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ABSTRACT 

Hardware/Software (HW/SW) codesign of an application is a popular design method-

ology employed to meet the performance needs under design costs and time-to-market 

constraints. It stands for the design of a system or application using both hardware and 

software components. The advantages of software based design are flexibility, low cost 

and less development time and the advantages of hardware based design are liability 

(backup) and performance. HW/SW codesign is employed to achieve an optimal system 

design taking the advantage of individual designs. 

HW/SW partitioning is a primary step of HW/SW codesign which involves split-

ting of the application into hardware and software divisions based on the initial design 

constraints such as performance, costs and hardware area. Automatic HW/SW parti-

tioning is the automatic identification and sectioning of the critical code segments of 

the application which are to be implemented in hardware. There are a few works which 

have already implemented automatic HW/SW partitioning using various tools and tech-

niques, but the present partitioning work is based on Low Level Virtual Machine (LLVM) 

compiler framework and a novelty of its kind. 

The LLVM is a compiler infrastructure designed to support life-long program analysis 

and transformation for arbitrary programs. LLVM provides tools and libraries used to 

build compilers, optimizers, code generators and many other compiler related programs. 

The present work is aimed as an extension to the LLVM tool chain which automati-

cally creates a HW/SW division of the input algorithm. The input algorithm is lowered 

by the LLVM compiler frontend into the language and target independent LLVM In-

termediate Representation (LLVM IR) and the backend modules written, modify the 

LLVM IR to create the HW/SW partitioned output. 

The backend modules comprise a Binning Pass and a Selection Pass. The LLVM Pass 

is a set of classes used to analyze, transform or output the LLVM IR. The Binning Pass 

is an analyze pass which employs heuristics to gather data flow and control flow statistics 

of the input algorithm written in C/C++ programming languages and empirical feature 

analysis is done to decide the parts of the algorithm to be implemented in HW/SW and 

the partitioning decision is taken after the above analysis. 



The Selection Pass is.a transform pass created to partition the input algorithm into 

HW/SW sections. The Selection Pass exploits the features collected by the Binning 

Pass to partition the algorithm for implementation in HW/SW. It modifies the LLVM 

IR of the input algorithm by replacing the set of the instructions which are not to be 

executed by the curent backend with intrinsic function calls. The above mentioned 

intrinsic instructions are defined as extensions to the LLVM language to keep the control 

and dataflows of the algorithm intact and are inserted at each context computing switch. 

The Selection Pass generates the LLVM IR of the hardware and software sections. 

The hardware section is sent to the LLVM VHDL backend which. transforms the LLVM 

IR into a VHDL RTL representation. The software section is sent to the LLVM PowerPC 

backend which transforms the LLVM IR into a PowerPC assembly language output. The 

backends are adapted to process the above mentioned intrinsic instructions. The work is 

based on the existing C/C++ frontends, VHDL and PowerPC backends of the compiler. 

The above passes have been tested and validated using input algorithms from the 

Digital Signal Processing (DSP) domain. 
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Chapter 1 

Introduction 

1.1 Overview 

The goal of the dissertation is to develop a tool for the Low Level Virtual Machine(LLVM) 

compiler suite, which automatically creates a Hardware/Software (HW/SW) division of 

the input algorithm. The input algorithm is lowered by the LLVM compiler frontend into 

the language and target independent LLVM Intermediate Representation(LLVM IR) and 

the backend modules written, modify the LLVM IR to create the HW/SW partitioned 

output. The work is based on the existing C/C++ frontends, VHDL and PowerPC 

backends of the compiler. 

The results of the work are: 

1. Binning Pass to collect Data/Control flow statistics 

2. Selection Pass for Hardware/Software mapping 

3. Adaptations to the VHDL backend 

4. Adaptations to the PowerPC backend 

5. Creation of example application 
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1.2 Motivation 

The main motive of this work is to develop an extension to the LLVM tool chain for 

automatic HW/SW partitioning. HW/SW partitioning is a primary step and an inte-

gral part of HW/SW codesign process. HW/SW codesign is the design of a system or 

application using both hardware and software components. As mentioned in [1], the 

advantages of software based design are flexibility, low cost and less development time 

and the advantages of hardware based design are liability(backup) and performance. 

HW/SW codesign is employed to take into account the above mentioned advantages, 

to achieve an optimal system design. HW/SW partitioning is the splitting of the ap-

plication into hardware and software divisions based on the initial design constraints 

such as performance, costs and hardware area. Automatic HW/SW partitioning is the 

automatic identification and sectioning of the critical code segments of the application 

which are to be implemented in hardware. There are a few works which have already 

implemented automatic HW/SW partitioning using various tools and techniques such as 

[2], [3] etc., but the present work is based on LLVM compiler framework and a novel of 

its kind. 

1.3 Introduction to LLVM 

The LLVM is a compiler framework designed to support life-long program analysis and 

transformation for arbitrary programs [4]. As mentioned in [5], the "LLVM is a com-

piler infrastructure that provides modular and reusable components to build compilers, 

optimizers, code generators and many other compiler related programs." A compiler is 

a translator which translates a program written in high level or source language into 

an equivalent program in machine level or object language. The traditional C compiler 

(GCC), Java Just-In-Time(JIT) compiler etc. are some examples of compilers. 

4 



1.3.1 The LLVM Compiler 

The figure 1.1 below shows the workflow of a LLVM-toolsuite compiler run. 

C/C++ 	J I LLVM 	Mid Level 	Code 	Target File 

	

Front End I 	Optimizer 	Generator 

Figure 1.1: LLVM GCC Compiler Block Diagram [5] 

The language specific front end lowers the code to LLVM IR. The LLVM IR is a 

well-defined intermediate representation of programs which provides for the capability of 

representing all high level languages. The LLVM includes, besides others, C and C++ 

front ends. The front ends comprise scanners, parsers and intermediate code generators. 

The scanner or lexical analyser recognises the patterns in the source code text and 

groups them into tokens and GCC parsers check the syntactic and semantic validity of 

the tokens. The LLVM disassembler converts the source code into LLVM IR. 

LLVM is equipped with a mid-level optimiser which performs various standard scalar 

and loop optimisations. The link time is a natural place for interprocedural (cross 

functional) optimisations. The LLVM has static backends to generate code for X86, 

X86-64, PowerPC 32/64, ARM, SPARC and various other architectures. 

1.3.2 LLVM Intermediate Representation 

The LLVM defines a low-level code representation or Intermediate Representation (IR) 

in Static Single Assignment (SSA Form) which serves as a common code representation 

used throughout all phases of the LLVM compilation strategy. As mentioned in the [6], 

the LLVM code representation is designed to be used in three different forms all of which 

are equivalent. They are : 

1. In-memory compiler IR 

2. On-disk bitcode representation 	- 

3. Human readable assembly language representation 

This allows LLVM to provide a intermediate representation for efficient compiler trans-

formations and analysis, while providing a natural means to debug and visualize the 

transformations. 

3 



1.3.3 LLVM Type System 

As mentioned in [7], the LLVM instruction set is fully typed, using a low-level, source 

language independant type system.- The type system consists of primitive types with 

predefined sizes and derived types. The LLVM instructions have strict type rules and 

there are no mixed type operations. An explicit cast instruction is the sole manner to 

convert a value from one type to other type. As mentioned in [8], the LLVM type system 

lays a good foundation for aggressive optimisations. 

1.3.4 LLVM Pass 

LLVM Passes perform the transformations and optimizations that make up the compiler. 

The LLVM Pass is a set of classes used to analyse, transform or output the LLVM IR. As 

mentioned in [6], optimizations in LLVM are implemented as Passes that traverse some 

portion of a program to either collect information or transform the program. Passes in 

LLVM can depend on other passes etc. The Passes in LLVM are classified into three 

types: 

1. Analysis Passes which compute information for usage in other passes 

2. Transform Passes which modify the program 

3. Utility Passes which provide some utility 

4. Output passes which output the LLVM IR 

The LLVM Passes are to be registered to obtain desired functionality. The present 

section on LLVM presents only a brief and relevant description. The citation [6], can be 

referred for a detailed reading on LLVM. 

ri 



1.4 Description 

The various stages of the proposed work are depicted in the following figure 1.2 

C/C++ Input 

LLVM 
Front End 

Optimization 
Passes 

Analyze 
Pass 

Selection 
Pass 

	

Power PC 	VHDL 

	

Backend 	Backend 

Linking Stage 

	

Jr 	 '1, 

Synthesis 

Minx EDK 

FPGA 

Output 

Figure 1.2: Block Diagram 

The input algorithm is a code chunk in C or C++ programming languages. The 

input algorithm is lowered into language independant LLVM IR by the LLVM front end. 

A series of optimizations such as loop unrolling etc. are run on the algorithm with the 

help of pre-existing optimization passes. 

The Binning pass which is an Analysis Pass 1 on the preceding pageis created to 

identify the sections of the algorithm to be sent to HW/SW. There are already var-

ious approaches for HW/SW partitioning like the Deterministic approach, Statistical 

approach and the usage of Profiling techniques 191.  But the present Pass extracts var-

ious features from the LLVM IR of the input algorithm. The features, for instance, 

include the memory accesses or different controlflow/dataflow features of the algorithm. 

Heuristics are created and empirical feature analysis is done to decide the parts of the 

algorithm to be implemented in HW/SW and the partitioning decision is taken after the 

above analysis. 

5 



The Selection Pass which is a Transform Pass 2 on page 4 is created to partition 

the input algorithm into HW/SW sections. - The Selection Pass exploits the features 

collected by the Binning Pass to partition the algorithm for implementation in HW/SW. 

It modifies the LLVM IR of the input algorithm by replacing the set of the instructions 

which are not to be executed by the curent backend with intrinsic function calls. The 

above mentioned intrinsic instructions are defined as extensions to the LLVM language 

to keep the control and dataflows of the algorithm intact and are inserted at each context 

computing switch. 

The Selection Pass generates the LLVM IR of the hardware and software sections. 

The hardware section is sent to the LLVM VHDL backend which transforms the LLVM 

IR into a VHDL RTL representation. The software section is sent to the LLVM PowerPC 

backend which transforms the LLVM IR into a PowerPC assembly language output. The 

backends are adapted to process the above mentioned intrinsic instructions. 

The hardware(VHDL RTL) and software(PowerPC) sections are to be integrated 

using an existing bus interfacel101 and a HW/SW interaction program written in C 

programming language. This program comprises the definitions for the above mentioned 

intrinsic functions is linked to the execution process in the linking stage. The program 

with the help of the bus interface 

1. Moves the input data to hardware 

2. Waits till the end of the instruction execution in the hardware 

3. Retrieves the results obtained from hardware 

The bus interface which is used for data transfer between HW/SW and the hardware 

section of the input algorithm are to be synthesized on Xilinx Virtex-II FPGA and the 

software section of the input algorithm is to be executed on the PowerPC microprocessor 

present on the same FPGA . The Xilinx Embedded Development Kit (EDK) is employed 

for the co-synthesis. Test examples from DSP domain are used to test the created passes. 

0 



Chapter 2 

Binning Pass 

The Binning Pass is an Analysis Pass which categorises the control flow driven and data 

flow driven sections of the LLVM IR of the test algorithm at basic block and function 

levels. 

2.1 Data Flow and Control Flow in LLVM 

LLVM instruction set provides explicit data flow and control flow information of the 

input algorithm which is explained in the subsequent sections. 

2.1.1 Data Flow 

Data flow is the movement of data or information through the sections of the algorithm. 

The sections of an algorithm are processed depending on the availability of data input. 

Data flow information can be gathered by setting up and solving systems of equations 

at various points within the program. As mentioned in the [11], a typical data flow 

equation has the form 

out[S] = gan[S] U (in[S] - kill[S] ) [11] 

and can be read as, " the information at the end of the end of a statement is either 

generated within the statement or nters at the beginning and is not killed as control 

flows through the statement." 

As mentioned in the [6), LLVM uses a low-level object code representation in SSA 

form that uses simple RISC-like instructions, but provides rich, language-independent, 

7 



type information and dataflow information about operands. The Static Single Assign-

ment is a form of instruction representation used by compilers, in which each variable is 

assigned exactly once during its life-time and PHI functions are included at the places 

where the program flow joins and the the value of the PHI function depends on the path 

taken by the program at run-time. 

As mentioned in [7], SSA form is used in LLVM to handle data flow problems effi-

ciently and because SSA form provides for explicit def-use chains. To represent SSA form 

directly in the code, LLVM uses an explicit phi instruction to merge values at control 

flow join points. The SSA form of LLVM IR and the usage of def-use and use-def chains 

provide the information regarding the data flowing in and out of a code segment(e.g. ba-

sic block or function). The type of operations(e.g. arithmetic or control flow) performed 

on the incoming data and the size of the code segment determine the amount of data 

processing being performed in the code segment. 

