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ABSTRACT 

The problem of manipulator control is highly complex problem of controlling a system 
which is multi-input, multi-output, and non-linear and time variant. A number of different 

approaches presently followed for the control of manipulator vary from PID to very 
complex, intelligent, self-learning control algorithms. 

This report presents a comparative study of simulated performance of some conventional 

controllers, like the simple PID, Computed torque control, Feed forward inverse dynamic 

control and critically damped inverse dynamic control and some Intelligent controllers, 

like Fuzzy control, Neural control, and Neuro-Fuzzy control. IAE is used for comparison 

as performance index. 

The study concludes that the Critically damped inverse dynamics controller in general 

performs better then rest of conventional controllers. When the.  unmodeled term is added 
to the model, PID and Feed forward inverse dynamic control perform badly. Computed 

torque control and Critically damped inverse dynamics control performance also effected 

but they do well. A Neuro-Fuzzy controller combines the advantage of neural networks 

(learning adaptability) with the advantage of fuzzy logic (use of expert knowledge) to 

achieve the goal of robust adaptive control of robot dynamics, performs better in 
intelligent controllers and also shows that intelligent controllers are better even when 

unmodeled terms are added to the model. 
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1. INTRODUCTION 

1.1 INTRODUCTION TO ROBOT CONTROL 
Robotic manipulators have become increasingly important in the field of flexible 

automation. Robotic manipulators are very complicated nonlinear systems [1, 2]. A robot 
is typically modeled as a chain of n rigid bodies. In general, one end of the chain is fixed 

to some reference surface while other end is free, thus forming an open kinematics chain 
of moving rigid bodies. Dynamics of a manipulator involve nonlinear mapping between 

applied joint torques and joint positions, velocities and accelerations. These relationships 
can be described by a set of second-order nonlinear and highly coupled differential 

equations [3] with uncertainty as a robot work under unknown and changing 

environments in executing different tasks. 

There are many control strategy that can be applied for control of robotic manipulators. 
These range from conventional to adaptive and intelligent controllers [6]. The inverse 

dynamic approach is particularly important for control of robots and can be used to 

compensate for highly coupled and nonlinear arm dynamics. Many strategies have been 

developed for controlling the motion of a robot. Existing robotic manipulators use simple 

proportional-(integral)-differential controllers with the gains tuned for critical damping. 

The advantages of a PID controller include its simple structure along with roust 

performance in a wide range of operating conditions. A lot of research has been done on 

PID control scheme and available methods for tuning PID gains are advanced and 

accurate. This makes the PID as one of the most favored control strategy. However, the 

design of a PID controller is generally based on the assumption of exact knowledge 

about the system. This assumption is often not -valid since the development of any 

practical system may not include precise information of factors such as friction, 

backlash, unmodeled dynamics and uncertainty arising from any of the sources. 

Advanced modem approaches to the design of controllers for robots includes computed 

torque control, robust, control, model based adaptive control and variable structure 

control. However, most of these are too complicated and expensive for industrial use. A 

heavy computational burden prevents them being employed for real-time control 

applications. Also, some of them need an accurate dynamic model which is not always 
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available especially when robot is performing under different operating conditions. In 

order to overcome above problems, intelligent controlling techniques are used. 

Intelligent control is a control technology that replaces the human mind in making 
decisions, planning control strategies, and learning new functions whenever the 

environment does not allow or does not justify the presence of human operator. Artificial 
neural networks and fuzzy logic are potential tools for intelligent control engineering. 

Intelligent controllers are, Fuzzy logic, Neural based control, and Hybrid control (Neuro-

Fuzzy). Neural networks are best known for their learning capabilities. Fuzzy logic is a 

method of using human skills and thinking processes in a machine. 
The underlying idea of fuzzy control is to build a model of a human expert who is 

capable of controlling the plant without thinking in terms of a mathematical model. The 

control expert specifies the control actions in the form of linguistic rules. The 
specification of good linguistic rules depends on the knowledge of the control expert, but 

the translation of these rules into fuzzy set theory framework is not formalized and 

arbitrary choices concerning, for example, the shape of membership functions have to be 

made. The quality of a fuzzy logic controller can be drastically affected by the choice of 

membership functions. Thus, methods for tuning fuzzy logic controllers are necessary. 

Neural networks offer the possibility of solving the problem of tuning. A combination of 

neural networks and fuzzy logic offers the possibility of solving tuning problems and 

design difficulties of fuzzy logic. The resulting network can be easily recognized in the 

form of fuzzy logic control rules. This new approach combines the well-established 
advantages of both the methods and avoids the drawbacks of both. The computation of 

control value from the given measured input value is seen as a feed forward procedure as 

in layered networks, where the inputs are forwarded through the network resulting in 

some output value(s). If the actual output value differs from the desired output value, the 

resulting error is propagated back through the architecture, which in turn results in 

modification of certain parameters and reduction in error during the next cycle. 

Interpreting the fuzzy controller as a neural network helps in training the fuzzy controller 

with learning procedures and the modified structure can still be interpreted as fuzzy logic 
controller. 
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1.2 LITERATURE REVIEW ON CONVENTIONAL CONTROLLERS 
C.G. Atkeson, J.D.Griffiths, J.M.Hollerbach, C.H.An, proposed the controller's range 

from PD control applied independently at each joint to feed forward and computed torque 

methods incorporating full dynamics. Study shows that dynamic compensation by model 

based controller can improve trajectory accuracy significantly [7]. 
Sudeept Mohan, Surekha Bhanot presented a comparative study of simulated 
performance of some conventional algorithms, like simple PID, Feed forward inverse 

dynamics, computed torque control, and critically damped inverse dynamics. Study 

shows that the critically damped inverse dynamics controller in generally performs better 
then the rest of algorithms particularly when the uncertainty of the system increases [8]. 

D.P.kwok, T.P.Leung, Fang Sheng described the use of Genetic Algorithms (GAS) for 

optimizing the parameters of PID controllers for a 6-DOF PUMA 560 robot arm. The 

simulation results obtained are compared with that obtained by traditional optimization 

techniques, wherever applicable and showed that the GA-based optimal-tuning technique 

can work effectively and efficiently and has great potential to become a common 

optimal-tuning approach for the robot arm controllers [9]. 

1.3 LITERATURE REVIEW ON FUZZY CONTROL 
Han-Xiong Li, H.B.Gatland explain systematic analysis and design of the conventional 

fuzzy control. General robust rule bases is proposed for fuzzy two-term control, and leave• 

the optimum tuning to the scaling gains, which greatly reduces the difficulties of design 
and tuning. The digital implementation of fuzzy control is also presented for avoiding the 

influence of the sampling time [10]. 

T.Brehm, K.S.Rattan proposed a hybrid fuzzy PID controller which takes advantage of 

the properties of the fuzzy PI and PD controllers and compared Fuzzy PID and Hybrid 
Fuzzy PID in terms of rule base, design and implementation problems [11]. 

G.M.Khoury, M.Saad, H.Y.Kanaan, and C.Asmar presented elaboration of fuzzy control 

laws based on two structures of coupled rules fuzzy PID controllers and compared the 

Two-input FLC with coupled rule, Three-input FLC with coupled rule, computed torque 
control, and direct adaptive control method on a five-DOF robot arm in terms position 

tracking errors [12]. 
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Abdollah Homaifar, Ed McCormick examines the applicability of genetic algorithms 

(GA's) in the simultaneous design of membership functions and rule sets for fuzzy logic 
controllers. This new method has been applied to two problems, a cart controller and a 

truck controller. Beyond the development of these controllers, they also examine the 

design of a robust controller for the cart problem and its ability to overcome faulty rules 

[13]. 

1.4 LITERATURE REVIEW ON NEURAL CONTROL 
T.Ozaki, T.Suzuki, T.Furuhashi, S.Okuma, and Y.Uchikawa presents a nonlinear 

compensator using neural networks for trajectory control of robotic manipulator, 

proposed a model learning scheme, and the adaptive capability of the neural network 

controller to compensate unstructured uncertainties is clarified [14]. 
P.Gupta and N.K. Sinha proposed a Neural-network based control for robotic 
manipulator and presented a method for improving the learning ability of neural-

networks by using a function with changeable shape. Results show that proposed 

controller has better robustness [15]. 
M.F.Moller introduced a supervised learning algorithm (Scaled Conjugate Gradient, 

SCG) with super linear convergence rate. The algorithm is based upon a class of 

optimization techniques well known in numerical analysis as the Conjugate Gradient 

Methods. SCG uses second order information from the neural network but requires only 

O (N) memory usage, where N is the number of weights in the network [16]. 

1.5 LITERATURE REVIEW ON NEURO-FUZZY CONTROL 
J.-S.R.Jang has proposed a novel approach to the design of fuzzy controllers without 

resorting to domain knowledge of the plant under control. He employed the adaptive 
networks as building blocks and the back-propagation-type gradient method as a learning 

procedure to minimize the differences between the actual state and desired state at each 

time step [17]. 

