
LLVIVI COMPILER BACKEND FOR VHDL AND POWERPC
AND

APPLICATION TO DSP ALGORITHMS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRICAL ENGINEERING

(With Specialization in Measurements and Instrumentation)

ADITYA VISHNUBHOTLA VIJAY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation entitled, "LLVM

Compiler Backend for VHDL and PowerPC and Application to DSP Algorithms"

submitted in the partial fulfillment of the requirements for the award of the degree of Master

of Technology in Electrical Engineering with specialization in Measurements and

Instrumentation, to the Department of Electrical Engineering, IIT Roorkee, Roorkee is

an authentic record of my own work carried out during the period from September 2007 to

June 2008 at TU Darmstadt, under the supervision of Dr. Ing. Sorin A. Huss, Professor,

Integrated Circuits and Systems Lab, Department of Computer Science, TU Darmstadt and at

IIT Roorkee, under the supervision of Dr. H. K. Verma, Professor, Department of Electrical

Engineering, IIT Roorkee, Roorkee.

The matters embodied in this report have not been submitted by me for the award

of any other degree or diploma.

Date:

Place: Roorkee 	

7 L72 CL~
(ADITYA VIS 	OTLA VIJAY)

CERTIFICATE

This is to certify that above statement made by the candidate is correct to the best of my

knowledge.

Dr. H. K. Verma

Professor,

Electrical Engineering Department

Indian Institute of Technology, Roorkee

Roorkee-247667 (India)

L11AA' L'

TUD - ISS - Hochschulstr. 10.64289 Darmstadt

Prof. Dr.-Ing. S. A. Huss

Integrierte Schaltungen and
Systeme
Faahbereich 20 Informatik
Fachbereich 18 Elektrotechnik

Hochschulstr. 10
64289 Darmstadt
Telefon (06151)16-4882
Telefax (06151) 16-4810

e-mail: huss@iss.tu-darmstadt.de

Darmstadt, den 28. Mai 2008

Certificate

This is to certify that Mr. Aditya Vishnubhotla Vijay has successfully worked on the Mas-
ter's thesis entitled "LLVM Compiler Backend for VHDL and PowerPC and Application
to DSP Algorithms" under my supervision in the Integrated Circuits and Systems Labo-
ratory, Department of Computer Science, Technische Universitfit, Darmstadt, Germany
during the period of September 2007 to May 2008 under the DAAD - {IT Masters Sand-
wich Programme.

He did a remarkable good woriLand I rate therefore his thesis withl..3, which corre-
sponds to A-. 	JJN~~,

Prof. Dr. —Ing. Sorin A.

ACKNOWLEDGEMENT

I would like to express my deep sense of gratitude to my project guides Prof. Dr.

ILK. Verma and Prof. Dr. Ing, Sorin A. Huss, without whom this dissertation could

not have been written. I owe my most sincere gratitude to Prof. Dr. H.K. Verma for

his advice and guidance. I gratefully acknowledge his whole-hearted encouragement and

support. I acknowledge my obligation to Prof. Dr. Ing. Sorin A. Huss for having me in

Integrated Circuits and Systems Group, which enriched my knowledge and kindled the

aspiration to learn deeper.

I acknowledge my heartfelt obligation Dip1. Ing. Tim Sander, who not only mentored

me but also challenged and encouraged me throughout the project work. It was he who

opened the door to the beautiful world of codesign and compilers. I am indebted to him

more than he knows.

My special thanks to Dipl. Ing. Gregor Molter, Dipl. Ing. Felix Madelener, Frau

Maria Tiedemann and Dr. Abdul Shoufan who never failed to help me however small

the matter may be. It was a pleasure working with them at Integrated Circuits and

Systems Group.

I wish to express my warm and heartfelt gratitude to Frau Kleinschmidt, Frau Ulla

Nothnagel for their loving support, which made me feel at home in a foreign land.

I am gratefully acknowledge the German Academic Exchange Service (DAAD) for

providing the scholarship for my stay in Germany.

My loving thanks to my IIT Roorkee friends and my DAAD-IIT friends from Darm-

stadt who are my pillars of support.

Lastly, I owe my loving thanks to my parents Mr. V V Sastry and Mrs. V Padmaja

and my sweet little brother Mr. V M Charan for their inseparable love, faith and

persistant confidence in me.

ABSTRACT

Hardware/Software (HW/SW) codesign of an application is a popular design method-

ology employed to meet the performance needs under design costs and time-to-market

constraints. It stands for the design of a system or application using both hardware and

software components. The advantages of software based design are flexibility, low cost

and less development time and the advantages of hardware based design are liability

(backup) and performance. HW/SW codesign is employed to achieve an optimal system

design taking the advantage of individual designs.

HW/SW partitioning is a primary step of HW/SW codesign which involves split-

ting of the application into hardware and software divisions based on the initial design

constraints such as performance, costs and hardware area. Automatic HW/SW parti-

tioning is the automatic identification and sectioning of the critical code segments of

the application which are to be implemented in hardware. There are a few works which

have already implemented automatic HW/SW partitioning using various tools and tech-

niques, but the present partitioning work is based on Low Level Virtual Machine (LLVM)

compiler framework and a novelty of its kind.

The LLVM is a compiler infrastructure designed to support life-long program analysis

and transformation for arbitrary programs. LLVM provides tools and libraries used to

build compilers, optimizers, code generators and many other compiler related programs.

The present work is aimed as an extension to the LLVM tool chain which automati-

cally creates a HW/SW division of the input algorithm. The input algorithm is lowered

by the LLVM compiler frontend into the language and target independent LLVM In-

termediate Representation (LLVM IR) and the backend modules written, modify the

LLVM IR to create the HW/SW partitioned output.

The backend modules comprise a Binning Pass and a Selection Pass. The LLVM Pass

is a set of classes used to analyze, transform or output the LLVM IR. The Binning Pass

is an analyze pass which employs heuristics to gather data flow and control flow statistics

of the input algorithm written in C/C++ programming languages and empirical feature

analysis is done to decide the parts of the algorithm to be implemented in HW/SW and

the partitioning decision is taken after the above analysis.

The Selection Pass is.a transform pass created to partition the input algorithm into

HW/SW sections. The Selection Pass exploits the features collected by the Binning

Pass to partition the algorithm for implementation in HW/SW. It modifies the LLVM

IR of the input algorithm by replacing the set of the instructions which are not to be

executed by the curent backend with intrinsic function calls. The above mentioned

intrinsic instructions are defined as extensions to the LLVM language to keep the control

and dataflows of the algorithm intact and are inserted at each context computing switch.

The Selection Pass generates the LLVM IR of the hardware and software sections.

The hardware section is sent to the LLVM VHDL backend which. transforms the LLVM

IR into a VHDL RTL representation. The software section is sent to the LLVM PowerPC

backend which transforms the LLVM IR into a PowerPC assembly language output. The

backends are adapted to process the above mentioned intrinsic instructions. The work is

based on the existing C/C++ frontends, VHDL and PowerPC backends of the compiler.

The above passes have been tested and validated using input algorithms from the

Digital Signal Processing (DSP) domain.

Contents

1 	Introduction 	 1

1.1 Overview 	1

1.2 Motivation 	2

1.3 Introduction to LLVM 	2

1.3.1 	The LLVM Compiler 	3

1.3.2 	LLVM Intermediate Representation 	3

1.3.3 	LLVM Type System 	4

1.3.4 	LLVM Pass 	4

1.4 Description 	5

2 Binning Pass 7

2.1 Data Flow and Control Flow in LLVM 7

2.1.1 	Data Flow 7

2.1.2 	Control flow 8

2.2 Basic Block Level Analysis 9

2.2.1 	Example: Combinational implementation for constant data mem-

ory 	accesses 10

2.3 Function Level Analysis 12

2.4 Two Dimensional Discrete Fourier Transform Example 13

2.5 Binning Pass Results 15

3 Selection Pass 	 20

	

3.1 Description . 	20

3.2 	Selection Pass Intrinsics 	. 	21

3.2.1 	Intrinsic Functions in LLVM [6] 	21

3.2.2 	Selection Pass Intrinsics . 	22

3.3 Deps.h header file description 	23

3.4 Additions to Intrinsics.td file 	24

3.4.1 	LLVM Intrinsics.td TableGen File [6] 	24

3.4.2 	Additions to Intrinsics.td File 	26

3.5 Data Flow Dependencies 	28

3.6 Control Flow Dependencies 	29

3.7 Walsh Transform Example 	29

3.8 Selection Pass Results 	31

4 Adaptations to the PowerPC and VHDL Backends 	 33

4.1 LLVM Code Generator and Additions to SelectionDAGISel.cpp file . . . 33

4.1.1 LLVM Target-Independant Code Generator [6] 33

	

4.1.2 Additions to SelectionDAGISel.cpp file 	35

	

4.2 Possible future extensions to SelectionDAGISel.cpp file 	37

	

4.3 PowerPC Backend Results . 	37

4.4 VHDL Backend Results 	. 	39

4.5 Hardware/Software Integration 	40

5 Conclusion 	 43

	

5.1 Summary . 	43

5.2 	Future Extensions . 	44

	

5.2.1 Possible Extensions to the Binning Pass 	44

	

5.2.2 Possible Extensions to the Selection Pass 	44

References 	 47

Appendix A. Binning Pass Header File 	 49

Appendix B. Binning Pass 	 51

Appendix C. Selection Pass 	 58

Appendix D. Deps Header File 	 65

Appendix E. Two Dimensional DFT Program 	 70

Appendix F. Walsh-Hadamard Transform Program 	 72

List of Tables

2.1 Load Instruction Truth Table 	10

2.2 Binning Pass basic block statistics 	17

List of Figures

1.1 LLVM GCC Compiler Block Diagram [5] 	3

1:2 	Block Diagram 	. 	5

2.1 Load Instruction combinational circuit implementation 	11

2.2 	Data flow driven basic block . 	15

2.3 Control flow driven basic block 	. 	16

2.4 Control Flow Graph of twod_dit function 	18

3.1 	Data Dependencies . 	28

3.2 Modified basic block with intrinsics . 	31

3.3 Hardware and software sections . 	32

4.1 PowerPC Assembly Language Output . 	38

4.2 	HW/SW Integration . 	41

Chapter 1

Introduction

1.1 Overview

The goal of the dissertation is to develop a tool for the Low Level Virtual Machine(LLVM)

compiler suite, which automatically creates a Hardware/Software (HW/SW) division of

the input algorithm. The input algorithm is lowered by the LLVM compiler frontend into

the language and target independent LLVM Intermediate Representation(LLVM IR) and

the backend modules written, modify the LLVM IR to create the HW/SW partitioned

output. The work is based on the existing C/C++ frontends, VHDL and PowerPC

backends of the compiler.

The results of the work are:

1. Binning Pass to collect Data/Control flow statistics

2. Selection Pass for Hardware/Software mapping

3. Adaptations to the VHDL backend

4. Adaptations to the PowerPC backend

5. Creation of example application

I

1.2 Motivation

The main motive of this work is to develop an extension to the LLVM tool chain for

automatic HW/SW partitioning. HW/SW partitioning is a primary step and an inte-

gral part of HW/SW codesign process. HW/SW codesign is the design of a system or

application using both hardware and software components. As mentioned in [1], the

advantages of software based design are flexibility, low cost and less development time

and the advantages of hardware based design are liability(backup) and performance.

HW/SW codesign is employed to take into account the above mentioned advantages,

to achieve an optimal system design. HW/SW partitioning is the splitting of the ap-

plication into hardware and software divisions based on the initial design constraints

such as performance, costs and hardware area. Automatic HW/SW partitioning is the

automatic identification and sectioning of the critical code segments of the application

which are to be implemented in hardware. There are a few works which have already

implemented automatic HW/SW partitioning using various tools and techniques such as

[2], [3] etc., but the present work is based on LLVM compiler framework and a novel of

its kind.

1.3 Introduction to LLVM

The LLVM is a compiler framework designed to support life-long program analysis and

transformation for arbitrary programs [4]. As mentioned in [5], the "LLVM is a com-

piler infrastructure that provides modular and reusable components to build compilers,

optimizers, code generators and many other compiler related programs." A compiler is

a translator which translates a program written in high level or source language into

an equivalent program in machine level or object language. The traditional C compiler

(GCC), Java Just-In-Time(JIT) compiler etc. are some examples of compilers.

4

1.3.1 The LLVM Compiler

The figure 1.1 below shows the workflow of a LLVM-toolsuite compiler run.

C/C++ 	J I LLVM 	Mid Level 	Code 	Target File

	

Front End I 	Optimizer 	Generator

Figure 1.1: LLVM GCC Compiler Block Diagram [5]

The language specific front end lowers the code to LLVM IR. The LLVM IR is a

well-defined intermediate representation of programs which provides for the capability of

representing all high level languages. The LLVM includes, besides others, C and C++

front ends. The front ends comprise scanners, parsers and intermediate code generators.

The scanner or lexical analyser recognises the patterns in the source code text and

groups them into tokens and GCC parsers check the syntactic and semantic validity of

the tokens. The LLVM disassembler converts the source code into LLVM IR.

LLVM is equipped with a mid-level optimiser which performs various standard scalar

and loop optimisations. The link time is a natural place for interprocedural (cross

functional) optimisations. The LLVM has static backends to generate code for X86,

X86-64, PowerPC 32/64, ARM, SPARC and various other architectures.

