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ABSTRACT 

The objective of this dissertation report is to model and analyze- small 

signal torsional oscillations such as Sub synchronous resonance (SSR) characteristic 

of a Thyristor controlled series capacitor (TCSC) compensated power system The 

power system used in this study is the IEEE first benchmark model for SSR analysis. 

A new model of TCSC is used in the study which includes the complete model of the 

controller. The turbine shaft, the generator and the TCSC are modeled using 

linearized equations. TCSC is regulated by a simple PI controller and a phase locked 

loop (PLL). 

The torsional characteristics are studied through eigenvalue analysis and the 

results are validated through PSCAD/EMTDC simulation studies. 
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Chapter -1 	 Introduction 

1.1 Introduction 

In recent years, a greater demand has been placed on the transmission network, and 

these demands will increase because of the increase in the number of non-utility 
generators and the heightened competitions between the utilities themselves. Added to 

this is the problem that it is very difficult to acquire new rights of ways. Increased 
demands on transmission, absence of long term planning, and the need to provide 

open access to generating companies and customers, all together have created 
tendencies towards less security and reduced qualities of supplies. The FACTs 

technology is essential to alleviate some but not all these difficulties by enabling 
utilities to get their most services from their -transmission facilities and provide grid 
reliability. 

The operation of transmission parameters including series impedance, shunt 

impedance, current, voltage, damping of oscillations, phase angle, etc. at various 
frequencies below the rated frequency. By providing added flexibility, FACTs 

controller can enable a line carry power more closely to its thermal rating. 

Some of the FACTs devices are SVC, TCSC, STATCOM, SSSC, UPFC etc. 

SVC (Static var compensator) is a shunt-connected static var generator or absorber 

whose output is adjusted to exchange capacitive or inductive current so as to maintain 
or control specific parameters of the electrical power system (typically bus voltage). 

TCSC (Thyristor controlled series capacitor) is a capacitive reactance compensator 

which consists of a series capacitor bank shunted by a thyristor controlled reactor in 
order to provide a smoothly variable series capacitive reactance. 

STATCOM (Static synchronous compensator) is a static synchronous generator 
operated as a shunt-connected static var compensator whose capacitive or inductive 

output current can be controlled independent of the ac system voltage. 

SSSC(Static synchronous series compensator) is a static synchronous generator 

operated without an external electric energy source as a series compensator whose 
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output voltage is in quadrature with and controllable independently of the line 

current for the purpose of increasing or decreasing the overall reactive voltage drop 
across the line and thereby controlling the transmitted electric power. 
UPFC (Unified power-flow controller) is a combination of a STATCOM and a SSSC 
which are coupled via a common do link, to allow bidirectional flow of real power 
between series output terminals of the SSSC and the shunt output terminals of the 
STATCOM, and are controlled to provide concurrent real and reactive series line 
compensation without an external electric energy source. 
Series capacitor compensation in A.C. transmission systems can yield several 

benefits; such as increased power transfer capability and enhancement transient 
stability. However in long transmission line it can lead to Subsynchronous resonance 

(SSR), which is a serious threat to our power system. In this dissertation we solely 

study the SSR analysis of TCSC (thyristor controlled series capacitor) compensated 

power system. 

1.2 Subsynchronous resonance(SSR)  
Subsynchronous resonance is an electric power system condition where the electric 
network exchanges energy with a turbine generator at one or more of the natural 

frequencies of the combined system below the synchronous frequency of the system. 

Such SSR and associated turbine-generator torsional interactions are an instability in 

which the large subsynchronous torques. There are many ways in which the system 
and the generator may interact with subsynchronous effects. But three are of 

particular interest as Induction Generator Effect, Torsional Interaction Effect and 

Transient Torque Effect. 

1.2.1 Induction Generator Effect 

Induction generator effect is caused by self-excitation of the electrical system. The 

resistance of the rotor to subsynchronous current, viewed from the armature terminals, 

is a negative resistance. The network also presents a resistance to these same currents 
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that is positive. However, if the negative resistance of the generator is greater in 

magnitude than the positive resistance of the network at the system natural 
frequencies, there will be sustained subsynchronous currents. This is the condition 
known as the "induction generator effect." 

1.2.2 Torsional Interaction Effect 
Torsional interaction occurs when the induced subsynchronous torque in the generator 
is close to one of the torsional natural modes of the turbine-generator shaft. When this 

happens, generator rotor oscillations will build up and this motion will induce 
armature voltage components at both subsynchronous and super synchronous 
frequencies. Moreover, the induced subsynchronous frequency voltage is phased to 

sustain the subsynchronous torque. If this torque equals or exceeds the inherent 
mechanical damping of the rotating system, the system will become self-excited. This 
phenomenon is called "torsional interaction." 

1.2.3 Transient Torque Effect 
Transient torques are those that result from system disturbances. System disturbances 
cause sudden changes in the network, resulting in sudden changes in currents that will 

tend to oscillate at the natural frequencies of the network. In a transmission system 
without series capacitors, these transients are always dc transients, which decay to 

zero with a time constant that depends on the ratio of inductance to resistance. For 
networks that contain series capacitors will contain one or more oscillatory 

frequencies that depend on the network capacitance as well as the inductance and 
resistance. In a simple radial R-L-C system, there will be only one such natural 
frequency, but in a network with many series capacitors there will be many such 
subsynchronous frequencies. If any of these subsynchronous network frequencies 

coincide with one of the natural modes of a turbine-generator shaft, there can be peak 

torques that are quite large since these torques are directly proportional to the 

magnitude of the oscillating current. Currents due to short circuits, therefore, can 
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produce very large shaft torques both when the fault is applied and also when it is 

cleared. In a real power system there may be many different subsynchronous 

frequencies involved and the analysis is quite complex. From the viewpoint of system 

analysis, it is important to note that the induction generator and torsional interaction 

effects may be analyzed using linear models, suggesting that eigenvalue analysis is 

appropriate for the study of these problems. There are several analytical tools that 

have evolved for the study of SSR. The most common of these tools will be described 

briefly. 

1.3.1 Frequency scan technique 

The frequency scan technique computes the equivalent resistance and inductance, 

seen looking into the network from a point behind the stator winding of a particular 

generator, as a function, of frequency. Should there be a frequency at which the 

inductance is zero and the resistance negative, self sustaining oscillations at that 

frequency would be expected due to induction generator effect. 

It also provides information regarding possible problems with torsional interaction 

and transient torques which might be expected to occur if there is a network series 

resonance or a reactance minimum that is very close to one of the shaft torsional 

frequencies. 

Since the frequency scan results change with different system conditions and with the 

number of generators on line, many conditions need to be tested. Frequency scanning 

is limited to the impedances seen at a particular point in the network, usually behind 

the stator windings of a generator. The process must be repeated for different system 

(switching) conditions at the terminals of each generator of interest. 
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1.3.2 Eigenvalue analysis 
Eigenvalue analysis provides additional information regarding the system 

performance. This type of analysis is performed with the network and the generators 

modeled in one linear system of differential equations. The results give both the 
frequencies of oscillation as well as the damping of each frequency. 

