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ABSTRACT 

Accurate, fast and reliable protective scheme is an important operational requirement 
in modem day power transmission systems. In this thesis, a new digital distance protection 
scheme for series compensated transmission lines is developed. The proposed distance 

protection scheme is comprised of three distinct stages, namely, (a) Fault Classification, (b) 
Selection of Faulted Section (Whether the fault is in front or behind the series capacitor) & 
(c) Distance Calculation and First Zone Detection. Support Vector Machine (SVM) is used 

for development of algorithms for all three stages. Performance of the algorithms developed 
for aforesaid three stages is tested on a large test data set of more than 25,000 cases 

generated on a model of 400kV, 300 KM transmission line with series compensation placed 

in the middle of the transmission line having Metal Oxide Varistor (MOV) for the protection 
of compensating capacitor. The simulation is carried out using well known PSCAD/ EMTDC 

software package. Further, performance of the developed distance protection scheme has 

been compared with some of the earlier approaches reported in literature for the same 
purpose. The results indicate that the proposed SVM based distance protection scheme is 
fast, accurate and robust among all the approaches discussed in this thesis for a wide 

variation in system and fault conditions. 
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`CB' and air-gap 'AG' are placed across the series capacitor for protection purpose. The 

damping circuit `Ld' limits the oscillatory transient current through air gap when it fires. 

With short circuits on the line, the voltage across capacitor could build up to 

extremely high values, especially under resonant system conditions. The MOV, in this case, 

will limit the voltage to some predetermined safe level, typically 2 pu, where 1 pu is the 

voltage across capacitor with rated current flowing through it. Economics dictate an upper 

limit for energy dissipation required by the MOV in un-faulted line for the worst case 

external fault. This means that the MOV is not capable of dissipating the energy that would 

be generated on some internal faults. To protect the MOV under these conditions, an energy 

monitor calculates the energy being dissipated by MOV and triggers the air gap to divert the 

current away from MOV when the energy limit of MOV is reached. The gaps also have 

some finite energy capability and, therefore, also require a diverter which in this case is the 

bypass breaker. 

A key advantage of adding the MOVs is a short reinsertion time. This is important is 

case of the un-faulted line. With only gap protection, the un-faulted line would need to have 

bypass breaker closed to interrupt conduction of the gap before the capacitor could be put 

back into service. In the case of MOV, when the external fault is cleared and the over 

voltage across capacitor disappears, the MOV stops conducting and the capacitor is back in 

service. 

1.2 PROBLEMS IN DISTANCE PROTECTION WITH SERES 
CAPCITOR 

Series Capacitors (SCs) and their over voltage protection devices, particularly Metal 

Oxide Varistors and Air gaps, when installed on a transmission line, create several problems 

for its protective relays and fault locators. The voltage and current signals produced on the 

transmission lines differ in a great extent for faults occurring before and after compensating 
mf 

capacitor. 

The fault signals captured under such conditions contain different frequency 

components. The dominant frequency components are [1]: 

1. 	Non fundamental decaying frequency components due to resonance between the 

system inductance & series capacitor including decaying DC and sub- synchronous 
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frequencies having frequency components varying around half the fundamental 

frequency value. 
2. Odd harmonics due to MOV conduction during faults. 

3. High frequency components caused by resonance between line capacitance & line 
inductance. 

	

- 4. 	Fundamental frequency components of the steady state fault current. 

Therefore, operating conditions for protective relays become unfavorable and include 
such phenomena as voltage or current inversion, sub-harmonic oscillations and additional 

transients caused by the air gaps triggered by thermal protection of the MOVs. Overreaching 

of distance elements due to series compensation is probably the most critical and known 

consequence of SCs. The opposite may happen as well, i.e. a distance protection may fail to 
pick up a low current fault on the protected line. All the problems are being discussed briefly 
in this section. 

1.2.1 OVERREACHING DUE TO NON-LINEARITY OF PROTECTIVE DEVICES 
OF SERIES CAPACITORS: 

Normally, three single-phase banks of capacitors are used for series compensation. 
Each capacitor must be protected against over voltages by air gaps or Metal Oxide Varistors 

(MOVs) or both. Under load conditions or low-current faults, the voltage drop across the 
SCs is below the voltage protection level: neither the air gaps nor the MOVs conduct any 

current. Therefore, the SC bank is equivalent to a pure reactance equal to the reactance of 
the actual physical capacitor. Under high current faults, the voltage drop would be far above 

the protection level: the gaps and/or MOVs conduct majority of the through fault current, 

practically by-passing the SCs. Therefore, for large through currents the SC bank is 
equivalent to a small resistance [1]. Between the two extremes, there are situations when a 

comparable amount of current flows through the. SCs and MOVs as shown in Fig. 1.2 [1]: 

3 



1CO Z0 34D 400 WO OW 	1104 
p0t914101 Vele (ritsi 

_4000 ... . .. ..Z •41,15 	fa ra• • 2,iren. 

• S • :111 • 4.1111 VC WI& 

2ti 300 400 SIM et0 	700 800 
pos14a.it time tinsi 

•11, •••••••• GUN •• ••••i•il ...... 

Figure 1.2(a): Voltage drop across a 	Figure 1.2(b): Current in Series Capacitor 
Conducting MOV 	 with conducting MOV 

Figure 1.2 (c): Current in a conducting MOV 
As the through current becomes larger, the voltage drop across the series capacitor 

bank assumes more rectangular shape, being limited to the voltage protection level as shown 

in Fig. 1.2 (a). The series capacitor conducts the current during initial half-cycles (Fig. 1.2 
(b)), while the MOVs conduct during the remaining halves as shown in Fig. 1.2 (c). The 

through current will be the sum of both the currents. It will be shifted in leading direction 

with respect to the voltage drop across the bank. Relation between the fundamental 

frequency components of the voltage drop across the bank and the through current is 

resistive-capacitive impedance known as a Goldsworthy's equivalent impedance as shown in 

Fig. 1.3 (b) [1]. 
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Figure 1.3(a): Circuit representation of Series Capacitor-MOV combination 
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Figure 1.3(b): Equivalent fundamental frequency Impedance of Fig. -1.3(a) 

In Fig. 1.3 (b), Xv and Rv represents the Goldsworthy's equivalent resistance and 

reactance of the combined SC-MOV arrangement. It can be realized that the equivalent SC-

MOV impedance is nonlinear [2]. This is due to the fact that MOV is a non linear device 

whose characteristics is shown in Fig. 1.3 (c), 

V )q  
i =

D
( —  

Vref 

Where, P & Vref are coordinates of the knee point & q is an exponent. This non-linearity 

of MOV introduces complexity in the impedance measurement of the conventional distance 

relay. 

Figure 1.3 (c): Sample MOV characteristics 
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The concept of equivalent impedance helps to explain the basis of the problem of 
overreaching phenomenon. If the SCs are located between the fault and the relay potential 
point, the fault loop contains the line-to-fault impedance, fault resistance (if any) and the 
equivalent SC & MOV impedance which is nonlinear. The resistive-capacitive nature of the 
equivalent SC-MOV impedance shifts the apparent impedance down and to the right as 
shown in Fig. 1.4. As the lines are typically compensated to the tune of 50-70. %, the 
overreach may be as high as 50-70 % of the line impedance. 

Figure 1.4: Distance element overreaching due to series compensation 

During medium-current faults on the line, the apparent impedance may be shifted to 
the right by more than half the reactance of capacitors. This relocation may be high enough 
to push the apparent impedance outside the operating characteristics. In the worst case — for 

low-current faults — the equivalent SC & MOV impedance down by the entire reactance of 

the physical capacitors. This makes the failure of a distance function for a low-current close-

in fault. Under such a fault, sometimes, the apparent impedance moves to the fourth 
quadrant of the impedance plane, resulting in problems with directional discrimination. For 
high-current faults, through, the equivalent SC & MOV impedance shifts the apparent 
impedance only slightly to the right, so, there is no danger of overreaching. Also it can be 
observed that, the SC & MOV bank acts as a 'fault current stabilizer': for larger currents the 



capacitive reactance is smaller while the resistance is larger — this reduces the current as 
compared with a fully compensated circuit; for smaller currents, the capacitive reactance is 

larger — this reduces the net impedance and increases the current as compared with a non 

compensated circuit. 

1.2.2 TRANSIENT PROBLEMS: 

The addition of series compensation to a system will introduce several transient 

effects in estimating the voltage and current phasors. These effects impact protection scheme 

for series compensated lines as well as the protection scheme on adjacent lines. Heavy 
oscillations consisting of different harmonic components along with fundamental one are 

visible in both current and voltage signals [1]. 

On series compensated lines, the capacitor will introduce a sub-synchronous 
frequency. The frequency is dependent on the capacitor and system parameters. The natural 
frequency is proportional to the degree of compensation and is inversely proportional to the 
source impedance ratio and the fault location. Higher frequencies occur when the fault is 
close to the relay. The higher frequencies will not be critical for close in faults, since the 

capacitor MOV will typically short, the capacitor for these cases. However, when a fault 
occurs near the end of the line, the low frequency components will cause the impedance 

estimate to oscillate [3]. This causes the conventional phasor computation techniques like 
LES or DFT to give erroneous results. 

1.2.3 VOLTAGE INVERSION: 

Voltage inversion means that the relay sees the fault on the protected line in the 
reverse direction [3]. This phenomenon can be explained using Fig. 1.5 as shown below. 

Here, a series compensated transmission line is shown, where the series capacitor is assumed 

to be located in the substation. In this figure, ZA  & ZB are the impedances of the sources VA 
& VB respectively and ZL is the total line impedance. Now, for a fault F1 occurring at a per-
unit distance of 'm', the voltage profile is shown in Fig. 1.5 by a dotted line. 

It can be seen that the relay 'sees' an inverted voltage at the location 'F1' or, in other 

words, the relay sees this fault as a reverse fault. On the other hand, if the fault occurs at a 

distance further away form the substation (i.e. 'm' increases), then the relay 'sees' a positive 
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voltage, i.e. the relay identifies the fault to be a forward one. Thus, depending on the 
location of the fault, the relay either 'sees' a fault to be a forward one or a reverse one. 