1.3.2 LLVM Intermediate Representation

The LLVM defines a low-level code representation or Intermediate Representation (IR)

in Static Single Assignment (SSA Form) which serves as a common code representation

used throughout all phases of the LLVM compilation strategy. As mentioned in the [6],

the LLVM code representation is designed to be used in three different forms all of which

are equivalent. They are :

1. In-memory compiler IR

2. On-disk bitcode representation 	-

3. Human readable assembly language representation

This allows LLVM to provide a intermediate representation for efficient compiler trans-

formations and analysis, while providing a natural means to debug and visualize the

transformations.

3

1.3.3 LLVM Type System

As mentioned in [7], the LLVM instruction set is fully typed, using a low-level, source

language independant type system.- The type system consists of primitive types with

predefined sizes and derived types. The LLVM instructions have strict type rules and

there are no mixed type operations. An explicit cast instruction is the sole manner to

convert a value from one type to other type. As mentioned in [8], the LLVM type system

lays a good foundation for aggressive optimisations.

1.3.4 LLVM Pass

LLVM Passes perform the transformations and optimizations that make up the compiler.

The LLVM Pass is a set of classes used to analyse, transform or output the LLVM IR. As

mentioned in [6], optimizations in LLVM are implemented as Passes that traverse some

portion of a program to either collect information or transform the program. Passes in

LLVM can depend on other passes etc. The Passes in LLVM are classified into three

types:

1. Analysis Passes which compute information for usage in other passes

2. Transform Passes which modify the program

3. Utility Passes which provide some utility

4. Output passes which output the LLVM IR

The LLVM Passes are to be registered to obtain desired functionality. The present

section on LLVM presents only a brief and relevant description. The citation [6], can be

referred for a detailed reading on LLVM.

ri

1.4 Description

The various stages of the proposed work are depicted in the following figure 1.2

C/C++ Input

LLVM
Front End

Optimization
Passes

Analyze
Pass

Selection
Pass

	

Power PC 	VHDL

	

Backend 	Backend

Linking Stage

	

Jr 	 '1,

Synthesis

Minx EDK

FPGA

Output

Figure 1.2: Block Diagram

The input algorithm is a code chunk in C or C++ programming languages. The

input algorithm is lowered into language independant LLVM IR by the LLVM front end.

A series of optimizations such as loop unrolling etc. are run on the algorithm with the

help of pre-existing optimization passes.

The Binning pass which is an Analysis Pass 1 on the preceding pageis created to

identify the sections of the algorithm to be sent to HW/SW. There are already var-

ious approaches for HW/SW partitioning like the Deterministic approach, Statistical

approach and the usage of Profiling techniques 191. But the present Pass extracts var-

ious features from the LLVM IR of the input algorithm. The features, for instance,

include the memory accesses or different controlflow/dataflow features of the algorithm.

Heuristics are created and empirical feature analysis is done to decide the parts of the

algorithm to be implemented in HW/SW and the partitioning decision is taken after the

above analysis.

5

The Selection Pass which is a Transform Pass 2 on page 4 is created to partition

the input algorithm into HW/SW sections. - The Selection Pass exploits the features

collected by the Binning Pass to partition the algorithm for implementation in HW/SW.

It modifies the LLVM IR of the input algorithm by replacing the set of the instructions

which are not to be executed by the curent backend with intrinsic function calls. The

above mentioned intrinsic instructions are defined as extensions to the LLVM language

to keep the control and dataflows of the algorithm intact and are inserted at each context

computing switch.

The Selection Pass generates the LLVM IR of the hardware and software sections.

The hardware section is sent to the LLVM VHDL backend which transforms the LLVM

IR into a VHDL RTL representation. The software section is sent to the LLVM PowerPC

backend which transforms the LLVM IR into a PowerPC assembly language output. The

backends are adapted to process the above mentioned intrinsic instructions.

The hardware(VHDL RTL) and software(PowerPC) sections are to be integrated

using an existing bus interfacel101 and a HW/SW interaction program written in C

programming language. This program comprises the definitions for the above mentioned

intrinsic functions is linked to the execution process in the linking stage. The program

with the help of the bus interface

1. Moves the input data to hardware

2. Waits till the end of the instruction execution in the hardware

3. Retrieves the results obtained from hardware

The bus interface which is used for data transfer between HW/SW and the hardware

section of the input algorithm are to be synthesized on Xilinx Virtex-II FPGA and the

software section of the input algorithm is to be executed on the PowerPC microprocessor

present on the same FPGA . The Xilinx Embedded Development Kit (EDK) is employed

for the co-synthesis. Test examples from DSP domain are used to test the created passes.

0

Chapter 2

Binning Pass

The Binning Pass is an Analysis Pass which categorises the control flow driven and data

flow driven sections of the LLVM IR of the test algorithm at basic block and function

levels.

2.1 Data Flow and Control Flow in LLVM

LLVM instruction set provides explicit data flow and control flow information of the

input algorithm which is explained in the subsequent sections.

2.1.1 Data Flow

Data flow is the movement of data or information through the sections of the algorithm.

The sections of an algorithm are processed depending on the availability of data input.

Data flow information can be gathered by setting up and solving systems of equations

at various points within the program. As mentioned in the [11], a typical data flow

equation has the form

out[S] = gan[S] U (in[S] - kill[S]) [11]

and can be read as, " the information at the end of the end of a statement is either

generated within the statement or nters at the beginning and is not killed as control

flows through the statement."

As mentioned in the [6), LLVM uses a low-level object code representation in SSA

form that uses simple RISC-like instructions, but provides rich, language-independent,

7

type information and dataflow information about operands. The Static Single Assign-

ment is a form of instruction representation used by compilers, in which each variable is

assigned exactly once during its life-time and PHI functions are included at the places

where the program flow joins and the the value of the PHI function depends on the path

taken by the program at run-time.

As mentioned in [7], SSA form is used in LLVM to handle data flow problems effi-

ciently and because SSA form provides for explicit def-use chains. To represent SSA form

directly in the code, LLVM uses an explicit phi instruction to merge values at control

flow join points. The SSA form of LLVM IR and the usage of def-use and use-def chains

provide the information regarding the data flowing in and out of a code segment(e.g. ba-

sic block or function). The type of operations(e.g. arithmetic or control flow) performed

on the incoming data and the size of the code segment determine the amount of data

processing being performed in the code segment.

Data flow reduces the dependency between the sections of code in an algorithm and

provides for parallelization. Sections of the algorithm having heavy data flow indicate

the computationally intensive nature of the algorithm and hence they are preferred to

be executed in hardware.

2.1.2 Control flow

Control flow in general refers to the order in which the statements of an algorithm are

executed. Control flow constructs are statements or instructions which when executed

cause the subsequent flow of control to differ from the natural sequential order of ex-

ecution. These are generally branching instructions, function calls and function return

instructions. 	 .

As mentioned in [7], control flow instructions such as branch, multi-way branch or

switch, function return, invoke or unwind instructions are grouped as terminator instruc-

tions in LLVM. LLVM also provides explicit Control Flow Graphs and hence the above

features are considered to determine the extent of control flow in LLVM code segments.

The sections of the algorithm with complex control flow features, for instance with

nested conditions and loops, when implemented as automatons lead to exponential in-

crease in the number of states and eventually occupy huge space on hardware. Hence,

control flow driven sections of the algorithm are preferred to be executed on micropro-

cessors.

2.2 Basic Block Level Analysis

The Control flow features of the algorithm at basic block level are identified by the

following control flow constructs:

1. Conditional and unconditional branching statements

2. Function calls

3. Nested conditions or loops

4. Terminator instructions

The Data flow features of the algorithm at basic block level are identified by the following

data flow constructs:

1. Arithmetic instructions

2. Number of phi nodes

3. Number of instructions

Memory accesses in the algorithm play a significant role in determining the sections of

the program to be executed in hardware and software. Memory access features at basic

block level are identified by the following memory access constructs:

1. Memory allocation instructions

2. Instructions transferring data to memory

3. Instructions retrieving data from memory

4. Instructions clearing the allocated memory

Frequent memory accesses are inefficient for hardware implementation but accesses to

fixed size memory locations storing constant values can be effectively implemented on

hardware. using simple combinational circuits.The following simple combinational circuit

implementation of a Load instruction; "illustrates the above statement.

9

2.2.1 Example: Combinational implementation for constant data

memory accesses

Let the fixed size global array of constant data stored in memory be {1, 5, 2, 8}. Let us

consider a Load Instruction which retrieves a data element from the above mentioned

array. The instruction can be implemented in hardware as follows

The values in memory represent the output. The biggest number is eight and therefore

four output binary digits are sufficient to represent all the four output values. Two input

binary digit address is sufficient to access the four values.

The following table 2.1 is the truth table for the circuit and below that are the

output equations and figure 2.1 depicts the combinational circuit implementation of the

load instruction.

A. Truth Table:

Table 2.1: Load. Instruction Truth Table

©©
000000

®® ®0

000000 Banana
000000

B. Output equations:

f1=x y

f2=xy

f3= x'

f4= x+y

10

C. Circuit:

x

r5

fi

f3

f2

f4

Figure 2.1: Load Instruction combinational circuit implementation

The execution of the constant array memory accesses on hardware is many a times faster

than the execution of the instruction cycle for the instruction on a microprocessor.

Hence the Binning Pass detects the presence of global variables in the test algorithm

and stores the pointers to the memory locations storing the constant global arrays in

a Standard Template Library Vector Container. The basic blocks of the algorithm are

tested to find whether there are memory accesses to the locations stored of the Vector

Container, which is used to categorise the parts of the test algorithm having memory

accesses to constant global arrays, under data flow driven section. The simple empirical

relations formed from the above detected features are described below.

The first relation calculates the total number of memory access instructions excluding

the constant global array memory access instructions and control flow instructions. The

basic block is believed to be more of control flow driven when the above calculated

instructions in a basic block are greater than a specified threshold.

The second relation is a check for the data flow within a basic block. The presence

of phi instructions indicates that the values required for the execution of basic block

instructions are available at run-time and cannot be decided prior. Therefore an ideal

data flow basic block has no phi instructions and has only one or no successors. The

above condition is checked and the boolean result is stored in an indicator variable.

The third relation is a comparison between the data flow and control flow within a

basic block. The number of phi instructions gives a measure of data flow into the basic

block. The number of successors for a basic block gives a measure of the flow of control

to the subsequent sections of the algorithm. Greater number of successors indicates that

the basic block has more of control flow and the boolean result is stored in an indicator

variable.

11

The final condition determines whether the basic block has self loop. The presence

of a self loop indicates heavy control flow.

Appropriate weights are given to the input indicator variables and the result is calcu-

lated. The first relation which tries to classify the blocks on the number of control flow

constructs, is of prime importance and hence given maximum weight. The calculated

resultant is compared with a pre-defined constant to determine whether the basic block

is a data flow driven or a control flow driven basic block and near to expected results

are obtained using the relation.

2.3 Function Level Analysis

A measure of control flow at function level is identified by the following features:

1. Number of basic blocks 1

2. Number of successors for each basic block 2

3. Number of control flow driven basic blocks.

A measure of data flow at function level is identified by the following features

1. Total number of instructions in the function

2. Total number of phi nodes

3. Number of data flow driven basic blocks

The following simple empirical relations are formed from the above features.

The count of data flow driven basic blocks and control flow driven basic blocks de-

termines the categorization of the function.

The ratio between edges and nodes of the function is taken into consideration. A

function is believed to be more of control flow when its CFG has much greater number

of edges compared to the number of nodes.

The number of basic blocks gives us a measure of number of times the instruction

execution varies from the natural sequential order of execution and can be taken as a

'nodes of CFG of the function
ledges of CFG of the function

12

measure of control flow and huge basic blocks indicate greater execution of data and

indicate data flow and hence a comparison is made between the above features.

The presence of backedges in the CFG of the function is taken into consideration as

it is an indicator of heavy control flow within the function

Appropriate weights are given to the ratios formed above to decide the result. The

calculated result is checked whether it is within specific pre-determined threshold levels.

This is used to determine whether a function is data flow driven or control flow driven

or mid way between them.

The empirical constants of all the relations mentioned above are determined by testing

and validating the Binning Pass with a number of input test algorithms.

The input test algorithms include Control flow driven Data Structures like linked

lists,stacks and queues and simple data flow driven digital signal processing algorithms

which perform convolution, correlation, discrete fourier transforms, fast fourier trans-

forms of input sequences and various other algorithms which are partly data flow driven

and partly control flow driven.

Two Standard Template Library maps -are created one each for basic blocks and

functions respectively and the above calculated features stored in the maps for further

usage.The Binning Pass does not modify the LLVM IR. The Pass is included in the

Appendices A and B on page 49 and on page 51 correspondingly, for further reference.

2.4 Two Dimensional Discrete Fourier Transform Ex-

ample

A simple two dimensional Discrete Fourier Transform is written to provide a test input to

the Binning Pass. A two dimensional DFT computes the transform of a two-dimensional

data set. The definition of the transform for the data set is given below:

n1-1n2-t
+

Ykl,k2 = 	xjl,j2 exp-2I1i n1 	n2

j1=0 j2=0

where k1 = 0,1,...,n1-1 and k2 = 0,1,...,n2-1

nland n2 are dimensions of input rectangular matrix.