1.3.3 Electromagnetic Transients Program (EMTP) 
The Electromagnetic Transients Program (EMTP) is a program for numerical 

integration of the system differential equations. Unlike a transient stability program, 

which usually models only positive sequence quantities representing a perfectly 
balanced system, EMTP is a full three-phase model of the system with much more 

detailed models of transmission lines, cables, machines, and special devices such as 

series capacitors with complex bypass switching arrangements. Moreover, the EMTP 
permits nonlinear modeling of complex system components. It is, therefore, well 

suited for analyzing the transient torque SSR problems. EMTP adds important data on 
the magnitude of the oscillations as well as their damping. 

Flexible A.C. transmission system such as thyristor controlled series capacitor 

(TCSC), offer the possibility of power flow control and suppression of SSR 

instabilities through controlled series compensation. This report examines the SSR 

behavior of the thyristor compensated power system using eigenvalue method and 

compares the SSR performance with a fixed capacitor compensated system. The IEEE 
first benchmark model for SSR is used as the test system for eigenvalue analysis. 

The report is organized as follows: Chapter 2 describes the details about TCSC, its 

characteristics. Chapter 3 contains the models of electromechanical system and 

network equations, then these individual subsystems are combined to get overall 

model of the TCSC compensated power system, and the computation of the 
eigenvalues. Chapter 4 contains the results of our eigenvalue analysis and results of 
PSCAD/EMTDC simulations. Finally Chapter 5 is about conclusion. 
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Chapter-2 	Working Principle, Characteristics and modeling of TCSC 

2.1 Introduction 

A Thyristor controlled series capacitor (TCSC) is a capacitive reactance compensator 

which consists of a series capacitor bank shunted by a thyristor controlled reactor 

(TCR : A shunt connected, thyristor-controlled inductor whose effective reactance is 

varied in a continuous manner by partial-conduction control of the thyristor) in order 

to provide a smoothly variable series capacitive reactance.TCSCs are expected to 

provide many benefits for an electric power system including the increase of power. 

transfer capability and transient stability as well as the mitigation of sub synchronous 
resonance (SSR). 

0 

T, 

Fig 2.1 Block diagram of TCSC 

In the figure 2.1, Hine, IC, IT, Ls, C, T1 and T2 are the line current, current flowing 

through the capacitor, inductor and the capacitor, the thyristors used in bidirectional 
way. 

2.2 Operation of TCSC 

C 

L. 

Fig.2.2 (A variable inductor connected in shunt with fixed capacitor) 
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From the system point of view TCSC (Fig. 2.2) which provides variable-series 

compensation is simply to increase the fundamental-frequency voltage across a fixed 

capacitor in a series compensated line through appropriate variation of firing angle a. 

This enhanced voltage changes the effective value of the series-capacitive reactance. 

The equivalent impedance is 

Zeq =(—j---  
CO

) II (Ja'L) = —J 	1 
wC- 

wL 

If aiC - —L > 0, or coL >G ---  , the reactance of fixed capacitor is less than that of the 
co 

parallel connected variable reactor and this combination provides a variable capacitive 

reactance. Moreover, this inductor increases the equivalent capacitive reactance of the 

LC combination above that of the fixed capacitor. 

If coC -- 1  = 0, a resonance condition results which leads to infinite capacitive 
COL 

impedance. This is obviously unacceptable. 

If cWC - 1  < 0, the LC combination provides a variable inductance above the value of 
coL 

fixed inductor. This situation corresponds to inductive Vernier mode of TCSC 

operation. 

2.3 Different operating modes ofa TCSC. 

2.3.1 Bypassed -Thyristor Mode 

Fig 2.3.1 Bypassed -Thyristor Mode 

Thyristor are made fully conductive by a conduction angle of 180 as in Fig. 2.3.1. 
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As soon as the voltage across thyristor becomes zero and advances towards positive 

gate pulses are applied and this results a sinusoidal flow of current through the 

thyristor. That implies the net impedance is reactive. Thus the thyristor behaves as if a 

parallel combination of inductor and capacitor. 

2.3.2 Blocked -Thyristor Mode: 

In this blocking command is given to thyristor & as soon as the current through the 

thyristor reaches to 0, these turn off. This implies TCSC reduces to a capacitor. This 

is shown in Figure 2.3.2 

Fig 2.3.2 Blocked .Thyristor Mode 

2.3.3 Partially Conducting Thyristor (Capacitive Vernier Mode): 

In this we are trying the TCSC to behave as continuous reactor or inductor. This is 

achieved by varying the thyristor pair firing angle in a particular range. But a smooth 

transition from inductive to capacitive is not possible because of the resonant region 

between-the two. 

Fig. 2.3.3 Partially Conducting Thyristor (Capacitive Vernier Mode) 



When the voltage & current across the capacitance are in opposite direction thyristor 

are fired, this causes a loop current flow which adds up with the line current through 
the capacitance causing a net capacitance voltage drop which is more than its normal 
value, and this implies that we have made our TCSC to operate in a capacitive mode. 
a is a delay angle measured from the crest of the capacitor voltage or from the zero 
crossing of the line current. 

2.3.4 Partially Conducting Thyristor (Inductive Vernier Mode): 

Fig 2.3.4 Partially Conducting Thyristor (Inductive Vernier Mode) 

We can explain this mode just as opposite to previous mode. In this the loop current 

flows in opposite direction. When the voltage & current across the capacitance are in 
same direction thyristors are fired, this causes a loop current flow which acts in 

opposite direction to the line current through the capacitance causing a net 

capacitance voltage drop which is less than its normal value, this implies that we have 
made our TCSC to operate in an inductive mode. 



2.4 Impedance Vs Delay Angle characteristics of TCSC: 
The internal operation of TCSC can be understood by the following Impedance Vs 

delay angle characteristics. 

X(a) 

L. 	 1 sw 	if - mce X («.) = ?Cc 
peration inhibited for 
"e rm  s«s0' 0 um 

w 

a 
0 

Inductive- regIani 
QS`r5aturri 

s Capacitive: region: 
cian tr5rrl2 

a 

Fig. 2.4 Impedance Vs Delay Angle characteristics of TCSC 

At the resonant point, the TCSC exhibits very large impedance and results in a 

significant voltage drop. This region is avoided by installing limits on the firing angle. 
TCSC presents a constant alternating current source. As the impedance of the reactor 
is XL  (a), is varied from its maximum (infinity) towards its  minimum  (ao L ),the 

TCSC increases its minimum capacitive impedance, XTCSC, n = Xc = COC  , until 

parallel resonance occurs at X, = X L  (a) is established and XTCSC,max theoretically 

becomes infinity. Decreasing X L(a) further, the impedance of the TCSC,XTCSC (a) 
becomes inductive, reaching its minimum value of XLXc/(XL-Xc) at a =0 , where 
the capacitor is in effect bypassed by the TCR .So with the usual TCSC arrangement 
in which the impedance of the TCR reactor, XL, is smaller than of the capacitor, Xc, 
the TCSC has 2 operating ranges around its internal circuit resonance : one is the 
aCijm  <= a <= 2r/ 2, where XTesc(a) is inductive. The dynamic interaction between 
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capacitor and reactor changes the operating voltage from that of the basic sine wave 

established by the constant line current. 