Figure 1.5: Two area power System 

Now, for the bus side voltage measurement at bus A the conditions for the voltage 
inversion, assuming negligible resistance in the fault loop, are: 

a) Xc  > mXi, and 

b) Xc < rriXL + XA 

where, Xc  is the line inductive reactance 

XL  is the line capacitive reactance 

m (p.u.) is the fault location 

XA is the source A reactance. 
For a fault close to the relay, voltage inversion may not occur, if the source 

impedance is too small (in this case, the condition (b) would not hold good). When MOV 

conducts for Vc  > VpR where Vc  is the voltage across the capacitor and VPR  is the 
predetermined voltage level of the MOV, the combined reactance of MOV and SC (series 

capacitor) becomes less than that of Xc. As a result, the possibility of condition (a) above 

getting satisfied reduces. This in turn, reduces the possibility of voltage inversion. Thus,, it 
can be said that voltage inversion may occur for faults located within certain distance on the 

line depending on source and line impedance, fault resistance and capacitor protective 

circuit. 
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1.2.4 CURRENT INVERSION: 

Current inversion means that the relay sees fault current in reverse direction due to 
large capacitive reactance in fault loop [3]. The voltage and current inversion can not happen 
simultaneously. From Fig. 1.5, for fault F1 and bus side voltage measurement, conditions for 

current inversion, assuming only reactance in the fault loop are: 

a) Xc > 	XA and b) Vc = [Xc {Xc — (InXL,± XA) } ] * VA < VMAX 

Where, VMAX  is voltage that causes the gap to flash. 

Current inversion may occur for the faults closer to the relay and for systems having 
small source impedances. The possibility of current inversion reduces under the conduction 

of MOV (Vc > VPR) due to the reduction of capacitive reactance to Xcmov, which is less than 
Xc. The current inversion and voltage inversion depend upon location of series capacitor 

installation on the line. However, voltage and current inversion are rare phenomena. 

1.2.5 MOV AND OVERLOAD PROTECTION OPERATION: 

Once a fault has occurred, the bypass breaker will be closed following operation of 

the overload protection system. This will introduce a transient in the system as the breaker 

arcs and the impedance seen by the relay is altered. The effect will be to increase the 
impedance to the fault and lower the fault current, thus altering the phasor estimation. A 

quick response of the MOV will reduce the capacitance and limit the impact of the sub-
frequency component. The trip of the overload protection circuit will remove the capacitor 

from the fault loop [3]. 

1.2.6 OTHER CONCERNS: 

Asymmetrical gap flashing, high frequency components and other phenomena also 

influence the phasor estimates and consequently, the relay performance. Impact of high 

frequency components is usually reduced by filters in the relay. Asymmetric gap-flashing 
mainly depends upon the operation and design of the MOV overload protection and has an 

effect similar to an unbalanced fault. In addition, three phase bypassing is very common, 

thus reducing asymmetric gap flashing effect [3]. 

In this regard, a comprehensive analysis of the impact of the TCSC on the protection 

of transmission lines during system disturbances is published recently in [4]. The results 
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indicate that, TCSC dynamics have a significant impact on the power system protection. The 

transition of TCSC from a mode to ,another creates serious problems for the conventional 

relays like forward overreach, reverse overreach, mis-coordination in primary and back up 

protection, directional malfunction and adverse effects on 'distance protection schemes. 

1.3 LITERATURE REVIEW 

The protection scheme of series compensated transmission line comprise three stages, 

namely, (a) fault, Classification, (b) selection of faulted section (Whether the fault is in front 
or behind the series capacitor) & (c) distance calculation. Various techniques for the fault 

classification, fault zone detection and distance 'calculation are reported in literature. 

Classification of faults means identification of the type of fault, and this information 

is required for fault location and accessing the extent of repair work to be carried out. 
Whereas, faulted Zone detection means the position of the fault with respect to series 

capacitor, i.e. before or after the series capacitor. Fault classification and zone detection are 
very challenging tasks for series compensated transmission lines. Different attempts have 
been made for fault classification using neural network, adaptive Kalman filtering, and fuzzy 

logic based approaches. 
Thomas and Christopulos [5] proposed an algorithm based on traveling waves for the 

protection of series compensated lines. However, only a-g fault was considered in this paper. 

Neural network based schemes for fixed series capacitor compensated line and for TCSC 

compensated transmission line have been suggested in references [6, 7] and [8] respectively. 
Although the neural-network-based approaches have been quite successful in determining the 

correct fault type, the main disadvantage of ANN is that it requires a considerable amount of 
training effort for good performance, specially under a wide variation of operating conditions 

(such as system loading level, fault resistance, fault inception instance, etc.). Moreover, 

another disadvantage of Neural Network based algorithms is that the training may not 
converge in some cases, as the starting point is chosen at random and can end up in a local 

minimum. Furthermore, as neural networks rely on the experience gained from the training 
input-output examples, before practical implementation, their performances should be 

validated over an extensive set of test cases. The performance of the neural network based 

schemes suggested in [6, 7, 8] has been examined over limited test cases. Kalman filtering 

based technique [9] and Wavelet Transformation based technique [10, 11] have also been 
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suggested in the literature. Again, in all these schemes also, some limited test cases have 

been used for validating the performances of the developed techniques. Moreover, in [10], 
the sampling frequency is quite high (200 kHz), which may prove to be little inconvenient 
for practical implementation. An algorithm based on high frequency signals have been 
proposed in [12] in which specialized measurement unit consisting of stack tuner and line 

trap is used to capture the high frequency components of the fault signal. In this paper also, 
very few test cases have been used to evaluate the performance of the proposed scheme. 
Fuzzy logic based fault classification algorithms were proposed in [13, 14, 15]. The 

algorithms proposed in [13] and [14] were developed by fusion of fuzzy logic system with 
wavelet and Higher order statistics (HOS) respectively. However, none of these schemes was 

tested for wide variations in system parameters including fault inception angle, source 
impedances etc. Furthermore, performance of the said techniques was not tested for high 
resistance faults. Moreover, in [13], the sampling frequency is quite high (10 kHz), which 
may 'prove to be little inconvenient for practical implementation. Recently, Support Vector 
Machine (SVM) based algorithm is also developed by P.K. Dash and others [16] for fault 

classification and section identification purpose. However, the efficiency of this method has 
been demonstrated only over 200 test cases. A First Zone algorithm was proposed [17] by 

' Saha M. et. al. The algorithm firstly estimates instantaneous values of the voltage drop across 
the series capacitor online, and then compensates for this signal when calculating the 
impedance for the faults behind series capacitors. The other impedance (without 

compensation) is calculated for faults in front of the series capacitors. After calculating the 
impedances, three special regions on the Z-plane are applied to the two impedances. A 

unique logic block is designed to recognize whether the fault is located in the 75-85 % of the 
line length i.e. first zone. However, the effectiveness of the developed technique was tested 

over a limited number of 2160 test cases. Also, the compensation level used was fixed at 

70% in this case. In [18], an elegant voltage compensation based method has been developed 
for protection of series compensated transmission lines. In this method, the fault impedance 

is calculated as the ratio of the voltage phasor and current phasor. For fault occurring behind 

the series capacitor (as observed form relaying point), the voltage across the series capacitor 

is estimated, which is subsequently subtracted from the voltage measured by the relay to get 

the phasor of the voltage drop in the line. On the other hand, for the faults occurring before 

11 
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the capacitor (as observed form relaying point), the voltage measured by the relay represents 

the voltage drop in the line and hence this voltage is used to calculate the voltage phasor. 

Although, this method is conceptually quite simple, it requires the knowledge of fault zone 

(whether before or after the capacitor). 

In this thesis, a comprehensive digital distance protection scheme for series 

compensated transmission line using Support Vector Machine has been developed. The SVM 
algorithms are implemented in the MATLAB environment using Lib-SVM tool box [19, 20, 

21]. The developed scheme completely integrates three aspects of digital distance protection 
system, i.e fault classification, fault zone identification and fault distance calculation. Upon 

testing on more than 25,000 fault cases with varying fault resistance, fault inception angle, 
pre-fault power transfer level, percentage compensation level and source impedances, the 

performance of the developed method has been found to be quite promising. 

The simulation model of the system along with case studies is explained in the next 

section. In the subsequent chapters, the different algorithms and corresponding results are 

presented in detail. 

1.4 CASE STUDIES AND SIMULATION DATA GENERATION 

1.4.1 SYSTEM MODEL 
The system studied in this work is illustrated in Fig. 1.6. The transmission line has been 

represented using the Bergeron line model in PSCAD/EMTDC [22]. The power system consists 

of two sources, a series capacitor (SC) along with its associated components, which is located at 
the midpoint of the line and associated components. To test the effectiveness of the proposed 

digital distance protection scheme, a large number of fault simulation studies have been carried 

out using the PSCAD/EMTDC [22] software. 
The parameters of the study system are as follows, 

SC 
	

Line # 2 

   

Line # 1 

  

   

    

A 
I JI. MOV 

—I I- 
I Ld CB 	 

AG 
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Figure 1.6: Model representation of a series compensated transmission line 

1.4.2 SYSTEM PARAMETERS: 

Source Data at both Sending and Receiving Ends: 

Positive sequence impedance = 1.31+j15.0 0. 
Zero sequence impedance = 2.33+j26.6 

Voltage = 400 kV 
Frequency =50 Hz 

Transmission Line Data: 

Transmission-Line Data: 
Length = 300 km 
Voltage = 400 kV 
Frequency = 50 Hz 
Positive-sequence impedance = 8.25+j94.5 52 
Zero-sequence impedance = 82.5+j308 
Positive-sequence capacitance = 13 nF/km 
Zero-sequence capacitance = 8.5 nF/km 

1.4.3 SIMULATION CASES GENERATED: 

To test the robustness of the developed protection algorithm, the fault simulation studies 
have been carried out under wide variation of load angle, fault inception angle, fault resistance 
and fault locations. The different values of load angle, fault inception angle, fault resistance and 
fault positions (before and after the Series Capacitor), which have been chosen for this study, are 

as follows: 

(i) Load angle: 10°, 20°, 30°  
(ii) Fault inception angle:0°,45°, 80°, 115°  
(iii) Fault resistance:00, 50, 1052, 50 Q. 
(iv) Fault Locations:20% & 40% (Before the Series Capacitor), 60% & 80% 

(after the Series Capacitor) 
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Thus, 10x3x4x4x4 =1920 combinations of above mentioned parameters have been 

selected for a single compensation level with a fixed value of source impedance ZGI and ZG2 at 

two ends of the transmission line. Moreover, a total of 15 different cases have been generated by 

varying the above (ZGI & ZG2) two parameters. Hence, 1920x15=28800 test cases have been 

simulated. Table 1.1 shows different values of parameters used in the generation of the 15 cases. 