13

The program written calculates the transform for floating point square matrices and

is provided in the Appendix E on page 70 for further reference.

14

2.5 Binning Pass Results

The figure 2.2 below shows the statistics collected by the Pass for a data flow driven

basic block of the algorithm:

bb207:
tmp11.1= phi double [tmpl, bb111 j
tmp2 2.1= phi double (tmp2, bb111
tmp30 = uitofp 132 reg to double
tmp35 = mul double tmp30, -6.283180e+00
tmp40= mul double tmp35, tmp5
tmp45 = fdiv double tmp40, tmp6
tmp50 = add double tmp45, 0.000000e+00

store double 0.000000e+00, double* trnp7, align 8
store double tmp50, double* tmp8, align 8
call void @cexp({ double, double }* sret tmp55, { double, double }* byval w1) nounwind
tmp65 = load double* tmp60, align 8
tmp70 = load double* tmp6l, align 8
tmp75 = mul double tmp65, tmp 22.1
tmp80 = mul double tmp70, tmp 11.1
tmp85 = mul double tmp65, tmp 11.1
tmp90 = mul double tmp70, tmp 22.2
tmp95 = sub double tmp75, tmp80
tmplOO = add double tmp85, tmp90
tmp105 = add double tmp95, tmp9
tmp110 = add double tmp100.. tmp10
tmp115 = add i32 reg, 1
tmpl20= icmp eq i32 tmp115, N
brit tmpl20, label bb210, label bb108

Binning Pass

Basic block bb207:
Number of instructions : 23
Number of PHI Instructions : 2
Memory Transfer, branching and condition checking Instructions : 7
Constant global array memory access instructions : 0
Number of successors: 2
Basic block bb207 has more of d$ta•flow

Figure 2.2: Data flow driven basic block

The upper block shows the LLVM IR, of a basic block of the DFT example and the lower

block shows the corresponding output of the Binning Pass which gathers statistics of

the basic block. The statistics show that the basic block performs significant amount of

arithmetical operations and data processing and hence the basic block is termed as data

flow driven basic block.

15

The figure 2.3 below shows the statistics collected by the Pass for a control flow

driven basic block of the algorithm:

bb2:
tmp30 = getelementptr double* tmp2Q, 132 tmplO
tmp34 = load double* tmp30, align 8
tmp36 = call 132 (18*, ...)* printf(18* getelementptr ([20 x i8]* .strl, i32 0, 132 0),
double tmp34, double tmp28.)

tmp37 = icmp ult i32 tmp24, N
tmp39 = add i32 tmp25, 1
br i1 tmp37, label bb5, label bb8

I Binning Pass

Basic block bb2:
Number of instructions : 6
Number of PHI Instructions : 0
Memory Transfer, branching and condition checking Instructions : 5
Constant global array memory access instructions : 0
Number of successors : 2

Basic block bb2 has more of control flow

Figure 2.3: Control flow driven basic block

The output of the Pass shows that there are many branching instructions and memory

access instructions and no constant global memory accesses as can be seen in the LLVM

IR. Hence the basic block is termed as control flow driven basic block.

Similarly all the basic blocks of all the functions in the input test algorithm are

classified with the help of the Pass. The table below shows that statistics collected for

all the basic blocks of the 2d_dit transform function 70 written in the test algorithm.

16

The table 2.2 below shows the statistics collected by Binning Pass for 2d_dit function

at basic block level:

Table 2.2: Binning Pass basic block statistics

Basic Block Name Instructions PHI Instructions Memory

Transfer and

Control Flow

Instructions

Constant Memory Accesses Successors Result

entry 11 0 9 0 2 Control Flow

bb372.preheader 11 0 9 0 1 Control Flow

bb372.outer 16 1 7 0 1 Data Flow

bb105 3 1 1 0 2 Data Flow

bb108.preheader 2 0 1 0 1 Data Flow

bb108 7 3 2 0 1 Data Flow

bb111 24 3 9 0 2 Data Flow

bb207 23 2 7 0 2 Data Flow

bb293.loopexit 3 2 1 0 1 Control Flow

bb293 13 2 10 0 2 Control Flow

bb326 6 0 5 0 2 Control Flow

bb347 8 3 4 0 1 Control Flow

bb372 3 1 2 0 2 Control Flow

bbl05.preheader 1 0 1 0 1 Control Flow

bb378.loopexit 4 3 1' 0 1 Control Flow

bb378.1oopexit46 1 0 1 0 1 Control Flow

bb378 4 0 3 0 2 Control Flow

bb388.loopexit 1 0 1 0 1 Control Flow

bb388 2 0 _ 	2 0 0 Control Flow

The output of the Pass for the 2d_dit function 70 in the program is given below:

Number of instructions in function : 143

PHI Instructions in function : 21

Number of control flow basic blocks in function : 11

Number of data flow basic block in function : 8

Size of average basic block in function : 7

Number of nodes in function : 19

Number of edges of function : 26

The function has more of control flow

17

The validity of the categorization can be checked with the help of the figure 2.4 below

which is the Control Flow Graph for the 2d_dit function

Figure 2.4: Control Flow Graph of twod_dit function

The shaded blocks in the image are control flow driven basic blocks and the unshaded

blocks are data flow driven basic blocks: The image above shows that though there are

a few basic blocks in which extensive data processing is done, the rest of the blocks are

18

small in size and the control flow driven basic blocks are more and edges are more than

the nodes indicating that it is a control flow driven function.

19

Chapter 3

Selection Pass

3.1 Description

The Selection Pass is a Transform Pass developed for hardware/software mapping. The

Pass utilises the statistics gathered by the Binning Pass to partition the test algorithm

into data flow and control flow driven sections. The data flow driven section is mapped to

hardware using the VHDL backend for LLVM and the control driven section is mapped

to the software using PowerPC backend for LLVM. These sections are made independant

of each other for parallel execution on both of the above mentioned backends.

The Selection Pass modifies the LLVM IR to select only the instructions which are

to be mapped either to software or to hardware and replaces the other instructions by

intrinsic instructions. These intrinsic replacement instructions are used to represent

the parts of the algorithm partitioned to a different computing context. These newly

created intrinsic instructions are place holders for the instructions which should not be

executed by the backend and are supposed to keep the control and data flow dependencies

persist ant.

The Selection Pass ensures that the results of the Binning Pass are computed before

the Pass is executed. The statistics of each basic block are accessed from the map created

in the Binning Pass to store the basic block information. This information is used to

identify the data flow driven and control flow driven basic blocks.

The Selection Pass is run twice using different command line arguments to create the

required two sections. The control flow section is created from the test algorithm LLVM

IR by replacing the dataflow driven basic blocks of the code with intrinsics and the data

flow section is created by replacing the control flow driven basic blocks with intrinsics.

20

3.2 Selection Pass Intrinsics

Selection Pass modifies the LLVM IR to achieve the required functionality by adding new

intrinsics to the LLVM. The phi and terminator instructions of the basic blocks being

modified are retained and the rest of the instructions are replaced by migrate_begin and

migrate end intrinsic functions.

3.2.1 Intrinsic Functions in LLVM [6]

The intrinsic functions represent an extension mechanism to the LLVM language. Gen-

erally, all extensions to LLVM start as an intrinsic function and then be turned into an

instruction if warranted. Intrinsic function names start with an "llvm. u prefix. This

prefix is reserved in LLVM for intrinsic names and hence function names may not begin

with this prefix.and they may only be used in call or invoke statements. Intrinsic func-

tions are always external functions i.e the body of intrinsic functions cannot be defined

and they are to be enumerated in the LLVM Intrinsics.td Table Generator file.

A. Overloaded Intrinsics

Overloaded intrinsics represent a family of functions that perform the same operation

but on different data types. For instance, overloading can be used to allow an intrinsic

function to operate on any integer type as there are numerous integer types in LLVM.

One or more of the argument types or the result type can be overloaded to accept

any integer type. Argument types may also be defined as exactly matching a previous

argument's type or the result type. This allows an intrinsic function which accepts

multiple arguments, but needs all of. them to be of the same type, to only be overloaded

with respect to a single argument or the result.

Overloaded intrinsics will have the names of its overloaded argument types added as

suffixes to the function name. For instance, the pre-defined llvm.ctpop function takes an

integer of any width and returns an integer of exactly the same integer width. This leads

to a family of functions such as i16 @llvm.ctpop.i16(i16 %val) and i43 @llvm.ctpop.i43(i43

%val). In this example only one type, the return type, is overloaded, and only one type

suffix is required as the argument's type is matched against the return type, it does not

require its own name suffix.

The following are the categories of pre-existing intrinsics in LLVM

21

1. Variable Argument Handling Intrinsics.

2. Accurate Garbage Collection Intrinsics.

3. Code Generator Intrinsics.

4. Standard C Library Intrinsics.

5. Bit Manipulation Intrinsics.

6. Debugger Intrinsics.

7. Exception Handling Intrinsics.

8. Trampoline Intrinsics.

9. Atomic Intrinsics.

10. General Intrinsics.

3.2.2 Selection Pass Intrinsics

LLVM does not support the functionality expected to obtain in its current incarnation

with the pre-existing intrinsic functions previously mentioned and hence new intrinsics

are created in the Selection Pass to add the required functionality to LLVM.

A. migrate . begin intrinsic

The migrate_begin intrinsic instruction marks the beginning of the set of instructions of

the basic block which are not executed by the current backend and is created for every

basic block which is to be modified. The intrinsic is created to handle the incoming data

dependencies of the basic block. These data dependencies are the values external to the

present basic block, required for the execution of the above mentioned set of basic block

instructions.

The arguments for the intrinsic ftinction are given by the Deps.h header file included

in the Selection Pass. The intrinsic call sends the arguments to the corresponding mi-

grate end intrinsic function.

22

B. migrate end intrinsic

The migrate_end intrinsic instructions replace the set of instructions which are not to

be executed by the current backend. A migrate_end intrinsic function call is created

for every instruction having outgoing dependencies. The outgoing dependencies are the

instructions external to the basic block which have the present instruction as an operand.

The intrinsic is also created for an instruction which has uses in the PHI and terminator

instructions present in the same basic block.

The return value of the Call instruction is the value of the instruction replaced by

it. The data dependencies of the external instructions on the basic block are satisfied by

iterating over the def-use chain of each instruction and replacing the uses of instruction

with the corresponding migrate_end Call instruction.The arguments for the intrinsic

functions are given by the Deps.h header file.

3.3 Deps.h header file description

The Deps class is created for providing arguments to intrinsic functions in Selection Pass

and for further application in the creation of VHDL RTL output from VHDL backend.

The Deps.h header file comprises the dependencies class Deps. The class gathers the

arguments required by the migrate_begin and migrate_end intrinsic functions. The

arguments to the migrate_begin intrinsic function are the following:

1. Incoming data dependencies of the basic block 1

2. The phi instructions of the basic block.

3. The count of the arguments mentioned in 1 and 2.

4. The enumeration of the intrinsic within the function.

The incoming data dependencies are gathered by iterating over uses and definitions (use-

def) chain of each instruction of the basic block. This chain iterates over the operands

of the instruction. The global values required for execution of the basic block are also

taken into consideration. The arguments mentioned are stored in a vector container.

The arguments to the migrate_end intrinsics are the following:

1Teminator instruction incoming data dependencies not included.

23

1. The enumeration of the migrate_begin intrinsic of the basic block

2. The position of the instruction within the basic block which is being replaced by

the migrate_end intrinsic.

The migrate_end intrinsics are enumerated by iterating over the definitions and uses

(def-use) chain of each instruction. This chain iterates over the uses of each instruction.

The arguments for the migrate_end intrinsics are stored in a map. The class also

implements functions for providing the collected arguments to the callee. In this way

the collected arguments are sent to the migrate_begin and migrate end intrinsics. The

class is provided in the Appendix D on page 66 for further reference.

3.4 Additions to Intrinsics.td file

3.4.1 LLVM Intrinsics.td TableGen File [61

Intrinsics.td is a TableGen file which defines all LLVM intrinsic functions. A TableGen

assists in developing and maintaining records of domain-specific information. As there

may be a large number of such records, TableGen is specifically designed to allow writing

flexible descriptions and for common features of the records to be factored out. This

reduces the amount of duplication in the description, reduces the chance of error, and

makes it easier to structure domain specific information.

The following specifications are to be provided to define an intrinsic in the file:

1. Intrinsic Property

2. Intrinsic Type

3. Intrinsic Definition

A. Intrinsic Property

Intrinsic Properties are the memory properties of the intrinsic. An intrinsic is allowed

to have exactly one of these properties set. The properties are listed from the most

aggressive (best to use if correct) to the least aggressive

1. IntrNoMem

24

2. IntrReadArgMem

3. IntrReadMem

4. IntrWriteArgMem

5. IntrWriteMem

IntrNoMem property states that the intrinsic does not access memory.

IntrReadArgMem property states that the intrinsic reads only from memory that one

of its arguments points to, but may read an unspecified amount.

IntrReadMem property states that intrinsic reads from unspecified memory and hence

it cannot be moved across stores. However, it can be reordered otherwise and can

be deleted if dead.

IntrWriteArgMem property states that the intrinsic reads and writes only from mem-

ory that one of its arguments points to, but may access an unspecified amount. It

has no other side effects. This may only be used if the intrinsic doesn't "capture"

the argument pointer (e.g. storing it someplace).

