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ABSTRACT 

The real time implementation of state estimation algorithms is always desirable for 

controlling the operation of a power system, but it is limited by computation speed when 

conventional methods are used. In this work a neural network based method is developed 

for solving state estimation problem, with constraints emanating due to physical 

restrictions on the network parameters. The neural network method for solving state 

estimation problem can be implemented on dedicated neural network processors or 

reconfigurable hardware to outperform their software implementation. The feasibility of 

hardware implementation is demonstrated by implementing the algorithm on dedicated 

neural network processor (NNP) architecture, to solve a simple nonlinear programming 

problem. 

The prerequisite for state estimation is that the system under study must be 

observable i.e. there are sufficient measurements. A new method based on Hopfield 

neural network is developed to determine topological observability of power networks. 

The algorithm also determines where the meters should be placed in order to get an 

observable system. 

FACTS devices, now days are becoming essential part of transmission systems, 

for optimal use of transmission capacities, which offer several advantages, in the system, 

so there is requirement of such estimators which not only estimate the voltage magnitude 

and phase angle but also FACTS device control parameters. Thus the state estimation 

algorithms must incorporate FACTS devices. In this work FACTS devices are also 

included in the neural network based, state estimation algorithm. 
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CHAPTER-1 

INTRODUCTION 

1.1 GENERAL 

State estimation is the process of assigning values to unknown system 

state variables, based on measurements from that system. Usually, the process involves 

imperfect measurements that are redundant and the process of estimating the system 

states is based on a statistical criterion that estimates the true value of the state variables 

to minimize or maximize the selected criteria. A commonly used and familiar criterion is 

that of minimizing the sum of the squares of the differences between the estimated and 

"true" (i.e. measured) values of the system parameters. 

In a power system, state variables are the voltage magnitudes and relative phase 

angles at the system buses. Measurements are required in order to estimate the system 

performance in real time for both system security control and constraints on economic 

dispatch. The inputs to an estimator are imperfect (noisy) power system measurements of 

voltage magnitudes, power, VAR, or ampere flow quantities. The estimator is designed to 

estimate the "best estimate" of the system voltage and phase angles recognizing that there 

are errors in the measured quantities and there may be redundant measurements. The 

output data is then used in system control centres in the implementation of the security 

constrained dispatch and control of the system. 

Load dispatcher in power system control centre is required to know at all times 

the value of voltages, currents and power throughout the network. Some of the values 

such as bus voltage magnitude and power line flows can be measured within a certain 

degree of variance. Difficulties are further encountered when some of the data is missing 

either due to meter being out of order or missing transmission. 

State Estimation (SE) utilizes the available redundancy, for systematic cross 

checking of the measurements, to approximate the states as well as generate information 

in respect of missing observations or gross measurement errors called bad data. The 

prerequisite for state estimation is that the system must be observable with the available 

measurements. 
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States of a power system can also be computed with the load flow calculations, 

based on equal number of measurements, assuming them to be accurate. However, the 

implicit error will lead to imperfect data base and prejudice the security monitoring, 

whereas the state estimator is a data processing algorithm for use on a digital computer 

to transform meter readings (measurement vector) into an estimate of the system's states 

(state vector), which is not only accurate but best reliable also. A comparison between 

Load Flow Calculation and State Estimation has been shown in Fig.1.1. 

n LOAD/ 	 LOAD FLOW 	 n BUS 
INJECTIONS 	 SOLUTION 	 VOLTAGES 

NETWORK 
PARAMETERS 

MEASUREMENT 
UNCERTAINITIES 

m>n 	 STATE 	 n STATE 
MEASUREMENTS 	1 ESTIMATOR 	 VARIABLES 

NETWORK 
PARAMETERS 

Fig 1.1: Comparison between load flow calculations and state estimation. 

As, the state estimator, is required to cater for the needs of online application, 

computation speed plays a vital role especially when systems are large. Alternate 
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methods of state estimation are being reported to optimize on (i) numerical stability, (ii) 

computation efficiency, and (iii) implementation complexity [1]. 

APPLICATION OF POWER SYSTEMS STATE ESTIMATION 

In real time environment the state estimator consists of different modules such 

as network topology processor, observability analyzer, state estimator and bad data 

processor. 

Fig.1.2 is a schematic diagram showing the information flow between the 

various functions to be performed in an operation control centre computer system. The 

system gets its information about the power system from remote terminal units that 

encode measurement transducer output and opened/closed status information into digital 

signals that are transmitted to the operations centre over communication circuits. In 

addition, the control centre can transmit control information such as raise/lower 

commands to generators and open/close commands to circuit breakers and switches. The 

analog measurements of generator output must be used directly by the AGC program 

whereas all the other data will be processed by the state estimator before being used by 

other programs. 

In order to run the state estimator, we must know how the transmission lines are 

connected to the load and generator buses, this information is called network topology. 

Since the breakers and switches in any substation can cause the network topology to 

change, a program must be provided that reads the telemeter breaker/switch status 

indications and restructures the electrical model of the system. 

As seen in the Fig.1.2, the electric model of the power system's transmission 

system is sent to the state estimator program together with the analog measurements. The 

output of the state estimator consists of all bus voltage magnitudes and phase angles, 

transmission line MW and MVAR flows calculated from the bus voltage magnitude and 

phase angles, and bus loads and generations calculated from the line flows. These 

quantities, together with the electric load model developed . by the network topology 

program provide the basis for the economic dispatch program. 

The output of the state estimator i.e. IVI, d , P13, Q together with latest .model 

form the basis for the economic load dispatch or minimum emission dispatch, 
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contingency analysis program etc. 
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1.2 OBJECTIVE OF THE WORK 

From the literature review it is found that state estimation computations are 

reaching a limit as far as conventional computer based algorithms are concerned. It is 

therefore required to find out newer methods for state estimation, which can be 

implemented on hardware to outperform their software counterpart. The algorithms based 

on neural networks can easily be implemented on dedicated hardware. 

The objective of this work is: 

• To formulate the power system topological observability problem as an integer 

programming problem and to develop a new methodology based on Hopfield 

neural network for determination of topological observability in power system 

networks. 

• To formulate power system state estimation problem as a constrained nonlinear 

programming problem. 

• To apply a method based on modified Hopfield network, where the objective 

function and constraints are handled in two stages to solve constrained state 

estimation problem. 

• To select a suitable mathematical model of a UPFC for studying the static 

performance of power systems, and to modify the N-R load flow method to 

incorporate UPFCs. 

• To carry out state estimation of power system embedded with FACTs devices, 

with modified Hopfield neural network. 

• To implement modified Hopfield neural network methodology on neural 

network processor (NNP) to solve nonlinear programming problems. 

1.3: LITERATURE REVIEW: 

1.3.1: State Estimation: 

Power system state estimation was introduced by Schweppe et al. [2] in 1969. 

The state estimation problem is usually mathematically formulated as a weighted least 

squares (WLS) problem [2]. Traditionally, it is solved iteratively by the normal equations 
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(NE) approach. The great advantage of the NE method is that the gain matrix can be 

easily factorized using well-known sparsity techniques. The implementation of robust 

state estimation methods has received significant attention [3]-[4]. The NE approach can 

handle zero injections, by assigning much larger weights for the zero injection equations. 

The artificially large weights may cause ill conditioning problems, thus degrading the 

convergence. Orthogonal transformation based methods [5J-[7] have been used to 

alleviate the ill conditioning problems. The formulation of WLS with equality constraints 

has been suggested to handle zero-injections in [8]. A method based on direct elimination 

of variables using the equalities is suggested in [9]. In [10], the so-called Hachtel's 

augmented matrix method for solving least squares problems has been applied. In [11], it 

is shown analytically that the Hachtel's method is numerically more robust than the 

method of NE with equality constraints. An extension of the Hachtel's method, based on 

a convenient blocked sparse formulation and the use of block arithmetic in matrix 

operations, is presented in [12] and [13]. Although NE/C and Hachtel's augmented 

methods are robust, their weakness is that the corresponding gain matrices are symmetric 

but indefinite and the factorization routines must be modified to handle zero pivots 

during Gaussian elimination. In [14], a method for enforcing equality and limit 

constraints in WLS state estimation is presented. 

Estimating the state is only a part of the larger function of the state estimation. 

Other related functions include observability analysis, bad data processing, and external 

network modeling. In 1975, Clements and Wollenberg undertook ' the studies on 

topological observability [15]. Since then, a lot of the studies have been made. Quintana, 

et al. developed a graph-theory based method [16]. Monticello and Wu presented an 

approach with the Gauss Elimination [17]. After that, Bargiela, et al., contributed to 

developing a technique using the maximum flow [18]. Recently, Mori and Tsuzuki 

proposed artificial neural networks-based approaches [19], [20]. 

1.3.2 Hopfield Neural network: 

In 1985, Hopfield and Tank [21] presented Hopfield networks to solve 

optimization problem. Wilson and Pawley [22] first published the shortcomings of the 

Hopfield network nearly three years after Hopfield and Tank's original paper was 

published. In the original Hopfield networks a number of penalty parameters need to be 



fixed before each simulation of the network, yet the values of these parameters that will 

enable the network to generate valid solutions are unknown. The problem of optimally 

selecting these parameters is not unimportant and much work has been done to try to 

facilitate this process [23]. Perhaps the most important breakthrough in the field, 

however, came from the valid subspace approach of Aiyer et al. [24]. By representing all 

of the constraints by a single term, feasibility of the Hopfield network can now be 

essentially guaranteed. Recently a modified Hopfield network has been proposed to solve 

nonlinear optimization problems [25]. The constraints of the problem are not included in 

the network energy function rather they are handled by valid subspace technique. 

1.3.3. FACTS devices: 

The basic idea about the FACTS devices have been given in the books by N.G. 

Hingorani et al [26], Verma et al [27] and Y. H. Song et al [28]. A Detailed Explanation 

has been given for all the FACTS devices. A. Edris [29] gives the history of emergence 

of FACTS and the recent developments in the field. L. Gyugyi [30] gives the concept of 

unified power flow control (UPFC) and its versatility to control almost all the parameters 

in the system. L. Gyugyi et al [31] presents the control behavior of unified power flow 

controllers (UPFC) and relation between real and reactive power flowing between the 

lines in which UPFC is connected. 

1.3.4. Load flow with Facts devices 
The induction of FACTS devices increases the complexity of system and hence 

the problem arises in the analysis of the system. L.L. Freris et al [32] review the problem 

arising in load flow of the system with the induction of FACTS devices. Y. H. Song, et al 

[33] proposes the Power injection modeling model of the UPFC for the load flow studies. 

In [34] Hatchel method is applied for solving state estimation of power systems in 

presence of UPFC. 

1.4 REPORT ORGANIZATION 

In chapter 2, a review of state estimation is presented along with brief description 

of the existing algorithms. 

Chapter 3 presents the concept of Hopfield . neural network together with its 

dynamic behavior. 
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In chapter 4, the problem of topological observability of power system is 

formulated as an integer programming problem and a new algorithm based on Hopfield 

neural network is presented to solve it. 

Chapter 5 presents a modified Hopfield neural network methodology for solving 

equality constrained state estimation problem. 

In chapter 6, a review of various FACTS controllers, which exist around the 

world and detailed model structure of UPFC, has been given. The algorithm for modified 

N-R to incorporate UPFC has been presented, and finally state estimation of the power 

system in presence of UPFC has been carried out by the modified Hopfield neural 

network methodology. 

Chapter 7 presents implementation of the modified Hopfield neural network 

algorithm on a dedicated neural network processor. 

In chapter 8, conclusions and the scope for future research are given. 

0 



CHAPTER-2 

STATIC STATE ESTIMATION OF POWER SYSTEMS: STATE OF ART 

Load flow calculations indeed are an inevitable tool for off-line studies and planning 

exercises, but incomplete and erroneous measurement is a real time proposition. Solution 

for such a situation is provided by static state estimator, which ignores the slow changes 

in the system and utilizes redundant set of measurements for cross checking and 

approximating the most reliable estimates of the system state. 

2.1 INTRODUCTION 

Modern electric power systems are enormous in scale, typically spanning 

continents, and provide services for hundreds of millions of customers. These systems 

consist of numerous interconnected networks that contain various types of generators and 

consumers of electrical energy, which are also interconnected by high voltage equipment 

such as transmission lines and transformers. Each of these networks is operated and 

maintained by companies who are responsible for the consistently secure and economic 

operation of their network, as well as for the reliability of the larger power system. The 

famous 1965 blackout in the Northeastern United States awakened the power community 

to the fact that their means of providing this service would require implementation of 

more thorough and advanced techniques. 

Prior to this, power system operators working at the control centers had only a 

minimal amount of information and controls available to achieve these objectives. The 

only information received was that which is essential to control the real-time network's 

basic operation, such as system frequency, breaker statuses, and a minimal set of active 

power measurements. 

In 1969 Fred Schweppe introduced the idea of using the redundant number of 

measurements, made available by the supervisory control and data acquisition (SCADA) 

system to statistically determine the state of the network. His proposition, the state 

estimator [2], was eventually accepted and serves as a basis for static state estimation. 



The goal of control center design is security control under the three states of 

power system operation: the normal, emergency, and restorative states. There are several 

functions performed by a control center in the classical energy management system 

(EMS) environment, and the most difficult of these to implement are those that run in a 

real-time environment. The key functions include state estimation, security monitoring, 

on-line load flow, security analysis, supervisory control, automatic generation control, 

automatic voltage/VAR control, and economic dispatch control [35]. These functions 

often interact in a complex manner, but all are aimed at providing the system operator 

with a coherent view of the system and/or carrying out the operator's decisions. Since all 

of these functions are directly dependent on state estimation, it is essential that the system 

operator trust the result. The classical model as discussed above assumes steady-state 

functions; an introductory overview of dynamic-state functions is provided in [36]. 

Though power systems are dynamic, real-time systems, dynamic state 

estimation is generally not employed, reasons being: static state estimation presently fills 

the control center needs; there are many difficulties in determining the dynamic system 

model; and dynamic state estimation is computationally intensive[37]. Of these, the 

difficulty of defining a tractable, reliable model of the dynamic power system is the 

biggest inhibitor, due to the highly unpredictable and nonlinear nature of power systems. 

The state estimator plays the essential role of a purifier, creating a complete and 

reliable database for security monitoring, security analysis and the various controls of a 

power system. The state estimator thus employs statistical methods to act as a tunable 

filter between the field data measurements and security and control functions. 

The fundamental equation for the problem of power system state estimation (SE) 

can be formulated as 

z = h(x) + e 	 (2.1) 

Where z represents all measurements, including power injection, power flow and bus 

voltage magnitude measurements, e is the measurement noise vector, x is the state vector 

composed of the phase angles and magnitudes of the voltages at network buses, and h(.) 

stands for the nonlinear measurement functions in terms of state variables. It is always 

assumed that the parameters and observability of the systems are already determined in 

advance. 
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2.1.1: ERRORS 

2.1.1.1 Measurement Error: 

The process of telemetering the measurements to the control centre is disposed 

to the following discrepancy: 

(i) Error in transducer calibration 

(ii) Noise in communication channel 

(iii) Non-simultaneity of the data 

And defaults- 

(i) Failure of the communication channel 

(ii) Meter being defective or out of order. 

2.1.1.2 Modeling Error 

The model of the network constitutes its topology and parameters. The 

topological errors can be caused by missing information in respect of disconnected or 

reconnected line, while parameter errors are due to its wrong initial estimation. 

Moreover, the system representation considered in such studies is single phase, while 

unbalance conditions cause significant error. 

2.1.2 MEASUREMENTS 

Non-availability of measurements may create condition of unobservability and 

therefore it is important to maintain sufficient redundancy. This leads to the following 

classification of measurements. 

• Telemetered measurements: On-line telemetered bus voltage magnitudes, active 

and reactive power flows, active and reactive injections, subject to noise or error 

in metering, communication system etc. They are assigned weightings in inverse 

proportion of their variance. 

• Pseudo measurements are the guesses in respect of generation or substation loads 

based on historical data and are assigned least weightings. It is used in the event 

of missing data or bad data. 

• Virtual Measurements also known as zero injections, which contain no error. 

They are associated with network buses that have neither load nor generation and 

thus their injected power is zero, and therefore do not require measurement; 
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however they are used to create redundancy. These measurements are assigned 

highest weighting. 

The measurements are never simultaneous, they are sequential, however at a very 

close interval and therefore the static state estimator assumes it to be snap-shot 

measurement [2], i.e. all measurements are assumed to be taken simultaneously. 

