
ROBOTIC CONTROL BY NEURO-FUZZY APPROACHES

A DISSERTATION
Sube ittird In partial fulfiFNment of the

requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRICAL ENGINEERING

(With $pclaliadon In System EnOinMrinp and Operations Rasaarch)

By
I

G.E.NAGANNA

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE•247 867 (INDIA)

JUNE, 2006

Z Nb .1 T-3~623bb~—QS E — S_

CANDIDATE'S DECLARATION

I hereby declare that the work being presented in the dissertation entitled

"ROBOTIC CONTROL BY NEURO-FUZZY APPROACHES" towards partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Electrical Engineering with specialization in System Engineering and Operations

Research, submitted to Electrical Engineering Department, Indian Institute of

Technology Roorkee, Roorkee, is an authentic record of my own work carried out from

July 2005 to June 2006, under the guidance of Dr. Surendra Kumar, Assistant

Professor, Department of Electrical Engineering, IIT Roorkee.

The matter embodied in this dissertation has not been submitted for the award

of any other degree or diploma.

Date: zc l 06 1 b~
Place: Roorkee (G.E.NAGANNA)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the
best of my knowledge.

(Dr. Stirendra Kumar)
Assistant Professor

Electrical Engg Department,
I.I.T. Roorkee

Roorkee- 247667

i

ACKNOWLEDGEMENT

Though the deepest gratitude can only be felt inside my heart, but in words with my
deepest esteem I wish to express my deep sense of gratitude and sincere thanks to my

beloved guide Dr.Surendra Kumar Department of Electrical Engineering, HT

Roorkee, for being helpful and a great source of inspiration. His keen interest and
constant encouragement gave me the confidence to complete my thesis work
successfully. This work is simply the reflection of his thoughts, ideas, and concepts. I
am highly indebted to him for his kind and valuable suggestions and of course his
valuable time during the period of this work. The huge quantum of knowledge I had
gained during his inspiring guidance would be immensely beneficial for my future

endeavors.
I am very thankful to Prof. S.P.Gupta, head of the Electrical Engineering
Department, for supporting my effort.
I thank all the teaching and non teaching staff members of the department who have
contributed directly or indirectly in successful completion of my dissertation work.
I also avail this opportunity to thank all my friends for their continuous support and
enthusiastic help and encouragement.
Finally, I would like to say that I am indebted to my parents for everything that they
have given to me. I thank them for the sacrifices they made so that I could grow up in
a learning environment. They have always stood by me in everything I have done,
providing constant support, encouragement and love.

• 1N ~
'-0.

(G.E.NAGANNA)

ii

ABSTRACT

The problem of manipulator control is highly complex problem of controlling a system
which is multi-input, multi-output, and non-linear and time variant. A number of different

approaches presently followed for the control of manipulator vary from PID to very
complex, intelligent, self-learning control algorithms.

This report presents a comparative study of simulated performance of some conventional

controllers, like the simple PID, Computed torque control, Feed forward inverse dynamic

control and critically damped inverse dynamic control and some Intelligent controllers,

like Fuzzy control, Neural control, and Neuro-Fuzzy control. IAE is used for comparison

as performance index.

The study concludes that the Critically damped inverse dynamics controller in general

performs better then rest of conventional controllers. When the. unmodeled term is added
to the model, PID and Feed forward inverse dynamic control perform badly. Computed

torque control and Critically damped inverse dynamics control performance also effected

but they do well. A Neuro-Fuzzy controller combines the advantage of neural networks

(learning adaptability) with the advantage of fuzzy logic (use of expert knowledge) to

achieve the goal of robust adaptive control of robot dynamics, performs better in
intelligent controllers and also shows that intelligent controllers are better even when

unmodeled terms are added to the model.

iii

CONTENTS

Candidates Declaration i
Acknowledgement ii

Abstract iii

Contents iv

List of Figures 	 V vi

List of Tables viii

Chapter 1 Introduction 1

1.1 Introduction To Robot Control 1

1.2 Literature Review on Conventional Controllers 3

1.3 Literature Review On Fuzzy Control 3

1.4 Literature Review On Neural Control 4

1.5 Literature Review On Neuro-Fuzzy Control 4

1.6 Organization of the Dissertation 5

Chapter 2 Dynamics Of Robotic Manipulator 	 V 6

2.1 Introduction 6

2.2 Puma Robot 6

2.3 Dynamics Of Puma560 Robot 7

2.4 Actuator For The Robot 9

Chapter 3 Conventional Controllers 12

3.1 Introduction 12

3.2 PID control 13

3.3 Feed forward inverse dynamics control 13

3.4 Computed torque control 14

3.5 Critically damped inverse dynamics control 15

Chapter 4 Fuzzy Control -16

4.1 Introduction 16

4.2 Historical Background 16

4.3 Structure Of Fuzzy Controller 17

4.3.1 Preprocessing 17

lv

4.3.2 Fuzzification 18
4.3.3 Rule Base 18

4.3.4 Inference Engine 19
4.3.5 Defuzzification 22

4.3.6 Post Processing 23

Chapter 5 Neural Control . 24

5.1 Introduction 24

5.2 The Back-Propagation Algorithm 25

5.3 Neural Network Based Control 29

Chapter 6 Neuro-Fuzzy Systems 31

6.1 Introduction 31

6.2 Adaptive Networks: Architectures And Learning 33

Algorithms

6.3 ANFIS: Adaptive-Network-Based Fuzzy Inference 34

System

Chapter 7 Design and Simulation in Simulink/Matlab7.01 39

7.1 Introduction 39

7.2 Puma560 Robot Model 39

7.3 Actuator Model 42

7.4 Design of PID Control 43

7.5 Design of Feed Forward Inverse Dynamics Control 44
7.6 Design of Computed Torque Control 45

7.7 Design of Critically, Damped Inverse Dynamics Control 46
7.8 Design of Fuzzy PD+I Control 47
7.9 Design of Neural Control 49
7.10 Design of Neuro-Fuzzy Control 51

Chapter 8 Results 53
8.1 Error Profiles of The Robot for Trajectory Control 53
8.2 Effect of Unmodeled Term on Performance 56

Chapter 9 Conclusions 60
References 62

IA

LIST OF FIGURES

Fig. 2.1 (a) puma 560 robot 7
Fig. 2.1 (b). Illustration of Puma 560 robot. 7
Fig. 3.1 General structure of robot control system 12

Fig. 3.2 Feed forward inverse dynamics controller 14

Fig..4.1 Blocks of a fuzzy controller 17

Fig. 4.2 General step response 18

Fig. 4.3 Graphical construction of the control signal in a fuzzy PD controller 20

Fig. 4.4 One input, one output rule base with non-singleton output sets 21

Fig. 5.1 Neural network architecture 27

Fig. 5.2 Neural controller 29

Fig. 5.3 Scheme for learning dynamic model 30
Fig. 6.1 A fuzzy system whose membership functions are adjusted by a neural 31
network.
Fig. 6.2 A fuzzy system defined by a neural network 32

Fig. 6.3 Fuzzy neurons of a neural network 32
Fig. 6.4 A fuzzy system with neural network rule base 33
Fig. 6.5(a) fuzzy reasoning ;(b) equivalent ANFIS 34
Fig. 6.6 (a) fuzzy reasoning ;(b) equivalent ANFIS 37
Fig. 6.7 (a) 2-input ANFIS with 9 rules;(b) corresponding fuzzy subspaces 38
Fig. 7.1 PUMA560 simulink model 39
Fig. 7.2 dynamics matrices 40
Fig. 7.3 gravity load 41
Fig. 7.4 Matrix multiplications 42
Fig. 7.5 Actuator simulink model 42
Fig. 7.6 Total system with PID controller 44
Fig. 7.7 Total system with FFID controller 44
Fig. 7.8 Robot Response with PID control and FFID control 45
Fig. 7.9 Input block for CTC method 45
Fig. 7.10 Input block for CDID method 46

vi

Fig. 7.11 Robot Response with CTC control and CDID control 46

Fig. 7.12 Fuzzy controls with gains 47

Fig. 7.13 Total. system with fuzzy controller 48

Fig. 7.14 Fuzzy controller 48

Fig. 7.15 Total robot system with neural controller 49

Fig. 7.16 Neural Networkl block 50

Fig. 7.17 Robot response with Fuzzy control and Neural control 50

Fig. 7.18 Total robot system with ANFIS controller 51

Fig. 7.19 ANFIS controller 52

Fig.7.20Robot Response with Neuro-Fuzzy control and membership functions 52

after training

Fig. 	8.1-8.6 	Error profiles 	of conventional 	control 	strategies without 53-54

unmodeled term at each joint

Fig. 8.7-8.12 Error profiles of intelligent control strategies without unmodeled 55

term at each joint

Fig. 8.13-8.18. Error profiles of PID, FFID, and Neural controllers with 58

unmodeled term at each joint after network is trained to approximate inverse

dynamics of robot with unmodeled term

vii

LIST OF TABLES

Fuzzy rules
Errors (in rad) of Conventional Controllers without unmodeled term 	54

Errors (in rad) of Conventional Controllers with unmodeled term 	 .56

Errors (in rad) of Intelligent Controllers without unmodeled term 	 56

Errors (in rad) of Intelligent Controllers with unmodeled term 	 57

Errors (in rad) of PID, FFID, and Neural control before network trained to 57
system with unmodeled term
Errors (in rad) of PID, FFID, and Neural control after network trained to 59
system with unmodeled term

vu'

1. INTRODUCTION

1.1 INTRODUCTION TO ROBOT CONTROL
Robotic manipulators have become increasingly important in the field of flexible

automation. Robotic manipulators are very complicated nonlinear systems [1, 2]. A robot
is typically modeled as a chain of n rigid bodies. In general, one end of the chain is fixed

to some reference surface while other end is free, thus forming an open kinematics chain
of moving rigid bodies. Dynamics of a manipulator involve nonlinear mapping between

applied joint torques and joint positions, velocities and accelerations. These relationships
can be described by a set of second-order nonlinear and highly coupled differential

equations [3] with uncertainty as a robot work under unknown and changing

environments in executing different tasks.

There are many control strategy that can be applied for control of robotic manipulators.
These range from conventional to adaptive and intelligent controllers [6]. The inverse

dynamic approach is particularly important for control of robots and can be used to

compensate for highly coupled and nonlinear arm dynamics. Many strategies have been

developed for controlling the motion of a robot. Existing robotic manipulators use simple

proportional-(integral)-differential controllers with the gains tuned for critical damping.

