
ANN BASED NETWORK 
INTRUSION DETECTION SYSTEM 

A DISSERTATION 
Svendttod In portlol hufflrn.nt of tho 

ngnirsminta for tho sward of tM dprre 
of 

MASTER OF TECHNOLOGY 
In 

ELECTRICAL ENGINEERING 
(Nigh Spscialiation In System Engineering and Operations Research) 

By 

MAJOR SEBY THOMAS 

DEPARTMENT OF ELECTRICAL ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE-247 667 (INDIA) 

JUNE, 2005 



ANN Based Network Intrusion Detection System 

t 	~d INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 
t  r 

ROORKEE 

CANDIDATE'S DECLARATION 

I hereby declare that the work, which is being presented in this dissertation 
entitled "ANN BASED NETWORK INTRUSION DETECTION SYSTEM" in the 

partial fulfillment of the requirements for the award of Master of Technology in the 

System Engineering & Operation Research, submitted in the Department of 

Electrical Engineering of the institute is an authentic record of my own work carried out 

under the guidance of Prof J.D. Sharma and Prof M. K Vasantha, Department of 
Electrical Engineering, IIT Roorkee, Roorkee. 

I have not submitted the matter embodied in this dissertation for the award of any 
other degree. 

Dated: 1j. 1u 200'( 
	

'or Seby Thomas 

This is to certify that the above statement made by the candidate is correct to the 
best of my knowledge and belief. 

~G~r l►'h 6Ia~~ 

Prof. . K. Vasantha 
PS  oup 
 S.E.O.R group 



ANN Based Network Intrusion Detection System 

ACKNOWLEDGEMENT 

At the outset I express my gratitude to Corps of Signals, Indian Army for having 

offered me this excellent opportunity of furthering my academic ambitions. I am also 

grateful to Military College of Telecommunications Engineering, Mhow for suggesting 

me to work in this area and laying out an ambitious scope, ensuring that the subject-  be 

dealt in its depth. 

I am grateful to Prof. J. D. Sharma for being the beacon that ensured that no effort 

was aimless. With deep gratitude, I recall all the efforts that he took to achieve the project 

goals. I recollect, that in the very first visit to his office, he had handed over four papers 

on the subject using ANN tools and not to leave things open, asked me to discuss them a 

day after. The continuous monitoring, his vision in setting the goals and deadlines 

ensured that the work steered through smoothly. I am greatly influenced by his personal 

quality in deriving more out of every possible moment that life offers. 

As I pen this acknowledgement, I recollect with nostalgia the day a year back, 

while in Prof. M. K. Vasantha office, I was expressing my fears over attempting this 

work. As I left his office then, I was ballooning with self-pride, immense confidence and 

charged with energy that made my fears look dwarf. Interactions and those short 

inspirational talks over the year have recharged my energy levels at the hours of my need. 

With him I have learned that pure motivation, optimism and personal warmth can drive a 

person to stretch his limits. Working under the guidance of them has been a great learning 

for now and life. 

I also acknowledge Prof. Hari Om Gupta (H.O.D Electrical Department) efforts in 

helping me visualize the optimization techniques during his course study on Operational 

Research. The insight that Dr. N. P. Padhy provided in ANN techniques have made it 

possible for me to try beyond. I also acknowledge Prof. Vinod Kumar efforts in taking 

time to explain concepts beyond the dimensions of course study and Dr. Indra Gupta for 

her course on Data Structures that made me opt for C language to implement the work. I 

would cherish the memories of interactions with Dr. Rajendra Prasad and Dr. E. 

II 



ANN Based Network Intrusion Detection System 

,.art extended by Prof A. K. Pant (Group Leader 
t - 	 (0. C M Tech) in the course of this work. The 

bv.th 	 d-nd its lab Technicians (Mr. Kalyan Singh and C. M. 
c : 	 &er a praises. 

•tw` 	=awed a new life poles apart from the military way; my 
s 	i 	 tolars Mr. Vishal Kumar, Mr. Rahul Dubey, Mr 

S 	 tave made those moments sweet and nostalgic. The 
1rprovoking discussions with Mr. Vishal Kumar are 

r 	 { ill my colleagues of S.E.O.R group (Mr. Naveen 
idu and H S Rathod) for being excellent peers and 

E ~ ~ 	 ,ork. 
'_letion for the course requirements is immense, but 

e ; F. '4 -ehind these wonderful two years of life in the 

:historically reputed Institute. The pride of being a 
Si ** t : ?tys be evident in me. 

k. i 	'Thomas and my daughters, Simran and Nikita fir 
T t̀l 	4 	 eal with optimism and smile. I am grateful to our 

tant support and well wishes. 

Kumar, without whose intervention this 
:knowledgment would have just been the black ink on a white paper. I am grateful that I 
ok his advice to spare few moments for all those who mattered. 

(Seby Thomas) 
Major 

M. Tech. (S.E.O. 

III 



ANN Based Network Intrusion Detection System 

ABSTRACT 

The rapid proliferations of Internet and our dependence on networks in all 

domains of life have made us more vulnerable to breaches of internet/network security. 

It is difficult to prevent such attacks by security policies; firewalls or other mechanisms 

alone as operating system and application software are known to contain weaknesses or 

bugs. The attackers continually exploit these loopholes in network protocols and software 

component. Intrusion detection systems are designed to detect such attacks that enviably 

occur despite security precautions. 

An attack on a network is considered an abnormal activity. It is this underlying 

assumption that is critical in detecting an attack in an anomaly based detection technique,. 

where as misuse detection identifies a pending attack based on its prior knowledge of 

attack signatures. In this dissertation work, an amalgamation of both misuse and anomaly 

based detection technique, employing their individual strength in detecting attacks, is 

proposed using Hybrid Neural Network-in which the output of Kohonen's Self Organized 

Map provides input to feed forward neural network. The data from MIT Lincoln 

Laboratory created DARPA 1999 Intrusion Detection Evaluation data set (approximately 

of size 10 GB) was applied for training and testing of probtype. 

The system prototype designed, is a network based intrusion detection system that 

scrutinizes tcpdump data on a source-by-source basis in a time window to develop 

windowed traffic behavioral trends. It is assumed that the evidences of an attack lie 

within the packets and can be identified either by individual analysis of packet in some 
cases or by ascertaining the attackers intention by analyzing sequel of packets in a time 

window frame. The core detection engine of our system is based on anomaly based 

detection technique, which detects attack by sensing deviations from its learned normal 

trait. The abnormality is self-learned by the system by way of Kohonen based Self-

organizing mapping techniques. The clustering mechanism maps the windowed traffic 

trend of individual machines to clusters indicative of behavior pattern based on features 

extracted from network activity. The features extracted are decisive in forming abnormal 

clusters in its outliers. Data mining skills are applied to compute statistical trend and 
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features that are flagged by the presence of attack signatures. The features presented to 

the clustering mechanism, reflect the behavioral trend of source machine in 

communication with victim in terms of both statistical features as well as flags indicative 

of attack signatures. The clusters so formed during training are learned as normal or 

abnormal by the neural network. The supervised training of the neural network, is carried 

but by means of the labeled tcpdump data using Levenberg-Marquardt algorithm for back 
propagation. 

The work involves design and development of a network based intrusion 

detection system. The program is wholly written in GNU C and based on Linux platform. 

The prototype developed can be executed both using graphic user interface and console 

terminal using command line arguments. The graphic interface for the project has been 

built using libglade. 
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Chapterl 

INTRODUCTION TO INTRUSION DETECTION SYSTEM 

1.1 DEFINITION 

An Intrusion Detection System (IDS) can be defined as a hardware/software 

system that monitors events in computer/network to identify unlawful attempts to 

penetrate it. An intrusion is an unauthorized access or usage of the resources of a 

computer system [1]. IDS are the software with the functions of detecting, identifying and 

responding to the unauthorized or abnormal activities on a target system [4]. The goal of 

the IDS is to provide a mechanism for the detection of security violations either in ieal-

time or batch-mode [2, 3]. Violations are initiated either by outsiders attempting to break 

into a system, or by insiders attempting to misuse their privileges [6]. IDS collect 

information from a variety of systems and network sources, and then analyze the 

information for signs of intrusion and misuse [5]. 

1.2 CLASSIFICATION OF IDS BASED ON SOURCE OF AUDIT DATA 

An attack can be detected by monitoring the behavior of the system either at the 

user level or at network level. The behavior of a user can be ascertained by monitoring 

the system logs that are generated by the various processes run by the user, while the 

nature of traffic in the network governs the behavior of the network. The data from the 

system logs or the network traffic forms the audit data. Based on the sources of audit 

data, an intrusion detection system can be classified as HBIDS and NBIDS. 

Host based intrusion detection system (HBIDS) normally use system call data 

from an audit process that tracks all system calls made on behalf of each user on a 

particular machine. 
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Network based intrusion detection system (NBIDS) typically use network 

traffic data from a network packet sniffer (eg tcpdmp). Many computer networks 

including the widely accepted Ethernet (IEEE 802.3) networks use a shared medium for 

communication. Therefore, the packet sniffer only needs to be on the same-shared subnet 

as the monitored network. 

1.3 ' IDS: ARCHITECTURE 

There are three architecture of intrusion detection system i.e., Distributed, 

Central and Hierarchical.[ 11] The hierarchical architecture consists of several tiers with 

each tier containing several intrusion detection agents (IDAs). IDAs are IDS components 

that monitor the activities of a host or a network. Different tiers correspond to different 

network scopes that are protected by agents affiliated to them. While in a centralized 

architecture a central console controls the other IDSs/IDAs. In a distributed architecture 

the intrusion detection system collects audit data from several sensors. To understand it 

better let us consider a sample network as shown in figure 1.1 [12]. 

Figure 1.1: A Sample Network 

2 
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For the sample network shown in figure 1.1, the hierarchical architecture IDS can 

be divided in three tiers as shown in figure 1.2. Tier 1 agents monitor system activities of 

the servers and bridges within a department and periodically generate reports for tier 2 

agents. Tier 2 agents detect the network status of the departmental LAN based on 

network traffic that they observe as well as reports from Tier 1 agents from the LAN. The 

tier 3 agents at the security department collect data from the tier 2 and tierl agents. In 

hierarchical based IDS the system hierarchy is followed. 

Tier 3 

Tier 2 

Tier 1 

Figure 1.2: System Hierarchy of Hierarchical architecture IDS 

In Central architectural IDS, the ID monitors as shown in the sample network in 

figure 1.1, act as intrusion detection agents for the respective departments, while any 

alerts or alarms are centrally logged. The start/stop functionality of the departmental IDS 

can be centrally controlled; also the departmental IDA's can be forewarned of new 

attacks (updating of signatures), if known. 

In the case of Distributed architectural IDS the ID monitors act as network 

sniffers i.e., collect network data of respective departmental LAN, which forms the audit 

data for the intrusion detection system at the security department in the above example. 

3 
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1.4 CLASSIFICATION BASED ON DETECTION TECHNIQUE 

Based on the detection technique employed, intrusion detection system falls into 

one of the two categories i.e. Anomaly detection and misuse detection[10]. 

Anomaly detection is a statistical approach that gathers a variety of parameters 

concerning network usage and weighs this against incoming network activity. If the 

statistical deviation is significant then the IDS notifies an attack. 

Misuse detection considers a pattern of attacks and then compares network 

activities against these patterns. If a given activity. resembles a known pattern of attack, 

the IDS notify that an attack may be imminent. 

Both these approaches suffer from the problems that the sheer volume of network 

traffic often renders it infeasible to conduct the necessary analysis. As well, it is often 

difficult to set benchmarks as to what constitutes a significant statistical deviation (in the 

case of anomaly detection) or a strong resemblance between patterns (in the case of 

misuse detection). This can result in incorrectly labeling valid network activity as an 

attack, or in failing to detect one. Both of these. seriously undermine the usefulness of the 

IDS. Therefore different methods of detection are needed to address the inadequacies of 

these approaches. They are discussed in later section of this report. But before we discuss 

the methods of detection it is important to understand the attack techniques and the basic 

components of an intrusion detection system. The attacks will be covered in adequate 

detail in chapter 3. 