Jyh-Shing, Roger Jang have proposed the architecture and learning procedure underlying 

ANFIS (adaptive-network-based fuzzy inference system)which is a fuzzy inference 

system implemented in the framework adaptive networks. Hybrid learning is used. The 
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ANFIS architecture is employed to model nonlinear functions, identify nonlinear 
components on-line in a control system, and predict chaotic time series, all yielding 
remarkable results [18]. 

G.S.Sandhu and K.S.Rattan have presented a general Neuro-Fuzzy controllers which 
combines the neural networks and Fuzzy logic to solve the problem of tuning fuzzy logic 
controllers. The Neuro-Fuzzy controller uses the neural-network learning techniques to 
tune the membership functions while keeping semantics of the fuzzy logic controller 

intact [19]. 
Manish Kumar and Devendra P.Garg have proposed intelligent learning of Fuzzy logic 

controllers via neural network and genetic algorithm. The results show that Genetic-

Fuzzy and Neuro-Fuzzy approaches were, able to learn rule base and identify membership 

function parameters accurately [20]. 
Teo Lian Seng, Marzuki Bin Khalid presented a Neuro-Fuzzy controller where all of its 
parameters can be tuned simultaneously by Genetic algorithm. The performance of the 

proposed controller is compared with a conventional fuzzy controller and a PID 
controller tuned by Genetic algorithm and results show that proposed controller offers 

encouraging advantages and has better performance [21]. 

1.6 ORGANIZATION OF THE DISSERTATION 
This Dissertation is organized as follows. 
Chapter 2 details the Dynamics of 6 DOF PUMA 560 Robot and Actuator of Robot 
Chapter 3 Explains Conventional Control strategies. 
Chapter 4 Explains the Fuzzy Logic Control. 
Chapter 5 Explains the Back Propagation algorithm and Neural Network-based control. 
Chapter 6 Explains the Neuro-fuzzy systems architecture and learning algorithms. 
Chapter 7 Deals the Design and implementation of Robot, Conventional controllers and 
intelligent controllers in Simulink/Matlab 7.01. 

Chapter 8 Results. 

Chapter 9 Conclusions. 
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2.DYNAMICS OF ROBOTIC MANIPULATOR 

2.1 INTRODUCTION 

The manipulator system is a classic control problem that is used industries around the 

world. It is a suitable process to test prototype controllers due to its high non-

linearities and lack of stability. In this chapter, the dynamical equations of the system 

will be derived, the model will be developed in simulink and basic controllers will be 

developed. The aim of developing a Robot system in simulink is that the developed 

model will have the same characteristics as the actual process. It will be possible to 

test each of the prototype controllers in the simulink environment. Before the robot 

model can be developed in simulink, the system dynamical equations will be derived 

using `Lagrange Equations'. [1, 2] The Lagrangian equations are one of many 

methods of determining the system equations. Using this method it is possible to 

derive dynamical system equations for a complicated mechanical system such as the 

Robot manpulator. The Lagrange equations use the kinetic and potential energy in the 

system to determine the dynamical equations of the robot system. 

2.2 PUMA ROBOT 
The PUMA robot was initially built by the Unimation Inc. (now defunct), to 

specifications developed by General Motors. PUMA stands for Programmable 

Universal Machine for Assembly [3]. This robot system was the first commercially 

available industry robot. It had all electric drives, and a reasonably sophisticated 

controller. Its controller could be disconnected and replaced by another custom-built 

controller. For these reasons, PUMA became one of the most popular with robotic 

researchers around the world. Figure.2.1 shows the PUMA robot . 
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Fig. 2.1 a. puma 560 robot b. Illustration of Puma 560 robot 

2.3 DYNAMICS OF PUMA560 ROBOT 
The general form of the robot arm dynamic equation is 

M(q)q + C(q, q)q + g(q) = z 	 ...2.1 

Where q is angle matrix 

M(q) is mass matrix 

C(q, q) is coriolis/centrifugal matrix 

g(q) is gravity matrix 

Puma is six degree of freedom robot so all matrices for puma robot are the order of 
six by six. For the simplicity these equations are abbreviated as per listed below 

c1 = cos(q(1)), c2  = cos(q(2)), c3  = cos(q(3)), c4  = cos(q(4)), cs  = cos(q(5)), 

c6  = cos (q (6)) 

s, = sin(q(1)), s2  = sin(q(2)), s3  = sin(q(3)), s4  = sin(q(4)), s5  = sin(q(5)), s6  = sin(q(6)) 

s23  = sin(q(2)+q(3)) 

C23  = cos(q(2)+q (3)) 

MASS MATRIX 

m,l  = 2.57 + (1.38* c2*c2) + (0.3*s23*s23) + (0.744*c2*s23) 

m12  = (0.69*s2) + (-0.134*c23) + (0.0238*c2) 

m13  = (-0.134*c23) + (-0.00397*s23 ) 

m22  = 6.79 +(0.744*s3) 

m23  = 0.333 + (0.372*s3) + (-0.011 *c3  ) 

m33 =1.16 
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m34 = -0.00125*s4*s5 

m35 = 0.00125*c4*c5 

m44 = 0.2 

m55 =0.18 

m66 = 0.19 

The mass matrix is symmetric so other equations are 

m21 = m12 m62 = m26 

m31 = m13 m43 = m34 

m41 = m14 m53 = m35 

m51 = m15 	and m63 = m36 

m61 = m16 msa = mas 
m32 = m23 

mea = ma6 
m42 = mza 

m65 = m56 
m52 = mz5 

All other elements in the mass matrix are zero 

CORIOLIS/CENTRIFUGAL TORQUES MATRIX 

cord =(-1.38*c1*s1*cl)+ 

- 0.744*s, *s,3 + 0.744*c, *ci,) + 

- 0.744*s*s,s + D.744*c,*cs;) 

car, = 0.5*q~*(0.6*s:, *c,, - 0.744*s *sy, + 0.744*c, *cy3) + 

0.5*q,*(1.38*c, + 0.268*s,3 - 0.04716*s2 )+ 

a.5*q,3 *(0.268*sa3 - a.00397'c,,) 

curl, = 0.5*L *(0.O*s,3*ci3 + 0.744*cam*c )+ 
a.s*qj*(0.268*s,3 - 0.00347*ccz)+ 

0.5*q3*(0.268*s 3 - a.aa794*c, ) 

cor,I =0.5*4*(-0.6*s~3 *c + 0.744*s1*53;  
a.1 c4 *i *c., 
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cor,. = 0.372*q;*c 

corgi, = 0.00199*ql*c, + 0.372*q *c., + 

0.5*q; *(0.744*cj + 0.02 2*s;) 

cord = 0.5*c1*(-0.o*s,3 *c,3 + 0.744*s1*s2, -0.744*c,*c.3) + 

0.00199*q3*c,, 

core, = 0.372*q3 *c3 

cor33 = 0.00199*ql*c~3 + 0.372*q~*c3 + 
0.5*q3*(0.744*c3 + 0.022*s3) 

All other coriolis matrix elements are zero 

GRAVITY MATRIX 

g1=0, g6=0 

g2 =-37.196*c2 -8.445 *s23 +1.023 *s2 

g3 =-8.445 *j23 ±1.023 *coS23+0.248*cos23 *COS45+C0s5*sin23 

g4=0.028*sm23 *sm4*sin5 

g5=-0.028 * (cos23 * sin 5 + sin23* cos4* Coss ) 

All these information and derivation of these equations for PUMA560 given in [3] 

2.4 ACTUATOR FOR THE ROBOT 

This section describes the method that is used to build the actuator model in a single 

joint of a robot arm, assuming that the robot is electrically actuated. An analytical 

description of a DC actuator has been well established in the literature [4]. 

The torque produced by a DC motor is proportional to the armature current when 
the motor is operated in its linear range 

Zmi kmitai 	 ...2.2 

Where kmj is known as the motor-torque proportional constant in N-m/A. 
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When the motor is rotating it acts like a generator and a voltage develops across 

the armature. This voltage is called back electromotive force (emf), which is 

proportional to a, given armature, angular velocity as: 

ebi - kbi emi 	 ... 2.3 

ebi = kbiemizmi = kmiiai 	 ...2.4 

Where kb;  is proportionality constant in V- S/rad. 