2.2: WEIGHTED LEAST SQUARE ESTIMTION (WLSE) THEORY: 

It is often desirable to put different weightings on the different components of 

measurements since some of the measurements may be more reliable and accurate than 

the others and should be given more importance. If a single parameter x, is estimated 

using Nm measurements, the WLSE problem can be described as: 

meal 	 2 
Nm Zi min J(x) 	2 

—1 	Cyi 
(2.2) 

where 

6i =variance for the ith measurement 

J(x) =measurement residual 

Nm=number of independent measurements 
Z'meas = ith measured quantity 

If Ns unknown parameters are to be estimated using Nm measurements, the estimation 

problem can be described as: 

mm J(x,,x2......,x)= 
r ~ 	 2 

I
z; 	—n; (xl ,x2,...XNs)1 

\~`  2 (2.3) 

Matrix Formulation 

If functions h1 (x1,x2 ,...xNs ) are linear functions then 

hi (xl,x2,...x Ns)=hi(x) = hilxl +hi2x2 +........+hiNsxNs 	 (2.4) 

h(x) 

h(x) = h (x) _ [H]x 
	

(2.5) 

h Ns (x) 
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Where, [H] is an (Nm x Ns) matrix containing the coefficient of the linear functions $(x). 

Placing the measurements in a vector form: 
Z meal 
1 

meal 
meal 	ZZ Z =  (2.6) 

meal 
[Z Nm 

Eqn. (2.3) may be written in a very compact form as: 

minJ(x) = [Zmeas _ f(X)]T [R-1] [Zmeas _f(x)] 	 (2.7) 

2 
101 

2 

Where [R]= 	(J2 

2 
0Ns 

[R] is called covariance matrix of measurement errors. 

To obtain the general expression for the minimum in Eqn. (2.7), expand the 

expression and substitute [H]x for f(x) from Eqn. (2.5): 

min J(x) = fzm T[R h1zm — x T [HI [R1]z "eas _ z meas[R -1] [H ]x + x T[H] T[R -1][H]x 
J 

The minimum of J(x) is found when aJ(x) = 0, for i=1 ... Ns; this is identical to the 
ax; 

stating that the gradient of J(x), VJ(x) is exactly zero. 

The gradient of J(x) is 

VJ(x) = _2[H]T [R1]z'  + 2[H]T [R-1][H]x 

Then, VJ(x) = 0 gives. 

xest _ [[HT[R—'][H~ [HJ [R-1]zmeas 	 (2.8) 

It is to be noted here that Eqn. (2.8) holds when Ns<Nm, that is, when the number 

of parameters being estimated is less than the number of measurements being made. 

When Ns=Nm, the estimation problem reduces to 
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xest _ {H]-1 Zmeas 	 (2.9) 

In power system state estimation, underdetermined problems (i.e., where Ns>Nm) 

are solved by adding pseudo measurements to the measurement set to give a completely 

determined (Ns=Nm) or over determined (Ns<Nm) problem, 

2.3. STATE ESTIMATION OF AN AC NETWORK 

In the Ac network, the measured quantities are MW, MVAR, MVA, amperes, 

transformer tap position, and voltage magnitudes. The state variables are the voltage 

magnitude at each bus and the phase angles at all but the reference bus. The equation for 

power flowing over a transmission line is clearly not a linear function of the voltage 

magnitude and phase angle at each end of line. Therefore, the h(x) functions will be 

nonlinear functions; except for a voltage magnitude measurement where h(x) is simply 

unity times the particular xi that corresponds to the voltage magnitude being measured. 

For MW and MVAR measurements on a transmission line from bus i to bus j, J(x) will 

contain the following terms: 

[MW meas —  (I E.  12  (G ij) —  I E i II  E j  I (cos(e i  — 0 3)G ij  + sin(O i  —0  

0 MWij 
2 

[MVAR,jm°as—
(—IEi12  (Bi) — IEiIIEjI(sin(Oi— ej)G;j—cos(0  —ej)Bij))]2  

CFMVARij 2 

A voltage magnitude measurement would result in the following term in J(x). 

(1E1 I
meas  _ I E: 1) 2  

a 
OI &I 

Similar functions can be derived for MVA or ampere measurements. 

Since the relationship between the states (JEt's and O 's) and the power flow in a 

network is nonlinear, some iterative technique is required to minimize J(x). A commonly 

used technique for power system state estimation is to calculate the gradient of J(x) and 

then force it to zero using Newton's method (briefly reviewed- below) 

Given the functions gi (x) , i=1, ....n, It is desired to find out Xans that gives 

g1  (x) = g.des , for i=1, ....,n. . 

Arranging the gi  functions in a vector form, 
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9
des — g(x) = 0 for x = x' 	 (2.10) 

By perturbing x, Eqn. (2.10) can be written as 

gdes —g(x + Ox) = gdes — 
g(x) — [g (x)]Ax = 0 	 (2.11) 

Where g(x+ Ax) have been expanded in a Taylor's series about x, and all higher order 

terms are ignored. The [g'(x)] term is the Jacobian matrix of first derivatives of g(x). 

Then from Eqn. (2.11) 

AX = [g (x)]-
t(gaes —g(x)) 	 (2.12) 

To solve for gaes,  the value of Ax is obtained using Eqn. (2.12) and then ,new = x+ Ax is 

calculated. Eqn. (2.12) is reapplied until either Ax becomes very small or g(x) comes 

close to gdes• 

Now returning to the state estimation problem as given in Eqn. (2.2) 

xm Z1meas —h1  (X) 2 

min J(x) _ 	2 	; The gradient of J(x) is formulated as follows: 
;_i 	Gi  

aJ(x) 

ahl  ah2  ah3 	1 	 z1 — hl (x) 
axi  axl  axl 	

Ql2 

=-2  ahl  ah2  ah3 ... 	Z2 —h2(x) 	
(2.13) 

ax2  ax2  ax2 	 G22  

The Jacobian of h(x), is given by 
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ahl ah2 ah3 

ax1 ax1 axl 

[H] = 	ah1 
f~x2 ax2 ax2 

Eqn. (2.13) can be written as 

z1 —h1(x) 
z2 —h2 (x) 

vXJ(x) = —2[H]T[R]-1 

(2.14) 

(2.15) 

To make VXJ(x) equal zero, applying Newton's method as in Eqn. (2.12), 

ayX J(x) -1 
Ax = 	ax 	[—vXJ(x)] 

The Jacobian of \7 J(x) is calculated as follows: 

(2.16) 

then 

zl —f1(x) 

ayxJ(x) _ a —2[H]T[R]-1 Z2 — f2(x) 
ax  ax 

= —2[H]T[R]-'[—H] 

= 2[H]T[R]-'[H] (2.17) 

z, —f1(x)  

__ 2 [[Hl'[R]-'[H]]-' 2[H]T[R]_1 Z I —f2(x) 	 (2.18) 

i[:9 



z1  — fl(x) 

_ [[p1' [R1 1[H]] 1[fl]T[R]-1  2 —f2(x) 	 (2.19) 

Eqn. (2.19) is applied iteratively to solve the AC state estimation problem. 

WHERE, x=  I  E I  
0 

Figure 2.1: State - estimation solution algorithm 
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2.4: EXISTING STATE ESTIMATION METHODS 

1. Normal Equations 

The estimate of the state vector x is obtained by minimizing the weighted least 

square function 

J(x) _ [z - h(x)] T  W [z - h (x)] 
	

(2.20) 

Where W is a diagonal (Nm x Nm) matrix whose elements are the measurement 

weighting factors. The measurement weighting factor is taken as the reciprocal of the 

error variance. The estimate is solved by an iterative scheme as discussed in the previous 

section which computes the corrections Ax at each iteration by solving 

G(x) Ax =  HT(x) W A z 	 (2.21) 

where 

Az = z - h(x) 

H(x) = 3h(x) =Jacobian matrix 
ax 

G(x) =HT(x) W H(x) 

x =xk  at the kth  iteration. 

Eqn. (2.21) is the so-called normal equations of the linear weighted least square problem 

and is solved by first performing sparse matrix triangular factorization of the gain matrix: 

G= UTU .................................................................. (2.22) 

The classical approach for state estimation is the so-called normal equations 

approach. In this method, different types of measurements are differentiated by the use of 

different weighting factors in the formulation. In power network there are some nodes 

with zero injections i.e. switching substations as constant load. Such buses are called 

constrained buses and can be included in the cost function by assigning large weighting 

factors. It has been observed empirically that such disparity in weighting factors may 

cause ill-conditioning. The need to represent equality constraints as pseudo 

measurements with relatively high weights has caused a search for an alternative to the 

normal equations approach. 

2. Orthogonal transformation [5, 6] (ORTHO) 

The objective function of the linear weighted least squares problem is 
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J(Ax) = [Az — HAx]T  W[Az — HAx] 

_[Az—HAx]T[Az—HAx] 

=II A z— H Ax 112 	 (2.23) 

where, H = W112H and Az = W112Az 

The orthogonal transformation method avoids squaring the gain matrix by using 

the following decomposition of the Jacobian matrix: 

Let Q be an orthogonal matrix, i.e. QTQ=I, such that 

Q H = U  O 	 (2.24) 

where U is an upper triangular matrix, then 

J(Ax) = [Az— H Ax]TQTQ[Az— H Ax] 

=11 QA z—QHAx112 	 (2.25) 

=II Ay,-UAx112  +11AY2112  

where Q Az = 	1 	 (2.26) 
[AY21  

Minimum of Eqn. (2.25) occurs at 

U Ax = Ay, 	 (2.27) 

To summarize, the method starts with first performing the orthogonal transformation 

(2.24) and (2.26) of H and A z, and then solve (2.27) by back substitutions. 

3. Hybrid method [7] (HYBRID) 
It can easily be derived using Eqn. (2.24) that 

G = HTWH = HT  H = UTU 	 (2.28) 

The hybrid method solves normal equations using the orthogonal factors: 

UTUAx = HTWAz 	 (2.29) 

Here U is the upper triangular matrix and thus exploits sparsity along with advantages of 

ORTHO. There are two major steps in the Hybrid method. The fist step is to perform 
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orthogonal transformation Q and the second step is to solve the normal equations. 

4. Normal equations with constraints [8] (NE/C) 

To account for constraints the measurements are portioned into telemetered 

measurements z = h(x) + e and virtual measurements c(x) = 0. Consequently the Jacobian 

is partitioned into H and C. Let the ratio between the weighting factors of the virtual 

measurements and the telemetered measurements be r. Then the normal equations 
become: 

[HTH + rCTC]Ax = HTAz + rCTAc 	 (2.30) 

For very large r, the second term rCTAc in the coefficient matrix dominates. 

However, usually there are not enough virtual measurements to make the matrix C full 

rank. Therefore for large r, the coefficient matrix in Eqn. (2.30) tends to be singular, 

causing the ill-conditioning problem. 

The problem is to find an estimate of the state vector x which minimizes the 

weighted least square J(AX) = [Az — HOx]T  W[Az — HAx] while the equality constraints 

c(x) = 0 are satisfied. The method of Lagrange multipliers may be applied to solve the 

constrained minimization problem. Where the constraints are included in the cost 

function as 

J(Ax, X) = [Az — HAx]T  W[Az — HAx] + X[Ac(x) — CAx]T 
	

(2.31) 

Where X represents the Lagrangian Multiplier and c(x) the constraints such that: 

C(x) =c(x) + C Ax 	 (2.32) 

Using optimality condition- 

aJ =0 b HTWHAx + CTS, = HTWAz 	 (2.33) 
aAx 

Here C= ac(x) 	 (2.34) 
ax 

Eqns. (2.32) and (2.33) can be written as: 

HT  WH CT11Ax1 1HTWAz1  
C 0 k Ac j 	

(2.35) 
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5. Hachtel's augmented matrix method [10, 11] (HACHTEL) 

The constrained minimization problem may be solved for x by Hachtel's augmented 

matrix method. This method uses Eqs. (2.33) and (2.34), along with error vector 

expressed as: 

Ar=Az—HAx 
It can also be written as 

aW-' (aWAr) + HAx = Az 	 (2.36) 

Here . is the parameter used to control the numerical stability and W is the weighted 

diagonal matrix. Eqns. (2.33, 2.34 and 2.36) can be written as: 

0 0 C —a-1X Ac 
0 aW-1  H a-'WAr = Az 

CT  H 0 Ax 0 

0 0 C ' Ac 
0 aW-1  H Ar' = Az 

CT  HT  0 Ax 0 

where Or' = a-'WAr and X _ —a-1X 

H= 

 

8h(x) and C= ac(x)  are the Jacobian matrices, Az =z-h(x); Ac = —c(x) , 
ax 	 ax 

Ar = Az — HAx and x=xk  at the kth  iteration, 

The formulation of state estimation presented here is sometimes called the full 

WLS version. A fast decoupled version also exists [38], in which (i) the real and reactive 

power measurements are divided by voltages, (ii) the real and reactive equations are 

decoupled, and (iii) two constant decoupled sub matrices of H are used throughout the 

iterations. 
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CHAPTER-3 

HOPFIELD NEURAL NETWORK 

This chapter discusses the structure and dynamic behavior of Hopfield neural network 

together with how the concept of energy minimization can be used to solve optimization 

problems with it. 

3.1 INTRODUCTION 

Neural networks are potentially powerful alternative approach for solving 

science and engineering problems. They work in parallel, with much potential for rapid 

hardware implementation. It has been found that neural networks, when simulated on a 
digital machine, are able to obtain near-optimal solutions to practical optimization 

problems. This finding, coupled with their potential for hardware implementation, makes 

them an attractive alternative to traditional optimization techniques. 

Hopfield neural network evolves by minimizing system energy function. In its 

original form, the Hopfield energy function involves many parameters, which need to be 

tuned, and constructing a suitable energy function, which enables the network to arrive at 

feasible near-optimal solutions, is a difficult task. The original Hopfield neural network, 

when used for solving optimization problems suffer from problems such as local minima 

trapping, infeasibility of solution etc. Modifications were made to the Hopfield network 

to enable escape from local minima, while feasibility of the solutions is ensured [39]. 

Optimal solution is not as imperative as arriving at a near-optimal . solution 

quickly. Certainly, one of the principal advantages of neural techniques is the rapid 

computation power and speed, which can be obtained through hardware implementation 

[40, 41], and this consideration is even more valuable in industrial applications. It has 

been realized that neural networks hold much potential for rapid solution to many 

problems, by utilizing their inherent parallelism and hardware implementation ability. 

3.2: HOPFIELD NETWORKS 

In 1982, John Hopfield described a new way of modeling a system of neurons 

capable of performing `computational' tasks. This model considers neural networks of the 
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brain as a dynamical system, with a feedback mechanism, which can be defined as a set 

of differential equations. 

John Hopfield introduced hardware neural networks from electronic components, 

and utilized these circuits to solve optimization problems. Operational amplifiers were used 

to simulate neurons, and the synapses between neurons were simulated by a combination of 

resistors and capacitors wired between the amplifiers (Fig.3.1). The output of a particular 

neuron was modeled by the output voltage of the amplifier in question, and an inhibitory 

impulse from one neuron to another was modeled by connecting the positive terminal of the 

first amplifier to the negative terminal of the second, an excitatory impulse being modeled 

by a positive to positive connection. The strength (weight) of a connectnn between two 

amplifiers i and j was defined by the value of a resistor connecting the two amplifiers. 

The discrete Hopfield network comprises a fully interconnected system of n 

neurons, each of which is considered to be a binary unit (0 or 1) At each nnment; a 

binary state vector can represent the entire state of the network. Each interconnection has 

a weight, denoted by Wj from neuron j to i. The Hopfield network considers 

bidirectionality in the connections, using the symmetric weight matrix, W~=Wj;, and that 

no neuron is connected to itself (W;=0). For each neuron i, there exists a fixed threshold 

value Ui. Each neuron randomly and asynchronously updates according to the Eqn. (3.1). 

The neurons are assumed to be threshold logic units so that a stale has one of the two 

possible values. The following is the firing rule of an arbitrary neuron is 

V; = 1 if 2 WiiV j <U i 

= O if  

Where V; denotes the output of neuron i and U; is its threshold. This can be written with a 

neuron function, f (.): 

n 

V = f ;l,JV J —U, 	 (3.1) 

«; 

Where f(x) = sgn(x) = 1if x>0, 

0 if x<0; 
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Each network has an associated energy in a quadratic form: 

E_-1(21WijV;Vi + YV;U; ) 	 (3.2) 

The algorithm for the time evolution of the system is based on asynchronous 

parallel processing. 