1.5 COMPONENTS OF INTRUSION DETECTION SYSTEM 

The core module of an intrusion detection system is the detection engine which 

identifies normal and intrusive activities based on knowledge facilitated by detection 

model; for instance a signature based detection model will contains patterns of attacks as 

rules which are then matched by the detection engine with the current network activity to 

detect malicious activity. The network traffic is monitored by a sniffer module which 

forms the audit data for a network based intrusion detection system. The audit data is then 

fed to a preprocessor module, which computes the network activity. In a audit data 
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preprocessor a given packet is broken down into number of fields such as protocol, 

source IP, destination IP, ports used and -flag settings (in the case of TCP or UDP) or 

message type (in the case of ICMP) and length. This network activity is one of the input 

to the detection engine the other being attack patterns fed by the, detection model in case 

of signature based detection system, where as in case of statistical based detection engine 

the network activity is further assigned a anomaly score which is then compared to the 

probabilistic scores of normal network activity provided by the statistical based detection 

model. The detection engine raises an alarm if the pattern is matched (signature based 

detection model) or if the anomaly score of a packet is above the threshold (statistical 

based detection model). 

The alarm generated by the detection engine is fed to the decision engine, whbh 

based on its decision table (more applicable incase of statistical model since scores are 
probabilistic in nature) it takes action (like reconfiguring firewall) and reports the action 

to system administrator as illustrated in Figure 1.3 

Audit data 

Network activities 
are observable 

preprocessor 
data 

Network 
Activity 
data 

Detection 
Model 

Detection 
Engine 

Normal and 
intrusive 
activities have 
distinct evidence 

Alarms 

Decision 
Table 

 

L1+ 

Figure 1.3 Components of Intrusion detection system 
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1.6 METHODS OF INTRUSION DETECTION 

Intrusion detection system monitors computer network traffic and attempts to 

identify, alert and present all anomalous activities to. the user/system administrator. The 

key to an intrusion detection system is to maximize accurate alerts (true positive) while at 

the same time minimizing the occurrence of non-justified alerts (false positive). There are 

various methods of intrusion detection; the most popular of them are enumerated. All 

these methods fall under one of the two categories mentioned in earlier section, 

(a) Statistical based detection.. 

(b) Signature based (rule-based) detection 

(c) Neural network based detection. 

(d) Graphical based detection. 

(e) Artificial immune system based detection. 

1.6.1 Statistical based detection technique 

In any network an intrusion is considered not a normal activity and it is this very 

fact that is used to detect intrusion, by detecting any deviation from the normal network 

activity. There are various methodologies employed to identify the deviation. A simple 

Statistical based intrusion detection systems (SBIDS) relies on statistical models, to 

identify anomalous packets on the network. To identify an anomaly, the system uses data 

compiled from previous network behavior. Since warnings are based on actual usage 

patterns, statistical systems can adapt to behaviors and therefore create their own rule 

usage-patterns. Anomalous activity is measured by a number of variables sampled over 

time and stored in a profile. The reporting process will alert the user if the packet's 

anomaly score is greater than or equal to the threshold level set by the user. The SBIDS 

identifies and tracks patterns and usage of the network data and then assigns an anomaly 

score to each packet. Based on the data used to compile previous network activity a 

SBIDS can be host based or network based IDS. For example a host based IDS will 

compile data from users behavioral pattern or servers service pattern using the system log 

on 
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of the host machine, while a network based IDS .compiles data from, previous network- . 

behavior. 

Each packet coming into the anomaly detector is assigned a anomaly score A(x). 

This score is calculated from the negative log of the probability of the event, P(x). i.e. 

A(x) = -log(P(x)). The calculation of P(x) is based on observed network traffic, there are 

four methods of calculating P(x): P(destination IP, destination port), P(source IP, 

destination IP, destination port), P(source IP, source port, destination IP, destination port) 

and a Bayes network approximation of P(source IP, source port, destination IP, 

destination port). From observations, a packet to port 80 on a web server will be more 

probable than say, port 37337 to the same server. The higher P(x) is, the lower A(x) will 

be. If A(x) exceeds the provided - threshold, detection engine will generate an alert. 
Optimally, a report will be generated on all significant anomalous activity. What 

constitutes "significant" can vary from user to user. Therefore, it is ultimately up to the 

user to decide how many alerts are generated for a specific environment. 

Unlike a signature based system, which has the benefit of being implemented and 

immediately utilized, the statistical based system must initially adapt to the network at 

hand to learn what is defined as `normal' traffic. The longer a SBIDS is placed on a 

specific network, the more accurate . the results will be. If the normal network traffic is 

malicious, the SBIDS will be rendered useless. Also the alerts generated will be relatively 

difficult to assess compared to a signature-based' system. The alert will be packet 

information, which' will require the expertise of trained security professional to decipher 

the reason for alert. 

1.6.2 Signature based intrusion detection technique 

In the manner an antivirus program scans through the files looking for malicious 

virus code_ (referred to as signature of virus being detected), a signature based intrusion 

detection system scans through the data contents of packets flying in the network for 

malicious code/script known to form part of a computer attack All attacks will form a 

pattern, in terms of sequence of codes/scripts. Misuse detection is the ability to identify 

intrusion based on known patterns for the malicious 'activity. These known patterns are 
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referred to as signatures. These signatures are transformed as rule base. Rules are 

developed as new vulnerabilities and scanning techniques are identified. A signature 

based IDS (SIDS) is as strong as its rule set and if the attack is new, there will simply not 

be any signatures developed to identify the probe. An SIDS is programmed to look into 

the header of each incoming packet, whatever be the underlying protocol used on the 

network. Each packet through the network is scanned by the IDS core `engine' against 

hundreds or thousands of signatures stored within it for presence of any malicious 

activity. Most of the popular SIDS are based on Expert System, where the pattern of 

attack is transformed into a rule base, obviously only those attacks can be detected whose 

patterns are known 

1.6.3 Neural network based detection system 

The properties of neural network are put to advantage for exploring new methods 

for detecting intrusions based on statistical deviation. The neural network is trained on 

the normal traffic for duration of n days and the statistical parameters computed stored in 

tables, after the completion of training the network is tested and any anomaly from the 

normal statistical parameters obtained from the tables mentioned above cause's alarms to 

be raised. There are various approaches to using neural network for intrusion detection; 

the most popular of those are explained in this section. 

1.6.3.1 	Expert System Based Misuse Detection 

There are two general implementation of neural network in misuse detection[7]. 

The first involves incorporating them in existing expert system based intrusion detection 

system. This implementation is more preferred if an organization already has an expert 

system based IDS in place. The expert system based intrusion detection is the most 

common rule based approaches that encodes the knowledge of `human expert' on the 

security related data. Expert system is a computer application, which then utilizes that 

knowledge to identify activities that match the defined characteristics of attack or misuse. 

The neural network here is first trained by thousands of individual sequences of attacks. 

Once trained it filters the incoming packets for suspicious events, which may be 
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indicative of misuse or attack and forward these to the expert system. This 

implementation improves the false alarm rate of the expert system. The disadvantage of 

this approach is as the neural network improves its ability in identifying new attacks, the 

expert system also needs to be updated to recognize the attack lest it would ignore the 

anomaly detected by the neural network. 

1.6.3.2 	Stand Alone Misuse Detection 

The second approach [8] involves neural network as stand alone misuse detection 

system. In this configuration the neural network would receive data from the network 

stream and analyze . the information for instances of misuse. There are a number of 

architectures that can be used, however the multilayer feed forward network was found to 

be more suitable due its flexibility and applicability in variety of problems. The MLP 

utilized for in the model explained here consisted of four fully connected layers with nine 

input nodes and two output nodes. Each of the hidden and output nodes applied a 

sigmoidal transfer function to the various connection weights. The data from the network 

stream used for training and testing is grabbed first by using packet sniffer software like 

Tcpdump, Realsecure network monitor and then organized in the formatsuitable for the 

input pattern of the neural network. A misuse detection technique heavily relies on the 

data content of the packet since any attack can be detected, if its signature is known. 

Therefore for accurate detection by the neural network based IDS the raw data contents 

forms one of the key element besides the source, destination IP and port address, data 

length, protocol ID. However since the input pattern to the neural network is required to 

be numerical in nature. The data portion of the packet is converted to a numerical number 

denoted as Data ID from a look up table which assigns specific numbers to identify attack 

scripts. This lookup table forms the key factor for the accuracy of misuse detection and 

the most difficult to devise too. A sample training set consisting of the input and output 

pattern identifying normal and attack traffic by 0 and 1 respectively is shown in figure 

1.4. The raw data length of the packet can identify a buffer overflow attack, while an 

unreasonable port activity can be a cause for raising an alarm. 
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Figure 1.4: A Sample Training set for neural network 

1.6.4 Graphical technique in intrusion detection 

Both Statistical and signature based Intrusion detection systems suffer from an 

inability to detect an attack that is built from a sequence of valid network activity. Hence 

the needs to develop a methodology that can detect a malicious action that may consist of 

valid network activity. Graph based intrusion detection system (GrIDS) is one such 

method developed by the University of California. The idea behind GrIDS is to detect 

large scale automated attacks on networked systems. The approach in GrIDS is to build 

activity graphs reflecting activity in a network, and then analyze these graphs to assess 

whether an attack is occurring. The activity graphs are generated by graph engines, which 

take basic activity reports and convert them into graphs. The nodes or vertices of the 

activity graph represent hosts in a system, while edges of an activity graph represent 

network activity between the hosts. Both the edges and vertices have the property that 

they may have attributes associated with them, which provide additional information 

regarding the nature of connection or host. If the traffic between two hosts contains the 

transfer of password files then the attributes of the edges will reflect that. GrIDS fall in 

the category of misuse detection technique. 

1.6.5 Artificial -immune system based detection technique 

The characteristics of the natural immune system are the inspiration for 

developing an intrusion detection system based on immunity model. The universe of all 

patterns of network traffic P is partitioned into two disjoint sets (Ps  and Pn). The patterns 

(PS) that frequently occur in network traffic in last n (user defined) days are classified as 

self and the ambiguous patterns (Pa) as nonself. It is assumed that the traffic of n days 

that formed the self-pattern did not contain any attack or intrusion attempt i.e., Ps. P„= . . 
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The intrusion detection system based on natural immune system focuses on following 

aspects. 

(a) The method of using data mining technique to explore the adaptable set of 

self (i.e. normal patterns of client and server activity) and sequential-patterns of 
TCP services. 

(b) The method of generating valid detectors based on genetic algorithm; 

(c) The mechanism of memorizing previously seen intrusion patterns and of 

learning sequential patterns of intrusions through vaccination. 

(d) The mechanism of dynamic detectors with finite lifetime 

1.7 SHORTFALLS IN CURRENT MISUSE IDS 

While the ability to develop and use signatures to detect attacks is a useful and 

viable approach there are shortfalls to only using this approach, which should be 

addressed. 

• Variants. As stated previously signatures are developed in response to new 

vulnerabilities or exploits, which have been posted or released. Integral to the 

success of a signature, it must be unique enough to only alert on malicious traffic 

and rarely on valid network traffic. The difficulty here is that exploit code can 

often be easily changed. It is not uncommon for an exploit tool to be released and 

then have its defaults changed shortly thereafter by the hacker community. 
• False positives. A common complaint is the amount of false positives an IDS will 

generate. Developing unique signatures is a difficult task and often times the 

vendors will err on the side of alerting too often rather than not enough. This is 

analogous to the story of the boy who cried wolf. It is much more difficult to pick 

out a valid intrusion attempt if a signature also alerts regularly on valid network 

activity. A difficult problem that arises from this is how much can be filtered out 

without potentially missing an attack. 