For puma robot km;  = kbi  

An armature-control led DC motor circuit can be described by a first-order 
differential equation given by 

di. 
vai  = eb, + iaiRai  + La, 

dt 
...2.5 

By solving we will get 

1` 
tai = L  J / (vai — ebi — ial Rai)dt  .2.6 

SPECIFICATION FOR THE ACTUATOR 

Rai  =2.1 Ohm 
Rai  = 2.1 Ohm 
Rat  = 2.1 Ohm 
Rat  = 6.7 Ohm 
Rai  = 6.7 Ohm 
Rai  = 6.7 Ohm 

kml  = 0.189 N-m/A 
k,.2  =0.219 N-m/A 

= 0.202 N-m/A 
km4  = 0.075 N-m/A 
kms  = 0.066 N-m/A 
km6  = 0.066 N-m/A 

Armature inductance for the PUMA 560 robot is very low 

L for all joints is approximately equals to 1 mH 

Maximum and minimum torque that should given to the robot is 
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-97.6N—m <z, <_97.6N—m 
—186.4N—m<-r2  <186.4N—m 
—89.4N—m <z3  <_ 89.4N—m 
--24.2N — m < z4  <_ 24.2N — m 
—20.1N—m < z5  <_ 20.1N—m 
—21.3N—m <_zd  521.3N—m 

Maximum and minimum controlled voltage that should be given to the actuator is 
For all actuators 

vv = 40volts 
v = —40volts 

Details are given in [3, 4, and 5] 
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3. CONVENTIONAL CONTROLLERS 

3.1 INTRODUCTION 

There are many control strategies that can be applied for control of robot arm. These 
strategies are conventional, adaptive and intelligent control strategies. The general structure 

of a robot manipulator with controller is shown in figure 3.1 below. The trajectory 
generator provides the controller with information about the desired position, velocity and 

acceleration (Od ,ed,Bd) for each joint and keeps updating this information at the path 

update rate. The controller takes this information and compares it with the present (actual) 

position and velocity (sometimes acceleration also) of joints (0, 0, 8 ), which are provided 

as feedback through the sensors. 

Trajectory 
Generator 

8,9,9 
Controller 

T 

Robot 
Manipulator 

ni 

Fig .3.1 General structure of robot control system 

Based upon the error between the desired and actual values, the controller calculates a 

vector of torques (r), which should be applied at respective joints by the actuators to 

minimize these errors. The torques is calculated using control law. The goal of the 
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controller is thus, minimization of error, e and its first derivative e The dynamic model of 
Robotic manipulator can be described in the form of equation as below 

v(t)=M (B)B+C(B,e)a+G(B) 	 ...3.1 

Where, M (e) is the inertia matrix, c (0,0) is the centripetal-coriolis matrix, and G(o) is the 

Gravity vector, 0 is Joint angles, v is the joint actuator torque. The use of linear control 

techniques for any system is valid only when the system to be controlled can be modeled 

by linear differential equations. Thus the linear control of robot manipulators is essentially 
an approximation, as the manipulator dynamics is described by highly non-linear equations. 

The linear control strategies for robots give excellent performance for manipulators having 

highly geared joints. This is the case with most of the industrial robots in. 'use today. . 

3.2 PID Control 
One common linear control strategy is PID (proportional-derivative and integral) control. 
The control law used for this strategy is given by 

rPID  = K D  e+K Pe+K, fedt 	 ...3.2 

KD, KI and Kp are the controller, gain matrices. -rr,D  is the vector of joint torques. It is 

possible to get the desired performance from the system by choosing the appropriate values 

of parameters of PID controller. Hand tuning method is used for selection of PID control 
gains. A robotic control system cannot be allowed to have an oscillatory response for 

obvious reasons. For instance, in a pick n-place operation, an oscillating end-effecter may 

strike against the object before picking it to manipulate. Hence, highest possible speed of 

response and yet non-oscillatory response, dictates that the controller design parameters 

shell be chosen to have the damping ratio equal to unity or least close to it but less than 
unity. 

3.3 Feed Forward inverse dynamics control 

Feed forward inverse dynamics control is a model based non-linear technique. Scheme for. 

.feed forward inverse dynamics control is shown below Fig 3.2. This scheme uses the 
inverse dynamics equations of robot manipulator in feed forward mode. As can be seen 
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from this figure, the sum of the outputs of the inverse model and feedback controller (i.e. 

PID Controller) will be the actual input torque to robot. 

Tffid 
Inverse 
Model 

V] 
Trajectory 	 PID 	 Robot 
Generator 	 Controller 	 Manipulator 

TPID 

Fig.3.2 Feed forward inverse dynamics controller 

In this strategy the torque is calculated as 

r fd  = M(0)0+C(0,0*)B+G(0) 	 ...3.3 

2PID  = K D  e+ K Pe+ K f  f edt 	 ...3.4 

Total control torque ist = rPID  + t fd  . The"feedback controller plays a role in making 

the whole system stable. 

3.4 Computed Torque Control 

The most common non-linear control technique for manipulator control is the Computed 

torque control. Scheme is similar to feed forward inverse dynamic control. Here the 
computed torque is given by 

T =r pD  +M(0) B+KD  e+Kpe +C 8,6 O+G(0) 	...3.5 

If the manipulator model is known exactly then this scheme results in asymptotically stable 
and provides asymptotically exact tracking 
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3.5 Critically damped inverse dynamics control 

This control strategy is almost same as inverse dynamics except that the feed forward 

torque is calculated using reference velocity and reference acceleration instead of the 

desired values. These reference values are defined as 

OR =Bd+Kp  (Od  —49) 

OR =Od±KD  red -0 
	 ... 3.6 

In this strategy the torque is calculated as 

r =rrID  +M(BR  )BR+C OR ,OR  BR+G(9R ) 	 ... 3.7 
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4. FUZZY CONTROL 

4.1 INTRODUCTION 
Due to continuously developing automation systems and more demanding Control 
performance requirements, conventional control methods are not always adequate. On the 

other hand, practical control problems are usually imprecise. The input output relations of 
the system may be uncertain and they can be changed by unknown external disturbances. 
New schemes are needed to solve such problems. One such an approach is to utilize 

fuzzy control. 
Fuzzy control is based on fuzzy logic, which provides an efficient method to handle in 

exact information as basis reasoning. With fuzzy logic it is possible to convert 

knowledge, which is expressed in an uncertain form, to an exact algorithm. In fuzzy 

control, the controller can be represented with linguistic if-then rules. The interpretation 
of the controller is the fuzzy but controller is processing exact input-data and is producing 

exact output-data in a deterministic way. 

4.2 HISTORICAL BACKGROUND 
Since the introduction of the theory of fuzzy sets by L. A. Zadeh in 1965, and the 

industrial application of the first fuzzy controller by E.H. Mamadani in 1974, fuzzy 
systems have obtained a major role in engineering systems and consumer's products in 

1980s and 1990s. New applications are presented continuously. 

A reason for this significant role is that fuzzy computing provides a flexible and powerful 

alternative to contract controllers, supervisory blocks, computing units and compensation 

systems in different application areas. With fuzzy sets very nonlinear control actions can 

be formed easily. The transparency of fuzzy rules and the locality of parameters are 

helpful in the design and maintenances of the systems. Therefore, preliminary results can 

be obtained within a short development period. 

However, fuzzy control does have some weaknesses. One is that fuzzy control is still 

lacking generally accepted theoretical design tools. Although preliminary results are 

easily, further improvements need a lot of especially when the number of inputs 

increases, the maintenances of the multi-dimensional rule base is time consuming 
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4.3 STRUCTURE OF A FUZZY CONTROLLER 
Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can be 

described simply as "computing with words rather than numbers "; fuzzy control can be 
described simply as "control with sentences rather than equations". There are specific 

components characteristic of a fuzzy controller to support a design procedure. In the 

block diagram in Fig 4.1, the controller is between a preprocessing block and a post-

processing block. The following explains the diagram block by block. 
----------------------------------------------------------- 

Rule 
base 

Prepro- 	Fuzzi- 	 pefuzzi- 	Pastpro- 
eessing 	fication 	 fication 	cessing 

Inference 
e 

=- 	------------------------------------------------- 

Figure 4.1: Blocks of a fuzzy controller 

4.3.1 Preprocessing 
The inputs are most often hard or crisp measurements from some measuring equipment, 

rather than linguistic. A preprocessor, the first block in Fig 4.1, conditions the 

measurements before they enter the controller. Examples of preprocessing are: 

Quantization in connection with sampling or rounding to integers; normalization or 
scaling onto a particular, standard range; filtering in order to remove noise; 

A quantiser is necessary to convert the incoming values in order to find the best level in 

a discrete universe. Assume, for instance, that the variable error has the value 4.5, but the 

universe is U= (-5, -4, .. 0, ..., 4, 5). The quantiser rounds to 5 to fit it to the nearest 

level. Quantization is a means to reduce data, but if the quantization is too coarse the 

controller may oscillate around the reference or even become unstable. When the input to 

the controller is error, the control strategy is a static mapping between input and control 

signal. A dynamic controller would have additional inputs, for example derivatives, 

integrals, or previous values of measurements backwards in time. These are created in the 
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preprocessor thus making the controller multi-dimensional, which requires many rules 

and makes it more difficult to design. The preprocessor then passes the data on to the 

controller. 

4.3.2 Fuzzification 
The first block inside the controller is fuzzification, which converts each piece of input 

data to degrees of membership by a lookup in one or several membership functions. The 
fuzzification block thus matches the input data with the conditions of the rules to 
determine how well the condition of each rule matches that particular input instance. 