Ater 

7 
ring 
lifier 

7 
n 
ting 

amplifier 

Figure 3.1: An electronic circuit representation of the Hopfield neural network 

The continuous Hopfield network, as described in [42], comprises a fully 

interconnected system of `n' computational elements or neurons. In the Hopfield model 

the output of each unit is fed to all the other units with weights Wj, for all i, and j. The 

internal state of each neuron u;  is equivalent to the weighted sum of the external states of 

all connecting neurons. The external state of neuron `i' is given by V. An external input, 

i;  to each neuron 'i' is also incorporated which acts as input bias. The relationship 

between the internal state of a neuron and its output level in this continuous Hopfield 



network is determined by an activation function g(u;), which is bounded below by 0 and 

above by 1. Commonly, this activation function is given by 

v; = g; (u; ) = 1 1+ tanh 
2 	(UiT) 

T is a parameter, for controlling the gain (or slope) of the activation function. In the 

biological system, u; lags behind the instantaneous outputs, V~, of the other neurons 

because of the input capacitance, C; of the cell membrane, the trans-membrane resistance 
R;, and the finite impedance R;3= 1WJ1 between the output V~ and the cell body of neuron 

i. Thus, the following resistance-capacitance differential equation determines the rate of 

change of u;, and hence the time evolution of the continuous Hopfield network: 

C. du; _ W 	u` ;~V~ - +  
dt) 	 R; 

u;ag; l (v) 
	

(3.3) 

The same set of equations represents the resistively connected network of electronic 

amplifiers shown in Fig.3.1.The synapse (or weight) between two neurons is now defined 

by a conductance W;~, which connects one of the two outputs of amplifier j to the input of 

amplifier i. The connection is made with a resistor of value R,j= W1 -1, V, is the output of 
the inverted amplifier. Fig. 1 also includes an input resistance, r;, for amplifier i. However, 
this value can be eliminated from the equation because R; is a parallel combination of r; and 
the R11: 

1 	1'r 1 

Ri ri + ~ J RI 
For simplicity, each neuron/amplifier is assumed to be identical 

gi = g, R;= R, and C;=C 

Dividing Eqn.(2.3) by C and redefining C'' and C to be W11 and i;, respectively, we 

arrive at the equations of motion: 

du ; _ u; 
dt 1— I W ,~ ~ V 	l+ i, 

J 	) 
(3.4) 
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u;° g,'(V) and -r=RC 

i is the value of the time constant of the amplifiers, and without loss of generality can 

be assigned a value of unity, provided the time step of the discrete time simulation of Eqn. 

(3.4) is considerably smaller than unity. For the continuous Hopfield network, a Liapunov 

function can be constructed for the system, which guarantees convergence to stable states. 

Consider the energy function, 

E.= 	 W11V'Vj—ji'V1+ f9i1(V)dV 	 (3.5) 

Provided the matrix of weights W is symmetric 

Time derivative of E is 

dt 	, dt 	'' ' c 

W 
_ ` dV; du; 
 4 dt dt 

dV 2 
_ —~ g;-1(V1 )(_ _1-) (3.6) 

 Because g;-1 (V;) is a monotonically increasing function, then 

dE; 0, 
dt 

also dE` = 0 if dV 
dt  dt 

The continuous Hopfield network therefore relates directly to the discrete version in 

the high-gain limit of the activation function (Eqn. 3.1). In this high-gain limit, g(ui) 

approximates the behavior of the discrete threshold function and the local minima of Ec 

coincide with the local minima of Ed and all lie at the vertices of the unit hypercube. 

Consequently, in the high-gain limit, provided the weight matrix is symmetric and that the 

inverse function of g (u;) (the first derivative of the activation function) exists, the 

continuous Hopfield network converges to a 0-1 vertex, which minimizes Ed given by Eqn. 

(3.6). 
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3.3 THE HOPFIELD NEURAL NETWORK APPROACH FOR SOLVING 

OPTIMIZATION PROBLEMS 

Hopfield and Tank [21] realized that networks of neurons with this basic organization 

could be used to compute solutions to specific optimization problems by selecting weights 

and external inputs that properly represent the function to be minimized and the desired 

states of the problem. The analog nature of the neurons and the parallel processing of the 

updating procedure could be combined to create a rapid and powerful solution technique. 

Using the method proposed by Hopfield and Tank, the network energy function is made 

equivalent to the objective function of the optimization problem that needs to be 

minimized, while the constraints of the problem are included in the energy function as 

penalty terms. Consider the optimization problem: 

(P1) minimize f (V) 

Subject to [A]1 V = bl 

[A]2 V = b2 

[Air V=b, 

where [A]t (the ith row of the constraint matrix A) and V are n-dimensional vectors, 

and r is the number of constraints. Then the ITT energy function is 

E(V) = of (V) + 01 ([A] V — bi
z 

` + [i2 ([Al V — b2 2 +............ + (3m ([Al V — bm 2 

a,(31,(32,~i3 are penalty parameters that are chosen to reflect the relative importance of each 

term in the energy function. The non-linearity of the terms makes determination of the 

optimal penalty parameters unlikely. Clearly, a constrained minimum of P1 will also 

optimize the energy function, because the objective function, f (V), will be minimized, and 

constraint satisfaction implies that the penalty terms will be zero. Once a suitable energy 

function has been chosen, the network parameters (weights and inputs) can be inferred by 

comparison with the standard energy function given by Eqn. (3.6). The weights of the 

continuous Hopfield network, W13, are the coefficients of the quadratic terms V;V~, and the 

external inputs, i1, are the coefficients of the linear terms V; in the chosen energy function. 

The network can then be initialized by setting the activity level V; of each neuron to a small 
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random perturbation around 0.5. This places the initial state of the system at approximately 

the center of the n-dimensional hypercube, and ensures that the initial state is unbiased. 

From its initialized state, asynchronous updating of the network will then allow a minimum 

energy state to be attained, because the energy level never increases during state 

transitions. 0-1 solutions of combinatorial problems can be encouraged if desired by 

setting the parameter T of the activation function to a small enough value that the function 

approximates the discrete threshold (step) function given by Eqn. (3.5). 

Although Hopfield networks do provide a useful tool in solving optimization 

problems, they are prone to get stuck in local minima as they basically employ a gradient 

descent process, this problem can be overcome by using the concept of simulated 

annealing in the network. 

Hardware implementation of a neural network is ideal for industrial applications, 

where the same problem will need to be solved many times as the environment changes, 

Fortunately, recent work in the area of Field Programmable Gate Arrays (FPGA's) has 

enabled the speed advantages of hardware implementation to be simulated on a digital 

computer using reconfigurable hardware with desktop programmability. Such a 

simulation can easily achieve speeds of several million interconnections per second, 

making the advantages associated with hardware implementation of neural networks 

more readily attainable. Certainly, satisfactory hardware implementation is still the topic 

of much research and many design challenges lie ahead in this field. The Hopfield neural 

network techniques, for optimization problems, can effectively compete with traditional 

heuristic and exact approaches when simulated on a digital computer for solution quality. 
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CHAPTER-4 

A MODIFIED HOPFIELD NEURAL NETWORK FOR DETERMINATION OF 

TOPOLOGICAL OBSERVABILITY IN POWER SYSTEM 

A new method for determining the network observability of the power networks using 

Hopfield neural network algorithm; embedded with simulated annealing is presented in 

this chapter. An extended method for handling the inequality constraints is proposed by 

assigning a dedicated neural network. The, network observability problem related to the 

power network configuration or network topology, called as the topological observability, 

is considered. This neural network based method has been applied on a sample power 

network and results are presented. 

4.1 INTRODUCTION 

Topological observability analysis is necessary to examine whether the 

relationship between measurement allocation and power system configuration is 

appropriate. Unless, at least one measurement is assigned to buses in a one-to-one 

manner, it is impossible to evaluate bus voltages with a state estimation technique. Every 

time when a system configuration is changed for some reasons, a topological 

observability test should be executed prior to performing the state estimation to check 

one-to-one correspondence between measurements and buses. If this is not the case, 

observability analysis methods can provide the minimum set of additional measurements 

needed to restore observability. Hence an efficient implementation of the topological 

observability test is a crucial step in achieving a satisfactory performance for the entire 

state estimation process and whole.real-time monitoring and control of power systems. 

Observability analysis has so far been accomplished with the help of either 

topological or numerical approaches. The topological approach makes use of the graph 

theory and determines network observability strictly based on the type and location of 

measurements. It does not use any floating point arithmetic and is implemented 

independent of the state estimation itself. Numerical approaches are based on the 
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measurement Jacobian and the associated gain matrix. It uses an iterative scheme to 

determine all the observable islands if the system is found to be unobservable. 

Topological observability problem can also be formulated as a combinatorial 

optimization problem. Conventional methods based on graph theory are available but the 

computational time increases drastically as the number of buses increases [43-45]. In 

1975, Clements and Wollenberg developed a method for topological observability [43]. 

Since then, a lot of work has been done in this area. Quintana, et al. developed a graph-

theory based method [45]. Monticello and Wu presented an approach with the Gauss 

Elimination [46]. After that, Bargiela, et al., contributed to developing a technique for 

solving topological observability using the maximum flow [47]. Recently, Mori and 

Tsuzuki proposed artificial neural networks-based approaches using recurrent networks 

[48, 49]. 

Hopfield network consists of a large number of symmetrically connected 

neurons, for which an energy function can be defined as explained in chapter 3. Of 

course, an energy function that can be defined is specific to a particular connection. 

Therefore, if an optimization problem can be mapped onto the Hopfield type neural 

network; there is a great possibility that the problem will be solved. Here the term 

"mapping" means the variables of the problem can be correlated to neuron's output and 

its objective function can be equated to the energy function of the constructed neural 

network. 

In solving Topological observability problem with a Hopfield network, equality 

constraints can be taken into consideration by adding corresponding terms to the energy 

function. However, Inequality constraints are indispensable in some cases and hence they 

should be handled in the network. Mori and Tsuzuki [50] introduced slack variables to 

handle the inequality constraints by converting them into equality constraint. On the other 

hand, the slack variables make the problem more complicated by increasing the number 

of neurons and thereby increasing number of local minima. 

In this chapter, Hopfield neural network is examined for sDiving power system 

topological observability problem. An extended method for handling the inequality 

constraints is proposed by assigning a dedicated neural network, whereas when the slack 

variable formulation is used, extra nodes are required to represent those variables. The 
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proposed method is computationally simpler and requires reduced number of neurons in 

the Hopfield network. The advantage of reducing number of neurons is that while 

implementing the neural network in hardware for a greater computational speed, the 

hardware circuit requirement will be lessened. 

4.. .NETWORK OBSERVABILITY: 

Observability analysis may be divided into two categories: numerical and 

topological observability. 

A: Topological observability 

Topological observability algorithms, which use information about the network 

topology and measurement, were developed in order to avoid the rather difficult task of 

numerical computation of the rank of the measurement Jacobian matrix. Such algorithms 

have been widely used in the state estimator observability programs. In the case of 

networks containing only line flow measurements in which real and reactive 

measurements occur in pairs, the topological condition for observability is that there 

exists at least one bus voltage magnitude measurement and that a spanning tree of the 

entire network can be built using only measured lines. Finding such a tree can be done 

using one of the well-known tree search methods such as breadth-first or depth-first 

search. For an N-bus network with only bus injection measurements, the determination of 

observability is even simpler; there must be at least one bus voltage measurement and at 

least N-1 bus injection measurements. 

The measurement model for state estimator is 

z = h(x) + e 

Where 

z represents all measurements, including power injection, power flow and bus voltage 

magnitude measurements, 

e is the measurement noise vector, 

x is the state vector composed of the phase angles and magnitudes of the voltages at 

network buses, 

h(.) stands for the nonlinear measurement functions relating measurements with state 

variables. 
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The above measurement model is approximated by a linear plusa constant term model 

Az=[H]Ox+c+e 

where 

H  — o e 	J H 

"An N-bus power network is observable with respect to a given measurement set M if 

and only if the rank of the gain matrix H is equal to 2N-1". 

By applying the P - B/Q -V decoupling principal, the observability problem is 

decoupled in P -0 observability and Q-V observability. A network is said to be P -0 
observable if the rank of matrix H. is equal to N-1, and it is said to be Q-V observable if 

rank of the H matrix is equal to N. 

B: Numerical observability: 
Generally a numerical observability analysis is based on triangular decomposition 

of the information matrix G(x). If G(x) can be successfully factored without encountering 

any zeros in the diagonal, the system is observable. On the other hand, if the network is 

not observable then one or more zeros will appear on the diagonal of the triangular factor. 

When this happens, a pseudo measurement of bus voltage angle in the P-6 observability 

test at the bus corresponding to the zero diagonal elements is added. These buses then are 

automatically identified as buses requiring injection measurements for observability. 

The numerical observability algorithms are new and are starting to be 

implemented at some control centers. They have the virtue of being conceptually simple 

and of employing numerical routines that are already needed for computation of state 

estimation. There is however, the potential of difficulty in determining whether a small 

number appearing on the diagonal is either a nonzero value or is actually zero , because 

of numerical round off. Topological algorithms on the other hand require additional non 

numerical routines that may be rather complex but generally run faster than numerical 

tests. 

4.2.1: Formulation of topological observability problem 

In this section topological observability problem is reformulated as an integer 

programming problems. The condition that a network is topological observable implies 

that a bus has at least one measurement and a measurement is assigned to only one bus 
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[49]. Let (w1 ) be a graph representing relationship between "m" measurements and "n" 

buses. For example, consider a five bus system in Fig.4.1, with five measurements zl  --z5. 

graph w can be written as 
n1  n2  n3  n4  n5  

z1  w11 0 W13  0 0 

z2  W21  W22 0  0 0 
w= 

Z3  w31 W32 W33 W34 0  

Z4 w41 W42 W43 0 0 

Z5 0 W52 0 0 W55 

'10 

Figure 4.1: A five bus system 

Each element w1  of matrix w is defined as follows: 

= 1 if measurement z; is assigned to bus j. 

= 0 if measurement z; is not assigned to bus j. 

Topologically observability is examined by examining whether Eqn. (4.1) and 

(4.2) holds. 
n 

=1 for i=1,2, .......m (row constraint) 	 (4.1) 

m 

wj 

 

z1 for j=1,2, .......n (column constraint) 	 (4.2) 

Eqn. (4.1) implies that measurement z; is assigned to only one bus. On the other 

hand, Eqn. (4.2) indicates that bus ry has at least one measurement 
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4.3. NEURAL NETWORKS METHODOLOGY 

Tsuzuki and Mori proposed a method using slack variables to handle the 

inequality constraints. On the contrary, the slack variables result in increasing the number 

of additional neurons [50], which implies that the original problem become more 

complicated due to increase of local minima points. 

Proposed method: 

Let us tentatively ignore inequality constraints. A Hopfield neural network can 

then be used for solving topological observability problem given by Eqns. (4.1) and (4.2). 

Variable w can be related to neuron output V. Let there are n buses and m measurements 

in the network, and graph of the network is defined in matrix form where buses and 

meters are indexed by "x" and "i" respectively. 

V,1= {0 if the bus x is not assigned measurement i 

1 if bus x is assigned measurement i} 

The objective function is defined as 

m m n 	 ( n m 	l2 
E = 2IVxtVyt+~l 	Ux, - n

J 

The first part is included to correspond to the constraint that exact one neuron in 

each column can output a "1". Thus, we get 0 for this term with a valid solution. The 

second term of right-hand side has a minimum value of 0, which is attained if and only if 

exactly m of the mxn output states (V) have value 1 and the rest 0. A, B are constants 

reflecting relative importance of terms in the energy function. 

Obtaining weight matrix: 

Method 1: Rewrite E in the form of 

1 n m 	 n 

E 	2 I I W xi,ylvxiVyl — j Bxivxi 
xe=1 yj=1 	 xi-1 

(4.4) 

Where Wx~ yj and ox, are in terms of parameters A and B There is no systematic procedure for 

such conversion. 

Method 2: Determine local function of motion dt from E such that it always decrease E, also by 

(4.3) 
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continuous Hopfield method 

Cr 

dt =
xl.yjYr xl,Y1VYl +exi sl.l  

du 
Now find Wx~ yj , Oxi and du 

dt 

Steps are as follows 

Determine 
du x` 

dt 
from E so that dE < 0 

dE 	dE dV x1 du xi 
dt 	~ dVxi ~~ dux1 	dt 

If  du
t ` 	, then 
 dv 

dE  	dE 2 d Vxi 
5 0 

dt 	dVxi . duxi 

-dE 
  1 -- A 	

V Yi - B ( 
	vxi - m

) 

Since du x, 

dt 	1 	
1 xiw yjW xi.Y1V Yl + B xi 

W, =-Ao1 (1-o)-B 
	

(4.5) 

Where S,,y = 1 if x = y 

=0 otherwise 

Each node also has a positive bias 6X; = B w) 

The above algorithm gives minimum of energy function E which satisfies the equality 

constraints only. The architecture of the network is shown in Fig. 4.2. 
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Figure 4.2: Architecture of Hopfield Network 

4.3.1 Neural network for handling inequality constraints in the topological 

observability problem: 

The standard Hopfield network has a serious shortcoming that it cannot solve a 

combinatorial optimization problem with inequality constraints. Hence the neural 

network, which has been proposed by tank and Hopfield to solve a simple linear 

programming problem with two variables and four constraints [21], is used with slight 

modification that is, the sigmoid characteristic is used instead of the linear relationship in 

the original neural network for solving the inequality constraints in the topological 

observability problem. 

A linear programming (LP) problem including inequality constraints may be 

defined as follows: 

Minimize: 	P= A. V 	 (4.6) 

Subject to: D~ .V a B~ (j=1... M) 	 (4.7) 

D = [Dj1, Dj2... DIGIT 	 (4.8) 

Where, the Dj, for each j, contains the N variable coefficients in a constraint 

equation and the B~ are the bounds. The neural network to solve LP problem is shown in 

Fig.4.3. The N outputs (V1) of the left-hand set of amplifiers will represent the values of 

the variables in the linear programming problem. The components of `A' are proportional 
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to input currents fed into these amplifiers. Outputs (pl) of the right-hand set of amplifiers 

represent constraint satisfaction. As indicated in the figure, the output (ip~) of the jth 

amplifier on the right-hand side injects current into the input lines of the V; variable 

amplifiers by an amount proportional to 	the negative of the constraint coefficient for 

the ith variable in the jth constraint equation. Each of the constraint ij amplifiers are fed 

with a constant current proportional to the jth bound constant (B3) and receives input from 

the i h̀ variable amplifier by an amount proportional to D31. Each of the V; amplifiers in the 

linear programming network has an input capacitor C; and an input resistor pi in parallel, 

which connect the input line to ground. The input-output relations of the V; amplifiers are 

linear and characterized by a linear function g in the relation V; = g(u;). 