Data flow reduces the dependency between the sections of code in an algorithm and 

provides for parallelization. Sections of the algorithm having heavy data flow indicate 

the computationally intensive nature of the algorithm and hence they are preferred to 

be executed in hardware. 

2.1.2 Control flow 

Control flow in general refers to the order in which the statements of an algorithm are 

executed. Control flow constructs are statements or instructions which when executed 

cause the subsequent flow of control to differ from the natural sequential order of ex-

ecution. These are generally branching instructions, function calls and function return 

instructions. 	 . 

As mentioned in [7], control flow instructions such as branch, multi-way branch or 

switch, function return, invoke or unwind instructions are grouped as terminator instruc-

tions in LLVM. LLVM also provides explicit Control Flow Graphs and hence the above 

features are considered to determine the extent of control flow in LLVM code segments. 

The sections of the algorithm with complex control flow features, for instance with 

nested conditions and loops, when implemented as automatons lead to exponential in-

crease in the number of states and eventually occupy huge space on hardware. Hence, 

control flow driven sections of the algorithm are preferred to be executed on micropro-

cessors. 



2.2 Basic Block Level Analysis 

The Control flow features of the algorithm at basic block level are identified by the 

following control flow constructs: 

1. Conditional and unconditional branching statements 

2. Function calls 

3. Nested conditions or loops 

4. Terminator instructions 

The Data flow features of the algorithm at basic block level are identified by the following 

data flow constructs: 

1. Arithmetic instructions 

2. Number of phi nodes 

3. Number of instructions 

Memory accesses in the algorithm play a significant role in determining the sections of 

the program to be executed in hardware and software. Memory access features at basic 

block level are identified by the following memory access constructs: 

1. Memory allocation instructions 

2. Instructions transferring data to memory 

3. Instructions retrieving data from memory 

4. Instructions clearing the allocated memory 

Frequent memory accesses are inefficient for hardware implementation but accesses to 

fixed size memory locations storing constant values can be effectively implemented on 

hardware. using simple combinational circuits.The following simple combinational circuit 

implementation of a Load instruction; "illustrates the above statement. 
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2.2.1 Example: Combinational implementation for constant data 

memory accesses 

Let the fixed size global array of constant data stored in memory be {1, 5, 2, 8}. Let us 

consider a Load Instruction which retrieves a data element from the above mentioned 

array. The instruction can be implemented in hardware as follows 

The values in memory represent the output. The biggest number is eight and therefore 

four output binary digits are sufficient to represent all the four output values. Two input 

binary digit address is sufficient to access the four values. 

The following table 2.1 is the truth table for the circuit and below that are the 

output equations and figure 2.1 depicts the combinational circuit implementation of the 

load instruction. 

A. Truth Table: 

Table 2.1: Load. Instruction Truth Table 

©© 
000000 

®® ®0 

000000 Banana 
000000 

B. Output equations: 

f1=x y 

f2=xy 

f3= x' 

f4= x+y 
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C. Circuit: 

x 

r5 

fi  

f3  

f2  

f4  

Figure 2.1: Load Instruction combinational circuit implementation 

The execution of the constant array memory accesses on hardware is many a times faster 

than the execution of the instruction cycle for the instruction on a microprocessor. 

Hence the Binning Pass detects the presence of global variables in the test algorithm 

and stores the pointers to the memory locations storing the constant global arrays in 

a Standard Template Library Vector Container. The basic blocks of the algorithm are 

tested to find whether there are memory accesses to the locations stored of the Vector 

Container, which is used to categorise the parts of the test algorithm having memory 

accesses to constant global arrays, under data flow driven section. The simple empirical 

relations formed from the above detected features are described below. 

The first relation calculates the total number of memory access instructions excluding 

the constant global array memory access instructions and control flow instructions. The 

basic block is believed to be more of control flow driven when the above calculated 

instructions in a basic block are greater than a specified threshold. 

The second relation is a check for the data flow within a basic block. The presence 

of phi instructions indicates that the values required for the execution of basic block 

instructions are available at run-time and cannot be decided prior. Therefore an ideal 

data flow basic block has no phi instructions and has only one or no successors. The 

above condition is checked and the boolean result is stored in an indicator variable. 

The third relation is a comparison between the data flow and control flow within a 

basic block. The number of phi instructions gives a measure of data flow into the basic 

block. The number of successors for a basic block gives a measure of the flow of control 

to the subsequent sections of the algorithm. Greater number of successors indicates that 

the basic block has more of control flow and the boolean result is stored in an indicator 

variable. 
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The final condition determines whether the basic block has self loop. The presence 

of a self loop indicates heavy control flow. 

Appropriate weights are given to the input indicator variables and the result is calcu-

lated. The first relation which tries to classify the blocks on the number of control flow 

constructs, is of prime importance and hence given maximum weight. The calculated 

resultant is compared with a pre-defined constant to determine whether the basic block 

is a data flow driven or a control flow driven basic block and near to expected results 

are obtained using the relation. 

2.3 Function Level Analysis 

A measure of control flow at function level is identified by the following features: 

1. Number of basic blocks 1  

2. Number of successors for each basic block 2 

3. Number of control flow driven basic blocks. 

A measure of data flow at function level is identified by the following features 

1. Total number of instructions in the function 

2. Total number of phi nodes 

3. Number of data flow driven basic blocks 

The following simple empirical relations are formed from the above features. 

The count of data flow driven basic blocks and control flow driven basic blocks de-

termines the categorization of the function. 

The ratio between edges and nodes of the function is taken into consideration. A 

function is believed to be more of control flow when its CFG has much greater number 

of edges compared to the number of nodes. 

The number of basic blocks gives us a measure of number of times the instruction 

execution varies from the natural sequential order of execution and can be taken as a 

'nodes of CFG of the function 
ledges of CFG of the function 
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measure of control flow and huge basic blocks indicate greater execution of data and 

indicate data flow and hence a comparison is made between the above features. 

The presence of backedges in the CFG of the function is taken into consideration as 

it is an indicator of heavy control flow within the function 

Appropriate weights are given to the ratios formed above to decide the result. The 

calculated result is checked whether it is within specific pre-determined threshold levels. 

This is used to determine whether a function is data flow driven or control flow driven 

or mid way between them. 

The empirical constants of all the relations mentioned above are determined by testing 

and validating the Binning Pass with a number of input test algorithms. 

The input test algorithms include Control flow driven Data Structures like linked 

lists,stacks and queues and simple data flow driven digital signal processing algorithms 

which perform convolution, correlation, discrete fourier transforms, fast fourier trans-

forms of input sequences and various other algorithms which are partly data flow driven 

and partly control flow driven. 

Two Standard Template Library maps -are created one each for basic blocks and 

functions respectively and the above calculated features stored in the maps for further 

usage.The Binning Pass does not modify the LLVM IR. The Pass is included in the 

Appendices A and B on page 49 and on page 51 correspondingly, for further reference. 

2.4 Two Dimensional Discrete Fourier Transform Ex-

ample 

A simple two dimensional Discrete Fourier Transform is written to provide a test input to 

the Binning Pass. A two dimensional DFT computes the transform of a two-dimensional 

data set. The definition of the transform for the data set is given below: 

n1-1n2-t 
+ 

Ykl,k2 = 	xjl,j2 exp-2I1i n1 	n2 

j1=0 j2=0 

where k1 = 0,1,...,n1-1 and k2 = 0,1,...,n2-1 

nland n2 are dimensions of input rectangular matrix. 
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The program written calculates the transform for floating point square matrices and 

is provided in the Appendix E on page 70 for further reference. 
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2.5 Binning Pass Results 

The figure 2.2 below shows the statistics collected by the Pass for a data flow driven 

basic block of the algorithm: 

bb207: 
tmp11.1= phi double [ tmpl, bb111 j 
tmp2 2.1= phi double (tmp2, bb111 
tmp30 = uitofp 132 reg to double 
tmp35 = mul double tmp30, -6.283180e+00 
tmp40= mul double tmp35, tmp5 
tmp45 = fdiv double tmp40, tmp6 
tmp50 = add double tmp45, 0.000000e+00 

store double 0.000000e+00, double* trnp7, align 8 
store double tmp50, double* tmp8, align 8 
call void @cexp( { double, double }* sret tmp55, { double, double }* byval w1) nounwind 
tmp65 = load double* tmp60, align 8 
tmp70 = load double* tmp6l, align 8 
tmp75 = mul double tmp65, tmp 22.1 
tmp80 = mul double tmp70, tmp 11.1 
tmp85 = mul double tmp65, tmp 11.1 
tmp90 = mul double tmp70, tmp 22.2 
tmp95 = sub double tmp75, tmp80 
tmplOO = add double tmp85, tmp90 
tmp105 = add double tmp95, tmp9 
tmp110 = add double tmp100.. tmp10 
tmp115 = add i32 reg, 1 
tmpl20= icmp eq i32 tmp115, N 
brit tmpl20, label bb210, label bb108 

Binning Pass 

Basic block bb207: 
Number of instructions : 23 
Number of PHI Instructions : 2 
Memory Transfer, branching and condition checking Instructions : 7 
Constant global array memory access instructions : 0 
Number of successors: 2 
Basic block bb207 has more of d$ta•flow 

Figure 2.2: Data flow driven basic block 

The upper block shows the LLVM IR, of a basic block of the DFT example and the lower 

block shows the corresponding output of the Binning Pass which gathers statistics of 

the basic block. The statistics show that the basic block performs significant amount of 

arithmetical operations and data processing and hence the basic block is termed as data 

flow driven basic block. 
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The figure 2.3 below shows the statistics collected by the Pass for a control flow 

driven basic block of the algorithm: 

bb2: 
tmp30 = getelementptr double* tmp2Q, 132 tmplO 
tmp34 = load double* tmp30, align 8 
tmp36 = call 132 (18*, ...)* printf( 18* getelementptr ([20 x i8]* .strl, i32 0, 132 0), 
double tmp34, double tmp28.) 

tmp37 = icmp ult i32 tmp24, N 
tmp39 = add i32 tmp25, 1 
br i1 tmp37, label bb5, label bb8 

I Binning Pass 

Basic block bb2: 
Number of instructions : 6 
Number of PHI Instructions : 0 
Memory Transfer, branching and condition checking Instructions : 5 
Constant global array memory access instructions : 0 
Number of successors : 2 

Basic block bb2 has more of control flow 

Figure 2.3: Control flow driven basic block 

The output of the Pass shows that there are many branching instructions and memory 

access instructions and no constant global memory accesses as can be seen in the LLVM 

IR. Hence the basic block is termed as control flow driven basic block. 

Similarly all the basic blocks of all the functions in the input test algorithm are 

classified with the help of the Pass. The table below shows that statistics collected for 

all the basic blocks of the 2d_dit transform function 70 written in the test algorithm. 
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The table 2.2 below shows the statistics collected by Binning Pass for 2d_dit function 

at basic block level: 

Table 2.2: Binning Pass basic block statistics 

Basic Block Name Instructions PHI Instructions Memory 

Transfer and 

Control Flow 

Instructions 

Constant Memory Accesses Successors Result 

entry 11 0 9 0 2 Control Flow 

bb372.preheader 11 0 9 0 1 Control Flow 

bb372.outer 16 1 7 0 1 Data Flow 

bb105 3 1 1 0 2 Data Flow 

bb108.preheader 2 0 1 0 1 Data Flow 

bb108 7 3 2 0 1 Data Flow 

bb111 24 3 9 0 2 Data Flow 

bb207 23 2 7 0 2 Data Flow 

bb293.loopexit 3 2 1 0 1 Control Flow 

bb293 13 2 10 0 2 Control Flow 

bb326 6 0 5 0 2 Control Flow 

bb347 8 3 4 0 1 Control Flow 

bb372 3 1 2 0 2 Control Flow 

bbl05.preheader 1 0 1 0 1 Control Flow 

bb378.loopexit 4 3 1' 0 1 Control Flow 

bb378.1oopexit46 1 0 1 0 1 Control Flow 

bb378 4 0 3 0 2 Control Flow 

bb388.loopexit 1 0 1 0 1 Control Flow 

bb388 2 0 _ 	2 0 0 Control Flow 

The output of the Pass for the 2d_dit function 70 in the program is given below: 

Number of instructions in function : 143 

PHI Instructions in function : 21 

Number of control flow basic blocks in function : 11 

Number of data flow basic block in function : 8 

Size of average basic block in function : 7 

Number of nodes in function : 19 

Number of edges of function : 26 

The function has more of control flow 
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The validity of the categorization can be checked with the help of the figure 2.4 below 

which is the Control Flow Graph for the 2d_dit function 

Figure 2.4: Control Flow Graph of twod_dit function 

The shaded blocks in the image are control flow driven basic blocks and the unshaded 

blocks are data flow driven basic blocks: The image above shows that though there are 

a few basic blocks in which extensive data processing is done, the rest of the blocks are 
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small in size and the control flow driven basic blocks are more and edges are more than 

the nodes indicating that it is a control flow driven function. 
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Chapter 3 

Selection Pass 

3.1 Description 

The Selection Pass is a Transform Pass developed for hardware/software mapping. The 

Pass utilises the statistics gathered by the Binning Pass to partition the test algorithm 

into data flow and control flow driven sections. The data flow driven section is mapped to 

hardware using the VHDL backend for LLVM and the control driven section is mapped 

to the software using PowerPC backend for LLVM. These sections are made independant 

of each other for parallel execution on both of the above mentioned backends. 