It is to be noted that for each and every fault simulation study, the fault duration has been 

assumed to be five cycles (0.1 s). The MOV conduction level has been chosen as 2.5 times the 

rated current and the maximum rated current has been obtained from the simulation study 

corresponding to 8 = 30°. 

TABLE 1.1: RANGE OF PARAMETER VALUES FOR TEST DATA GENERATION 

Case ZG1 ZG2 Xc 
No. (%) (%) (%) 
1-3 100 100 25,50,75 
4-6 100 75 25,50,75 
7-9 100 125 25,50,75 

10-12 75 100 25,50,75 
13-15 125 100 25,50,75 
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CHAPTER 2 
FAULT CLASSIFICATION 

In this thesis, the fault classification task has been carried out using three different 
techniques listed below: 

1. A New Decision Tree Based Fault Classification Scheme. 
2. Support Vector Machine (SVM) based Fault Classification Scheme. 
3. Fuzzy logic based fault classification Scheme. 

In next sections, the three techniques have been discussed in detail. At the end, the 
performances of all these techniques have been compared. 

2.1 A NEW DECISION TREE BASED FAULT CLASSIFICATION 

SCHEME: 

In the proposed scheme, the fault classification is carried out in two steps as follows: 
1. Fundamental phasor computation. 
2.. Fault classification. 

2.1.1 FUNDAMENTAL PHASOR COMPUTATION: 

Due to the presence of the SC and MOV/series capacitor combination at the midpoint 

of the line, significant differences exist between fault signals captured from line # 1 and that 
captured from line # 2 of Fig. 1.6, as the fault in line section 1 does not involve the loop 

current I during conduction stage of MOV, The fault signals. captured under transient 
conditions contain different frequency components. The dominant frequency components 

are a) non fundamental decaying frequency components caused by the resonance between the 

system inductance & series capacitor, b) odd harmonics due to MOV conduction during 
faults, c) high frequency components caused by resonance between line capacitance & line 

inductance, d) fundamental frequency components of the steady state fault current [9]. 
Therefore, the fault signals are more complex to analyze in series compensated line 

compared to the uncompensated one. Hence, conventional filtering techniques fail to process 
the signals accurately in case of series compensated lines. 

The technique used for phasor computation here is comprised of modified version of 
conventional full cycle DFT technique [23]. The technique reduces the effect of decaying 
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DC in the phasor computation more efficiently. In this technique, the post fault samples of a 

cycle time (N) plus two samples of the next cycle Le-N+2 is used for fundamental phasor 

computation. This algorithm is more accurate compared to conventional algorithms already 

in practice such as HCDFT, FCDFT or LES etc. [23]. 

2.1.2 FAULT CLASSIFICATION 

The proposed technique in this thesis is single ended and uses impedance of three 

phases along with the zero sequence component of the fault current for fault classification 

purpose. In the proposed fault classification technique, it is assumed that the directional 

sensing unit and fault detection unit takes care of directional discrimination and fault 

detection problems. The technique is comprised of a logical function based algorithm, which 

uses three phase voltages and currents measured by conventional CT and PTs available at the 

relaying end. A sampling frequency of 4 kHz for a 50 Hz system is used. In this scheme, 

N+2 post fault samples of each measurement are taken for computing the fundamental 

components of three phase post fault voltages and currents. Using these phasors, magnitude 

of post fault impedance of each phase and zero sequence post fault current are calculated. At 

the end, identification of faulty phase and ground involvement in the fault is carried out. 

2.1.3 FAULT CLASSIFICATION ALGORITHM 

The overall flowchart of the fault classification algorithm is shown in Fig. 2.1. 

(  start  

Samples of Measured 
Quantities (3V+3I) 

Fault Direction & 
Detection Unit 

; Yes (Fault) 
Fundamental Phasor 

Computation. 

Figure 2.1: Algorithm Flowchart 
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Yes 	Yes 	 • No No v  • 

Fault Classification. 
'1' 	 '0' '0' 

Sound 
Phase 

Ground not 
Involved 

Ground 
Involved 

1 

Figure 2.1: Algorithm Flowchart (Contd...) 

As shown in Fig. 2.1, samples of measured quantities are taken from CT & PTs. 

Once the fault detection and direction estimation unit finds a fault in the forward direction, 

fundamental phasor computation is done using modified DFT algorithm for all the sampled 
values [231. The modified DFT algorithm is given in brief in APPENDIX I. For fault 
classification, involvement of a phase in the fault is identified by comparing the magnitude of 

impedance of that phase with mean value of impedance, where, Zniean= (Za+Zb+Zc)/3. If the 
magnitude of impedance of that phase is less than Zrnec,„ that phase is identified as a faulty 
phase. Fig. 2.2 shows a comparison of post fault impedance v/s mean value of impedance for 

a single line-to-ground fault involving phase-a. Usually it is not possible to identify 
involvement of ground only from fundamental components of voltages and currents. 

Therefore, the ground detection task is carried out using zero sequence current (Jo). When the 
value of zero sequenCe current exceeds the threshold (a) value of 0.05, it indicates the 

involvement of fault with ground. Fig. 2.3 shows the simulation result. It is observed that for 
a fault involving ground i.e. a-g and a-b-g the value of Io is greater than threshold, whereas 

for a fault not involving ground it is less than the threshold value. The fault classification 

block consists of four inputs representing a, b, c phases and ground `g'. These inputs are 
assigned values '1' or '0' corresponding to the case, whether the fault is involved with that 

phase/ground or not. 
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Figure 2.3: I() for different type of faults 

2.1.4. SIMULATION RESULTS 
Table 2.1 depicts the performance of the proposed fault classification technique for 

different types of faults. Here, all the simulated cases discussed in section 1.4.3 are tested for 
the accuracy of the proposed algorithm. It is observed from Table 2.1 that the proposed 

technique gives satisfactory results for double line and triple line faults (with and without 
ground). However, the performance of the proposed scheme is inferior for a single line-to-

ground fault because the margin between mean value of impedance and individual phase 
impedance reduces for different extreme conditions such as high source impedance, low 

loading condition and low percentage compensation level. Furthermore, uneven MOV 
conduction in different phases can be one of the reasons for achieving lower value of 

percentage accuracy in the above-mentioned case. 
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TABLE 2.1: PERFORMANCE OF PROPOSED SCHEME FOR DIFFERENT TYPES OF FAULTS 

Fault 
Type 

No of Test 
Cases 

Fault Classification 
Errors 

True Fault 
Classification 

Accuracy 

L-g 8640 1601 7039 81.469% 
L-L-g 8640 194 8446 97.754% 

L-L-L/L-L-L-g 2880 246 2634 91.458 % 
L-L 8640 723 7917 91.631 % 
Total 28800 2764 26036 90.402% 

The performance of the proposed technique with varying compensation level between 

25% to 75% is analyzed. The results are shown in Table 2.2. It is observed from Table 2.2 
that the proposed algorithm is quite accurate for a compensation level of 50%. Moreover, the 
proposed technique provides reasonable accuracies in case of 25% and 75% compensation 

levels. 
TABLE 2.2: PERFORMANCE OF PROPOSED SCHEME FOR DIFFERENT COMPENSATION LEVELS 

Case 
No 

Xc 
% 

No of 
Test Cases 

Fault Location 
Errors 

True Fault 
Location 

Accuracy 

1 50 9600 728 8872 92.417% 
2 25 9600 978 8622 89.812 % _ 
3 75 9600 1058 8542 88.979% 

Total 25200 2764 26036 90.402 % 

2.2 SVM BASED FAULT CLASSIFICATION SCHEME: 

2.2.1 INTRODUCTION TO SVM FOR PATTERN CLASSIFICATION 
In recent years, Support Vector Machines (SVM) have emerged as a very powerful 

tool to solve the classification and regression problems. For classification problems, the 

SVMs try to find out a hyper-plane to separate the data points according to their classes such 

that the separation between the classes is maximum. In that case, the hyper-plane is said to be 
the 'optimal hyper-plane [24]. 

Fattens classification with support vector machines 

Consider a two class training set {xi, yi}2'i  consisting of N data points in which xi is i- 

th real valued n-dimensional input vector and yi (either +1 or -1) is the corresponding class of 

xi. The hyper-plane, which successfully separates the points according to their classes, can be 

given by equation: wTx, + b = 0 . 
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The two' class data points and the separating hyper plane is shown in Fig. 2.4. In this 
equation, w and b denote a weight vector and a bias term respectively and the goal of SVM is 

to find out the value of w and b such that the separation between the classes is maximum. It 
can be shown that the separation margin (m) is given by [24]: 

2
1I 

Therefore, for maximizing 'In' (and thereby increasing the generalization capability 
of SVM), liwil need to be reduced. Hence, for linearly separable data, the SVM can be 

constructed by maximizing v (w) where, 

V(W) = IW
T

Vir 
2 

(2.1) 

Subject to, 3,, (w Tx, +b) 	 (2.2) 

In real life scenario, however, all practical classification problems need not be 
linearly separable. To cater to this scenario, a non-linear version of SVM has been developed 

in the literature by transforming the training data into a higher dimension space using non-

linear transform is given by, 

0:13(x) = {01(x)....013.(x)IT  Where, m > x. 	(2.3) 

Figure 2.4: Optimal Separating Hyper plane using SVM 

With this non-linear transformation, the original non-separable data may become 

separable in' the expanded space. Hence, in this higher dimensional space, the maximum 

margin classifier (SVM) can be found by minimizing, 
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v(w)=I 
2 
 wTw 	 (2.4) 

Subject to, yi{w1.0(xi)+b)} 1 	 (2.5) 

There is still no guarantee that even in the expanded space, the training data set would 

be linearly separable. Depending upon the choice of the function (13(x), it may turn out that 

the transformed training data set is not completely linearly separable. In such cases, it would 

be impossible to satisfy all the constraints given by Eqn. 2.5. Hence, instead of the cost 

function v(w), another cost function v(w, t) is used, where, 

1   V(W, 6) = 
2 
-WT  W CE s, 	 (2.6) 

Subject  to, y, {wTorI3(x, ) 	B1 ; 8, >0 	 (2.7) 

In Eqn. 2.7, 81; i=1,2...N are N non-negative slack variables, which are used to allow 

for training errors. The quantity C is called• regularization parameter, and is always greater 
than zero. If the parameter C is small the separating hyper plane tends to maximize the 

margin (m), while the larger C will cause hyper plane to minimize the number of 
misclassified points. The vectors satisfying the constraints above with the equality sign are 
termed as support vectors and the only vectors needed to determine the decision surface or 
the separating hyper plane. In practice, the non-linear transformation is accomplished 

indirectly by using so called kernel functions, which is defined by, 

K(x, , x j) = (13(x, )2.  (10(x, ) 	 (2.8) 

The most commonly used kernel function§ are: 

1) Linear: K(xi, xi) = xiT  xi. 
2) Polynomial: K(xi, xj) = (7x1Txj+ r)d, 7 >0. 