- False negatives detecting attacks for which there are no known signatures. This 

leads to the other concept of false negatives where an IDS does not generate an 

alert when an intrusion is actually taking place. Simply put if a signature has not 
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been written for a particular exploit there is an extremely good chance that the 

IDS will not detect it. 
• Data overload. Another aspect which does not relate directly to misuse detection 

but is extremely important is how much data can an analyst effectively- an 
efficiently analyze. That being said the amount of data he/she needs to look at 
seems to be growing rapidly. Depending on the intrusion detection tools 
employed by a company and its size there is the possibility for logs to reach 
millions of records per day. 

1.8 Hacking 	 - 
1.8.1 General: 

Hacking is an act by an intruder to unlawfully access a computer/system. For 
detecting such an activity knowledge of hacking techniques is a prerequisit.. In this 

section, the topic is introduced and references for further reading are listed[34-44]. 
Hackers have more tools and information at their disposal and enterprises have to 

react very quickly to vulnerabilities to minimize security incidents. The nature of attacks 
against enterprises began changing dramatically as the Internet started to have an impact 
on IT architecture (figure 1.5) 
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Figure 1.5: Change in Nature ofAttacks 
(FBI/CSI Computer crime and Security Survey 2001) 
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With the advent of easy availability of hacker tools, ever more sophisticated attacks are 
being launched, by ever less sophisticated attackers (figure1.6). 
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Figure 1.6: The Growth of Attack Sophistication over Time 
(CERT/Carnegie Mellon University 2001) 

1.8.2 Types of Intruders 
An intrusion is somebody (Hacker or Cracker) attempting to break into or misuse 

your system. Intruders can be classified into two categories. 
Outsiders - Intruders from outside the network, who may come from the Internet, 
dial up lines, physical break-ins or from neighborhood networks. 
Insiders — Intruders that legitimately use your internal network, these include 
users who misuse privileges. A frequently quoted statistics is that insiders commit 
80% of security breaches. 

The primary ways an intruder can get into a system are: 
Physical intrusion If an intruder has physical access to a machine i.e., they can 
use the keyboard or physically take apart the system and remove the disk drive. 
Even BIOS protection is easy to bypass, virtually all BIOSes have backdoor 

passwords. 
System intrusion This type of hacking assumes the intruder already has a low 
privilege user account on the system and he is able to use a known exploit in 
order to gain additional administrative privileges. 
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Remote intrusion This type of hacking involves a intruder who attempts to 

penetrate a system remotely across the network. 

1.8.3 Typical Intrusion Scenario 

A typical intrusion scenario might be 
Step 1: outside reconnaissance The intruder will find out as much as possible without 
actually giving themselves away. The intruder will do a 'whois' loot up to find as much 
information as possible about your network as registered along with your domain name. 
The intruder will walk through your DNS tables (using 'nslookup', 'dig' or other utilities) 

to find names of your machines. 

Step 2: inside reconnaissance The intruder uses invasive technique to scan for 
information, but still doesn't do anything harmful. They might walk through all your web 

pages and look for CGI scripts.- They might do a ping sweep in order to see which 

machines are alive or a TCP/UDP scan/probe to see which services are available. 

Step 3: exploit The intruder crosses the line and starts exploiting possible holes in target 

machines. The intruder may attempt to compromise a CGI script by sending shell 

commands in input fields. The intruder might attempt to exploit well known buffer 
overrun holes by sending large amount of data or break passwords of user accounts by 

brute force. 
Step 4: foothold At this stage the hacker has gained access into the network and his main 
goal is to hide evidence of the attacks (by doctoring audit trails and log files). They may 
install 'toolkits' that give them access, replace existing services with their own Trojan 
horses that have backdoor passwords or create their own user accounts. So even if the 
machine may not in itself have any thing of interest to an intruder but he uses it as a 

stepping-stone to attack other systems also in turn hiding his identity, 

Step 5: capitalize The intruder takes advantage of their status to steal confidential data, 

misuse system resources. 
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1.9 RELATED WORK 
Intrusion detection has traditionally focused on one of two approaches. Misuse 

detection compares a user's activities with the known behaviors of attackers attempting to 
penetrate a system. The second approach, anomaly debction seeks to identify activities 
that vary from established patterns for users, or network. Anomaly detection is a widely 
used method in the field of computer security, and there are approaches that utilize it for 
detecting intrusions [3]. 

Various techniques for modeling anomalous and normal data have been 
developed for intrusion detection. A survey of these techniques is given in [7]. A method 
that is closely related to the work in this dissertation employs clustering mechanism to 
classify abnormal activities and detects attack based on the assumptions that the 
unlabeled dataset contains large amount of normal activity and relatively few anomalies 
[8] and [9]. The first use of Kohonen self-organizing map in misuse detection is 
described in [15]. There a hybrid neural network — in which the output of a Kohonen map 
provided input to a conventional feed forward neural network, was prototyped to address 

temporally dispersed, and possibly collaborative, attacks in a simulated data stream. 

Temporally dispersed attacks are those conducted by a single attacker over an extended 

period of time, while multiple attackers working in concert to achieve a single intrusion 

conduct collaborative attacks. 

The other more related technique involves use of neural networks for detecting 
intrusions. An approach, which detects network based attacks as anomalies using 
statistical preprocessing and neural network classification is discussed in [12]. The paper 
tested five different types of neural network classifiers: perceptron, Backpropogation 
(BP), Perceptron-backpropogation-hybrid (PBH), Fuzzy ARTMAP and Radial based 
function. 

A technique given in [13] discusses detecting intrusions using neural networks by 

training on packet header fields extracted in the preprocessing stage for a customized 
network. A comparative performance study of various type of NN perceptron, BP and 

PBH is also included. In [14] it proposes a learning algorithm that constructs models of 
normal behavior from attack free network traffic and the behavior that deviates from the 

learned normal model signals a novel attacks. The model for normal behavior is prepared 
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based on the packet header (PHAD) and application layer (ALAD) analysis. The first 

component PHAD monitors 33 fields from the Ethernet, IP and transport layer (TCP, 

UDP, or ICMP) packet headers, however, 15 fields were found to contribute towards 

detection. The anomaly scores of each packet is calculated based on probability study 

such that any new instance of field under consideration would raise the anomaly score of 

the packet. The total anomaly score of individual packets are thus computed and if above 

the set threshold it signals alarm for, detecting attacks. The second component of the 

model ALAD, instead of assigning anomaly scores to each packd, assigns a score to an 

incoming server TCP connection. TCP connections are reassembled from packets. The 

performance of the intrusion detection is enhanced by using keyword selection in neural 

networks as discussed in [5]. Many an attacks like DOS and its variants comprise of valid 

field values at packet level, however the flooding of these packets on a victim machine 

leads to the attack. Hence techniques attempting to detect attacks based on individual 

packet headers will fail to detect such anomalous activities comprised of valid 

commands/requests. 

1.10 AUTHOR'S CONTRIBUTION 

The author's contribution is towards designing a system that add focus to anomaly 

based IDS by enhancing its potency against known attacks by including attack signatures 

as additional statistical feature. The advantage of high rate of detecting known attacks by 

misuse-based detection is complemented to this system whose core detection engine is 

primarily based on anomaly based detection technique. 

The system detects attacks based on source machine's activity over a dynamic 

time window, which overcomes the handicap of other systems assessing on individual 

packet analysis. Data mining skills are applied in computing statistical trends as well as 

flagging features based on likelihood of attack signature in the source activity. The 

features thus presented to the clustering mechanism reflect the behavioral trend of a 

source machine in communication with the victim machine in terms of statistical features 

and flags indicative of attack signatures. The evidence of attacks is self-learned by the 

Kohonen based SOM technique and these clusters are classified by MLFFNN using 

Levenberg Marquardt algorithm for backpropagation. Labeled tcpdump data are used for 
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supervised, training of neural network The complexity of training data and its size 

(approximately 4.4 GB) demanded a faster convergence algorithm like Levenberg 

Marquardt for backpropagation of neural network weights. 

One of the main assumptions made was that data instances presented by the data-

mining module having similar characteristic would be close together under some metric 

in the clustering mechanism. Therefore finding or constructing an appropriate metric is 

essential for clustering. In detecting network intrusions, it is imperative that some 

features of the data instances would be more important (have greater weight) than others 

viz, flags indicative of attack signatures, and thus differences' in the values of those 

features should have a greater 'contribution to the overall distance. Therefore, several-

weighted metrics were tried, with higher weights assigned to different subsets of features 

in this work and it was decided to use a standard Euclidean metric, with weighted 

features so that all data instances pertaining to an attack fallinto the same cluster. 

The system prototype was tested on tcpdump data of the test week (4.5 h̀  week); 

however the system is capable of adapting to real time detection of network traffic if the 

statistical parameters of the tcpdump data used for training match that of the live network 

traffic. This is feasible as the detection algorithm is largely independent of machine 

specific details viz. source/destination IP address etc except for the normal traits of the 

victim machine. The use of neural network based design reduces the computational and 

memory needs . of system during real time detection stage, the bulk of the systems 

overheads in terms of processing and. memory needs are limited to the training phase. 

The use of pcap libraries give an inherent advantage to the system of 

adapting to real time detection of network traffic since the traffic are handled as network 

packets rather than as text files. The prototype developed is made user friendly by means 

of GUI built using libglade. 
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Chapter 2 

DATASET DESCRIPTION 

2.1 GENERAL 
The development and design of a neural network based detection system will 

necessitate a vast amount of labeled network data comprising of both with and without 

attacks, for training of neural network. The problems envisaged in building such an 
enormous data is limited to the researchers resources of originating variants of attacks 

and capabilities of simulating a large. network. To promote more researchers to work in 

the field of IDS and the need to compare difibrent IDS, Massachusetts Institute . of 

Technology (MIT) Lincoln Lab created DARPA 1999 Intrusion Detection Evaluation 
data set. This data set is publicly available [16] and is approximately of 10 GB size. 

DARPA (Defense Advanced Research Projects Agency) is the independent 

research branch of the U.S. Department of Defense (DoD) that funded a project that in 

time was to lead to the creation of the Internet. Originally called ARPA (the "D" was 

added to its name later), DARPA came into being in 1958 as a reaction to the success of 

Sputnik, Russia's first manned satellite. In the late 1960s, ARPA provided funds and 

oversight for a project aimed at interconnecting computers at four university research 

sites. By 1972, this initial network, now called the ARPANET, had grown to 37 

computers. Because ARPA's name was changed to Defense Advanced Research Projects 
Agency (DARPA) in 1971, some people refer to ARPANET as DARPANET. (DARPA 

was changed back to ARPA in 1993 and back to DARPA again in 1996). It manages and 
directs selected basic and applied research and development projects for DoD, and 

pursues research and technology that may provide dramatic advances for traditional 

military roles and missions; funding research activities for Intrusion Detection System is 
one of it's key thrust areas. 
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2.2 1999 DARPA INTRUSION DETECTION EVALUATION PLAN 
2.2.1 Introduction 

The 1999 intrusion detection off-line evaluation data set is the second of an 

ongoing series of yearly evaluations conducted by MIT Lincoln Laboratory ("Lincoln") 

under DARPA ITO and Air Force Research Laboratory sponsorship. These evaluations 
are contributing significantly to the intrusion detection research field by providing 

direction for research efforts and calibration of current technical capabilities. They are of 
interest to all researchers working on the general problem of workstation, or hostbased, 

and network intrusion detection. The evaluation is designed to be simple, to focus on core 

technology issues, and to encourage the widest possible participation by eliminating 

security and privacy concerns and by providing data types that are used by the majority 
of intrusion detection systems. DARPA 99 data set contains 5 weeks of network traffic 

data Each week contains 5 days of network data collected at the packet level Of these 3 

weeks of training data (weeks 1-3, 15t  and 3 d̀  weeks do not contain- intrusions) and 2 

weeks of testing data (weeks 4 and 5). 

2.2.2 Technical Objective 
The 1999 DARPA evaluation was designed to find the strength and weaknesses of 

existing approaches and lead to large performance improvements and valid assessments 

of intrusion detection systems. The concept was to generate a set of realistic attacks, 

embed them in normal data, evaluate the false alarm and detection rates of systems with 
these data, and then improve systems to correct the weaknesses found. The following 
attack events were inserted during the simulation run: 

1. Denial of Service (DoS) - Unauthorized attempt to disrupt the normal functioning 
of a victim host or network. 

2. Remote to Local (R2L) - Unauthorized obtaining of user privileges on a local host 

by a remote user without such privileges. 