The advantages of a PID controller include its simple structure along with roust

performance in a wide range of operating conditions. A lot of research has been done on

PID control scheme and available methods for tuning PID gains are advanced and

accurate. This makes the PID as one of the most favored control strategy. However, the

design of a PID controller is generally based on the assumption of exact knowledge

about the system. This assumption is often not -valid since the development of any

practical system may not include precise information of factors such as friction,

backlash, unmodeled dynamics and uncertainty arising from any of the sources.

Advanced modem approaches to the design of controllers for robots includes computed

torque control, robust, control, model based adaptive control and variable structure

control. However, most of these are too complicated and expensive for industrial use. A

heavy computational burden prevents them being employed for real-time control

applications. Also, some of them need an accurate dynamic model which is not always

1

available especially when robot is performing under different operating conditions. In

order to overcome above problems, intelligent controlling techniques are used.

Intelligent control is a control technology that replaces the human mind in making
decisions, planning control strategies, and learning new functions whenever the

environment does not allow or does not justify the presence of human operator. Artificial
neural networks and fuzzy logic are potential tools for intelligent control engineering.

Intelligent controllers are, Fuzzy logic, Neural based control, and Hybrid control (Neuro-

Fuzzy). Neural networks are best known for their learning capabilities. Fuzzy logic is a

method of using human skills and thinking processes in a machine.
The underlying idea of fuzzy control is to build a model of a human expert who is

capable of controlling the plant without thinking in terms of a mathematical model. The

control expert specifies the control actions in the form of linguistic rules. The
specification of good linguistic rules depends on the knowledge of the control expert, but

the translation of these rules into fuzzy set theory framework is not formalized and

arbitrary choices concerning, for example, the shape of membership functions have to be

made. The quality of a fuzzy logic controller can be drastically affected by the choice of

membership functions. Thus, methods for tuning fuzzy logic controllers are necessary.

Neural networks offer the possibility of solving the problem of tuning. A combination of

neural networks and fuzzy logic offers the possibility of solving tuning problems and

design difficulties of fuzzy logic. The resulting network can be easily recognized in the

form of fuzzy logic control rules. This new approach combines the well-established
advantages of both the methods and avoids the drawbacks of both. The computation of

control value from the given measured input value is seen as a feed forward procedure as

in layered networks, where the inputs are forwarded through the network resulting in

some output value(s). If the actual output value differs from the desired output value, the

resulting error is propagated back through the architecture, which in turn results in

modification of certain parameters and reduction in error during the next cycle.

Interpreting the fuzzy controller as a neural network helps in training the fuzzy controller

with learning procedures and the modified structure can still be interpreted as fuzzy logic
controller.

2

1.2 LITERATURE REVIEW ON CONVENTIONAL CONTROLLERS
C.G. Atkeson, J.D.Griffiths, J.M.Hollerbach, C.H.An, proposed the controller's range

from PD control applied independently at each joint to feed forward and computed torque

methods incorporating full dynamics. Study shows that dynamic compensation by model

based controller can improve trajectory accuracy significantly [7].
Sudeept Mohan, Surekha Bhanot presented a comparative study of simulated
performance of some conventional algorithms, like simple PID, Feed forward inverse

dynamics, computed torque control, and critically damped inverse dynamics. Study

shows that the critically damped inverse dynamics controller in generally performs better
then the rest of algorithms particularly when the uncertainty of the system increases [8].

D.P.kwok, T.P.Leung, Fang Sheng described the use of Genetic Algorithms (GAS) for

optimizing the parameters of PID controllers for a 6-DOF PUMA 560 robot arm. The

simulation results obtained are compared with that obtained by traditional optimization

techniques, wherever applicable and showed that the GA-based optimal-tuning technique

can work effectively and efficiently and has great potential to become a common

optimal-tuning approach for the robot arm controllers [9].

1.3 LITERATURE REVIEW ON FUZZY CONTROL
Han-Xiong Li, H.B.Gatland explain systematic analysis and design of the conventional

fuzzy control. General robust rule bases is proposed for fuzzy two-term control, and leave•

the optimum tuning to the scaling gains, which greatly reduces the difficulties of design
and tuning. The digital implementation of fuzzy control is also presented for avoiding the

influence of the sampling time [10].

T.Brehm, K.S.Rattan proposed a hybrid fuzzy PID controller which takes advantage of

the properties of the fuzzy PI and PD controllers and compared Fuzzy PID and Hybrid
Fuzzy PID in terms of rule base, design and implementation problems [11].

G.M.Khoury, M.Saad, H.Y.Kanaan, and C.Asmar presented elaboration of fuzzy control

laws based on two structures of coupled rules fuzzy PID controllers and compared the

Two-input FLC with coupled rule, Three-input FLC with coupled rule, computed torque
control, and direct adaptive control method on a five-DOF robot arm in terms position

tracking errors [12].

3

Abdollah Homaifar, Ed McCormick examines the applicability of genetic algorithms

(GA's) in the simultaneous design of membership functions and rule sets for fuzzy logic
controllers. This new method has been applied to two problems, a cart controller and a

truck controller. Beyond the development of these controllers, they also examine the

design of a robust controller for the cart problem and its ability to overcome faulty rules

[13].

1.4 LITERATURE REVIEW ON NEURAL CONTROL
T.Ozaki, T.Suzuki, T.Furuhashi, S.Okuma, and Y.Uchikawa presents a nonlinear

compensator using neural networks for trajectory control of robotic manipulator,

proposed a model learning scheme, and the adaptive capability of the neural network

controller to compensate unstructured uncertainties is clarified [14].
P.Gupta and N.K. Sinha proposed a Neural-network based control for robotic
manipulator and presented a method for improving the learning ability of neural-

networks by using a function with changeable shape. Results show that proposed

controller has better robustness [15].
M.F.Moller introduced a supervised learning algorithm (Scaled Conjugate Gradient,

SCG) with super linear convergence rate. The algorithm is based upon a class of

optimization techniques well known in numerical analysis as the Conjugate Gradient

Methods. SCG uses second order information from the neural network but requires only

O (N) memory usage, where N is the number of weights in the network [16].

1.5 LITERATURE REVIEW ON NEURO-FUZZY CONTROL
J.-S.R.Jang has proposed a novel approach to the design of fuzzy controllers without

resorting to domain knowledge of the plant under control. He employed the adaptive
networks as building blocks and the back-propagation-type gradient method as a learning

procedure to minimize the differences between the actual state and desired state at each

time step [17].

Jyh-Shing, Roger Jang have proposed the architecture and learning procedure underlying

ANFIS (adaptive-network-based fuzzy inference system)which is a fuzzy inference

system implemented in the framework adaptive networks. Hybrid learning is used. The

rd

ANFIS architecture is employed to model nonlinear functions, identify nonlinear
components on-line in a control system, and predict chaotic time series, all yielding
remarkable results [18].

G.S.Sandhu and K.S.Rattan have presented a general Neuro-Fuzzy controllers which
combines the neural networks and Fuzzy logic to solve the problem of tuning fuzzy logic
controllers. The Neuro-Fuzzy controller uses the neural-network learning techniques to
tune the membership functions while keeping semantics of the fuzzy logic controller

intact [19].
Manish Kumar and Devendra P.Garg have proposed intelligent learning of Fuzzy logic

controllers via neural network and genetic algorithm. The results show that Genetic-

Fuzzy and Neuro-Fuzzy approaches were, able to learn rule base and identify membership

function parameters accurately [20].
Teo Lian Seng, Marzuki Bin Khalid presented a Neuro-Fuzzy controller where all of its
parameters can be tuned simultaneously by Genetic algorithm. The performance of the

proposed controller is compared with a conventional fuzzy controller and a PID
controller tuned by Genetic algorithm and results show that proposed controller offers

encouraging advantages and has better performance [21].

1.6 ORGANIZATION OF THE DISSERTATION
This Dissertation is organized as follows.
Chapter 2 details the Dynamics of 6 DOF PUMA 560 Robot and Actuator of Robot
Chapter 3 Explains Conventional Control strategies.
Chapter 4 Explains the Fuzzy Logic Control.
Chapter 5 Explains the Back Propagation algorithm and Neural Network-based control.
Chapter 6 Explains the Neuro-fuzzy systems architecture and learning algorithms.
Chapter 7 Deals the Design and implementation of Robot, Conventional controllers and
intelligent controllers in Simulink/Matlab 7.01.

Chapter 8 Results.

Chapter 9 Conclusions.

5

2.DYNAMICS OF ROBOTIC MANIPULATOR

2.1 INTRODUCTION

The manipulator system is a classic control problem that is used industries around the

world. It is a suitable process to test prototype controllers due to its high non-

linearities and lack of stability. In this chapter, the dynamical equations of the system

will be derived, the model will be developed in simulink and basic controllers will be

developed. The aim of developing a Robot system in simulink is that the developed

model will have the same characteristics as the actual process. It will be possible to

test each of the prototype controllers in the simulink environment. Before the robot

model can be developed in simulink, the system dynamical equations will be derived

using `Lagrange Equations'. [1, 2] The Lagrangian equations are one of many

methods of determining the system equations. Using this method it is possible to

derive dynamical system equations for a complicated mechanical system such as the

Robot manpulator. The Lagrange equations use the kinetic and potential energy in the

system to determine the dynamical equations of the robot system.

2.2 PUMA ROBOT
The PUMA robot was initially built by the Unimation Inc. (now defunct), to

specifications developed by General Motors. PUMA stands for Programmable

Universal Machine for Assembly [3]. This robot system was the first commercially

available industry robot. It had all electric drives, and a reasonably sophisticated

controller. Its controller could be disconnected and replaced by another custom-built

controller. For these reasons, PUMA became one of the most popular with robotic

researchers around the world. Figure.2.1 shows the PUMA robot .