IntrWriteMem property states that the intrinsic may read or modify unspecified mem-

ory or has other side effects. This is the default if the intrinsic has no other intrinsic

memory property.

The above memory access properties are considered for optimization of the intrinsic

functions.

B. Intrinsic Type

Intrinsic Types are the LLVM types used by the intrinsic. The types to used by the

intrinsics are to be defined in the file prior to their usage in the intrinsic definition. The

types range from simple integer, float and pointer data types to complex vector data

types.

25

C. Intrinsic Definition

The Intrinsic Definition provides for the manner in which an intrinsic is defined in the

file. The following is the syntax of a general intrinsic definition

def intrinsic definition name : Intrinsic<[types], [intrinsic property], "LLVM

intrinsic name" >;

intrinsic definition name should start with "int " which indicates that the intrinsic

entry is actually an enumeration. The name then should match with the LLVM

intrinsic name with the "llvm." prefix removed and all "." characters turned into

characters. For instance, int_bswap_i32 is the intrinsic definition name for

the LLVM intrinsic name llvm.bswap.i32.

types is the function type of the intrinsic. It includes the return type and the argument

types expected for the intrinsic respectively.

intrinsic property describes the memory behaviour property of the intrinsic function.

LLVM intrinsic name is the name given to the intrinsic during its creation in the

LLVM Pass added with "llvm." prefix.

Finally, all the different Passes that are intended to use the extension made to LLVM

are updated.

3.4.2 Additions to Intrinsics.td File

The newly created migration intrinsics in the Selection Pass are enumerated in the In-

trinsics.td TableGen file to be recognized by all the libraries and tools present in LLVM.

The following are the additions to the file:

def int_migrate_begin:

Intrinsic< [llvm_i32_ty, llvm_vararg_ty],

[IntrWriteMem],"llvm.migrate_begin">;

def int_migrate_end_int :

Intrinsic<[llvm_anyint_ty,llvm_i32_ty,llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end_int">;

def int_migrate_end_float

Intrinsic<[llvm_anyfloat_ty,llvm_i32_ty,llvm_i32_ty],

ME

[IntrWriteMem],"llvm.migrate_end_float">;

def int_migrate_end_ptr_8

Intrinsic<[llvm_ptr_ty,llvm_i32_ty,llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end_ptr_8">;

def int_migrate_end_ptr_ptr :

Intrinsic<[llvm_ptrptr_ty,llvm_i32_ty,llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end_ptr_ptr">;

def int_migrate_end_ptr_32

Intrinsic<[llvm_ptr32_ty,llvm_i32_ty,llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end_ptr_32">;

def int_migrate_end_ptr_ptr32

Intrinsic< [llvm_ptrptr32_ty, llvm_i32_ty, llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end_ptr_ptr32">;

def int_migrate_end_ptr_float

Intrinsic<[llvm_ptrfloat_ty,llvm_i32_ty,llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end-ptr_float">;

def int_migrate_end_ptr_double :

Intrinsic<[llvm_ptrdouble__ty,llvm_i32_ty,llvm_i32_ty],

[IntrWriteMem],"llvm.migrate_end_ptr_double">;

The following are the entries used from the list of types in the file, used for the above

definitions:

def llvm_void_ty : LLVMTvpe<isVoid>;

def llvm_i8_ty : LLVMType<i8>;

def llvm_132_ty : LLVMType<i32>;

def llvm_anyint_ty : LLVMType<iAny>;

def llvm_anyfloat_ty : LLVMType<fAny>;

def llvm_vararg_ty : LLVMType<isVoid>;

def llvm_ptr_ty : LLVMPointerType<llvm_i8_ty>;

def llvm_ptrptr_ty : LLVMPointerType<llvm_ptr_ty>;

The following are the new entries made for the additional types used in the intrinsic

definitions:

def 11vm_ptr32_ty : LLVMPointerType<llvm_i32_ty>;

def llvm_ptrptr32_ty : LLVMPointerType<llvm_ptr32_ty>;

27

def llvm_ptrdouble_ty : LLVMPointerType<llvm_double_ty>;

def llvm_ptrfloat_ty : LLVMPointerType<llvm_float_ty>;

The migrate_begin intrinsic has an integer return type. The "llvm_vararg_ty" handles

the types of the variable number of arguments to the migrate_begin intrinsic function.

Owing to the strict type system of the LLVM, eight migrate_end intrinsics are created

to handle the varying return types of the instructions being replaced by the intrinsics.

Instructions with integer return types are mapped to the intrinsic with return type

"iAny" and instructions with float return types are mapped to the intrinsic with return

type "fAny". The above two are overloaded intrinsics and have the return types of the

instructions as suffixes to the instruction names.

The pointer type intrinsics correspond to the instructions with different pointer return

types.

The default intrinsic property is used define the memory access behaviour of the

intrinsics.

3.5 Data Flow Dependencies

The migrate_begin and migrate_end intrinsic instructions ensure that the data depen-

dencies are maintained. The following figure 3.1 explains the handling of data depen-

dencies by the intrinsic instructions.

2' 	1 2 	1 ~'

PHI instruction
p 	instruction 1

instruction 2 	 1 	
PHI instruction

ru migrate_begin instruction
migrate end instruction I

---- 	 migrate_end instruction q
Terminator instruction

instruction n 	 /;
Terminator instruction 	 i I 1 ~f

q 	 1 q

Figure 3.1: Data Dependencies

The left block is the basic block with "n" instructions prior to the introduction of

intrinsic instructions and the right block is the same basic block after the addition of

intrinsics. The incoming arrows indicate the data dependencies entering into the basic

blocks and the outward arrows indicate the data going out of the basic block.

From the block on the right side, it can be noticed that the migrate_begin intrinsic

gathers all the incoming dependencies into the basic block. The migrate_end intrinsics

are created for "q" instructions (q<=n) having outgoing dependencies.

The PHI and Terminator instructions are retained and the references made by the

other instructions in the basic block are dropped to ensure that the instructions do not

have internal uses remaining. The instructions are discarded after verifying that the uses

list of each instruction to be deleted is empty.

3.6 Control Flow Dependencies

The control flow dependencies are satisfied by placing the newly created migrate_end in-

trinsic instructions in the basic block in the same order as that of the instructions replaced

by them. The phi instructions are placed first followed by the migrate_begin intrinsic

call instruction and the migrate_end intrinsic calls are placed after the migrate_begin

instruction and the terminator instruction marks the end of the basic block.

The newly created intrinsic instructions implicitly define the interface between sec-

tions of the algorithm to be mapped separately to software and hardware.

3.7 Walsh Transform Example

A program is written which computes the natural ordered Walsh-Hadamard transform

of integer input sequence. The definition of the transform is given below:

y = WHTN * x

where

x - input sequence

y - transformed sequence

WHTN- Walsh Hadamard matrix where N = 2'.

WHTN= WHT2® WHT2... ® WHT2 n times.

29

11
WHT2 = 	and

1 —1

11 	1 	1

11 	11 	1 —1 1 —1
WHT4 = 	® 	_

1 —1 1 —1 1 1 —1 —1

1 —1 —1 1

The iterative procedure given below is used in the development of the program.

WHTN = Hi(I21) ® WHT2 ® I2~n_l))[12]

The program is provided in the Appendix F on page 72 for further reference.

30

3.8 Selection Pass Results

The results shown by the figure below depict the manner in which a basic block of the the Walsh

transform input algorithm is modified by the Filter Pass to include the intrinsics

bb371.preheader:
1.381 = phi i32 [migrate_end30, bb378], [0, bb371.preheader.preheader]
tmp347 = add IN tmp345, i.381
tmp350 = mul i32 tmp347, tmpl8
tmp351= getelementptr i8* tmp41,132 tmp35O
tmp351352 = bitcast i8* tmp351 to i32*
tmp362 = mul 132 1.381, tmp76
tmp363 = getelementptr i8* tmp80,132 tmp362
tmp363364 = bitcast i8* tmp363 to i32*
br label bb341

Output Basic block
with intrinsics

bb371.preheader weight: -2.5
Function type of migrate begin intrinsic for basic block bb371.preheader:
i32 	i32 	132 	i32 	i32 	i32 	i8 * i32 	i8 *
migrate_begin intrinsic created
Return Type of instruction being replaced -> i32
migrate_end intrinsic of return type i32 * created
tmp368 instruction -> Uses of tmp351352 replaced with migrate_end intrinsic
Return Type of instruction being replaced -> 132 *
migrate_end intrinsic of return type i32 * created
tmp366 instruction -> Uses of tmp363364 replaced with migrate_end intrinsic
PHI, intrinsic & terminator instructions retained and rest deleted

Selection Pass
modifications

Selection Pass

bb371.preheader:
1.381 = phi i32 [tmp38O, bb378], [0, bb371.preheader.preheader]
migrate_begin34 = call i32 (4* @Ilvm.migrate_begin(i32 5, 132 6, i32 i.381, i32

migrate end38, i32 migrate end2, i8* migrate end4, i32 migrate_end6,
18* migrate end7) ; 132> [#uses=0]

migrate_end35 = call 132* @Ilvm.migrate_end_ptr_32(132 5, 132 3)
migrate_end36 = call 132* @Ilvm.migrate_end_ptr 32(132 5, i32 6)

br label bb341

Figure 8: Modified basic block with intrinsics

The upper block shows the LLVM IR of a basic block of the Walsh Tranform algorithm. The block

to the right shows the analysis and modifications being made to the LLVM IR. The block below

shows the modified LLVM IR of the basic block. The figure clearly shows that the data and control

flow dependencies of the basic block are maintained by the newly created intrinsic.

The figure below shows the sectioning of the input algorithm by the Selection Pass.

bbl 18.outer.preheader:
brlabel bbllfi,outer

bbl 18.outer:
i.0.reg2mem.0.ph = phi i32 [migrate end7, bb124],

[0, bbl18.outer.preheaderI
tmp110 = mul 132 i.0.reg2mem.0.ph, tmp76
tmpl l l 	getelementptr i8' tmp99, i32 tmp110
tmp111112 = bitcast i8* tmp111 to i32*

br label 'bbl Ol

bb101:
j.069 = phi i32 [0, bbl18.outer], [indvar.next110, 	bbl 15]
tmpl04 = icmp eq 132 i.0.reg2mem.0.ph, j.069
brit tmp104, Ebel bbl06, label bb115

• I Selection Pass

bb118.outer.preheader:
migrate begin = call i32 (...)* @)Ivm.migrate_begin(i32 0, 132 0)

brlabel bb118.outer

bb I I 8.outer:
i.0.reg2mem.0.ph = phi i32 [migrate_end7, bb124],

[0, bb118.outer.preheader]
tmpl 10 = mul i32 i.0.reg2mem.0.ph, tmp76
tmpl 11 = getelementptr i8* tmp99, i32 tmp110
tmp111112 = bitcast i8* tmpl l l to i32*

brlabel bbt01

1
bb101:

j.069 = phi i32 [0, bb118.outer], [migrate_end4, bb115]
migrate_beginl = call i32 (...)* @Ilvm.migrate begin(i32 1, i32 2,

i32 j.069, i32 i.0.reg2mem.0.ph)
migrate_end = call i1 @Ilvm.migrate_end int.il(1321, i32 0)

br it migrate end, label bb106, label bbl15

bbl 18. outer. preheader:
br label bbl 18.outer

bb118.outer:
i.0.reg2mem.0.ph = phi i32 [indvar.next112, bb124],

(0, bb118.outer.preheader]
migrate_begin10 = call i32 (...)* @Ilvm.migrate_begin(i321, i32 3,

i32 i.0.reg2mem.0.ph, i32 migrate_end6, i8* migrate_endS)
migrate_endl1 = call i32* @llvm.migrate_end_ptr_32(i32 1, i32 2)
brlabel bb101

bb101:
j.069 = phi i32 [0, bbl 18.outer], [indvar.next110, bbl 15]
tmp104 = icmp eq i32 i.0.reg2mem.0.ph, j.069
bill tmpl04, label bbl06, label bb115

Figure 9: Hardware and software sections

The upper block of the figure shows a set of basic blocks of the Walsh transform algorithm. The

lower blocks are the software and hardware sections of the algorithm correspondingly. The image

clearly indicates that the code segment being sent to hardware has the data flow driven basic blocks

of the main algorithm intact and the rest of the basic blocks are filled with dummy intrinsic

instructions and the code segment being sent to software has the control flow driven basic blocks of

the main algorithm intact and the remaining basic blocks are filled with intrinsic instructions.

Chapter 4

Adaptations to the PowerPC and

VHDL Backends

The newly added intrinsics are extensions to LLVM language and support is to be pro-

vided for them to enable code generation on target backends. This is achieved by making

additions to the LLVM Target Independant Code Generator.

4.1 LLVM Code Generator and Additions to Selec-

tionDAGISel.cpp file

4.1.1 LLVM Target-Independant Code Generator [61

A. Description

The LLVM target-independent code generator is a framework that provides a suite of

reusable components for translating the LLVM IR to the machine code for a specified

target, either in assembly form (suitable for a static compiler) or in binary machine code

format (usable for a JIT compiler).

The LLVM target-independent code generator consists of five main components:

1. Abstract target description interfaces which capture important properties about

various aspects of the machine.'

2. Machine Code Representation classes used to represent the machine code being

generated for a target. These classes are intended to be abstract enough to repre-

sent the machine code for any 'target machine.