The Selection Pass modifies the LLVM IR to select only the instructions which are 

to be mapped either to software or to hardware and replaces the other instructions by 

intrinsic instructions. These intrinsic replacement instructions are used to represent 

the parts of the algorithm partitioned to a different computing context. These newly 

created intrinsic instructions are place holders for the instructions which should not be 

executed by the backend and are supposed to keep the control and data flow dependencies 

persist ant. 

The Selection Pass ensures that the results of the Binning Pass are computed before 

the Pass is executed. The statistics of each basic block are accessed from the map created 

in the Binning Pass to store the basic block information. This information is used to 

identify the data flow driven and control flow driven basic blocks. 

The Selection Pass is run twice using different command line arguments to create the 

required two sections. The control flow section is created from the test algorithm LLVM 

IR by replacing the dataflow driven basic blocks of the code with intrinsics and the data 

flow section is created by replacing the control flow driven basic blocks with intrinsics. 
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3.2 Selection Pass Intrinsics 

Selection Pass modifies the LLVM IR to achieve the required functionality by adding new 

intrinsics to the LLVM. The phi and terminator instructions of the basic blocks being 

modified are retained and the rest of the instructions are replaced by migrate_begin and 

migrate end intrinsic functions. 

3.2.1 Intrinsic Functions in LLVM [6] 

The intrinsic functions represent an extension mechanism to the LLVM language. Gen-

erally, all extensions to LLVM start as an intrinsic function and then be turned into an 

instruction if warranted. Intrinsic function names start with an "llvm. u prefix. This 

prefix is reserved in LLVM for intrinsic names and hence function names may not begin 

with this prefix.and they may only be used in call or invoke statements. Intrinsic func-

tions are always external functions i.e the body of intrinsic functions cannot be defined 

and they are to be enumerated in the LLVM Intrinsics.td Table Generator file. 

A. Overloaded Intrinsics 

Overloaded intrinsics represent a family of functions that perform the same operation 

but on different data types. For instance, overloading can be used to allow an intrinsic 

function to operate on any integer type as there are numerous integer types in LLVM. 

One or more of the argument types or the result type can be overloaded to accept 

any integer type. Argument types may also be defined as exactly matching a previous 

argument's type or the result type. This allows an intrinsic function which accepts 

multiple arguments, but needs all of. them to be of the same type, to only be overloaded 

with respect to a single argument or the result. 

Overloaded intrinsics will have the names of its overloaded argument types added as 

suffixes to the function name. For instance, the pre-defined llvm.ctpop function takes an 

integer of any width and returns an integer of exactly the same integer width. This leads 

to a family of functions such as i16 @llvm.ctpop.i16(i16 %val) and i43 @llvm.ctpop.i43(i43 

%val). In this example only one type, the return type, is overloaded, and only one type 

suffix is required as the argument's type is matched against the return type, it does not 

require its own name suffix. 

The following are the categories of pre-existing intrinsics in LLVM 
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1. Variable Argument Handling Intrinsics. 

2. Accurate Garbage Collection Intrinsics. 

3. Code Generator Intrinsics. 

4. Standard C Library Intrinsics. 

5. Bit Manipulation Intrinsics. 

6. Debugger Intrinsics. 

7. Exception Handling Intrinsics. 

8. Trampoline Intrinsics. 

9. Atomic Intrinsics. 

10. General Intrinsics. 

3.2.2 Selection Pass Intrinsics 

LLVM does not support the functionality expected to obtain in its current incarnation 

with the pre-existing intrinsic functions previously mentioned and hence new intrinsics 

are created in the Selection Pass to add the required functionality to LLVM. 

A. migrate . begin intrinsic 

The migrate_begin intrinsic instruction marks the beginning of the set of instructions of 

the basic block which are not executed by the current backend and is created for every 

basic block which is to be modified. The intrinsic is created to handle the incoming data 

dependencies of the basic block. These data dependencies are the values external to the 

present basic block, required for the execution of the above mentioned set of basic block 

instructions. 

The arguments for the intrinsic ftinction are given by the Deps.h header file included 

in the Selection Pass. The intrinsic call sends the arguments to the corresponding mi-

grate end intrinsic function. 
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B. migrate end intrinsic 

The migrate_end intrinsic instructions replace the set of instructions which are not to 

be executed by the current backend. A migrate_end intrinsic function call is created 

for every instruction having outgoing dependencies. The outgoing dependencies are the 

instructions external to the basic block which have the present instruction as an operand. 

The intrinsic is also created for an instruction which has uses in the PHI and terminator 

instructions present in the same basic block. 

The return value of the Call instruction is the value of the instruction replaced by 

it. The data dependencies of the external instructions on the basic block are satisfied by 

iterating over the def-use chain of each instruction and replacing the uses of instruction 

with the corresponding migrate_end Call instruction.The arguments for the intrinsic 

functions are given by the Deps.h header file. 

3.3 Deps.h header file description 

The Deps class is created for providing arguments to intrinsic functions in Selection Pass 

and for further application in the creation of VHDL RTL output from VHDL backend. 

The Deps.h header file comprises the dependencies class Deps. The class gathers the 

arguments required by the migrate_begin and migrate_end intrinsic functions. The 

arguments to the migrate_begin intrinsic function are the following: 

1. Incoming data dependencies of the basic block 1  

2. The phi instructions of the basic block. 

3. The count of the arguments mentioned in 1 and 2. 

4. The enumeration of the intrinsic within the function. 

The incoming data dependencies are gathered by iterating over uses and definitions (use-

def) chain of each instruction of the basic block. This chain iterates over the operands 

of the instruction. The global values required for execution of the basic block are also 

taken into consideration. The arguments mentioned are stored in a vector container. 

The arguments to the migrate_end intrinsics are the following: 

1Teminator instruction incoming data dependencies not included. 
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1. The enumeration of the migrate_begin intrinsic of the basic block 

2. The position of the instruction within the basic block which is being replaced by 

the migrate_end intrinsic. 

The migrate_end intrinsics are enumerated by iterating over the definitions and uses 

(def-use) chain of each instruction. This chain iterates over the uses of each instruction. 

The arguments for the migrate_end intrinsics are stored in a map. The class also 

implements functions for providing the collected arguments to the callee. In this way 

the collected arguments are sent to the migrate_begin and migrate end intrinsics. The 

class is provided in the Appendix D on page 66 for further reference. 

3.4 Additions to Intrinsics.td file 

3.4.1 LLVM Intrinsics.td TableGen File [61 

Intrinsics.td is a TableGen file which defines all LLVM intrinsic functions. A TableGen 

assists in developing and maintaining records of domain-specific information. As there 

may be a large number of such records, TableGen is specifically designed to allow writing 

flexible descriptions and for common features of the records to be factored out. This 

reduces the amount of duplication in the description, reduces the chance of error, and 

makes it easier to structure domain specific information. 

The following specifications are to be provided to define an intrinsic in the file: 

1. Intrinsic Property 

2. Intrinsic Type 

3. Intrinsic Definition 

A. Intrinsic Property 

Intrinsic Properties are the memory properties of the intrinsic. An intrinsic is allowed 

to have exactly one of these properties set. The properties are listed from the most 

aggressive (best to use if correct) to the least aggressive 

1. IntrNoMem 
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2. IntrReadArgMem 

3. IntrReadMem 

4. IntrWriteArgMem 

5. IntrWriteMem 

IntrNoMem property states that the intrinsic does not access memory. 

IntrReadArgMem property states that the intrinsic reads only from memory that one 

of its arguments points to, but may read an unspecified amount. 

IntrReadMem property states that intrinsic reads from unspecified memory and hence 

it cannot be moved across stores. However, it can be reordered otherwise and can 

be deleted if dead. 

IntrWriteArgMem property states that the intrinsic reads and writes only from mem-

ory that one of its arguments points to, but may access an unspecified amount. It 

has no other side effects. This may only be used if the intrinsic doesn't "capture" 

the argument pointer (e.g. storing it someplace). 

IntrWriteMem property states that the intrinsic may read or modify unspecified mem-

ory or has other side effects. This is the default if the intrinsic has no other intrinsic 

memory property. 

The above memory access properties are considered for optimization of the intrinsic 

functions. 

B. Intrinsic Type 

Intrinsic Types are the LLVM types used by the intrinsic. The types to used by the 

intrinsics are to be defined in the file prior to their usage in the intrinsic definition. The 

types range from simple integer, float and pointer data types to complex vector data 

types. 
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C. Intrinsic Definition 

The Intrinsic Definition provides for the manner in which an intrinsic is defined in the 

file. The following is the syntax of a general intrinsic definition 

def intrinsic definition name : Intrinsic<[types], [intrinsic property], "LLVM 

intrinsic name" >; 

intrinsic definition name should start with "int " which indicates that the intrinsic 

entry is actually an enumeration. The name then should match with the LLVM 

intrinsic name with the "llvm." prefix removed and all "." characters turned into 

characters. For instance, int_bswap_i32 is the intrinsic definition name for 

the LLVM intrinsic name llvm.bswap.i32. 

types is the function type of the intrinsic. It includes the return type and the argument 

types expected for the intrinsic respectively. 

intrinsic property describes the memory behaviour property of the intrinsic function. 

LLVM intrinsic name is the name given to the intrinsic during its creation in the 

LLVM Pass added with "llvm." prefix. 

Finally, all the different Passes that are intended to use the extension made to LLVM 

are updated. 

3.4.2 Additions to Intrinsics.td File 

The newly created migration intrinsics in the Selection Pass are enumerated in the In-

trinsics.td TableGen file to be recognized by all the libraries and tools present in LLVM. 

The following are the additions to the file: 

def int_migrate_begin: 

Intrinsic< [llvm_i32_ty, llvm_vararg_ty], 

[IntrWriteMem],"llvm.migrate_begin">; 

def int_migrate_end_int : 

Intrinsic<[llvm_anyint_ty,llvm_i32_ty,llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end_int">; 

def int_migrate_end_float 

Intrinsic<[llvm_anyfloat_ty,llvm_i32_ty,llvm_i32_ty], 
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[IntrWriteMem],"llvm.migrate_end_float">; 

def int_migrate_end_ptr_8 

Intrinsic<[llvm_ptr_ty,llvm_i32_ty,llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end_ptr_8">; 

def int_migrate_end_ptr_ptr : 

Intrinsic<[llvm_ptrptr_ty,llvm_i32_ty,llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end_ptr_ptr">; 

def int_migrate_end_ptr_32 

Intrinsic<[llvm_ptr32_ty,llvm_i32_ty,llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end_ptr_32">; 

def int_migrate_end_ptr_ptr32 

Intrinsic< [llvm_ptrptr32_ty, llvm_i32_ty, llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end_ptr_ptr32">; 

def int_migrate_end_ptr_float 

Intrinsic<[llvm_ptrfloat_ty,llvm_i32_ty,llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end-ptr_float">; 

def int_migrate_end_ptr_double : 

Intrinsic<[llvm_ptrdouble__ty,llvm_i32_ty,llvm_i32_ty], 

[IntrWriteMem],"llvm.migrate_end_ptr_double">; 

The following are the entries used from the list of types in the file, used for the above 

definitions: 

def llvm_void_ty : LLVMTvpe<isVoid>; 

def llvm_i8_ty : LLVMType<i8>; 

def llvm_132_ty : LLVMType<i32>; 

def llvm_anyint_ty : LLVMType<iAny>; 

def llvm_anyfloat_ty : LLVMType<fAny>; 

def llvm_vararg_ty : LLVMType<isVoid>; 

def llvm_ptr_ty : LLVMPointerType<llvm_i8_ty>; 

def llvm_ptrptr_ty : LLVMPointerType<llvm_ptr_ty>; 

The following are the new entries made for the additional types used in the intrinsic 

definitions: 

def 11vm_ptr32_ty : LLVMPointerType<llvm_i32_ty>; 

def llvm_ptrptr32_ty : LLVMPointerType<llvm_ptr32_ty>; 
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def llvm_ptrdouble_ty : LLVMPointerType<llvm_double_ty>; 

def llvm_ptrfloat_ty : LLVMPointerType<llvm_float_ty>; 

The migrate_begin intrinsic has an integer return type. The "llvm_vararg_ty" handles 

the types of the variable number of arguments to the migrate_begin intrinsic function. 