3) Radial basis function (RBF): 	xi) = exp(-g 11 	2), g >0. 

4) Sigmoid: K(xb  xj = tanh(7xiTxj+ r); 

Here, y, r and d are kernel parameters. 

Currently in the literature, there is no method available for deciding the value of C, 

for choosing the best kernel function and for setting the kernel function parameters. As a 

result, the most appropriate kernel function and the values of kernel function parameters as 

well as of the parameter C are decided by trial & error procedure. 

N 
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2.2.2 FAULT CLASSIFICATION ALGORITHM 
In the fault classification scheme proposed in this work, four SVMs have been used. 

Out of these four SVMs, one SVM is used for each phase to determine whether that phase 
involved in fault or not. The fourth SVM (henceforth termed as Ground SVM) is used to 

determine the involvement of ground in fault. Each of the phase SVMs receives samples of 

one cycle duration of the current of that particular phase, where as, the ground SVM receives 
the samples of one cycle duration of the zero sequence current (Jo). At the output of each 
SVM, the value '1' or '0' denotes the presence or absence of the fault respectively. Table 2.3 
shows the fault classification format in the proposed work, while, Fig. 2.5 shows the overall 

flowchart of the fault classification scheme. 
TABLE 2.3: FAULT CLASSIFICATION FORMAT 

Sr 
No 

Phase 
a 

Phase 
b 

Phase 
c 

Ground 
g 

Type of 
• Fault 

1 1 	• 0 0 1 a-g 
2 0 1 0 1 b-g 
3 0 0 1 1 c-g 
4 1 1 0 1 a-b-g 
5 1 0 1 1 a-c-g 
6 0 1 1 1 b-c-g 
7 1 1 1 1 a-b-c-g 
8 1 1 0 0 a-b 
9 1 0 1 0 a-c 
10 0 1 1 0 .  b-c 

Start 

Samples of la, Ib  & 

Samples of la v 	Samples of I4 	Samples of 
I4 

	
Samples of I4 

Fault Type 

Figure 2.5: Algorithm Flowchart 
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2.2.3 TRAINING AND TESTING DATASET GENERATION 

To enable all these SVMs to perform accurate fault identification, they first need to be 

trained. For this purpose, out of 28,800 fault cases described above, 3600 fault cases have 
been chosen as the training set. The details of parameters considered in the training set are 
given in Table 2.4. It has been observed from Table-2.4 that the training data set has been 
constructed by considering only the 50% compensation level of the SC. None of the 25% or 

75% compensation levels has been considered in the training set. 

TABLE2.4: CASES CONSIDERED FOR TRAINING DATASET GENERATION 

Case 
No 

No of,  
Fault 
cases 

Parameters 
ZG1 . 
% 

ZG2 
% 

Xc 

% 
Rf FIA 8 

1 720 100 100 50 
0, 5 
& 

500 

0°,.45°  
& 

115°  

10°  
& 

300. 

2 720 100 75 50 
3 720 100 125 50 
4 720 75 100 50 
5 720 125 100 50 

Total Training data cases = 720x5 =3600 

After the SVM is trained, its performance has been tested with the remaining 25,200 fault 
cases. For each of this fault cases, samples of the three phase line currents along with the 

zero sequence current (Jo) have been provided at input of the respective. SVM. The resultant 
output of individual SVM denotes whether that phase/ground is involved in fault or not. 

Subsequently, the accuracy of the fault classification algorithm has been computed as; 

number of correct faults classified by SVM 
11= 	 x100 

25, 200 

2.2.4 SIMULATION RESULTS 

Upon testing over 25,200 test cases, an overall fault classification accuracy of 98.703% 

has been obtained by the proposed algorithm. Table 2.5 gives the performance of the 

proposed fault classification technique for different types of faults. It is observed from Table 

2.5 that the proposed technique gives highly accurate results for all types of faults (with and 

without ground). 
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TABLE 2.5: FAULT CLASSIFICATION ACCURACY FOR DIFFERENT FAULT TYPES 

Fault 
Type 

No of Test 
Cases 

. 	Fault 
location 
Errors 

True Fault 
LOcation 

Accuracy 

L-g 7560 193 7367 97.447 % 
L-L-g 7560 105 7455 98.611 % 

L-L-L/L-L-L-g 2520 0 	. 2520 100.00 % 
L-L 7560 29 7531 99.616% 
Total 25200 327 24873 98.703 % 

The performance of the proposed technique with varying compensation level between 
25% to 75% is analyzed. The results are shown in Table 2.6. From this table, it is observed 

that at 50% compensation level, the accuracy of the proposed technique is highest. This is 
due to the fact that at this compensation level, the SVM has been trained. At 25% 

compensation level also, the performance of the developed method is almost same to that 

obtained with 50% compensation level. At 75% compensation level, however, the accuracy 

degrades a little, but it is still quite high and appreciable. 

TABLE 2.6: FAULT CLASSIFICATION ACCURACY FOR DIFFERENT COMPENSATION LEVELS 

Case 
No 

Xc 
% 

No of 
Test 	Cases 

Fault 
Classification 

Errors 

True Fault 
Classification 

Accuracy 

1 50 6000 13 5987 99.983% 
2 25 9600 29 9571 99.697% 
3 75 9600 285 9315 97.031 % 

Total 25200 327 24873 98.703% 

2.2.5 PARAMETER SELECTION OF SVM 

Once the training samples are obtained, the next step is to determine the optimal 
parametric settings of SVM. In this process, the following variables: type of kernel function, 

its associated parameter, and regularization parameter C must be decided. For optimal Kernel 

- Parameter selection, the SVMs of three phases and ground are trained using different types 

of Kernels like RBF or Polynomial by varying the associated Kernel parameters. Thereafter, 

the individual trained SVMs are tested for the accuracy with the test data set. At the end, 

SVM models with the highest Fault Classification accuracy will be adopted. Various 
parameters for the SVM like regularization parameter C, degree of polynomial (p), gamma 
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(g) of RBF etc. are varied as: C from 1 to 108  and Gamma (g) of RBF from 10-8  to 108  in the 
steps of 101  to choose the best parameters for SVM. The degree of polynomial (p) is varied 

form 1 to 9 in steps of 1. However, it was observed that, RBF type kernel gives the highest 

fault classification accuracy. Table 2.7 shows the optimal parameters giving highest fault 

identification accuracies for individual phase and ground SVMs using RBF kernel. 

TABLE 2.7: FAULT LOCATION ACCURACY FOR DIFFERENT COMPENSATION LEVELS 

SVM Regularization 
Parameter 

`C' 

Gamma 
Parameter 

 Cg9 

No of 
Test 

Cases 

Fault 
Classification 

Errors 

True 
Fault 

Classification 

Highest 
Accuracy 
achieved 

Ia, 100 0.0045 25200 53 25147 99.7897% 
Ib 22 0.0026 25200 70 25130 99.7222% 
Ic  86682 0.00001977 25200 232 24968 99.0794% 
To 1.35 0.006 25200 0 25200 100% 

Table 2.8 shows the break up of the results obtained for source impedance variations 

at two ends of the transmission line along with the variation in compensation level. From this 

table, it is observed that the developed technique is quite effective for parameter variations 

except for one case, where fault classification efficiency goes below 90%. 

TABLE 2.8: PERFORMANCE OF PROPOSED ALGORITHM WITH DIFFERENT PARAMETERS 

Case 
No 

Xc 
% 

ZG1 
% 

ZG2 
% 

No 
of Test 
Cases 

Fault 
Classificati 
on Errors 

True 
Fault 

Classificati 
on 

Accuracy 

1 

50 

100 100 1200 12 1188 99.000 % 
2 75 100 1200 0 1200 100.00 % 
3 125 100 1200 1 1199 99.917 % 
4 100 75 1200 0 1200 100.00 % 
5 100 125 1200 0 1200 100.00 % _ 
6 

25 

100 100 1920 3 1917 99.843 % 
7 75 100 1920 2 1918 99.895 % 
8 125 100 1920 19 1901 99.010% 
9 100 75 1920 3 1917 99.843 % 
10 100 125 1920 2 1918. 	, 99.895 % 
11 

75 

100 100 1920 206 1714 89.271% 
12 75 100 1920 28 1892 98.541% 
13 125 100 1920 10 1910 99.479 % 
14 100 75 1920 29 1891 98.489% 
15 100 125 1920 12 1908 99.375% 

Total 25200 327 24873 98.703% 

25 
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a=1L120° Ibif=a2Ialf, Ic2f=a2Ia2f 

Ib2 f=aia2f, Ic 1 f=aia f 

IalfAa2f 

120° 

2.3 FUZZY LOGIC BASED FAULT CLASSIFICATION SCHEME: 
In [15], a fuzzy logic based fault classification scheme for uncompensated 

transmission lines has been proposed. In this thesis, feasibility of the algorithm has also been 
tested for fault classification in case of series compensated transmission lines. 

2.3.1 INTRODUCTION 

The algorithm is based on_the angular differences among the sequence components of 
the fundamental during fault current as well as their relative magnitudes. As an example, for 
a phase a-to-ground bolted fault in an unloaded system, the phasor diagram of sequence 
components of fault currents is shown in Fig. 2.6. 

Figure 2.6: Phasor diagram of a-g fault 
From Fig. 2.6, the angles between positive and negative sequence components of 

phase a, b and c are given by, 

Ang_A= Arg (Ialf) 	Ia2f) I = 0° 

Ang B= I Arg (IbiO - (I1)20 I = 120° 

Ang_C= I Arg 	- ( I.2f) I = 120° (2.9) 

Also, for this type of fault, the magnitudes 

Rof= IaOf 

of Iaof, Talf and 

—1 and Ia2f 

Ia2f are related by, 

—1. (2.10) 
Ialf Ialf 

Similar relationships as Eqn. (2.9) and Eqn. (2.10) can also be written for other types 
of faults. These relationships are given in Table 2.9. In this table, 

26 



K= Z2 and (Z2-F3Z0 
(Z2+Zo+3Zf) 

(2.11) 
(Z2+Zo+3Zf) 

     

In case of symmetrical fault, the zero-sequence and negative-sequence currents do not 

exist in the system. Hence, ang_A, ang . B and ang_C are not defined in this case. Moreover, 
Rof & R2f are also zero in this case. 