VARIABLES 	 CONSTRAINTS 

Figure 4.3: Organization of a network to solve a 2-variable 4-constraint linear 

programming problem [21] 

The it amplifiers have the nonlinear input-output relation characterized by the function 

Vi = f (u,) 

u~=D .V — B~ 

f (u~) =0 (u3>=0) 

f (u3) = Kul (u3<O) 
	

(4.9) 

Where K is a positive constant and function f give large output to variable 

39 



amplifier when the corresponding constraint is not satisfied. The input output 

characteristic of variable amplifiers should be changed so that they take on an integer 

value of 0 or 1; 

V=g(u) 	 (4.10) 

g (ui)= ½(1+tanh(u1)) 	 (4.11) 

The specific features of this neural network may be summarized as follows: 

(a) Inequality constraints need not be included in its energy function. 

(b) It always converges to a solution, which satisfies inequality constraints. 

Connections between the constraint neurons and variable neurons must be 

determined so that the output of the former make the outputs of the latter satisfy 

constraints if they are violated. In order to realize this, all the inequality constraints are 

first changed into the form of h(V) >= 0 so that they are constrained from their lower 

limits. Then the coefficients of the constraints are directly used as connections. It should 

be noted that all the constraints are expressed by linear function of V. 

Matrix relating "m" and "n" looks as shown below 

(n 	W11 	W 12 	W13 ......•• W 1n a-.. 
C 

.......................... 
E W21 	 W  2 n 

U) W 31 	
........ .................. 	

yy 3n 
rn 
E 

Wm 1 	.......................... W m 
E 

n nodes 

The proposed network contains mxn variable neurons and n constraint neurons 

as shown in Fig 4.4. 
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(bias 1) 	 1 (bias 2) 

P2 

P1 	
n constraint 

m*n = T I 	neurons 
variable 	 corresponding 
neuron 	 to the 
units 	 inequality 

constraints. 

vii 

m: Number of measurements n: Number of nodes 

Figure 4.4: Neural network for solving topological observability 

P2: connection from variable to constraint neuron which is matrix of size nxm 

and having elements as 1 corresponding to connections and 0 otherwise. 

02=bias2= -1 

4.4 ALGORITHM: 

1) Initialize the network. 

2) Assign initial input states to the network, and compute the activation and output of the 

network. After that, the network is evolved, and it proceeds to cycle through a succession of 

states, until it converges on a stable solution; 

3) The activation of neuron in the ith  row and j h̀  column is defined as by Uij, and the output is 

denoted as V. A time constant T and a gain X are used as well. Also, At denotes the increment in 

time, from one cycle to the next. Change in U1 (n) which decreases the energy, is given as in 

Egn.(4.12); 

DUij(n) = At [ - Uij IT -A jk!=i Vkj — B (Gi lk Vik — N)] 	 (4.12) 

U(  n+1) = Uij(n) +.4Ulj(n); 

Vij(n+1) = F( Uij (n+l)); 

It is to be noted here that the function F(.) is a continuous function instead of a hard switch, 

which makes the network a continuous Hopfield network. The reason to employ such a 

continuous function is to prevent an extremely fast convergence to a local optimum, which is 

always caused by a hard switch function. 
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4) Enforce inequality constraint: Use the procedure described in section 4.3.1. 

5) Simulated annealing Suppose we have got a solution matrix V, U and the corresponding 

energy E .We statistically train U, V by simulating the annealing in metallurgy, in order to get 

better solution. Firstly, set the initial temperature TO  and parameter K; Secondly, for each 

iteration, gradually cool down (decrease the temperature T) using functionT = 	To 	, where 
log(1 + k) 

k denotes iteration and k< N2. Randomly change U by AU, and see if energy E decreases: if so, 

accept the change and update V, and E; if not, then compute probability of AE by equation 

p (AE) = exp (-AE / KT) and see if it is greater than a random value r = K*rand, if so, still accept 

the changes; if not, reject it. Operate the training for N2  iterations. 

6) Iterate the updating to the activation and output until the network converges to a stable 

solution. It happens when the change of the energy is lower than a pre-set small positive number. 

The topological observability problem is solved following the procedure shown 

in Fig (4.5). 
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Start 

F-1 
 nitialization(k=O),T° etc 

Is Energy=0 
and constraints / 

satisfied 

No 

Yes 

Pick up unit i at random(State S) from 	is 
variable-neuronsAE 	k<maxiter 

Compute Energy and 
Energy gap 

k= k+1 
activate constraint neurons one by one 
to make network satisfy the inequality 

constraint  

simulated annealing 

No 	No 

Yes 

end 

Figure 4.5: Flow chart for solving topological observability problem with 

Hopfield network. 

4.5 RESULTS AND DISCUSSIONS 

The proposed method is tested in a five bus system of Fig.4.1, where 

measurements z1-z10 are allocated. The system is studied for cases when number of 

measurements (m) lies between 5 and 10. Fig.4.7 shows the bipartite graph in the five bus 

system. The following convergence criterion is adopted. 

0E=0 or max iteration count=100. 

The cooling schedule in simulated annealing is T=To/log (1+k), where k is 

iteration count. To  is taken as 3.0. Probability of obtaining global minima is significantly 

improved as compared to basic Hopfield model. The following table shows the 
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measurement set for cases (a-f) 

Table 4.1: Measurement for each case 

Cases Measurements 

No. of 

measurements 

Mean of 

iteration 

count 

a zl-z5 5 13 

b z1-z6 6 15 

c z1-z7 7 14 

d z1-z8 8 16 

e z1-z9 9 19 

f zl-z10 10 22 

Output for 5 buses and 8 measurements is shown as below: 

V= [1 0 1 0 0 0 0 0 

00001010 

00000001 

01000100 

000100001 

Convergence of energy function with respect to iteration count is shown in Fig.4.7 for 
case (d) 
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Figure 4.7: Convergence of energy function 
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Measurements 	nodes 

Figure 4.8: Bipartite graph of 5 bus network 

The power system configurations often vary along the daily load scheduling. As 

a result, there is a possibility that measurements are lost due to some faults. Hence, it is 

necessary to consider the relationship between meter placement and system 

configurations each time they are changed, or a part of measurements is lost or modified. 

That is because such changes may make state estimation impossible for lack of some key 

measurements. In this chapter a new method based on Hopfield neural network has been 

developed for judging network topological observability and identifying where the meters 

should be placed to recover the network topological observability. 

The proposed method is effective in reducing the number of neurons together 

with an assurance for finding global solution with the incorporation of simulated 

annealing. Recently much work has been done towards hardware implementation of 

Hopfield neural network on field programmable gate array (FPGA) [51, 52]. Proposed 

method is more suitable for FPGA hardware implementation because the hardware circuit 

requirement is reduced. 
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CHAPTER 5 

A MODIFIED HOPFIELD NEURAL NETWORK METHOD FOR EQUALITY 

CONSTRAINED STATE ESTIMATION 

In this chapter, state estimation problem is formulated as a general nonlinear 

programming problem with equality constraints and boundary limits on the state 

variables and a method based on neural network technique is presented. The method is 

tested on a six-bus system and the IEEE 14-bus system, which shows that when it is 

implemented on hardware, it can be used in real time state estimation of power system. 

5.1 INTRODUCTION 

State estimation processes a set of measurements to obtain the best estimate of 

the current state of the power system. The set of measurements includes telemetered 

measurements and pseudo-measurements. Telemetered measurements are the online 

telemetered data of bus voltages, line flows, injections, etc. Pseudo-measurements are 

manufactured data such as guessed MW generation or substation load demand based on 

historical data, in most cases. Telemetered measurements are subject to noise or error in 

metering, communication system, etc. The errors of some of the pseudo-measurements;. 

especially the guessed ones, may be large. However, there is a special type of pseudo-

measurements, known as the zero injections, for which the information contains no error. 

Zero injection occurs at a node, for example, representing a switching station where the 

power injection is equal to zero. Zero injection is an inherent property of such a node and 

no meter needs to be installed but the information is always available. A state estimation 

algorithm must compute estimates, which satisfy exactly such constraints, independent of 

the quality of online measurements. The enforcing of constraints is in particular useful in 

networks, consisting of large unobservable parts of network or having very low 

measurement redundancy. 

In its conventional form, the weighted least square method does not enforce the 

equality and limit constraints explicitly. However, the constraints contain reliable 

information about physical restrictions and equipment limits and can be used to increase 
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the quality of state estimation result. The zero injections can be represented by a set of 

equalities. Various methods have been proposed to process constraints, literature review 

section lists some of the proposed methods for solving equality constrained state 

estimation problem. 

Various algorithms of state estimation using the conventional computer are 

reaching a limit as far as the solution techniques are concerned, and as long as these 

computer based algorithms are used, faster methods can not be expected. However for 

security monitoring and control in power system, improvement in calculation time is 

always desired in order to obtain necessary information more quickly and accurately. 

In recent years, it has been found that Artificial Neural Networks (ANNs) are 

well suited as computational tools for solving certain classes of complex problems, 

although software implementations of the algorithm on general-purpose computers can be 

too slow for time-critical applications, but the small number of computational 

`primitives', suggests advantages of hosting ANNs on dedicated Neural Network 

Hardware (NNH) to maximize performance at a given cost target. ANN computations 

may be carried out in parallel, and special hardware devices are being designed and 

manufactured which take advantage of this capability. 

In this chapter a new method for enforcing equality and limit constraints in state 

estimation algorithm using a modified Hopfield neural network is presented. The main 

advantages of using the modified Hopfield neural network proposed in this work are i-) 

the internal parameters of the network are explicitly obtained by the valid-subspace 

technique of solutions, ii-) lack of need for adjustment of penalty factors for initialization 

of constraints, and iii-) for real time application, the modified Hopfield network offers 

simplicity of implementation in analog hardware or a neural network processor, and (iv) 

training and testing of the neural network under human supervision is not required. 

5.2: STATE ESTIMATION WITH CONSTRAINTS 

State vector of an electric network consists of the complex voltages at the 

•buses. Unmeasured tap positions of transformers may also be included into the state 

vector. A measurement vector consists of power flows, power injections, voltage and 

current magnitudes and tap positions of transformers. For a N bus system, the state vector 
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x = [b,V1T  , of dimension n=2N-1, consists of the N-1 bus voltage angles . i  with respect 

to a reference bus and the N bus voltage magnitudes V for i=1,2,3.....N. 

The static state estimator measurement model is given as: 

z = h(x) + E 
	 (5.1) 

where z is the measurement vector, h(.) is a vector of nonlinear functions, relating the 

measurement and state vectors, and . is the vector of measurement errors. 

The error-free data are modeled as equality constraints 

g(x)=O 
	

(5.2) 

Limits on some network variables are modeled as inequality constraints which 

can be expressed in a compact form by p-dimensional functional inequalities 

f(x) s 0 
	

(5.3) 

General nonlinear programming algorithms for the solution of a constrained 

minimization problem [53] are not efficient enough for the on-line application. Hence a 

neural network approach is used for solving this nonlinear programming problem. 

Objective function 

The objective is to minimize the weighted squared mismatch between 

measured and calculated quantities. Considering system to be observable and with m>n , 

where m is the total number of measurements and n is the number of state variables , the 

mathematical problem is given as follows: 
min 2{Z— h(X)]TR -'[Z —h(X)] 	 (5.4) 

Subject to the equality and inequality constraints as defined below. 

The diagonal matrix R-1  represents the weights of the individual measurements in the 

objective function. 

Equality constraints 

Power flow equations, corresponding to both real and reactive power balance 

are the equality constraints for all the buses characterized as zero injections, which can be 

expressed as follows:. 
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N, 

Pi = 1 Vi Vm lgim COS bim + bim Sln öim) = 	 (5.5) 
msl 

Nb 

Qi = V, Vm (g,m Sin 8,m — bim cos 8,m) = 0 	 (5.6) 
m-1 

for i E( set of zero injection buses) 

Where 

Pi = Real power injection at bus-i 

Q; = Reactive power injection at bus-i 

Vi = Voltage magnitude at bus-i 

8i = Load angle at bus-i 

Yi1= gil+bid=i jth element of Y-bus Matrix. 

Nb, N1, Ng=number of total buses, load buses and generator buses in the system 

respectively. 

Inequality Constraints: 

(i) Voltage Limit: This includes upper (Vm') and lower (V1m") limits on the bus voltage 

magnitude. 
Vmin s V s Vmax 	 i =1,2,.......N6 	 (5.7) 

(ii) Phase Angle Limits: The phase angle at each bus should be between lower (8 jmm) and 

upper (b~m"X) limits. 
67' s bi s Sim 	 i =1,2........Nb 	 (5.8) 

These limits may vary depending upon the problem under consideration. 

Imposing phase angle limits at load buses is another way of limiting the power flow in 

the transmission lines and for generator buses this limiting is done for stability reasons. 

Along with the above two constraints the following constraints can also be imposed. 

(a) Line Flow Limit, representing the maximum power flow in a transmission 

line and is usually based on thermal and dynamic stability considerations. Let P11' ° be 

the maximum asttve; pow * line-i respectively. The line flow limit can be written 

as  
X345 

( (èc1. 2g • D5 
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Pmax z P, 	 i =1,2 ...............Ni 	 (5.9) 

(b) Reactive Power Generator Limit: Let Qgjm̀ n and QgI' are the minimum and 

maximum reactive power generation limit of the reactive source generators OVq) 

respectively. 

Qmin 
S 

Q 
Si 

Qmax 
Bi  5 Bi 

i =1,2.........Ng (5.10) 

5.3: THE MODIFIED HOPFIELD NEURAL NETWORK 

Artificial neural networks attempt to achieve good performance via dense 

interconnection of simple computational elements. Hopfield networks [21] are single-

layer networks with feedback connections between nodes. In the standard case, the nodes 

are fully connected. The node equation for the continuous-time network with n-neurons is 

given by: 

n 

ui (t) = —1.u1 (t) + ; Tij.v j(t) +ii b 

v(t) = g(u(t)) 

(5.11) 

(5.12) 

Where u(t) is the current state of the ith neuron, vi(t) is the output of the j h̀ neuron., i1b is 

the offset bias of the ith neuron., ..ui(t) is the passive decay term, and T;, is the weight 

connecting the j h̀ neuron to i h̀ neuron. 

In Eqn. (5.12), g(u;(t)) is a monotonically increasing threshold function that 

limits the output of each neuron to ensure that network output always lies in or within a 

hypercube. It is shown in [25] that the equilibrium points of the network correspond to 

values of v(t) for which the energy function associated with the network is minimized: 

E(t) = — 2 v(t)T.T.v(t) — V(t)T16 	 (5.13) 

Mapping of constrained nonlinear optimization problems using a Hopfield 

network consists of determining the weight matrix T and the bias vector i to compute 

equilibrium points. Some mapping techniques codes the validity constraints as terms in 

the energy function which are minimized when the constraints (1~ °°s; = 0) are satisfied: 

51 



E(t) = E°(t) + b1.E°°°s,  (t) + b2.E°°°-"(t) +.... 	 (5.14) 

Where E° (t) represents the objective function to be optimized and E`° represents the 

constraints of the problem. The lj parameters in Eqn. (5.14) are constant weightings given 

to various energy terms. The multiplicity of terms in the energy function tends to frustrate 

one another, and success of the network is highly sensitive to the relative values of b;  It 

has been shown in [24] that the E°P and Ec°"S  terms in Eqn. (5.14) can be separated into 

different subspaces so that they no longer frustrate one another. A modified energy 

function E'(t) can be defined as follows: 

E'(t) = E'°" (  t) + E°(t) 
	

(5.15) 

Where E 0) ' (t) is a confinement term that groups all the constraints imposed by the 

problem, and E°(t) is an optimization term that conducts the network output to the 

equilibrium points. Thus, the minimization of E'(t) of the modified Hopfield network is• 

conducted in two stages: 

1): minimization of the termEconf (t)  : 

Econf (t) = — I v(t)T.T °°nf .v(t) — v(t) T i  Co°f 	 (5.16) 

Where: v(t) is the network output, T°°"f  is weight matrix and lconf  is bias vector 

belonging to Econf (t).  

2): minimization of the term E°p(t) : 

E°P  (t) = —
2 

 v(t)T.T'P.v(t) — v(t)T i°P 
	

(5.17) 

Where: T°p is weight matrix and i°p is bias vector belonging to E°P. This 

minimization moves v(t) towards an optimal solution (the equilibrium points). 