C

Fig. 2.1 a. puma 560 robot b. Illustration of Puma 560 robot

2.3 DYNAMICS OF PUMA560 ROBOT
The general form of the robot arm dynamic equation is

M(q)q + C(q, q)q + g(q) = z 	 ...2.1

Where q is angle matrix

M(q) is mass matrix

C(q, q) is coriolis/centrifugal matrix

g(q) is gravity matrix

Puma is six degree of freedom robot so all matrices for puma robot are the order of
six by six. For the simplicity these equations are abbreviated as per listed below

c1 = cos(q(1)), c2 = cos(q(2)), c3 = cos(q(3)), c4 = cos(q(4)), cs = cos(q(5)),

c6 = cos (q (6))

s, = sin(q(1)), s2 = sin(q(2)), s3 = sin(q(3)), s4 = sin(q(4)), s5 = sin(q(5)), s6 = sin(q(6))

s23 = sin(q(2)+q(3))

C23 = cos(q(2)+q (3))

MASS MATRIX

m,l = 2.57 + (1.38* c2*c2) + (0.3*s23*s23) + (0.744*c2*s23)

m12 = (0.69*s2) + (-0.134*c23) + (0.0238*c2)

m13 = (-0.134*c23) + (-0.00397*s23)

m22 = 6.79 +(0.744*s3)

m23 = 0.333 + (0.372*s3) + (-0.011 *c3)

m33 =1.16

7

m34 = -0.00125*s4*s5

m35 = 0.00125*c4*c5

m44 = 0.2

m55 =0.18

m66 = 0.19

The mass matrix is symmetric so other equations are

m21 = m12 m62 = m26

m31 = m13 m43 = m34

m41 = m14 m53 = m35

m51 = m15 	and m63 = m36

m61 = m16 msa = mas
m32 = m23

mea = ma6
m42 = mza

m65 = m56
m52 = mz5

All other elements in the mass matrix are zero

CORIOLIS/CENTRIFUGAL TORQUES MATRIX

cord =(-1.38*c1*s1*cl)+

- 0.744*s, *s,3 + 0.744*c, *ci,) +

- 0.744*s*s,s + D.744*c,*cs;)

car, = 0.5*q~*(0.6*s:, *c,, - 0.744*s *sy, + 0.744*c, *cy3) +

0.5*q,*(1.38*c, + 0.268*s,3 - 0.04716*s2)+

a.5*q,3 *(0.268*sa3 - a.00397'c,,)

curl, = 0.5*L *(0.O*s,3*ci3 + 0.744*cam*c)+
a.s*qj*(0.268*s,3 - 0.00347*ccz)+

0.5*q3*(0.268*s 3 - a.aa794*c,)

cor,I =0.5*4*(-0.6*s~3 *c + 0.744*s1*53;
a.1 c4 *i *c.,

I

cor,. = 0.372*q;*c

corgi, = 0.00199*ql*c, + 0.372*q *c., +

0.5*q; *(0.744*cj + 0.02 2*s;)

cord = 0.5*c1*(-0.o*s,3 *c,3 + 0.744*s1*s2, -0.744*c,*c.3) +

0.00199*q3*c,,

core, = 0.372*q3 *c3

cor33 = 0.00199*ql*c~3 + 0.372*q~*c3 +
0.5*q3*(0.744*c3 + 0.022*s3)

All other coriolis matrix elements are zero

GRAVITY MATRIX

g1=0, g6=0

g2 =-37.196*c2 -8.445 *s23 +1.023 *s2

g3 =-8.445 *j23 ±1.023 *coS23+0.248*cos23 *COS45+C0s5*sin23

g4=0.028*sm23 *sm4*sin5

g5=-0.028 * (cos23 * sin 5 + sin23* cos4* Coss)

All these information and derivation of these equations for PUMA560 given in [3]

2.4 ACTUATOR FOR THE ROBOT

This section describes the method that is used to build the actuator model in a single

joint of a robot arm, assuming that the robot is electrically actuated. An analytical

description of a DC actuator has been well established in the literature [4].

The torque produced by a DC motor is proportional to the armature current when
the motor is operated in its linear range

Zmi kmitai 	 ...2.2

Where kmj is known as the motor-torque proportional constant in N-m/A.

0

When the motor is rotating it acts like a generator and a voltage develops across

the armature. This voltage is called back electromotive force (emf), which is

proportional to a, given armature, angular velocity as:

ebi - kbi emi 	 ... 2.3

ebi = kbiemizmi = kmiiai 	 ...2.4

Where kb; is proportionality constant in V- S/rad.

For puma robot km; = kbi

An armature-control led DC motor circuit can be described by a first-order
differential equation given by

di.
vai = eb, + iaiRai + La,

dt
...2.5

By solving we will get

1`
tai = L J / (vai — ebi — ial Rai)dt .2.6

SPECIFICATION FOR THE ACTUATOR

Rai =2.1 Ohm
Rai = 2.1 Ohm
Rat = 2.1 Ohm
Rat = 6.7 Ohm
Rai = 6.7 Ohm
Rai = 6.7 Ohm

kml = 0.189 N-m/A
k,.2 =0.219 N-m/A

= 0.202 N-m/A
km4 = 0.075 N-m/A
kms = 0.066 N-m/A
km6 = 0.066 N-m/A

Armature inductance for the PUMA 560 robot is very low

L for all joints is approximately equals to 1 mH

Maximum and minimum torque that should given to the robot is

10

-97.6N—m <z, <_97.6N—m
—186.4N—m<-r2 <186.4N—m
—89.4N—m <z3 <_ 89.4N—m
--24.2N — m < z4 <_ 24.2N — m
—20.1N—m < z5 <_ 20.1N—m
—21.3N—m <_zd 521.3N—m

Maximum and minimum controlled voltage that should be given to the actuator is
For all actuators

vv = 40volts
v = —40volts

Details are given in [3, 4, and 5]

11

0

3. CONVENTIONAL CONTROLLERS

3.1 INTRODUCTION

There are many control strategies that can be applied for control of robot arm. These
strategies are conventional, adaptive and intelligent control strategies. The general structure

of a robot manipulator with controller is shown in figure 3.1 below. The trajectory
generator provides the controller with information about the desired position, velocity and

acceleration (Od ,ed,Bd) for each joint and keeps updating this information at the path

update rate. The controller takes this information and compares it with the present (actual)

position and velocity (sometimes acceleration also) of joints (0, 0, 8), which are provided

as feedback through the sensors.

Trajectory
Generator

8,9,9
Controller

T

Robot
Manipulator

ni

Fig .3.1 General structure of robot control system

Based upon the error between the desired and actual values, the controller calculates a

vector of torques (r), which should be applied at respective joints by the actuators to

minimize these errors. The torques is calculated using control law. The goal of the

12

controller is thus, minimization of error, e and its first derivative e The dynamic model of
Robotic manipulator can be described in the form of equation as below

v(t)=M (B)B+C(B,e)a+G(B) 	 ...3.1

Where, M (e) is the inertia matrix, c (0,0) is the centripetal-coriolis matrix, and G(o) is the

Gravity vector, 0 is Joint angles, v is the joint actuator torque. The use of linear control

techniques for any system is valid only when the system to be controlled can be modeled

by linear differential equations. Thus the linear control of robot manipulators is essentially
an approximation, as the manipulator dynamics is described by highly non-linear equations.

The linear control strategies for robots give excellent performance for manipulators having

highly geared joints. This is the case with most of the industrial robots in. 'use today. .

3.2 PID Control
One common linear control strategy is PID (proportional-derivative and integral) control.
The control law used for this strategy is given by

rPID = K D e+K Pe+K, fedt 	 ...3.2

KD, KI and Kp are the controller, gain matrices. -rr,D is the vector of joint torques. It is

possible to get the desired performance from the system by choosing the appropriate values

of parameters of PID controller. Hand tuning method is used for selection of PID control
gains. A robotic control system cannot be allowed to have an oscillatory response for

obvious reasons. For instance, in a pick n-place operation, an oscillating end-effecter may

strike against the object before picking it to manipulate. Hence, highest possible speed of

response and yet non-oscillatory response, dictates that the controller design parameters

shell be chosen to have the damping ratio equal to unity or least close to it but less than
unity.

3.3 Feed Forward inverse dynamics control

Feed forward inverse dynamics control is a model based non-linear technique. Scheme for.

.feed forward inverse dynamics control is shown below Fig 3.2. This scheme uses the
inverse dynamics equations of robot manipulator in feed forward mode. As can be seen

13

from this figure, the sum of the outputs of the inverse model and feedback controller (i.e.

PID Controller) will be the actual input torque to robot.

Tffid
Inverse
Model

V]
Trajectory 	 PID 	 Robot
Generator 	 Controller 	 Manipulator

TPID

Fig.3.2 Feed forward inverse dynamics controller

In this strategy the torque is calculated as

r fd = M(0)0+C(0,0*)B+G(0) 	 ...3.3

2PID = K D e+ K Pe+ K f f edt 	 ...3.4

Total control torque ist = rPID + t fd . The"feedback controller plays a role in making

the whole system stable.

3.4 Computed Torque Control

The most common non-linear control technique for manipulator control is the Computed

torque control. Scheme is similar to feed forward inverse dynamic control. Here the
computed torque is given by

T =r pD +M(0) B+KD e+Kpe +C 8,6 O+G(0) 	...3.5

If the manipulator model is known exactly then this scheme results in asymptotically stable
and provides asymptotically exact tracking

14

3.5 Critically damped inverse dynamics control

This control strategy is almost same as inverse dynamics except that the feed forward

torque is calculated using reference velocity and reference acceleration instead of the

desired values. These reference values are defined as

OR =Bd+Kp (Od —49)

OR =Od±KD red -0
	 ... 3.6

In this strategy the torque is calculated as

r =rrID +M(BR)BR+C OR ,OR BR+G(9R) 	 ... 3.7

15

4. FUZZY CONTROL

4.1 INTRODUCTION
Due to continuously developing automation systems and more demanding Control
performance requirements, conventional control methods are not always adequate. On the

other hand, practical control problems are usually imprecise. The input output relations of
the system may be uncertain and they can be changed by unknown external disturbances.
New schemes are needed to solve such problems. One such an approach is to utilize

fuzzy control.
Fuzzy control is based on fuzzy logic, which provides an efficient method to handle in

exact information as basis reasoning. With fuzzy logic it is possible to convert

knowledge, which is expressed in an uncertain form, to an exact algorithm. In fuzzy

control, the controller can be represented with linguistic if-then rules. The interpretation
of the controller is the fuzzy but controller is processing exact input-data and is producing

exact output-data in a deterministic way.

4.2 HISTORICAL BACKGROUND
Since the introduction of the theory of fuzzy sets by L. A. Zadeh in 1965, and the

industrial application of the first fuzzy controller by E.H. Mamadani in 1974, fuzzy
systems have obtained a major role in engineering systems and consumer's products in

1980s and 1990s. New applications are presented continuously.