TABLE 2.9: FUNDAMENTAL RELATION FOR ASYMMETRICAL FAULT S 

Type of 
Fault 

Ang_A Ang B Ang_C Rof R2f 

a-g 0° 120° 120° 1.0 1.0 
b-g 120° 0° 120° 1.0 1.0 
c-g 120° 120° 0° 1.0 1.0 _ 
a-b 60° 60° 180° 0.0 1.0 _ 
b-c 180° 60° 60° 0.0 1.0 
a-c 60° 180° 60° 0.0 1.0 

a-b-g 60° 60° 180° K K1 
b-c-g 180° 60° 60° K K1 
a-c-g 60° 180° 60° K K1 

symmetrical - - - 0.0 0.0 

It should be noted that, the relationships given in Table 2.9 are valid only for solid 
faults in an unloaded system. Depending upon the system parameter variations, the aforesaid 

five quantities of Table 2.9 will deviate from their corresponding ideal values. 
To find out the ranges of variations of these five variables with the variation of the 

operating conditions, a large number of fault studies have been carried out under different 

combinations of fault location, Rf, 6 and FIA. Also source impedances at both ends of the 

line as well as the compensation level have been varied. For this purpose, all the 28,800 
simulated fault cases discussed in section 1.4.3 have been used. From these data, maximum, 

minimum and mean values of each of these five quantities given in Table 2.9 have been 

calculated. These quantities for all ten types of faults are given in Table 2.10. 

Further, it should be noted that the technique is based on fundamental component of 

fault currents and hence, the fundamental phasors of three line currents are required to be 
evaluated. For this purpose, the same modified DFT technique as discussed in section 2.1 has 

been used for fundamental phasor computation. 
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TABLE 2.10: RANGES OF PARAMETERS FOR SIMULTED FAULT CASES 

Fau t Type Ang A Ang B AngS Rof R2f 
Ag Minimum 2.4985 117.4306 23.5962 0.1079 0.1533 

Mean 38.233 156.715 81.7688 0.5754 0.599 _ 
Maximum 96.4038 179.9891 122.5694 1.319 1.1593 

Bg Minimum 23.098 2.4918 117.5082 0.1086 0.1526 
Mean 80.7572 39.2445 157.4371 0.5676 0.5927 

Maximum 122.4918 96.902 179.9066 1.321 1.1651 
Cg Minimum 118.7816 23.2649 0.1653 0.1087 0.1529 

Mean 156.1913 82.165 37.8258 0.5708 0.5972 
Maximum 179.9891 121.2184 96.7351 1.2985 1.1676 

ABg - Minimum 2.0205 48.4237 117.9795 0.0547 0.1559 _ 
Mean 43.4315 76.5699 163.3767 0.2238 0.5629 

Maximum 71.5763 122.0205 179.9811 0.4454 0.8281 
ACg Minimum 45.9114 121.9517 1.9517 0.0535 0.1537 _ 

Mean 75.2135 164.6646 44.7865 0.22 0.5648 
Maximum 118.0483, - 179.9867 74.0886 0.444 0.8279 

BCg Minimum 120.5995 0.5995 42.4714 0.0563 0.1613 
Mean 164.5535 44.7265 75.2735 0.2319 0.5557 

Maximum 179.9914 77.5286 119A005 0.4342 0.8441 
ABCg Minimum 0.0232 0.1575 y  0.0059 0.000484 0.0055 

Mean 78.8629 101.6196 84.699 0.0679 0.0711 
Maximum 179.6932 179.991 179.4922 0.1312 0.1463 

AB Minimum 0.2443 54.0072 112.835 0.0000000 0.2419 
Mean 38.2656 81.7493 158.244 0.0004723 0.7576 

Maximum 65.9928 127.165 179.7624 0.0095 1.0892 
AC Minimum 53.1734 112.6172 0.9624 0.0000000 0.2339 

Mean 80.6151 159.3732 39.4004 0.0005195 0.756 
Maximum 127.3828 179.865 66.8266 0.0076 1.0869 

BC Minimum 113.4585 0.5916 50.8164 0.0000000 0.2331 
Mean 158.6704 38.7046 81.3138 0.000497 0.7543 

Maximum 179.6513 69.1836 126.5415 0.009 1.0873 

2.3.2 FUZZY FAULT CLASSIFICATION SCHEME: 

From Table 2.10, approximate mean values for each of the five variables for different 

types of faults have been determined and are shown in Table 2.11. In this table, the different 

inputs (i.e. approximately 30°, approximately 90° etc.) can be represented by appropriate, 

corresponding fuzzy variable. With these fuzzy variables, the fuzzy rule base can be 

developed for identifying fault type. For all these five quantities, triangular membership 

functions are used, which are denoted in the form of a triplet (A, B, C) as shown in Fig. 2.7. 
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TABLE 2.11: APPROXIMATE MEAN VALUES OF THE DIFFERENT QUANTITIES 

Type of 
Fault 

Ang_A Ang_B Ang_C Rof R2f 

a-g 30° 150° 90° 1.0 1.0 
b-g 90° ' 30° 150° 1.0 1.0 
c-g 150° 90° 30° 1.0 1.0 _ 
a-b 30° 90° 150° 0.05 1.0 
b-c 150° 30° 90° 0.05 1.0 
a-c 90° 150° 30° 0.05 1.0 

a-b-g 300 90°'  150° 0.5 0.5 _ 
b-c-g 150° 30° 90° 0.5 0.5 
a-c-g 90° 150° 30° 0.5 0.5 

symmetrical - - - 0.05 0.05 

A 
Figure 2.7: Triangular Fuzzy Membership Function 

The values of the triplets of different fuzzy variables (approximately 30°, 

approximately 90°, low Rd ', high R2f etc.) as adopted in this thesis are given in Table 2.12. 

From Table 2.11, the fuzzy rule base can be easily formed. For example, for a a-b-g 
fault rule will be, If ang A is "approximately NI" and ang B is "approximately 90 " and 
ang C is approximately 150 " and Raj' is "high" and R41-  is "high," then fault is "a-b-g." 
Similar rules can easily be formed for other types of faults from Table 2.11. 

TABLE 2.12: FUZZY VARIABLES IN THE ANTECEDENT PARTS 

Fuzzy Variable Triplets 
A B C 

Approximately 30° 0° 30° 60° 
Approximately 90° 60° 90° 120° 
Approximately 150° 120° 150° 180° 

Low-Rof 0.0 0.0 0.01 
High-Rof 0.05 0.6875 1.325 
Low-R2f 0.0 0.0 0.15 
High-R2f 0.15 0.66 1.17 
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2.3.3 SIMULATION RESULTS 

Table 2.13 shows the results obtained for different types of faults with compensating 

series capacitor placed at middle of the transmission line. It can be observed that the overall 

percentage error is 3.299%. Moreover, the accuracy for single line-to-ground faults is slightly 

inferior compared to other types of faults. 

TABLE 2.13: PERFORMANCE OF FUZZY LOGIC SCHEME FOR FAULT CLASSIFICATION 

Fault 
Type 

No of Test 
Cases 

Fault Classification 
Errors 

True Fault 
Classification 

Accuracy 

L-g 8640 746 7894 91.365%% 
_ 	' 	L-L-g 8640 168 8472 98.055% 

L-L-L/L-L-L-g 2880 0 2880 100.00 % 
L-L 8640 36 8604 99.533 % 

Total 28800 950 27850 ' 96.701% 

Table 2.14 shows the breakup of the fault classification results for different 

compensation levels. It can be observed that the technique is highly accurate for 50% and 

25% compensation levels. Moreover, the proposed technique also provides appreciable 

results in case of 75% compensation level. 

TABLE 2.14: PERFORMANCE OF FUZZY LOGIC SCHEME FOR DIFFERENT COMPENSATION LEVELS 

Case 
No 

Xc 
% 

No of 
Test Cases 

Fault Location 
Errors 

True Fault 
Location 

Accuracy 

1 50 9600 120 9480 98.750% 
2 25 9600 222 93.78 - 97.687 
3 75 9600 608 8992 93.667% 

Total 25200 950 27850 96.701 % 
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2.4 COMPARISION OF DIFFERENT FAULT CLASSIFICATION 
SCHEMES 
Table 2.15 and 2.16 gives the comparison of different fault classification techniques 

discussed in previous sections for different types of faults and different compensation levels 

respectively. 

TABLE 2.15: COMPARISON OF FAULT CLASSIFICATION SCHEMES FOR 

DIFFERENT TYPES OF FAULTS 

Type of 
Fault 

Name of the Fault classification scheme 
Decision Tree Based 

Classification Scheme 
Support Vector Based 
Classification Scheme. 

Fuzzy logic based 
classification Scheme. 

L-g 81.469% 97.447 % 91.365%% 
L-L-g 97.754% 98.611 % 98.055% _ 

L-L-L/L-L-L-g 91.458 % 100.00 % 100.00 % 
L-L 91.631 % 99.616% 99.533 % 

Overall 
Accuracy 90.402% 98.703 % 96.701% 

TABLE 2.16: COMPARISON OF FAULT CLASSIFICATION SCHEMES FOR 

DIFFERENT COMPENSATION LEVELS 

Compensation 
Level 

Name of the Fault classification scheme 
Decision Tree Based 

Classification Scheme 
Support Vector Based 
Classification Scheme. 

Fuzzy logic based 
classification Scheme. 