Thus, the operation of the modified Hopfield network can be summarized as 

combination of three main steps, as shown in Fig 5.1: 

Step (1): Minimization of E 0° ' Corresponding, to the projection of v(t) in the valid 

subspace defined by [25,54]: 
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v(t) = Tc°nf.v(t) +1CO"f 	 (5.18) 

Where: T°°"f is a projection matrix such that T°°"f .Tc°"f = T°°"f and i°°' is defined such 

that Tc°nf 1c°nf = 0 . This operation corresponds to an indirect minimization of E°' (t). 

Step (2): Application of a nonlinear 'symmetric ramp' activation function constraining 

v(t) in a hypercube 

g1 (v1 ) = V 
min if vm'n > vi 

= Vi if  

= V max if vi > max 

where vi E[ v'"",vm~` ] 

v 	[1] 	[2] 
i  v 

.~.. 	v(t) T.v(t)f 	- i - - -  

OV 	 [3] 

Av = At.v+i°~) 

Figure-5. 1: Modified Hopfield Neural Network 

Step (3): Minimization of E°p, which involves updating of v(t) so as to direct it to an 

optimal solution (defined by T°p and i°p) corresponding to network equilibrium points, 

which are the solutions for the constrained optimization problems. Using the symmetric 

ramp activation function and 17 =0,  Eqn. (5.12) becomes. 

v(t)=g(u(t))=u(t) 

Comparing Eqn. (5.11) and Eqn. (5.16), 

dv dt = v = -At.VE°P(v) = At(T°P.v+i°p) 
dt 
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Av = At.v 	 (5.19) 

Therefore, minimization of E°P consists of updating v(t) in the opposite 

direction to the gradient of E°~. Each iteration has two distinct stages. First, as described 

in Step (iii) v is updated using the gradient of the term EP alone. Second, after each 

updating, v is directly projected in the valid subspace. In the next section, the parameters 
Tconf, ic°"f,T°p and i°p are defined. 

5.4: FORMULATION OF STATE ESTIMATION PROBLEM BY MODIFIED 

HOPFIELD NETWORK METHOD 

Consider the following nonlinear optimization problem: 

Minimize E° (  x) = f(x) = -[z — h(x)]T R -1 [z — h(x)] 	 (5.20) 

Where x = [b, Vl , z =measurement vector and h(x) represent nonlinear relationship 

between state vector x and z, 

Subject to Eco"f (x): hi (x) = 0, 

i.e Pi=O and Qi=O 	 (5.21) 

for iE(buses identified as zero injections) 

5VSVmax 

""" S CS 5 (S max 	 (5.22) 

Where V, Vmin' vmax, 6 , a max , 6 min E R"; and all first and second order partial 

derivatives of f(x) and hi(x) exist and are continuous. The conditions in Eqns. (5.21) and 

(5.22) define a bounded convex polyhedron. The vector x must remain within this 

polyhedron if it is to represent a valid solution for the optimization problem (Eqn. 5.20). 

However if inequality constraints are also present, they must be transformed into equality 

constraints by introducing a slack variable sw for each inequality constraints prior to 

calculating the parameters T°° and i°°"f . It is to be noted here that E°P does not depend 

on the slack variables sW. A projection matrix to the system can be shown as [54]. 
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T-nl = [I — Vh(x)T.(Vh(x).Vh(x)T)-1.Vh(x)] 	 (5.23) 

where 

ah1(x)  ah,(X)  ...  a hi(x)  
ax1 	ax 2 	ax 

ah 2(X) ah2(X) 	ah2(x) 
Vh(x) = ax l 	axe 	aXN 

(5.24) 

ah p (x) ah P(x)  a __ 
a, 1 	a,2 

 
	

aXN 

Inserting the value of T °̀"f  from Eqn. (5.23) into Eqn. (5.18). 

v = [I — Vh(x)T.(Vh(x).Vh(x)T)-l.Vh(x)].x + °°"f  (5.25) 

By the definition of the Jacobian, when v leads to equilibrium point h(v) may be 

approximated as follows: 

h(v) -h(vc)+J.(v-vc) 	 (5.26) 

where J= V h(v) 

In the proximity of the equilibrium point vv  = 0, 

lim V9, v° II 
h(v) II  = 0 
 (5.27) 

IIv11 
Finally from Eqns. (5.25-5.27), v can be written as 

v=v - V h(v)T.((V h(v). V h(v)T)-I  ).h(v) 	 (5.28) 

Parameters T°" and i°" in this case are such that the vector v is updated in the 

opposite gradient direction of the energy function E°1). Since Eqns. (5.21) and (5.22) 

define a bounded convex polyhedron, the objective function (5.20) has a unique global 

minimum. Thus, the equilibrium points of the network can be calculated by assuming the 

following values of VP and i°p, 
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af(v) af(v) 	af(v) 
i°p__ 	 . ................. 	 (5.29) 

	

8v1 av 2 	avN 

T° =0 	 (5.30) 

5.4.1 ESTIMATION ALGORITHM 

The steps followed have been given as under: 

Step 1: Get the system data, measurements and define the zero injection buses together 

with boundary limits on the state variables. 

Step 2: Select an initial erroneous state vector, tolerance limit and set the iteration count. 

Step 3: Calculate the objective function and say it f(v)old. 

Step 4: Calculate Pi and Q; corresponding to equality constrained buses. 

Step 5: Find M/(v) by differentiating zero injection equations w.r.t. state variables using 

load flow equations.. 

Step 6: Calculate updated state variables by Eqn. (5.28). 

Step7: Enforce the boundary limits by passing the state variables through a symmetrical 

ramp activation function defined by limits [Vmax, Vn,;,,] and [6 max "'inj corresponding to 

each state variable. 

Step 8: Find i P by differentiating the objective function w.r.t. state variables. 

Step 9: Find dv by Eqn. (5.19) and update v. 

Step 10: Find the mismatch vector between measurements and calculated values and get 

its weighted squared sum to find out the new objective function value and find the 

difference between f(v)new and f(v)old. If this difference is less than tolerance go next 

step, else go to step 3 after increasing the iteration count. 

Stepp: Display the results and Stop. 

5.5: TEST RESULTS 

In this chapter, a simple 6 bus system [55] and the IEEE 14 bus system are 

used for simulation. The true values were obtained by the result of the load flow 

calculation, and the measurement values were made by adding (sigma=.01) errors to 
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those true values. As equality constraints, zero power injection at the nodes with no load 

and no generation are used. 

(A): 6 bus system [55] 
The measurement set base value for the 6 bus system is shown in Fig.5.2 and 

table (5.1). Bus no 3 and 4 are characterized as zero injection buses. 

• Lineflow 

injection nEasurernents 

zero injections 

Figure 5.2: Measurement set for 6 bus system 

Table 5.1 

Measurements Type Buses P Q 

zl Injection 1 0.9740 -0.0661 

z2 Injection 2 0.5005 0.5075 

Z3 Injection 5 -.7007 -0.7007 

z4 Injection 6 -.7007 -0.7007 

z5 Line flow 1-2 0.2880 -0.1550 

z6 Line flow 1-4 0.2830 -0.0880 

Z7 Line flow 1-5 0.4010 0.1760 

Z8 Line flow 2-3 0.2310 0.1940 

z9 Line flow 2-4 -0.090 -0.0700 

57 



zlo Line flow 2-5 0.2060 0.2110 

z11 Line flow 2-6 0.4320 0.0440 

z12 Line flow 3-5 0.0110 0.0520 

z13 Line flow 3-6 0.2150 0.1810 

z14 Line flow 4-5 0.1890 0.0900 

z15 Line flow 5-6 0.073 -0.044 

The estimated state using the method with equality constraints are as shown in table 5.2 

Table 5.2 

1 	1 1~ ~. 1 	•:' 1 	1 1 	•. 	• 1 	'.: 

Following table shows the errors of the estimate values. 

Table. 5.3 

Measurements OP AQ 

z1 -0.021 0.0051 

Z2 0.0068 0.0005 

Z3 0.0037 -0.0003 

Z4 0.0077 -0.0093 

Z5 -0.0083 0.0008 

z6 -0.0068 -0.0013 

Z7 -0.006 -0.0022 

Z8 -0.0021 -0.0014 

Z9 0.0046 -0.0131 

z10 -0.0001 -0.0016 

z11 -0.0033 -0.0233 

Z12 0.0012 -0.0038 

Z13 -0.0027 0.002 
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Z14  -0.0011 -0.0036 

Z15  -0.0019 -0.0007 

The energy mismatch delta E was used for the convergence criteria with the 

tolerance 10-02  .the time step used was delta t=10°4  in Eqn.( 5.19). 

The convergence characteristics of the energy function with respect to number 

of iterations is shown in Fig. 5.3. 

2.5 

2 

1.5 

0 

w 

1 

0.5 

0 
0 50 	100 	150 	200 	250 

Iterations 

Figure 5.3: Convergence of energy function 

(B) :IEEE 14 bus system 
The measurement set base value for the IEEE 14 bus system is shown in Fig.5.4 

and table (5.4). Bus no 5 and 7 are characterized as zero injection buses. The energy 

mismatch delta E was used for the convergence criteria with the tolerance 10.05  the time 

step used was delta t=10-04  in Eqn. (5.19). 
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Figure 5.4: Measurement set for IEEE 14 bus system. 



Table:5.4 

Measurements Type Buses P Q 

zl Injection 1 2.2462 -0.1722 

z2 Injection 2 0.1823 0.2535 

z3 Injection 3 -0.9453 0.0426 

z4 Injection 4 -0.4783 0.0704 

z5 Injection 6 -0.1129 0.0344 

z6 Injection 8 0.000 0.1733 

z7  Injection 9 -0.2955 0.0234 

z8  Injection 10 -0.0922 -0.0635 

z9 Injection 11 -0.0327 -0.0125 

z10 Injection 12 -0.061 -0.016 

z11  Injection 13 -0.1366 -0.0605 

z12 Injection 14 -0.1487 -0.0489 

z13 Line flow 1-2 1.5196 -0.1628 

z14  . Line flow 1-5 0.7265 0.0479 

z15  Line flow 2-3 0.7243 0.0603 

z;6  Line flow 2-4 0.5447 -0.0123 

z»  Line flow 2-5 0.3926 0.0099 

z18  Line flow 3-4 -0.2437 0.036 

z19  Line flow 4-5 -0.6384 0.139 

z20  Line flow 4-7 0.2806 -0.1972 

z21  Line flow 4-9 0.1607 -0.0579 

z22  Line flow 5-6 0.444 -0.1794 

Z23 Line flow 6-11 0.0737 0.035 

z24 Line flow 6-12 0.0784 0.0256 

z25 Line flow 6-13 0.1791 0.0745 

Z26 Line flow 7-8 0.000 -0.1688 

Z27 Line flow 7-9 0.2805 0.0714 
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z28  Line flow 9-10 0.0521 0.0428 

Z29 Line flow 9-14 0.0936 0.0348 

z30  Line flow 10-11 -0.0402 -0.021 

z31  Line flow 12-13 0.0166 0.008 
z32  Line flow 13-14 0.0568 0.0177 

The state estimation results are shown below: 
Bus No. V 6 Bus No. V 6 

1 1.060 0 2 1.045 -4.731 

3 1.010 -12.309 4 1.022 -9.615 

5 1.024 -8.046 6 1.071 -12.68 

7 1.062 -12.080 8 1.090 -11.922 

9 1.055 -13.481 10 1.051 -13.553 

11 1.058 -13.167 12 1.057 -13.296 

13 1.051 -13.443 14 1.037 -14.258 

Following table shows the errors of the estimate values. 

Table: 5.5 

Measurements PROPOSED METHOD NORMAL METHOD 

AP oQ AP oQ 

z1  0.0061 -0.0046 0.0037 -0.0019 

Z2 0.0042 -0.0066 0.0018 -0.0061 

Z3 0.0018 -0.0025 0.0028 -0.0028 

Z4  0.0017 0.0023 0,0014 0.0024 

Z5 -0.0017 -0.0051 -0.0016 -0.0022 
Z6  -0.0018 0.0021 -0.0012 0.0081 
Z7  -0.0017 0.0014 -0.0082 0.0126 

Z8 -0.0011 0.0012 -0.0028 0.0155 
Z9 0.0016 0.0022 0.0019 0.0657 
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zlo 0.0021 0.0055 0.0001 0.0509 

z11 0.0017 0.0016 0.0083 0.0852 

z12 -0.0023 -0.0066 -0.0405 -0.0067 

z13 0.0275 -0.0025 0.0329 -0.0087 

z14  0.0329 -0.0021 0.0161 -0.0433 

Z15 0.0063 -0.0016 0.0173 -0.0147 

z16  0.0316 -0.0037 0.0128 -0.0046 

Z17 0.0305 -0.0082 0.0085 -0.0054 

z18  0.0237 -0.0057 -0.0058 0.0013 

z19 -0.0063 -0.0138 -0.0018 -0.0129 

Z20 0.0522 -0.0021 0.0096 -0.0276 

z21  0.0256 0.0015 0.0525 0.0058 

z22  0.0666 0.0095 0.0148 0.0499 

z23 • 0.0086 -0.0012 0.0012 -0.0057 

z24  0.0173 -0.0027 0.0003 -0.0046 

z25 0.0239 -0.0045 0.0001 -0.0086 

z26  0.0181 -0.0061 0.0126 -0.0074 

Z27 0.0308 -0.0008 0.0083 -0.0016 

Z28  0.0194 -0.0019 0.0243 -0.0081 

Z29 .0.0204 -0.0043 0.0298 -0.0043 

z30  0.0079. -0.0011 0.0047 -0.0075 

z31  -0.0034 0.0023 -0.0022 0.0032 

Z32  0.0029 -0.0014 0.0011 -0.0041 

The convergence characteristics of the energy function with respect to number of 

iterations is shown in Fig.5.5. 
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Figure 5.5: Convergence of energy function 

The enforcing of limits and equality constraints increases the quality of state 

estimation results and produces the solution, which reflects correctly the physical 

behavior of a power system. In this chapter a modified Hopfield neural network method 

has been applied for solving state estimation problem, which neither require training nor 

testing of the neural network under human supervision and hence can be easily automated 

and applied to any large power system. The states of a power system are required to be 

estimated in real time and as for as conventional computer based algorithms are used; 

faster computation can not be expected. On the other hand, dedicated neural network 

processors [56] and special hardware devices are being designed and manufactured, and 

the computation time will become much shorter if the algorithm is implemented on 
neural network hardware. 
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STATE ESTIMATION OF POWER SYSTEMS EMBEDDED WITH FACTS 

DEVICES 

Flexible A.C. transmission systems (FACTS) are being used more in large power systems 

for their significance in manipulating line power flows. Traditional state estimation 

methods without integrating FACTS devices will not be suitable for power systems 

embedded with FACTS. In this chapter the state estimation of power systems in presence 

of FACTS devices is presented. 

6.1 INTRODUCTION 
After the establishment of power markets with transmission open access, the 

significance and use of FACTS devices for manipulating line power flows to relieve 

congestion and optimize the overall grid operation have increased. As a result, there is a 

need to integrate the FACTS device models into the existing power system applications. 

This chapter will present the modified Hopfield neural network algorithm for state 

estimation of network embedded with FACTS devices. 

First a steady state model of UPFC is presented followed by load flow analysis of 

power system in presence of UPFC so as to obtain measurement vectors. Finally the 

algorithm discussed in chapter (5) is used to solve the state estimation problan. 

6.2 FLEXIBLE AC TRANSMIOSSION SYSTEM (FACTS) 
As a result of recent environmental legislation, rights of way issues, increase in 

construction cost and deregulation policies, there is an increasing recognition of the 

necessity to utilize existing transmission system assets to the maximum extent possible 

which can be achieved with the help of FACTS devices. The flexible ac transmission 

system is the result of related developments in electronic devices designed to overcome 

the limitations of traditional mechanically controlled power transmission systems. By 

using reliable, high-speed electronic controllers, the technology offers opportunity for 
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increased efficiency. Some advantages which FACTS devices can offer are; 

• Greater control of power, so that it flows on prescribed transmission routes. 

• Secure loading of transmission lines to level nearer their thermal limits. 

• Prevention of cascading outages. 

• Damping of power system oscillations. 

The active power transmitted over an ac transmission line is defined bythe Eqn. (6.1) 

P =  VX  2  sin(b, —62 ) 
	

(6.1) 

Where VI and V2 are the voltages at the ends of the transmission line. X is the 

Equivalent impedance of the transmission line, and 6l  -'52 is the phase angle difference 

between both ends of transmission line. From the Eqn. (6.1) it is evident that the 

transmitted power is a function of three parameters: the magnitude of sending end 

voltage and receiving end voltage, impedance and voltage angle difference. Traditional 

techniques of reactive line compensation and step like voltage adjustment are generally 

used to alter these parameters to achieve power transmission control. Different type of 

facts devices [57] can be used to control one or more of these parameters to control the 

existing power system network. The fast response of FACTS devices improves the 

controllability of the system and thus makes the system more versatile. 