33

3. Target independent algorithms used to implement various phases of native code

generation such as register allocation, scheduling, stack frame representation, etc.

4. Implementations of the abstract target description interfaces for particular targets.

These machine descriptions make use of the components provided by LLVM, and

can optionally provide custom target-specific passes, to build complete code gener-

ators for a specific target. The LLVM currently supports ARM, SPARC, PowerPC

and Intel x86 architectures.

5. The target independent JIT components.

The target independant code generation algorithms implement the high level design of the

Code Generator and enable code generation for the intrinsic instructions, independant

of target backends.

B. The High Level Design of LLVM Code Generator

The LLVM target-independent code generator is designed to support efficient and quality

code generation for standard register-based microprocessors. Code generation in this

model is divided into the following stages:

1. Instruction Selection

2. Scheduling and Formation

3. SSA-based Machine Code Optimizations

4. Register Allocation

5. Prolog/Epilog Code Insertion

6. Late Machine Code Optimizations

7. Code Emission

Instruction Selection is the process of translating LLVM code presented to the code

generator into target-specific machine instructions. This step turns the LLVM code into

a Directed-Acyclic- Graph(DAG) of target instructions. LLVM uses a SelectionDAG

based instruction selector for translation.The SelectionDAG is a Directed-Acyclic-Graph

34

whose nodes are instances of the SDNode class. The SelectionDAG is a Directed-Acyclic-

Graph whose nodes are instances of the LLVM SDNode class. The following example

explains SelectionDAG.

C. SelectionDAG Example

Consider the following LLVM IR:

tmpl = mul float W, X

tmp2 = add float tmpl, Y

tmp3 = sub float tmp2, Z

The SelectionDAG for the above LLVM code is given below

(fsub:f32 (fadd:f32 (fmul:f32 W, X), Y), Z)

The SelectionDAG changes depending on the operations supported by the target. For

instance the PowerPC supports floating point multiply-and-add(FMA) operations. The -

SelectionDAG for PowerPC is given below

(FSUBS (FMADDS W, X, Y), Z)

4.1.2 Additions to SelectionDAGISel.cpp file

The initial SelectionDAG is constructed from the LLVM input by the SelectionLower-

ingClass in SelectionDAGISel.cpp file of LLVM Code Generator. The intent of this file

is to expose the low-level, target-specific details to the SelectionDAG to the maximum

extent possible. SelectionDAGLowering Class is used for common target independant

lowering implementation and has methods to lower the Call instructions to the intrinsic

functions. The LLVM code representing the intrinsic function Calls is lowered in the

visitIntrinsicCall method to SelectionDAG operators that the target instruction selector

can accept natively.

The following are the switch instruction cases included to the visitIntrinsicCall method

of the SelectionDAGISel.cpp file in LLVM.

const char *SelectionDAGLowering::visitIntrinsicCall(Calllnst &I, unsigned

Intrinsic) {

switch (Intrinsic) {

case Intrinsic::migrate_begin: {

return "migrate_.begin";

}

case Intrinsic::migrate_end_int: {

return "migrate_end";

}

case Intrinsic::migrate_end_float: {

return "migrate_end_float";

}

case Intrinsic::migrate_end_ptr_8: {.

return "migrate_end";

}

case Intrinsic::migrate_end_ptr_32: {

return "migrate_end";

}

case Intrinsic::migrate_end_ptr_ptr: {

return "migrate_end";

}

case Intrinsic::migrate_end_ptr_ptr32: {

return "migrate_end";

}

case Intrinsic: :migrate_end_ptr_float: {

return "migrate_end";

}

case Intrinsic::migrate_end_ptr_double: {

return "migrate_end";

}

}

}

Normally the intrinsic call instructions in the SelectionDAGISel.cpp file are lowered to

methods present within the file and present and then null value is returned in the above

shown "switch-case" statements but, as it is required to emit the migrate intrinsics as calls

to named external functions, the symbol or the function name of the migrate intrinsic is

returned as shown above.

36

The switch case statements clearly indicate that the created intrinsics are enumera-

tions in the Intrinsic namespace and migrate - begin and migrate_end are the symbols

added in LLVM to lower the intrinsics.

4.2 Possible future extensions to SelectionDAGISel.cpp

file

New additions are to be made to the SelectionDAGISel.cpp file whenever the Filter Pass

is extended by creating new migrate_end intrinsics in the Filter Pass.

For instance, if migrate_end_ptr_ptr_float and migrate_end_ptr_ptr_double in-

trinsics are created to cater to the double pointer to float(**f32) and double pointer to

double(**f64) data types, the following are the additions to be made to the file:

case Intrinsic::migrate_endptr_ptr_float: {

return "migrate_end";

}

case Intrinsic::migrate_end_ptr_ptr_double: {

return "migrate_end";

}

The present intrinsic lowering is performed at higher levels of abstraction of the LLVM

Code Generator and completely independant of the target backends. Target specific low-

ering of intrinsics can also be done by making additions to the TableGen files describing

the instruction formats of the target architectures. Various procedures are followed to

lower intrinsics into LLVM and the procedure discussed in this section is one among

them.

4.3 PowerPC Backend Results

The LLVM infrastructure is equipped with static backends both for both PowerPC 32

bit and 64 bit architectures. Once the intrinsics are adapted to the target backends,

the bit code output of software section of the Filter Pass is compiled into the PowerPC

assembly language by pre-existing PowerPC-32 backend. The following figure 4.1 shows

the results obtained from the backend.

37

bbl 1 8.outer.preheader:
br label bb118.outer

bb118.outer:
i.0.reg2mem.0.ph = phi 1321 indvar.next112, bb124], [0, bb118.outer.preheader]

migrate begin10 = call i32 (...)* @I Ivm.migrate_begin(132 1, 132 3, 132 i.0.reg2mem.0.ph,
132 migrate_end6, 18* migrate_end8)

migrate_end11 = call 132" @Ilvm.migrate_end_ptr 32(1321, 132 2)
br label bb101

bb101:
j.069 = phi i3210, bb118.outer]; [indvar.next 110, bb115]
tmp104 = icmp eq i32 i.0.reg2mem.0.ph, j.069
br i1 tmp104, label bbl06, label bb115

LLVM PowerPC Backend

BB1_1: # entry.bb118.outer_critedge
Ii21,0

BB1_2: # bb118.outer
creqv 6, 6, 6
li 4, 3
Ii 20, 1
Ii 19,2
mr 3, 20
mr 5, 21
mr 6, 24
mr 7, 22
bI migrate_begin
mr 3, 20
mr4, 19
bI migrate_end
Ii4,0

BB13: # bb101
cihplw 0, 21, 4
bne 0, BB1_5 # bb115

Figure 4.1: PowerPC Assembly Language Output

The image shows the PowerPC assembly language output obtained from the PowerPC-

32 Backend for a basic block from the software section LLVM IR of the Selection Pass

containing intrinsics. It can be seen from the output that the newly created intrinsics

have been adapted to the PowerPC backend.

4.4 VHDL Backend Results

The VHDL backend for LLVM is under construction. The backend has been adapted

to the newly created intrinsic functions and the following are results of lowering the

LLVM IR of the hardware section to VHDL RTL. The following is a basic block from

the hardware section LLVM IR of the Selection Pass.

define i32 blub(i32 a, i32 b) {-

entry:

tmp6 = mul i32 b,a

tmp3 = add i32 b, a

tmp8 = add i32 tmp3, tmp6

tmp11 = mul i32 tmp8, a

tmpl3 =,add i32 tmpll,tmp8

tmpl6 = mul i32 tmp13, b

tmpl8 = add i32 tmpl6, tmpl3

ret i32 tmpl8

}

The following shows the corresponding VHDL representation obtained from the VHDL

Backend.

library ieee;

use ieee.std_logic_1164.ALL;

use ieee .numeric_std.ALL;

entity blub_entry is

port (

rst : in std_logic;

Syncl : in std_logic;

SyncO : out std_logic;

a: in std_logic_vector(31 downto 0);

b: in std_logic_vector(31 downto 0);

tmpl8: out std_logic_vectcr(31 downto 0);

clk : in std_logic

);

end entity;

architecture LLVM_VHDL of blub_entry is

signal entry_sync_0_5: std_logic_vector(0 to 6-1);

signal tmp6:std_logic_vector(32-1 downto 0);

signal tmp3:std_logic_vector(32-1 downto 0);

signal tmp8:std_logic_vector(32-1 downto 0);

signal tmpll:std_logic_vector(32-1 downto 0);

signal tmpl3:std_logic_vector(32-i downto 0);.

signal tmpl6:std_logic_vector(32-1 downto 0);

--tmpl8 in port list.

begin

p_entry: process (clk) is

begin

if(clk'event and clk='1') then

tmp6 <= STD_LOGIC_VECTOR(UNSIGNED(b) * UNSIGNED(a));

tmp3 <= STD_LOGIC_VECTOR(UNSIGNED(b) + UNSIGNED(a));

tmp8 <= STD_LOGIC_VECTOR(UNSIGNED(tmp3) + UNSIGNED(tmp6));

tmp11 <= STD_LOGIC_VECTOR(UNSIGNED(tmp8) * UNSIGNED(a));

tmpl3 <= STD_LOGIC_VECTOR(UNSIGNED(tmpll) + UNSIGNED(tmp8));

tmpl6 <= STD_LOGIC_VECTOR(UNSIGNED(tmpl3) * UNSIGNED(b));

tmpl8 <= STD_LOGIC_VECTOR(UNSIGNED(tmpl6)+ UNSIGNED(tmpl3));

end if ; -

end process;

end architecture;

The set of instructions of the each data flow driven basic block are represented in VHDL

as entity and architecture units which are to be synthesized in hardware.

4.5 Hardware/Software Integration

The hardware output(VHDL RTL) obtained from the VHDL Backend and the software

output(PowerPC assembly) are integrated using the Xilinx EDK tool with the help of

an existing bus interface and a HW/SW interaction program written in C programming

language.

The existing bus interface which worked at funtion level data transfers was adapted to

meet the basic block level data transfers required for the present work. The VHDL RTL

output and the bus interface are synthesized on Xilinx Virtex II FPGA. The PowerPC

assembly is executed on the PowerPC microprocessor present on the same FPGA. All

the files required are imported into the Xilinx EDK environment where the co-synthesis

is performed. The HW/SW integration is performed with the help of the bus interface

and the HW/SW interaction program: The HW/SW interaction program contains the

definitions for the migrate_begin and migrate_end functions.

The following figure 4.2 describes the HW/SW integration and the manner in which

the input application is executed

PowerPC 32

PHI instruction
migrate_begin instruction
migrate_end instruction 1

VHDL RTL
BUS

INTERFACE PHI instruction (deleted)
instruction I
instruction 2

migrate end instruction p L 	 uction n
Terminator instruction 	 J 	 Terminator instruction(deleted)

Control Flow

Data Flow I►

Figure 4.2: HW/SW Integration

The image shows the hardware and software sections and the transfer of data and

control betweem them through the bus interface. The execution is carried out on the

PowerPC of Virtex II till the migrate intrinsics are encountered. As soon as a function call

to the migrate_begin intrinsic is encountered, the control is transferred to the function -

definition of the migrate_begin intrinsic provided in the HW/SW interaction program.

The same call instruction transfers the arguments to the migrate_begin funtion.

The arguments of migrate_begin instruction are the following

1. Incoming data dependencies of the basic block having the intrinsics 1

2. The phi instructions of the basic block.

1Teminator instruction incoming data dependencies not included.

41

3. The count of the arguments mentioned'in 1 and 2.

4. The enumeration of the intrinsic within the parent function.

The first and second arguments provide the input data necessary for the execution of

the subsequent instructions on hardware. The fourth argument is for the provision of a

new memory segment for each new migrate_begin intrinsic and the third argument is

for the amount of memory space required for the storage of input arguments or data.

The migrate_begin function loads these arguments into the memory locations specified

by the bus interface and waits for the execution of the susequent instructions on hard-

ware. As soon as the execution of the instructions is finished in hardware the control

is returned back and the PowerPC proceeds with the execution of remaining instruc-

tions. The migrate_end instructions are place holders for instructions having external

dependencies. When a migrate_end function call is encountered, the control and the

arguments are again transferred to the definition of the migrate_end intrinsic function

definition provided in the 1-1W/SW interaction program. The arguments of the migrate

end function are the following

1. The enumeration of the migrate_ begin intrinsic of the basic block

2. The position of the instruction within the basic block which is being replaced by

the migrate_end intrinsic.

The values of the instructions executed are placed in consecutive memory locations. The

first and second arguments of the migrate_end intrinsic provide for the identification

of the base address and offset of the memory location in which the required value of

the instruction is present. This value is returned back to the function call and the

PowerPC proceeds in the same manner with the execution of the remaining migrate_end

instructions if present. In this way the application is executed in hardware/software.

42

Chapter 5

Conclusion

5.1 Summary

1. LLVM Passes (Binning Pass and Selection Pass) are implemented to enable auto-

matic hardware/software partitioning of input algorithms in C/C++ programming

languages.

2. The VHDL and PowerPC target backend outputs are obtained for the created

HW/SW sections of the algorithm in LLVM IR.

3. The implemented Passes are tested and verified using the DSP algorithms (Two

dimensional DFT program and Walsh Hadamard Transform program) written.