There is a degree of membership for each linguistic term that applies to that input 

variable 

4.3.3 Rule base The rule base is to do with the fuzzy inference rules. The step response 

of the system can be roughly divided into four areas AI —A4 and two sets of points: cross-

over {b1, b2} and peak-valley {cl, c2} as shown in Fig.4.2. The system equilibrium point 
is the origin of the phase plane 

L--1 	 b  --- 	 . as 
C2 

Al 	A3  

Time 

Fig. 4.2 General step response 

a) The sign of rules: The sign of the rule base can be determined by following meta-rules 

1) If both e and e are zero, then maintain present control setting. 
2) If conditions are such that e will go to zero at a satisfactory rate, then maintain 

present control setting. 
3) If e is not self-correcting, then the sign of the rule can be determined by five sub-

criterions. 

a)_Rules for cross-over {b1, b2} should prevent the overshoot in A2/A4. 



b) Rules for peak-valley {cl, C2}  should speed up the response. 

c) Rules for area A1/A3 should speed up the response when e is large and prevent the 

overshoot in A2/A4 when e is close to zero. 

d) Rules for area A2 should decrease the overshoot around the peak. 

e) Rules for area A4 should decrease the overshoot around the valley. 

The above heuristic method can build general rule base 

4.3.4 Inference Engine 
Figures 4.3 and 4.4 are both a graphical construction of the algorithm in the core of the 

controller. In Fig. 4.3, each of the nine rows refers to one rule. For example, the first row 

says that if the error is negative (row 1, column 1) and the change in error is negative 

(row 1, column 2) then the output should be negative big (row 1, column 3). The picture 
corresponds to the rule base in (2). The rules reflect the strategy that the control signal 

should be a combination of the reference error and the change in error, a fuzzy 

proportional-derivative controller. We shall refer to that figure in the following. The 

instances of the error and the change in error are indicated by the vertical lines on the first 
and second columns of the chart. For each rule, the inference engine looks up the 

membership values in the condition of the rule. 
Aggregation: The aggregation operation is used when calculating the degree of 

fulfillment or firing strength ak of the condition of a rule k. A rule, say rule 1, will 

generate a fuzzy membership value µe1 coming from the error and a membership value 

µgel coming from the change in error measurement. The aggregation is their combination, 

µe1 and  µeel 	 ...4.1 

Similarly for the other rules, Aggregation is equivalent to fuzzification, when there is 

only one input to the controller. Aggregation is sometimes also called fulfillment of the 

rule or firing strength. 
Activation: The activation of a rule is the deduction of the conclusion, possibly reduced 

by its firing strength. Thickened lines in the third column indicate the firing strength of 

each rule. Only the thickened part of the singletons are activated, and min or product (*) 
is used as the activation operator. It makes no difference in this case, since the output 

membership functions are singletons, but in the general case of s- , H- and z- functions in 

the third column, the multiplication scales the membership curves, thus preserving the 
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initial shape, rather than clipping them as the min operation does. Both methods work 
well in general, although the multiplication results in a slightly smoother control signal. 

In Fig. 4.3, only rules four and five are active. 

0 	 - 	 50 . 	 -240 	 240 
-64.6 

Figure 4.3: Graphical construction of the control signal in a fuzzy PD controller 
(generated in the Matlab Fuzzy Logic Toolbox). 

A rule k can be weighted a priori by a weighting factor wk € [0, 1], which is its degree of 
confidence In that case the firing strength is modified to 

a*k=  Wk * ak 	 ...4.2 
The degree of confidence is determined by the designer or a learning program trying to 
adapt the rules to some input-output relationship. 
Accumulation: All activated conclusions are accumulated, using the max operation, to 
the final graph on the bottom right (Fig. 4.3). Alternatively, sum accumulation counts 

20 



100 -100 

0.5J 

100 -100 

zero zero 
	100 	result 

A 

1 i I 
•t 

overlapping areas more than once (Fig. 4.4). Singleton output (Fig. 4.3) and sum 
accumulation results in the simple output. 

al*sl+a2*S2+...+an*sn 	 ...4.3 

ii 

0 	100 -100 	0 	100  
Error 	 Output 

Figure 4.4: One input, one output rule base with non-singleton output sets. 

The alphas are the firing strengths from the k rules and sl ... sn are the output singletons. 

Since this can be computed as a vector product, this type of inference is relatively fast in 

a matrix oriented language. There could actually have been several conclusion sets. An 

example of a one-input two- outputs rule is "If ea  is a then of  is x and 02  is y'. The 

inference engine can treat two (or several) columns on the conclusion side in parallel by 

applying the firing strength to both conclusion sets. In practice, one would often 

implement this. situation as two rules rather than one, that is, "If ea  is a then of is x", "If 

ea is a then 02 is 
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4.3.5 Defuzzification 

The resulting fuzzy set (Fig. 4.3, bottom right; Fig. 4.4, extreme right) must be converted 

to a number that can be sent to the process as a control signal. This operation is called 

Defuzzification, and in Fig. 4.4 the x-coordinate marked by a white, vertical dividing line 

becomes the control signal. The resulting fuzzy set is thus defuzzified into a crisp control 
signal. There are several Defuzzification methods. 

Centre of gravity (COG): The crisp output value u (white line in Fig. 4.4) is the abscissa 
under the centre of gravity of the fuzzy set, 

u= ---------------  ...4.4 

E~ Eaµ (xi) 

Here x; is a running point in a discrete universe, and µ(x; ), is its membership value in 

the membership function. The expression can be interpreted as the weighted average of 
the elements in the support set. For the continuous case, replace the summations by 

integrals. It is a much used method although its computational complexity is relatively 
high. This method is also called centroid of area. 

Centre of gravity method for singleton (COGS): If the membership functions of the 
conclusions are singletons (Fig.4.3), the output value is 

Y1 it (s1) s1 

u= ---------------  ...4.5 

µ (si) 

Here s; is the position of singleton i in the universe, and g (s;), is equal to the firing 

strength a, of rule i. This method has a relatively good computational complexity, and u is 

differentiable with respect to the singletons s;, which is useful in neuro fuzzy systems. 

Bisector of area (BOA): This method picks the abscissa of the vertical line that divides 
the area under the curve in two equal halves. In the continuous case, 
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x 	 Max 

U= {x I f , µ(x) dx = f µ(x) dx) 	 ... 4.6 
Min 	 x 

Here x is the running point in the universe µ(x), is its membership, Min is the leftmost 

value of the universe, and Max is the rightmost value. Its computational complexity is 
relatively high, and it can be ambiguous. For example, if the fuzzy set consists of two 

singletons any point between the two would divide the area in two halves; consequently it 

is safer to say that in the discrete case, BOA is not defined. 

Mean of maximum (MOM): An intuitive approach is to choose the point with the 

strongest possibility, i.e. maximal membership. It may happen, though, that several such 
points exist, and a common practice is to take the mean of maximum (MOM). This 

method disregards the shape of the fuzzy set, but the computational complexity is 

relatively good. 
Left maximum (LM), and Right maximum (RM): Another possibility is to choose the 

leftmost maximum (LM), or the rightmost maximum (RM). In the case of a robot, for 

instance, it must choose between left and right to avoid an obstacle in front of it. The 
defuzzifier must then choose one or the other, not something in between. These methods 

are indifferent to the shape of the fuzzy set, but the computational complexity is 
relatively small. 

4.3.6 Post processing 
Output scaling is also relevant. In case the output is defined on a standard universe this 

must be scaled to engineering units for instance, volts, meters, or tons per hour. An 
example is the scaling from the standard universe [-1, 1] to the physical units [-10, 10] 
volts. The post processing block often contains an output gain that can be tuned, and 
sometimes also an integrator. 
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5. NEURAL CONTROL 

5.1 INTRODUCTION 
An Artificial Neural Network (ANN) is an information processing paradigm that is 
inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 
system. It is composed of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. ANN's, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition or 
data classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANN's as well. Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that are 
too complex to be noticed by either humans or other computer techniques. A trained 

neural network can be thought of as an "expert" in the category of information it has been 

given to analyze. 
Other advantages include: 

1. Adaptive learning: An ability to learn how to do tasks based on the data given for 
training or initial experience. 

2. Self-Organization: An ANN can create its own organization or representation of 
the information it receives during learning time. 

3. Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take 
advantage of this capability. 

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, some 
network capabilities may be retained even with major network damage. 

Neural networks take a different approach to problem solving than that of conventional 

computers. Conventional computers use an algorithmic approach i.e. the computer 
follows a set of instructions in order to solve a problem. Unless the specific steps that the 



computer needs to follow are known the computer cannot solve the problem. That 
restricts the problem solving capability of conventional computers to problems that we 

already understand and know how to solve. But computers would be so much more 

useful if they could do things that we don't exactly know how to do. 