2.5 Modeling of TCSC 

The fundamental frequency model of a TCSC is derived first to enable initialization 

of the steady-state parameters. The voltage across the TCSC capacitory comprises an 

uncontrolled and a controlled component and it is presumed that the line current is 

constant over one fundamental cycle in accordance with [2], [3], [8], The uncontrolled 

component v, is a sine wave (unaffected by thyristor switching) and it is also constant 

over a fundamental cycle since it is directly related to the amplitude of the prevailing 

line current. The controlled component v2 is a nonlinear variable that depends on 

circuit variables and on the TCR firing angle. In this study, the controlled component 

is represented as a nonlinear function of the uncontrolled component and firing 

angle, v2 = N, (v, , a, s), as shown in Fig. below. With this approach, N, (v, , a, s) 

captures the nonlinear phenomena caused by thyristor switching influence and all 

internal interactions with capacitor voltage assuming only that the line current and v, 

are linear. We seek in our work to study dynamics of N, (v,, a, s) in a wider frequency 

range and also to offer a simplified representation for fundamental frequency studies. 

t 	v 

1j - Una vurr nt 
j - finear component oM C vottagc 

1 >:1IiIh.tr component n •J• CSC voltage 
t*e - CSC voltage 
a - firing angle. 
v, (ri, > v - o,-(incur part ~s ics 

Fig. 2. 5. TCSC model 
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The following transfer function is proposed 

2 
52+2 ns +1 

V2(S) _ ~n  ~n  (2.1) 
VI (s) 	s'2 2Cd s + 1 

Where the unknown constants are 

g-2a 
(Dd 

_ 

 ~c ltcrC 

~d = 0.3 8 cos(a) 

con =~
10 (1.7+ 10 a 
i c 	tan 4(a) 

4'n = O.2 cos(a) 

The model 2.5 is next transferred into state-space domain 

• ll 
xl 

C 
I2 = X3 
• z 	2 

'x3 = '- d X1 — d X2 — 0d Sd x3 

x4 =— l 1------- i x   d 2 l +— 2 --1 x2 + — I ~d 2d --- n 3 + x4 
T f 	Con 	T1 0) 	 T.r con 	Co" 	TI 

Applying D-Q transformations to the above equations we got 
ZD 

XID + Q)O XIQ 
C 

12D + wox2Q = X3D 

2 	2 
13D +(L QX3Q = 01d X1D —W d X 2D —CodSd x3D 

2 

14D + COO X4Q — 1 1 — Cvd)XID + 1 
() Z 	

I _1]X2D  + 1 Codcd — Sn x3B 	X4D 2 
Tf co  Tf wn  T1 (On con)Tf 
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iQ 
x1Q — COO x1D C 

X2Q — w0X2D = X3Q 
2 	 2 

'x3Q — WO X 3D —wd X IQ — COd X2Q —codcdX3Q 

2 

x4Q — wO x4D — 1 1 — Cad 2 x1Q + 1 	z —1 x2Q + 1 
ad Zd — ç,, x3Q + 1 

X4Q 
T f ~v" 	T f w" COB 	Tf 

JC1D = -C00 X1Q +_ 
C 

X2D = —CO0 X2Q + X3D 

2 	z 
X3D = —COOx3Q + Od X1D —(ild X2D —O)dSd x3D 

(2.2). 

(2.3) 

(2.4) 

z 

x4D = —CO0x4Q -} 1 1— T 2 x1D + 1 (-Td-- 
 —1 I D + 1 CodSd — Sn x3D +  Tf 	can 	Tf w" 	T w" 	c)" 	Tf 

(2.5) 

iQ 
x1Q = a)ox1D + C 	 (2.6) 

X2Q = (Oax2D + X3Q 	 (2.7) 

X3Q = Q)OX3D +Cf1d 2 XlQ —Wd2X2Q —(odcd x3Q 	 (2.8) 

2 

x4Q -- c)O x4D + 1 1 — c) d2 x1Q + 1 w z —1 JC2Q + 1 
CUd ~d — Sn 

X3Q + 1 X4Q 

Tf 	~" 	T1 O" 	Tr ~n  

(2.9) 
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BRK 

2.6 Voltage and current waveforms of TCSC 

The figure shown below is a TCSC connected between a 3-ph source and a 3-ph load. 

Fig. .2.6 A 3-ph source connected to 3-ph load through a TCSC 

The line current, current through capacitor and inductor in the capacitor mode is given 
below: 

14 



Fig. 2.7 Voltage and Current waveforms of TCSC in capacitive mode 

In the capacitive mode, when thyristor is turned on the current through the inductor 

added up with the original current flowing through the capacitor resulting a higher 

voltage across the capacitor 

15 



Chapter-3 	 Modeling of TCSC compensated power system 

3.1 Test system 

The system for the SSR study should be modeled more in detail than that of the low 

frequency oscillation study. So the complete SSR simulation system based on the 

IEEE first benchmark is employed for this study. As shown in Fig. 3.1, this system 

consists of one synchronous generator which is connected to the infinite bus through a 

series compensated transmission line and a governor-turbine system which is 
expressed as a spring-mass system. 

r R X. 	 X 

o-1 I_ t't*Xfl4 

for inThifte bus 

Fig. 3.1 Test system 

3.2 Modeling of Electrical system 

The voltage equations of the stator and rotor coils are given below. 

d~S — dt — [Rs his =v, 

uor - [Rr]i" -vr 
dt 

(3.1) 

(3.2) 
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where 

VS` [Va Vb V~ ] 

0 0 	0] 

Ra 0 0 

[Rs ] = 	0 Ra 0 
0 .0 Ra 

Rf 0 0 	0 
0 Rf 0 	0 

[Rr]= 0 0 R f 	0 
0 0 0 	Rf 

The combined voltage equations (for stator and rotor) can be expressed as 

do =—[R][L]-'0— v 

i=[L]q5 

Where 

[L] =
1LrS Lrr 

Rs 0 
[R]_ 0 Rr 

0 t— [ 0 st 0 r1 	 1 [is, lrt] 	 .t— [vst Vrt] 

Applying the Park's transformation as 

[fa lb fc]` =IC,][.fd fq J0f 

Where fa can be either stator voltage, current or flux linkage of the stator winding and 

a can be a, b, c. [Cr] is defined by 

kd *cosO 	kq *sinO 	ko . 

[C p ] = kd * cos(O — 23) kd * sin(O — 23) ko 

kd * cos(B — 23) kd * sin(O — 23) ko 

Where kd , kq , ko are constants as 1,-1,1. 
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The inverse transformation is given by 

Lfd fq fO I' = [Cp ]-1 * [fa fb J c ] 

Applying Park's transformation 3.1 can be rewritten as 
d 

[Cp tPdgO ] — LRs ] [Cp ]ldg0 = [C p ]VdgO 

This can be written as 

— Od —B k9 coq — Rid =vd 	 (3.3) 

d 

- dOg -Bkd rpd-Riq =V q 	 (3.4) 
q 

Where co = 6 = coo in steady state .Subscript 0 indicates the value at the operating 

point. 