6.2.1 ROLE OF FACTS DEVICES IN POWER SYSTEM 
FACTS devices play an important role in enhancing performances of power 

system. Some are given below: 

1) FACTS devices by controlling power, can improve the power system performance 

considerably such as improvement of power quality and security of the supply. 

FACTS technology can contain cascading outages by limiting the impact of multiple 

faults, thereby improving the reliability of power supply. Upgrading of transmission 

lines can increase power quality by increasing voltage and/or current capacity with 

the help of these devices. 

2) The "free flow" mode of power system operation may be changed into a controlled 

power flow mode of operation due to powerful controllability of FACTS technology 

where the power flow in one or more transmission lines is controlled in 



predetermined manner. 

3) FACTS technology can increase secure loading of transmission lines their steady 

state, short time and dynamic limits. Thus it enhances Transient, voltage and small 

signal stability of power system. 

4) Due to high capital cost of high voltage transmission, cost considerations are main 

concerns. Although the price of FACTS devices is high, compared to other methods 

of solving transmission loading problem, yet FACTS technology, is probably the most 

viable resort because of their ability to effectively control power flows, the power 

system can be operated in more optimized situation. As a result, large amount of 

money may be saved. Also, as people pay more and more attention to the 

environmental impact of new projects. Thus, it becomes very common for 

environmental opposition to frustrate attempts to established new transmission routes. 

Using FACTS technology, however, it is possible to transfer more power " over 

existing routes, thus meeting consumer demand without the construction of new 

transmission lines. 

5) The static performance of power system can be improved significantly with these 

devices leading to losses reduction, Security enhancement, congestion management 

and available transfer capability enhancement. 

6.2.2 BASIC TYPES OF FACTS CONTROLLERS - - 

In this context, FACTS technology has been rapidly developed in the last ten years. The 

first FACTS device is Static Var Compensation (SVC) and has been in service for nearly 

last two decades. It is a shunt device to maintain a healthy voltage profile in system. 

TCSC, TCSR are series controllers used to control line flows. Three Thyristor Controlled 

Series Compensation (TCSC) projects have been working successfully in USA since 

1991. In general, FACTS controller can be divided into four categories, the general 

symbols for which is shown in Fig. 6.1-Fig.6.4. 

• Series Controller 

• Shunt Controller. 

• Combined series-series Controller 

• Combined series-shunt controller 
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Series controllers 

The series controller could be variable impedance, such as capacitor, reactor, etc or 

power electronics based variable source of main frequency, sub synchronous and 

harmonic frequencies (or a combination) to serve the desired need. In principle, all series 

controller inject voltage in series with the line. Even variable impedance multiplied by 

the current flow through it represents an injected series voltage in the line. As long as the 

voltage is in phase quadrature with the line current, the series controller only supplies or 

consumes variable reactive power. Any other phase relationship will involve handling of 

real power as well. Common type or series FACTS controllers, which are generally used, 

are: 

➢ Static synchronous series compensator(SSSC) 

➢ Thyristors controlled series capacitor(TCSC) 

> Thyristor switched series capacitor(TSSC) 

> Thyristor switched series reactor (TSSR) 

➢ Thyristor controlled series reactor(TCSR) 

Shunt controller 

As in the case of series controller, the shunt controllers may be variable impedance, 

variable source, or a combination of these. In principle, all shunt controllers inject current 

into the system at the point of connection. Even variable shunt impedance connected to 

line causes a variable current flow and hence represents injection of current into the line 

as long as the injected current is in phase quadrature with the line voltage, the shunt 

controller only supplies or consumes variable reactive power. Any other phase 

relationship will involve handling of real power as well. The common type of shunt 

controllers in use are: 

➢ Static Synchronous Compensator(STATCOM) 

➢ Static VAR Compensator(SVC) 

> Thyristor Controlled Reactor(TCR) 

> Thyristor Switched Reactor(TSR) 

> Thyristor Switched Capacitor(TSC) 



Combined series-series controllers 
This could be a combination of separate series controllers, which are controlled in 

a coordinated manner, in a multi-line system or it could be a unified controller in which 

series controllers provide independent series reactive compensation for each line but also 

transfer real power among the lines via the power link. The real power transfer capability 

of the unified series-series controller, referred to as interlink power flow controller, 

makes it possible to balance both the real and reactive power flow in the lines and thereby 

maximize the utilization of the transmission system. 

Combined series-shunt controllers 

This could be a combination of separate shunt and series controllers, which are 

controlled in a coordinated . manner or a unified power flow controller with series and 

shunt elements. In principle, combined shunt and series controllers inject current into the 

system with . the shunt part of the controller. However, when the shunt and series 

controllers are unified, there can be a real power exchange between the series and shunt 

controllers via the power link. Common types of these controll✓rs are: 

> Unified Power Flow Controller(UPFC) 

➢ Thyristor Controlled Phase Shifting Transformer(TCPST, 

HH LINE 

Fig. 6.1: Series Controllers 

Fig. 6.2: Shunt Controller 



Fig. 6.3: Unified Series-Series Controller 
.__e 

line 

-----------I 
Fig. 6.4: Coordinated Series and Shunt Controller 

The different FACTs devices are helpful in controlling different parameters 

effectively. Generally the FACTS devices with both series and shunt controllers are most 

versatile devices. The operation for which a particular device can be used is given in the 

table 6.1 .The implementation of any of the new FACTS controllers is not an easy task. 

Although they offer substantial advantages for steady state and dynamic operation by 

controlling the power flow in the transmission line, it brings major challenges in power 

electronics, device control and protection design which involves huge cost and efforts. 
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Table 6.1 

FACTS CONTROLLERS CONTROLLED PARAMETERS 

Static Synchronous Compensator Voltage Control, VAR Compensation, 

(SSC) Damping Oscillations, Voltage Stability 

Voltage Control, VAR Compensation, 
Static VAR Compensator (SVC, TCR, 

Damping Oscillations, Transient and 
TCS, TRS) 

Dynamic Stability Voltage Stability 

Thyristor-Controlled Breaking Resistor Damping Oscillations, Transient And 

(TCBR) Dynamic Stability 

Current Control, Damping Oscillations, 
Static Synchronous Series 

Transient and Dynamic Stability, 
Compensator(SSSC) 

Voltage Stability, Fault Current Limiting 

Current Control, Damping Oscillations, 
Thyristor Controlled Series Capacitor 

Transient and Dynamic Stability, 
(TCSC,TSSC) 

Voltage Stability, Fault Current Limiting 

Current Control, Damping Oscillations, 
Thyristor Controlled Series Reactor 

Transient and Dynamic Stability, 
(TCSR,TSSR) 

Voltage Stability, Fault Current Limiting 

Active Power Control ,Damping 
Thyristor Controlled Phase Shifting 

Oscillations, Transient and Dynamic 
Transformer(TCPR) 

Stability, Voltage Stability 

Active and Reactive Power Control, 

Unified Power Flow Controller(UPFC) Voltage Control, VAR Compensation, 

Damping Oscillations 

Reactive Power Control, Voltage 

Control, Damping Oscillations, 
Interline Power Flow Controller(IPFC) 

Transient and Dynamic Stability, 

Voltage Stability 
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6.3 UNIFIED POWER FLOW CONTROLLER (UPFC) 

The unified power flow controller (UPFC) is arguably the most comprehensive 

device to have emanated so far from the FACTS initiative. In principle at least, the UPFC 

offers new horizons in terms of power system control, with the potential to independently 

control three power system parameters namely bus voltage, line active and reactive 

power. The simplest UPFC consist of two converters one connected in shunt and one 

connected in series with transmission lines in a substation. It can control three quantities 

such as a bus voltage and independent active and reactive power flow of the line. The real 

power is exchanged among shunt and series converters via a common DC link. From the 

literature it is found that unified power flow controllers are very powerful and can give 

flexible and effective power flow control in power system. 

The UPFC was first proposed by Gyugyi in 1991. It was devised for real-time 

control and dynamic compensation of ac transmissions system, providing 

multifunctional flexibility required to solve many of the problems facing the power 

delivery industry. From conceptual view-point, UPFC is a generalized synchronous 

voltage source, represented at the fundamental frequency by voltage phasor Vs., with 

controllable magnitude (0 s Vs1  s VV,,,,ax)  and angle (0 s 0s, s 2.rc) in series with the 

transmission line. As far as construction is concerned a UPFC consists of shunt (exciting 

and series (boosting) transformer, which are connected by two voltage-sourced 

converters using GTO thyristors valves and a DC circuit. Inverter-2 is used to generate a 

voltage source at the fundamental frequency with variable amplitude (0 s Vs, s Vim. ) 

and phase angle (0 s s 2x) , which is added to the AC transmission line by the series 

connected booster transformer. As the series transformer injects series voltage in line, 

the control of active and reactive power is possible by changing the magnitude and angle 

of inserted voltage. The real power flows from shunt converter to series converter via a 

DC link. As both inverters are capable of handling reactive power independently shunt 

transformer can also inject reactive power on the bus thus helps in maintaining better 

voltage profile. In this way the inverter output voltage injected in series with the line can 

be used for direct voltage control, series compensation, phase shifting and their 

combination and shunt current can be used to maintain good voltage profile. The 
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schematic diagram of UPFC is shown in Fig 6.5. 

_4. J 	v, 

Fig. 6.5: The UPFC schematic diagram 

6.3.1 STATIC MODELING OF UPFC 

In this section the modeling of unified power flow controller (UPFC) has been 

presented for static analysis. Let there be n numbers of lines connected at bus-i. Let a 

UPFC be placed at the i`h end if the line-k having impedance r13+jx11 (=1/(g j1+jbi1)) 

connected between bus-i and bus j. UPFC has three controllable parameters, namely the 

magnitude and the angle of inserted voltage (V1, cps1) in line-k and the magnitude of the 

current (lq).The circuit diagram is given in Fig. 6.6. 

Based on the principle of UPFC operation and the circuit diagram, the basic 

mathematical relations can be written as, 

I z~ =( +V 1 —VV )Y,; 
	 (6.2) 

Arg(Iq ) =Arg(V)±.7r/2, Arg(IT ) =Arg(I;), 	 (6.3) 

Re[Vs1I ;J ]  
T 	 (6.4) I = 	V` 

The power injection at bus-i can be written as 
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V 

n 

Si =P +JQi =Vlij +'i(IT +JIq )* +~Vilin +Vilsh 
sj 

Where, Ish is the shunt current due to line charging. 

(6.5) 

V 

	

I jb/2 

	
jb/2 

I 
Fig. 6.6 Circuit diagram of UPFC 

The effect of UPFC can be represented as injected power with the network as shown in 

Fig. 6.7. The injected complex powers Sig (= Pig+jQig ) at bus-i and S jg (= P jg+jQ jg) at bus -f 
can be written as, 

	

S jg = S° - Si = IVVslYij 	+ V (I,. + JIq )* ] 	 (6.6) 

	

S1 = S° —S1 = V1VS1Yij 	 (6.7) 

Where, S° is the complex power injection when there was no UPFC. 

From Eqn. 3.5, the real and reactive power injections at bus-i can be derived as 

Pig = —Re (VV,*, *'—ViIT; 	 (6.8) 

	

Qig = —Im (V V 1Yij , + VI 	 (6.9). 

From Eqn. (6.4), we have 
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VI" = •VlRe 	L~sl x(VLo. +Vsl LØsl — V.Lo.) x ' H i T  ~  t  1  1  yN 

(6.10) 

= Re{(VsiV L(Os1 — bi)+V'1 —Vs1VjL(Y's1 — Sj))x(gij — fbij )} 

Thus, 

VIT =Vslgij +Vs1V [gijcos(g 51 —Vi)+bijsin(0 	bi ), 
L 	 (6.11) 

—VVIV1 [gijcos(4sl — b j )+bijsin(0SI — ), 

The real and imaginary values of V1VV1 y;j can be written as, 

Re(VVslYij =VV l (gij cos( 5 —csl )+b sin( bi —0,1) 	 (6.12) 

Im (V,.Vslyij , = V.Vs, `gijsin(bi —bsl ) — bijcos(bi — Osl ) 	 (6.13) 

The injected active and reactive powers at bus-i will be 

Pig = —Vgij — 2VslV gijcosgij sin(bi —b 1 ) — bijcos(bs1 —ô) +Vs1Vj { gij cos(cs1 — d j )+ bj sin(Osl _6)]  
(6.14) 

Qig = ViI q +ViVs1[gijsln(O,, —V i )+ bijcos(o,, — 
	 (6.15) 

Similarly the real and reactive powers injections at bus-] and bus-h can be derived as 

Pjg = Vjvs1 (gijcos(Os, —6j)— bijsin(cs1 —6 j) 	 (6.16) 

Q jg = —VjVs1 (gij sin (Os1 — b j ) + bij cos(Os1 —ô) 	 (6.17) 

So, A UPFC can be represented as injected complex powersSig (= Pig+jQig) at bus-i, and 

Sjg (= Pjg+jQjg) at bus j, into the network as shown in Fig 6.7. 

r•: + 

Si? 	 S,, 

Fig.6.7: Injection model of UPFC 
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6.4 LOAD FLOW CALCULATION OF POWER SYSTEM WITH UPFC 

In view of fact that power systems nowadays are becoming more openly 

accessible; maneuverability of their power flow continues to be a general concern in the 

coming decade. Earlier power transmission was mainly mechanically controlled by 

means of, say, on-load tap changing of transformers and switching in and out of circuits, 

which is obviously not flexible enough to cope with the future development. UPFC 

promptly becomes a promising device as it incorporates all three attributes for controlling 

the power flow. Load flow computation for power system is clearly in need for 

performing other essential functions such as power system analysis and planning. In [20], 

a useful power injection modeling of UPFC is developed and employed for performing 

the load flow control studies. Power flow (or load flow) analysis involves the calculation 

of power flows and voltages of a power system for a given set of bus bar loads, active 

power generation schedule and specified bus bar voltage magnitude conditions. Such 

calculations are widely used in the analysis and design of steady state operation as well as 

dynamic performance of the system. The power flow problem is formulated as a set of 

nonlinear equations. Power flow analysis is of great importance in planning and 

designing the future expansion of power system as well as in determining the best 

operation of existing system. The power flow problem consists of a given transmission 

network where all lines are represented by fl-equivalent circuit and transformers by an 

ideal voltage transformer in series with an impedance. 

Many calculation methods have been proposed to solve this problem. Among 

them, Newton-Raphson method and fast-decoupled load flow method are two very 

successful methods. In general, the decoupled power flow methods are only valid for 

weakly loaded network with large X/R ratio network. For system conditions with large 

angles across lines (heavily loaded network) and with special control devices (FACTS 

devices such as UPFC) that strongly influence active and reactive power flows, N-R 

method may be required. Therefore, when the AC power flow calculation is needed in 

systems with FACTS devices, N-R method should be used. 

The UPFC model is incorporated into an existing Newton-Raphson load flow 



algorithm The modified Jacobian matrix and power mismatch equations are deduced 

based on the injection model of UPFC to control active and reactive powers and voltages 

magnitude in any combination. 

6.4.1 MODIFIED NONLINEAR POWER FLOW EQUATION 

The effect of UPFC on power system can be modeled as injected power flow at 

two related buses as shown above, thus they have no effect on node admittance matrix. 

At each bus four quantities are associated, namely active power P, reactive 

power Q, voltage magnitude V and voltage angle 6 . However, only two quantities are 

specified, at each bus, prior to the load flow. Depending upon the quantities specified 

there are three types of buses in the system: 

(1) Voltage Controlled (PV) Bus: Active power and voltage are specified. Limits to 

inject reactive power are specified depending upon the capacity of individual 

device. This type of bus corresponds to generator, synchronous condenser and 

SVC. 

(2) Load (PQ) Bus: Active and reactive power are specified. This type of bus 

generally corresponds to a load centre. Both active and reactive power is 

assumed to be constant irrespective of voltage variations. 

(3) Slack Bus: Voltage magnitude and phase angle are specified. Because the system 

losses are not known in advance of power flow calculation, the total injected 

power cannot be specified at all the buses. It is usual to choose one of the 

available generator-bus as slack-bus, and its voltage magnitude and angle are 

specified. 

The function of the load flow is to find voltage and angle at all the buses, active and 

reactive power generation schedule. The problem is formulated as a set of nonlinear 

equations which can be solved by number of numerical methods including Newton-

Raphson method which is very efficient and reliable. The load flow equations at bus i 

for the system having n buses and without UPFC, can be expressed as below 
n 

=PGi —PLi =V >V~(G1jcos6 +Bsin8) 	 (6.18) 
1- 

n 

Q =Qc, — QLi =V;V j(G;j sin6,j —B;jcosh11 ) 	 (6.19) 
1- 
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Where PG and QGi are the real and reactive power generated at bus i. PL i and QLi are real 

and reactive power load at bus i. 

For each PQ and PV bus, there is an active power mismatch equation and for each PQ 

node, there is reactive power mismatch equation. These equations can be formulated as 

follow 

AP, =P — V V (Gl1 cos6i1 + BBj sinc j ) 	i =1,2,.....,n-1 	 (6.20) 

n 

AQ =Q —V V.(G..sinS~1 —B1cos~ j ) i=1,2,...q 	 (6.21) t 	~s  	 t 	,J 

J -1 

Where Pis and Qi, are injected bus-generated powers. q is the number of network PQ 

buses. Here, the nth bus is supposed to be the slack bus. G11 and B~1 are the ij`h elements of 

Ybus matrix. 