3. User to Root (U2R) - Unauthorized access to local superuser or administrator 

privileges by a local unprivileged user. 
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4. Surveillance or Probe (probe) - Unauthorized probing of a machine or network to 
look for vulnerabilities, explore configurations, or map the network's topology. 

5. Data Compromise (data) - Unauthorized access or modification of data on local 
host or remote host. 

These attacks occur in the context of normal usage of computers and networks as one 
might observe on a military base. The evaluation is designed to foster research progress, 
with the following four goals: 

1. Explore promising new ideas in intrusion detection. 
2. Develop advanced technology incorporating these ideas. 
3. Measure the performance of this technology. 
4. Compare the performance of various newly developed and existing systems in a 

systematic, careful way. 

2.2.3 Physical Network 

The simulation network is divided into two segments representing the networks 

inside an Air Force base and the Internet outside the Air Force base as shown in figure 

2.1. The outside includes two workstations, which simulate gateways to a virtual outside 
internet. One workstation simulates many workstations using custom software 

modifications of the Linux kernel provided by the Air Force group. One gateway leads to 
roughly 100 workstations and the other leads to 1000's of web sites with actual content 

that is updated daily. The inside includes victim machines of many types (e.g. Linux, 
Solaris, and Sun OS) and a gateway to many others inside workstations. Data is collected 
from the inside victim running Solaris and from an outside sniffer. The list of hosts of 
simulated network 1999 is attached as Appendix `B'. 
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Figure 2.1 	Simulation Networks 1999 

Many software tools were required to make this approach work. These include many 

types of traffic generators, tools to schedule and create traffic in real time, and tools to 

analyze the sniffing and audit data to verify that the system ran correctly and label each 

attack. 

2.2.4 Data layout: day wise 

Training data will consist of the following elements however this work will detect 

attacks based on inside tcpdump data and the second week (attack data) is used for the 

purpose of training. Figure 2.2 depicts the day wise data for the second week from the 

dataset. The data available for each day include: 

1. Outside tcpdump data for roughly one month of network traffic as collected by a 

tcpdump packet sniffer. This data contains the contents of every packet 

transmitted between computers inside and outside a simulated military base. 
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Figure 2.2: Day wise data layout for second week 

2. Inside tcpdump data collected by a sniffer located inside the simulated military 
base. 

3. Sun Basic Security Module (BSM) audit data from one UNIX Solaris host. This 

data contains audit information describing system calls made to the Solaris kernel. 
Raw BSM binary output files are provided along with BSM configuration files 
and shell scripts used to initialize BSM auditing to record events from processes 

that implement important TCP/IP services. 
4. Windows NT audit event logs as contained in the three files NTAuditdata, 

Selected directory dumps, File system listings. 
2.2.5 Labeled data 

The first three weeks of data are labeled and listed in [19]. The date, starting time, 

and destination(s) of each attack are provided. In addition, the name of the attack is 

provided as a source of identification. However the identification of the attacker is not 
provided, as a result, the simulated network since being a mammoth one has many a 

source machines accessing the server machine at the timestamp listed in the label as start 
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time of attack. This discrepancy leads to normal activity also being labeled as attack and 

thereby leading to false negatives. To add to this dilemma it was found that the timestamp 

provided were inaccurate and a leeway of 60 secs was required, this furthered the tally of 

false negatives. To overcome this shortfall in our the data is not trained purely on the 

labeled timestamp but the probability of the source cluster being an attacker is calculated 

based on number of times it has been labeled as an attack against total number of times 

the cluster center is selected over the complete training period. This aspect will be better 

grasped in the later chapters. The fourth and fifth week of data form the test data and the 

intrusions detected by the system discussed in this thesis can be verified from [20], which 

catalogs the detect list for test data in the following format: 
ID: 41.084031 

Date: 03/29/1999 

Name: ps 

Category: u2r 

Start Time: 08:18:35 

Duration: 00:46:05 

Attacker: 209.154.098.104 

Victim: 172.016.112.050 

Username: haraldl 

Ports: 

At Attacker: 80{1}, 6000{2} 

At_Victim: 23{3} 

2.3 PITFALLS IN DARPA DATASET 

On analysis of the DARPA evaluation data set [16] it was found that the 12 

million packets in the DARPA training 'set contain only 8 distinct TTL (Time To Live) 

values (2, 32, 60, 62-64, 127-128, 254-255). TTL is an 8-bit counter (0-255) that is 

• decremented with each router hop until it reaches zero, in order to prevent infinite routing 

loops. Most of the detections and all of the false alarms due to TTL result from the 

anomalous values 126 or 253, which are absent in the training data. This is not realistic, 

as in real life large variations in TTL values are observed. It is possible that an attacker 

might manipulate the TTL field to thwart an IDS using methods described by [22], but 

these techniques involve using small values in order to expire packets between the target 
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and the IDS. A more likely explanation is that the attacks were launched from a real 
machine that was 2 hops away from the sniffer in the simulation, but all of the other 

machines were at most one hop away. It is extremely difficult to simulate Internet traffic 
correctly [21], so such artifacts are to be expected. 

Another major drawback realized in the DARPA dataset that affects the•  
application of neural network techniques for detection are that very few instances of an 

attack is available and more so not all attack types are launched against a single machine 

as a result a system that learns attacks against individual machines limits the 
generalization of the neural network learning. Figure 2.3 illustrates the number of attack 
instances and types. For example .there are 43 instances of 11 types of DOS attack 

therefore at an average only 4 instances of individual attack in the complete dataset which 
cannot be considered adequate as even missing a single attack will result in 25% failure 

in result. Maintaining high detection rate, demands near perfect algorithm in detecting 
attacks. 
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Chapter 3 

ATTACKS: HOW TO DETECT 

3.1 INTRODUCTION 

In this chapter we broadly classify and identify with the variants of attacks with 

an eye to their attack signatures. It will help reader understand how attacks can be 
detected by observing the traffic; knowledge of it is must for devising algorithms for 
datamining module. 

There are 4 types/categories of attacks in the DARPA 99 data set: 
• Denial of Service (DOS) - An attack that can deny use of a resource or service 
• Probe - When network services are used to collect information about host 
• User-to-Root (U2R) - a user attacks a computer from inside network 

• Remote-to-Local (R2L) - a user attacks a computer from outside network 

• Data - someone (user or administrator) performing some action that they may be 
not allowed as per security policy. 

Each of these will be discussed in detail in the subsequent sections. 

3.2 	Denial of Service Attacks 
•A denial of service attack is an attack in which the attacker makes some 

computing or memory resource too busy or too full to handle legitimate requests, or 

denies legitimate users access to a machine. There are many varieties of denial of service 
(or DoS) attacks. Some DoS attacks (like a mailbomb, neptune, or smurf attack) abuse a 
perfectly legitimate feature. Others (teardrop, Ping of Death) create malformed packets 

that confuse the TCP/IP stack of the machine that is trying to reconstruct the packet. Still 

others (apache2, back, syslogd) take advantage of bugs in a particular network daemon.. 

The following sections describe in detail each of the Denial of Service attacks that were 

included in the 1999 DARPA intrusion detection evaluation. 
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3.2.1 Apache2 attack 
3.2.1.1 Description: The Apache2 attack is a denial of service attack against an apache 

web server where a client sends a request with many http headers. If the server receives 

many of these requests it will slow down, and may eventually crash [23]. 

3.2.1.2 Attack Signature: Every http request submitted as part of this exploit contains 

many http headers. Although the exact number and value of these headers could be varied 
by an attacker, the particular version of the exploit which was used in the 1999 DARPA 
evaluation sent http GET requests with the header 'User-Agent: sioux\r\n" repeated 10000 

times in each request. The actual content of the header is not important for the exploit, the 

exploit is only dependent on the fact that http request contains many headers. A typical 
http request contains twenty or fewer headers, so the 10000 headers used by this exploi 

are quite anomalous. 

3.2.2 Back 
3.2.2.1 Description: In this denial of service attack against the Apache web server, an 

attacker submits requests with URL's containing many front slashes. As the server tries to 

process these requests it will slow down and becomes unable to process other requests 

[24]. 
3.2.2.2 Attack Signature: An intrusion detection system looking for the Back attack 
•needs to know that requests for documents with more than some number of front slashes 

in the URL should be considered an attack. Certainly, a request with 100 front slashes in 
the URL would be highly irregular on most systems. This threshold could be varied to 

find•the desired balance between detection rate and false alarm rate. 

3.2.3 Crashiis 
3.2.3.1 Description: CrashIlS is a Denial of Service attack against the NT IIS 

webserver. The attacker sends a malformed GET request via telnet to port 80 on the NT 
victim. The command "GET ..1.." crashes the web server and sometimes crashes the ftp 

and 	gopher 	daemons 	as well, 	because , they 	are part of ITS. 

3.2.3.1 Attack signature: Sniffing the network traffic will reveal the malformed GET 

command. The victim's security audit log will show that Dr. Watson ran when the 
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service(s) crashed. However, Dr. Watson will also run for other seasons. Therefore, using 

this audit signature for detection will most likely result in false alarms. 
3.2.4 dosnuke 
3.2.4.1 Description: DoSNuke is a Denial of Service attack that sends Out Of Band 
data (MSG_OOB) to port 139 (NetBIOS), crashing the NT victim (bluescreens the 
machine). 

	

3.2.4.2 Attack signature: 	The attack creates a NetBIOS connection. The packets are 
flagged "urg" because of the MSG OOB flag. The attack can be detected by searching 
the sniffed data for a NetBIOS handshake followed by NetBIOS packets with the "urg" 
flag. 

3.2.5 Land 

3.2.5.1 Description: The Land attack is a denial of service attack that is effective 

against some older TCP/IP implementations. The only vulnerable platform used in the 
1999 DARPA evaluation was SunOS 4.1. The Land attack occurs when an attacker sends 

a spoofed SYN packet in which the source address is the same as the destination address. 

	

3.2.5.2 Attack Signature: 	The Land attack . is recognizable because IP packets with 
identical source and destination addresses should never exist on a properly working 
network. 

3.2.6. Mailbomb 

3.2.6.1 Description: A Mailbomb is an attack in which the attacker sends many 
messages to a server, overflowing that server's mail queue and possible causing system 
failure. 

	

3.2.6.2 Attack Signature: 	An intrusion detection system that is looking for a 
mailbomb attack can look for thousands of mail- messages coming from or sent to a 

particular user within a short period of time. This identification is a somewhat subjective 

process. Each site might have a different definition of how many e-mail messages can be 

sent by one user or to one user before the messages are considered to be part of a 
mailbomb. 

3.2.7 SYN Flood (Neptune) 
3.2.7.1 Description: A SYN Flood is a denial of service attack to which every TCP/IP 

implementation is vulnerable (to some degree). Each half open TCP connection made to 
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a machine causes the 'tcpd' server to add a record to the data structure that stores 
information describing all pending connections. This data structure is of finite size, and it 
can be made to overflow by intentionally creating too many partially open connections. 

The half-open connections data structure on the victim server system will eventually fill 

and the system will be unable to accept any new incoming connections until the table is 
emptied out. Normally there is a timeout associated with a pending connection, so the 

half-open connections will eventually expire and the victim server system will recover. 
However, the attacking system can simply continue sending IP-spoofed packets 

requesting new connections faster than the victim system can terminate the pending 
connections. In some cases, the system may exhaust memory, crash, or be rendered 

otherwise inoperative [25]. 

3.2.7.2 Attack Signature: 	A Neptune attack can be distinguished from normal 

network traffic by looking for a number of simultaneous SYN packets destined for a 

particular machine that are coming from an unreachable host 

3.2.8 Ping Of Death 
3'.2.8.1 Description: The Ping of Death is a denial of service attack that affects many 

older operating systems. Although the adverse effects of a Ping of Death could not be 
duplicated on any victim systems used in the 1999 DARPA evaluation, it has been widely 

reported that some systems will react in an unpredictable fashion when receiving 
oversized IP packets. Possible reactions include crashing, freezing, and rebooting. 

