, imm8 OR data byte with register

100 10 reg(3) imm(8) XRI reg, imm8 XOR data byte with register

100 110 reg(2) imm(8) CPI reg, imm8 compare data byte with register

1.00 111 reg(4) reg(4) CMP reg 1, reg2 compare content of regl with reg2

1010 00xx reg(4) reg(4) AND regl, reg2 AND contents of regl with reg2

1010 01 xx reg(4) reg(4) OR reg 1, reg2 OR contents of reg 1 with reg2

1010 1Oxx reg(4) reg(4) XOR regl, reg2 XOR contents of regl with reg2

1010 11xx reg(4) xxxxx NOT reg Complement content of register

1011 000x xxxx reg(4) IN reg, portO Input data from portO to register

1011 001x xxxx reg(4) IN reg, portl Input data from portl to register

1011 O l Ox xxxx reg(4) OUT portO, reg Output content of register to portO

1011 01 lx xxxx reg(4) OUT portl, reg Output content of register to portl

1100 00 	offset(10) LJMP offset Long Jump (within 1K)

1100 01 	xx offset(8) SJMP offset' Short Jump (up to 246)

1100 1000 offset(8) JZ offset Jump if Zero flag is set

1100 1001 offset(8) JNZ offset Jump if Zero flag is reset

1100 1010 offset(8) JC offset Jump if Carry flag is set

1100 1011 offset(8) INC offset Jump if Carry flag is reset

75

1100 1100 offset(8) JPS offset Jump if parity flag is set

1100 1101 offset(8) JNP offset Jump if parity flag is reset

1100 1110 offset(8) JOY offset Jump if overflow flag is set

1100 1111 offset(8) JNO offset Jump if overflow flag is reset

1101 000 xxxx xxxxx INTO Interrupt on signal on pin INTO

1101 001 xxxx xxxxx INTI Interrupt on signal on pin INT1

1101 010 xxxx xxxxx INT2 Interrupt on signal on pin INT2

1101 011 xxxx xxxxx INT3 Interrupt on signal on pin INT3

1101 100 xxxx xxxxx INT4 Interrupt on signal on pin INT4

1101 101 xxxx xxxxx IRET Return from Interrupt

1110 0000 irnm(8) CALL address Call subroutine at given address

1110 0001 xxx xxxxx RET Return from subroutine call

1110 0100 imm(8) CC Call if Carry flag is set

1110 0101 xxxxxxxx RC Return if Carry flag is set

1110 0110 imm(8) CNC Call if Carry flag is reset

1110 0111 xxxxxxxx RNC Return if Carry flag is reset

1110 1000 imm(8) - CZ Call if Zero flag is set -

1110 1001 xxxxxxxx RZ Return if Zero flag is set

1110 1010 imm(8) CNZ Call if Zero flag is reset

1110 1011 xxxxxxxx RNZ Return if Zero flag is reset

1110 1100 imm(8) COV Call if overflow flag is set

1110 1101 xxxxxxxx ROV Return if overflow flag is set

1110 1110 imm(8) CNO Call if overflow flag is reset

1110 1111 xxxxxxxx RNO Return if overflow flag is reset

APPENDIX B: SIMULATION RESULTS

Simulation of program with JMP Instruction (active HDL 6.3)

77

Simulation of program with CALL instruction (active HDL 6.3)

78

Simulation of program with LOAD, STORE instructions (active HDL 6.3)

79

Simulation of program with LOAD, STORE instructions (continued....)

80

APPENDIX C: SYNTHESIS RESULTS.