Now the stator equations can be written as 

1 pod — (l ± S. )cbd — Rid = Vd 	 (3.5) 
COB 

— 1 Poq — (I+Sm)øq — Rlq =Vq 	 (3.6) 
B 

The rotor electrical equations are written as (assuming machine model 1.1, [1]) 

xq ' )iq ] 	 (3.7) 
Tqo 

pEq' _ 	[ —Eq'—(xd — Xd ' ) d + Efd ] 	 ( 3.8) 
d0 

So finally the electrical system state equations can be written as 

xe = LAe ]xe + [Del ]ue +][ Ee2 ]Efd 

Ye = [Ce ]xe 

where xè  = L V d ~P q Ed' Eq'] 

U e' = [VD VQ ] 

Yet = ['D l Q] 

Where all the unknown matrices are given in the appendix D 



3.3 Modeling of Mechanical system 

at 
ck 	 3 	 04 	 0Sry 

D12 	D23 , 	D3.1 	D45 	D56 

Kit 	K23 	X34 
	

K45 I K56 

-- I D1 	D2 IJI D3 	L)4 	D 

Fig.3.3 Torsional system with six masses 

The mechanical system consists of rotors of generator, exciter and turbines, shafts can 

be viewed as mass-spring-damper system The mechanical system equations can be 
written as an analogy to an electrical network (RLC) network. 

Defining per unit slip of a mass (Me ) as 

S~ = 
w; — W B 

COB 
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We can express 

d t 
=wB(S; —SiO ) 

dt 

dS. 
2H1 

dtt 
+ D; (S; — SIo ) + D1,1_1 (S1 — S1-1) + D1,1+1(Si — S,+1) + T ,~--~ + T = Tmi — Tei 

dT ,r_1 K 11 (S1 — Si-1)0B 
dt 

dTi,i-1 =Ki,i-1(Si—S;+1)wB 
dt 

Where 	is the torque in the shaft section connecting mass i and i-1 and 2H is 

analogous to a capacitance, slip analogous to voltage and torque as current. The p.u. 

damping co-efficient as conductances. 

The state variables for this system are given by 

X., = [s, S2 S3 S4 S5 S6 ' T12 T23 T34 T45 T561 

The additional state variable required for writing equations for the electrical system is 

9m i.e., rotor angle corresponding to the generator rotor. The equation for it is given 

by 

dt =COB(Jm —Smo) 
• 

Where Sm is the generator rotor slip. 



The mechanical system state equation -scan be written as 

xm = [Am I xm + [Bml ]Te  +1 [Bm2 ]Um 

Ym =[C]x1  

Where um  is equal to the vector of mechanical torques applied at different turbine 

rotors, if prime movers dynamics are not included in the equations. If turbine-

generator dynamics are to be included, um  is the input variable corresponding to the 

speed reference .Te  is the electromagnetic torque of the generator applied at the 

generator rotor mass. 

For the 6-mass system the state vector given by 

X  m l  = [ S 	Sexe 	TLGE 	S̀m 	TLBG SLPB TILPAB SLPA TILPA 	SIP 	THI 	SHP I 

Where here TLGE I TLBG , TILPAB TILPA , THI ' 5m , SLPB SLPA , SIP are the shaft torques and the rotor 

are slips of different rotors and 8 is the generator rotor angle. 

Although the mechanical system equations are linear, the coupling between the 

mechanical and electrical equations are non-linear .Hence it is required to linearize 

the equations for small signal stability analysis.. 
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3.4 Controller Model 

a 

Vref 

Fig.3.4 Controller model 

Vc  __ Voltage across capacitor z --line current angle 

V,-ef--reference voltage 	rp --voltage angle 

a --actual firing angle 

The controller model consists of a PI controller, PLL, series compensator and 2 

transport delay model, as shown in Fig. 3.4. The PLL system is of the d-q —z type. 

The state-space linearized second-order PLL model is developed in [11]. The PLL 

synchronizes thyristor firings with the line current phase angle. For simplicity 

reasons, the TCSC voltage feedback control is used where Vref  can be a function of 

other parameters at higher control levels. Because of the thyristor firings at discrete 

time instants the system is actually a sampled data system with the sampling 

frequency f =360Hz. The continuous model, therefore, includes a first-order delay, 

given by time constant Tdl  to accommodate the phase lag introduced by sampling the 

firing angle signal. The filter time constant is of the order of 2 ms, which is in line 

with other studies. It should be noted that the voltage phase angle also affects the 
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firing angle because the actual firing angle is measured with respect to the voltage 

curve. Here, we have direct correlation across each phase, and the sampling frequency 

is 1/3 of f and, therefore, an additional lag is introduced represented by the delay 

filter with. Simulation results demonstrate improvement in the response with the 

introduction of this delay element. 

3.4.1 Modeling of delay filter 

1 
—x 

Td2s+l 

V=Td2s* x7 +x7 

sx7 = (P — x' 
Td2 Td2 

	

1 	rp 
.z  
7 	Td2 ' Td2 

3.4.2 Modeling of PI controller 

2  V~ = VCD2 + VCQ2  

Taking differential of both sides 

2Vc LVc = 2VcD AVID + 2VcQ AVcQ 

OVc = VCDO AVCD + 
VCQO 

AVCQ 

 

co  co 

	

_ X4DO 	x4Q0 

Ax4 — 	Ax4D + 	~4Q 

	

x40 	 X40 

	

_ X4DO 	X4Q0 
M 4 — 	M 4D + 	LX 4Q 

	

x40 	 x40 

(3.9) 
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Putting (3.26) & (3.24) in (3.25) we got 