If the series transformer of UPFC is installed in branch 1 (connected between bus-k to 

bus p), the power mismatch equations at bus-k and bus -p will be modified as 
n 

AP = 'ks — Pkg — Vk VJ (Gklcosökf + Bkf sinóki ) 	 (6.22) 
4~1 

n 

OQk = Q, — Qkg — V; V I (Gkj sinbk~ — BkJcosbkJ ) 	 (6.23) 
1- 

n 

APp =Pps —Ppg —VP ;V~(G p~cos6 p~ +B p,sin5 p1 ) 	 (6.24) 

n 

AQ p = Q ps — Q pg —V p;V,(G p~sln5J,1 —B p1cosb p1 ) 	 (6.25) 

The injected active power at buses (Pks and Ppg), and reactive powers (Qkg and Qpg) having 

a UPFC are calculated using equations (eq.6.14-eq.6.17). Thus, the relationship are 

obtained for small variations in V ands, by forming the total differentials, 

~'J = ii, "V + [J2 ] ~V/V 	 (6.26) 

[J] = [J1] + [J2] 	 (6.27) 

Where JI is the normal N-R power flow Jacobian matrix and J2 is the partial derivative 

matrices of injected power with respect to the variables. When bus-k and bus -p are PQ 
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buses, the matrix J2 may have 16 nonzero elements (eq, (6.28) to eq. (6.43)). If bus-k or 

bus -p is a PV bus, the corresponding elements of row and column will not exist. When 

more than one UPFC are installed in the network, their effects are added to matrixJ2. In 

this situation the non-zero elements may be more than 16. Now we can see that the power 

flow can be solved by N-R method in the normal way except the small differences in J 

matrix and power mismatch equations. The elements ofJ2 are given below 

aPkg 
 =-2V1Vgk,sin(Osz  —6k )— 2V2Vkgkosin(g52 —6k) 	 (6.28) 

a6k  

a 6P 
= Vs1VP  [gkPsln(051 - bP  )- b Pcos(0sl - 6k,)] 	 (6.29) asp  

aPpg 
= V,1Vp[gk psin(O52  - 6P  )+ b cos(Ws1 - 6 p )] 	 (6.30) a ap  

aPpg 
 =0 	 (6.31) 

a6k  

aPkg 
 = —2V lgkpcos(çbsl  — 8k ) — 2Vs2 g,, cos(Os2 —6k ) 	 (6.32) a Vk  

aPkg 
 =V51[gkpcos(g51  — 6P )+bkp sin(gs1 —6P)] 	 (6.33) 

aV P 

aPP9  =
vsr[gkpcos(Osl -6 p) — b,sin(gsl -bp)] 	 (6.34) 

a v 
appg  =0 	 (6.35) 
aVk  

9Q 

as 
kg  = VslVk [ gkpCOS(O l - bk  )+ bbP sln(`

,/,  
51 -6k)] 	 (6.36) 

k  

aQkg  0 	 (6.37) 
aa p  

a6

PB  = -VsiVP  [ -g cos(Osl  - OP  )+ bkp sin(gsl — 6 p )] 	 (6.38) 
P 

as ps  = 0 	 (6.39) 
k 
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a_kg  I9 +Vsl L gkP sin(0Sl — bk )+ b cos(0,1 Ok) 	 (6.40) 
aVk  

Qkg  = 0 	 (6.41) 
aVP  

a  v  = —V I[gkp sin((ps1  — S p  )+ b ,cos('b 1 — ap )l 	 (6.42) a vp    

aQpg  —0 	 (6.43) aVk  
With help of Eqn. (6.28-6.43) the power flow Jacobian matrix can be modified and 

power flow equations can be solved as conventional N-R method. 

6.4.2. ALGORITHM FOR SOLVING LOAD FLOW EQUATIONS 
The algorithm for modified load flow solution is given below: 

1. From the given input data, form system admittance matrix. 

2. Give initial value of the magnitude and phase angle of all bus voltages and k = 0. 

3. Calculate all needed node power mismatches by Eqn. (6.20) and (6.21) and J2. 

4. Superimpose modification into power mismatches by Eqn.s (6.22 to 6.25) and 

calculate J2. 

5. Is the absolute value of the maximum mismatch less than tolerance? 

6. If yes, the load flow solution obtained, stop. 

7. If tolerance is not satisfied then amend injected powers and jacobian matrix by 

adding appropriate partial derivatives, find change in bus voltages and load angle 

and update bus voltages and load. 

8. k= k+1, go to step 3. 

6.4.3. RESULTS OF LOAD FLOW 

The load flow calculation has been carried out on the IEEE 14 bus test data, by 

modifying an existing N-R load flow program to allow UPFC model. In the modified 

load flow computation an accuracy tolerance of less than 1€14  pu in respect of the 
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maximum absolute mismatch of nodal power injections are adapted, Load flow with and 

without UPFC has been carried out. For IEEE 14-bus system, solution converged in 5 

iterations with tolerance of 0.0001 without UPFC while with UPFC it takes 6 iterations 

with tolerance of 0.00003. The results have been displayed with and without UPFC. The 

parameters of UPFC were set as (Vs1i  cps1 Iq) = (.1, .5, .1). 

Without UPFC 

Bus no. Bus-Type V, Angle 

1 Bus-Type 1.060 0 

2 1 1.045 -4.807 

3 2 1.010 -12.44 

4 2 1.021 -9.996 

5 0 1.024 -8.425 

6 0 1.070 -13.872 

7 2 1.062 -13.022 

8 0 1.090 -13.022 

9 2 1.055 -14.596 

10 0 1.050 -14.753 

11 0 1.057 -14.444 

12 0 1.055 -14.728 

13 0 .1.050 -14.808 

14 0 1.035 -15.689 

Total System Loss = 0.13440+j 0.43226 p.u. 

Line flows 

From bus Line flow (pu) Line flow (pu) 

1 2 1.0587 + 0.0740i -1.0392 - 0.0724i 

1 5 0.4935 + 0.0566i -0.4815 - 0.0601i 

2 3 0.6197 + 0.0772i -0.6025 - 0.0498i 

2 4 0.3425 - 0.0310i -0.3361 + 0.0143i 
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2 5 0.2600 - 0.0121i -0.2564 - 0.0136i 

3 4 -0.3395 - 0.0121i 0.3473 + 0.0190i 

4 5 -0.3531 + 0.0936i 0.3548 - 0.0882i 

4 7 0.2088 - 0.1629i -0.2088+0.1769i 

4 9 0.1198 - 0.0713i -0.1198 + 0.0816i 

5 6 0.3571-0.1106i -0.3571+0.1444i 

6 11 0.0159 + 0.0084i -0.0159 - 0.0084i 

6 12 0.0774 + 0.0221i -0.0767 - 0.0206i 

6 13 0.1778 + 0.0605i -0.1757 - 0.0564i 

7 8 0.0000 - 0.0000i -0.0000 + 0.0000i 

7 9 0.2135 - 0.06111 -0.2135 + 0.0660i 

9 10 0.1096 + 0.0690i -0.1092 - 0.0677i 

9 14 0.1980 + 0.0583i -0.1932 - 0.0481i 

10 11 0.0192 + 0.0097i -0.0191 - 0.0096i 

12 13 0.0157 + 0.0046i -0.0156 - 0.0046i 

13 14 0.0563 + 0.0030i -0.0558 - 0.0019i 

With UPFC in line 12(between nodes 6 and 12) 

Bus no. Bus-Type Vm  Angle 

1 1 1.0600 0 

2 2 1.0414 -3.1767 

3 2 1.0040 -9.6529 

4 2 1.0316 -6.4722 

5 2 1.0328 -5.6002 

6 0 1.0837 -10.0089 

7 0 1.0703 -8.7011 

82 



8 0 1.0703. -8.7011 

9 0 1.0791 -9.8470 

10 0 1.0728 -10.1531 

11 0 1.0750 -10.2066 

12 0 1.0185 -12.7197 

13 0 1.0517 -11.7033 

14 0 1.03308 -12.4159 

Total System Loss = 0.12665+j 0.39886 p.u. 

Line flows 

From bus Line flow (pu) Line flow (pu) 

1 2 1.0406 - 0.0090i -1.0220 + 0.00771 

1 5 0.4874 + 0.0068i -0.4759 - 0.0133i 

2 3 0.6158 + 0.0609i -0.5990 - 0.03621 

2 4 0.3361 - 0.0613i 	. -0.3300 + 0.04351 

2 5 0.2531 - 0.04471 -0.2497 + 0.0179i 

3 4 -0.3433 - 0.0251i 0.3512 + 0.03191 

4 5 -0.3575 + 0.0869i 0.3592 - 0.0815i 

4 7 0.2054 - 0.18701 -0,2054 + 0.2021i 

4 9 0.1178 - 0.08461 -0.1178 + 0.09561 

5 6 0.3414 - 0.19541 -0.3414 + 0.23201 

6 11 0.0349 + 0.0307i -0.0347 - 0.0304i 

6 12 0.2755 + 0.1488i -0.2653 - 0.1274i 

6 13 0.3148 + 0.1104i -0.3085 - 0.0981i 

7 8 -0.0000 + 0.0000i 0.0000 - 0.0000i 

7 9 0.2100 - 0.08341 -0.2100 + 0.0883i 

9 10 0.0907 + 0.0464i -0.0904 - 0.04561 

9 14 0.2114 + 0.0532i -0.2062 - 0.04211 
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10 11 0.0003-0.0124i -0.0003+0.01241 

12 13 -0.1265-0.0285i 0.1301+0.0317i 

13 14 0.0433 + 0.0084i -0.0430 - 0.00781 

From the above results it can be concluded that the voltages improve while the 

overall system losses reduce along with control of line power by placing a UPFC in the 

system. 

6.5 FORMULATION OF STATE ESTIMATION PROBLEM FOR POWER ' 

SYSTEM EMBEDDED WITH UPFC. 

The basic problem remains the same as discussed in previous chapter except for 

additional state variables and constraints which must be included in the formulation to 

reflect presence of UPFC in the power system. The Jacobian matrix of the system should 

also be modified. 

As discussed in section 6.3, control parameters of UPFC namely the magnitude 

and the angle of inserted voltage (1/Si, gps1)  in line-k and the magnitude of the current (lq), 

are included in the state vector set. Objective again is to minimize the WLS error between 

measured and calculated data, subject to additional UPFC constraints, defined below: 

Equality constraints 

Neglecting UPFC losses, during steady state operation UPFC neither absorbs 

nor injects real power into the system [26]. Thus the sum of real powers injected to the 

end buses of the line where UPFC is inserted should equal zero. 

From Eqns. (6.14) and (6.16) 

Pig+Pjg=O 

Inequality Constraints: 

UPFC control parameter limits: The voltage magnitude (VT) and phase angle (or) of 

series voltage of UPFC must lie within limit. Mathematically, it can be written as, 

0.5 a V 1i  z0 
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Igmax Z0 

0 s Vs1 s Vst,,,ax 

Igmin  Iq Igmax 

0 S ~sl S 27t 

It is to be noted here that all the equality and inequality constraints defined in chapter 5 

are applicable together with above constraints. 

6.5.1 ESTIMATION ALGORITHM 

The steps followed have been given as under: 

Step 1: Get the system data, measurements and define the zero injection buses together 

with boundary limits on the state variables. 

Step 2: Select an initial erroneous state vector, tolerance limit and set the iteration count. 

Step 3: Calculate the objective function and say it f(v)old. 

Step 4: Calculate Pi, Qi, and Pig+Pjg corresponding to equality constraints. 

Step 5: Find VtNv)) by differentiating zero injection Eqns with respect to state variables 

using load flow equations. 

Step 6: Calculate updated state variables by Eqn. (5.28). 

Step7: Enforce the boundary limits by passing the state variables through a symmetrical 

ramp activation function 

Step 8: Find i° ' by differentiating the objective function with respect to state variables. 

Step 9: Find 	by Eqn. (5.19) and Update v. 

Step 10: Find the mismatch vector between measurements and calculated values and get 

its weighted squared sum to find out the new objective function value and find the 

difference between f(v)new and f(v)old. If this difference is less than tolerance go next 

step, else go to step 3 after increasing the iteration count. 

Step11: Display the results and Stop. 

6.6: RESULTS AND DISCUSSIONS 

The IEEE 14 bus system is used for simulation. The true values were obtained by 
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the result of the load flow calculation, and the measurement values were made by adding 

errors to those true values. The measurement set base value for the IEEE 14 bus system is 

shown in Fig.6.9 and table 6.2. Bus no 5 and 7 are characterized as zero injection burs 

and UPFC is inserted between bus no. 6 and bus no.12. The energy mismatch delta E was 

used for the convergence criteria with the tolerance 10 02  and the time step used was delta 

t=10-04  

Table:6.2 

Measurements Type Buses P(pu) Q(pu) 

zl Injection 1 1.52 -0.058 

Z2 Injection 2 0.18 -0.250 

z3 Injection 3 -.9522 -0.16 

z4 Injection 4 -0.1583 -0.0039 

z5 Injection 6 -0.1954 -0.234 

z6 Injection 8 0.1496 0.0017 

z7 Injection 9 0.0883 0.0210 

z8 Injection 10 -0.0057 -0.048 

Z9 Injection 11 -0.0963 -0.1603 

z10 Injection 12 -0.5602 0.1396 

z11  Injection 13 -0.1978 -0.058 

z12 Injection 14 -0.1173 -0.0508 

z13 Line flow 1-2 1.0434 -0.0090 

z14  Line flow 1-5 0.4886 0.0068 

z15  Line flow 2-3 0.6171 0.0609 

z16 Line flow 2-4 0.3372 -0.0613 

z17  Line flow 2-5 0.2537 -0.0447 

z18 Line flow 3-4 -0.3436 -0.0251 

z19 Line flow 4-5 -0.3594 0.0869 

z20 Line flow 4-7 0.2105 -0.1870 

z21  Line flow 4-9 0.1218 -0.0846 



z22 Line flow 5-6 0.3675 -0.1954 

z23 Line flow 6-11 0.0347 0.0307 

Z24 Line flow 6-12 0.2758 0.1488 

z25  Line flow 6-13 0.3149 0.1104 

z26 Line flow 7-8 0.0000 0.0000 

z2-, Line flow 7-9 0.2100 -0.0834 

z28 Line flow 9-10 0.0914 0.0464 

z29 Line flow 9-14 0.2118 0.0532 

z30 Line flow 10-11 0.0001 -0.0124 

z31  Line flow 12-13 -0.1267 -0.0285 

z32 Line flow 13-14 0.0434 0.0084 

The estimated states are shown below: 

Bus No. V 6 Bus No. V b 

1 1.06 0 2 1.043 -3.731 

3 1.002 -9.309 4 1.032 -6.615 

5 1.034 -5.046 6 1.085 -10.68 

7 1.071 -8.08 8 1.07 -8.922 

9 1.079 -9.481 10 1.073 -10.553 

11 1.072 -10.167 12 1.019 -12.296 

13 1.051 -11.443 14 1.043 -12.258 

The convergence characteristics of the energy function with respect to number 

of iterations is shown in Fig.6.10. 
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Figure 6.10: Convergence of energy function 

This part of the dissertation presents an algorithm for state estimation of power 

systems embedded with FACTS devices. While only the Unified Power Flow Controller 

(UPFC) is used in the development, other types of controllers can easily be integrated 

into the developed prototype with minor effort. This algorithm also estimates the 

controller parameters along with system state during normal operation. 



CHAPTER 7 

IMPLEMENTATION OF MODIFIED HOPFIELD NEURAL NETWORK ON 

NEURAL NETWORK PROCESSOR FOR SOLVING NONLINEAR 

PROGRAMMING PROBLEM 

The modified Hopfield neural network algorithm discussed in previous chapter for 

solving nonlinear programming problems is implemented on a dedicated neural network 

processor, emphasizing the specific architecture and programming paradigm. For the 

demonstration purpose a simple nonlinear programming problem is solved by the 

network. The internal parameters of the network are obtained using the valid-subspace 

technique. The implementation is aimed for rapid real time neural network applications. 

The concept has been tested on the AAC (Accurate Automation Corporation) Multiple 

Instruction Multiple Data (MIMD) Neural Network Processor (NNP) hardware. 

7.1 INTRODUCTION 

Constrained optimization problems have a fundamental role in many areas of 

sciences and engineering, where a set of design parameter is optimized subject-:;to 

inequality and/or equality constraints. Basically, all of the neural networks [58, 59] used 

in constrained optimization contain some penalty parameters. The stable equilibrium 

points of these networks, corresponding to solution of the optimization problem, are 

obtained only when the penalty parameters are sufficiently large [60]; while the modified 

Hopfield network [25] does not depend on the penalty parameter. The constraints of the 

problem are not included in the network energy function rather they are handled by valid 

subspace technique. 