Neural networks process information in a similar way the human brain does. The network 
is composed of a large number of highly interconnected processing elements (neurons) 

working in parallel to solve a specific problem. Neural networks learn by example. They 

cannot be programmed to perform a specific task. The examples must be selected 

carefully otherwise useful time is wasted or even worse the network might be functioning 

incorrectly. The disadvantage is that because the network finds out how to solve the 

problem by itself, its operation can be unpredictable. On the other hand, conventional 

computers use a cognitive approach to problem solving; the way the problem is to solved 

must be known and stated in small unambiguous instructions. These instructions are then 
converted to a high level language program and then into machine code that the computer 

can understand. These machines are totally predictable; if anything goes wrong is due to 

a software or hardware fault. Neural networks and conventional algorithmic computers 

are not in competition but complement each other. There are tasks are more suited to an 

algorithmic approach like arithmetic operations and tasks that are more suited to neural 

networks. Even more, a large number of tasks, require systems that use a combination of 

the two approaches (normally a conventional computer is used to supervise the neural 

network) in order to perform at maximum efficiency. Neural networks do not perform 

miracles. But if used sensibly they can produce some amazing results. 

5.2 THE BACK-PROPAGATION ALGORITHM 

In order to train a neural network to perform some task, we must adjust the weights of 

each unit in such a way that the error between the desired output and the actual output is 

reduced. This process requires that the neural network compute the error derivative of the 

weights (dW). In other words, it must calculate how the error changes as each weight is 

increased or decreased slightly. The back propagation algorithm is the most widely used 
method for determining the dW. 
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The back-propagation algorithm is easiest to understand if all the units in the network are 

linear. The algorithm computes each dW by first computing the error -derivative (EA), 

the rate at which the error changes as the activity level of a unit is changed. For output 

units, the EA is simply the difference between the actual and the desired output. To 

compute the EA for a hidden unit in the layer just before the output layer, we first 

identify all the weights between that hidden unit and the output units to which it is 

connected. We then multiply those weights by the EAs of those output units and add the 

products. This sum equals the EA for the chosen hidden unit. After calculating all the 

EAs in the hidden layer just before the output layer, we can compute in like fashion'the 

EAs for other layers, moving from layer to layer in a direction opposite to the way 

activities propagate through the network. This is what gives back propagation its name. 

Once the EA has been computed for a unit, it is straight forward to compute the dW for 

each incoming connection of the unit. The dW is the product of the EA and the activity 

through the incoming connection. Note that for non-linear units, the back-propagation 

algorithm includes an extra step. Before back-propagating, the EA must be converted into 

the El, the rate at which the error changes as the total input received by a unit is changed. 

The back-propagation Algorithm - a mathematical approach 

Units are connected to one another. Connections correspond to the edges of the 

underlying directed graph. There is a real number associated with each connection, which 

is called the weight of the connection. We denote by Wlj the weight of the connection 

from unit u; to unit u,. It is then convenient to represent the pattern of connectivity in the 

network by a weight matrix W whose elements are the weights 	Two types of 

connection are usually distinguished: excitatory and inhibitory. A positive weight 

represents an excitatory connection whereas a negative weight represents an inhibitory 

connection. The pattern of connectivity characterizes the architecture of the network 

which is shown in Fig 5.1. 
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A unit in the output layer determines its activity by following a two step procedure. 

0First, it computes the total weighted input x1, using the formula: 

xi  = 	 ...5.1 

where y; is the activity level of the j th  unit in the previous layer and W;j is the weight of 

the connection between the ith  and the jth  unit. 

•Next, the unit calculates the activity yj  using some function of the total weighted input. 

Typically we use the sigmoid function: 

1 
...5.2 

Once the activities of all output units have been determined, the network computes the 

error E, which is defined by the expression: 
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...5.3 

where yj is the activity level of the jth unit in the top layer and dd is the desired output of 

the j th unit. 

The back-propagation algorithm consists of four steps: 

1. Compute how fast the error changes as the activity of an output unit is changed. This 

error derivative (EA) is the difference between the actual and the desired activity. 

EAR = - --=y.-d. aE   . 
Oyj 

..5.4 

2. Compute how fast the error changes as the total input received by an output unit is 

changed. This quantity (EI) is the answer from step 1 multiplied by the rate at which the 

output of a unit changes as its total input is changed. 

aE aE EIS _ 	- 	x 	=EAR y~(1-y~) 	...5.5 
5x1 aye axJ 

3. Compute how fast the error changes as a weight on the connection into an output unit 

is changed. This quantity (EW) is the answer from _step 2 multiplied by the activity level 

of the unit from which the connection emanates. 

aE aE ax EW,~'_  = — x_'  =EIS y, 	.. .5 .6 
aW, ax; 19WU 

4. Compute how fast the error changes as the activity of a unit in the previous layer is 

changed. This crucial step allows back propagation to be applied to multilayer networks. 

When the activity of a unit in the previous layer changes, it affects the activities of all the 

output units to which it is connected. So to compute the overall effect on the error, we 

add together all these separate effects on output units. But each effect is simple to 
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calculate. It is the answer in step 2 multiplied by the weight on the connection to that 

output unit. 

_ aE _ aE  x  ax,  _'c EI jW. 	... 5.7 
ayi  'j 'ax ay;  , 

By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for the 
previous layer. This procedure can be repeated to get the EAs for as many previous layers 
as desired. Once we know the EA of a unit, we can use steps 2 and 3 to compute the dWs 

on its incoming connections. 

5.3 NEURAL- NETWORK BASED CONTROL: 
The block diagram of the control system is shown in Fig5.2. As can be seen from this 

figure, the sum of the outputs of the neural network and feedback controller (i.e. RD 
Controller) will be the actual input torque to robot. 

Trajectory 
Generator 

Neural 
Network 

PID 
Controller 

Tnn 

TPm  

Robot 
Manipulator 

rai 

Fig.5.2 Neural controller 
This can be expressed as 

r —ZPID+TNN 
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where-rpID  is the output of feedback PID controller and i is the output of the neural 

network The feedback controller plays a role in making the whole system stable. The 
neural network has been trained off line to approximate the inverse dynamic model of 
the robot manipulator. The learning scheme is shown in Fig.5.3. 

Fig.5.3 Scheme for learning dynamic model 

The manipulator receives the torque t and outputs the resulting trajectory0. Inverse 
dynamic model is set in the opposite input-output direction to that of the manipulator. 

That is, it receives the trajectory as an input and produces the torque XNN as  its output. 

The error signal is the difference between the actual torque and estimated torque. It is 

expected that this difference tends to zero as learning proceeds. Once the neural 

network finishes learning, it produces an approximate inverse dynamic model. 
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6. NEURO-FUZZY SYSTEMS 

6.1 INTRODUCTION 

Neuro-fuzzy control is one of the intelligent control methods since knowledge 

engineering is used in neuro fuzzy control. Neuro fuzzy control is usually utilised for two 

purposes. One is for non-linear applications and the other is for adding human 

intelligence to controllers. A linear PID Controller structure is changed by fuzzy logic, 

such that the controller makes the system respond quickly if the error is large. 

Recently, the combination of neural networks and fuzzy logic has received attention. The 

idea is to lose the disadvantages of the two and gain the advantages of both. Neural 

networks bring into this union the ability to learn. Fuzzy logic brings into this union a 

model of the system based on membership functions and a rule base. 

Determining the fuzzy membership functions from sample data using a neural network is 

the most obvious method of using the two together. The definition of the membership 

function has a huge impact on the system response. Often, the programmer must use trial 

and error to find acceptable values. Assuming a certain shape and finding the.  beginning 

and endpoints for the fuzzy values in a fuzzy set is a neural network optimization 

problem. Figure 6. us a diagram of such a system. 

Tput 	 Fuzzy Rule Fuzzifier 	 Defuzzifier 
Base 

Neural Network 

Figure.6.1 A fuzzy system whose membership functions are adjusted by a neural 

network. 
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Figure6.2 shows a more complex integration, the use of neural networks to determine 

both the fuzzy membershipfunctions and the rule base. Scientists have developed a 

system that converts input and output data into nonlinear membership functions and a 

rule base. The nonlinearity of the membership functions is unique to membership 

functions derived by neural networks. They, help minimize the number of rules. 

Input J 	 Neural Network 
	 Outp 

Fuzzifier 	Fuzzy Rule 	Defuzzifier 
Base 

Fig .6.2 A fuzzy system defined by a neural network. 

Another approach is to incorporate fuzzy logic into the neurons of the neural networks.. It 

was quickly realized that neurons with output in the range of [0, 1] produced much better 

results. The concept of a fuzzy neuron, however, has advanced beyond simply expanding 

the range of outputs on a crisp neuron. Some researchers have incorporated membership 

functions and rule bases into the individual neurons, as shown in figure 6.3. 

f(1 

and..............  

Fuzzy  W Fuzzy 
Inputs 	 , To Next Lay Neurons: 

or 

f(n) 

Figure .6.3. A neural network of fuzzy neurons. 