50% 92.417% 99.983% 98.750% 
25% 89.812 % 99.697% 97.687 % 
75% 88.979% 97.031 % 93.667% _ 

Overall 
Accuracy 90.402 % 98.703 % 96.701 % 

From Tables 2.15 and 2.16, it can be concluded that the support vector machine based 

fault classification scheme gives the highest fault classification accuracy for both different 

types of faults and compensation levels. Moreover, the fuzzy logic based scheme also gives 

good overall fault classification accuracy. However, with both decision tree and fuzzy logic 

based schemes, the accuracy for a compensation level of 75% and for single-line-to ground 

fault degrades to some extent. No such degradation of classification accuracy is observed for 

SVM based proposed technique. Hence, SVM based classification technique can be 

considered the best among these three methods. 
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CHAPTER 3 
FAULT ZONE IDENTIFICATON 

In this thesis fault zone identification task have been carried out using combined 
Wavelet-SVM technique. Fault zone identification means determination of the fault location 
with respect to the series capacitor i.e. whether the fault is before or after the series capacitor. 
The said scheme is discussed in detail in this chapter: 

3.1 INTRODUCTION TO WAVELET TRANSFORMS 

The wavelet transform (WT) is a relatively new processing tool which performs time 
localization of different frequency components of a given signal. Therefore, by using WT, 
both time and frequency resolution of a given signal is accomplished. WT performs this task 
by using some unique analyzing functions, called mother wavelets. The unique property of 
the mother wavelets is that for high frequency components, the time intervals would be 
short whereas for low frequency components, the time intervals would be longer. Thus, WT 

is a quite useful technique for characterizing the transient signals occurring in a power 
system, and a result, in recent times, many applications of WT for analyzing the power 

system transient signals have been reported in the literature. There are different types of 

mother wavelets available in the literature, such as Harr, Daubichies (db), Couflet (coif), 
syrnmlet (sym) etc. The choice of the mother wavelet plays a major role in the 
characterization of the signal under study. The mother wavelet, whose characteristics 
matches closely with the signal under consideration, would be the best choice. For studying 

power system fault signals, it has been reported in the literature that db wavelet is the most 
suitable one [10]. Therefore, in this work also, db wavelet has been used for the first stage 
analysis of the fault current signals. 

Mathematically, the wavelet transform of a given signal with respect to a mother 

wavelet is defined in the continuous domain. However, for engineering application, a 

discretised version of the wavelet transform, called discrete wavelet transform (DWT) is used. 
Generally, DWT is implemented through multi-resolution analysis (MRA). A schematic 
diagram of the MRA is shown in Fig. 3.1 [25]. 
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Figure 3.1: Schematic diagram of MRA 

In the first stage, the original signal is decomposed into two halves of frequency 

components by using high pass filter (HPF) and low pass filter (LPF). In the second stage, the 

output of the LPF is sent again to another set of HPF and LPF to further decompose the signal 

into two halves of frequency components. This process is repeated till the desired level of 

decomposition of the original signal is achieved. If the sampling frequency of the original 

signal is fs, then following sampling theorem, the highest frequency component that the signal 

could contain is fs/2. Hence, in the first level, the band of frequencies between fs/2 and fs/4 
would be captured. In the second level, the band of frequencies between fs/4 and fs/8 would be 

captured and so on. A sampling frequency of 4 KHz has been chosen in this paper and the 

frequency bands obtained at various levels of decomposition of WT are shown in Table 3.1. 

TABLE- 3.1: FREQUENCY BANDS OF DETAIL COEFFICIENTS AT 

VARIOUS DECOMPOSITION LEVELS 

Decomposition Level Frequency Band obtained 
(Hz) 

D1 1000 — 2000 
D2 500 — 1000 
D3 250 — 500 
D4 125 — 500 
D5 62.5 — 125 
D6 31.25 — 62.5 
D7 15.625 — 31.25 
D8 7.8125 — 15.625 
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3.2 BASIC SCHEME: 

The developed methodology relies on the fact that, generally, in a series compensated 
line, the signal contents (features) in the fault currents are different for faults occurring 

before and after the capacitor. Therefore, the main idea in this work is to capture the features 
of the fault currents (as measured at the relay location) and utilize these features in a pattern 

classifier to determine the fault zone (before or after the capacitor, as seen by the relay). 
Thus, the proposed technique consists of two stages. In the first stage, a suitable Discrete 

Wavelet transform (DWT) technique is employed to extract the attributes from the sampled 
version of the three line currents. For this purpose, samples for the duration of only one 
fundamental cycle have been used. In the second stage, these features are passed to a support 

vector machine (SVM) to decide the fault zone. The flow chart of the developed technique is 

shown in Fig. 3.2. In this flowchart, for the fault cases with fault occurring before the 
capacitor, SVM gives the output of '4', whereas for the cases involving Series Capacitor 
(SC) in the fault loop, the output of the SVM will be `+1'. 

Samples of Ia, Ib and la  

DWT of la, Ib and la  

SVM 

Fault Zone 
( Figure 3.2: Basic Scheme 

The high frequency signals above 1 kHz contained in the fault current have been 

considered as features of the line current in this work. These high frequency signals 
(attributes) have been extracted by first level decomposition of the fault current by DWT 
using db2 as mother wavelet. The detailed coefficients obtained by DWT are used as feature 

vectors or input pattern of SVM. Fig. 3.3 shows the pattern of feature vectors for training and 
a testing vector. 
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Figure 3.3: Training and Testing Patterns 

After first level decomposition of the fault current of each phase, 41 co-efficients are 
obtained. Therefore, by decomposition of three-phase line currents, a total of 123 co-

efficients are obtained. Thus, the input-output dimension of each training and testing data set 

is (123x1). The Gaussian RBF kernel has been used for training and testing of the SVM and 
the values of the parameters gamma (g) and regularization parameter (C) have been chosen 
as 0.03 and 1.08 x106  respectively. 

3.3 TRAINING AND TESTING DATASET GENERATION 

The training-testing dataset used for this algorithm is the same as that used for the 

algorithm of fault classification using SVM discussed in section 2.2.3. 

3.4 RESULTS AND DISCUSSION 

Upon testing over 25,200 test cases, an overall fault zone identification accuracy of 
93.167% has been obtained by the proposed algorithm. The details of the accuracies obtained 
for different types of faults are shown in Table 3.2. 

TABLE 3.2: FAULT ZONE IDENTIFICATION ACCURACY FOR DIFFERENT FAULT TYPES 

Fault 
Type 

No of Test 
Cases 

Fault location 
Errors 

True Fault 
Location 

Accuracy 

L-g 7560 285 7275 96.230 % 
L-L-g 7560 223 7337 97.050 % 

L-L-L/L-L-L-g 2520 143 2377 94.325 % 
L-L 7560 882 6678 88.333 % 

Total 25200 1533 23667 93.917 % 
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From Table 3.2 it is observed that the accuracy of the developed technique is quite 
satisfactory for all the different types of faults involving ground. For L-L fault, however, the 

performance of the proposed algorithm is little inferior. However, as the probability of 
occurrence of a L-L fault is generally quite less compared to the probability of occurrence of 

faults involving ground, this limitation may probably be considered as a minor one. 
The break-up of the accuracies of the proposed technique for different compensation 

levels is shown in Table 3.3. From this table, it is observed that at 50% compensation level, 
the accuracy of the proposed technique is highest. This is due to the fact that at this 

compensation level, the SVM has been trained. At 75% compensation level also, the 
performance of the developed method is quite comparable to that obtained with 50% 

compensation level. At 25% compensation level, however, the accuracy degrades a little. 

TABLE-3.3: FAULT LOCATION ACCURACY FOR DIFFERENT COMPENSATION LEVELS 

Case 
No 

Xc 
% 

No of 
Test 	Cases 

Fault Location 
Errors 

True Fault 
Location 

Accuracy 

1 50 6000 238 5762 96.033 % 
2 25 9600 878 8722 90.854 % 
3 75 9600 417 9183 95.656 % 

Total 25200 1533 23667 93.917 % 

From Table 3.2 & 3.3 it can be surmised that the accuracy of the proposed technique 

can probably be further enhanced by including some L-L fault cases for 25% compensation 
level into the training data set. In this work, however, this possibility has not been pursued 

further. 

3.5 PARAMETERS OF THE SVM 

In the results shown above, as mentioned earlier, the RBF kernel has been used for 

the SVM. Studies have also been made to investigate the performance of the SVM for 

polynomial Kernel and sigmoid kernels. During this investigation, the degree of polynomial 

(7) has been varied from 1 to 9 in step of 1. It had been found that, with polynomial kernel, 

the maximum classification accuracy attained was 89.45%. Whereas, using the sigmoid 

kernel the maximum accuracy obtained was only 74.3452%. Hence, RBF kernel had been 

found to be the most suitable one for this application. 

For choosing the optimum values of the parameters C & g of the RBF kernel, a large 
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number of studies had been carried out by varying the values of these two parameters. The 
range of variation of these two parameters, which had been considered, is as follows: i) C; 

from 1 to 108  and ii) g; from 10-3  to 103. The classification accuracies obtained for different 
combinations of C and g are shown in Table 3.4. 

TABLE 3.4: COMPARISON OF LOCATION ACCURACY OBTAINED WITH 
DIFFERENT g AND C VALUES FOR RBF-KERNEL. 

Sr 
No 

Type of Kernel: RBF 
C g Fault Location Accuracy (%) 

1 
0.45x106  

0.01 88.1251 
2 0.03 88.3489 
3 0.05 88.8672 
4 

1 x106  
0.01 92.8790 

5 0.03 92.9678 
6 0.05 92.4501 
7 

1.05x106  
0.01 93.3409 

8 0.03 93.7103 
9 0.05 93.5600 

10 
1.08x106  

0.01 93.4571 
11 0.03 93.9167 
12 - 0.05 93.7230 
13 ' 

1.15 x 106  
0.01 93.3317 

14 0.03 93.8492 
15 0.05 93.0126 
16 

1.25x106  
0.01 93.2045 

17 0.03 93.6468 
18 0.05 93.3376 
19 

5.75x106  
0.01 90.0754 

20 0.03 	, 92.1865 
21 0.05 90.3850 

From this table, it can be observed that,. the maximum classification accuracy is 

obtained for C=1.08x106  and g=0.03. Therefore, as already mentioned earlier, these values 
had been finally chosen in the work. 

3.6 CHOICE OF MOTHER WAVELET: 

Studies have also been carried out regarding suitability of different types of db 
mother wavelets and the classification accuracies obtained with different db mother wavelets 
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are shown in Table 3.5. From this table, it is observed that among different mother wavelets, 
db2 gives the best accuracy and therefore it has been used for feature extraction in this work. 