4. The present Passes support integer, float data types and only a few kinds of pointer

data types of the identifiers present in input algorithms.

5. The VHDL Backend used for the presented work is still in development stages and

hence does not support the identifiers of float data type present in input algorithms.

6. The co-synthesis. of the VHDL/PowerPC outputs is to be performed for the execu-

tion of the input algorithms and to analyze the performance and communication

costs of the co-design implementation.

43

5.2 Future Extensions

5.2.1 Possible Extensions to the Binning Pass

Various new features which identify control flow and data flow can be detected and

utilised in the construction of the Binning Pass. For instance, the following control flow

features can be considered:

1. Number of immediate predecessors for each basic block

2. Number of arguments of each phi. instruction

3. Number of possible loops in a function

4. Loop unrolling feature detection

The empirical relations framed may also depend on various other ratios formed using

the presently identified features or new features. For instance the new ratio Number of

immediate predecessors / Number of phi nodes can be considered. The number of im-

mediate predecessors gives us the incoming branches to the basic block and is a measure

of control flow. The number of phi nodes represents the number of data values coming

into the basic block and is a measure of data flow. The Pass can utilise the Control

Flow Graph classes supported by the LLVM libraries for identification of the control

flow sections but the present Binning pass is simple and sufficient for a considerably

large section of algorithms.

It is also possible that the profiling information can be used to identify the sections

of the algorithm to be sent to HW/SW instead of the present Binning Pass. Profiling

is done for performance analysis and evaluation of the execution time of the program.

It finds the critical code segments of the program such as loops or iterative processes,

where the processor spends most of its execution time. These code segments can be

identified and sent to hardware for speedier execution. LLVM-GCC compiler has a tool

called llvm-prof which reads in the bitcode file of the input program and determines the

hotspots of the program. This profiling tool can also be used for the categorization of

HW/SW sections.

5.2.2 Possible Extensions to the Selection Pass

0

The following are the possible extensions for the Selection Pass

1. Type support for intrinsics

2. Support for multiple return values

3. Support for hyperblocks

The return type of an LLVM instruction can be broadly classified into integer, floating

point and pointer data types. The pointer data type covers complex types including

data types of identifiers like pointers, arrays, structures and functions.

The migrate_end intrinsics created in the Selection Pass handle the integer and

floating point data types efficiently but all the pointer data types are not supported

as LLVM's intrinsic overloading mechanism does not currently support overloading on

pointer types. Therefore, additional checks need to be performed to determine the exact

return type of the LLVM instruction in the Selection Pass and the corresponding new

migrate_end intrinsic is to be created. This also involves adding entries to the new

intrinsics and the adding the types required to create these intrinsics in the Intrinsics.td

file.

The additional migrate_end intrinsics with new pointer return types can be created

depending on the requirement of the input test algorithm.

These may include the various return types such as

• Double pointers to float data types(**f32).

• Double pointers to double data types(**f64).

The presently created migrate_end intrinsics cover a major section of the possible return

types of an LLVM IR instruction.

LLVM functions do not currently support multiple return values unlike some C pro-

gramming language functions which can return multiple values in registers (e.g. "conj"

function which returns the conjugate of a complex number, with the real and imaginary

components, in two different registers). This multiple return value support is expected

to be included in the upcoming releases(i..e next to llvm-2.2 version). The migrate_end

intrinsics of the Selection Pass can then be modified to handle multiple return values.

As mentioned in [13], hyperblocks support the provision of instruction level paral-

lelism in program codes. A hyperblock is formed by combining basicblocks having dif-

ferent execution paths and hence the terminator instructions might be present at places

45

other than the end of the block. The present Selection Pass only supports the sectioning

of basic blocks with single terminator instruction at the end of the block and support is

to be provided to hyperblocks with multiple terminator instructions.

The presented work is a step in the direction of hardware/software codesign of ap-

plications using LLVM compiler framework.

References

[1] Laurent Maillet-Contoz. Co Design Hardware/software partitioning is key. In IEEE

Potentials, pages 13-14, Oct/Nov 1997:

[2] Giovanni Busonera, Salvatore Carta., Andrea Marongiu, and Luigi Raffo. Automatic

Application Partitioning on FPGA/CPU Systems Based on Detailed Low-Level In-

formation. In DSD '06: Proceedings of the 9th EUROMICRO Conference on Digital

System Design, pages 265-268, Washington, DC, USA, 2006. IEEE Computer So-

ciety.

[3] Joerg Henkel and Rolf Ernst. An approach to automated hardware/software parti-

tioning using a flexible granularity that is driven by high-level estimation techniques.

IEEE Trans. Very Large Scale Integr. Syst., 9(2):273-290, 2001.

[4] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis and Transformation. In- CCO '04: Proceedings of the international

symposium on Code generation and optimization, page 75, Washington, DC, USA,

2004. IEEE Computer Society.

[5] Chris Lattner. Introduction to the LLVM Compiler Infrastructure. In 2006 Gelato

Itanium Conference and Expo (ICE), San Jose, California, Apr 2006.

[6] The LLVM Team. Documentation for the llvm system. http://www.11vm.org/docs/.

[7] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukia, and Brian Gaeke.

LLVA: A Low-level Virtual Instruction Set Architecture. In MICRO 36: Proceedings

of the 86th annual IEEE/A CM International Symposium on Microarchitecture, page

205, Washington, DC, USA, 2003. IEEE Computer Society.

47

[8] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master's

thesis, Computer Science Dept., University of Illinois at Urbana-Champaign, Ur-

bana, IL, Dec 2002. http://llvm.cs.uiuc.edu.

[9] Jerzy Rozenblit and Buchenrieder Klaus, editors. CoDesign Computer Aided Soft-

ware/Hardware Engineering, chapter Codesign: An Overview. IEEE Press, Piscat-

away, NJ, USA, 1994.

[10] Marc Stoettinger. Implementierung eines Bus Interfaces fur das LLVM VHDL Back-

end, jan 2008. Assignment.

[11] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, Mass., 1986.

[12] J. Johnson and M. Puschel. In search of the optimal Walsh-Hadamard transform.

In ICASSP '00: Proceedings of the Acoustics, Speech, and Signal Processing, 2000.

on IEEE International Conference, pages 3347-3350, Washington, DC, USA, 2000.

IEEE Computer Society.

[13] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide Patti. Hyperblock

formation: a power/energy perspective for high performance VLIW architectures.

In ISCAS (4), pages 4090-4093. IEEE, 2005.

Appendix A

Binning Pass Header File

//Header file for Binning Pass

#ifndef CDFBINNING H

#define CDFBINNING_H

#include "llvm/Pass.h"

#include "llvm/Funct ion. h'

#include "llvm/BasicBlock.h"

#include "llvm/InstrTypes;h"

#include "llvm/Instructions.h"

#include "llvm/Analysis/LoopInfo.h"

#include <string>

#include<map>

using namespace llvm;

using namespace std;

namespace llvm {

class MyFunctionlnfo //Function information

{

public:

unsigned int ni,phi,nodes,edges,loop,dfbb,cfbb;

int yl,y2,y3;

float weight;

string name;

1;
class MyBlocklnfo //BasicBlock Information

{

public:

unsigned int mci,phi,arr,size,succ;

int xl,x2,x3;

float weight;

string name;

};

class CDFbinning : 	public FunctionPass

{

public:

static char ID;

//map to store function information

map<Function* , MyFunctionlnfo*> FInfo;

//map to store basic block information

map<BasicBlock* , MyBlocklnfo*> BBInfo;

vector<Value*> GVInfo;

CDFbinningO 	: 	FunctionPass((intptr_t)&ID) {}

//To specify that Loopinfo Pass is required for current transformation

void getAnalysisUsage(AnalysisUsage &AU) const {

AU.setPreservesAll();

AU.addRequired<LoopInfo>(); I4

}

virtual bool runOnFunction(Function &F);

}

#endif

50

Appendix B

Binning Pass

//CDFbinning Pass -> Determines the extent of

//control flow and data flow

//at function and basic block levels

#include "llvm/Pass.h"

#include "llvm/Module.h"

#include "llvm/Function.h"

#include "llvm/BasicBlock.h'

#include "llvm/InstrTypes.h"

#include "llvm/Instructions.h"

#include "llvm/Support/CFG.h"

#include "llvm/ADT/DepthFirstIterator.h"

#include "llvm/Constants. h'

#include <map>

#include <vector>

#include "CDFbinning.h"

//constants used for framing empirical relations

#define kb1 0.6

#define kfl 0.7

#define kf2 1.5

#define kf3 1.2

#define kf4 0.3

#define pl 2

51

#define p2 0.7

#define p3 0.5

#define p4 0.5

#define q1 1

#define q2 0.5

#define q3 0.5

#define q4 0.5

using namespace llvm;

using namespace std;

namespace llvm {

//Iterating over all the functions in the input algorithm

bool CDFbinning::runOnFunction(Function &F) {

Module *M = F.getParent();

cerr< <"\n-------CDFbinning Pass Output-------\n\n";

llvm::cerr << "Function ->\t"<<F.getNameO << ":\n\n";

cerr<<"\nglobal values: "< <endl;

Loopinfo &LI=getAnalysis<Loopinfo>();

Loop *loop;

for(Module::global-iterator gi=M->global_begin(),gie=M->global_end();gi!=gie;gi++) {

Value *vall= dyn_cast<Value>(gi);

//get first encapsulated type from PointerType

const Type *t=gi->getType()->getElementType();

if(t->getTypelDO==Type::ArrayTylD) {

const ArrayType *at=cast<ArrayType>(t);

if (at) {

int notConstant=0;

User *inner=dyn_cast<User>(gi->getOperand(0)); //get array pointer

if(inner) {

//checks if all array values are constants

for (User::op_iterator opi = inner->op_begin(), ope = inner->op_end();

opi != ope; ++opi) {

Constant *c=dyn_cast<Constant>(opi);

if(!c){

notConstant=1;

break;

}

}

if(!notConstant) {//stores arrayvalues in map if array values are constants

GVInfo.push_back(vall);

cerr< <val1->getName()<<endl;

52

}

E

else

notConstant=1;

}

}

}

cerr< <endl;

MyFunctionlnfo* MFI;

Function* pF = &F;

unsigned int nif=0,bb=l,phif=0,edgesf=0,dfbb=0,cfbb=0,tbnum=0;

int y1=0,y2=0,y3=0,y4=0;

float wf=O;

//Iterating over all the basic blocks of the function

for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b,++bb){

MyBlocklnfo* MBI;

BasicBlock *pb = b;

unsigned int phibb =0,mcibb=0,global=0;

int x1=-1,x2=0,x3=-1,x4=-1;

float wbb=0;

llvm::cerr << "Basic block " << pb.->getNameO << ":\n";

for (BasicBlock::iterator i = pb->begin(), ie = pb->end(); i != ie; ++i){

//Checks whether GEP instruction accesses Global constant integer arrays memory using

if(isa<GetElementPtrInst>(i)){

GetElementPtrinst *GEPinst = dyn_c.ast<GetElementPtrinst>(i);

for(vector<Value*>::iterator iter = GVInfo.begin(); iter != GVInfo.end(); iter++)

if(*iter == GEPinst->getPointerOperand()){

global-4-+;

//iterating over def use chain of GEP instruction to find memory accesses dependant

// on GEP instruction

for(Value::use_iterator ui = GEPinst->use_begin(),uie = GEPinst->use_end();ui!=uie;++ui){

if(Instruction *piuser=dyn_cast<Instruction>(ui)) {

if((isa<Loadlnst>(piuser)) II (isa<Storelnst>(piuser))){

global++;

}

}

}

}

map

{

53

}

}

//Checks whether Load instruction accesses Global constant integer arrays memory using

else if(isa<LoadInst>(i)){

Loadlnst *Linst = dyn_cast<LoadInst>(i);

for(vector<Value*>::iterator iter =GVInfo.begin(); iter != GVInfo.end(); iter++) {

if(*iter == Linst->getPointerOperandO)

global++;

}

}

//Checks whether

//Store instruction accesses Global constant integer arrays memory using map

else if(isa<Storelnst>(i)){

Storelnst *Sinst = dyn_cast<StoreInst>(i);

for(vector<Value*>::iterator iter =GVInfo.begin();

iter != GVInfo.end(); iter++) {

if(*iter ==Sinst->getPointerOperand())

global-H-;

}

}

if(isa<CallInst>(i) Ilisa<GetElementPtrinst>(i)

II isa<StoreInst>(i) II isa<Terminatorinst>(i) II isa<AllocationInst>(i) II

isa<LoadInst>(i) II isa<FreeInst>(i))

mcibb++;//count of control constructs and memory access instructions

if(isa<PHINode>(i))

++phibb; //count of phi instructions

}

Terminatorinst *te = pb->getTerminator();

const BasicBlock *BB = Pb;

loop = LI.getLoopFor(BB);

unsigned int benum=0;

if (LI. isLoopHeader(pb)) {

benum= loop->getNumBackEdges();

tbnum+= benum;

}

llvm::cerr << "Number of instructions :\t" << pb->size0 << "\n";