Finally, the idea of fuzzification of control variables into degrees of membership in fuzzy 

sets has been integrated into neural networks. See figure6.4. If the inputs and outputs of a 
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neural network are fuzzified and defuzzified, significant improvements in the training 

time, in the ability to generalize, and in the ability to find minimizing weights can be 

realized. Also, the membership function definition gives the designer more control over 

the neural network inputs and outputs. It is this technique that is implemented in this 

thesis for the control of a robotic arm 

Crisp 	 ' 	Jsp 
Inputs Fuzzifier 	 Neural 	 puts 

membership 	 membership Network 
values 	 values 

Rule Base  

Fig.6.4 A fuzzy system with neural network rule base 

6.2 ADAPTIVE NETWORKS: ARCHITECTURES AND LEARNING 

ALGORITHMS 

This section introduces the architecture and learning procedure of the adaptive network 

which is in fact a superset of all kinds of feedforward neural networks with supervised 

learning capability. An adaptive network, as its name implies, is a network structure 

consisting of nodes and directional links through which the nodes are connected. 

Moreover, part or all of the nodes are adaptive, which means each output of these nodes 

depends on the parameter(s) pertaining to this node, and the learning rule specifies how 

these parameters should be changed to minimize a prescribed error measure. 

The basic learning rule of adaptive networks is based on the gradient descent and the 

chain rule, which was proposed by by Werbos in the 1970's. However, due to the state of 

artificial neural network research at that time, Werbos' early work failed to receive the 

attention it deserved. 

Since the basic learning rule is based the gradient method which is notorious for its 

slowness and tendency to become trapped in local minima, here we propose a hybrid 
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learning rule which can speed up the learning process substantially Both the batch 

learning and the pattern learning of the proposed hybrid learning rule is discussed below, 

though our simulations are mostly based on the batch learning. 

6.3 ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM 

In this section, we propose a class of adaptive networks which are functionally equivalent 

to fuzzy inference systems. The proposed architecture is referred to as ANFIS, standing 

for Adaptive-Network-based Fuzzy Inference System. We describe how to decompose 

the parameter set in order to apply the hybrid learning rule. Besides, we demonstrate how 

to apply the Stone-Weierstrass theorem to ANFIS with simplified fuzzy if-then rules and 

how the radial basis function network relate to this kind of simplified ANFIS. 
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w2 

x 	y 
(a)  

f1 =p1x+gly+r1 

w1  f l  + w2  f2  

v f  WI  W2  

f 2 =p2X+q2y +r2 	= 	ft }  FV2 f2 

layer I 	 layer 4 
layer 2 	layer 3 	1 

A, 	 x y 	layer 5 

w1 	w 	W  f  

f 
12 f? 

B2 	 xy 
(b)  

Fig 6.5 (a) fuzzy reasoning (b) equivalent ANFIS. 
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A. ANFIS architecture 

For simplicity, we assume the fuzzy inference system under consideration has two inputs 

x and y and one output z. suppose that the rule base contains two fuzzy if-then rules of 

Takagi and Sugeno's type 

Rule 1: If x is A, and y is B1, then f, = pi  x + ql  y + r1 , Rule 

2: If a; is A2  and y is B2 , then j2  = p2x + q2y + r2  

Then the fuzzy reasoning is illustrated in Figure 6.5(a), and the corresponding 
equivalent ANFIS architecture is shown in Figure 6.5(b). The node functions in the 
same layer are of the same function family as described below: 

Layer 1: Every node i in this layer is a square node with a node function 

...6.1 

Where x is the input to node i, and A, is the linguistic label (small, large, etc.) 
associated with this node function. In other words, 0,I is the membership function of 

4 and it specifies the degree to which the given x satisfies the quantifier A,. Usually we 
choose ,u,. (x) t° be bell-shaped with maximum equal to 1 and minimum equal to 0, such 
as 

1 

1+ x—c,  b`  
a,. 

Or 

2 6; 

,4.(x)=exp — x_c̀ 	, 	...6.3 
al  

Where {a,, b,, c, } is the parameter set? As the values of these parameters change, the bell-

shaped functions vary accordingly, thus exhibiting various forms of membership 
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functions on linguistic label Al. In fact, any continuous and piecewise differentiable 

functions, such as commonly used trapezoidal or triangular-shaped membership 

functions, are also qualified candidates for node functions in this layer. Parameters in this 

layer are referred to as premise parameters.. 

Layer 2 : Every node in this layer is a circle node labeled II which multiplies the 

incoming signals and sends the product out. For instance 

w, = p (x) x p&,  ( y), i=1,2 	 ...6.4 

Each node output represents the firing strength of a rule. (In fact, other T-norm operators 

those perform generalized AND can be used as the node function in this layer.) 

Layer 3: Every node in this layer is a circle node labeled N. The i-th node calculates the 

ratio of the i-th rule's firing strength to the sum of all rules' firing strengths 

w w; 
l  = 	, 

w, + w2  

For convenience, outputs of this layer will be called called normalized firing strengths. 

Layer 4: Every node i in this layer is a square node with a node function 

0,4  = w1f = TY, (Ax + qiy + r, ), 	 ...6.6 

where w;  is the output of layer 3, and {p1 , q,, n } is the parameter set. Parameters in this 

layer will be referred to as consequent parameters. 

Layer 5: The single node in this layer is a circle node labeled 	that computes the 

overall output as the summation of all incoming signals, i.e., 

Ol =overall output= w;  f =  ' 	 ...6.7 

Thus we have constructed an adaptive network which is functionally equivalent to a 

fuzzy inference system shown in fig.6.7. For fuzzy inference systems shown in 

fig6.6, the extension is quite straightforward and the ANFIS is shown in Figure 6.7 

where the output of each rule is induced jointly by the output membership 

function and the firing strength. 
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Figure6.6: (a) fuzzy reasoning; 

(b) Equivalent ANFIS. 

For fuzzy inference systems shown in fig.6.6, if we replace the centroid 

❑ efuzzification operator with a discrete version which calculates the approximate 

centroid of area, then ANFIS can still be constructed accordingly. However, it will 

be more complicated than its versions and thus not worth the efforts to do so. 

Figure 6.7 shows a 2-input, ANFIS with 9 rules. Three membership functions are asso-
ciated with each input, so the input space is partitioned into 9 fuzzy subspaces, each of 

which is governed by a fuzzy if-then rule. The premise part of a rule delineates a fuzzy 

subspace, while the consequent part specifies the output within this fuzzy subspace. 

B. Hybrid Learning Algorithm 

From the proposed ANFIS architecture (Figure6.7), it is observed that given the 
values of premise parameters, the overall output can be expressed as linear 

combinations of the consequent parameters. More precisely, the output f in 

Figure6.7 can be rewritten as 
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Figure 6.7: (a) 2-input ANFIS with 9 rules; (b) corresponding fuzzy subspaces 

f w1+w2 f w1+w2  f2 

= wl f +W2f2 	 ...6.8 
=(1x)p1 +(1y)q1 + lwl!ri +(w2x )p2 +( w2Y)g2 + (W2)r2, 

Which is linear in the consequent parameters (p1 . q1 , ri  , p2 , q2 and r2 ) As a result, we have 

S = set of total parameters, 

S, = set of premise parameters, 

S2  = set of consequent parameters 

The hybrid learning algorithm can be applied directly. More specifically, in the 
forward pass of the hybrid learning algorithm, functional signals go forward till layer 
4 and the consequent parameters are identified by the least squares estimate. In the 

backward pass, the error rates propagate backward and the premise parameters are 
updated by the gradient descent. More details are in [18] 



7. DESIGN AND SIMULATION IN SIMULINK/MATLAB7.01 

7.1 INTRODUCTION 

The aim of simulation is to develop complete model of the physical system and to 

analyze the system in different ways before going to implement it practically. In my 

dissertation control of puma 560 robot is analyzed with different controllers such as 

Conventional and Intelligent controllers. In this chapter design and development of 

simulink model for robot manipulator, Actuator, Conventional controllers and intelligent 

controllers are explained. 