TABLE 3.5: COMPARISON OF LOCATION ACCURACY OBTAINED WITH 

DIFFERENT TYPES OF MOTHER WAVELETS 

Sr. 
No 

Type of 
Mother Wavelet 

Classification 
Accuracy. obtained (%) 

1 dbl 86.78 
2 db2 93.917 
3 db4 88.76 

3.7 FURTHER TEST RESULTS: 

Thus for, a two step procedure for fault zone identification in which 80 samples of the 
three phase line currents are used, has been described. Efforts have also been made for 

enhancing the speed of the speed of the fault zone identification scheme further. Basically, 
there are two ways by which the speed of the zone identification scheme can be increased; a) 
by using fewer number of current samples and b) by omitting the first stage of computation 

(WT). Studies have been made regarding both these possibilities and the results are described 

briefly below. 
In the first study, instead of using 80 samples, 40 samples of the three phase line currents 

had been used by the WT to extract the features and subsequently, these features have been 

used in a SVM for deciding the fault zone. The classification accuracy obtained by this 
approach has been found to be only 80.4167%. As this accuracy is quite low as compared to 
the accuracy reported earlier (93.917%), use of 40 samples (instead of 80 samples) for 

feature extraction can not be recommended. 
In the second case, the first level computation by WT had been totally bypassed. Instead, 

the three phase line current samples (total 80x3 = 240 samples) were directly used in a SVM 

for fault zone identification. The accuracy obtained in this investigation was only 81.5%. As 

this accuracy is also quite low (as compared to the accuracy described earlier), use of a single 

stage procedure for fault zone identification is also not very feasible. 
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CHAPTER 4 
FAULT DISTANCE CALCULATION 

In this thesis, Fault distance calculation task has been carried out using Combined 

Wavelet-Support Vector Regression (SVR) technique. Further, the technique proposed in 

[18] based on voltage compensation has also been used for fault zone identification and 

distance calculation. The results obtained by both the techniques are compared at the end. 

Both the algorithms to be discussed here, initially identify whether the fault is 

occurred within the first zone or not. In a conventional distance protection scheme, the first 

zone usually covers 80% of the total line length to avoid over reach and mal operation for 

close in faults occurring in the next line section. The algorithm for first zone and distance 

calculation is discussed in detail in next section, and is followed by the performance 

evaluation. 

4.1 ALGORITHM BASED ON COMBINED WAVELET-SVR 
TECHNIQUE: 

The Support Vector Regression (SVR) can be used to find a function which 

approximates mapping from an input domain to the real numbers based on training data 

maintaining all the main features that characterize the maximal margin algorithm. This 

unique feature of SVM regression has been exploited for the fault distance calculation. The 

fact that, the output values are no longer binary means that the mismatch between the 

hypothesis output and its training value will no longer be discrete like the SVM multi-class 

classification problem [26]. 

4.1.1 INTRODUCTION TO SUPPORT VECTOR REGRESSION (SVR) 

The Support Vector method can also be applied to the case of regression, maintaining 

all the main features that characterize the maximal margin algorithm: a non-linear function is 

learned by a linear learning machine in a kernel-induced feature space while the capacity of 

the system is controlled by a parameter that does 'not depend on the dimensionality of the 

space. As in the classification case the learning algorithm minimizes a convex function and 

its solution is sparse. 
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The problem of regression is that of finding a function which approximates mapping 
from an input domain to the real numbers based on a training sample. The fact that the output 
values are no longer binary means that the mismatch between the hypothesis output and its 

training value will no longer be discrete. This difference between the two values is termed as 

the residual of the output, which is an indication of the accuracy of the fit at this point. It is 

necessary to measure the importance of this accuracy, as small residuals may be inevitable 
while we wish to avoid large ones. The loss function determines this measure. Each choice of 

loss function will result in a different overall strategy for performing regression. For example 

least squares regression uses the sum of the squares of the residuals. 
In more general terms, "Regression" means, to predict labels with continuous values 

(or unknown values). Classification can be thought as predictions with only binary outcomes, 
whereas, regression as predictions that output real (floating point) numbers. 

Linear Regression 
Similar toSVM two class classification problem, consider a two class training set 

{Xi, 	 1  consisting of N data points in which xi is i-th real valued n-dimensional input vector. 

Only difference in the problem of regression is that, here yi can be any value between 

normalized bounds say for an example, between 0 and 1 for each input xi. The hyper-plane, 
which successfully separates the points according to their classes, can be given by equation: 

w'xi+b=0. Here also, all the main features that characterize the maximal margin algorithm are 

well maintained. 

Non Linear Regression 
As discussed, in real life the problem to be solved may not be linear one like our 

problem. So, here also the non linear regression techniques are available with different types of 

Kernel functions like RBF, Polynomial, Sigmoid etc. which were available for SVM 
classification discussed already. There are two algorithms available for non linear type SVR 

problem. 

1. s-Support Vector Regression 

2. 4-Support Vector Regression 
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i) e-Support Vector Regression 

Given a set of data points, ((xi, z1 ),..., 	z1), such that xi  € Rn  is an input and zi 

is a target output, the standard form of 6-support vector regression (e-SVR) is, 

min - 1   T 
w,b4g* 2 

subject to 	wTO(xi)+b-z,+ 

0,i =1,2...,/ 

ii) Et-Support Vector Regression 

For pt-SVR, a parameter `p,' is used to control the number of support vectors. However, 

unlike Support Vector Classification, where pi replaces with C, here ti replaces with the 

parameter s of s-SVR. Furthermore, the parameter used in s-SVR is not always known to a 

specific level of accuracy a priori. The p-SVR automatically computes s. 

The size of s is traded off against model complexity and slack variables 4;  via a 
constant IA > 0. The primal form of ti-SVR is 

1 	 1 min -wT w+C(p-g+-E(,4- 0)) 
w.bgP 2 	 1  

subject to 	wr0(x,)+ b -zi e + 

4.1.2 SVR TECHNIQUE FOR FAULT DISTANCE CALCULATION 

The features used in fault location algorithm using combined Wavelet-SVM 
technique (Section 3.2) are used in this case also. The set of extracted features (123) of each 
fault case is used as input pattern to the SVM for the fault distance calculation. The training 
and testing data sets chosen for the problem are also the same as that of the case of SVM 
fault location technique discussed in section 3.2. The target values for training-testing data 
sets are the actual distances where the faults are created using simulation. These values are 
normalized between 0 and 1. The normalized values for various fault distances are listed in 
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Table 4.1. Here also, the training and testing data sets used are the same as that of the section 

2.2.3. 

TABLE 4.1: NORMALIZED TARGET VALUES FOR VARIOUS FAULT DISTANCES 

Sr. 
No 

Actual Fault Distance Normalized 
target value 

1 60 KM 0.2 
2 120 KM 0.4 
3 180 KM 0.6 
4 240 KM 0.8 
5 300 KM 1.0 

After the SVM is trained, its performance has been tested with the remaining 25,200 

fault cases. For each of this fault cases, attributes of the three phase line currents have been 

provided at the input of SVM and the resultant normalized output of the SVM has been 

compared with the corresponding normalized target values. The performance evaluation of 

the developed algorithm is done on the bases of two errors: 

1. First Zone Detection Error 

2. Fault Distance Calculation Error 

4.13 FIRST ZONE DETECTION ERROR 

The algorithm for first zone identifies whether the fault occurred is within first zone 

of the line section which covers 80% of the total line length. For the simulation model used 

here, the total line length is 300 KM. Hence, the first zone covers 240 KM of the line length 

as shown in Fig. 4.1. 

First Zone (80 % Line Length) 
SC 

60 KM 60 KM 60 KM 60 KM 

F1 	F2 B 

AG AG 
• al 

Figure 4.1: First Zone of the Simulated Series Compensated Transmission Line 
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The algorithm determines the position of the fault and if the fault position is within 

240 KM of the line length, the trip signal is sent from the relay to isolate the line from end A. 

As discussed in section 1.4, the faults are created at 20%, 40%, 60% and 80% of the line 

length. So, for all simulated fault cases, the trip signal should be generated. Hence, the cases 

which do not generate trip signal are treated as the erroneous cases. 

4.1.4 FAULT DISTANCE CALCULATION ERROR 

For distance calculation algorithm the distance of the fault point is predicted from the 

line end A. The predicted distance is compared with the actual fault distance, which is 

obtained using PSCAD/EMTDC [22] software package. The error in the distance calculation 

is defined by: 

% Error — Actual Location - Estimated Location  
Total Line Length 

(4.1) 

   

The errors for all of the 25200 test cases have been evaluated and the overall error for 

all of the test cases has been found out. The overall error is defined by, 

25200 E (Error))2 

Overall Error = l"' 	 
25200 

(4.2) 

4.1.5 SELECTION OF APPROPRIATE SVR TECHNIQUE WITH ASSOCIATED 

PARAMETER VALUES 

There are two types of Support Vector Regression techniques available as discussed 
earlier 

1. A-Support Vector Regression 

2. c-Support Vector Regression 

Both of the SVR techniques are tested for the first zone detection and fault distance 

calculation. All the 25200 test cases have been considered for the performance evaluation. 

The results obtained shows that the performance of the algorithm is better when c-SVR 

technique is employed. The parameters e and p of the c-SVR technique have been varied to 

attain higher accuracy. The optimum values of e and p have been found to be equal to 0.001 
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and 0.05 respectively. The accuracy for fault zone (first zone) detection and fault distance 

calculation are calculated as defined in the previous section. The RBF kernel function has 

been used in this case as the accuracy achieved by this type of kernel is the highest. 

4.1.6 RESULTS: 

Table 4.2 gives the results of the proposed fault classification technique for different 

types of faults. It is observed from Table 4.2 that the proposed technique gives satisfactory 

results for double line and triple line faults (with and without ground). However, the 

performance of the proposed scheme is inferior for the single line-to-ground type of faults. 

TABLE 4.2: FAULT ZONE IDENTIFICATION ACCURACY FOR DIFFERENT FAULT TYPES 

Fault 
Type 

No of Test 
Cases 

Fault location 
Errors 

True Fault 
Location 

Accuracy 

L-g 7560 555 7005 92.658 % 
L-L-g 7560 257 7303 96.600 % 

L-L-L/L-L-L-g 2520 26 2494 98.968 % 
L-L 7560 294 7266 96.111 % 

Total 25200 1132. 24068 95.507 % 

The performance of the proposed technique with varying compensation level between 

25% to 75% is analyzed. The results are shown in Table 4.3. It is observed from Table 4.3 

that the performance of the proposed algorithm is slightly inferior for the compensation level 

of 50%. Moreover, the overall accuracy of the proposed algorithm is quite good hence can 

be used for first zone detection. 

Also when checked for directional sensitivity, out of 1132 erroneous cases, only 43 cases 

(3.798%) detects the fault in reverse direction. Hence, the algorithm has high directional 

sensitivity. Furthermore, the overall error in fault distance calculation as defined by Eqn. 4.2 

is only 10.77%, considering wide system parameter variations and variations in 

compensation level of series capacitor for a large test dataset of 25,200 cases. 