Owing to the strict type system of the LLVM, eight migrate_end intrinsics are created 

to handle the varying return types of the instructions being replaced by the intrinsics. 

Instructions with integer return types are mapped to the intrinsic with return type 

"iAny" and instructions with float return types are mapped to the intrinsic with return 

type "fAny". The above two are overloaded intrinsics and have the return types of the 

instructions as suffixes to the instruction names. 

The pointer type intrinsics correspond to the instructions with different pointer return 

types. 

The default intrinsic property is used define the memory access behaviour of the 

intrinsics. 

3.5 Data Flow Dependencies 

The migrate_begin and migrate_end intrinsic instructions ensure that the data depen-

dencies are maintained. The following figure 3.1 explains the handling of data depen-

dencies by the intrinsic instructions. 

2' 	1 2 	1 ~' 

PHI instruction 
p 	instruction 1  

instruction 2 	 1 	
PHI instruction 

ru  migrate_begin instruction  
migrate end instruction I 

---- 	 migrate_end instruction q 
Terminator instruction 

instruction n 	 /; 
Terminator instruction 	 i I 1 ~f 

q 	 1 q 

Figure 3.1: Data Dependencies 



The left block is the basic block with "n" instructions prior to the introduction of 

intrinsic instructions and the right block is the same basic block after the addition of 

intrinsics. The incoming arrows indicate the data dependencies entering into the basic 

blocks and the outward arrows indicate the data going out of the basic block. 

From the block on the right side, it can be noticed that the migrate_begin intrinsic 

gathers all the incoming dependencies into the basic block. The migrate_end intrinsics 

are created for "q" instructions (q<=n) having outgoing dependencies. 

The PHI and Terminator instructions are retained and the references made by the 

other instructions in the basic block are dropped to ensure that the instructions do not 

have internal uses remaining. The instructions are discarded after verifying that the uses 

list of each instruction to be deleted is empty. 

3.6 Control Flow Dependencies 

The control flow dependencies are satisfied by placing the newly created migrate_end in-

trinsic instructions in the basic block in the same order as that of the instructions replaced 

by them. The phi instructions are placed first followed by the migrate_begin intrinsic 

call instruction and the migrate_end intrinsic calls are placed after the migrate_begin 

instruction and the terminator instruction marks the end of the basic block. 

The newly created intrinsic instructions implicitly define the interface between sec-

tions of the algorithm to be mapped separately to software and hardware. 

3.7 Walsh Transform Example 

A program is written which computes the natural ordered Walsh-Hadamard transform 

of integer input sequence. The definition of the transform is given below: 

y = WHTN  * x 

where 

x - input sequence 

y - transformed sequence 

WHTN- Walsh Hadamard matrix where N = 2'. 

WHTN= WHT2® WHT2... ® WHT2  n times. 
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11 
WHT2 = 	and 

1 —1 

11 	1 	1 

11 	11 	1 —1 1 —1 
WHT4 = 	® 	_ 

1 —1  1 —1  1 1 —1 —1 

1 —1 —1 1 

The iterative procedure given below is used in the development of the program. 

WHTN = Hi(I21) ® WHT2 ® I2~n_l))[12] 

The program is provided in the Appendix F on page 72 for further reference. 
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3.8 Selection Pass Results 

The results shown by the figure below depict the manner in which a basic block of the the Walsh 

transform input algorithm is modified by the Filter Pass to include the intrinsics 

bb371.preheader: 
1.381 = phi i32 [ migrate_end30, bb378 ], [ 0, bb371.preheader.preheader ] 
tmp347 = add IN tmp345, i.381 
tmp350 = mul i32 tmp347, tmpl8 
tmp351= getelementptr i8* tmp41,132 tmp35O 
tmp351352 = bitcast i8* tmp351 to i32* 
tmp362 = mul 132 1.381, tmp76 
tmp363 = getelementptr i8* tmp80,132 tmp362 
tmp363364 = bitcast i8* tmp363 to i32* 
br label bb341 

Output Basic block 
with intrinsics 

bb371.preheader weight: -2.5 
Function type of migrate begin intrinsic for basic block bb371.preheader: 
i32 	i32 	132 	i32 	i32 	i32 	i8 * i32 	i8 * 
migrate_begin intrinsic created 
Return Type of instruction being replaced -> i32 
migrate_end intrinsic of return type i32 * created 
tmp368 instruction -> Uses of tmp351352 replaced with migrate_end intrinsic 
Return Type of instruction being replaced -> 132 * 
migrate_end intrinsic of return type i32 * created 
tmp366 instruction -> Uses of tmp363364 replaced with migrate_end intrinsic 
PHI, intrinsic & terminator instructions retained and rest deleted 

Selection Pass 
modifications 

Selection Pass 

bb371.preheader: 
1.381 = phi i32 [ tmp38O, bb378 ], [ 0, bb371.preheader.preheader ] 
migrate_begin34 = call i32 (4*  @Ilvm.migrate_begin(i32 5, 132 6, i32 i.381, i32 

migrate end38, i32 migrate end2, i8* migrate end4, i32 migrate_end6, 
18* migrate end7) ; 132> [#uses=0] 

migrate_end35 = call 132* @Ilvm.migrate_end_ptr_32(132 5, 132 3 ) 
migrate_end36 = call 132* @Ilvm.migrate_end_ptr 32(132 5, i32 6) 

br label bb341 

Figure 8: Modified basic block with intrinsics 

The upper block shows the LLVM IR of a basic block of the Walsh Tranform algorithm. The block 

to the right shows the analysis and modifications being made to the LLVM IR. The block below 

shows the modified LLVM IR of the basic block. The figure clearly shows that the data and control 

flow dependencies of the basic block are maintained by the newly created intrinsic. 



The figure below shows the sectioning of the input algorithm by the Selection Pass. 

bbl 18.outer.preheader: 
brlabel bbllfi,outer 

bbl 18.outer: 
i.0.reg2mem.0.ph = phi i32 [ migrate end7, bb124 ], 

[0, bbl18.outer.preheaderI 
tmp110 = mul 132 i.0.reg2mem.0.ph, tmp76 
tmpl l l 	getelementptr i8' tmp99, i32 tmp110 
tmp111112 = bitcast i8* tmp111 to i32* 

br label 'bbl Ol 

bb101: 
j.069 = phi i32 [ 0, bbl18.outer ], [ indvar.next110, 	bbl 15 ] 
tmpl04 = icmp eq 132 i.0.reg2mem.0.ph, j.069 
brit tmp104, Ebel bbl06, label bb115 

• I Selection Pass 

bb118.outer.preheader: 
migrate begin = call i32 (...)* @)Ivm.migrate_begin( i32 0, 132 0 ) 

brlabel bb118.outer 

bb I I 8.outer: 
i.0.reg2mem.0.ph = phi i32 [ migrate_end7, bb124 ], 

[ 0, bb118.outer.preheader ] 
tmpl 10 = mul i32 i.0.reg2mem.0.ph, tmp76 
tmpl 11 = getelementptr i8* tmp99, i32 tmp110 
tmp111112 = bitcast i8* tmpl l l to i32* 

brlabel bbt01 

1 
bb101: 

j.069 = phi i32 [ 0, bb118.outer ], [ migrate_end4, bb115 ] 
migrate_beginl = call i32 (...)* @Ilvm.migrate begin( i32 1, i32 2, 

i32 j.069, i32 i.0.reg2mem.0.ph) 
migrate_end = call i1 @Ilvm.migrate_end int.il(1321, i32 0 ) 

br it migrate end, label bb106, label bbl15 

bbl 18. outer. preheader: 
br label bbl 18.outer 

bb118.outer: 
i.0.reg2mem.0.ph = phi i32 [ indvar.next112, bb124], 

(0, bb118.outer.preheader] 
migrate_begin10 = call i32 (...)* @Ilvm.migrate_begin(i321, i32 3, 

i32 i.0.reg2mem.0.ph, i32 migrate_end6, i8* migrate_endS)  
migrate_endl1 = call i32* @llvm.migrate_end_ptr_32( i32 1, i32 2 ) 
brlabel bb101 

bb101: 
j.069 = phi i32 [ 0, bbl 18.outer ], [ indvar.next110, bbl 15 ] 
tmp104 = icmp eq i32 i.0.reg2mem.0.ph, j.069 
bill tmpl04, label bbl06, label bb115 

Figure 9: Hardware and software sections 

The upper block of the figure shows a set of basic blocks of the Walsh transform algorithm. The 

lower blocks are the software and hardware sections of the algorithm correspondingly. The image 

clearly indicates that the code segment being sent to hardware has the data flow driven basic blocks 

of the main algorithm intact and the rest of the basic blocks are filled with dummy intrinsic 

instructions and the code segment being sent to software has the control flow driven basic blocks of 

the main algorithm intact and the remaining basic blocks are filled with intrinsic instructions. 



Chapter 4 

Adaptations to the PowerPC and 

VHDL Backends 

The newly added intrinsics are extensions to LLVM language and support is to be pro-

vided for them to enable code generation on target backends. This is achieved by making 

additions to the LLVM Target Independant Code Generator. 

4.1 LLVM Code Generator and Additions to Selec-

tionDAGISel.cpp file 

4.1.1 LLVM Target-Independant Code Generator [61 

A. Description 

The LLVM target-independent code generator is a framework that provides a suite of 

reusable components for translating the LLVM IR to the machine code for a specified 

target, either in assembly form (suitable for a static compiler) or in binary machine code 

format (usable for a JIT compiler). 

The LLVM target-independent code generator consists of five main components: 

1. Abstract target description interfaces which capture important properties about 

various aspects of the machine.' 

2. Machine Code Representation classes used to represent the machine code being 

generated for a target. These classes are intended to be abstract enough to repre-

sent the machine code for any 'target machine. 
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3. Target independent algorithms used to implement various phases of native code 

generation such as register allocation, scheduling, stack frame representation, etc. 

4. Implementations of the abstract target description interfaces for particular targets. 

These machine descriptions make use of the components provided by LLVM, and 

can optionally provide custom target-specific passes, to build complete code gener-

ators for a specific target. The LLVM currently supports ARM, SPARC, PowerPC 

and Intel x86 architectures. 

5. The target independent JIT components. 

The target independant code generation algorithms implement the high level design of the 

Code Generator and enable code generation for the intrinsic instructions, independant 

of target backends. 

B. The High Level Design of LLVM Code Generator 

The LLVM target-independent code generator is designed to support efficient and quality 

code generation for standard register-based microprocessors. Code generation in this 

model is divided into the following stages: 

1. Instruction Selection 

2. Scheduling and Formation 

3. SSA-based Machine Code Optimizations 

4. Register Allocation 

5. Prolog/Epilog Code Insertion 

6. Late Machine Code Optimizations 

7. Code Emission 

Instruction Selection is the process of translating LLVM code presented to the code 

generator into target-specific machine instructions. This step turns the LLVM code into 

a Directed-Acyclic- Graph(DAG) of target instructions. LLVM uses a SelectionDAG 

based instruction selector for translation.The SelectionDAG is a Directed-Acyclic-Graph 
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whose nodes are instances of the SDNode class. The SelectionDAG is a Directed-Acyclic-

Graph whose nodes are instances of the LLVM SDNode class. The following example 

explains SelectionDAG. 

C. SelectionDAG Example 

Consider the following LLVM IR: 

tmpl = mul float W, X 

tmp2 = add float tmpl, Y 

tmp3 = sub float tmp2, Z 

The SelectionDAG for the above LLVM code is given below 

(fsub:f32 (fadd:f32 (fmul:f32 W, X), Y), Z) 

The SelectionDAG changes depending on the operations supported by the target. For 

instance the PowerPC supports floating point multiply-and-add(FMA) operations. The -

SelectionDAG for PowerPC is given below 

(FSUBS (FMADDS W, X, Y), Z) 

4.1.2 Additions to SelectionDAGISel.cpp file 

The initial SelectionDAG is constructed from the LLVM input by the SelectionLower-

ingClass in SelectionDAGISel.cpp file of LLVM Code Generator. The intent of this file 

is to expose the low-level, target-specific details to the SelectionDAG to the maximum 

extent possible. SelectionDAGLowering Class is used for common target independant 

lowering implementation and has methods to lower the Call instructions to the intrinsic 

functions. The LLVM code representing the intrinsic function Calls is lowered in the 

visitIntrinsicCall method to SelectionDAG operators that the target instruction selector 

can accept natively. 