A reason for this significant role is that fuzzy computing provides a flexible and powerful

alternative to contract controllers, supervisory blocks, computing units and compensation

systems in different application areas. With fuzzy sets very nonlinear control actions can

be formed easily. The transparency of fuzzy rules and the locality of parameters are

helpful in the design and maintenances of the systems. Therefore, preliminary results can

be obtained within a short development period.

However, fuzzy control does have some weaknesses. One is that fuzzy control is still

lacking generally accepted theoretical design tools. Although preliminary results are

easily, further improvements need a lot of especially when the number of inputs

increases, the maintenances of the multi-dimensional rule base is time consuming

16

4.3 STRUCTURE OF A FUZZY CONTROLLER
Fuzzy control is a control method based on fuzzy logic. Just as fuzzy logic can be

described simply as "computing with words rather than numbers "; fuzzy control can be
described simply as "control with sentences rather than equations". There are specific

components characteristic of a fuzzy controller to support a design procedure. In the

block diagram in Fig 4.1, the controller is between a preprocessing block and a post-

processing block. The following explains the diagram block by block.

Rule
base

Prepro- 	Fuzzi- 	 pefuzzi- 	Pastpro-
eessing 	fication 	 fication 	cessing

Inference
e

=- 	---

Figure 4.1: Blocks of a fuzzy controller

4.3.1 Preprocessing
The inputs are most often hard or crisp measurements from some measuring equipment,

rather than linguistic. A preprocessor, the first block in Fig 4.1, conditions the

measurements before they enter the controller. Examples of preprocessing are:

Quantization in connection with sampling or rounding to integers; normalization or
scaling onto a particular, standard range; filtering in order to remove noise;

A quantiser is necessary to convert the incoming values in order to find the best level in

a discrete universe. Assume, for instance, that the variable error has the value 4.5, but the

universe is U= (-5, -4, .. 0, ..., 4, 5). The quantiser rounds to 5 to fit it to the nearest

level. Quantization is a means to reduce data, but if the quantization is too coarse the

controller may oscillate around the reference or even become unstable. When the input to

the controller is error, the control strategy is a static mapping between input and control

signal. A dynamic controller would have additional inputs, for example derivatives,

integrals, or previous values of measurements backwards in time. These are created in the

17

preprocessor thus making the controller multi-dimensional, which requires many rules

and makes it more difficult to design. The preprocessor then passes the data on to the

controller.

4.3.2 Fuzzification
The first block inside the controller is fuzzification, which converts each piece of input

data to degrees of membership by a lookup in one or several membership functions. The
fuzzification block thus matches the input data with the conditions of the rules to
determine how well the condition of each rule matches that particular input instance.

There is a degree of membership for each linguistic term that applies to that input

variable

4.3.3 Rule base The rule base is to do with the fuzzy inference rules. The step response

of the system can be roughly divided into four areas AI —A4 and two sets of points: cross-

over {b1, b2} and peak-valley {cl, c2} as shown in Fig.4.2. The system equilibrium point
is the origin of the phase plane

L--1 	 b --- 	 . as
C2

Al 	A3

Time

Fig. 4.2 General step response

a) The sign of rules: The sign of the rule base can be determined by following meta-rules

1) If both e and e are zero, then maintain present control setting.
2) If conditions are such that e will go to zero at a satisfactory rate, then maintain

present control setting.
3) If e is not self-correcting, then the sign of the rule can be determined by five sub-

criterions.

a)_Rules for cross-over {b1, b2} should prevent the overshoot in A2/A4.

b) Rules for peak-valley {cl, C2} should speed up the response.

c) Rules for area A1/A3 should speed up the response when e is large and prevent the

overshoot in A2/A4 when e is close to zero.

d) Rules for area A2 should decrease the overshoot around the peak.

e) Rules for area A4 should decrease the overshoot around the valley.

The above heuristic method can build general rule base

4.3.4 Inference Engine
Figures 4.3 and 4.4 are both a graphical construction of the algorithm in the core of the

controller. In Fig. 4.3, each of the nine rows refers to one rule. For example, the first row

says that if the error is negative (row 1, column 1) and the change in error is negative

(row 1, column 2) then the output should be negative big (row 1, column 3). The picture
corresponds to the rule base in (2). The rules reflect the strategy that the control signal

should be a combination of the reference error and the change in error, a fuzzy

proportional-derivative controller. We shall refer to that figure in the following. The

instances of the error and the change in error are indicated by the vertical lines on the first
and second columns of the chart. For each rule, the inference engine looks up the

membership values in the condition of the rule.
Aggregation: The aggregation operation is used when calculating the degree of

fulfillment or firing strength ak of the condition of a rule k. A rule, say rule 1, will

generate a fuzzy membership value µe1 coming from the error and a membership value

µgel coming from the change in error measurement. The aggregation is their combination,

µe1 and µeel 	 ...4.1

Similarly for the other rules, Aggregation is equivalent to fuzzification, when there is

only one input to the controller. Aggregation is sometimes also called fulfillment of the

rule or firing strength.
Activation: The activation of a rule is the deduction of the conclusion, possibly reduced

by its firing strength. Thickened lines in the third column indicate the firing strength of

each rule. Only the thickened part of the singletons are activated, and min or product (*)
is used as the activation operator. It makes no difference in this case, since the output

membership functions are singletons, but in the general case of s- , H- and z- functions in

the third column, the multiplication scales the membership curves, thus preserving the

19

CHO.

1

2flNJ I
fl .

7

9

•100 1 0 0

change n airor

initial shape, rather than clipping them as the min operation does. Both methods work
well in general, although the multiplication results in a slightly smoother control signal.

In Fig. 4.3, only rules four and five are active.

0 	 - 	 50 . 	 -240 	 240
-64.6

Figure 4.3: Graphical construction of the control signal in a fuzzy PD controller
(generated in the Matlab Fuzzy Logic Toolbox).

A rule k can be weighted a priori by a weighting factor wk € [0, 1], which is its degree of
confidence In that case the firing strength is modified to

a*k= Wk * ak 	 ...4.2
The degree of confidence is determined by the designer or a learning program trying to
adapt the rules to some input-output relationship.
Accumulation: All activated conclusions are accumulated, using the max operation, to
the final graph on the bottom right (Fig. 4.3). Alternatively, sum accumulation counts

20

100 -100

0.5J

100 -100

zero zero
	100 	result

A

1 i I
•t

overlapping areas more than once (Fig. 4.4). Singleton output (Fig. 4.3) and sum
accumulation results in the simple output.

al*sl+a2*S2+...+an*sn 	 ...4.3

ii

0 	100 -100 	0 	100
Error 	 Output

Figure 4.4: One input, one output rule base with non-singleton output sets.

The alphas are the firing strengths from the k rules and sl ... sn are the output singletons.

Since this can be computed as a vector product, this type of inference is relatively fast in

a matrix oriented language. There could actually have been several conclusion sets. An

example of a one-input two- outputs rule is "If ea is a then of is x and 02 is y'. The

inference engine can treat two (or several) columns on the conclusion side in parallel by

applying the firing strength to both conclusion sets. In practice, one would often

implement this. situation as two rules rather than one, that is, "If ea is a then of is x", "If

ea is a then 02 is

21

4.3.5 Defuzzification

The resulting fuzzy set (Fig. 4.3, bottom right; Fig. 4.4, extreme right) must be converted

to a number that can be sent to the process as a control signal. This operation is called

Defuzzification, and in Fig. 4.4 the x-coordinate marked by a white, vertical dividing line

becomes the control signal. The resulting fuzzy set is thus defuzzified into a crisp control
signal. There are several Defuzzification methods.

Centre of gravity (COG): The crisp output value u (white line in Fig. 4.4) is the abscissa
under the centre of gravity of the fuzzy set,

u= --------------- ...4.4

E~ Eaµ (xi)

Here x; is a running point in a discrete universe, and µ(x;), is its membership value in

the membership function. The expression can be interpreted as the weighted average of
the elements in the support set. For the continuous case, replace the summations by

integrals. It is a much used method although its computational complexity is relatively
high. This method is also called centroid of area.

Centre of gravity method for singleton (COGS): If the membership functions of the
conclusions are singletons (Fig.4.3), the output value is

Y1 it (s1) s1

u= --------------- ...4.5

µ (si)

Here s; is the position of singleton i in the universe, and g (s;), is equal to the firing

strength a, of rule i. This method has a relatively good computational complexity, and u is

differentiable with respect to the singletons s;, which is useful in neuro fuzzy systems.

Bisector of area (BOA): This method picks the abscissa of the vertical line that divides
the area under the curve in two equal halves. In the continuous case,

22

x 	 Max

U= {x I f , µ(x) dx = f µ(x) dx) 	 ... 4.6
Min 	 x

Here x is the running point in the universe µ(x), is its membership, Min is the leftmost

value of the universe, and Max is the rightmost value. Its computational complexity is
relatively high, and it can be ambiguous. For example, if the fuzzy set consists of two

singletons any point between the two would divide the area in two halves; consequently it

is safer to say that in the discrete case, BOA is not defined.

Mean of maximum (MOM): An intuitive approach is to choose the point with the

strongest possibility, i.e. maximal membership. It may happen, though, that several such
points exist, and a common practice is to take the mean of maximum (MOM). This

method disregards the shape of the fuzzy set, but the computational complexity is

relatively good.
Left maximum (LM), and Right maximum (RM): Another possibility is to choose the

leftmost maximum (LM), or the rightmost maximum (RM). In the case of a robot, for

instance, it must choose between left and right to avoid an obstacle in front of it. The
defuzzifier must then choose one or the other, not something in between. These methods

are indifferent to the shape of the fuzzy set, but the computational complexity is
relatively small.

4.3.6 Post processing
Output scaling is also relevant. In case the output is defined on a standard universe this

must be scaled to engineering units for instance, volts, meters, or tons per hour. An
example is the scaling from the standard universe [-1, 1] to the physical units [-10, 10]
volts. The post processing block often contains an output gain that can be tuned, and
sometimes also an integrator.

23

5. NEURAL CONTROL

5.1 INTRODUCTION
An Artificial Neural Network (ANN) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain, process information.

The key element of this paradigm is the novel structure of the information processing
system. It is composed of a large number of highly interconnected processing elements

(neurons) working in unison to solve specific problems. ANN's, like people, learn by

example. An ANN is configured for a specific application, such as pattern recognition or
data classification, through a learning process. Learning in biological systems involves

adjustments to the synaptic connections that exist between the neurons. This is true of

ANN's as well. Neural networks, with their remarkable ability to derive meaning from

complicated or imprecise data, can be used to extract patterns and detect trends that are
too complex to be noticed by either humans or other computer techniques. A trained

neural network can be thought of as an "expert" in the category of information it has been

given to analyze.
Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

2. Self-Organization: An ANN can create its own organization or representation of
the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and

special hardware devices are being designed and manufactured which take
advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a

network leads to the corresponding degradation of performance. However, some
network capabilities may be retained even with major network damage.