AUG = AX NI + [F ICG ]ixG + xL LLCG AG }AxG + LCG BG J /X uG J 
Wb 

AUG = AxN1 + LF ICG I A G + xL LCG`QG t̀ G + xL [CG BG JAU G 
Wb 	Wb 

AUG 1 	LCG BG 1 = AX N1 + [ F I[CG .1 + w LCG AG ]1&G 
Wb 	 b 

—1 

AU G = 1 — xl [CG BG J AxN1 + [F][CG ]+ xL [CG AG l]1\xG 
Wb 	L 	Wb 

1 	 t 

AUG — 1 — xl [CG BG ] AxN1 + 1 — xl [CGBG J [F ICG ]+ xL LCG AG J AxG Wb 	Wb 	Wb 

Let H = 1— x` [CG BG 
wb 

Now 

AuG = [HJAxN + [H] [F][CG ]+ W [CGAG ] &G 
Wb 

Putting (3.27) in (3.23) we got 
AiG =[A]Ax +[BG IAU G 

~G = [AG l &G + [BG I [HI AX N1 + [BG ]LH [FICG ] + xL ECG AG 1]&G 
Wb 

AiG — r[AG]+ [BG I[H [FICG]+ —L [CG AG] AxG +{ BG][H IAX NI 
Wb 	jj 

Let 

L = LAc ] + [BG IIH LFILCG I + xL LCG AG I 
Wb 

~G = LAxG + [BG ][H]AXN1 

From (3.15) & (3.16) the linearized network equations are 

AX Nl = [ ANI]AxN1 +[DNI}AX N2 + LBN1] AuN1 +[ BNZ]A"N1 

~N2 = [AN2 ]AX N2 + [DN2 ]AX N1 + [CN1 I AuNI + LCN21 Nl 

(3.27) 
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LUN1 = AYG 

Au N1 = ~YG 

AYG = [CG 1 MG where 
AYG = LCG JAG 

AU NI = [CG ]MG 

Au N1 = [CG ]MG 

MN1 = L 4̀N1 IAxN1 + [ DNI I M N2 + [ BN1 ][CG IMG + [ BN2 ][CG ][LAX G + [ BG ]LHJAxN1 J 

M N2 = L AN2 I M N2 + [ DN2 ]M N1 + ICN1 ILCG IMG + [ CN2 ILCG ]LLAxG + LBG ILHJA N1 J 

M N, = [ ANI I M N1 + [ DNI I M N2 + [BN1 ]CG 1MG + [ BN2 ][CG ] ' AX G + [ BN2 ILCG IBG I LH ]AxNI 

M N2 = [ AN2 ]MN2 +. [ DN2 I TM N1 + LCN1 ][CG 1MG + LCN2 ILCG }"MG + [ CN2] CG I BG ILHJAXN1 

MG — LAG 1+ [BG ] LH LF I[CG ] + xL [CG AG J MG + [ BG ]EHJA'"N1 
wa  . 

&N1 = E{BN1 ]G J + [ BN2 ][CG 1"}`G + U- AN1 I + [BN2 ILCG IBG ILH11MNI + [DN1 I MN2 

AxN2 = L[CN1 ]{CG I+ CCN2ILCG ILIA G + I1 DN2 I + ICN2 ]CG JBG ]1H N1 +142 I M N2 

Now the combined state model of generator and network is 

[AG I + [BG I ~H [FJLCG_I + xL EGG `4G 111  
~G 

 

Wb 	ii 
TMN1 = U BN1 I[CG J + [BN2 ] CG ]L] 
MN2 	 I[CNI ]LCG J + ICN2 IfCG I L I 

[BG ] [H] 	 [o] 
G 

[[ AN, 1± [BN2 ][CG )IBG I [Hfl [DNI I MN! 

l[ DN2 I + ICN2 ILCG JIBG I LH JJ 1AN2 J M N2 

Now the final system equations can be written as 

~T = [AT I &T 

where XT = [xG' xNl r xN2 ] 
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Chapter-4 	 Results 

4.1 Introduction 
The IEEE working group on Subsynchronous Resonance has introduced one 

benchmark model for time-domain simulation of turbogenerator torsional oscillations• 
[1].Here Eigen value analysis approach is taken for investigation of small signal 

torsional. oscillations. The results of this analysis is presented in 4.2 in 2 parts as 4.2.1 
,in which results were taken with fixed capacitor as the series compensating device 

and 4.2.2 , in which results were taken with TCSC. the series compensating device. 
The PSCAD/EMTDC simulation results are given in 4.3.1 with. capacitor and in 4.3.2 

with a TCSC. 

4.2 Eigen value analysis for SSR 

4.2.1 With fixed capacitor 

Some of the critical eigen values of the complete system with series capacitor as the 

compensating device are listed in Table 4.1 for a series compensation level of 

Xc  = 0.39. For this level, a steady-state operating point is chosen in which the 

machine operates with a power factor of 0.9 while delivering a power of 0.7 per unit. 

The infinite system voltage is 478 kV. With capacitor as the series device, real part of 

the eigenvalues corresponding to various torsional modal frequencies vary in 
v 

magnitude and becomes unstable as the line series compensation changes. As the 

level of compensation increases, the oscillation frequency of the subsynchronous 

electrical mode decreases. In fact it can be seen that this mode approaches one of the 

torsional modes for various compensation levels. It is well known that SSR manifests 

when frequency of the electrical mode nears or coincides with one of the torsional 

modes. At the particular compensation level given in table 4.1 modes 5,4,3,2,1 are 
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unstable. It is also interesting to note that at compensation levels that cause SSR, the 
subsynchronous electrical mode has increased damping. 

Table 4.1 Eigenvalues of the capacitor compensated system for compensation level of 

XC  =0.39 

Modes 

Super sync. -4.43±j625.5 

Sub sync. -3.84±j 141.6 

Mode 0 -1.22±j 10.21 

Mode 1 0.10±j99.98 

Mode 2 0.57±j 127.10 

Mode 3 0.02±j 160.38 

Mode 4 0±j202.81  

Mode 5 0±j298.18  

4.2.2 With TCSC 

The TCSC parameters are adjusted in such way that with the nominal operating point 

(at 76deg) the compensation level 50%. The parameters of the TCSC are given in 
Table A.3 in appendix A. As seen from Table 4.3, all the eigenvalues are having 
negative real parts. The controller parameter selected are Kp= -0.008 and Ki =0.17. 
Table 4.4 shows the eigenvalues of the complete system with K = -0.1 and K; = 0.3. 

Some of the torsional modes unstable in this case. The dampings of the electrical 
modes are less compared to a capacitor compensated system. 
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Table 4.2 Critical Modes of TCSC compensated system for compensation level of 
XTCSC =0.37 

Modes 

Super sync. -8.0±j477.7 

Sub sync. -5.13±j276.3 

Mode 0 -1.22±j9.8 

Mode 1 -0.19±j98.406 

Mode 2 M.57±j 127.10 

Mode 3 -0.17±j 160.44 

Mode 4 -0.05±j202.75 

Mode 5 .-0.18±j298.18 
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4.3 PSCAD/EMTDC results for SSR 

4.3.1 with fixed Capacitor as series compensator 
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Fig.4.3.1.1 HP to IP torque 
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Fig.4.3.1.2 IP to LPA torque 
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Fig. 4.3.1.4 LPB to Generator torque 
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Fig 4.3.1.6 Smooth Electric torque 
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Fig 4.3.1.7 Smooth Electric and frictional torque 
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Real power output 
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Fig 4.3.1.9 Real power output 
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Fig.4.3. 1.10 Voltage across capacitor in ph-A 

The results obtained above are obtained by changing the compensation level i.e., by 
changing the voltage across the capacitor done by changing the value of capacitor. 
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4.3.2 with TCSC as series compensator 
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Fig. 4.3.2.3 LPA to LPB torque 
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Fig 4.3.2.4 LPB to generator torque 
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Fig 4.3.2.5 Generator to Excitor torque 
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Fig 4.3.2.6 Smooth Electric torque 
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Fig. 4.3.2.7 Smooth electric and frictional torque 
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Fig 4.3.2.8 Electric torque negative 
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Fig.4.3.2.9 Real power output 
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Fig.4.3.2.10 Voltage across capacitor in ph-A 