F '
	-izciv, ~

	~"~R'" ~ ;^: x 	_ 	_;, viz. n+ . "Gig xr.rFn: ;~ '7~~Y h . K.~~'..,» 	~

Synthesized RTL description of RISC microcontroller in xilinx ise7.li

81

Synthesized RTL description of RISC microcontroller in xilinx ise 8.1i

82

SYNTHESIS REPORT
Release 8.1 i - xst I.24 Copyright (c) 1995-2005 Xilinx, Inc. All rights reserved.
--> Reading design: RISC_TOP.prj

* 	 Synthesis Options Summary

---- Source Parameters
Input File Name 	: "RISC TOP.prj"
Input Format 	 : mixed
Ignore Synthesis Constraint File : NO

---- Target Parameters
Output File Name 	: "RISC TOP"
Output Format 	: NGC
Target Device 	 : xc2s200-5-pg208

---- Source Options
Top Module Name : RISC TOP
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
FSM Style : lut
RAM Extraction : Yes
RAM Style : Auto
ROM Extraction : Yes
Mux Style : Auto
Decoder Extraction : YES
Priority Encoder Extraction : YES
Shift Register Extraction : YES

• Logical Shifter Extraction : YES
XOR Collapsing : YES

• ROM Style : Auto
Mux Extraction : YES
Resource Sharing : YES

• Multiplier Style : lut
Automatic Register Balancing 	: No

---- Target Options
Add IO Buffers : YES
Global Maximum Fanout : 100
Add Generic Clock Buffer(BUFG): 4
Register Duplication : YES
Slice Packing : YES
Pack IO Registers into IOBs : auto

83

Equivalent register Removal 	: YES

---- General Options
Optimization Goal
Optimization Effort
Keep Hierarchy
RTL Output
Global Optimization
Write Timing Constraints
Hierarchy Separator
Bus Delimiter : <>
Case Specifier : maintain
Slice Utilization Ratio : 100
Slice Utilization Ratio Delta : 5

---- Other Options
lso : RISC TOP.Iso
Read Cores : YES
cross_clock analysis : NO
verilog2001 : YES
safe_implementation : No
Optimize Instantiated Primitives 	: NO
tristate2logic : Yes
use clock enable : Yes
use_sync_set : Yes
use_sync reset : Yes

* 	 HDL Synthesis

Synthesizing Unit <ALU>.
Related source file is "E:/thesis/RISC 16JNTIGHT/alu.vhd".
Summary:

inferred 62 D-type flip-flop(s).
inferred 2 Adder/Subtractor(s).
inferred 2 Comparator(s).
inferred 33 Multiplexer(s).
inferred 77 Tristate(s).

Unit <ALU> synthesized.

Synthesizing Unit <forward>.
Related source file is "E:/thesis/RISC 16JNIGHT/forward.vhd"..

Speed
:1
:NO

Yes
Al1ClockNets
NO

:/

84

Summary: inferred 16 Multiplexer(s).
Unit <forward> synthesized.

Synthesizing Unit <hazzard>.
Related source file is "E:/thesis/RISC 16JNIGHT/hazard.vhd".
Summary: inferred 2 Comparator(s).

inferred 16 Tristate(s),
Unit <hazzard> synthesized.

Synthesizing Unit <CONTROL UNTT>.
Related source file is "E:/thesis/RISC 16JNIGHT/control unit.vhd".
Summary: inferred 5 Tristate(s).

Unit <CONTROL UNIT> synthesized.

Synthesizing Unit <decoder>.
Related source file is "E:/thesis/RISC 16JNIGHT/decoder.vhd".
Summary: inferred 7 Tristate(s).

Unit <decoder> synthesized.

Synthesizing Unit <rom>.
Related source file is "E:/thesis/RISC 16JNIGHT/rom.vhd".
Found 32x16-bit ROM for signal <instn>.
Summary: inferred 1 ROM(s).

Unit <rom> synthesized.

Synthesizing Unit <PC REG>.
Related source file is "E:/thesis/RISC_16JNIGHT/pc_reg.vhd".
Summary: inferred 12 D-type flip-flop(s).

inferred 1 Adder/Subtractor(s).
Unit <PC REG> synthesized..

Synthesizing Unit <data ram>.
Related source file is "E:/thesis/RISC16JNIGHT/ram.vhd".
Found finite state machine <FSM 0> for signal <PS>.
Summary: inferred I Finite State Machine(s).

inferred 5 Tristate(s).
Unit <data ram> synthesized.