3.2.8.2 Attack Signature: noting the size of all 1CMP packets and flagging those that are 
longer than 64000 bytes can identify an attempted Ping of Death. 

3.2.9 Process Table 
3.2.9.1 Description_ The Process Table attack is a novel denial-of-service attack that 

was specifically created for this evaluation. The Process Table attack can be waged 

against numerous network services on a variety of different UNIX systems. The attack is 

launched against network services that fork 0 or otherwise allocate a new process for 

each incoming TCP/IP connection. Although the standard UNIX operating system places 

limits on the number of processes that any one user. may launch, there are no limits on the 

number of processes that the superuser can create, other than the hard limits imposed by 

the operating system. Since servers that run as root usually handle incoming TCP/IP 
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connections, it is possible to completely fill a target machine's process table with multiple 

instantiations of network servers. Properly executed, this attack prevents • any other 

command from being executed on the target machine. An example of a service that is 

vulnerable to this attack is the finger service. On most computers, finger is launched by 
inetd. The authors of inetd placed several checks into the program's source code that must 

be bypassed in order to initiate a successful process attack. In a typical implementation 

(specifics will vary depending on the actual UNIX version used), if inetd receives more 

than 40 connections to a particular service within 1 minute, that service is disabled for 10 

minutes. The purpose of these checks was not to protect the server against a process table 
attack, but to protect- the server against buggy code that might-create many connections in 
rapid-fire sequence. 

3.2.9.2 Attack Signature: 	Because this attack consists of abuse of a perfectly legal 

action, an intrusion detection system that is trying to detect a process table attack will 

need to use somewhat subjective criteria for identifying the attack. The only clue that 

such an attack is occurring is an unusually large number of connections active on a 

particular port. Unfortunately 'unusual' is different for every host, but for most machines, 

hundreds of connections to the finger port would certainly constitute unusual behavior. 

3.2.10 Smurf 

3.2.10.1 Description: In the "smurf" attack, attackers use ICMP echo request packets 

directed to IP broadcast addresses from remote locations to create a denial-of-service 

attack. There are three parties in these attacks: the attacker, the intermediary, and the 

victim (note that the intermediary can also be a victim). The attacker sends ICMP echo 
request' packets to the broadcast address (xxx.xxx.xxx.255) of many subnets with the 

source address spoofed to be that of the intended victim. Any machines that are listening 

on these subnets will respond by sending ICMP 'echo reply' packets to the victim. The 

smurf attack is effective because the attacker is able to use broadcast addresses to amplify 

what would otherwise be a rather innocuous ping flood. In the best case (from an 

attacker's point of view), the attacker can flood a victim with a volume of packets 255 

times as great in magnitude as the attacker would be able to achieve without such 

amplification. 
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3.2.10.2 Attack Signature: The Smurf attack can be identified by an intrusion 
detection system that notices that there is a large number of bcho replies' being sent to a 
particular victim machine from many different places, but no 'echo requests' originating 
from the victim machine. 

3.2.11 sshprocesstable 
3.2.11.1 Description: SSH Processtable is similar to the processtable attack in that the 
goal of the attacker is to cause sshd daemon on the victim to fork so many children that 
the victim can spawn no more processes. This is due to a kernel limit on the number of 
processes that the OS will allow. 

3.2.11.2 Attack Signature: This attack will be evident due to the large number of rapid 
ssh connections to the host, the inability of processes to spawn on the host, and the fact 

that request for new network logins (requiring child processes) will be denied, for the 

duration of the attack. There may be other obvious signs as well. 

3.3 	User to Root Attacks 
User to Root exploits are a class of exploit in which the' attacker starts out with 

access to a normal user account on the system (perhaps gained by sniffing passwords, a 
dictionary attack, or social engineering) -and is able to exploit some vulnerability to gain 
root access to the system. There are several different types of User to Root attacks. The 
most common is the buffer overflow attack. Buffer overflows occur when a program 

copies too much data into a static buffer without checking to make sure that the data will 
fit.: For example, if a program expects the user to input the user's first name, the 

programmer must decide how many characters that first name buffer will require. 
Assume the program allocates 20 characters for the first name buffer. Now, suppose the 

user's first name has 35 characters. The last 15 characters will overflow the name buffer. 
When this overflow occurs, the last 15 characters are placed on the stack, overwriting the 

next set of instructions that was to be executed. By carefully manipulating the data that 
overflows onto the stack, an attacker can cause arbitrary commands to be executed by the 
operating system. The following sections describe each of the User to Root attacks that 

was used in the 1999 DARPA intrusion detection evaluation in greater detail. 
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3.3.1 anypw . 
3.3.1.1 Description: NukePW is a Console User to Root attack that allows the attacker 
to logon to the system without a password. A boot disk is used to modify the NT 
authentication package so that a valid username can login with any password string. 
Logins via telnet also work with any password. 
3.3.1.2 Attack signature: 	The sniffed data will reveal remote logons with incorrect 
password strings. 

3.4 	Remote to User Attacks 
A Remote to User attack occurs when an attacker who has the ability to send 

packets to a machine over a network, but who does not have an account on that machine, 
exploits some vulnerability to gain local access as a user of that machine. There are many 

possible ways an attacker can gain unauthorized access to a local account on a machine. 
Some of the attacks discussed within this section exploit buffer overflows in network 
server software. The following sections provide details of each of these attacks. 
3.4.1 HttpTunnel 
3.4.1.1 Description: In an Http Tunnel attack, the attacker gains local access to the 
machine to be attacked and then sets up and configures an http client to periodically 
query a web server that the attacker has setup at some remote host. When the client 
connects, the server is able to send cookies that could request information be sent by the 
client, such as the password file on the victim machine. In effect, the attacker is able to 
"tunnel" requests for information through the http protocol. 

3.4.1.2 Attack Signature: 	The Http Tunnel attack can be recognized by watching for 
the setup login session, transfer of the client to the victim, and perhaps setting up a job to 

be run periodically, or starting a background process to run the client. The using of the 
tunnel could be noticed by periodic connections to from the victim to the attacker on non-

well-known ports, or ports greater than 1024. (However- port 80 could be used as well). 

3.4.2 Phf 
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3.4:2.1 Description: The Phf attack abuses a badly written CGI script to execute 

commands with the privilege level of the http server. Any CGI program which relies on 
the CGI function escape_shell_cmdO to prevent exploitation of shell-based library calls 
may be vulnerable to attack. In particular, the "phf' program that is distributed with the 

example code for the Apache web server manifests this vulnerability. 

3.4.2.2 Attack Signature: 	To find the Phf attack, an intrusion detection system can 

monitor http requests watching for invocations of the phf command with arguments that• 

specify commands to be run. Examples of -commands that an attacker might attempt to 

execute by exploiting the phf exploit are: cat /etc/passwd, id, whoami, or xterm. 

3.4.3 Sendmail 
3.4.3.1 Description: The Sendmail attack exploits a buffer overflow in version 8.8.3 of 

.sendmail and allows a remote attacker to execute commands with superuser privileges. 
By sending a carefully crafted email message to a system running a vulnerable version of 

sendmail, intruders can force sendmail to execute arbitrary commands with root 

privilege. 

3.4.3.2 Attack Signature: 	The Sendmail attack overflows ,a buffer in the MIME 

decoding-  routine of the sendmail program. In order for an intrusion detection system to 

identify a- Sendmail attack it must monitor all incoming mail traffic and check for 
messages that contain a MIME.header line that is inappropriately large. 

3.5 	Probes 
In recent years,. a growing number of programs have been distributed that can 

automatically . scan a network of computers to gather information or find known 
vulnerabilities. These network probes are quite useful to an attacker who is staging a 
future attack. An attacker with a map of which machines and services are available on a 

network can use this information to look for weak points. Some of these scanning tools 

(Satan, saint, mscan) enable even a very unskilled attacker to very quickly check 
hundreds or thousands of machines on a network for known vulnerabilities. The 

following sections describe in detail each of the probes that was used in the 1999 

DARPA intrusion detection evaluation 
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3.5.1 Ipsweep 

3.5.1.1 Description: An Ipsweep attack is a surveillance sweep to determine which 
hosts are listening on a network. This information is useful to an attacker in staging 

attacks and searching for vulnerable machines. 
3.5.1.2 Attack Signature: 	An intrusion detection system looking for the simple 
Ipsweep used in the simulation can look for many Ping packets, destined for every 
possible machine on a network, all coming from the same source. 

3.6 	Data 
Data Attacks involve someone (user or administrator) performing some action 

that they may be able to do on• a given computer system, but that they are not allowed to 

do according to site policy. Often, these attacks will involve transferring "secret" data 

files to or from sources where they don't belong 

3.6.1 Secret 
3.6.1.1 Description: A "secret" attack is an attack where the attacker maliciously or 

mistakenly transfers data which they have access to a place where it doesn't belong. For 

example, transferring data from a classified computer/network to a nonclassified 

computer/network would constitute a "secret" attack. 
3.6.1.2 Attack Signature: 	To recognize these attacks, the detection system must 
know which files are considered "secret", what the policies are regarding use of these 

files, and then simply look for actions carried out involving them. Naturally, attacks such 
as these can be hard to detect - a legitimate user could "cut-and-paste" information from 

one desktop window to another. 
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Chapter 4 

METHODOLOGY 

4.1 GENERAL DESCRIPTION 

The system designed is a network based intrusion detection system that 

scrutinizes tcpdump data in a time window to develop traffic trends and characteristic 

evidences of an attack. It is assumed that the evidences of an attack lie within the packets 

and can be identified either by individual analysis of packet in some cases or by 

ascertaining the attackers intention by analyzing sequel of packets in a time window 

frame for others. Since the system is primarily an anomaly based detection technique 

which detects attack by detecting deviations from its learned normal trait, hence the 

efficacy of the system to detect abnormality will depend on datamining skills in 

extracting features from packet/packets such that they form a distinctive trait for each 

attack. Akin to misuse detection technique the data-mining module also extracts attack 

signatures of known attacks. The presence of attack signatures in the payload of the 

packet is either flagged or mapped to a specific numeric value, which acts as an attack 

identifier. The abnormality is self-learned by the system by way of Kohonen based Self 

organizing mapping techniques. The clustering mechanism maps the activity of 

individual machines within the window to clusters indicative of behavior pattern. Prior to 

the system being used some of the components need time to be trained on the traffic 

traits. The system is decidedly modular in nature; the system block diagram is illustrated 

in figure 4.1 and detail system flowchart is depicted in Figure 4.2. There are three 

distinctive stages in the system namely the architectural learning stage, System 

learning stage and the detection stage. 
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Figure 4.1 	Block diagram of system 

In the architectural learning period the architecture of the SOM and MLFFBP 

neural network are decided, as well as the number of ports to be monitored and the 
services offered by the server or the list of valid ports are also learned. Based on the 

structure decided in this phase the features from the tcpdump data are .extracted and the 
data preprocessed via datamining skills over a time window to reveal the behavior of the 
machine, which then is fed to the system learning stage where both the number of clusters 

are ascertained and based on the labeled tcpdump data [27] the normal/abnormal behavior 

of the cluster learned by the MLFFBP neural network. Once these courses of action have 

been taken the system evolves into detection mode. In the subsequent sections we will 

dwell on these stages in detail. 
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Figure 4.2 System Flowcharts 

The system is designed to detect intrusions against a few servers within the 

monitored network at any instance all the same since the clusters learned and the neural 

network trained are on behavior traits of source machine and are independent of machine 

specific features viz. source IP, destination IP, the system can be easily carried forward to 

other networks by adopting to specific machine attributes like valid list of pDrts in use. 