The following are the switch instruction cases included to the visitIntrinsicCall method 

of the SelectionDAGISel.cpp file in LLVM. 

const char *SelectionDAGLowering::visitIntrinsicCall(Calllnst &I, unsigned 

Intrinsic) { 

switch (Intrinsic) { 



case Intrinsic::migrate_begin: { 

return "migrate_.begin"; 

} 

case Intrinsic::migrate_end_int: { 

return "migrate_end"; 

} 

case Intrinsic::migrate_end_float: { 

return "migrate_end_float"; 

} 

case Intrinsic::migrate_end_ptr_8: {. 

return "migrate_end"; 

} 

case Intrinsic::migrate_end_ptr_32: { 

return "migrate_end"; 

} 

case Intrinsic::migrate_end_ptr_ptr: { 

return "migrate_end"; 

} 

case Intrinsic::migrate_end_ptr_ptr32: { 

return "migrate_end"; 

} 

case Intrinsic: :migrate_end_ptr_float: { 

return "migrate_end"; 

} 

case Intrinsic::migrate_end_ptr_double: { 

return "migrate_end"; 

} 

} 

} 

Normally the intrinsic call instructions in the SelectionDAGISel.cpp file are lowered to 

methods present within the file and present and then null value is returned in the above 

shown "switch-case" statements but, as it is required to emit the migrate intrinsics as calls 

to named external functions, the symbol or the function name of the migrate intrinsic is 

returned as shown above. 
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The switch case statements clearly indicate that the created intrinsics are enumera-

tions in the Intrinsic namespace and migrate - begin and migrate_end are the symbols 

added in LLVM to lower the intrinsics. 

4.2 Possible future extensions to SelectionDAGISel.cpp 

file 

New additions are to be made to the SelectionDAGISel.cpp file whenever the Filter Pass 

is extended by creating new migrate_end intrinsics in the Filter Pass. 

For instance, if migrate_end_ptr_ptr_float and migrate_end_ptr_ptr_double in-

trinsics are created to cater to the double pointer to float(**f32) and double pointer to 

double(**f64) data types, the following are the additions to be made to the file: 

case Intrinsic::migrate_endptr_ptr_float: { 

return "migrate_end"; 

} 

case Intrinsic::migrate_end_ptr_ptr_double: { 

return "migrate_end"; 

} 

The present intrinsic lowering is performed at higher levels of abstraction of the LLVM 

Code Generator and completely independant of the target backends. Target specific low-

ering of intrinsics can also be done by making additions to the TableGen files describing 

the instruction formats of the target architectures. Various procedures are followed to 

lower intrinsics into LLVM and the procedure discussed in this section is one among 

them. 

4.3 PowerPC Backend Results 

The LLVM infrastructure is equipped with static backends both for both PowerPC 32 

bit and 64 bit architectures. Once the intrinsics are adapted to the target backends, 

the bit code output of software section of the Filter Pass is compiled into the PowerPC 

assembly language by pre-existing PowerPC-32 backend. The following figure 4.1 shows 

the results obtained from the backend. 
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bbl 1 8.outer.preheader: 
br label bb118.outer 

bb118.outer: 
i.0.reg2mem.0.ph = phi 1321 indvar.next112, bb124 ], [ 0, bb118.outer.preheader ] 

migrate begin10 = call i32 (...)* @I Ivm.migrate_begin( 132 1, 132 3, 132 i.0.reg2mem.0.ph, 
132 migrate_end6, 18* migrate_end8 ) 

migrate_end11 = call 132" @Ilvm.migrate_end_ptr 32(1321, 132 2 ) 
br label bb101 

bb101: 
j.069 = phi i3210, bb118.outer]; [ indvar.next 110, bb115 ] 
tmp104 = icmp eq i32 i.0.reg2mem.0.ph, j.069 
br i1 tmp104, label bbl06, label bb115 

LLVM PowerPC Backend 

BB1_1: # entry.bb118.outer_critedge 
Ii21,0 

BB1_2: # bb118.outer 
creqv 6, 6, 6 
li 4, 3 
Ii 20, 1 
Ii 19,2 
mr 3, 20 
mr 5, 21 
mr 6, 24 
mr 7, 22 
bI migrate_begin 
mr 3, 20 
mr4, 19 
bI migrate_end 
Ii4,0 

BB13: # bb101 
cihplw 0, 21, 4 
bne 0, BB1_5 # bb115 

Figure 4.1: PowerPC Assembly Language Output 

The image shows the PowerPC assembly language output obtained from the PowerPC-

32 Backend for a basic block from the software section LLVM IR of the Selection Pass 

containing intrinsics. It can be seen from the output that the newly created intrinsics 

have been adapted to the PowerPC backend. 



4.4 VHDL Backend Results 

The VHDL backend for LLVM is under construction. The backend has been adapted 

to the newly created intrinsic functions and the following are results of lowering the 

LLVM IR of the hardware section to VHDL RTL. The following is a basic block from 

the hardware section LLVM IR of the Selection Pass. 

define i32 blub(i32 a, i32 b) {- 

entry: 

tmp6 = mul i32 b,a 

tmp3 = add i32 b, a 

tmp8 = add i32 tmp3, tmp6 

tmp11 = mul i32 tmp8, a 

tmpl3 =,add i32 tmpll,tmp8 

tmpl6 = mul i32 tmp13, b 

tmpl8 = add i32 tmpl6, tmpl3 

ret i32 tmpl8 

} 

The following shows the corresponding VHDL representation obtained from the VHDL 

Backend. 

library ieee; 

use ieee.std_logic_1164.ALL; 

use ieee .numeric_std.ALL; 

entity blub_entry is 

port ( 

rst : in std_logic; 

Syncl : in std_logic; 

SyncO : out std_logic; 

a: in std_logic_vector(31 downto 0); 

b: in std_logic_vector(31 downto 0); 

tmpl8: out std_logic_vectcr(31 downto 0); 

clk : in std_logic 

); 

end entity; 



architecture LLVM_VHDL of blub_entry is 

signal entry_sync_0_5: std_logic_vector( 0 to 6-1); 

signal tmp6:std_logic_vector(32-1 downto 0); 

signal tmp3:std_logic_vector(32-1 downto 0); 

signal tmp8:std_logic_vector(32-1 downto 0); 

signal tmpll:std_logic_vector(32-1 downto 0); 

signal tmpl3:std_logic_vector(32-i downto 0);. 

signal tmpl6:std_logic_vector(32-1 downto 0); 

--tmpl8 in port list. 

begin 

p_entry: process (clk) is 

begin 

if(clk'event and clk='1') then 

tmp6 <= STD_LOGIC_VECTOR(UNSIGNED(b) * UNSIGNED(a)); 

tmp3 <= STD_LOGIC_VECTOR(UNSIGNED(b) + UNSIGNED(a)); 

tmp8 <= STD_LOGIC_VECTOR(UNSIGNED(tmp3) + UNSIGNED(tmp6)); 

tmp11 <= STD_LOGIC_VECTOR(UNSIGNED(tmp8) * UNSIGNED(a)); 

tmpl3 <= STD_LOGIC_VECTOR(UNSIGNED(tmpll) + UNSIGNED(tmp8)); 

tmpl6 <= STD_LOGIC_VECTOR(UNSIGNED(tmpl3) * UNSIGNED(b)); 

tmpl8 <= STD_LOGIC_VECTOR(UNSIGNED(tmpl6)+ UNSIGNED(tmpl3)); 

end if ;  - 

end process; 

end architecture; 

The set of instructions of the each data flow driven basic block are represented in VHDL 

as entity and architecture units which are to be synthesized in hardware. 

4.5 Hardware/Software Integration 

The hardware output(VHDL RTL) obtained from the VHDL Backend and the software 

output(PowerPC assembly) are integrated using the Xilinx EDK tool with the help of 

an existing bus interface and a HW/SW interaction program written in C programming 

language. 

The existing bus interface which worked at funtion level data transfers was adapted to 

meet the basic block level data transfers required for the present work. The VHDL RTL 



output and the bus interface are synthesized on Xilinx Virtex II FPGA. The PowerPC 

assembly is executed on the PowerPC microprocessor present on the same FPGA. All 

the files required are imported into the Xilinx EDK environment where the co-synthesis 

is performed. The HW/SW integration is performed with the help of the bus interface 

and the HW/SW interaction program: The HW/SW interaction program contains the 

definitions for the migrate_begin and migrate_end functions. 

The following figure 4.2 describes the HW/SW integration and the manner in which 

the input application is executed 

PowerPC 32 

PHI instruction 
migrate_begin instruction 
migrate_end instruction 1 

VHDL RTL 
BUS  

INTERFACE PHI instruction (deleted) 
instruction I 
instruction 2 

migrate end instruction p L 	 uction n 
Terminator instruction 	 J 	 Terminator instruction(deleted) 

Control Flow 

Data Flow I► 

Figure 4.2: HW/SW Integration 

The image shows the hardware and software sections and the transfer of data and 

control betweem them through the bus interface. The execution is carried out on the 

PowerPC of Virtex II till the migrate intrinsics are encountered. As soon as a function call 

to the migrate_begin intrinsic is encountered, the control is transferred to the function -

definition of the migrate_begin intrinsic provided in the HW/SW interaction program. 

The same call instruction transfers the arguments to the migrate_begin funtion. 

The arguments of migrate_begin instruction are the following 

1. Incoming data dependencies of the basic block having the intrinsics 1  

2. The phi instructions of the basic block. 

1Teminator instruction incoming data dependencies not included. 
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3. The count of the arguments mentioned'in 1 and 2. 

4. The enumeration of the intrinsic within the parent function. 

The first and second arguments provide the input data necessary for the execution of 

the subsequent instructions on hardware. The fourth argument is for the provision of a 

new memory segment for each new migrate_begin intrinsic and the third argument is 

for the amount of memory space required for the storage of input arguments or data. 

The migrate_begin function loads these arguments into the memory locations specified 

by the bus interface and waits for the execution of the susequent instructions on hard-

ware. As soon as the execution of the instructions is finished in hardware the control 

is returned back and the PowerPC proceeds with the execution of remaining instruc-

tions. The migrate_end instructions are place holders for instructions having external 

dependencies. When a migrate_end function call is encountered, the control and the 

arguments are again transferred to the definition of the migrate_end intrinsic function 

definition provided in the 1-1W/SW interaction program. The arguments of the migrate 

end function are the following 

1. The enumeration of the migrate_ begin intrinsic of the basic block 

2. The position of the instruction within the basic block which is being replaced by 

the migrate_end intrinsic. 

The values of the instructions executed are placed in consecutive memory locations. The 

first and second arguments of the migrate_end intrinsic provide for the identification 

of the base address and offset of the memory location in which the required value of 

the instruction is present. This value is returned back to the function call and the 

PowerPC proceeds in the same manner with the execution of the remaining migrate_end 

instructions if present. In this way the application is executed in hardware/software. 
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Chapter 5 

Conclusion 

5.1 Summary 

1. LLVM Passes (Binning Pass and Selection Pass) are implemented to enable auto-

matic hardware/software partitioning of input algorithms in C/C++ programming 

languages. 

2. The VHDL and PowerPC target backend outputs are obtained for the created 

HW/SW sections of the algorithm in LLVM IR. 

3. The implemented Passes are tested and verified using the DSP algorithms (Two 

dimensional DFT program and Walsh Hadamard Transform program) written. 

4. The present Passes support integer, float data types and only a few kinds of pointer 

data types of the identifiers present in input algorithms. 

5. The VHDL Backend used for the presented work is still in development stages and 

hence does not support the identifiers of float data type present in input algorithms. 

6. The co-synthesis. of the VHDL/PowerPC outputs is to be performed for the execu-

tion of the input algorithms and to analyze the performance and communication 

costs of the co-design implementation. 
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5.2 Future Extensions 

5.2.1 Possible Extensions to the Binning Pass 

Various new features which identify control flow and data flow can be detected and 

utilised in the construction of the Binning Pass. For instance, the following control flow 

features can be considered: 

1. Number of immediate predecessors for each basic block 

2. Number of arguments of each phi. instruction 

3. Number of possible loops in a function 

4. Loop unrolling feature detection 

The empirical relations framed may also depend on various other ratios formed using 

the presently identified features or new features. For instance the new ratio Number of 

immediate predecessors / Number of phi nodes can be considered. The number of im-

mediate predecessors gives us the incoming branches to the basic block and is a measure 

of control flow. The number of phi nodes represents the number of data values coming 

into the basic block and is a measure of data flow. The Pass can utilise the Control 

Flow Graph classes supported by the LLVM libraries for identification of the control 

flow sections but the present Binning pass is simple and sufficient for a considerably 

large section of algorithms. 

It is also possible that the profiling information can be used to identify the sections 

of the algorithm to be sent to HW/SW instead of the present Binning Pass. Profiling 

is done for performance analysis and evaluation of the execution time of the program. 