//gives number of instructions from begin to first non phi

llvm::cerr << "Number of PHI Instructions :\t" << phibb< < "\n";

llvm::cerr << "Control flow and memory transfer instructions :\t" << mcibb << "\n";

map

54

llvm::cerr << "Constant global array memory access instructions :\t" << global << "\n";

llvm::cerr << "Number of successors. :\t" < <te->getNumSuccessors() << "\t" <<"\n";

llvm::cerr << "Number of backedges :\t" << benum << "\t"< <"\n";

for(unsigned int nt=0;nt<(te->getNumSuccessorsO);++nt){

if(pb == te->getSuccessor(nt)){

x4=x4+2;

llvm::cerr << "Basic Block has self loop" <<"\n";

break;

}

}

edgesf+=te->getNumSuccessors();

phif+=phibb;

nif+= pb->size();

//empirical relations for determining extent of control

//and data flows at basic block level

//check for control flow - mem. and control instructions are more

if((mcibb-global) > kbl * ((pb->sizeO)-phibb))

x1 = 1;

//check for data flow - phi instructions absent and less than or

//equal to one successor

if(phibb == 0 && (te->getNumSuccessors() <= 1))

x2 = -1;

// check for control flow - phi instructions are less than successors

if(phibb!=0 && phibb < te->getNumSuccessors())

x3 = 1;

wbb=p1 * x1 + p2 * x2 + p3 * x3 + p4 * x4;

if(wbb > 0){

llvm::cerr << "Basic block " << pb->getName()< < " has more of control flow\n\n";

cfbb++;

}

else{

llvm::cerr << "Basic block " << pb-=>getName()< < " has more of data flow\n\n";

df bb++ ;

}

//storing the basicblock information in map

MBI = new MyBlocklnfo();

MBI->mci = mcibb;

MBI->arr = global;

MBI->phi = phibb;

MBI->size = pb->size();

MBI->weight = wbb;

MBI->xl = xl;

MBI->x2 = x2;

MBI->x3 = x3;

MBI->name = pb->getName();

MBI->succ = te->getNumSuccessors();

BBInfo[pb] = MBI;

}

llvm::cerr << "Number of instructions in function :\t" << nif<<"\n"

llvm::cerr << "PHI Instructions in function :\t" << phif <<"\n";

llvm::cerr << "Data flow basic blocks in function :\t" << dfbb<< "\n";

llvm::cerr << "Control flow basic blocks in function :\t" <<cfbb << "\n";

llvm::cerr << "Average basic block size :\t"< <nif/F.size()< <endl;

llvm::cerr << "Number of back edges in function: \t" < <tbnum< <"\n"

llvm::cerr << "Number of nodes in function: \t" << F.size()<<"\n"

llvm::cerr << "Number of edges of function: \t" << edgesf<<"\n\n"

//empirical relations for determining extent of control and data

//flows at function level

//check for data flow - number of data flow blocks are more

if(dfbb > kfl * F.sizeO)

yl = -1;

//check for control flow - number of control flow blocks are more

else if(cfbb > kfl * F.size())

yl = 1;

//check for control flow - edges by node ratio is more

if(edgesf > kf2 , F.size())

y2 = 1;

//check for data flow - edge by node ratio is very less

else if(edgesf < kf3 * F.size())

y2 = -1;

//check for control flow - number of nodes greater than avg. basic block size

if (F.sizeO > (nif/F.sizeO))-

y3 = 1;

//check for data flow - avg. basic block size greater than number of nodes.

else if ((nif/F.size()) > F.size())

y3 = -1;

if(tbnum > kf 4 * edgesf)

y4 = 1;

wf = q1 * yl + q2 * y2 + q3 * y3+ q4 * y4;

if (wf>=0)

56

llvm::cerr << "This function has more of control flow\n\n\n";

else

llvm: : cerr << "This function has more of data flow\n\n\n" ;

//storing the function information in map

MFI = new MyFunctionlnfoO;

MFI->ni = nif;

MFI->phi = phif;

MFI->nodes = F.size();

MFI->edges = edgesf;

MFI->loop = tbnum;

MFI->dfbb = dfbb;

MFI->cfbb = cfbb;

MFI->yi = yl;

MFI->y2 = y2;

MFI->y3 = y3;

MFI->weight = wf;

MFI->name = F.getName();

FInfo[pF] = MFI;

GVInfo.clear{);

return false; // Return 'false' when LLVM IR is not modified.

}

char CDFbinning::ID = 0; //CDFbinning Pass ID

}

namespace {

//Registering CDFbinning Pass

RegisterPass<CDFbinning> X("CDFbinning", "CDFbinning Analysis Pass");

}

57

Appendix C

Selection Pass

//Filter Pass -> Creates Intrinsics as place holders

//for instructions

//for target specific execution

#include <string>

#include "llvm/Intrinsics.h"

#include "llvm/Pass.h"

#include "llvm/Function. h'

#include "llvm/BasicBlock.h'

#include "llvm/InstrTypes.h"

#include "llvm/Instructions.h"

#include "llvm/Value.h"

#include "llvm/User.h'

#include "llvm/Support/CFG.h'

#include <map>

#include <vector>

#include "../CDFbinning/CDFbinning.h"

#include "llvm/Type.h'

#include "llvm/IntrinsicInst.h"

#include "llvm/DerivedTypes.h"

#include "llvm/Support/CommandLine.h"

#include "Deps.h'

using namespace llvm;

using namespace std;

namespace llvm{

static c1: :opt<bool> filter_hw("filter-hw", cl: :desc("filter for

dataflow intensive stufe (hw generation only)"));

struct Filter : public FunctionPass {

static char ID;

Filter() : FunctionPass((intptr_t)&ID) {}

//To specify that CDFbinning Pass is required for current transformation

void getAnalysisUsage(AnalysisUsage &AU) const {

AU. addRequired<CDFbinning>();

}

//Iterating over all the functions in the input algorithm

virtual bool runOnFunction(Function &F) {

CDFbinning &CDF = getAnalysis<CDFbinning>();

cerr< <"-------Filter Pass Output-------"< <endl;

cerr<< "\n\nFunction-> " << F.getName() << "\n\n";

cerr<<"non positive 'weight' => basic block with more data flow\n";

//Iterating over all the basic blocks of the function

for(Function::iterator b=F.begin(),be=F.end();b!=be;++b){

llvm::cerr << CDF.ID;

BasicBlock* bbp = dyn_cast<BasicBlock>(&*b);

llvm::cerr << endl< <bbp->getName()< < " weight:"<< (CDF.BBInfo[bbp])->weight <<"\n";

//Check for basic block with more of data flow

if((not filter_hw and CDF.BBInfo[bbpl->weight <=0)

or (filter hw and CDF.BBInfo[bbpj->weight >O)){

//instantiating an object of Deps class in Deps.h file

Deps *dp = new Deps(bbp);

vector<Value*>

migrate_end_arglist;//Vector Container to handle values required for migrate_end

intrinsic creation

llvm::cerr<<"\nFunction type of migrate_begin intrinsic for basic block

<< bbp->getNameO << ":\n";

//Tys** points to returntype and operand types

const Type **Tys=(const Type***)calloc((dp->NrincomingO)+1,sizeof(Type*));

unsigned int i=0;

//Return Type of migrate_begin intrinsic

Tys[i]=Type::Int32Ty;

cerr << *Tys[i++]<<"\t";

for(vector<Value*>::iterator it=dp->mb_begin(),e=dp->mb_end();it!=e;it++) {

Tys[i]=(*it)->getTypeO;

llvm:: cerr< <*Tys [i++] < <"\t";

}

59

llvm::cerr< <"\n";

Module *M = bbp->getParentO->getParentO;

// migrate begin intrinsic

Function *FMigBegin = Intrinsic::getDeclaration(M, Intrinsic::migrate_begin,Tys);

intrinsic creation

// Creates and inserts intrinsic call before terminator instruction

CallInst *CI= new CallInst(FMigBegin,dp->mb_begin(),dp->mb_end(),

"migrate begin",bbp->getTerminator());

cerr< <"migrate_begin intrinsic created"< <endl;

//PHI,terminator and intrinsic instructions not considered for

//migrate_end intrinsic creation

for(BasicBlock::iterator bi= bbp->getFitstNonPHI(),ie=CI;bi!=ie;++bi){

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer.

Calllnst* NewCI=O;

unsigned int k=0;

for(Value::use_iterator ui = pinst->use_begin(),uie = pinst->use_end();

((ui!=uie) && (k==0));++ui){//iterating over def use chain

if (Instruction *piuser=dyn_cast<Instruction>(ui)) {

//create migrate_end intrinsic only when instruction has

//phi, terminator or external dependencies.

if((piuser->getParent() != bbp) II ((piuser->getParent() == bbp) &&

((piuser->isTerminator())-II isa<PHINode>(piuser)))){

++k;

const Type *Ty = pinst->getType();

cerr<<"Return Type of instruction being replaced -> "< <*Ty< <endl;

Function *FMigEnd=O;

Value* cintl= dp->lookupOutgoing(pinst);//fetching x_enum from Deps.h

const Type *Tys[] = {pinst->getType() ,Type: : Int32Ty, Type: : Int32Ty};

if(dyn_cast<IntegerType>(Ty)) {

//migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M, Intrinsic::migrate_end_int,Tys,1);

const Type *MET = FMigEnd->getReturnType();

cerr< <"migrate_end intrinsic of return type " << *MET<< " created"< <endl;

}

else

if(Ty->isFloatingPoint()) {

//migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M, Intrinsic::migrate_end_float,Tys,1);

const Type *MET = FMigEnd->getReturnType();

cerr< <"migrate_end intrinsic of return type " << *MET<< " created"< <endl;

}

else

if(isa<PointerType>(Ty)) {

const PointerType *PTy.= dyn_cast<PointerType>(Ty);

const IntegerType *it=dyn_cast<IntegerType>(PTy->getContainedType(0));

coast PointerType *itp=dyn_cast<PointerType>(PTy->getContainedType(0));

coast ArrayType *ita=dyn_cast<ArrayType>(PTy->getContainedType(0));

if (it){

if(it->getBitWidth() == 8){

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic: :migrate_end_ptr_8,Tys);

const Type *MET = FMigEnd->getReturnTypeO;

cerr<<"migrate_end intrinsic of return type " << *MET<< "created"< <endl;

}

else if(it->getBitWidth() _= 32){

// migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic:: migrate_end_ptr_32,Tys);

const Type *MET = FMigEnd->getReturnType();

cerr< <"migrate_end intrinsic of return type " << *MET<< "created"< <endl;

}

else

printf("\n create suitable pointer to integer type intrinsic\n");

else if((PTy->getContainedType(0))->isFloatingPointO){

const Type *Ty = PTy->getContainedType(0);

if(Ty->getTypelD() _= 1){

// migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_float,Tys);

const Type *MET = FMigEnd->getReturnType();

cerr< <"migrate_end intrinsic of return type " << *MET<< "created"< <endl;

I

else if(Ty->getTypelDO == 2){

// migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_double,Tys);

const Type *MET = FMigEnd->getReturnTypeO;

cerr<<"migrate_end intrinsic of return type << *MET<< "created"< <endl;

}

else

printf("\n create suitable pointer to floating point type intrinsic\n");

}

else if(itp){

coast IntegerType *itl=dyn_cast<IntegerType>(itp->getContainedType(0));

61

if(itl and itl->getBitWidth() == 32){

// migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_ptr32,Tys);

coast Type *MET = FMigEnd->getReturnType();

cerr«°migrate_end intrinsic of return type " << *MET<< "created"<<endl;

}

else

printf("\n create suitable pointer to pointer type intrinsic\n");

}

else if(ita){

coast IntegerType *itl=dyn_cast<IntegerType>(ita->getContainedType(0));

if(it1 and itl->getBitWidth() == 32){

// migrate_end intrinsic creation

FMigEnd = Intrinsic: :getDeclarat&on(M,Intrinsic::migrate_end_ptr_ptr32,Tys);

coast Type *MET = FMigEnd->getReturnType();

cerr<<"migrate_end intrinsic of return type " << *MET<< "created"< <endl;

}

else if(itl and itl->getBitWidth() _= 8){

// migrate_end intrinsic creation

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_ptr,Tys);

coast Type *MET = FMigEnd->getReturnType();

cerr< <"migrate_end intrinsic of return type " << *MET<< "created"< <endl;

}

else

printf("\n create suitable pointer to array type intrinsic\n");

}

else

printf("\n create suitable pointer type intrinsic\n");

}

else if(isa<ArrayType>(Ty)){

const ArrayType *ita=dyn_cast<ArrayTTpe>(Ty);

const IntegerType *itl=dyn_cast<IntegerType>(ita->getContainedType(0));

cerr«°C Contained Type -> "<<*it1 <<"Size -> "<< iti->getBitWidthO<<endl;

if(itl and itl->getBitWidth() == 32){

// migrate_end intrinsic creation

FMigEnd = Intrinsic: :getDeclaration(M, Intrinsic: :migrate_end_ptr_8,Tys);

coast Type *MET = FMigEnd->getReturnType();

cerr< <"migrate_end intrinsic of return type " << *MET<< " created"< <endl;

}

else if(itl and itl->getBitWid•th() == 8){

I

// migrate_end intrinsic creation

FMigEnd = Intrinsic: :getDeclaration(M, Intrinsic: :migrate_end_ptr_32,Tys);

const Type *MET = FMigEnd->getReturnType();

cerr<<migrate_end intrinsic of return type " < *MET<< " created"<<endl;