The results obtained above are by changing the compensation level i.e., by changing 

the voltage across the capacitor done by changing the reference voltage. 
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Chapter-5 	 CONCLUSION 

This dissertation report presents a systematic study of small signal torsional 

characteristics of a TCSC compensated power system. IEEE first benchmark model is 

selected as the test system for the studies. A new model of TCSC is used in the study 

which includes the complete model of the controller and also model of the PLL is 

included in the modeling of the controller. The voltage across TCSC is taken as the 

feedback signal of the controller. The eigenvalue analysis shows that with suitable 

values of the PI controller and controlling the parameters of a PLL, a TCSC can damp 

the torsional oscillations in a series compensated power system. The• results are 

compared with PSCAD/EMTDC simulation results. 
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APPENDIX-A 	 TEST SYSTEM PARAMETERS, TCSC AND 

IT'S CONTROLLER 'S DATA 

Table A. 1 Electrical Parameters of the test system 

Parameters Values Parameters Values 
R 0.02 ohm Xd' 0.169 

XT  0.14 Tdo' 4.3 
XL  0.5 Xq  1.71 
XSys  0.06 Xq' 0.228 

Tqo' 0.85 

TableA.2 Parameters of the turbine shaft system 
Mass Inertia constant(H) Shaft section Spring constant 
HP 0.092897 HP-IP 19.303 
IP 0.155589 IP-LPA 34.929 
LPA 0.855867 LPA-LPB 52.038 
LPB 0.884215 LPB-GEN 70.858 
GEN 0.868495 GEN-EXC 2.822 
EXC 0.0342165 



Table A.3 TCSC and TCSC controller data. 

TCSC data (at nominal point) 

c 42 ,uF 

ltcr  0.043 H 

ir. angle a 78° 

CSC Controller data 

-0.008 rad/kV 

I  -0.17rad/(kVs) 

Tdl  1/220s 

Td2  1/1400s 

LL kp  20 

T1  

Tz 

 0.03s 

0.0095s 
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APPENDIX-B 	 CALCULATION OF INITIAL CONDITIONS 

The stator and rotor flux linkages are given by 

Vd xd l d +xad i f 

Vff = xadid +xfif 

yrq  = Xqq  + xag ig  

yr g  = xag iq  + xgig  

Solving B.2 and B.4 

f xad  i j 	 d x f  x f  

Vg xaq  
i g =

Xg 
	 xg  i g  

Substituting Eq.B.5 and B.6 in B.1 and B.3 respectively, we get 

Ytd = xd ' ld + Eq '  

V1q  = xq ' iq  +Ed '  

where 

x 2 ad  
Xd = Xd - 

x f  

x=x — x_ag  

q q  x g 

E'= Xadwf 

g 

 

XI  

E r =  xaq/I S  
d x g  

(B.1)  

(B.2)  

(B.3)  

(B.4)  

(B.5)  

(B.7)  

(B.8)  

(B.9)  

(B.10)  

(B.11)  

(B.12)  



The voltage equations for rotor are 

d 1 Ydf =—R f i f +v f 	 (B.13) 
Wb dt 

1 d 
Y1

g = —Rg ig 	 (B.14) 
Wb dt 

Substituting B.5 and B.11 in B.13, we get 

__ x f dEq 	R f Eq ' + R1 Xad 
 i+ v 	 15 

Wb Xad dt 	X ad 	X1 d f 

~ 	 2 dEg 	Wb R f — E '+ xad 
1d 

'xad V 
	 (B. 16) 

dt 	xf 	q xf d Rf f 

T [ Eq '+(xd —xd ' )id +Efd ] 	 (B.17) 

d0 

where 

E fd = R V 	 (B:18) 
f 

Td0 '= x'f 	 (B.19) 
WbRf 

Now considering the stator equations 

Eq '+xd '1d '—Ralq =Vq 	 (B.20) 

Ed T— xq ' lq'—Ba d =Vd 	 (B.21) 

If transient saliency is neglected by letting 

xd '= xq '= x' 	 (B.22) 

We can combine B.20 and B.21 into a single complex equation given by 

(Eq t+ jEd ' ) — (Ra + IX'XIq + Jid l — Vq + JV d 	 (B.23) 

The above equation represents an equivalent circuit of the stator shown in fig.6.2 

(a).This shows a voltage source (Eq '+ jEd ') behind equivalent impedance (Ra + 
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The variables (D-Q) in Kron's frame of reference are related to the variables (d-q) in 

Park's frame of reference by 

(fQ + Jf11) = (. fq  + jfd 1 	 (B.24) 

wheref can represent voltage or current. Applying B.24 to B.23, we get 

(EQ'+ jED ')— (R. + jx'XiQ  + jiD ) = vQ  + jvD 	 (B.25) 

B.25 also represents an equivalent circuit of the stator shown in fig.6.2. 

R. 	 jX'
mm 

iQ+jiD  

Ey+jEd 
	 Vq+jVd  

Fig.6.2(a) 

Ra 	jx' 

IQ+jin 

EQ  +jED 	 VQ+jVD 

Fig 6.2(b) 

Fig.6.2 Stator equivalent circuits 

It is assumed that the external network connecting the generator terminals to the 

infinite bus is linear two ports. Whatever may be the configuration of the external 

network, it can be represented by the two port network parameters. As only the first 



port, connected to the generator terminals is of interest, the voltage there can be 

expressed as 

V = I" +hl2Eb 	 (B.26) 
y11 

Where y j is the short circuit self admittance of the network, measured at the generator 

terminals,h12 is open circuit voltage gain .For a simple network consisting of only 

series impedance (Re+jX) ,it is not difficult to see that 

1 = Re + axe 	 (B.27) 
y11 

In general case, let 

 — zR.~+ zI , h12 = h1.~+ h2 	 (B.28) 
y11 

Eq.B.26 can be expressed as. 

(Vq + JVd )e18 (ZR + I)(iq + Jld I`"1a +(hl +Jhz)Eb 	 (B.29) 

Multiplying both sides by e-'s ,we get 

(Vq + jVdJ (ZR + JZI/(lq +Jld)+(hl +Jh2 )Ebe-'8 	 (B.30) 

Equating real and imaginary parts, we get 

V q = Z Rl q — Zl ld +h,Eb cost + h2 Eb sin 	 (B.3 1) 

V d = Zl lq + ZR Id + h2Eb COS S — hl Eb Sln 1 	 (B.32) 

The simplest external network is a series impedance (Re+jXe .If Re=O, then 
ZR=O, ZI xe, h11.0, h2=0 	 (B.33) 

Substituting these values in B.31 and B.32 we get 

V q = — Xeld + Eb cos 1 	 (B.34) 

V d = xelq — Eb sin.9 	 (B.35) 

If Ra=O, the substitution of above equation in B.20 and B.21 gives 

E cosS—E ' 
id = aq 	 (B.36) ( 

`xe + xd ) 



_ Eb sing+Ed' •
19 	xe + xq t 

(B.37) 

Equations B.36 and B.37 can be substituted in eq.B.17 to eliminate the non-state 

variables and express the equations in the form 

Xm — Jm(Xm ,um) 
	

(B.38) 

Where 

Xm' = ICS Sm Eq' Ed'! 

u.t = LE rd Tm J 

The system equations B.38 are nonlinear and have to be solved numerically. In 

solving these equations it is to be assumed that the system is at a stable equilibrium 

point till time t=0, and a disturbance occurs at t=0 or later. It is necessary to calculate 
the initial conditions xo at time t=0 based on the system operating point determined 
from load (power) flow. 