7.2 PUMA560 ROBOT MODEL 

M(q)q + C(q, 4)q + g(4) =r 

q = M(q)-' [z — C(q, q)q — g(q)] 
	 ..7.1 

By equation 7.1, we can develop the simulink model 

Fig .7.1 PUMA560 simulink model 
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Fig7.1 shows the simulink model of the PUMA 560 robot it contains the following blocks 

1. dynamics matrices 

2. gravity term 

3. matrix multiplication 

1. DYNAMICS MATRICES 

U(E) 	 cD 
Mass Inverse Matrix 

:clay 
q 

dynamicfunc 

U(E) 
	 cD 

Corioffs/Centrifugal Matrix 
q 

Fig7.2 dynamics matrices 

This block have the two input matrices angles at respective joints and derivatives of the 

angles of the order 6 byl and the two out puts mass inverse matrix and 

coriolis/centrifugal matrix of the order 36 byl (actually these matrices are the order of 6 
by 6 but they are arranged column wise for the simplicity) 

For this particular block a S-Function is written in C-Language which have two inputs of 

the order 6 by 1 and one out put of the order 72 by 1. S-Function is used because design 

of two in puts of the order 6 by 1 two out puts of the order 6 by 6 is extremely difficult in 

simulink for this purpose S-Function is used. After written the code in C we have to 

compile the Dot C file by the command `MEX' then `.mdl' file will be created in the 

current directory, this `.mdl' file will be useful for the simulink to run the simulation 

2 GRAVITY TERM 

Figure 7.3 shows the gravity load for the manipulator. Expressions for the gravity load 

are explained and given in chapter 2 in this block functional blocks are used we can 

write function in that block since gravity load is function of the angles so we can write 
any function in the functional block 



for gload 0 

OAD 

Fig 7.3 gravity load 

MATRIX MULTIPLICATION 

This matrix multiplication block shown in fig 7.4 is having two inputs of the order 36 by 
1 and 6 by 1 one output of the order 6 by 1 since one input of the order 36 by 1 six 
selectors selects 6 elements column wise one after other and these are concatenated 

horizontally by matrix concatenation block after this process elements become matrix of 
the order 6 by 6 then product block is used to multiply this matrix with second input 2 

ru 



6x1 

U U(E) 
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Selector3 

U U(E) 

Selector4 

U U(E) 

Selectors 	 Matrix 

U U(E) 	 Concatenation 

Selector6 

Matrix 
Multiply 

 6x1 product 

Fig 7.4 Matrix multiplications 

By this discussion on design of PUMA560 model is complete 

7.3 ACTUATOR MODEL 
' Fig 7.5 shows the simulink model for the actuator. It is designed as per the equations and 
specifications given in the chapter 2 
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Fig.7.5 Actuator simulink model 
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7.4DESIGN OF PID CONTROLLER 
Equation for the PID controller is 

U, =P,.e+D;  de +I, $e 	(i=1, 2...6) 	 ...7.2 

Where e is the error 

P is the proportional gain 

D;  is the differential gain 

II  is the integral gain 

U;  is the controller output 

The objective of designing PID controller is to find the P , D1 , Ii  for the optimum 

response of the system 
Hand tuning procedure for the tuning of the PID controller 

a) remove all integral and differential action 

b) tune the proportional gain or increase the proportional P to give the 

desired response ignoring any offset or peak over shoots 

c) then tune the differential gain D. (increase) until the oscillations are under 

the allowable range 

d) tune the integral gain I, (increase) until the until offset is in the 

allowable range 

e) repeat this until 1 as large as possible 

In designing considered that controller output should not more than 40 volts 

Total system with PID controller is shown in Fig 7.6 and Response of system is shown in 
Fig 7.8. 

43 



Sine Wave 	Matrix scope 

pid controller ac a tor(Mmator) 5ubsy~tem 

Fig 7.6.Total system with PD controller 

7.5 DESIGN OF FEED FORWARD INVERSE DYNAMICS CONTROLLER 

Total system with FFID controller is shown in Fig 7.7 and Response of system is shown 

in Fig 7.8. Designing the Feed forward inverse dynamics controller in simulink consists 

of three steps 

1. Feed forward inverse model 

2. Feed back controller 

3. Robot manipulator 

Fig 7.7 Total system with FFID controller 

Feed forward inverse model consists of two blocks those are input block and S-function 

block. In Feed forward inverse model block, we have to calculate the torques required for 

each link for given position, velocity and acceleration. 6 degree of freedom robot 



manipulator model equations (given in chapter 2) are used to calculate torques required 
for each link for given position, velocity and acceleration. In the input block, 

Figure 7.8 Robot Response with PID control and FFID control 

inputs are provided in order to S-function block. M-file is used to calculate torques. Feed 
back controller is simply PID controller. 

7.6 DESIGN OF COMPUTED TORQUE CONTROLLER 
Designing of Computed torque control is similar to the Feed forward inverse dynamics 
controller. The only difference is in input block i.e. how the inputs are provided. Input 
block of CTC controller is shown in Fig 7.9 and response of system is shown in Fig 7.11 

Froml 

Fig 7.9 Input block for CTC method 
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7.7DESIGN OF CRITICALLY DAMPED INVERSE DYNAMICS CONTROLLER 

Designing of Critically damped inverse dynamic control is also similar to the Feed 

forward inverse dynamics controller. The only difference is in input block i.e. how the 

inputs are provided. Input block of CDID controller is shown in Fig 7.10 and response of 

system is shown in Fig 7.11 

From 

Fig 7.10 Input block for CDID method 

Figure 7.11 Robot Response with CTC control and CDID control 
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7.8 DESIGN OF FUZZYPD+I CONTROL 
Total system with Fuzzy controller is shown in Fig 7.13 and Response of system is 
shown in Fig 7.17.Designing the Fuzzy controller in simulink consists of two steps 

1. Designing the rule base 
2. gain scheduling 

TABLE 1 Fuzzy rules 

Design of rule base 

Table 1 shows the rule base for the Fuzzy PD controller the rule base is to design as 

explained in the second chapter, but complex systems such as robot understanding the 
system behavior is very difficult so set of PD rules were proposed [ 10]. These rules 
generally used for the Fuzzy PD controller 

Gain scheduling 

e 
°0 

d 	Fuzzy controller 

Fig7.12 Fuzzy control with gains 

Gain scheduling means designing of go  , g, and hfor the optimum response of the system 

47 



Gain scheduling procedure for the Fuzzy controller 

1. Initially put go =0 and increase gl until the controller gives the output 

normally, when the signal after the gain g1 crosses the universe of discourse 

the there will not be any rule to processes then controller then the output will 

be zero before this happens previously designed gain will be the optimum gain 

for the g, 

2. increase h until the controller will gives the maximum output that will be the 

maximum controller output 

3. then increase go until overshoots under the allowable range 

P1 u 	+_ Eta 	CttTAt3E Va T torque  

Sine Wave 	Matrix 
Gain 

fuzzy continuer Gctuator(DCmotor) 	Subsystem 

Fig7.13 System with fuzzy controller 
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7.9 DESIGN OF NEURAL NETWORK BASED CONTROL 

Total system with Neural based controller is shown in Fig 7.15 and Response of system is 
shown in Fig 7.17. Designing the Neural controller in simulink consists of three steps 

1. Feed forward controller 

2. Feed back controller 
3. Robot manipulator 

This Neural controller can be designed in simulink using the neural network toolbox and 

simulink. 

Fig.7.15 Total robot system with neural controller 

Feed back controller and Robot manipulator blocks are same as in Feed forward inverse 

dynamics controller. Feed forward controller contains two blocks, which are Input block 

and Neural Networkl block. Input block provides inputs to Neural Networkl block in 
which order Neural network requires inputs. 

Neural Networkl block is shown in Fig 7.16. It consists of three blocks, which are 

1. Pre processing block 

2. Neural network 

3. Post processing block 



preprocess_BDOF 1—*.-1p{1} 	y{1}1--- 	postprocem_9DOF 

Input 
	

Output 
S-Functionl 	Neural Network 	S-Function 

Fig 7.16 Neural NetworkI block 

Pre processing and Post processing blocks normalizes the inputs and outputs respectively. 

M-file programs have written for Pre processing and Post processing blocks. Neural 

network toolbox and gensim command is used to create neural network block. M-file 

program is written for this purpose. 
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Fig7.17 Robot response with Fuzzy control and Neural control 

Algorithm for creation of neural network block 

1. Generate inputs and targets for a given trajectory by using dynamic model 

equations of two-link robot manipulator. 

2. Create the network with required structure by using newff command. 
3. Train the Neural network by train command with specifications. 
4. Use gensim command to generate simulink block of trained network. 

The numbers of input and output nodes of a neural network are determined from the 

problem at hand whereas the numbers of nodes in hidden layers are flexible. The neural 

network employed in simulation consists of an input layer with 18 nodes. The first hidden 

layer with 60 nodes, the second hidden layer with 30 nodes and an output layer with six 

nodes. Using an optimization approach an alternative and more effective learning 

algorithm, Scaled Conjugate Gradient (SCG) than the standard back propagation (BP) has 
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been used. SCG belongs to the class of Conjugate Gradient Methods, which shows super 
linear convergence on most problems. 

7.10 DESIGN OF NEURO-FUZZY CONTROL 

This Neuro-Fuzzy controller can be designed in simulink using the fuzzy logic toolbox. 
About ANFIS already explained in chapter 6 .In matlab design of ANFIS consists of 

Training 
Model Learning and Inference through ANFIS 
Total system with ANFIS controller is shown in Fig 7.18. The basic idea behind these 
neuro-adaptive learning techniques is very simple. These techniques provide a method for 
the fuzzy modeling procedure to learn information about a data set, in order to compute 
the membership function parameters that best allow the associated fuzzy inference 
system to track the given input/output data. This learning method works similarly to that 

of neural networks. 