TABLE 4.3: FAULT ZONE IDENTIFICATION ACCURACY FOR DIFFERENT COMPENSATION LEVELS 

Case 
No 

Xc 
% 

No of 
Test 	Cases 

Fault Location 
Errors 

True Fault 
Location 

Accuracy 

1 50 6000 368 5632 93.866 % 
2 25 9600 331 9269 96.552 % 
3 75 9600 433 9167 95.489% 

Total 25200 1132 24068 95.507 % 
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4.2 ALGORITHM BASED ON VOLTAGE COMPENSATION 

TECHNIQUE: 
In the algorithm proposed in [18] based on voltage compensation technique, the 

voltage across the series capacitor and over voltage protective device is calculated in the 
relay and is subtracted from the voltage available from CVT placed at the relay end. Thus, 

the impedance measurement becomes immune to the MOV operation. The algorithm is 
discussed in detail in this section. 

Consider a system having two sources G1 and G2 with series compensation (SC) 
placed at middle of the transmission line. When a short circuit occurs on the line, the voltage 

across the capacitor rises causing the nonlinear resistor of MOV to conduct, hence diverting 
the fault current from the SC. This causes a change in the impedance seen by the relay 
placed at the source end GI. Using current signal and the SC/MOV combination 
characteristics, it may be possible to calculate the online voltage across the combination 

inside the relay. By subtracting the voltage drop across the capacitor/MOV combination 
from the relay signal, the new line side voltage of the SC is obtained inside the relay. If this 
modified voltage is used in the algorithm, the change in impedance as a result of over voltage 
protection operation does not appear on the calculated impedance. For calculating the 

voltage drop, the linearised equivalent model of the SC is used, which is discussed in next 
section. 

4.2.1 LINEARISED EQUIVALENT MODEL OF A SERIES CAPACITOR: 

The linearised model used here is Goldsworthy's model already discussed in section 
1.2.1. The model replaces the SC-MOV combination by equivalent resistance-capacitance 
combination. The steady state characteristic of MOV is given by... 

(4.3) 

Where a = 40 for all compensation levels and 13 = 93.5, 232.5724 and 493.0535 for 

compensation levels of 25%, 50% and 75% respectively. The protection level voltage is 

100.5 kV, 250 kV and 530 kV for compensation levels of 25%, 50% and 75% respectively. 

Taking Ipu = 1. Where, Ipu is defined by 
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Iph 
Ipu = 

Ipr (4.4) 

Where, Ipt, is the peak of the phase current and Ipr  is the peak of the protection level 

current. The latter determines the protective level and is specified by a multiple of typically 

2 to 2.5 times rated bank current Ir. Equivalent resistance Rc' and equivalent capacitive 

reactance Xc' of the SC-MOV combination are given by Eqn. (4.5) and Eqn. (4.6) 

respectively as shown below [18]. 

Re' = Xco(0.0745 + 0.49. e°24311.  —35 • e-5  "Pa — 0.6 4/14̀ ) (4.5) 

(4.6) Xc' = Xco(0.101— 0.005749/pu + 2.088 • e-43'85664") 

The peak capacitor voltage is given by Eqn. (4.7) as shown below, 

Vpk = Nrf (Iprerco) (4.7) 

The only data required determining the equivalent impedance for a given 

current using Eqn. (4.5) and Eqn. (4.6) is Xco  and 	The equations apply only when the 

peak of the capacitor current exceeds the protective level current since below this level, the 

MOV is essentially out of circuit, i.e. very small conduction. To calculate the voltage across 

the capacitor the relay must use Eqn. (4.5) and Eqn (4.6) when MOV is conducting i.e. when 

Ip. > I. So, it is required to calculate the peak of the phase current. 

Essentially, the voltage across the capacitor can be defined in two periods: when 

MOV is conducting and when all fault current is passing through the capacitor. These 

periods depends upon the time when the current passes the value `Ipu'. By determining this 

time, the voltage across SC-MOV combination can be determined accurately. Therefore, it is 

required to determine whether the MOV is conducting or not. This can be carried out by 

calculating the peak of the phase current. 

4.2.2 CURRENT PEAK DETECTION: 

The method for current peak detection is presented here [18]. If the line current is 

assumed to be sinusoidal, it can be given by, 

i(ti) = Iph sin(am) 	 (4.8) 

Where, w = supply frequency and i(ti) = current at time ti. 
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Similarly, current at t2 is given by, 
i(t 2) = sin(ag2) 	 (4.9) 

Where, t2 = t2 + T and T = sampling period. 

	

i(ti + T) 	sin[w(ti +T)]  

i(ti +T) = sin(wi -I) cos(wT) + Ipbcos(wti)sin(wT) 

Note that, the coscoT and sinwT are constants since co and T are known. Also, KO 

and i(ti+T) are available. Using Eqn. (4.8) and (4.9), 
i(ti + T) = i(ti) cos(oT) + cos(wti)sin(for) 

+ T) — i(ti)cos(wT)  

	

'ph cos(coti) 	 — x 
sin(wT) 

Hence, 	 Iph = x2 i2 (4.10) 

So, if KO and i(ti+T) are known, the peak current Iph can be obtained using eqn. (4.10). 

4.2.3 CALCULATION OF VOLTAGE ACROSS SC-MOV COMBINATION: 

The relay calculates the phase current peak and hence, Ipu can be obtained inside the 
relay using Eqn (4.4). The voltage drop across MOV-SC combination for the aforesaid 
periods is calculated by the following two equations. 

(a) Iliku,51 or y1 	conducting: 
Here, the MOV is totally bypassed and voltage drop across MOV-SC combination is 

the voltage across the SC. 

Vc(t)=Vc(t-T)+ 1 :f i(t)dt (4.11) 

Where, i is the line current and T is the sampling interval. 
(b) > 1 or MOV is conducting: 
The SC-MOV combination is replaced by the equivalent impedance denoted by Eqn. 

4.5 and Eqn. 4.6. So, the voltage drop across the SC-MOV combination is given by 

Vc=Zc I=Rc I-jXc I 

Vc(t)=Re(Vcxejwt) 
(4.12) 

As previously explained, by calculating the voltage across the SC-MOV 
combination and modifying the relaying voltage signal the measured impedance becomes 
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immune to the MOV operation. The compensating technique is equally applicable for phase 
and ground elements of the distance relays. The flow chart of the whole protection scheme is 
shown in Fig. 4.2. 

(  start ) 
Input samples of V and I (Relay point 

voltage and current) 

Calculate Ipu by Eqn. (4.4) 

    

 

k 

     

      

   

No 

 

Calculate voltage 
Vc(t) by Eqn. (4.11) 

 

        

  

Yes 

     

 

Calculate voltage 
vc  (0 by Eqn. (4.12) 

     

        

        

Subtract value of Vc(t) 
From relay voltage V 

Calculate fundamental component 
of voltage and current using 

Modified DFT technique 

Calculate fundamental component of the 
line reactance seen by the relay for fault distance 

calculation and first zone detection 

( End ) 

Figure 4.2: Flow chart for voltage compensation technique algorithm 

4.2.4 SIMULATION RESULTS 

Here also, all the simulated cases (28,800) are tested for the performance of the said 
technique. Table 4.4 and 4.5 shows the results obtained by the technique for different types 
of fault and for different compensation levels respectively. 
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TABLE 4.4: FAULT ZONE IDENTIFICATION ACCURACY FOR DIFFERENT FAULT TYPES 

Fault 
Type 

No of Test 
Cases 

Fault location 
Errors 

True Fault 
Location 

Accuracy 

L-g 8640 2604 6036 69.861 % 
L-L-g 8640 1087 7553 87.418 % 

L-L-L/L-L-L-g 2880 263 2617 90.868 % 
L-L 8640 1746 6894 79.791 % 

Total 28800 5700 23100 80.208 % 

TABLE 4.5: FAULT ZONE IDENTIFICATION ACCURACY FOR DIFFERENT COMPENSATION LEVELS 

Case 
No 

Xc 
% 

No of 
Test 	Cases 

Fault Location 
Errors 

True Fault 
Location 

Accuracy 

1 50 9600 1671 7929 82.593 % 
2 25 9600 1513 8087 84.239 % 
3 75 9600 2516  7084  73.791% 

Total 28800 5700 23100 80.208 % 

From Table 4.4, it is observed that the technique proposed in [18] fail to locate the 
fault accurately for wide system variations. Furthermore, the performance of the technique is 
even inferior for L-g type of faults, which have the highest priority of occurrence in modem 
power systems. The accuracy of first zone identification for 75% compensation level is also 
very poor as shown in Table 4.5. Furthermore, when checked for directional sensitivity, 1957 
cases detect the fault in reverse direction among a total of 5700 erroneous zone detection 
cases (34.333%). 

4.3 COMPARISON OF COMBINED WAVELET-SVR AND 

VOLTAGE COMPENSATION TECHNIQUES 

From the simulation results presented in sections 4.1.6 and 4.2.4, it is seen that, the 
Combined Wavelet-SVM technique developed in this thesis for fault distance calculation is 
more accurate and superior than the voltage compensation technique presented in [18], even 
for a wide variation in system parameters. Also, the Combined Wavelet-SVM based 
algorithm is more accurate for directional sensitivity as compared to the voltage 
compensation technique based algorithm. 

49 



CHAPTER 5 
CONCLUSION 

The protection of series compensated transmission line differs from the 
uncompensated ones due to various problems encountered therein like, nonlinearity of 
MOVs, transient issues, voltage-current inversion and some other concerns. Moreover, the 
fault signals to be analyzed in this case are more complex, as they have a large percentage of 

DC decaying component and sub-synchronous frequency components, which are not present 
in large extent in the case of uncompensated lines. In this thesis, various problems associated 

with the protection of series compensated line have been discussed. A relaying technique, 
which takes into account of these problems, has been presented. The proposed method uses 

the samples of three line currents for one cycle duration to accomplish for this task. The 
technique is comprised of three stages: fault classification, fault location and fault zone 
identification-distance calculation. These mentioned three tasks have been carried out using 
SVM or fusion of Discrete Wavelet Transform with SVM. 

The feasibility of the proposed algorithm has been tested on a 300 km, 400 kV series 
compensated transmission line for all the ten types of faults through detailed digital 

simulation using PSCAD/EMTDC [22]. Upon testing on more than 25,000 fault cases with 
varying fault resistance, fault inception angle, pre-fault power transfer level, percentage 
compensation level arid source impedances, the performance of the developed method has 
been found to be quite accurate. Also, the results obtained by the developed distance 

protection scheme have been compared with other approaches reported in the literature. The 
results indicate that the proposed scheme is more reliable and exact for all the aforesaid 

parameter variations. 
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