Neural networks take a different approach to problem solving than that of conventional

computers. Conventional computers use an algorithmic approach i.e. the computer
follows a set of instructions in order to solve a problem. Unless the specific steps that the

computer needs to follow are known the computer cannot solve the problem. That
restricts the problem solving capability of conventional computers to problems that we

already understand and know how to solve. But computers would be so much more

useful if they could do things that we don't exactly know how to do.

Neural networks process information in a similar way the human brain does. The network
is composed of a large number of highly interconnected processing elements (neurons)

working in parallel to solve a specific problem. Neural networks learn by example. They

cannot be programmed to perform a specific task. The examples must be selected

carefully otherwise useful time is wasted or even worse the network might be functioning

incorrectly. The disadvantage is that because the network finds out how to solve the

problem by itself, its operation can be unpredictable. On the other hand, conventional

computers use a cognitive approach to problem solving; the way the problem is to solved

must be known and stated in small unambiguous instructions. These instructions are then
converted to a high level language program and then into machine code that the computer

can understand. These machines are totally predictable; if anything goes wrong is due to

a software or hardware fault. Neural networks and conventional algorithmic computers

are not in competition but complement each other. There are tasks are more suited to an

algorithmic approach like arithmetic operations and tasks that are more suited to neural

networks. Even more, a large number of tasks, require systems that use a combination of

the two approaches (normally a conventional computer is used to supervise the neural

network) in order to perform at maximum efficiency. Neural networks do not perform

miracles. But if used sensibly they can produce some amazing results.

5.2 THE BACK-PROPAGATION ALGORITHM

In order to train a neural network to perform some task, we must adjust the weights of

each unit in such a way that the error between the desired output and the actual output is

reduced. This process requires that the neural network compute the error derivative of the

weights (dW). In other words, it must calculate how the error changes as each weight is

increased or decreased slightly. The back propagation algorithm is the most widely used
method for determining the dW.

25

The back-propagation algorithm is easiest to understand if all the units in the network are

linear. The algorithm computes each dW by first computing the error -derivative (EA),

the rate at which the error changes as the activity level of a unit is changed. For output

units, the EA is simply the difference between the actual and the desired output. To

compute the EA for a hidden unit in the layer just before the output layer, we first

identify all the weights between that hidden unit and the output units to which it is

connected. We then multiply those weights by the EAs of those output units and add the

products. This sum equals the EA for the chosen hidden unit. After calculating all the

EAs in the hidden layer just before the output layer, we can compute in like fashion'the

EAs for other layers, moving from layer to layer in a direction opposite to the way

activities propagate through the network. This is what gives back propagation its name.

Once the EA has been computed for a unit, it is straight forward to compute the dW for

each incoming connection of the unit. The dW is the product of the EA and the activity

through the incoming connection. Note that for non-linear units, the back-propagation

algorithm includes an extra step. Before back-propagating, the EA must be converted into

the El, the rate at which the error changes as the total input received by a unit is changed.

The back-propagation Algorithm - a mathematical approach

Units are connected to one another. Connections correspond to the edges of the

underlying directed graph. There is a real number associated with each connection, which

is called the weight of the connection. We denote by Wlj the weight of the connection

from unit u; to unit u,. It is then convenient to represent the pattern of connectivity in the

network by a weight matrix W whose elements are the weights 	Two types of

connection are usually distinguished: excitatory and inhibitory. A positive weight

represents an excitatory connection whereas a negative weight represents an inhibitory

connection. The pattern of connectivity characterizes the architecture of the network

which is shown in Fig 5.1.

FM

is

L.
Fig 5.1. Neural network architecture

Input to
other neurons

17
x7(t)

Ouliut from

w i

input to
neuron 1

Z (t)

Z5(t)

A unit in the output layer determines its activity by following a two step procedure.

0First, it computes the total weighted input x1, using the formula:

xi = 	 ...5.1

where y; is the activity level of the j th unit in the previous layer and W;j is the weight of

the connection between the ith and the jth unit.

•Next, the unit calculates the activity yj using some function of the total weighted input.

Typically we use the sigmoid function:

1
...5.2

Once the activities of all output units have been determined, the network computes the

error E, which is defined by the expression:

27

...5.3

where yj is the activity level of the jth unit in the top layer and dd is the desired output of

the j th unit.

The back-propagation algorithm consists of four steps:

1. Compute how fast the error changes as the activity of an output unit is changed. This

error derivative (EA) is the difference between the actual and the desired activity.

EAR = - --=y.-d. aE .
Oyj

..5.4

2. Compute how fast the error changes as the total input received by an output unit is

changed. This quantity (EI) is the answer from step 1 multiplied by the rate at which the

output of a unit changes as its total input is changed.

aE aE EIS _ 	- 	x 	=EAR y~(1-y~) 	...5.5
5x1 aye axJ

3. Compute how fast the error changes as a weight on the connection into an output unit

is changed. This quantity (EW) is the answer from _step 2 multiplied by the activity level

of the unit from which the connection emanates.

aE aE ax EW,~'_ = — x_' =EIS y, 	.. .5 .6
aW, ax; 19WU

4. Compute how fast the error changes as the activity of a unit in the previous layer is

changed. This crucial step allows back propagation to be applied to multilayer networks.

When the activity of a unit in the previous layer changes, it affects the activities of all the

output units to which it is connected. So to compute the overall effect on the error, we

add together all these separate effects on output units. But each effect is simple to

28

calculate. It is the answer in step 2 multiplied by the weight on the connection to that

output unit.

_ aE _ aE x ax, _'c EI jW. 	... 5.7
ayi 'j 'ax ay; ,

By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for the
previous layer. This procedure can be repeated to get the EAs for as many previous layers
as desired. Once we know the EA of a unit, we can use steps 2 and 3 to compute the dWs

on its incoming connections.

5.3 NEURAL- NETWORK BASED CONTROL:
The block diagram of the control system is shown in Fig5.2. As can be seen from this

figure, the sum of the outputs of the neural network and feedback controller (i.e. RD
Controller) will be the actual input torque to robot.

Trajectory
Generator

Neural
Network

PID
Controller

Tnn

TPm

Robot
Manipulator

rai

Fig.5.2 Neural controller
This can be expressed as

r —ZPID+TNN

29

where-rpID is the output of feedback PID controller and i is the output of the neural

network The feedback controller plays a role in making the whole system stable. The
neural network has been trained off line to approximate the inverse dynamic model of
the robot manipulator. The learning scheme is shown in Fig.5.3.

Fig.5.3 Scheme for learning dynamic model

The manipulator receives the torque t and outputs the resulting trajectory0. Inverse
dynamic model is set in the opposite input-output direction to that of the manipulator.

That is, it receives the trajectory as an input and produces the torque XNN as its output.

The error signal is the difference between the actual torque and estimated torque. It is

expected that this difference tends to zero as learning proceeds. Once the neural

network finishes learning, it produces an approximate inverse dynamic model.

O

6. NEURO-FUZZY SYSTEMS

6.1 INTRODUCTION

Neuro-fuzzy control is one of the intelligent control methods since knowledge

engineering is used in neuro fuzzy control. Neuro fuzzy control is usually utilised for two

purposes. One is for non-linear applications and the other is for adding human

intelligence to controllers. A linear PID Controller structure is changed by fuzzy logic,

such that the controller makes the system respond quickly if the error is large.

Recently, the combination of neural networks and fuzzy logic has received attention. The

idea is to lose the disadvantages of the two and gain the advantages of both. Neural

networks bring into this union the ability to learn. Fuzzy logic brings into this union a

model of the system based on membership functions and a rule base.

Determining the fuzzy membership functions from sample data using a neural network is

the most obvious method of using the two together. The definition of the membership

function has a huge impact on the system response. Often, the programmer must use trial

and error to find acceptable values. Assuming a certain shape and finding the. beginning

and endpoints for the fuzzy values in a fuzzy set is a neural network optimization

problem. Figure 6. us a diagram of such a system.

Tput 	 Fuzzy Rule Fuzzifier 	 Defuzzifier
Base

Neural Network

Figure.6.1 A fuzzy system whose membership functions are adjusted by a neural

network.

31

Figure6.2 shows a more complex integration, the use of neural networks to determine

both the fuzzy membershipfunctions and the rule base. Scientists have developed a

system that converts input and output data into nonlinear membership functions and a

rule base. The nonlinearity of the membership functions is unique to membership

functions derived by neural networks. They, help minimize the number of rules.

Input J 	 Neural Network
	 Outp

Fuzzifier 	Fuzzy Rule 	Defuzzifier
Base

Fig .6.2 A fuzzy system defined by a neural network.

Another approach is to incorporate fuzzy logic into the neurons of the neural networks.. It

was quickly realized that neurons with output in the range of [0, 1] produced much better

results. The concept of a fuzzy neuron, however, has advanced beyond simply expanding

the range of outputs on a crisp neuron. Some researchers have incorporated membership

functions and rule bases into the individual neurons, as shown in figure 6.3.

f(1

and..............

Fuzzy W Fuzzy
Inputs 	 , To Next Lay Neurons:

or

f(n)

Figure .6.3. A neural network of fuzzy neurons.

Finally, the idea of fuzzification of control variables into degrees of membership in fuzzy

sets has been integrated into neural networks. See figure6.4. If the inputs and outputs of a

32

neural network are fuzzified and defuzzified, significant improvements in the training

time, in the ability to generalize, and in the ability to find minimizing weights can be

realized. Also, the membership function definition gives the designer more control over

the neural network inputs and outputs. It is this technique that is implemented in this

thesis for the control of a robotic arm

Crisp 	 ' 	Jsp
Inputs Fuzzifier 	 Neural 	 puts

membership 	 membership Network
values 	 values

Rule Base

Fig.6.4 A fuzzy system with neural network rule base

6.2 ADAPTIVE NETWORKS: ARCHITECTURES AND LEARNING

ALGORITHMS

This section introduces the architecture and learning procedure of the adaptive network

which is in fact a superset of all kinds of feedforward neural networks with supervised

learning capability. An adaptive network, as its name implies, is a network structure

consisting of nodes and directional links through which the nodes are connected.