4.2 ARCHITECTURAL LEARNING STAGE 
This stage lays the outline for the core work to follow in successive stages, in this 

stage the structure of the SOM and MLFFBP neural network is ascertained. The structure 

of both the neural networks is direct fallout of the number of ports to be monitored and 

the number of features being extracted in a time window. To monitor all the 65,536 ports 

[28] of the victim machine (server) is unnecessary as only few ports would be active 

depending on the services being offered by the server; also the administrator would prefer 

to monitor some vulnerable ports. The number of ports to be monitored is arrived at as 

the sum of list of known ports (say KP) defined by the system administrator to watch and 
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the number of extra ports (EP) the algorithm chooses to add to the list. The algorithm 
employed is based on selecting the highest EP number of ports that are accessed the most 

in the observed network data. Since the system is primarily designed for detecting attacks 
against server victim machines hence a criteria of port number being less than 1024 is 

added. The final set of ports used isFINALSET = KP + EP. 
In this stage the list of valid ports are computed as all the ports accessed in a non-

attack tcpdump data viz. 1S`, 3rd week of the victim machine. This is required for 

detecting variants of probe attacks in which a server attempts to access inactive or invalid 

ports on a server machine. In the preprocessing module the port activity over the time 
window is computed based on the FINALSET number of ports on a source by source 

basis, this form as one of the features for the clustering mechanism with the other features 

extracted from the network data using data mining skills discussed in chapter 5. Each or 

the combination of these other features extracted contribute towards detecting attacks. 
Viz. number of invalid/inactive ports accessed within a time window will be instrumental 

in detecting all probe attacks. As an attacker trying to hit upon the services offered by the 

victim machine would tend to scan all its ports thereby escalating the score of invalid 

ports accessed by this attacker machine on the victim machine. If NUM FEATURES is 

the total number of features used for clustering then it is defined as 

NUM FEATURES = FINALSET + OTHER _F 
Where OTHER _F are the number of features extracted besides port activity, this 

is based on the number of attacks that the system is designed to detect, for experimental 
purpose and to limit the scope of discussion we would be considering six such features, 

all the same the strength of the system in detecting other attacks by increasing these 

features will be considered as future scope. Figure 4.3 depicts the screen shot at the end• 

of architectural learning stage in the prototype system. Port No. 80 was specified by the 
system administrator and 4 Extra ports were decided by the algorithm. 
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Figure 4.3. 	Screen shot depicting end of Architectural learning stage 

Once we have determined the NUM FEATURES the SOM structure is decided as 
having NUM_FEATURES number of input neurons and the architecture of MLFFBP 

neural network is as shown in figure 4.4. The discussion on number of hidden layers and 

its nodes is carried forward for chapter 7. 
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Figure 4.4 . MLFFBP neural network structure 
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4.3 SYSTEM LEARNING STAGE 
During this stage the learning of SOM and MLFFBP neural network take shape. 

But before we progress further we will discuss why the sources are clustered for input to 

the neural network. The NUM FEATURES computed on source-by-source basis over 

the time window reflects the behavioral pattern of that source machine and could have 

been directly fed to the neural network eluding the use of clustering technique. But at any 

time there are a large number of sources in communication with the victim machine. 

Therefore simply grouping the information by sources will firstly not create a uniform 

representation of data for the neural network and more significantly since the labels in 

tcpdump data are based on timestamps and as numerous sources are concurrently in 

communication during that instant so all the sources or rather their behavior patterns will 

be fallaciously classified as attacks thereby making, the training of neural network 

problematic i.e. since the identical behavior pattern would be trained as an attack in one 

time window and as a non attack in another thereby leading to a convergence problem. 

To address this issue we send the preprocessed source information to a clustering module 

which groups sources with similar trends together during the system learning phase. The 

numbers of thus created clusters are constant and fixed in this phase. When a source is 

assigned to a particular cluster, the clusters center is updated using this sources features; 

more on the SOM technique is discussed in chapter 6. 

The second part of the system learning stage involves supervised training of the 

neural network to render a decision as to the likelihood of a pending attack. In this stage 

the tcpdump data are first preprocessed in a source by source basis within a time window 

and the features extracted fed to the clustering algorithm which selects the cluster closest 

to the source machine behavior and then this cluster depending on the tcpdump data label 

is classified as an attack/non attack for the supervised learning of the MLFFNN. The 

timestamps give out the machine under attack and the time at which attack was effective 

and as discussed earlier since numerous sources are concurrently in communication with 

the victim machine and therefore all these would be erroneously classified as attacks if 

labeled solely on the basis of timestamps. Besides the clustering algorithm or more 

specifically the datamining technique may not always succeed in allotting a separate 
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cluster for each anomalous behavior, as a consequence normal activity may also fall in 

the same cluster thus leading to higher false alarms. 

This impasse is resolved by conducting the supervised training in two stages. In 

the first stage the probability of each cluster being an attack is calculated by computing 

the number of times a cluster was labeled as an attack as against the number of times the 

cluster center was selected. The neural network for supervised training then employs this 

individual probability of each cluster; the subject is dealt in more detail in chapter 7. 

4.4 DETECTION STAGE 
In this stage the system can be put in detection mode for testing either on tcpdump 

data file (4-5 week) or live network data for detection. In case of latter, the valid list of 

ports of the machines to be monitored will require to be maintained in valid port.txt 

(Appendix `J'), while for the former the system generates the same during training itself. 

In this work we would limit our scope the former. 

The tcpdump data of the test week is preprocessed within the time window and on 

the basis of its proximity to the clusters learned by the system, the cluster center is 

selected which is then fed to the neural network for decision in terms of the probability of 

the activity of that machine in that span corresponding to an attack and classifying the 

type of attack Based on the state of alertness viz, cautious, alert, paranoid the alarms are 

raised and logged by the system. 
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Chapter 5 

DATAMINING MODULE 

5.1 GENERAL 
The datamining module preprocesses the network data both during training and 

detection stage and presents those features to the system that empower it to detect 

intrusions. It is also referred to as the preprocessing module in this document. The 

datamining skills employed during this stage define the efficacy of the system. An effort 
to identify how the data needs to be looked at in order to provide us with a better picture 

is surely vital in providing accurate and effective results. This is done in four sub•phases; 

(a) System Initialization 

(b) Packet Capture: Sniffing program 

(c) Feature Extraction : Data mining Algorithm 

(d) Normalization 

In the System Initialization phase the parameters of the system with respect b the 

victim or Server machine being monitored is initialized as explained in Architectural 

learning stage, i.e. the number of ports to be monitored, list of valid ports on the victim 
machine ascertained by preparing the list of ports active on the server. These parameters 

are ascertained by analyzing the packets from the non-attack week training data (week 3) 

for a period defined by the architectural factor (archijactor). The packets captured in the 

first 10,000 seconds were considered during architectural learning stage i.e. 

archi_factor=10000. The parameters initialized in this stage will aid the datamining 

algorithm in pulling out anomalies in machine activity. 

The sniffing program captures the packets from the training or the test tcpdump 

files and only IP packets are considered to limit the scope of this work. Based on the 

protocols the packet header and application layer fields are extracted and this raw field 

values processed by the datamining algorithm to extract features for clustering. Figure 5.1 
illustrates the screen shot of raw tcpdump data captured by the sniffing program. In [14] 
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33 fields were analyzed for detecting attacks and only 15 fields were found to contribute 

towards detection. Table 5.1 lists the contribution of these fields. 
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To 	Dst port :1025 ;4• 
Payload . 

(21) ETM: 0:10:7b38:46:33 O:cO:4f:a3:57:db (I2) 102 
IP: 197.218.177.69  172.16.114.148 5 4 88 16384 6 

Iam TCP ..... 	Packet Number 12 TCP has just been sniffed 
From src port 	:21 
To 	Dst port :1025  
Payload : 	230 Guest login ok, access restrictions apply. 

Cisco Internetwork Operating System Software 
I0S (tm) 2500 Software (C2500-I-L), Version 11.3(4)T. 	RELEASE SOFTWARE (fci) 
Copyright (c) 1980-1998 by Cisco Systems, Inc. 
Compiled Mon 15-Sun-08 23:52 by ccai  

(22) tIN: O:cO:4f:a3:57:db 0:10:76:38:48:33 (IF) 60 
IP: 172.16.114.148 	107.218.177.69 5 4 46 16384 6 

lam TCP..... 	Packet Number 13 TCP has just been sniffed 
From src port 	:1025 "e?. 
To 	flat port :21  
Payload : 	SYST 

eat login ok, access restrictions apply.  
Cisco Internetwork Operating System Software 

.10S (tm) 2500 Software (C2500-I-1), Version 11.3(4)T, 	RELEASE SOFTWARE (fci) 
Copyright (c) 1986-1998 by Cisco Systems, Inc. 
Compiled Mon 15-Jun-98 23:52 by ccai 

(23) EIN: 0:10:7b:38:46:33 0:cO:4f:a3:57:db (IF) 73 	 - 
IP: 197.218.177.69 	172.16.114.148 5 4 59 16384 6 

Iam TCP..... 	Packet Number 14 TCP has just been sniffed 
From src port 	:21  
To 	list port :1025  
Payload : 	215 UNIX Type: L8 

J igure 5.1 	Raw tcpdump data 

The sniffing program displays only the Ethernet source and .destination address, 
Ethernet Header size, IP src and dst, packet size, protocol field value, src and dst port 
numbers and the data payload. 
>Fiel`d„ f~ a TP Du R Detected attacks= , 	 ` 
Ethernet Size 1 2 1 Ipsweep  
Ethernet Dst Hi 1 0 6 Mscan 
IP TTL 33 8 20 Netcat_breakin,netbus,ntinfoscan,dosnuke,que 

so, 
casesen,satan,apache2,mscan,mailbomb,ipswee 
P, 

• ppmacro,Neptune,sechole,crashiis,named,smur 
f, 
portsweep,guesstelnet. 

IP Packet length 2 2 1 •Teardro 	ortswee ,satan 
IP dst address 2 1 7 Portsweep,sendmail 
TCP Flags 7 3 2 Queso,portsweep,dosnuke 
UAPRSF 
TCP window size 0 1 2 Apache2 
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TCP checksum 1 0 29 Insidesniffer 
TCP URG Ptr 3 0 5 Dosnuke 
TCP options 2 0 4 Apache2 
UDP checksum 2 0 0 Udpstorm 
ICMP checksum 2 0 0 Smurf 
table 5.1 	. Contribution of fields to detection in [14]. 

It is evident from the table that the source or destination port did not contribute 

towards detection of attacks. But by applying data mining skills and computing statistical 
parameters using the ports, the system proposed in this work is able to detect variants of 

probe attacks and flooding attacks. As will be seen later in this report it also detects new 
attacks, which were not available in the training tcpdamp data. 

In the Feature extraction stage, the algorithm for heightening the anomalous 
nature in network traffic is worked out, and then the numbers of features predefined by 

the algorithm are extracted over a dynamic time window, whose width depending .pon 

the nature of network activity is decided by the system administrator such that a high 

activity would lead to a shorter width. The network data features are then normalized to 
portray a correct representation of network behavior. This then forms as input to the 
clustering mechanism. 

5.2 DATAMINING ALGORITHM 

5.2.1 Introduction 
According to R.L. Grossman in [28], he defines data mining as being "concerned 

with uncovering patterns, associations, changes, anomalies, and statistically significant 

structures and events in data." In simple terms it is the ability to take data and pull from it 
patterns or deviations.  which may not be seen easily to the naked eye. Another term 

sometimes used is knowledge discovery. While they will not be discussed in detail in this 

report, there exist many different types of data mining algorithms to include link analysis, 

clustering, association, rule abduction, deviation analysis, and sequence analysis. 
Data mining can help improve intrusion detection by adding a level of focus to 

anomaly detection. By identifying bounds for valid network activity, data mining will aid 

the system to distinguish attack activity from common everyday traffic on the network. A 
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major obstacle was to tailor data mining algorithms and processes to fit intrusion 

detection. The ensuing section will discuss these aspects with certain attacks in mind. 

5.2.2 Feature extraction 
To limit the scope of discussion in this section we will discuss feature extractions 

leading to detection of at least one or more attacks with high detection rate and near zilch 

false positive rate. The attacks chosen are those that were not or poorly detected by [17]. 