From power flow calculations in steady state, we get the real and reactive power (Pt 

and Qt) the voltage magnitude (Vi) and angle (0) at the generator terminals .Here 9 
is the angle w.r.to. infinite bus. 

In the steady state, the derivative of all state variables, x =0 .From this condition, we 

get 

Eq0 '= E fdO + (xd — xd '~d 0 

Edo = —xq — Xq qo 

Tm0 = Teo = Eq0' 1q0 + Ed0' 1d0 + (Xd ' xq')do'go 

In the above equations, the subscript 0 indicates the operating values. 
Substituting B.39 and B.40 in B.20 and B.21, we got 

Efdo + Xd ido —Ra1g0 =Vq0 

(B.39)  

(B.40)  

(B.41)  

(B.42)  

—Xq'g0 —RatdO '_ Vd0 
	 (B.43) 
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From above one can obtain 

E fdo +( xd —xq)do — (vq0 + jVdo)+(Ra + JXgXq0 +lido)=V e-JS —f5+(Ra + JXq ) Qe -jS 

(B.44) 

Defining 

Eq L B = Vt +(R. + jxq )Ia 
	 (B.45) 

We can express 

Efd0 = Eq0 — (xd — xq)dO 
	 (B.46) 

Now the procedure for the computation for initial conditions is given below 

1. Compute 'a0 from 

Pt° jQto 
'ao = Ia0Lc'o = 

V,oz — B0 

2. Compute Eq° and S° from 

EgoZa = V °L6o + (Ra + fX q }~ aoLOo 

3. Compute 
Zdo = —tao sm(8o — ø )  
Zqo = l a0 COS(45o —ø )  
Vd0 =—V° sin(8° —80) 

V qo = V 0 COS(S° — 80 ) 

4. Compute 

Efd0 =Eq0 —(xd 	q)do 

Eq0 
— 
—Efd0 + (xd —xd

r).d0 

Edo r= —{xq — xq r }lq° 

The generator terminal voltage angle B° can be obtained from 

P = 
V O Eb sm9Q 

R + jxe 
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I = V—Eb Zo 
R+jxe  

Ego  = V fo/00  + jxgla  

magnitude_of Eqo  = abs (Eqo) 

delta =angle (Eqo) 

IdO  = =Ia  sin(delta — thetaO) 
I go  = Ia  cos(delta — thetaO) 

E fdo = Eqo  - (xd - Xq)do 
Eqo dash = Efdo + (Xd - Xd_dash )1d0 

E  dO_dash = —`X q - X q_dash )i  q0 

FiDO = X  d_dash I  dO + E  g0_dash 

F1Q0 X  q_dash * I  q0 - E  d0_dash 
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APPENDIX-C 	 A C SYSTEM MODEL TRANSFORMATION 

FROM abc TO DQO CORDINATE 

A single phase Tc equivalent of a transmission line is shown in fig. C. 1 .However it is 
to be noted that the co-efficient matrices, inductance [L], resistance [R] and 
capacitance [C] are all 3 x 3 matrices. These are defined as 

Ls L. Lm 	Rs RM RM 	Cs C. Cm 
[L] = L. Ls L,,, , [R] = 	R3 R. , [C] = Cm C, C. 

Lm  Lm Ls 	Rm R», RS 	Cm Cm Cs 

it 	[R] 	[L] 	 i2 
—► AAAA rw,r, --o 

i 

V1  T 1/2[C] 	 1/2[C] T v2 

Fig.C. 1 A single phase ;r equivalent of a transmission line 

The network equations are 

[L]dt +[RI =v1 -v2 	 (C.1) 

2 [C]  dt =it—i 	 (C.2) 

(C.3) 

where v1 ,v2,il,i2  are 3-dimensional vectors, with phase variables as elements. For 
example 

i t  = P. lb  lc  

r Vl = vla Vlb V1c ] 

V2r  = K. V 2b V 2c1 
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If generator is described by variables in d-q components, using 

Park's transformation, it stands to reason that the external network equations should 

also be expressed in d-q components. However, there is one problem and that is 

Park's transformation is not unique and each generator has individual d-q components 

(corresponding to the individual transformation). 

For a connected network, it is obvious that the entire network is to be transformed 

using a single transformation with reference to a common, synchronously rotating 

reference frame. Such transformation is termed as Kron's transformation defined as 

cos 90 

[ i= 

 3 cos Bo-23 

 2~ cos Bo +- 
3 

ID 

where fDQo = fQ 

Jo 

1 
sin Bo  

'1J[fD1  

	

2'z 	1 	 1~ 

	

sin O0 — 3 	 fQ = [CK li DQo 

~VL fo 
sin Bo – 

'T)  

It is to be noted that f can be any variable, voltage or current. 00 is defined as 

90 = coot + y 

where coo is the average (synchronous frequency) in the network in the steady state 

and y is constant. There is no loss of generality if y is assumed to be zero. The 

difference between Kron's and Park's transformation lies in eo being replaced by 0 

in Park's transformation. 0 is defined by 

0=cot+S 

It is to be noted that S is dependent on the generator and not a common variable. [CK ] 

is defined such that 

[CK] 1=[CK]t 

In other words, [CK ] is an orthogonal matrix and satisfies the condition for a power 

invariant transformation. 
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The relationship between [CP  ] and [CK  ] is given by 

[CP]=[CK] [7i] 

cos 8 sin S 0 
where [T,]_ —sin05 coso 0 

0 0 1 

It is to be noted that [T, ] is also an orthogonal matrix .Actually, [T1 ] defines the 

transformation between Park's and Kron's variables, as 

JD 	Id 
fe =[T]f q  
fo 	fo 

where fd,fq  are Park's components and fD,fQ  are Kron's components (with respect to) a 

synchronously rotating reference frame).Note that subscripts D, Q are associated with 

Kron's transformation. This convection will be followed throughout. 