Moreover, part or all of the nodes are adaptive, which means each output of these nodes

depends on the parameter(s) pertaining to this node, and the learning rule specifies how

these parameters should be changed to minimize a prescribed error measure.

The basic learning rule of adaptive networks is based on the gradient descent and the

chain rule, which was proposed by by Werbos in the 1970's. However, due to the state of

artificial neural network research at that time, Werbos' early work failed to receive the

attention it deserved.

Since the basic learning rule is based the gradient method which is notorious for its

slowness and tendency to become trapped in local minima, here we propose a hybrid

33

learning rule which can speed up the learning process substantially Both the batch

learning and the pattern learning of the proposed hybrid learning rule is discussed below,

though our simulations are mostly based on the batch learning.

6.3 ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM

In this section, we propose a class of adaptive networks which are functionally equivalent

to fuzzy inference systems. The proposed architecture is referred to as ANFIS, standing

for Adaptive-Network-based Fuzzy Inference System. We describe how to decompose

the parameter set in order to apply the hybrid learning rule. Besides, we demonstrate how

to apply the Stone-Weierstrass theorem to ANFIS with simplified fuzzy if-then rules and

how the radial basis function network relate to this kind of simplified ANFIS.

L2ti wi

w2

x 	y
(a)

f1 =p1x+gly+r1

w1 f l + w2 f2

v f WI W2

f 2 =p2X+q2y +r2 	= 	ft } FV2 f2

layer I 	 layer 4
layer 2 	layer 3 	1

A, 	 x y 	layer 5

w1 	w 	W f

f
12 f?

B2 	 xy
(b)

Fig 6.5 (a) fuzzy reasoning (b) equivalent ANFIS.

34

A. ANFIS architecture

For simplicity, we assume the fuzzy inference system under consideration has two inputs

x and y and one output z. suppose that the rule base contains two fuzzy if-then rules of

Takagi and Sugeno's type

Rule 1: If x is A, and y is B1, then f, = pi x + ql y + r1 , Rule

2: If a; is A2 and y is B2 , then j2 = p2x + q2y + r2

Then the fuzzy reasoning is illustrated in Figure 6.5(a), and the corresponding
equivalent ANFIS architecture is shown in Figure 6.5(b). The node functions in the
same layer are of the same function family as described below:

Layer 1: Every node i in this layer is a square node with a node function

...6.1

Where x is the input to node i, and A, is the linguistic label (small, large, etc.)
associated with this node function. In other words, 0,I is the membership function of

4 and it specifies the degree to which the given x satisfies the quantifier A,. Usually we
choose ,u,. (x) t° be bell-shaped with maximum equal to 1 and minimum equal to 0, such
as

1

1+ x—c, b`
a,.

Or

2 6;

,4.(x)=exp — x_c̀ 	, 	...6.3
al

Where {a,, b,, c, } is the parameter set? As the values of these parameters change, the bell-

shaped functions vary accordingly, thus exhibiting various forms of membership

35

functions on linguistic label Al. In fact, any continuous and piecewise differentiable

functions, such as commonly used trapezoidal or triangular-shaped membership

functions, are also qualified candidates for node functions in this layer. Parameters in this

layer are referred to as premise parameters..

Layer 2 : Every node in this layer is a circle node labeled II which multiplies the

incoming signals and sends the product out. For instance

w, = p (x) x p&, (y), i=1,2 	 ...6.4

Each node output represents the firing strength of a rule. (In fact, other T-norm operators

those perform generalized AND can be used as the node function in this layer.)

Layer 3: Every node in this layer is a circle node labeled N. The i-th node calculates the

ratio of the i-th rule's firing strength to the sum of all rules' firing strengths

w w;
l = 	,

w, + w2

For convenience, outputs of this layer will be called called normalized firing strengths.

Layer 4: Every node i in this layer is a square node with a node function

0,4 = w1f = TY, (Ax + qiy + r,), 	 ...6.6

where w; is the output of layer 3, and {p1 , q,, n } is the parameter set. Parameters in this

layer will be referred to as consequent parameters.

Layer 5: The single node in this layer is a circle node labeled 	that computes the

overall output as the summation of all incoming signals, i.e.,

Ol =overall output= w; f = ' 	 ...6.7

Thus we have constructed an adaptive network which is functionally equivalent to a

fuzzy inference system shown in fig.6.7. For fuzzy inference systems shown in

fig6.6, the extension is quite straightforward and the ANFIS is shown in Figure 6.7

where the output of each rule is induced jointly by the output membership

function and the firing strength.

36

Y

C7

- C2 	 w w f 	z
w2 	 = W f, + w2 f 2

s

(a)

x

Y

f

(b)

Figure6.6: (a) fuzzy reasoning;

(b) Equivalent ANFIS.

For fuzzy inference systems shown in fig.6.6, if we replace the centroid

❑ efuzzification operator with a discrete version which calculates the approximate

centroid of area, then ANFIS can still be constructed accordingly. However, it will

be more complicated than its versions and thus not worth the efforts to do so.

Figure 6.7 shows a 2-input, ANFIS with 9 rules. Three membership functions are asso-
ciated with each input, so the input space is partitioned into 9 fuzzy subspaces, each of

which is governed by a fuzzy if-then rule. The premise part of a rule delineates a fuzzy

subspace, while the consequent part specifies the output within this fuzzy subspace.

B. Hybrid Learning Algorithm

From the proposed ANFIS architecture (Figure6.7), it is observed that given the
values of premise parameters, the overall output can be expressed as linear

combinations of the consequent parameters. More precisely, the output f in

Figure6.7 can be rewritten as

37

f

(a)

u

X
A A A J

X
(b)

premise parameters 	
consoquen i parameters

X

Y

Figure 6.7: (a) 2-input ANFIS with 9 rules; (b) corresponding fuzzy subspaces

f w1+w2 f w1+w2 f2

= wl f +W2f2 	 ...6.8
=(1x)p1 +(1y)q1 + lwl!ri +(w2x)p2 +(w2Y)g2 + (W2)r2,

Which is linear in the consequent parameters (p1 . q1 , ri , p2 , q2 and r2) As a result, we have

S = set of total parameters,

S, = set of premise parameters,

S2 = set of consequent parameters

The hybrid learning algorithm can be applied directly. More specifically, in the
forward pass of the hybrid learning algorithm, functional signals go forward till layer
4 and the consequent parameters are identified by the least squares estimate. In the

backward pass, the error rates propagate backward and the premise parameters are
updated by the gradient descent. More details are in [18]

7. DESIGN AND SIMULATION IN SIMULINK/MATLAB7.01

7.1 INTRODUCTION

The aim of simulation is to develop complete model of the physical system and to

analyze the system in different ways before going to implement it practically. In my

dissertation control of puma 560 robot is analyzed with different controllers such as

Conventional and Intelligent controllers. In this chapter design and development of

simulink model for robot manipulator, Actuator, Conventional controllers and intelligent

controllers are explained.

7.2 PUMA560 ROBOT MODEL

M(q)q + C(q, 4)q + g(4) =r

q = M(q)-' [z — C(q, q)q — g(q)]
	 ..7.1

By equation 7.1, we can develop the simulink model

Fig .7.1 PUMA560 simulink model

W

Fig7.1 shows the simulink model of the PUMA 560 robot it contains the following blocks

1. dynamics matrices

2. gravity term

3. matrix multiplication

1. DYNAMICS MATRICES

U(E) 	 cD
Mass Inverse Matrix

:clay
q

dynamicfunc

U(E)
	 cD

Corioffs/Centrifugal Matrix
q

Fig7.2 dynamics matrices

This block have the two input matrices angles at respective joints and derivatives of the

angles of the order 6 byl and the two out puts mass inverse matrix and

coriolis/centrifugal matrix of the order 36 byl (actually these matrices are the order of 6
by 6 but they are arranged column wise for the simplicity)

For this particular block a S-Function is written in C-Language which have two inputs of

the order 6 by 1 and one out put of the order 72 by 1. S-Function is used because design

of two in puts of the order 6 by 1 two out puts of the order 6 by 6 is extremely difficult in

simulink for this purpose S-Function is used. After written the code in C we have to

compile the Dot C file by the command `MEX' then `.mdl' file will be created in the

current directory, this `.mdl' file will be useful for the simulink to run the simulation

2 GRAVITY TERM

Figure 7.3 shows the gravity load for the manipulator. Expressions for the gravity load

are explained and given in chapter 2 in this block functional blocks are used we can

write function in that block since gravity load is function of the angles so we can write
any function in the functional block

for gload 0

OAD

Fig 7.3 gravity load

MATRIX MULTIPLICATION

This matrix multiplication block shown in fig 7.4 is having two inputs of the order 36 by
1 and 6 by 1 one output of the order 6 by 1 since one input of the order 36 by 1 six
selectors selects 6 elements column wise one after other and these are concatenated

horizontally by matrix concatenation block after this process elements become matrix of
the order 6 by 6 then product block is used to multiply this matrix with second input 2

ru

6x1

U U(E)

Selectorl

U U(E)
Honz Cat

Selector2

U U(E)

Selector3

U U(E)

Selector4

U U(E)

Selectors 	 Matrix

U U(E) 	 Concatenation

Selector6

Matrix
Multiply

 6x1 product

Fig 7.4 Matrix multiplications

By this discussion on design of PUMA560 model is complete

7.3 ACTUATOR MODEL
' Fig 7.5 shows the simulink model for the actuator. It is designed as per the equations and
specifications given in the chapter 2

Va voltage
9 +

Va _ 	 x 	r la

sJ
summer 	Produ-e 	Integrator

itapd] Aatuatar canstantsl

From [invLa]

From4 ear
[Kb] x Eh

aratio

Froml Produat2
X 	K 	 1

T
+ Saturation

[pa] X 	 + Produet4

FromF lava Product9 	summer

[Kt]
1
From3

Fig.7.5 Actuator simulink model

42

7.4DESIGN OF PID CONTROLLER
Equation for the PID controller is

U, =P,.e+D; de +I, $e 	(i=1, 2...6) 	 ...7.2

Where e is the error

P is the proportional gain

D; is the differential gain

II is the integral gain

U; is the controller output

The objective of designing PID controller is to find the P , D1 , Ii for the optimum

response of the system
Hand tuning procedure for the tuning of the PID controller

a) remove all integral and differential action

b) tune the proportional gain or increase the proportional P to give the

desired response ignoring any offset or peak over shoots

c) then tune the differential gain D. (increase) until the oscillations are under

the allowable range

d) tune the integral gain I, (increase) until the until offset is in the

allowable range

e) repeat this until 1 as large as possible

In designing considered that controller output should not more than 40 volts

Total system with PID controller is shown in Fig 7.6 and Response of system is shown in
Fig 7.8.