It finds the critical code segments of the program such as loops or iterative processes, 

where the processor spends most of its execution time. These code segments can be 

identified and sent to hardware for speedier execution. LLVM-GCC compiler has a tool 

called llvm-prof which reads in the bitcode file of the input program and determines the 

hotspots of the program. This profiling tool can also be used for the categorization of 

HW/SW sections. 

5.2.2 Possible Extensions to the Selection Pass 

0 

The following are the possible extensions for the Selection Pass 



1. Type support for intrinsics 

2. Support for multiple return values 

3. Support for hyperblocks 

The return type of an LLVM instruction can be broadly classified into integer, floating 

point and pointer data types. The pointer data type covers complex types including 

data types of identifiers like pointers, arrays, structures and functions. 

The migrate_end intrinsics created in the Selection Pass handle the integer and 

floating point data types efficiently but all the pointer data types are not supported 

as LLVM's intrinsic overloading mechanism does not currently support overloading on 

pointer types. Therefore, additional checks need to be performed to determine the exact 

return type of the LLVM instruction in the Selection Pass and the corresponding new 

migrate_end intrinsic is to be created. This also involves adding entries to the new 

intrinsics and the adding the types required to create these intrinsics in the Intrinsics.td 

file. 

The additional migrate_end intrinsics with new pointer return types can be created 

depending on the requirement of the input test algorithm. 

These may include the various return types such as 

• Double pointers to float data types(**f32). 

• Double pointers to double data types(**f64). 

The presently created migrate_end intrinsics cover a major section of the possible return 

types of an LLVM IR instruction. 

LLVM functions do not currently support multiple return values unlike some C pro-

gramming language functions which can return multiple values in registers (e.g. "conj" 

function which returns the conjugate of a complex number, with the real and imaginary 

components, in two different registers). This multiple return value support is expected 

to be included in the upcoming releases(i..e next to llvm-2.2 version). The migrate_end 

intrinsics of the Selection Pass can then be modified to handle multiple return values. 

As mentioned in [13], hyperblocks support the provision of instruction level paral-

lelism in program codes. A hyperblock is formed by combining basicblocks having dif-

ferent execution paths and hence the terminator instructions might be present at places 
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other than the end of the block. The present Selection Pass only supports the sectioning 

of basic blocks with single terminator instruction at the end of the block and support is 

to be provided to hyperblocks with multiple terminator instructions. 

The presented work is a step in the direction of hardware/software codesign of ap-

plications using LLVM compiler framework. 
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Appendix A 

Binning Pass Header File 

//Header file for Binning Pass 

#ifndef CDFBINNING H 

#define CDFBINNING_H 

#include "llvm/Pass.h" 

#include "llvm/Funct ion. h' 

#include "llvm/BasicBlock.h" 

#include "llvm/InstrTypes;h" 

#include "llvm/Instructions.h" 

#include "llvm/Analysis/LoopInfo.h" 

#include <string> 

#include<map> 

using namespace llvm; 

using namespace std; 

namespace llvm { 

class MyFunctionlnfo //Function information 

{ 

public: 

unsigned int ni,phi,nodes,edges,loop,dfbb,cfbb; 

int yl,y2,y3; 

float weight; 

string name; 

1; 
class MyBlocklnfo //BasicBlock Information 



{ 

public: 

unsigned int mci,phi,arr,size,succ; 

int xl,x2,x3; 

float weight; 

string name; 

}; 

class CDFbinning : 	public FunctionPass 

{ 

public: 

static char ID; 

//map to store function information 

map<Function* , MyFunctionlnfo*> FInfo; 

//map to store basic block information 

map<BasicBlock* , MyBlocklnfo*> BBInfo; 

vector<Value*> GVInfo; 

CDFbinningO 	: 	FunctionPass((intptr_t)&ID) {} 

//To specify that Loopinfo Pass is required for current transformation 

void getAnalysisUsage(AnalysisUsage &AU) const { 

AU.setPreservesAll(); 

AU.addRequired<LoopInfo>(); I4  

} 

virtual bool runOnFunction(Function &F);  

} 

#endif  
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Appendix B 

Binning Pass 

//CDFbinning Pass -> Determines the extent of 

//control flow and data flow 

//at function and basic block levels 

#include "llvm/Pass.h" 

#include "llvm/Module.h" 

#include "llvm/Function.h" 

#include "llvm/BasicBlock.h' 

#include "llvm/InstrTypes.h" 

#include "llvm/Instructions.h" 

#include "llvm/Support/CFG.h" 

#include "llvm/ADT/DepthFirstIterator.h" 

#include "llvm/Constants. h' 

#include <map> 

#include <vector> 

#include "CDFbinning.h" 

//constants used for framing empirical relations 

#define kb1 0.6 

#define kfl 0.7 

#define kf2 1.5 

#define kf3 1.2 

#define kf4 0.3 

#define pl 2 
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#define p2 0.7 

#define p3 0.5 

#define p4 0.5 

#define q1 1 

#define q2 0.5 

#define q3 0.5 

#define q4 0.5 

using namespace llvm; 

using namespace std; 

namespace llvm { 

//Iterating over all the functions in the input algorithm 

bool CDFbinning::runOnFunction(Function &F) { 

Module *M = F.getParent(); 

cerr< <"\n-------CDFbinning Pass Output-------\n\n"; 

llvm::cerr << "Function ->\t"<<F.getNameO << ":\n\n"; 

cerr<<"\nglobal values: "< <endl; 

Loopinfo &LI=getAnalysis<Loopinfo>(); 

Loop *loop; 

for(Module::global-iterator gi=M->global_begin(),gie=M->global_end();gi!=gie;gi++) { 

Value *vall= dyn_cast<Value>(gi); 

//get first encapsulated type from PointerType 

const Type *t=gi->getType()->getElementType(); 

if(t->getTypelDO==Type::ArrayTylD) { 

const ArrayType *at=cast<ArrayType>(t); 

if (at) { 

int notConstant=0; 

User *inner=dyn_cast<User>(gi->getOperand(0)); //get array pointer 

if(inner) { 

//checks if all array values are constants 

for (User::op_iterator opi = inner->op_begin(), ope = inner->op_end(); 

opi != ope; ++opi) { 

Constant *c=dyn_cast<Constant>(opi); 

if(!c){ 

notConstant=1; 

break; 

} 

} 

if(!notConstant) {//stores arrayvalues in map if array values are constants 

GVInfo.push_back(vall); 

cerr< <val1->getName()<<endl; 

52 



} 

E 

else 

notConstant=1; 

} 

} 

} 

cerr< <endl; 

MyFunctionlnfo* MFI; 

Function* pF = &F; 

unsigned int nif=0,bb=l,phif=0,edgesf=0,dfbb=0,cfbb=0,tbnum=0; 

int y1=0,y2=0,y3=0,y4=0; 

float wf=O; 

//Iterating over all the basic blocks of the function 

for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b,++bb){ 

MyBlocklnfo* MBI; 

BasicBlock *pb = b; 

unsigned int phibb =0,mcibb=0,global=0; 

int x1=-1,x2=0,x3=-1,x4=-1; 

float wbb=0; 

llvm::cerr << "Basic block " << pb.->getNameO << ":\n"; 

for ( BasicBlock::iterator i = pb->begin(), ie = pb->end(); i != ie; ++i){ 

//Checks whether GEP instruction accesses Global constant integer arrays memory using 

if(isa<GetElementPtrInst>(i)){ 

GetElementPtrinst *GEPinst = dyn_c.ast<GetElementPtrinst>(i); 

for( vector<Value*>::iterator iter = GVInfo.begin(); iter != GVInfo.end(); iter++ ) 

if(*iter == GEPinst->getPointerOperand()){ 

global-4-+; 

//iterating over def use chain of GEP instruction to find memory accesses dependant 

// on GEP instruction 

for(Value::use_iterator ui = GEPinst->use_begin(),uie = GEPinst->use_end();ui!=uie;++ui){ 

if(Instruction *piuser=dyn_cast<Instruction>(ui)) { 

if((isa<Loadlnst>(piuser)) II (isa<Storelnst>(piuser)) ){ 

global++; 

} 

} 

} 

} 

map 

{ 
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} 

} 

//Checks whether Load instruction accesses Global constant integer arrays memory using 

else if(isa<LoadInst>(i)){ 

Loadlnst *Linst = dyn_cast<LoadInst>(i); 

for( vector<Value*>::iterator iter =GVInfo.begin(); iter != GVInfo.end(); iter++ ) { 

if(*iter == Linst->getPointerOperandO) 

global++; 

} 

} 

//Checks whether 

//Store instruction accesses Global constant integer arrays memory using map 

else if(isa<Storelnst>(i)){ 

Storelnst *Sinst = dyn_cast<StoreInst>(i); 

for( vector<Value*>::iterator iter =GVInfo.begin(); 

iter != GVInfo.end(); iter++ ) { 

if(*iter ==Sinst->getPointerOperand()) 

global-H-; 

} 

} 

if(isa<CallInst>(i) Ilisa<GetElementPtrinst>(i) 

II isa<StoreInst>(i) II isa<Terminatorinst>(i) II isa<AllocationInst>(i) II 

isa<LoadInst>(i) II isa<FreeInst>(i)) 

mcibb++;//count of control constructs and memory access instructions 

if(isa<PHINode>(i)) 

++phibb; //count of phi instructions 

} 

Terminatorinst *te = pb->getTerminator(); 

const BasicBlock *BB = Pb; 

loop = LI.getLoopFor(BB); 

unsigned int benum=0; 

if (LI. isLoopHeader(pb) ) { 

benum= loop->getNumBackEdges(); 

tbnum+= benum; 

} 

llvm::cerr << "Number of instructions :\t" << pb->size0 << "\n"; 

//gives number of instructions from begin to first non phi 

llvm::cerr << "Number of PHI Instructions :\t" << phibb< < "\n"; 

llvm::cerr << "Control flow and memory transfer instructions :\t" << mcibb << "\n"; 

map 
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llvm::cerr << "Constant global array memory access instructions :\t" << global << "\n"; 

llvm::cerr << "Number of successors. :\t" < <te->getNumSuccessors() << "\t" <<"\n"; 

llvm::cerr << "Number of backedges :\t" << benum << "\t"< <"\n"; 

for(unsigned int nt=0;nt<(te->getNumSuccessorsO);++nt){ 

if(pb == te->getSuccessor(nt)){ 

x4=x4+2; 

llvm::cerr << "Basic Block has self loop" <<"\n"; 

break; 

} 

} 

edgesf+=te->getNumSuccessors(); 

phif+=phibb; 

nif+= pb->size(); 

//empirical relations for determining extent of control 

//and data flows at basic block level 

//check for control flow - mem. and control instructions are more 

if((mcibb-global) > kbl * ((pb->sizeO)-phibb)) 

x1 = 1; 

//check for data flow - phi instructions absent and less than or 

//equal to one successor 

if(phibb == 0 && (te->getNumSuccessors() <= 1) ) 

x2 = -1; 

// check for control flow - phi instructions are less than successors 

if( phibb!=0 && phibb < te->getNumSuccessors()) 

x3 = 1; 

wbb=p1 * x1 + p2 * x2 + p3 * x3 + p4 * x4; 

if(wbb > 0){ 

llvm::cerr << "Basic block " << pb->getName()< < " has more of control flow\n\n"; 

cfbb++; 

} 

else{ 

llvm::cerr << "Basic block " << pb-=>getName()< < " has more of data flow\n\n"; 

df bb++ ; 

} 

//storing the basicblock information in map 

MBI = new MyBlocklnfo(); 

MBI->mci = mcibb; 

MBI->arr = global; 

MBI->phi = phibb; 

MBI->size = pb->size(); 



MBI->weight = wbb; 

MBI->xl = xl; 

MBI->x2 = x2; 

MBI->x3 = x3; 

MBI->name = pb->getName(); 

MBI->succ = te->getNumSuccessors(); 

BBInfo[pb] = MBI; 

} 

llvm::cerr << "Number of instructions in function :\t" << nif<<"\n" 

llvm::cerr << "PHI Instructions in function :\t" << phif <<"\n"; 

llvm::cerr << "Data flow basic blocks in function :\t" << dfbb<< "\n"; 

llvm::cerr << "Control flow basic blocks in function :\t" <<cfbb << "\n"; 

llvm::cerr << "Average basic block size :\t"< <nif/F.size()< <endl; 

llvm::cerr << "Number of back edges in function: \t" < <tbnum< <"\n" 

llvm::cerr << "Number of nodes in function: \t" << F.size()<<"\n" 

llvm::cerr << "Number of edges of function: \t" << edgesf<<"\n\n" 

//empirical relations for determining extent of control and data 

//flows at function level 

//check for data flow - number of data flow blocks are more 

if(dfbb > kfl * F.sizeO) 

yl = -1; 

//check for control flow - number of control flow blocks are more 

else if(cfbb > kfl * F.size()) 

yl = 1; 

//check for control flow - edges by node ratio is more 

if(edgesf > kf2 , F.size()) 

y2 = 1; 

//check for data flow - edge by node ratio is very less 

else if(edgesf < kf3 * F.size()) 

y2 = -1; 

//check for control flow - number of nodes greater than avg. basic block size 

if ( F.sizeO > (nif/F.sizeO) )- 

y3 = 1; 

//check for data flow - avg. basic block size greater than number of nodes. 

else if ((nif/F.size()) > F.size()) 

y3 = -1; 

if( tbnum > kf 4 * edgesf) 

y4 = 1; 

wf = q1 * yl + q2 * y2 + q3 * y3+ q4 * y4; 

if (wf>=0) 
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llvm::cerr << "This function has more of control flow\n\n\n"; 

else 

llvm: : cerr << "This function has more of data flow\n\n\n" ; 

//storing the function information in map 

MFI = new MyFunctionlnfoO; 

MFI->ni = nif; 

MFI->phi = phif; 

MFI->nodes = F.size(); 

MFI->edges = edgesf; 

MFI->loop = tbnum; 

MFI->dfbb = dfbb; 

MFI->cfbb = cfbb; 

MFI->yi = yl; 

MFI->y2 = y2; 

MFI->y3 = y3; 

MFI->weight = wf; 

MFI->name = F.getName(); 

FInfo[pF] = MFI; 

GVInfo.clear{); 

return false; // Return 'false' when LLVM IR is not modified. 