Apply Kron's transformation to C. 1, C.2, C.3 results in (expressing only positive and 

negative sequence) 

Ll  d' 	+cooL1iQ  +R1iD  =VID —V2D 

di Q 

L2 	
_ 

dt 	a°L' iD  +R'iQ =V 1Q —V 2Q 

1 C,1  dV,D  + L 
CIVIQ —11D —iD 2 	dt 2 

1C,1dv1Q— 
wC1V1D— i1Q—iQ 2 	dt 2 

1C,  dv2D 
2 	dt 

0 + CIV2Q =ZD—l2D 
2 

1 C,  dv2Q  — a—° 
CXV2D =iQ—i2Q  

2 	dt 2 
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APPENDIX-D 
	 SUB SYSTEMS MATRICES 

The non-zero elements of [Ae ] are given by 

Ae(1,1)  = — Ra 	cv b  

Xd   

Ae  (1,2) _ —O)b  

Ae  (1,4) = 
* 

R a 	Ob  
x d 

Ae  (2,1)•= wb  

Ae  (2'2) _ — R a . _b 
X q  

Ae  (2,3) _ — R a * Co 
xq  

Ae  (3,2) = — T * (_g .  —1) 
q0 	q 

X q  

Tqo 	q 

Ae (4,1)=— 1 *( Xd-1) 
Td0 	xd 

Xd  
Td0  I*xd  

The non-zero elements of [Be1J are fi mctions of 8 given by 
BQI  (1,1) _ —COb  * COS S 
BeI (1,2) _ —cob  * sin S 

Bel (2,1) _ —wb  * Sin S 

BeI  (2,2) _ —COb  * COS 5 

The non-zero element of the column vector [Be2] are 
_  1  

Bez 1  
Tdo  
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Also the non-zero elements of [CJ are functions of 5 given by 

Ce(1,1) _ —Ce(1,4) = cos 5 
Xd d 

Ce(1,2) = Ce(1,3) = sin S 
x' 
q 

Ce(2,1) _ —Ce(2,4) = _ sin S 
x' d 

Ce(2,2) _ —Ce(2,3) _ COS S 

xq 

The non-zero elements of 	[Be3 ] 	are 

Be3 (1,1) = Cob * vqo 

Be3 (2,1) _ o)b * vdo 

Be3 (1,2) = cob * V qo 

Be3 ( 2,2) = cob 	Y'do 

[Cem ] = [ AS 

Now the non-zero elements of [Am] are 
Am (1, 4) =W B 

Am (2, 2) _ — D.~ l (2 * H); 

Am (2, 3) =1/(2*  H,,,,) 

Am (3, 2) =-Kige * Wb 
Am (3, 4) _- K.. ; 

Am (4, 4) _ — D. /(2 * H. ); 

Am (4, 5) =1/ (2*H,,.); 

Am (5, 4) =K,bg 

Am (5, 6) =- Krbg * we 
Am (6, 6) _ — D,pb I(2 * Hlpb ) 
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Am (6, 7) = —1/(2 * HJpb ) 

Am (7, 6 ) = Klab * ~b 

Am (7, 8) =— Klab * Cob 

Am (8, 8) 	D,pa /(2 * Hipa ) 

Am (8, 9) =-1/(2*Hips) 

Am (9, 8) = Kil * cob 

Am (9, 10) = — Kil * Cob 

Am(10, 10)_—D1p l(2*Hip ) 

Am (10, 11) =-1/(2 *Hip ) 

Am (11, 10) =—Kip * Cvb 

Am(11, 12)=—Kip *cob 

Am (12, 12) _ — Dhp l(2 * H hp ) 

The column vector B`,, is 

[0 0 0— H 0 0 0 0 0 0 0 0] 
2H 

Where [Cme ] a row vector is whose elements are 

(Xd '—X ') 	E 
C. 

(1) _ 	9 O + d0 
 X *X q0 X 

d 	4 	9 

(Xd '—X9 ') 	Ego ' 
Cme ( 2) — X '*X ' OdO + X 

d 	g 	d 

Cme(3) — d0 
4 

Cme 4̀) — X90 
d 

Where 



1 
— Cob 

Tf 
`~N,= 	

1 
 

b Tf 

Where the non-zero components of the unknown coefficients are 

D N1 =zeros (2, 11) 

D Nl (1, 1) = 1 * (1— O)d2 ) Tf CO. 

D N1 (1, 3) 	* (1 d2 ) 
f 

Co 
n 

D N1 (2,2) = I*(1_ i ) 
2 

2 
Tf Con 

D Ni (2, 4) = 	* (1— T f wn 

DNl (1, 4)= 1 *( 
d Wd_) 
d 

f  n n 

D Nl (2, 6) = !_*( d 
 )d ) d 

.r  n 

~n 
n 

B Ni =zeros (2, 2) 

B N2 =zeros (2, 2) 

A N2 =zeros (11, 11) 

AN2 (3,5)=1 

AN2 (4,6)=1 

AN2 (5, 1) =
_ 

cod
2 
 

A N2 (6, 2) = Cod
2 

AN2 (5, 3) =- cod
2 

AN2 (6, 4) =-COd
2 

f 
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AN2 ( 5 , 5 ) =—O)d *zetaD 

A N2 (6, 6) =—cvd *zetaD 

A,2 (7, 7) =-1/Td2 

A N2 (8, 9) =K1111 

A N2 (9, 8) =Ktspllt, 

A N2 (9, 9) =-Kisplltc 

Ant (11, 7) = T 
dl 

A2(11, 8)=__i__ 
Tdl 

A(11,9)=- 1 
Tdl 

Ai2 (11, 10)=T 
dl 

A 2 (11, 11) = T 
dl 

Di:2=zeros (11, 2) 

x4Q0 
Dn2 (7,1) = 	2 	2 

Td2 x4D0 + x4Q0 

 _ 	X4DO D 2 (7,2)—  7 	2 	2 
Td2 X4D0 +X4Q0 

D 101 - K P X4Do + K 	X4Q2 + K X4DO 
n2 P 

	

Tf x40 	 X40 	1 x40 

D (10~ J 2\ - Kp X4Q
0 

— K 0  
X4DO +K1 

 x4Qo 1 
p ~2l 	

T f x40 	0 x40 	x40 

C NI =zeros (11, 2) 

CN1 (1,1)=1/c 

CN1 (2,2)=1/c 



CNl (8, 1) = K
11211 *IQO 

1D 	+EQ 

CNl (911)= 
Kipttrc 	I QO 

i 2 +i 2 D 	Q 

C Nl 
__ (8,2) =  

K~prr 	*IC 	I DO 
. 	2 	2 iD +iQ 

C Nl 
_ 

(9,2) = K►pl"c 	I DO 
'D2 + IQ2 

C Nl 10, 1 (  1) 
K~ * DO 

— — sgYt(iD2 + iQ2 ) 

K= *1 
C NI (10, 1) =— 	2 	2 sgrt(iD + lQ ) 

C N2 =zeros (11, 2) 

( 	\ 
= 	

K p * Z DO 
l 10 - 11 N2  ~  2 sgrt(i 2D + iQ ) 

CN2 (10,2)_ 
K*i p 	Qo 

2 	2 sgrt(' D 	+ iQ ) 

A = Ae Be3 *C 

Bml * Cme Am 

Bg = [Belt Q, 

Cg = [Ce 	o Cem 	Cm ] 

Ag +Bg *H*(F*Cg +X° *Cg*Ag ) 	 Bg *H 	zeros(16,11) 
O)b 

	

At = Bni *Cg *Bg * (H * (F * Cg ~ l * Cg *4g))  An1 +B 2 *Cg *Bg *H 	Dn1 
b 

	

Cn2 * Cg * Bg * H * (F * Cg + ` * Cg * Ag ) D,2 +C»2 *Cg *Bg *H 	A„2 
b 
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