The network has large number of machines concurrently in communication with the 

victim machine and the statistics is computed on a source by source basis in each time 

interval by this module. The statistics computed are the features extracted from the group 
of packets originating from a source machine to the victim machine in a time interval. 

The subject is discussed in this section from the perspective of attack detection. 

5.2.2.1 Port activity 

This foremost feature is computed over the time window by calculating the traffic 

intensity to all the ports being monitored. The selection of ports is dealt in detail in 

section 4.2. The port activity reflects the behavior pattern of the source machine against 

the victim machine in a particular time window. To corroborate the point lets consider 

detection of mailbomb attack on a mail server. An enormous amount of mails being sent 

to the victim machine (mail server) by an attacker thereby overflowing the servers mail 

queue and possibly lead to system failure would get highlighted as an anomalous activity 
by computing the port activity in this case a high traffic intensity at port 25. This feature 

can detect variants of flooding attacks, provided that the destination port on which the 
attack is launched by the attacker is under surveillance by the system. 

5.2.2.2 Probe attack 
The basic intention of an attacker launching a probe attack is to hit upon the 

- active services running on the victim machine so that depending on his expertise in 
exploiting the bugs in the services identified, an attack can be launched. The detection of 

this attack lies in this activity itself; since the attacker is unaware of the services offered 

by the victim machine and hence would probe all the ports in the band of his interest. 

This attack is detected by our system by identifying if any source machine attempts to 

access an inactive port on the server macline in a suspicious manner. 
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During the architectural stage of the system, it learns from the non-attack 

tcpdump file the active ports of servers and this list of valid ports is stored in a file 

(validport.txt). The feature extracted to detect the probe attack viz. portsweep is 

computed by calculating the number of invalid ports accessed by each source machine 

during a time window. A large number of invalid ports accessed by a source machine 
during a time frame would be indicative of a probe attack. 

5.2.2.3 Land attack 
Since no machine would need to use the network resources to access itself 

therefore a packet on the, network with the same source and destination address is 
anomalous in nature. This attack is fairly simple to detect in our system unlike in [17] 

since the activity of all the source machines against a specific destination machine is 
under purview in a time interval. This attack is detected by flagging the feature 

'same—address ' as true when the destination and source addresses were similar. 

5.2.2.4 Back and Crashiis attack 
For detail description of attack refer section 3.2.2 and 3.2.3 respectively. These 

attacks can be detected by scanning through the HTTP (port 80) packets for data contents 

having more than 100 front slashes or malformed GET requests. In such case the feature 

`key' is loaded a predefined value (0.9 for back and 0.5 for crashiis) in the above case 

and otherwise a default value (0). 

5.2.3 Conclusion 
Once the features are extracted based on the attacks being detected by the system 

it is required to be normalized. Since the feature port activity and number of invalid ports 

accessed cannot be purely seen from a time window aspect as the traffic intensity varies 

from day to day and more so on hourly basis. Highly anomalous port traffic intensity at 
0600hrs may not be considered so at 1100 hrs as network activity is time dependent. 
Normalizing these features will present a correct picture so that the system is able to 

detect the deviations from the normal. 
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5.3 NORMALIZATION 
Since, the system was designed to be general, it must be able to create clusters 

given a dataset from an arbitrary distribution. The data instances are assigned to clusters 
if they are closer than a constant distance; which defines the neighborhood boundary. If 

this neighborhood boundary or vigilance parameter is hard coded into the algorithm, then 
'it will be used for data instances from other distributions as well. To highlight the 

discrepancy caused thereby lets consider two sets of two 3-feature vectors, each set 
coming from different distribution: 

1. {(1,3,2),'(1,4,3)} ,. 
2. {(900, 1000, 700), (1000, 1100, 800)} 

Under a Euclidean metric, the squared distance between feature vectors in the first 

set will be (1-1)2  + (3-4)2  + (2-3)2  = 2, while it will be 30,000 for the second set. If in our 
clustering algorithm the cluster width is hard coded (e.g. say 1.5) then the two patterns in 
the first set will fall in the same cluster while the patterns in the second set will be put in 

different clusters. Since we cluster the input data instances in an adaptable time window, 

the distribution will differ over the time windows itself, as the traffic pattern during early 

hours will differ from peak hours. 
One possible solution to this is to determine the width dynamically based on the 

dataset (based on early /peak hours the distribution varies) and the width of the time 

window. However, it would result in complexities in training of SOM and MLP neural 
network. In this work we take a different approach [8] and make the viglance 
parameter/cluster width hard coded constant (user defined) but convert the data instances 
to a standard form based on training dataset's distribution and time window width. 
Instead of presenting the traffic patterns within a time window directly we map it to a 

standard space by computing their mean values and for every feature value we calculate 

how many standard deviations it is away from the average and this result becomes the 

new value for their feature. 
Given a training dataset, the average and standard deviation featurevectors are 

calculated: 
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N 

Avg_vector[j] = 1/N 	instance;[j] 
i=1 

N 

Std vector.[j]=((1/(N-1) 	(instance,[j] —avg_vector[j])2)l"2 

i=1 

Where avg vector[jj is the average of the j h̀  feature of the vector and instance,[jJ 

is the value of j h̀  feature of i`4  pattern in the dataset. 

Then each feature vector in the dataset is converted as follows: 

New—instance[j]=(instance;[j] - avg vector[j])/std vector[j] 

In effect this is a transformation of an instance from its own space to a 

standardized space, based on statistical information retrieved from the dataset over the 

time window. These normalized features pulled out from network traffic in' a time 

window are then presented to the clustering module. 
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Chapter 6 

CLUSTERING MODULE BASED ON SOM 

6.1 GENERAL 
The unsupervised learning using self-organizing mapping (SOM) techniques, 

clusters the input patterns according to similarities discovered among the input features 
[33]: The clustering process is governed by a threshold called vigilance parameter 
(cluster width) and metric function. To create clusters from the input features, we use a 
simple variant of single-linkage clustering — Kohonen self-organizing neural network. It 
is an unsupervised neural network which maps multi- dimensional inputs to a two 
dimensional outputs [29]. Kohonen proposed new neural network architecture based on 

the idea, that brain uses spatial mapping to model complex data structure internally. This 
architecture is popularly known as Kohonen Self-Organizing Map. 

The input features presented by the data-mining module of the system prototype, 
for clustering is depicted in Table 6.1. * Features are those that are flagged or mapped 
into numeric value indicating presence of attack signatures or anomalous activity. Total 
of five ports were monitored which included four Extra ports ascertained by the 
algorithm as discussed in the data mining module (Chapter 5). 

__Features presented for clustering  
Port Activity 1"....m 	Same address *' ̀ `TTL I  Invalid port* I Payload* 
Table 6.1 Input Features presented by data mining module for clustering 
6.2 METRIC 

One of the main assumptions made was that data instances presented by the 

datamining module having similar characteristic would be close together under some 

metric. Therefore finding or constructing an appropriate metric is essential for clustering. 
In detecting network intrusions, it is imperative that some features of the data instances 
would be more important (have greater weights) than others viz. flagging of existence of 
attack signatures, and thus differences in the values of those features should have a 
greater contribution to the overall distance. Therefore, several-weighted metrics were 
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tried, with higher weights assigned to different subsets of features. Figure 6.1 depicts a 
comparative study, note combination 1 represents equal weighted features while rest are 

weighted features as listed in Appendix `G'. Combination 2 and 3 accord higher weight 
to features that are flagged i.e: invalid port (indicates inactive port on server machine 

being accessed), same address (indicates anomalous JP src and dst address) and key 
(indicates presence of attack signature in data payload), resulting in better detection rate 
than the rest of the weight combinations. 

120 o Port activity 

	

,100 	 ■ Invalid port 
Unit$0 

60 ❑  TTL 

	

40 	 ❑  Same address 
20 

	

p 	 ■ Key 

1 	2 	3 	4 	5 	0 No. of Cluster 
Combination of. 

weighted■ or~etection Features 
(Five combinations were tried) 

Figure 6.1 Comparative study of effect of weighted features on efficacy of clusters 

As a consequence it was decided to use a standard Euclidean metric, with 
weighted features so that all data instances pertaining to an attack fall into the same 
cluster i.e. not many clusters representing the same attack are formed. Further tuning the 
metric will show some increase in performance, however tuning the metric parameters to 

achieve maximum performance for a particular data distribution and feature set would 
undermine the systems generality and contribute to over fitting; hence only critical 
features (those flagging presence of attack signatures) were weighted by a factor referred 

to as amplification factor in this report. 

6.3 CLUSTERING ALGORITHM 

Kohonen network consists of an input layer and a two dimensional Kohonen 

layer, which maps a distribution of n-dimensional np inputs onto mp output nodes in a 
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non-linear way. The algorithm employs competitive learning rule, first pattern is selected 
as the centre of the first cluster. Then, the next pattern is compared to the first cluster 
centre. If the distance is less than vigilance parameter, it is clustered with the first. 
Otherwise, it is a centre of a new cluster. This process is repeated for all the patterns. The 
algorithm for the clustering mechanism is summarized below. 

Let N1 is the number of input features, P is the number of patterns in the training 
set and N2 is the number of clusters. The upper bound of N2 is P. If m ports are being 
monitored then (Ni- m) input features are besides the port activity. 
Assume X/" (i= 1,2.....N1) to be the i ' feature of the input pattern (p=1,2,.....P) and bk to 
be the centre of the cluster k then 

bk(nk) = [bkl, b ........ bk ,,IT  

where nk indicates the number of patterns that belong to the cluster k and k = 

,gotoStep6elsegotostep2. 

50 

1,2,.....,N2. 
Step 1: 
Step 2: 

Step 3: 

Step 4: 

Set p=1, N2=O, n N2=0 
Form the new cluster and set 
N2=N2+1, nN=1 
The cluster centre co-ordinates are calculated with the help of following 
equation 
bmi(n N2)=  Z 	 for i= 1,...., Nl 
Increment p by 1 and if p . P, determine the Euclidean distance EDk 
between the pattern p and centre of the cluster k, bk for k=1, 2....., N2 

N1 

EDk =amp factor * sqrt. E( bkl - X;( p1}2. 

.. i=1 

for i=1 to (NI -m) the amp_ actor =1 i.e. equal weighted metric for port 
activity 
Find k such that 
EDk = min {EDk) 

Step 5: 	If EDk 
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Step 6: 	Pattern p belongs to the cluster K, new co-ordinates of cluster centre are 

calculated as 

bkl(nk +1) _ (nkd(nk+l)) bkl(nk) + i/fnk+l)) xf~
) 

and go to step 3. 

6.4 DETECTION OF NEW ATTACKS 

The clustering algorithm will form clusters based on the inherent relation between 

the data instances (behavior of source machines over the time window). Based on the 

training data and the efficacy of the datamining technique to pull out features indicative 

of an attack the clustering algorithm will form clusters pinpointing to normal and 

abnormal behavior of machine activity. If the number of clusters formed is fixed during 

SOM training then subsequently a data instance in test data or live traffic corresponding 

to a new attack will be clubbed to the closest learned cluster and thereby go undetected or 
be falsely detected. 

It is one of our main assumptions that the training data set used for learning of 

SOM and MLP neural network is exhaustive in terms of normal behavior of machines 

and therefore any data instance during detection stage not within the cluster width of all 

learned clusters is in itself indicative of an attack and training of neural network follows 

this thinking which empowers our system to detect new attacks. This is implemented by 

forming a dummy cluster at the end of cluster learning which adaptively learns its cluster 

centre from that data instance which does not fall into the neighborhood boundary of all 

learned clusters. 