}

else if((ita->getContainedType(0))->isFloatingPoint()){

coast Type *Ty = ita->getContainedType(0);

if(Ty_>getTypeIDO == 1){

// migrate_end intrinsic creation

FMigEnd = Intrinsic:: getDeclaration(M, Intrinsic:: migrate_end_ptr_float,Tys);

coast Type *MET = FMigEnd->getReturnType O ;

cerr«°migrate_end intrinsic of return type " << *MET<< "created"< <endl;

}

else if(Ty->getTypelD() == 2){

// migrate_end intrinsic creation

FMigEnd = Intrinsic: :getDeclaration(M, Intrinsic: :migrate_end_ptr_double,Tys);

const Type *MET = FMigEnd->getReturnTypeO;

cerr«°migrate_end intrinsic of return type " << *MET<< "created"< <endl;
}

else

printf("\n create suitable pointer to floating point type intrinsic\n");
}

else

Printf("\n create suitable array type intrinsic\n");
}

else

printf(ui\n create suitable migrate_end intrinsic\n");

Value* tint= dp->mb_enum;//fetching mb_enum from Deps.h

migrate_ end_ arglist.push_back(cint);

migrate_end_arglist.push_back(cinti);

// Creates and inserts intrinsic call before terminator instruction

NewCI = new

CallInst(FMigEnd,migrate_end_arglist.begin(),migrate_end_arglist.end(),

"migrate_end",bbp->getTerminator());

migrate_end_arglist. clear 0,
}

}

}

//iterating over def use chain of current instruction

for(Value::use_iterator ui =pinst->use_begin(),uie = pinst->use_end();ui!=uie;){

63

if (Instruction *piuser=dyn_cast<Instruction>(ui)) {

//increment iterator early to avoid voiding it by deleting the instruction

++u•

//replace dependencies(uses) only for phi nodes,terminator instructions

//and users outside basic block

if((piuser->getParent() != bbp) II ((piuser->getParent() == bbp) &&

((piuser->isTerminator()) II isa<PHINode>(piuser)))){

cerr<< piuser->getNameO<< "instruction -> Uses of '<< pinst->getNameO

«" replaced with migrate_end intrinsic\n";

piuser->replaceUsesOfWith(pinst,NewCI);

}

}

else

cerr<<"Use not an instruction and hence not replaced! "< <endl; //Error Message

}

}

//PHI, intrinsic & terminator instrictions retained

for(BasicBlock::iterator bi=bbp->getFirstNonPHI(),ie=CI;bi!=ie;){

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer.

//increment iterator early to avoid voiding it by deleting the instruction

++bi;

pinst->dropAllReferences(); //drop all references of each instruction

}

int k=0;

//PHI, intrinsic & terminator instructions retained

for(BasicBlock::iterator bi= bbp->getFirstNonPHI(),ie=CI;bi!=ie;){

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer.

//increment iterator early to avoid voiding it by deleting the instruction

++bi;

if(pinst->use_empty()) //Delete instruction only when its uses are empty.

pinst->eraseFromParent 0 ; //discard instructions from basic block

else{

++k•

cerr< <pinst->getNameO< <" -> Uses not empty!\n "<< k <<endl; //Error Message

}

}

if (k==0)

cerr< <"\nPHI, intrinsic & terminator instructions retained and rest deleted\n";

delete dp;

}

}

return true; // Return 'true' when LLVM IR is modified.

}

char Filter: :ID = 0; //Filter Pass ID

}

namespace{

RegisterPass<Filter> X("Filter", "Filter Pass"); //Registering Filter Pass

}

65

Appendix D

Deps Header File

//Header file to collect arguments for intrinsic functions

#ifndef DEPS H

#define DEPS_H

#include "llvm/Pass.h"

#include "llvm/Module.h"

#include "llvm/Funct ion. h'

#include "llvm/BasicBlock.h"

#include "llvm/InstrTypes.h'

#include "llvm/Instructions.h"

#include "llvm/Value.h"

#include <vector>

#include "llvm/Constants.h"

#include<map>

using namespace llvm;

using namespace std;

namespace llvm {

class Deps

{

public:

vector<Value*>mb_arglist;//migrate_begin arglist vector for each basic block

map<Instruction*,Value*>me_arglist;//migrate_end arglist map for each basic block

Value* mb_enum;

Deps(BasicBlock *bbp) {//FILL incoming vector here

static unsigned int migrate_begin_counter=0;

//add this number to the migrate_end_arglist

mb_enum=Constantlnt: :get (Type::Int32Ty,migrate_begin_counter);

migrate_begin_counter++;

mb_arglist.push_back(mb_enum);

mb_arglist.push_back(mb_enum);

Function *func = bbp->getParent O ;

//adding function arguments to migrate_begin argument list

for(Function::arg_iterator agi=func->arg_begin(),agie= func->arg_end();agi!=agie;++agi){

Value *farg = dyn_cast<Value>(agi);

for(Value::use_iterator uil = farg->use_begin O ,uiei = farg->use_end();ui1!=uiel;++ui1){

if(Instruction *farguser=dyn_cast<Instruction>(uil)) {

if(farguser->getParentO== bbp){

mb_arglist .push_back(farg);

cerr< <"function argument -> " < <f arg->getNameO< <"\n°;

break;

}

}

}

}

for(BasicBlock::iterator i= bbp->begin(), ie=bbp->getTerminator(); i!=ie;++i){

Instruction* pinst = i;//Converting BasicBlock iterator to Instruction pointer.

if(isa<PHINode>(pinst))

mb_arglist.push_back(pinst);//storing phi values

else{

//Iterating over use def chain of each instruction of BB

for(User::op_iterator opi = pinst->op_begin(),opie = pinst->op_end();

opi!=opie;++opi){

Value *v = *opi;

//Check whether operand is an instruction

if(Instruction *vinst=dyn_cast<Instruction>(v)) { _

if(vinst->getParent() != bbp){//Check for external dependencies of basic block.

mb_arglist.push_back(v); //storing operands in vector container

}

}

}

}

}

//add this number to the migrate_end_arglist

Value *mig_begin_num=ConstantInt::get(Type::Int32Ty,(mb_arglist.size()-2));

67

mb_arglist[1]=mig_begin_num;

//FILL map here

//position of migrate_end statement.

int migrate_end_position=0;

//PHI,terminator and intrinsic instructions not considered for migrate_end intrinsic

creation

for(BasicBlock::iterator bi= bbp->gstFirstNonPHI(),ie=bbp->getTerminator();bi!=ie;++bi){

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer.

unsigned int k=0;

for(Value::use_iterator ui = pinst->use_beginO,uie = pinst->use_endO;((ui!=uie) &&

(k==0));++ui){//iterating over def use chain

if (Instruction *piuser=dyn_cast<Instruction>(ui)) {

//create migrate_end

//intrinsic only when instruction has phi, terminator or external dependencies.

if((piuser->getParent() != bbp) II ((piuser->getParent() == bbp) &&

((piuser->isTerminator()) II isa<PHINode>(piuser)))){

++k;

Value *cintl=ConstantInt: :get (Type::Int32Ty,migrate_end_position);

me_arglist[pinst]=cintl;

}

}

}

migrate_end_position++;

}

};

typedef vector<Value*>::iterator mb_iterator;

typedef map<Instruction*,Value*>::iterator me_iterator;

unsigned int Nrincoming() {

return mb_arglist.size();

}

unsigned int NrOutgoing() {

return me_arglist.size();

}

Value* lookupOutgoing(Instruction *I) {

me_iterator mei=me_arglist.find(I);

if(mei==me_arglist.end O) {

Value *cint2=Constantlnt::get(Type:':Int32Ty,-1);

return cint2;

}

else

return me_arglist(I]

}

mb_iterator mb_begin() {

return mb_arglist.begin O ;

}

mb_iterator mb_end() {

return mb_arglist. end ();

}

me_iterator me_begin() {

return me_arglist.begin();

}

me_iterator me_end() {

return me_arglist.end();

}

};

}

#endif

Appendix E

Two Dimensional DFT

//Two Dimensional Discrete Fourier Transform

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<complex.h>

int twod_dit(unsigned int N,double a[][N]){

complex double wl,w2,p,q;

unsigned int nl,n2,kl,k2;

double (*real)[N] = (double (*)[N]) calloc(N * N,sizeof(double));

double (*imag)[N] = (double (*)[N]) calloc(N * N,sizeof(double));

printf("\n DFT of 2D array :\n");

for(k1=0;k1<N;++k1){

for (k2=0;k2<N;++k2){

q=0;

for (n1=0;n1<N;++n1){

p=0;

for(n2=0;n2<N;++n2){

w2 = -1 * (2 * 3.14159 * n2 * k2)/N * I;

P - P + a[n1] [n2] * cexp(w2)

}

wl = -1 * (2 * 3.14159 * n1 * kl)/N * I;

q = q + p * cexp(wl)

}

70

real [kl] [k2] = creal (q) ;

imag[kl] [k2] = cimag(q);

if(imag[kl] [k2] >= 0)

printf ("\t%5.31f + i %5.31f \t" ,real [ki] [k2] , imag [kl] [k2]) ;

else

printf("\t%5.31f - i %5.31f\t",real[k1][k2],-1 * imag[kl][k21);

}

printf ("\n")

}

printf("\n\n");

return 1;

}

int main(){

unsigned int i,j,num;

printf("\nenter length(or breadth) of 2D array: ");

s canf ("%d" , &num) ;

double (*p)[num] = (double (*)[num]) calloc(num * num,sizeof(double));

printf("\nenter elements An ");

for(i=0;i<num;++i)

for(j=0;j<num;++j)

scanf("\n%lf",&p[i] [j]);

twod_dit(num,p);

free(p);

printf(°\n\n");

return 1;

}

71

Appendix F

Walsh-Hadamard Transform

//Walsh Transform

#include<stdio.h>

#include<stdlib.h>

int walsh_transform(unsigned int N,unsigned int n,int *p){

unsigned int a,b,i,j,k,ki = N/2,k2= 1;

int val;

int *q = (int *)calloc(N,sizeof(int));

int (*WHT)[N] = (int (*)[N])calloc(N * N,sizeof(int));

int (*A)[N] = (int (*)[N])calloc(N * N,sizeof(int));

int (*B)[N] = (int (*)[N])calloc(N * N,sizeof(int));

int (*M) [k1] = (int (*) [k]) calloc(kl * ki, sizeof (int)) ;

int (*Ik)[kl] = (int (*)[ki])calloc(kl * kl,sizeof(int));

for(i=0;i<k1;++i){//Ik - identity matrix

for(j=0;j<kl;++j){

if(i==j)

Ik[i] [j] = 1;

}

}

f or(i=0;i<kl;++i){//first product term - WHT=WHT2*Ikl

for(j=0;j<k1;++j){

WHT[i] [j]=Ik[i] [j];

WHT[i] [j+kl]=Ik[i] [j]

WHT[i+kl] [j]=Ik[i] [j];

72

WHT[i+kl] [j+ki]=-Ik[i] [j]

}

}

fora=2;a<=n;++a){

kl=k1/2;

k2=k2*2;

for(i=0;i<ki;++i){//M = WHT2*Ik1

for(j=0;j<ki;++j){

M[i] [j7=lk[1] [j];

M[i] [j+kl]=IkIi] [j];

M[i+kl] [j]=Ik[i] [j] ;

M[i+kl] [j+k1]=-Ik[i] [j];

}

}

for (b=0;b<k2;++b){//A=Ik2*M

for(i=0;i<2*kl;++i){

for(j=0;j<2*kl;++j){

A[i+b*2*kl] [j+b*2*kl]=M[i] [j];

}

}

}

}

else{

for(i=0;i<(2*k2);i=i+2){//last product term - A=Ik2*WHT2

A[i] [i]=1;

A [i] [i+1] =1;

A[i+l] [i]=1;

A[i+l] [i+l]=-1;

}

}

f or(i=0;i<N;++i){ //B=WHT*A

for(j=0; j<N;++j){

vat=0;

for(k=0;k<N;++k){

val = val + WHT[i] [k] * A[k] [j];

}

B[i] [jJ=vat;

}

}

73

for(i=0;i<N;++i){ //WHT=B && A=O

for(j=0;j<N;++j){

WHT[i] [j]=B[i] [j]

A[i] [j]=0;

}

}

}

for(i=0;i<N;++i){//print Walsh Matrix

for(j=0;j<N;++j)

printf("%d ",WHT[i] [j]);

printf("\n");

}

printf("\n\n");

for(i=0;i<N;++i){//q=WHT*p

for(j=0;j<N;++j)

q[i] = q[i] + WHT[i] [j] * p[j] ;

}

printf("walsh transform of sequence: \n");

for(i=0;i<N;++i)//print Tansform

printf ("%d\t" , q [i]) ;

printf("\n\n");

free(WHT);

free(A);

free(B);

free(M);

free(Ik);

return 1;

}

int main(){

unsigned int i,j,l,num,N=1,n=0;

int *p;

printf("\nenter number(num(>O)) = 2"n) of elements in sequence: ");

scanf("%d",&num);

while(1){

if(num <= N)

break;

else{

N=N*2;

n++;

}

74

P = (int *)calloc(N,sizeof(int));

printf("\nenter sequence :\n ");

for(i=O;i<num;++i)

scarf("fin yd",&p[i]);

Walsh_ transform(N,n,p);

return 1;

75

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