Software implementations on general-purpose computers can be too sluggish for 

time-critical applications. Here, dedicated ANN hardware and the ANN programming 

paradigm are described as an effective compromise of performance and cost, enabling a 

computational platform for time-critical neural network processing tasks. The majority of 

ANN implementations today tend to be software simulators hosted on general-purpose 

computers. Some special neural network platforms were researched and published [54, 58 



and 59]. 

Accurate Automation Corporation's Neural Network Tools (NNPTools) allows 

rapid prototyping of neural network solutions and integration into real world applications. 

Each processor runs at 140 million connections/sec with 8K neurons. An expanded 

version of the system performs a total of a billion plus connections/sec. Unlike classical 

SIMD NN architectures, which are really general purpose array processors, this MIMD 

system architecture was custom designed for NN applications. 

In this chapter a new implementation paradigm for solving nonlinear 

programming using Hopfield neural network is presented which is particularly suited for 

real time applications. 

7.2: THE MODIFIED HOPFIELD NETWORK 

The algorithm of the network is described in section (5.3) of chapter (5). A brief 

description is reproduced here for reference: 

Step (i): Minimization of Ec°nf  (constraint satisfactions) Corresponding, to the projection 

of v (t) in the valid subspace defined by: 

v (t)=Tconf.  v (t)+iconf 	 (7.1) 

This operation corresponds to an indirect minimization of Fonf(t) 

Step (ii): Application of a nonlinear `symmetric ramp' activation function constraining 

v(t) in a hypercube 

Step (iii): Minimization of E°', which consists of updating v(t) in the opposite direction 

to the gradient of E°P (defined by T°p and i°p) corresponding to network equilibrium 

points, which are the solutions for the constrained optimization problems. 

Each iteration has two distinct stages. First, as described in Step (iii) v is updated 

using the gradient of the term E°p alone. Second, after each updating, v is directly 

projected in the valid subspace. In the next section, the parameters T°°nf, iconf,T°P and i0P 

are defined. 

7.3: FORMULATION OF THE NONLINEAR OPTIMIZATION PROBLEM 

Consider the following general nonlinear optimization problem: 

Minimize E°"(v) = f(v) 
	

(7.2) 



3h1(x) ahl(x) äh1(x) 
axl 

8h2(x) 

ax2 

ah 2(X) 
ax 

ah 2 ~X) 
ax1 ax2 OXN 

ahp(x) ahp(x) ahp(x) 
axl ax2 axN 

Vh(x) = 
(7.5) 

Subject to E °̀"f (v): hi (v) s 0, iE(l..p) 
	

(7.3) 

1 	 ,max 
 

Where v, vmin, vmax E R". ; 

A projection matrix to the system is given as follows [25]: 

T`°°f = [I - V(h(v)T.(V(h(v).V(h(v)T)-'.V(h(v) ] .v + s 	 (7.4) 

where 

Inserting the value of Eqn. (6.4) in the expression of the valid subspace in Eqn. (7.1): 

v=v - V h(v)T.(( V h(v). V h(v)T)1 ).h(v) 
	

(7.6) 

The equilibrium points of the network can be calculated by assuming the following 

values of 1q and i°P, 

	

A (v) of (v) 	
af 

(v) 	 ( 	) 
OD= 
	 . ................ 	 7.7 

	

dv1 av2 	 avN 

T°p=0  (7.8) 

7.4: COMPUTATIONAL PARADIGM 

ANNs represent a computational paradigm; whose characteristics include intrinsic 

parallelism, local processing in (artificial) neurons, distributed memory, and learning and 

recall modes. 

An interesting aspect of the ANN computational paradigm is to represent complex 

problems with a small number of primitives which suggests advantages of hosting ANNs 

on dedicated Neural Network Hardware (NNH) to maximize performance at a given cost 

target. The number of weights grows exponentially with the number of neurons. The 

intrinsic parallelism of ANNs facilitates parallel processing as a key feature of NNH, i.e. 
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the decomposition of neural processing into concurrently executed sub processes. Parallel 

processing exploits concurrency in a computational process and comprises both parallel 

hardware and parallel software. 

7.4.1 Programming Paradigm and Language 

The way we describe computations for computers is known as programming 

paradigm. It is a technique which supports writing code for a specific set of problems, 

using a programming language that is designed to describe that specific set of problems. 

A good language also includes standard libraries and programming tools like editor and 
compiler. 

An ANN language should therefore resemble the ANN paradigm, i.e. should 

match its description and definition. The ANN paradigm therefore provides the 

opportunity to design a powerful language that exploits the capabilities of the NNH for 

good run-time performance. The mere availability of parallel hardware itself does not 

guarantee parallel processing. This directly corresponds to the sophistication of parallel 

software exploiting the parallel architecture in NNH. Parallel processing at the highest 

level is carried out by multiple programs, while at a medium level it is limited to 

concurrent tasks within a single program. The lowest level refers to concurrence of 

multiple instructions, or even concurrence within an instruction [61]. 

7.5 NEURAL NETWORK PROCESSOR NNP® 
The above concepts are illustrated with the commercially available Neural 

Network Processor (NNP) by Accurate Automation Corp. [56]. Its design concept is 

reviewed, and the implementation of the modified hopfield neural network is proposed. 

7.5.1 Architecture: The NNP® architecture provides features for fast processing of 

neural connections and transfer function. Up to eight NNPs can be integrated in a parallel 

multiprocessor environment, resulting in a multiple instruction stream/multiple data 

stream (MIMD) platform. The block diagram of a single NNP® is shown in Fig. 7.1. 
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Figure 7.1: Block diagram of a single NNP (10) 

A multiply-accumulate unit, lookup tables for transfer functions, and 16-bit 

integer arithmetic emphasize the above feature. The figure illustrates dataflow of 

activation values a, neuron input x and weight value w. The neuron output y, i.e. the 

transfer function, is not computed explicitly but is read from a pre-loaded lookup table. 

Weights are usually learned off-line, but NNP can also be utilized for on-chip learning. 

Efficiency is further increased by instruction pipelining, enabling the completion of one 

instruction per clock cycle. Thus the NNP is single instruction stream/multiple data 

stream (SIMD) processor. The AAC MIMD Neural Network Processor is designed to 

implement multiple interconnected neural networks of differing architecture 

simultaneously using 16-bit twos-complement binary fixed-point arithmetic with up to 8k 

total neurons and 32k connection weights per module, It is capable of running at 

140,000,000 connections (byte wide multiply/additions) per second per module for a total 

of one billion plus connections per second in an 8 processor array, It Supports two I/O 

buses, an Interprocessor Bus which can also be used for on-line I/O in parallel with the 

computational process, and a memory I/O Bus through which the various processor 

memories may be mapped into the memory space of a supporting microprocessor or DSP 

for downloading programs, connection weights, etc, and Each processor in an NNP array 

is controlled by an instruction set, supported by an NNP Module Simulator, an 

Assembler, a Neural Network Compiler, and the Accurate Automation Neural Network 

Toolbox [56]. 

7.4.2.2 Programming Paradigm 
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The NNP programming paradigm emphasizes layered, well-structured, ANN 

architectures. Accordingly, its programming language comprises only nine powerful 

commands, tailored for the efficient computations of appropriate ANN primitives, in 

particular connections and nonlinear transfer function. For example 'mula' (multiply and 

accumulate), mull (multiply and load in accumulator) and `lbtf' (compute transfer 

function). The cornerstone of an NNP assembler program is the multiply-accumulate 

command, which multiplies one weight value with one input value and adds the product 

to the existing activation value. 

7.6: EXAMPLE 

The modified Hopfield network have been used to solve the constrained nonlinear 

optimization problem defined by 

Min f(v)=.4v1+.5 (5v12+8v22+4v32)-3vlv2-3v2v3 	 (7.9) 

Subject to: v1+v2+v3=1 	 (7.10) 

0!5 vl s.8 	 (c1) 

0s v2s .4 	 (c2) 

0sv3s.5 	 (c3) 

For this problem, with one equality constraints and with bounded variables, the 

solution vector (equilibrium point) obtained by the modified Hopfield network on 

NNPTools is given by: 

v* = [0.2568; 0.341vi ; 0.38 ] with f(v*)= 0.3776. These results are near to optimal 

solution provided by v* = [0.2576; 0.3332; 0.4092] and f (v*) = 0.3683 on Matlab. The 

initial value of v was randomly generated between 0 and 1. The small difference in the 

two values is due to truncation in case of NNP implementation because 16 bit registers 

are used to store the data in binary form. The algorithm on the NNP was written in 

assembler with a constant initial weight matrix 

6667 -.3333 -.3333 

Tconf= -.3333 .6667 -.3333 

-.3333 -.3333 .6667 

The following figure shows the input and output neuron values when the program is 

executed on NNPTools for 20 iterations. A complex problem may require that the weight 
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matrix should be updated for each iteration as per Eqn. (7.4) and hence an interfacing is 

required between the host computer and the NNP. 

Figure 7.2: Neuron Memory from NNPToo1s 

The host updates weights and presents data to the NNP. The weight updatation algorithm 

together with some complex calculation can be written in C++ for the host computer. In 

that case the NNP takes care of neuron updatation in the forward path.. 

A small portion of the assembler code for updating a neuron is shown below: 

; neuron 0 

mull inputt+0,0.666700 

mula inputt+l,-0.333300 

mula inputt+2,-0.333300 

mula inputt+3,.333333 

lbtf outputt+O,tsf 

The hardware implementation of the computing engine is suitable for online 

applications with a fast speed.. By using an MIMD parallel processing architecture one 

can update multiple neurons in parallel with efficiency approaching 100% as the size of 

the neural network increases, to achieve the desired efficiency of real-world applications. 

The inherent advantage of the proposed scheme is its speed, which is particularly suited 

for real time implementations applications. 
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CHAPTER-8 

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

The state estimator plays an important role of a purifier, creating a complete and 

reliable database for security monitoring, security analysis and the various controls of a 

power system. State estimator should estimate the system states as quickly as possible, 

but conventional computer based methods are almost reaching a limit in terms of speed. 

On the other hand neural networks, having much potential for hardware implementation, 

along with their inherent parallel architecture are being used in various areas of science 

and engineering. This work proposes a neural network method for solving state 

estimation problem which can be implemented on hardware. The common weighted least 

square method does not enforce the equality and limit constraints explicitly. However, the 

constraints contain reliable information about physical restrictions and equipment limits 

and can be used to increase the quality of state estimation result. Further an increasing 

concern about environmental aspect and optimal use of transmission capacities 

emphasize the use of FACTS devices, which offer several advantages, in the system, so 

there is requirement of such estimators which not only estimate the voltage magnitude 

and phase angle but also FACTS device control parameters. In this work FACTS devices 

are also included in the state estimation algorithm. However, the work has been carried 

out only for the static system conditions it can be extended to dynamic system also. In 

conclusion, the findings of the work have been briefed as follows: 

1. The topological observability problem is formulated as an integer programming 

problem, and Hopfield neural network is used with simulated annealing to judge 

whether network is observable or not, further the algorithm also provide 

information about where the meters should be placed in order to get an observable 

system when number of meters and buses are known in advance. The inequality 

constraints of the topological observability problem are not included in the 

objective function by using penalty factors which is a difficult task. They are 

handled in a different way by assigning a dedicated neural network in the original 



Hopfield model. 

2. The state estimation problem is formulated as a general nonlinear programming 

problem with equality constraints and limits on variables, and modified Hopfield 

neural network method is used for estimating the system state. The software 

implementation of the algorithm is slower than the conventional methods but when 

it will be implemented on hardware using any reconfigurable technology such as 

FPGAs, a faster speed is assured. One of the major advantages is that no training 

and testing of the neural network is required under human supervision. 

3. UPFC have been incorporated in the system with the help of Power Injections 

Models (PIM). UPFC has been incorporated into an existing Newton-Raphson load 

flow algorithm. This approach keeps the conventional NRLF intact so that the 

UPFC is readily being incorporated into traditional NRLF by including the 

modified terms in the iterative procedure. For each UPFC just modification of few 

elements of the Jacobian matrix and hence additional burden incurred is minimized. 

The other FACTS devices can also be modeled in the same manner and 

incorporated in load flow. 

4. State estimation with the modified Hopfield neural network method is carried out in 

presence of UPFC, along with the additional constraints which arises thereafter. 

5. The modified Hopfield neural network algorithm is implemented on dedicated 

neural network processor (NNP) architecture, to solve a simple nonlinear 

programming problem to demonstrate the feasibility of hardware implementation of 

the algorithm. 

SUGGESTIONS FOR FUTURE WORK 

As development is an unending process. End of one work opens doors for further 

work. As a consequence of the investigations carried out in this thesis on state estimation 

of power systems, following aspects are identified for future research workin this area. 

1. Topology processing and bad data analysis is not, carried out in this work and hence 

the algorithm can be modified to include these concepts. 

2. The Hopfield neural network algorithm for topological observability determination 

can be implemented on any digital reconfigurable technology. 

3. The state estimation algorithm, discussed in chapter (5), which is suitable for 



hardware implementation, can be implemented on dedicated processors or hardware 

platforms to validate its applicability in real time state estimation. 

4. Present study has considered the static condition of FACTS devices from steady state 

operation point of view. Inclusion of dynamic state of these devices can also be 

explored. Instead of UPCF other FACTS devices can also be incorporated in the state 

estimation algorithm. 
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APPENDIX A 

Data for six bus system (at 100 MVA base) 

The six bus system is shown on Fig. Al. The relevant data are provided in the following 

tables. 

Table Al 

Generator Power Data 

Bus Real Power Generation Reactive Power Limits Specified 

No. Max(MW) Min(MW) Max(MVAR) Min(MVAR) voltage(pu) 

2 100 20 50 -40.0 1.050 

Table A2 

Load bus data 

Bus Load 

No. Real(MW) Reactive(MVAR) 

5 70 70 

6 70 70 

Table A3 

Line data 

Line 

No. 

From 

Bus 

To 

Bus 

Series Impedance(p.u.) Half Line 

Charging(pu) Resistance Reactance 
1 1 2 0.1000 0.2000 0.0200 

2 1 4 0.0500 0.2000 0.0200 

3 1 5 0.0800 0.3000 0.0300 

4 2 3 0.0500 0.2500 0.0300 

5 2 4 0.0500 0.1000 0.1000 

6 2 5 0.1000 0.3000 0.0200 

7 2 6 0.0700 0.2000 0.2500 
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8 3 5 0.1200 0.2600 0.0250 

9 3 6 0.0200 0.1000 0.0100 

10 4 5 0.2000 0.4000 0.0400 

11 5 6 0.1000 0.3000 0.0300 

Fig.Al 
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Data for IEEE 14 bus system (at 100 MVA base) . 

The IEEE 14 bus system is shown on Fig. A2. The relevant data are provided in the 

following tables. 

Table A4 

Generator Power Data 

Bus Real Power Generation Reactive Power Limits Specified 
No. Max(MW) Min(MW) Max(MVAR) Min(MVAR) voltage(pu) 

1 250 50 100 -45.0 1.060 

2 200 20 50 -40.0 1.045 

3 200 000 24 -06.0 1.010 

6 250 000 40 0 1.070 

8 000 000 24 -06.0 1.090 

Table AS 

Reactor/Capacitor data 

Bus 

No. 

MVA(pu) 

00.19 

8 

Table A6 

Load bus data 

Bus 

No. 

Load 

Real(MW) Reactive(MVAR) 

2 21.70 12.70 

3 94.20 19.00 

4 47.80 -03.90 

6 11.20 07.50 

9 29.50 16.60 
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10 09.00 05.80 

11 03.50 01.80 

12 06.10 01.60 

13 13.50 05.80 

14 14.90 05.00 

Table A7 

Transformer Data 

Line 

no 

From 

Bus 

To 

Bus 

Series Impedance Taps 

Resistance Reactance 

8 4 7 0.00001 0.20912 0.978 

9 4 9 0.00001 0.55618 0.969 

10 5 6 0.00001 0.25202 0.932 

Table A8 

Line data 

Line 

No. 

From 

Bus 

To 

Bus 

Series Impedance(p.u.) Half Line 

Charging(p 

u) 

Resistance Reactance 

1 1 2 0.0194 0.0592 0.0528 

2 1 5 0.0540 0.2230 0.0492 

3 2 3 0.0470 0.1980 0.0438 

4 2 4 0.0581 0.1763 0.0340 

5 2 5 0.0570 0.1739 0.0346 

6 3 4 0.0670 0.1710 0.0128 

7 4 5 0.0134 0.0421 .000000 

11 6 11 0.0950 0.1989 0.01870 

12 6 12 0.1229 0.2558 0.00000 
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13 6  13 0.0662 0.1303 0.00000 

14 7 8 0.0001 0.1762 .0.00000 

15 7  9 0.0001 0.1100 0.00000 

16 9 10 0.0318 0.0845 0.00000 
17 9 14 0.1271 0.2704 0.00000 
18 10 11 0.0820 0.1921 0.00000 

19 12 13 0.2209 0.1999 0.00000 
20 13 14 0.1709 0.3480 0.00000 
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