Synthesizing Unit <myregfile>.
Related source file is "E:/thesis/RISC_16JNIGHT/myregfile.vhd".
'Found finite state machine <FSM_1> for signal <PS>.
Summary: inferred 1 Finite State Machine(s).

85

inferred 5 Tristate(s).
Unit <myregfile> synthesized.

Synthesizing Unit <REG_RD>.
Related source file is "E:/thesis/RISC_16JNIGHT/LATCH RD.vhd".

Unit <REG RD> synthesized.

Synthesizing Unit <LATCH_NPC>.
Related source file is "E:/thesis/RISC_16JNIGHT/latch.vhd".
Summary: inferred 12 Multiplexer(s).

Unit <LATCH NPC> synthesized.

Synthesizing Unit <WRITE_BACK>.
Related source file is "E:/thesis/RISC_16JNIGHT/write back.vhd".
Summary: inferred 22 D-type flip-flop(s).

Unit <WRITE BACK> synthesized.

Synthesizing Unit <REG_EX_WB>.
Related source file is "E:/thesis/RISC_16JNIGHT/reg ex wb.vhd".

Summary: 	inferred 33 D-type flip-flop(s).
Unit <REG_EX WB> synthesized.
Synthesizing Unit <EXECUTE>.

Related source file is "E:/thesis/RISC 16JNIGHT/execute.vhd".
Summary: inferred 17 D-type flip-flop(s).

inferred 17 Tristate(s).
Unit <EXECUTE> synthesized.

Synthesizing Unit <REG_ID_EX>.
Related source file is "E:/thesis/RISC_16JNIGHT/reg_id_ex.vhd".
Summary: inferred 30 D-type flip-flop(s).

Unit <REG ID EX> synthesized.

Synthesizing Unit <DECODE>.
Related source file is "E:/thesis/RISC_16JN1GHT/decode.vhd".
Summary: inferred 46 D-type flip-flop(s).

inferred 43 Tristate(s).
Unit <DECODE> synthesized.

Synthesizing Unit <REG_F_ID>.
Related source file is "E:/thesis/RISC_16JNIGHT/reg_f id.vhd".
Summary: inferred 30 D-type flip-flop(s).

inferred 28 Tristate(s).
Unit <REG F ID> synthesized.

86

Synthesizing Unit <fetch>.
Related source file is "E:/thesis/RISC_16JNIGHT/fetch.vhd".
Summary: inferred 28 D-type flip-flop(s).

inferred 28 Tristate(s).
Unit <fetch> synthesized.

Synthesizing Unit <DISPLAY>.
Related source file is "E:/thesis/RISC_16JNIGHT/display.vhd".
Summary:

inferred 4 ROM(s).
inferred 2 Counter(s).
inferred 12 Adder/Subtractor(s).
inferred 6 Comparator(s).
inferred 17 Multiplexer(s).

Unit <DISPLAY> synthesized.

Synthesizing Unit <RISC_TOP>.
Related source file is "E:/thesis/RISC 16JNIGHT/risc micro.vhd".

Unit <RISC TOP> synthesized.

Advanced HDL Synthesis

Analyzing FSM <FSM_1> for best encoding.
Optimizing FSM <REG/PS> on signal <PS[1:3]> with gray encoding.

Analyzing FSM <FSM Q> for best encoding. 	 0

Optimizing FSM <RAM/PS> on signal <PS[1:3]> with gray encoding.

Reading module "mymemory.ngo" ("mymemory.ngo" unchanged since last run)...
Loading core <mymemory> for timing and area information for instance <REG>..
Loading core <mymemory> for timing and area information for instance <REG>.