Si 

Fig.7.18 Total robot system with ANFIS controller 

The Fuzzy Logic Toolbox function that accomplishes this membership function 
parameter adjustment is called ANFIS. ANFIS can be accessed either from the command 
line, or through the ANFIS Editor GUI. After training parameters of member function are 
set such that that will perform best. Response of system and membership functions after 
training shown in Fig 7.20 
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Fig.7.20 Robot Response with Neuro-Fuzzy control and membership functions after 

training 
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Fig.8.1 Error profiles atjointl 

Fig.8.3 Error profiles at joint3 

Fig.8.2 Error profiles at joint2 

Fig.8.4 Error profiles at joint4 

8. RESULTS 

8.1 ERROR PROFILES OF THE ROBOT FOR TRAJECTORY CONTROL 

There are six joints to be controlled in the ROBOT. Sine waves are chosen as desired 

trajectories with frequency of 2 rad/sec, maximum values of the desired trajectories are 

1, 2, 3, 4, 5, 6 radians respectively, the error profiles of conventional control strategies 

without unmodeled term at each joint are shown in the figures from 8.1-8.6. Values of 

Integral absolute errors of conventional control strategies without unmodeled term are 

tabulated in Table I. From the Table I, we can clearly see that critically damped inverse 

dynamic (CDID) control performs well. 
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Fig. 8.5 Error profiles at j oint5 Fig.8.6 Error profiles at joint6 

TABLE I 
ERRORS (IN RAD) OF, CONVENTIONAL CONTROLLERS WITHOUT 

UNMODELED TERM 

PD 0.3565 1.0036 1.2932 1.4766 2.3330 3.1726 

FFID 0.2087 0.6685 0.5529 1.0039 1.5588 2.1114 

CTC 0.1310 0.3754 0.4254 0.8107 1.2427 1.6909 

CDID 0.1201 0.2474 0.2805 0.6458 1.0014 1.3978 

The error profiles of intelligent control strategies without unmodeled term at each joint 

are shown in the figures from 8.7-8.12_ Values of Integral absolute errors of intelligent 

control strategies without unmodeled term are tabulated in Table II. From the Table II, 

we can clearly see that Neuro-Fuzzy control performs well. Integral absolute error of 

Feed forward inverse dynamic control and neural network based control are same 

because inverse model in FFID control strategy is replaced by neural network which 

has been trained off line to approximate the inverse dynamic model of the robot 

manipulator. 
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Fig.8.7 Error Profiles at jointl 

Fig.8.9 Error Profiles at joint3 

Fig. 8.8 Error Profiles at j oint2 

Fig.8.10 Error Profiles at joint4 

Fig.8.11 Error Profiles at joints 
	

Fig.8.12 Error Profiles at joint6 
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TABLE II 
ERRORS (IN RAD) OF INTELLIGENT CONTROLLERS WITHOUT 

UNMODELED TERM 

FUZZY 0.1656 0.6212 0.7340 0.5934 1.1481 1.4705 

NEIL 0.2087 0.6685 0.5529 1.0039 1.5588 2,.1114 

NEURO-FUZZY 0.1165 0.4516 0.5123  0.167 8 0.3303  0.4525 

8.2. EFFECT OF UNMODELED TERM ON PERFORMANCE 

Both conventional and intelligent controllers were tested for model with unmodeled term, 

i.e.. A constant term is added to torque equation. Integral absolute error for conventional 

controllers with unmodeled term is tabulated in Table III. From Table we can clearly see 

that performances of conventional controllers are affected by unmodeled term is 
significant. Integral absolute error for intelligent controllers with unmodeled term is 

tabulated in Table IV. From Table we can clearly see that effect of unmodeled term is 

very less i.e. performance of intelligent controllers are remain same in both cases. 

TABLE III 
ERRORS (IN RAD) OF CONVENTIONAL CONTROLLERS WITH 

UNMODELED TERM 

PID 0.2697 0.9664 1.2589 4.5100 6.4990 	. 2.8316 

FFID 0.1617 0.6479 0.5417 4.7064 6.7899 1.8673 

CTC 0.0953 0.3497 0.4470 3.8280 5.4486 -1.4960 

CDID 0.06-62 0.1963 0.3327 3.7081 5.2799 1.1308 
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TABLE IV 
ERRORS (IN RAD) OF INTELLIGENT CONTROLLERS WITH 

UNMODELED TERM 

FUZZY 0.1618 0.6496 0.7440 1.7906 1.5937 1.3272 

NEURAL 0.1617 0.6479 0.5417 4.7064 6.7899 1.8673 

NEURO-FUZZY 0.1078 0.4748 0.5284 0.1647 0.2820 0.4414 

But the performance of neural network based controller is affected by unmodeled term 

because neural network has been trained off line to approximate the inverse dynamic 

model of the robot manipulator without unmodeled term. Integral absolute error of PID, 

FFID and Neural control before neural network trained to approximate inverse dynamics 

of robot with unmodeled term are shown in Table V. 

TABLE V 
ERRORS (IN RADIANS) OF PID, FFID, AND NEURAL CONTROL BEFORE 

NETWORK TRAINED TO SYSTEM WITH UNMODELED TERM 

PID 	0.2507 	0.8220 	1.4141 	4.2827 	6.1804 	6.618,7 

FFID 	0.1502 	0.5695 	1.4959 	4.5077 	6.5122 	6.9878 

NEURAL 0.1502 0.5695 1.4959 4.5077 6.5122 6.9878 

In order, to improve performance of neural network based controller, neural network has 

been trained offline to approximate inverse dynamics of robot with unmodeled term. IAE 

and error profiles of PID, FFID and Neural control after neural network trained to 

approximate inverse dynamics of robot with unmodeled term are shown in Table VI and 
Fig.8.13-8.18. 
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Fig.8.13 Error Profiles at jointl Fig. 8.14 Error Profiles at joint 2 

Fig. 8.15 Error Profiles at j oint3 
 

Fig.8.16 Error Profiles at joint 4 

Fig.8.17 Error Profiles at joints Fig.8.18 Error Profiles at joint 6 



TABLE VI 
ERRORS (]N RADIANS) OF PID, FFID, AND NEURAL CONTROL AFTER 

NETWORK TRAINED TO SYSTEM WITH UNMODELED TERM 

	

PD 	0.2507 0.8220 1.4141 4.2827 6.1804 6.6187 

	

FFID 	0.1502 	0.5695 	1.4959 	4.5077 	6.5122 	6.9878 

NEIL 	0.1274 	0.6187 	1.2272 	1.0979 	1.5124 	1.7479 I 
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CONCLUSIONS 

From the simulated results, we conclude the following things. 

1. Neruo-Fuzzy controller performs best in all conditions. This new method for 
control combines the advantage of neural networks (learning adaptability) with the 

advantage of fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive 
control of robot dynamics. 

2. The CDID controller is the best performer in the category of conventional 

controllers. It is observed that the JAB for all links are considerably reduced in magnitude 
and also observed that when the unmodeled term is added to the model, PD and FFID 

perform badly. CTC and CDID performance also effected but they do well. It is conclude 

that CDID perform well in all conditions 

3. Neuro-Fuzzy controller is the best performer in the category of intelligent 

controllers. It is observed that the IAE for all links are considerably reduced in magnitude 
and also observed that when the unmodeled term is added to the model, performance of 

intelligent controllers remains same except neural control. 

4. Actually Neural control is similar to FFID and performances of both are almost 
similar in our simulation results. Performance of both controllers is still similar even 

when the unmodeled term is added to the model. Performance of Neural control is 

improved by training; training data is collected from model with the unmodeled term. 



FUTURE SCOPE OF WORK 

Main drawback of hand tuning of PID controller may not give good response. Genetic 

algorithm [9] can be used to get gains of PID which gives optimal performance. 

The quality of a fuzzy logic controller can be drastically affected by the choice of 
membership functions and gains. Thus, methods for tuning fuzzy logic controllers are 

necessary. Here we have used hand tanning to select gains and general triangle 
membership are used which may not yield good performance. By using Genetic 

algorithm [13], we can tune both gains and parameters of membership functions in order 

to give optimal performance. 

The Proposed ANFIS structure uses Temporal back propagation hybrid algorithm for the 

Learning of the ANFIS controller.The convergence time depends on the no of input 

membership functions, if the no of input membership functions increases then the 

learning process becomes slow and if the no of membership functions decreases then the 

Performance of the ANFIS controller will become poorer. There is a contradiction 

between convergence time and the performance. This is the main disadvantage of the 

Temporal back propagation hybrid algorithm which used for ANFIS. The convergence 

time can be improved by the Genetic based Neuro-Fuzzy approach All the parameters of 

the neuro fuzzy structure can be tuned simultaneously using Genetic Algorithm [21 ] 
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