43

Sine Wave 	Matrix scope

pid controller ac a tor(Mmator) 5ubsy~tem

Fig 7.6.Total system with PD controller

7.5 DESIGN OF FEED FORWARD INVERSE DYNAMICS CONTROLLER

Total system with FFID controller is shown in Fig 7.7 and Response of system is shown

in Fig 7.8. Designing the Feed forward inverse dynamics controller in simulink consists

of three steps

1. Feed forward inverse model

2. Feed back controller

3. Robot manipulator

Fig 7.7 Total system with FFID controller

Feed forward inverse model consists of two blocks those are input block and S-function

block. In Feed forward inverse model block, we have to calculate the torques required for

each link for given position, velocity and acceleration. 6 degree of freedom robot

manipulator model equations (given in chapter 2) are used to calculate torques required
for each link for given position, velocity and acceleration. In the input block,

Figure 7.8 Robot Response with PID control and FFID control

inputs are provided in order to S-function block. M-file is used to calculate torques. Feed
back controller is simply PID controller.

7.6 DESIGN OF COMPUTED TORQUE CONTROLLER
Designing of Computed torque control is similar to the Feed forward inverse dynamics
controller. The only difference is in input block i.e. how the inputs are provided. Input
block of CTC controller is shown in Fig 7.9 and response of system is shown in Fig 7.11

Froml

Fig 7.9 Input block for CTC method

45

7.7DESIGN OF CRITICALLY DAMPED INVERSE DYNAMICS CONTROLLER

Designing of Critically damped inverse dynamic control is also similar to the Feed

forward inverse dynamics controller. The only difference is in input block i.e. how the

inputs are provided. Input block of CDID controller is shown in Fig 7.10 and response of

system is shown in Fig 7.11

From

Fig 7.10 Input block for CDID method

Figure 7.11 Robot Response with CTC control and CDID control

.n

7.8 DESIGN OF FUZZYPD+I CONTROL
Total system with Fuzzy controller is shown in Fig 7.13 and Response of system is
shown in Fig 7.17.Designing the Fuzzy controller in simulink consists of two steps

1. Designing the rule base
2. gain scheduling

TABLE 1 Fuzzy rules

Design of rule base

Table 1 shows the rule base for the Fuzzy PD controller the rule base is to design as

explained in the second chapter, but complex systems such as robot understanding the
system behavior is very difficult so set of PD rules were proposed [10]. These rules
generally used for the Fuzzy PD controller

Gain scheduling

e
°0

d 	Fuzzy controller

Fig7.12 Fuzzy control with gains

Gain scheduling means designing of go , g, and hfor the optimum response of the system

47

Gain scheduling procedure for the Fuzzy controller

1. Initially put go =0 and increase gl until the controller gives the output

normally, when the signal after the gain g1 crosses the universe of discourse

the there will not be any rule to processes then controller then the output will

be zero before this happens previously designed gain will be the optimum gain

for the g,

2. increase h until the controller will gives the maximum output that will be the

maximum controller output

3. then increase go until overshoots under the allowable range

P1 u 	+_ Eta 	CttTAt3E Va T torque

Sine Wave 	Matrix
Gain

fuzzy continuer Gctuator(DCmotor) 	Subsystem

Fig7.13 System with fuzzy controller

Tsa 	 Fuzzy Login
a 	Gain4 	

~ K

to Derivative Gain1
	 Cantrolle 	A 	

Integrator Gain2

' 'Gains
Fuzzy Logic
-Contrcllerl

ER

VOLTAGE
S atu rati o n

~,ain3

ML-4
 ' ' GainB

Fuzzy Logic
Controllei2

 I Gain7
Fuzzy Logic

C ontro I I e t3

GainO
Fuzzy Logic
ContraileA

G iain8
Fuzzy Logic
C o ntra l l e,

Fig7.14 Fuzzy controller

P
5cnpe

7.9 DESIGN OF NEURAL NETWORK BASED CONTROL

Total system with Neural based controller is shown in Fig 7.15 and Response of system is
shown in Fig 7.17. Designing the Neural controller in simulink consists of three steps

1. Feed forward controller

2. Feed back controller
3. Robot manipulator

This Neural controller can be designed in simulink using the neural network toolbox and

simulink.

Fig.7.15 Total robot system with neural controller

Feed back controller and Robot manipulator blocks are same as in Feed forward inverse

dynamics controller. Feed forward controller contains two blocks, which are Input block

and Neural Networkl block. Input block provides inputs to Neural Networkl block in
which order Neural network requires inputs.

Neural Networkl block is shown in Fig 7.16. It consists of three blocks, which are

1. Pre processing block

2. Neural network

3. Post processing block

preprocess_BDOF 1—*.-1p{1} 	y{1}1--- 	postprocem_9DOF

Input
	

Output
S-Functionl 	Neural Network 	S-Function

Fig 7.16 Neural NetworkI block

Pre processing and Post processing blocks normalizes the inputs and outputs respectively.

M-file programs have written for Pre processing and Post processing blocks. Neural

network toolbox and gensim command is used to create neural network block. M-file

program is written for this purpose.

8

d4

al

3 	0 5 	1 	1 5 	2 	2,5 	3 	3.5
TIME in see

2

a- -2

-4

Fig7.17 Robot response with Fuzzy control and Neural control

Algorithm for creation of neural network block

1. Generate inputs and targets for a given trajectory by using dynamic model

equations of two-link robot manipulator.

2. Create the network with required structure by using newff command.
3. Train the Neural network by train command with specifications.
4. Use gensim command to generate simulink block of trained network.

The numbers of input and output nodes of a neural network are determined from the

problem at hand whereas the numbers of nodes in hidden layers are flexible. The neural

network employed in simulation consists of an input layer with 18 nodes. The first hidden

layer with 60 nodes, the second hidden layer with 30 nodes and an output layer with six

nodes. Using an optimization approach an alternative and more effective learning

algorithm, Scaled Conjugate Gradient (SCG) than the standard back propagation (BP) has

50 	 \•ZVI4

been used. SCG belongs to the class of Conjugate Gradient Methods, which shows super
linear convergence on most problems.

7.10 DESIGN OF NEURO-FUZZY CONTROL

This Neuro-Fuzzy controller can be designed in simulink using the fuzzy logic toolbox.
About ANFIS already explained in chapter 6 .In matlab design of ANFIS consists of

Training
Model Learning and Inference through ANFIS
Total system with ANFIS controller is shown in Fig 7.18. The basic idea behind these
neuro-adaptive learning techniques is very simple. These techniques provide a method for
the fuzzy modeling procedure to learn information about a data set, in order to compute
the membership function parameters that best allow the associated fuzzy inference
system to track the given input/output data. This learning method works similarly to that

of neural networks.

Si

Fig.7.18 Total robot system with ANFIS controller

The Fuzzy Logic Toolbox function that accomplishes this membership function
parameter adjustment is called ANFIS. ANFIS can be accessed either from the command
line, or through the ANFIS Editor GUI. After training parameters of member function are
set such that that will perform best. Response of system and membership functions after
training shown in Fig 7.20

51

ER

K(z1)
Ts z

Discrete Derivative

Fuzzy Logic
Controller

Fuzzy Logic

EJ- b0hIe

Fuzzy Logic
Controlle2 I AAA

Integrator Gain2

VOLTAGE
Saturation

Fuzzy Logic
Contrcller3

Fuzzy Logic

Fuzzy Logic
ControIIer5

Fig.7.19 ANFIS controller

Fig.7.20 Robot Response with Neuro-Fuzzy control and membership functions after

training

52

Fig.8.1 Error profiles atjointl

Fig.8.3 Error profiles at joint3

Fig.8.2 Error profiles at joint2

Fig.8.4 Error profiles at joint4

8. RESULTS

8.1 ERROR PROFILES OF THE ROBOT FOR TRAJECTORY CONTROL

There are six joints to be controlled in the ROBOT. Sine waves are chosen as desired

trajectories with frequency of 2 rad/sec, maximum values of the desired trajectories are

1, 2, 3, 4, 5, 6 radians respectively, the error profiles of conventional control strategies

without unmodeled term at each joint are shown in the figures from 8.1-8.6. Values of

Integral absolute errors of conventional control strategies without unmodeled term are

tabulated in Table I. From the Table I, we can clearly see that critically damped inverse

dynamic (CDID) control performs well.

53

Fig. 8.5 Error profiles at j oint5 Fig.8.6 Error profiles at joint6

TABLE I
ERRORS (IN RAD) OF, CONVENTIONAL CONTROLLERS WITHOUT

UNMODELED TERM

PD 0.3565 1.0036 1.2932 1.4766 2.3330 3.1726

FFID 0.2087 0.6685 0.5529 1.0039 1.5588 2.1114

CTC 0.1310 0.3754 0.4254 0.8107 1.2427 1.6909

CDID 0.1201 0.2474 0.2805 0.6458 1.0014 1.3978

The error profiles of intelligent control strategies without unmodeled term at each joint

are shown in the figures from 8.7-8.12_ Values of Integral absolute errors of intelligent

control strategies without unmodeled term are tabulated in Table II. From the Table II,

we can clearly see that Neuro-Fuzzy control performs well. Integral absolute error of

Feed forward inverse dynamic control and neural network based control are same

because inverse model in FFID control strategy is replaced by neural network which

has been trained off line to approximate the inverse dynamic model of the robot

manipulator.

54

Fig.8.7 Error Profiles at jointl

Fig.8.9 Error Profiles at joint3

Fig. 8.8 Error Profiles at j oint2

Fig.8.10 Error Profiles at joint4

Fig.8.11 Error Profiles at joints
	

Fig.8.12 Error Profiles at joint6

55

TABLE II
ERRORS (IN RAD) OF INTELLIGENT CONTROLLERS WITHOUT

UNMODELED TERM

FUZZY 0.1656 0.6212 0.7340 0.5934 1.1481 1.4705

NEIL 0.2087 0.6685 0.5529 1.0039 1.5588 2,.1114

NEURO-FUZZY 0.1165 0.4516 0.5123 0.167 8 0.3303 0.4525

8.2. EFFECT OF UNMODELED TERM ON PERFORMANCE

Both conventional and intelligent controllers were tested for model with unmodeled term,

i.e.. A constant term is added to torque equation. Integral absolute error for conventional

controllers with unmodeled term is tabulated in Table III. From Table we can clearly see

that performances of conventional controllers are affected by unmodeled term is
significant. Integral absolute error for intelligent controllers with unmodeled term is

tabulated in Table IV. From Table we can clearly see that effect of unmodeled term is

very less i.e. performance of intelligent controllers are remain same in both cases.