} 

char CDFbinning::ID = 0; //CDFbinning Pass ID 

} 

namespace { 

//Registering CDFbinning Pass 

RegisterPass<CDFbinning> X("CDFbinning", "CDFbinning Analysis Pass"); 

} 
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Appendix C 

Selection Pass 

//Filter Pass -> Creates Intrinsics as place holders 

//for instructions 

//for target specific execution 

#include <string> 

#include "llvm/Intrinsics.h" 

#include "llvm/Pass.h" 

#include "llvm/Function. h' 

#include "llvm/BasicBlock.h' 

#include "llvm/InstrTypes.h" 

#include "llvm/Instructions.h" 

#include "llvm/Value.h" 

#include "llvm/User.h' 

#include "llvm/Support/CFG.h' 

#include <map> 

#include <vector> 

#include "../CDFbinning/CDFbinning.h" 

#include "llvm/Type.h' 

#include "llvm/IntrinsicInst.h" 

#include "llvm/DerivedTypes.h" 

#include "llvm/Support/CommandLine.h" 

#include "Deps.h' 

using namespace llvm; 

using namespace std; 

namespace llvm{ 



static c1: :opt<bool> filter_hw("filter-hw", cl: :desc("filter for 

dataflow intensive  stufe (hw generation only)")); 

struct Filter : public FunctionPass { 

static char ID; 

Filter() : FunctionPass((intptr_t)&ID) {} 

//To specify that CDFbinning Pass is required for current transformation 

void getAnalysisUsage(AnalysisUsage &AU) const { 

AU. addRequired<CDFbinning>(); 

} 

//Iterating over all the functions in the input algorithm 

virtual bool runOnFunction(Function &F) { 

CDFbinning &CDF = getAnalysis<CDFbinning>(); 

cerr< <"-------Filter Pass Output-------"< <endl; 

cerr<< "\n\nFunction-> " << F.getName() << "\n\n"; 

cerr<<"non positive 'weight' => basic block with more data flow\n"; 

//Iterating over all the basic blocks of the function 

for(Function::iterator b=F.begin(),be=F.end();b!=be;++b){ 

llvm::cerr << CDF.ID; 

BasicBlock* bbp = dyn_cast<BasicBlock>(&*b); 

llvm::cerr << endl< <bbp->getName()< < " weight:"<< (CDF.BBInfo[bbp])->weight <<"\n"; 

//Check for basic block with more of data flow 

if((not filter_hw and CDF.BBInfo[bbpl->weight <=0) 

or (filter hw and CDF.BBInfo[bbpj->weight >O)){ 

//instantiating an object of Deps class in Deps.h file 

Deps *dp = new Deps(bbp); 

vector<Value*> 

migrate_end_arglist;//Vector Container to handle values required for migrate_end 

intrinsic creation 

llvm::cerr<<"\nFunction type of migrate_begin intrinsic for basic block 

<< bbp->getNameO << ":\n"; 

//Tys** points to returntype and operand types 

const Type **Tys=(const Type***)calloc((dp->NrincomingO)+1,sizeof(Type*)); 

unsigned int i=0; 

//Return Type of migrate_begin intrinsic 

Tys[i]=Type::Int32Ty; 

cerr << *Tys[i++]<<"\t"; 

for(vector<Value*>::iterator it=dp->mb_begin(),e=dp->mb_end();it!=e;it++) { 

Tys[i]=(*it)->getTypeO; 

llvm:: cerr< <*Tys [i++] < <"\t"; 

} 
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llvm::cerr< <"\n"; 

Module *M = bbp->getParentO->getParentO; 

// migrate begin intrinsic 

Function *FMigBegin = Intrinsic::getDeclaration(M, Intrinsic::migrate_begin,Tys); 

intrinsic creation 

// Creates and inserts intrinsic call before terminator instruction 

CallInst *CI= new CallInst(FMigBegin,dp->mb_begin(),dp->mb_end(), 

"migrate begin",bbp->getTerminator()); 

cerr< <"migrate_begin intrinsic created"< <endl; 

//PHI,terminator and intrinsic instructions not considered for 

//migrate_end intrinsic creation 

for(BasicBlock::iterator bi= bbp->getFitstNonPHI(),ie=CI;bi!=ie;++bi){ 

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer. 

Calllnst* NewCI=O; 

unsigned int k=0; 

for(Value::use_iterator ui = pinst->use_begin(),uie = pinst->use_end(); 

((ui!=uie) && (k==0));++ui){//iterating over def use chain 

if (Instruction *piuser=dyn_cast<Instruction>(ui)) { 

//create migrate_end intrinsic only when instruction has 

//phi, terminator or external dependencies. 

if((piuser->getParent() != bbp) II ((piuser->getParent() == bbp) && 

((piuser->isTerminator())-II isa<PHINode>(piuser)))){ 

++k; 

const Type *Ty = pinst->getType(); 

cerr<<"Return Type of instruction being replaced -> "< <*Ty< <endl; 

Function *FMigEnd=O; 

Value* cintl= dp->lookupOutgoing(pinst);//fetching x_enum from Deps.h 

const Type *Tys[] = {pinst->getType() ,Type: : Int32Ty, Type: : Int32Ty}; 

if(dyn_cast<IntegerType>(Ty)) { 

//migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M, Intrinsic::migrate_end_int,Tys,1); 

const Type *MET = FMigEnd->getReturnType(); 

cerr< <"migrate_end intrinsic of return type " << *MET<< " created"< <endl; 

} 

else 

if(Ty->isFloatingPoint()) { 

//migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M, Intrinsic::migrate_end_float,Tys,1); 

const Type *MET = FMigEnd->getReturnType(); 

cerr< <"migrate_end intrinsic of return type " << *MET<< " created"< <endl; 



} 

else 

if(isa<PointerType>(Ty)) { 

const PointerType *PTy.= dyn_cast<PointerType>(Ty); 

const IntegerType *it=dyn_cast<IntegerType>(PTy->getContainedType(0)); 

coast PointerType *itp=dyn_cast<PointerType>(PTy->getContainedType(0)); 

coast ArrayType *ita=dyn_cast<ArrayType>(PTy->getContainedType(0)); 

if (it){ 

if(it->getBitWidth() == 8){ 

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic: :migrate_end_ptr_8,Tys); 

const Type *MET = FMigEnd->getReturnTypeO; 

cerr<<"migrate_end intrinsic of return type " << *MET<< "created"< <endl; 

} 

else if(it->getBitWidth() _= 32){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic:: migrate_end_ptr_32,Tys); 

const Type *MET = FMigEnd->getReturnType(); 

cerr< <"migrate_end intrinsic of return type " << *MET<< "created"< <endl; 

} 

else 

printf("\n create suitable pointer to integer type intrinsic\n"); 

else if((PTy->getContainedType(0))->isFloatingPointO){ 

const Type *Ty = PTy->getContainedType(0); 

if(Ty->getTypelD() _= 1){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_float,Tys); 

const Type *MET = FMigEnd->getReturnType(); 

cerr< <"migrate_end intrinsic of return type " << *MET<< "created"< <endl; 

I 

else if(Ty->getTypelDO == 2){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_double,Tys); 

const Type *MET = FMigEnd->getReturnTypeO; 

cerr<<"migrate_end intrinsic of return type << *MET<< "created"< <endl; 

} 

else 

printf("\n create suitable pointer to floating point type intrinsic\n"); 

} 

else if(itp){ 

coast IntegerType *itl=dyn_cast<IntegerType>(itp->getContainedType(0)); 
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if(itl and itl->getBitWidth() == 32){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_ptr32,Tys); 

coast Type *MET = FMigEnd->getReturnType(); 

cerr«°migrate_end intrinsic of return type " << *MET<< "created"<<endl; 

} 

else 

printf("\n create suitable pointer to pointer type intrinsic\n"); 

} 

else if(ita){ 

coast IntegerType *itl=dyn_cast<IntegerType>(ita->getContainedType(0)); 

if(it1 and itl->getBitWidth() == 32){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic: :getDeclarat&on(M,Intrinsic::migrate_end_ptr_ptr32,Tys); 

coast Type *MET = FMigEnd->getReturnType(); 

cerr<<"migrate_end intrinsic of return type " << *MET<< "created"< <endl; 

} 

else if(itl and itl->getBitWidth() _= 8){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic::getDeclaration(M,Intrinsic::migrate_end_ptr_ptr,Tys); 

coast Type *MET = FMigEnd->getReturnType(); 

cerr< <"migrate_end intrinsic of return type " << *MET<< "created"< <endl; 

} 

else 

printf("\n create suitable pointer to array type intrinsic\n"); 

} 

else 

printf("\n create suitable pointer type intrinsic\n"); 

} 

else if(isa<ArrayType>(Ty)){ 

const ArrayType *ita=dyn_cast<ArrayTTpe>(Ty); 

const IntegerType *itl=dyn_cast<IntegerType>(ita->getContainedType(0)); 

cerr«°C Contained Type -> "<<*it1 <<"Size -> "<< iti->getBitWidthO<<endl; 

if(itl and itl->getBitWidth() == 32){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic: :getDeclaration(M, Intrinsic: :migrate_end_ptr_8,Tys); 

coast Type *MET = FMigEnd->getReturnType(); 

cerr< <"migrate_end intrinsic of return type " << *MET<< " created"< <endl; 

} 

else if(itl and itl->getBitWid•th() == 8){ 
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// migrate_end intrinsic creation 

FMigEnd = Intrinsic: :getDeclaration(M, Intrinsic: :migrate_end_ptr_32,Tys); 

const Type *MET = FMigEnd->getReturnType(); 

cerr<<migrate_end intrinsic of return type " < *MET<< " created"<<endl; 

} 

else if((ita->getContainedType(0))->isFloatingPoint()){ 

coast Type *Ty = ita->getContainedType(0); 

if(Ty_>getTypeIDO == 1){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic:: getDeclaration(M, Intrinsic:: migrate_end_ptr_float,Tys); 

coast Type *MET = FMigEnd->getReturnType O ; 

cerr«°migrate_end intrinsic of return type " << *MET<< "created"< <endl; 

} 

else if(Ty->getTypelD() == 2){ 

// migrate_end intrinsic creation 

FMigEnd = Intrinsic: :getDeclaration(M, Intrinsic: :migrate_end_ptr_double,Tys); 

const Type *MET = FMigEnd->getReturnTypeO; 

cerr«°migrate_end intrinsic of return type " << *MET<< "created"< <endl; 
} 

else 

printf("\n  create suitable pointer to floating point type intrinsic\n"); 
} 

else 

Printf("\n  create suitable array type intrinsic\n"); 
} 

else 

printf(ui\n  create suitable migrate_end intrinsic\n"); 

Value* tint= dp->mb_enum;//fetching mb_enum from Deps.h 

migrate_ end_ arglist.push_back(cint); 

migrate_end_arglist.push_back(cinti); 

// Creates and inserts intrinsic call before terminator instruction 

NewCI = new 

CallInst(FMigEnd,migrate_end_arglist.begin(),migrate_end_arglist.end(), 

"migrate_end",bbp->getTerminator()); 

migrate_end_arglist.  clear 0, 
} 

} 

} 

//iterating over def use chain of current instruction 

for(Value::use_iterator ui =pinst->use_begin(),uie = pinst->use_end();ui!=uie;){ 
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if (Instruction *piuser=dyn_cast<Instruction>(ui)) { 

//increment iterator early to avoid voiding it by deleting the instruction 

++u• 

//replace dependencies(uses) only for phi nodes,terminator instructions 

//and users outside basic block 

if((piuser->getParent() != bbp) II ((piuser->getParent() == bbp) && 

((piuser->isTerminator()) II isa<PHINode>(piuser)))){ 

cerr<< piuser->getNameO<< "instruction -> Uses of '<< pinst->getNameO 

«" replaced with migrate_end intrinsic\n"; 

piuser->replaceUsesOfWith(pinst,NewCI); 

} 

} 

else 

cerr<<"Use not an instruction and hence not replaced! "< <endl; //Error Message 

} 

} 

//PHI, intrinsic & terminator instrictions retained 

for(BasicBlock::iterator bi=bbp->getFirstNonPHI(),ie=CI;bi!=ie;){ 

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer. 