Advanced IiDL Synthesis Report

Macro Statistics
#FSMs :2
ROMs . :5

• 16x8-bit ROM : 4
32x16-bit ROM : 1

Adders/Subtractors : 15
12-bit adder : 3
32-bit adder : 12

87

Counters : 2
31-bit up counter : 	1
32-bit up counter : 1

Registers : 286
Flip-Flops : 286

Latches : 26
1-bit latch : 21
12-bit latch : 1
16-bit latch : 3
8-bit latch : 1

Comparators : 10
16-bit comparator equal : 	1
16-bit comparator less : 	1
31-bit comparator greatequal : 3
31-bit comparator less : 2
31-bit comparator lessequal : 1
4-bit comparator equal : 2

Multiplexers : 23
1-bit 4-to-1 multiplexer : 17
1-bit 8-to-1 multiplexer : 	1
12-bit 4-to-1 multiplexer : 	1
16-bit 4-to-1 multiplexer : 	1
16-bit 8-to-1 multiplexer : 	1
8-bit 4-to-1 multiplexer : 	1
8-bit 8-to-1 multiplexer : 	I

Xors : 54
1-bit xor2 : 53
16-bit xor2 : 	I

Mapping all equations...
Building and optimizing final netlist ...
Found area constraint ratio of 100 (+ 5) on block RISC TOP, actual ratio is 25.

* 	 Final Report

Final Results
RTL Top Level Output File Name : RISC TOP.ngr
Top Level Output File Name : RISC TOP
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO
Design Statistics
#TOs 	 :35

88

Cell Usage :

BELS :1361
GND :3
INV :4
LUTI :46
LUT2 : 105
LUT2_D :8
LUT2 _L :14
- LUT3 :122
LUT3 _D : 9
LUT3 _L :62
LUT4 :454
LUT4_D : 64
LUT4_L :210
MUXCY :130
MUXF5 :62
NIUXF6 :1
VCC :1
XORCY :66

FlipFlops/Latches : 392
FD :96
FD I :12
FDC :19
FDC_I :3
FDE :25
FDR :33
FDS :52
FDS _1 :76
LD :48
LD1 :16
LDC :2
LDCP :10
RAMS :2
RAMB4 S 16 :2
Clock Buffers : 2
BUFG :1
BUFGP :1
IO Buffers :34
IBUF :6
OBUF :28

89

D914ce 9filka 	n summary:
Selected Device : 2s200pg208-5

Number of Slices: 589 out of 2352 	25%
Number of Slice Flip Flops: 381 out of 4704 	8%
Number of 4 input LUTs: 1094 out of 4704 	23%
Number of bonded IOBs: 35 out of 	144 	24%

IOB Flip Flops: 11
Number of BRAMs: 2 out of 	14 	14%
Number of GCLKs: 2 out of 	4 	50%

TIMING REPORT
Clock Information:
---+------- -----------------+-------+
Clock Signal 	 I Clock buffer(FF name) I Load
---+------------------------+-------+
DSP/div clk_31 	 I BUFG 	1 323 1
DSP/div clk_0 	 I NONE 	1 8 1
REG/DATA_EN(REG/PS_Out01:O) I NONE(*)(REG/rd_data_3) 116
hltout(IDU/CNT/ n00051:0) 	I NONE(*)(IFU/hlt) 	1 1 1
DSP/ n0043(DSP/Mcompar n0043_norcy_rn_5:0) NONE(*)(DSP/LCD_1) 1 111
clk 	 I BUFGP 	1 35 1
---+------------------------+-------+
(*) These 3 clock signal(s) are generated by combinatorial logic, and XST is not able to
identify which are the primary clock signals.
Please use the CLOCK SIGNAL constraint to specify the clock signal(s) generated by
combinatorial logic.

Timing Summary:
Speed Grade: -5

Minimum period: 40.716ns (Maximum Frequency: 24.560MHz)
Minimum input arrival time before clock: 7.873ns
Maximum output required time after clock: 8.329ns
Maximum combinational path delay: No path found

Total memory usage is 127580 kilobytes
Number of errors : 0 (0 filtered)
Number of warnings : 17 (0 filtered)
Number of infos : 20 (0 filtered)

90

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