TABLE III
ERRORS (IN RAD) OF CONVENTIONAL CONTROLLERS WITH

UNMODELED TERM

PID 0.2697 0.9664 1.2589 4.5100 6.4990 	. 2.8316

FFID 0.1617 0.6479 0.5417 4.7064 6.7899 1.8673

CTC 0.0953 0.3497 0.4470 3.8280 5.4486 -1.4960

CDID 0.06-62 0.1963 0.3327 3.7081 5.2799 1.1308

56

TABLE IV
ERRORS (IN RAD) OF INTELLIGENT CONTROLLERS WITH

UNMODELED TERM

FUZZY 0.1618 0.6496 0.7440 1.7906 1.5937 1.3272

NEURAL 0.1617 0.6479 0.5417 4.7064 6.7899 1.8673

NEURO-FUZZY 0.1078 0.4748 0.5284 0.1647 0.2820 0.4414

But the performance of neural network based controller is affected by unmodeled term

because neural network has been trained off line to approximate the inverse dynamic

model of the robot manipulator without unmodeled term. Integral absolute error of PID,

FFID and Neural control before neural network trained to approximate inverse dynamics

of robot with unmodeled term are shown in Table V.

TABLE V
ERRORS (IN RADIANS) OF PID, FFID, AND NEURAL CONTROL BEFORE

NETWORK TRAINED TO SYSTEM WITH UNMODELED TERM

PID 	0.2507 	0.8220 	1.4141 	4.2827 	6.1804 	6.618,7

FFID 	0.1502 	0.5695 	1.4959 	4.5077 	6.5122 	6.9878

NEURAL 0.1502 0.5695 1.4959 4.5077 6.5122 6.9878

In order, to improve performance of neural network based controller, neural network has

been trained offline to approximate inverse dynamics of robot with unmodeled term. IAE

and error profiles of PID, FFID and Neural control after neural network trained to

approximate inverse dynamics of robot with unmodeled term are shown in Table VI and
Fig.8.13-8.18.

57

Fig.8.13 Error Profiles at jointl Fig. 8.14 Error Profiles at joint 2

Fig. 8.15 Error Profiles at j oint3

Fig.8.16 Error Profiles at joint 4

Fig.8.17 Error Profiles at joints Fig.8.18 Error Profiles at joint 6

TABLE VI
ERRORS (]N RADIANS) OF PID, FFID, AND NEURAL CONTROL AFTER

NETWORK TRAINED TO SYSTEM WITH UNMODELED TERM

	

PD 	0.2507 0.8220 1.4141 4.2827 6.1804 6.6187

	

FFID 	0.1502 	0.5695 	1.4959 	4.5077 	6.5122 	6.9878

NEIL 	0.1274 	0.6187 	1.2272 	1.0979 	1.5124 	1.7479 I

59

CONCLUSIONS

From the simulated results, we conclude the following things.

1. Neruo-Fuzzy controller performs best in all conditions. This new method for
control combines the advantage of neural networks (learning adaptability) with the

advantage of fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive
control of robot dynamics.

2. The CDID controller is the best performer in the category of conventional

controllers. It is observed that the JAB for all links are considerably reduced in magnitude
and also observed that when the unmodeled term is added to the model, PD and FFID

perform badly. CTC and CDID performance also effected but they do well. It is conclude

that CDID perform well in all conditions

3. Neuro-Fuzzy controller is the best performer in the category of intelligent

controllers. It is observed that the IAE for all links are considerably reduced in magnitude
and also observed that when the unmodeled term is added to the model, performance of

intelligent controllers remains same except neural control.

4. Actually Neural control is similar to FFID and performances of both are almost
similar in our simulation results. Performance of both controllers is still similar even

when the unmodeled term is added to the model. Performance of Neural control is

improved by training; training data is collected from model with the unmodeled term.

FUTURE SCOPE OF WORK

Main drawback of hand tuning of PID controller may not give good response. Genetic

algorithm [9] can be used to get gains of PID which gives optimal performance.

The quality of a fuzzy logic controller can be drastically affected by the choice of
membership functions and gains. Thus, methods for tuning fuzzy logic controllers are

necessary. Here we have used hand tanning to select gains and general triangle
membership are used which may not yield good performance. By using Genetic

algorithm [13], we can tune both gains and parameters of membership functions in order

to give optimal performance.

The Proposed ANFIS structure uses Temporal back propagation hybrid algorithm for the

Learning of the ANFIS controller.The convergence time depends on the no of input

membership functions, if the no of input membership functions increases then the

learning process becomes slow and if the no of membership functions decreases then the

Performance of the ANFIS controller will become poorer. There is a contradiction

between convergence time and the performance. This is the main disadvantage of the

Temporal back propagation hybrid algorithm which used for ANFIS. The convergence

time can be improved by the Genetic based Neuro-Fuzzy approach All the parameters of

the neuro fuzzy structure can be tuned simultaneously using Genetic Algorithm [21]

61

REFERENCES

1. R.K.Mittel, I.J.Nagrath, "Robotics and Control", Tata McGraw Hill publishing

Company Limited, NEW DELHI.

2. John J.Craig, "Introduction to Robotics Mechanics and Control", Addison

Wesley publications, second edition.

3. Brian Armstrong, Oussama Khatib, Joel Burdick, "The Explicit Dynamic Model

and Inertial Parameters of the PUMA 560 Arm", Stanford Artificial

Intelligence Laboratory Stanford University, IEEE Transactions and Systems

1986.

4. Peter I.corke, "The Unimation Puma Servo System", CSIRO Division of

Manufacturing Technology, AUSTRALIA July 1994.

5. Peter I. Corke, "A Search for Consensus among Model Parameters Reported

for the PUMA 560 Robot", CSIRO Division of Manufacturing Technology,

Australia. Brain Armstrong-Helouvry University of Wisconsin Milwaukee, USA.

July 1994.

6. P.K.Dash, S.K.Panda, T.H.Lee, J.X.Xu, A.Routray, "Fuzzy and Neural

Controllers for Dynamic Systems: an Overview", Power Electronics and Drive

Systems, 1997.` Proceedings, 1997 International Conference on Vol 2, 26-29 May

1997, Page(s):810 - 816.

7. C.H.Atkeson, J.D.Griffiths, J.M.Hollerbach, C.H.An, "Experimental Evaluation
of feed forward and computed torque control", Robotics and Automation,

IEEE Transactions on Volume 5, Issue 3, June 1989 Page(s):368 — 373.

8. Sudeept Mohan, Surekha Bhanot, "Conventional Control Strategies for Robot
Manipulator: A Simulation Study", International Conference on Computer

Applications in Electrical Engineering Recent Advances, Roorkee, Sep.29-Oct.1,

2005.

9. D.P.kwok, T.P.Leung, Fang Sheng, "Genetic Algorithms for Optimal Dynamic
Control of Robot Arms", International Conference on Industrial Electronics,

Control, and Instrumentation, 1993. Proceedings of the IECON '93, vol.1, 15-19

Nov. 1993 Page(s):380 — 385.

62

10. Han-Xiong Li; H.B.Gatland, "Conventional Fuzzy Control and its

Enhancement", Systems, Man and Cybernetics, Part B, IEEE Transactions on
Volume 26, Issue 5, Oct. 1996 Page(s):791-797.

11. T.Brehm, K.S.Rattan, "Hybrid fuzzy logic PID controller", Fuzzy Systems,

1994. IEEE World Congress on Computational Intelligence, Proceedings of the
Third IEEE Conference, vol.3, 26-29 .June 1994 Page(s): 1682 —1687.

12. G.M.Khoury, M.Saad, H.Y.Kanaan and C.Asmar, "Fuzzy PID Control of a

Five DOF Robot Arm", Journal of Intelligent and Robotic systems, Vol. 40 ,
Issue 3, July 2004, Pages: 299 - 320.

13. Abdollah Homaifar, Ed McCormick, "Simultaneous Design of Membership

Functions and Rule sets for Fuzzy Controllers Using Genetic Algorithms",

IEEE Transactions on Fuzzy Systems, Vol. 3, No. 2, May 1995.

14. T.Ozaki, T.Suzuki, T.Furuhashi, S.Okuma, Y.Uchikawa, "Trajectory Control of

Robotic Manipulators Using Neural Networks", Industrial Electronics, IEEE
Transactions on Volume 38, Issue 3, June 1991 Page(s): 195 — 202.

15. P.Gupta and N.K.Sinha, "Control of Robotic Manipulator - a Neural Network

Approach", International Journal of System Science, vol.29, no.7, pp.723-730,
1998.

16. M. F.Moller, "A Scaled Conjugate Gradient Algorithm for Fast Supervised

Learning", Neural networks, vol. 6, pp.525-533, 1993.

17. J.-S.R.Jang, "Fuzzy Controller Design Without Domain Experts", IEEE
International Conference on Fuzzy Systems, 8-12 March 1992 Page(s):289 — 296.

18. Jyh-Shing, Roger Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference

System", IEEE Transactions on Systems, .Man, and Cybernetics, Vol. 23, No.3,
May/June 1993.

19. G.S.Sandhu, K.S.Rattan, "Design of a Neuro-Fuzzy Controller", Systems, Man,
and Cybernetics,. 1997. Computational Cybernetics and Simulation, 1997 IEEE
International Conference on Volume 4, 12-15 Oct. 1997 Page(s):3170-3175.

20. Manish Kumar, Devendra P.Garg, "Intelligent Learning of Fuzzy Logic

Controllers via Neural Network and Genetic Algorithm", Proceeding of 2004

JUSFA, 2004 Japan-USA Symposium on Flexible Automation, Denver,

Colorado, July 19-21, 2004.

21. Teo Lian Seng, Marzuki Bin Khalid, "Tuning of a Neuro-Fuzzy Controller by

Genetic Algorithm", IEEE Transactions on Systems, Man, and Cybernetics-Part

B: Cybernetics, Vol. 29, No. 2, April 1999.

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References