//increment iterator early to avoid voiding it by deleting the instruction 

++bi; 

pinst->dropAllReferences(); //drop all references of each instruction 

} 

int k=0; 

//PHI, intrinsic & terminator instructions retained 

for(BasicBlock::iterator bi= bbp->getFirstNonPHI(),ie=CI;bi!=ie;){ 

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer. 

//increment iterator early to avoid voiding it by deleting the instruction 

++bi;  

if(pinst->use_empty()) //Delete instruction only when its uses are empty. 

pinst->eraseFromParent 0 ; //discard instructions from basic block 

else{  

++k• 

cerr< <pinst->getNameO< <" -> Uses not empty!\n "<< k <<endl; //Error Message 

} 

} 

if (k==0) 

cerr< <"\nPHI, intrinsic & terminator instructions retained and rest deleted\n"; 

delete dp; 

} 



} 

return true; // Return 'true' when LLVM IR is modified. 

} 

char Filter: :ID = 0; //Filter Pass ID 

} 

namespace{ 

RegisterPass<Filter> X("Filter", "Filter Pass"); //Registering Filter Pass 

} 
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Appendix D 

Deps Header File 

//Header file to collect arguments for intrinsic functions 

#ifndef DEPS H 

#define DEPS_H 

#include "llvm/Pass.h" 

#include "llvm/Module.h" 

#include "llvm/Funct ion. h' 

#include "llvm/BasicBlock.h" 

#include "llvm/InstrTypes.h' 

#include "llvm/Instructions.h" 

#include "llvm/Value.h" 

#include <vector> 

#include "llvm/Constants.h" 

#include<map> 

using namespace llvm; 

using namespace std; 

namespace llvm { 

class Deps 

{ 

public: 

vector<Value*>mb_arglist;//migrate_begin arglist vector for each basic block 

map<Instruction*,Value*>me_arglist;//migrate_end arglist map for each basic block 

Value* mb_enum; 

Deps(BasicBlock *bbp) {//FILL incoming vector here 



static unsigned int migrate_begin_counter=0; 

//add this number to the migrate_end_arglist 

mb_enum=Constantlnt: :get (Type::Int32Ty,migrate_begin_counter); 

migrate_begin_counter++; 

mb_arglist.push_back(mb_enum); 

mb_arglist.push_back(mb_enum); 

Function *func = bbp->getParent O ; 

//adding function arguments to migrate_begin argument list 

for(Function::arg_iterator agi=func->arg_begin(),agie= func->arg_end();agi!=agie;++agi){ 

Value *farg = dyn_cast<Value>(agi); 

for(Value::use_iterator uil = farg->use_begin O ,uiei = farg->use_end();ui1!=uiel;++ui1){ 

if(Instruction *farguser=dyn_cast<Instruction>(uil)) { 

if(farguser->getParentO== bbp){ 

mb_arglist .push_back(farg); 

cerr< <"function argument -> " < <f arg->getNameO< <"\n°; 

break; 

} 

} 

} 

} 

for(BasicBlock::iterator i= bbp->begin(), ie=bbp->getTerminator(); i!=ie;++i){ 

Instruction* pinst = i;//Converting BasicBlock iterator to Instruction pointer. 

if(isa<PHINode>(pinst)) 

mb_arglist.push_back(pinst);//storing phi values 

else{ 

//Iterating over use def chain of each instruction of BB 

for(User::op_iterator opi = pinst->op_begin(),opie = pinst->op_end(); 

opi!=opie;++opi){ 

Value *v = *opi; 

//Check whether operand is an instruction 

if(Instruction *vinst=dyn_cast<Instruction>(v)) { _ 

if(vinst->getParent() != bbp){//Check for external dependencies of basic block. 

mb_arglist.push_back(v); //storing operands in vector container 

} 

} 

} 

} 

} 

//add this number to the migrate_end_arglist 

Value *mig_begin_num=ConstantInt::get(Type::Int32Ty,(mb_arglist.size()-2)); 
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mb_arglist[1]=mig_begin_num; 

//FILL map here 

//position of migrate_end statement. 

int migrate_end_position=0; 

//PHI,terminator and intrinsic instructions not considered for migrate_end intrinsic 

creation 

for(BasicBlock::iterator bi= bbp->gstFirstNonPHI(),ie=bbp->getTerminator();bi!=ie;++bi){ 

Instruction* pinst = bi;//Converting BasicBlock iterator to Instruction pointer. 

unsigned int k=0; 

for(Value::use_iterator ui = pinst->use_beginO,uie = pinst->use_endO;((ui!=uie) && 

(k==0));++ui){//iterating over def use chain 

if (Instruction *piuser=dyn_cast<Instruction>(ui)) { 

//create migrate_end 

//intrinsic only when instruction has phi, terminator or external dependencies. 

if((piuser->getParent() != bbp) II ((piuser->getParent() == bbp) && 

((piuser->isTerminator()) II isa<PHINode>(piuser)))){ 

++k; 

Value *cintl=ConstantInt: :get (Type::Int32Ty,migrate_end_position); 

me_arglist[pinst]=cintl; 

} 

} 

} 

migrate_end_position++; 

} 

}; 

typedef vector<Value*>::iterator mb_iterator; 

typedef map<Instruction*,Value*>::iterator me_iterator; 

unsigned int Nrincoming() { 

return mb_arglist.size(); 

} 

unsigned int NrOutgoing() { 

return me_arglist.size(); 

} 

Value* lookupOutgoing(Instruction *I) { 

me_iterator mei=me_arglist.find(I); 

if(mei==me_arglist.end O) { 

Value *cint2=Constantlnt::get(Type:':Int32Ty,-1); 

return cint2; 

} 

else 



return me_arglist(I] 

} 

mb_iterator mb_begin() { 

return mb_arglist.begin  O ; 

} 

mb_iterator mb_end() { 

return mb_arglist.  end (); 

} 

me_iterator me_begin() { 

return me_arglist.begin(); 

} 

me_iterator me_end() { 

return me_arglist.end(); 

} 

}; 

} 

#endif 



Appendix E 

Two Dimensional DFT 

//Two Dimensional Discrete Fourier Transform 

#include<stdio.h> 

#include<stdlib.h> 

#include<math.h> 

#include<complex.h> 

int twod_dit(unsigned int N,double a[][N]){ 

complex double wl,w2,p,q; 

unsigned int nl,n2,kl,k2; 

double (*real)[N] = (double (*)[N]) calloc(N * N,sizeof(double)); 

double (*imag)[N] = (double (*)[N]) calloc(N * N,sizeof(double)); 

printf("\n DFT of 2D array :\n"); 

for(k1=0;k1<N;++k1){ 

for (k2=0;k2<N;++k2){ 

q=0; 

for (n1=0;n1<N;++n1){ 

p=0; 

for(n2=0;n2<N;++n2){ 

w2 = -1 * (2 * 3.14159 * n2 * k2)/N * I; 

P - P + a[n1] [n2] * cexp(w2) 

} 

wl = -1 * (2 * 3.14159 * n1 * kl)/N * I; 

q = q + p * cexp(wl) 

} 
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real [kl] [k2] = creal (q) ; 

imag[kl] [k2] = cimag(q); 

if(imag[kl] [k2] >= 0) 

printf ("\t%5.31f + i %5.31f \t" ,real [ki] [k2] , imag [kl] [k2]) ; 

else 

printf("\t%5.31f - i %5.31f\t",real[k1][k2],-1 * imag[kl][k21); 

} 

printf ("\n") 

} 

printf("\n\n"); 

return 1; 

} 

int main(){ 

unsigned int i,j,num; 

printf("\nenter length(or breadth) of 2D array: "); 

s canf ("%d" , &num) ; 

double (*p)[num] = (double (*)[num]) calloc(num * num,sizeof(double)); 

printf("\nenter elements An "); 

for(i=0;i<num;++i) 

for(j=0;j<num;++j) 

scanf("\n%lf",&p[i] [j]); 

twod_dit(num,p); 

free(p); 

printf(°\n\n"); 

return 1; 

} 
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Appendix F 

Walsh-Hadamard Transform 

//Walsh Transform 

#include<stdio.h> 

#include<stdlib.h> 

int walsh_transform(unsigned int N,unsigned int n,int *p){ 

unsigned int a,b,i,j,k,ki = N/2,k2= 1; 

int val; 

int *q = (int *)calloc(N,sizeof(int)); 

int (*WHT)[N] = (int (*)[N])calloc(N * N,sizeof(int)); 

int (*A)[N] = (int (*)[N])calloc(N * N,sizeof(int)); 

int (*B)[N] = (int (*)[N])calloc(N * N,sizeof(int)); 

int (*M) [k1] = (int (*) [k]) calloc(kl * ki, sizeof (int)) ; 

int (*Ik)[kl] = (int (*)[ki])calloc(kl * kl,sizeof(int)); 

for(i=0;i<k1;++i){//Ik - identity matrix 

for(j=0;j<kl;++j){ 

if(i==j) 

Ik[i] [j] = 1; 

} 

} 

f or(i=0;i<kl;++i){//first product term - WHT=WHT2*Ikl 

for(j=0;j<k1;++j){ 

WHT[i] [j]=Ik[i] [j]; 

WHT[i] [j+kl]=Ik[i] [j] 

WHT[i+kl] [j]=Ik[i] [j]; 
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WHT[i+kl] [j+ki]=-Ik[i]  [j] 

} 

} 

fora=2;a<=n;++a){ 

kl=k1/2; 

k2=k2*2; 

for(i=0;i<ki;++i){//M = WHT2*Ik1 

for(j=0;j<ki;++j){ 

M[i] [j7=lk[1] [j]; 

M[i] [j+kl]=IkIi] [j]; 

M[i+kl] [j]=Ik[i] [j] ; 

M[i+kl] [j+k1]=-Ik[i] [j]; 

} 

} 

for (b=0;b<k2;++b){//A=Ik2*M 

for(i=0;i<2*kl;++i){ 

for(j=0;j<2*kl;++j){ 

A[i+b*2*kl] [j+b*2*kl]=M[i] [j]; 

} 

} 

} 

} 

else{ 

for(i=0;i<(2*k2);i=i+2){//last product term - A=Ik2*WHT2 

A[i] [i]=1; 

A [i] [i+1] =1; 

A[i+l] [i]=1; 

A[i+l] [i+l]=-1; 

} 

} 

f or(i=0;i<N;++i){ //B=WHT*A 

for(j=0; j<N;++j){ 

vat=0; 

for(k=0;k<N;++k){ 

val = val + WHT[i] [k] * A[k] [j]; 

} 

B[i] [jJ=vat; 

} 

} 
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for(i=0;i<N;++i){ //WHT=B && A=O 

for(j=0;j<N;++j){ 

WHT[i] [j]=B[i] [j] 

A[i] [j]=0; 

} 

} 

} 

for(i=0;i<N;++i){//print Walsh Matrix 

for(j=0;j<N;++j) 

printf("%d ",WHT[i] [j]); 

printf("\n"); 

} 

printf("\n\n"); 

for(i=0;i<N;++i){//q=WHT*p 

for(j=0;j<N;++j) 

q[i] = q[i] + WHT[i] [j] * p[j] ; 

} 

printf("walsh transform of sequence: \n"); 

for(i=0;i<N;++i)//print Tansform 

printf ("%d\t" , q [i]) ; 

printf("\n\n"); 

free(WHT); 

free(A); 

free(B); 

free(M); 

free(Ik); 

return 1; 

} 

int main(){ 

unsigned int i,j,l,num,N=1,n=0; 

int *p; 

printf("\nenter number(num(>O)) = 2"n) of elements in sequence: "); 

scanf("%d",&num); 

while(1){ 

if(num <= N) 

break; 

else{ 

N=N*2; 

n++; 

} 
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P = (int *)calloc(N,sizeof(int)); 

printf("\nenter sequence :\n "); 

for(i=O;i<num;++i) 

scarf("fin yd",&p[i]); 

Walsh_ transform(N,n,p); 

return 1; 
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