6.5 FUNCTIONALITY 

During training stage (refer system flowchart for period) the data instances are 

mapped to various clusters using clustering algorithm mentioned in section 6.3 and the 

total number of clusters formed include the dummy cluster created to accommodate for 

new attacks. These clusters learned i.e. cluster centre weights are averaged weightof the 

group of data instances it represents. These cluster centers are written to a file cluster.txt 

(refer Appendix `K'). Samples of clusters formed are listed in table 6.2. The system was 

trained on second week of tcpdump training data and a total of 33 clusters were formed 
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including dummy cluster as depicted from the screen shot in Figure 6.2. The tuning 

parameters applied for clustering are listed below: 

Vigilence parameter = 2 

Amplification factor = 40 

No. - 
Cluster 

Port 80 
;. 	...< 
Port 23 

Port Acti"vi 
Port 22 	Port 25 Port 123 Payload ` TTLe 	, 

Same 
,.address 

3 Invalid 
 : port 

1 0 -0.13012 -0.17197 -0.00735 1.355499 0 0 0 0 
2 -0.00049 -0.29451 -0.18617 -0.06904 -0.4267 0 0 0 0 
3 0 -0.16786 1.038775 -0.01494 -0.61176 0 0 0 0 
4 0 -0.31647 -0.20605 1.820978 -0.41398 0 0 0 0 
5 0 1.202854 -0.17113 -0.03989 -0.50339 0 0 0 0 
6 0 -0.35717 -0.24381 -0.11111 -0.46136 0 0 0 1.5 
7 0 -0.49228 -0.25609 -0.17432 -0.36959 0 0 0 2.474874 
8 0 1.54969 -0.33087 -0.03981 -0.445 0 0 0 1.788854 
9 0 -0.55884 2.277098 0 -0.38293 0 0 0 2.03266 

10 -0.00039 -0.395 -0.23195 -0.12742 1.82802 0 0 0. -0.79611 
Table 6.2. Samples of clusters formed 

= 

Session EIll View Bookmarks Settlngs He p 	 1 	f 	 Y 
••. 	

* Y 	Kam'" 	'v 	8 , 
~` d fT 	y 	- 	 P t 	'$s'P' 	A~€' T 	~ 	

m....M""'?'_'"""""' 

Wish to continuewith more ports (0 for No) ? : 0 

End of architectural learning phase ................12141 
Displaying the final set of ports selected...... 
dst ports : 	80 
dst ports : 	23 
dst ports : 	22 
dst ports : 	25 
dst ports : 	123 
Learning of SON (clustering) begins.......... 

Learning on file :in2l.tcpdump 
earning on file :in22.tcpdump 
earning on file :in23.tcpdump 

Learning an file :in24.tcpdump 
earning on file :in25.tcpdump =( 
Clustering done ......... 
Number of clusters formed are : 33 and total time windows are :10929 
prob ptr is empty 
Iniatiazed variables for NN 

all well file opened 

Detection list leaded from the labela2.txt file 
Training of neural network component (phase II) 

SCREENING FOR VICTIM MACHINE dst 172.16.112.50 

Figure 6.2 Screen shot of program depicting the clusters formed 

During neural network training and detection stage the clusters learned a& read 

from this file and based on the proximity to the cluster; the cluster centre selected. The 

weights of the cluster centre selected are then fed to the neural network module. 
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Chapter 7 

MLFF NEURAL NETWORK MODULE USING LEVENBERG 
MARQUARDT ALGORITHM FOR BACK PROPOGATION 

7.1 GENERAL 
The center weights of clusters selected are the input to the neural network under 

both training and detection stage: The neural network learns both normal cluster centers 

as well as those that point towards a pending attack in two phases. It firsts computes the 

probability of a cluster center being characteristic of an attacker using the labeled data. 

Once that being done it is then used to train the neural network to learn the attribute of 

each clusters selected. The attributes of clusters learned by the neural network include the 

probability of a cluster being indicative of an attack and its classification. 

7.2 NEURAL NETWORK ARCHITECTURE 
The system employs multi layer feed forward back propagation (MLFFBP) neural 

network. It contains an input layer, one or more hidden layers and an output layer. An 

MLFFBP Neural network has strong generalization capabilities and has been successfully 

applied to solve difficult and diverse problems. The neural networks are widely 

considered as an efficient approach to adaptively classify patterns, but the high 

computation intensity and the long training cycles in our case greatly hinder their 

application. Hence a faster convergence algorithm viz. Levenberg Marquart algorithm 

was used for backpropogation of weights. The algorithm is discussed in the section 7.3. 

The neural network linearises the • nonlinear relationship between the input and 

output vectors. More complex the relationship (complexity increases with number of non-

linear relations) more number of layers are required to map the relation, also the number 

of hidden nodes vary depending upon the number of output and input vectors. The ideal 

number of hidden nodes thatwere arrived for our system was based on the following 

relation. 
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No. of hidden nodes = 1  (input vectors + output vectors) 

The point is brought out . well in figure 7.1. During this chapter all such 
comparative study is conducted on a sample case i.e. training neural network on second 

week of DARPA training data (approximately 2.4 GB of data) for server 

pascal.eyrie.af.mil (172.16.112.50) using log sigmoid transfer function. Both output and 
input data are normalized within a range of 0-1 and the activation - function was found to 
give better results with log sigmoid transfer function. The figures are based on tables 

attached as appendices in this report. 

1 
.0.1 -  
0.01 

 

0.001  6 nodes 

 

0.0001  
4 nodes 

 

1 E-06  T  8 nodes 

 

1 E-07  --x-- 3 nodes 

 

1 E-08  _-10 nodes 

1E-09•  

1E—l0 

1E-11 

0  50  100  150 

No. of epochs 

Figure 7.1 	Effect of number of nodes in hidden layer for sample case of two hidden 
layers 

The numbers of layers in the hidden layers were decided based on the 
characteristic of the training data. A comparative study on number of layers in hidden 
layer performed for the aforesaid example case is given in figure 7.2. 
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10 

0.1 

0.001 	 1 layer 

U) 1 E-05- 	 -  2 layer 

1 E-07 ---+— 3 layers - 

1 E-09 

1E-11 
CC 	(0 t- 	0) O N 

T '- 

No.  of Epochs 

Figure 7.2 Comparative study of effect of number of hidden layers on error reduction 

The system prototype employed two hidden layers each consisting of 6 nodes, the 
number of nodes in the input layers consisted of 9 features and the number of nodes in 

the output layer consisted of two nodes giving the probability• of attack and the 
identifying the attack type as shown in figure 7.3. The training data and the target 
patterns for the neural network were stored in trgset.txt and target.txt. Samples of input 
and output patterns are listed in table 7.1. 

Input layer features (1....9) 
1 

Port 
activity 

(90,22,2 
3,25,123 

LV 

additia,a 
features 

viz 
invalid 
p 
same 

address 
TTLkey 

6 

Figure 7.3. 	Architecture of MLFFBP Neural Network 

?r_ 

Type of attack 
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atterns_  in put Patterns 
s ~ Port Activity Other3F,eatures, 

0.377401 0.308289 0.78512 0.370059 0.324814 0.377401 0.377401 0.377401 0.44089 
0.377401 0.564314 0.350808 0.371202 0.299178 0.377401 0.377401 0.377401 0.377401 
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401 
0.377401 0.564314 0.350808 0.371202 0.299178 0.377401 0.377401 0.377401 0.377401 
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401 
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401 
0.377401 0.357181 0.350677 0.376259 0.588034 0.377401 0.377401 0.377401 0.377401 
0.377401 0.357181 0.350677 0.376259 0.588034 0.377401 0.377401 0.377401 0.377401' 
0.377401 0.564314 0.350808 0.371202 0.299178 0.377401 0.377401 0.377401 0.377401 
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401 

Table 7.1. Samples of training and target patterns used by Neural Network 

Target Patterns .` 
Probability 
of attack 

Attack 
identifier= 

0.003607 0 
0.003607 0 
0.006981 0 
0.003049 0 

1 1 

0.003374 0 

7.3 MARQUARDT ALGORITHM 

Since the backpropogation learning algorithm [30] was first popularized, there has 

been considerable research on methods to accelerate the convergence of the algorithm. In 

multilayer perceptron networks, the most often encountered among these methods are 

modifications of backpropogation as error backpropogation with adaptive learning rate 

and momentum; conjugate gradient, quickprop, etc. All these algorithms can be 

considered as variations of the steepest descent method, because they only use 

information of the objective function and its gradient. The most popular approaches from 

the second category have used conjugate gradient methods. Another area of numerical 

optimization that has been applied to neural networks is nonlinear least squares. These 

are considered to be more efficient but their storage and computational requirements go 

up as the square of the size of the network. However, for networks with few hundred 

weights that is the case with our system the algorithm is very efficient when compared 

with conjugate gradient techniques. Levenberg Marquardt algorithm is an approximation 

to Newton's method. Based on the value of a parameter . , in each epoch the algorithm 

shifts i.e. when'. is large the algorithm becomes steepest descent while when. is small it 
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becomes Gauss-Newton method. The Marquart algorithm is discussed in detail in [31]. A 

comparison with other methods is drawn in figure 7.4 which highlights the suitability of 

Levenberg Marquart backpropogation algorithm in the neural network module of our 
system. 

10 
0.1 —.--steepest descent 

W 	0.001 with momentum 

N 1 E-05 - 	conjugate 
1 E-07 gradient 

~ 1 E-09 —~ quassi newton 
1E—l1— 

0 	50 	100 	150 -- Ievenberg 
marquardt 

No. of Epochs 

Figure 7.4 	Comparison of various backpropogation methods used in neural network 
training 

7.4 TRAINING NEURAL NETWORK 

The neural network trains on the data instances that are the centers of the cluster 

selected by the clustering module. The training is supervised using the labeled tcpdump 

training data; the labeled data gives out the timestamp of the attack and the IP addr of the 

victim machine. A sample case is enumerated below in which the cluster 18 is correctly 

labeled as land attack, but since the other packets are also within the leeway of 60 

seconds they too are erroneously labeled as attack. Figure 7.4 shows the other clusters 

(except cluster No. 18) being erroneously labeled as attack based purely on timestamp 

provided by labeled data. 
** timestamp cluster 03/08/1999 15:57:07 timestamp label 03/08/1999 
15:57:15 
Attacker :172.16.112.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :18 name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.466072 
(22) : -0.408248 
(25) : 0.000000 
(123) a -0.408248 
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key : 0.000000 
TTL : 0.000000 
same addr : 1.000000 
invalid port : -0.461069 
** timestamp cluster 03/08/1999 15:58:12 timestamp label 03/08/1999 
15:57:15 
Attacker :172.16.113.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :2 	name of attack:land 

20.000000 
(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 
learning on file :in22.tcpdump 

The pitfalls in the labeled data and their fallout on our system are discussed in section 
2.2.5 and 4.3 respectively. To outweigh these shortcomings supervised learning is 

conducted in two phases. In the first phase the training is conducted in batch mode and 

based on the labeled data the number of times a cluster has been labeled as an attack and 

the type of attack is maintained. At the end of the first phase the probability of a cluster 

being an attack is computed based on the number of times it was labeled as attack against 
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Learning on file :in24.tcpdump 
;Learning an file :in25.tcpdump 

Clustering done ......... 
Number of clusters formed are : 33 and total time windows are :10929 
prob ptr is empty 
Iniatiazed variables for NN 

all well file opened 

Detection list loaded from the labels2.txt file 
Training of neural network component (phase II) ' 

SCREENING FOR VICTIM MACHINE dst 172.16.112.50 
Trg 	on file :in2l.tcpdump 
cluster No. 	:11 name of attack:land 

cluster No. 	:6 	name of attack:land  

cluster No. 	:10 name of attack:land 

cluster No. 	:11 name of attack:land 

cluster No. 	.7 	name of attack:land 

cluster No. :18 name of attack:land 

No. 	:2 	name of attack:land 
c
luster 

Figure 7.4. 	Labeling of clusters as attack based on labeled tcpdump detection list 

the number of times it was selected by the clustering module. By doing so firstly a 

indiscriminate opinion of a cluster being indicative of an attack behavior is ascertained 

i.e. since at any time several machines are concurrently in communication with the victim 

machine and since the labeled data does not specify the attacker machine so our system 

will label all these machines rather cluster centers having the same timestamp as attack, 
the probability computation will rule out those clusters wrongly labeled by assigning very 

low probability of being an attacker. Secondly the false positives due to leeway in 
timestamp will also be nullified by this method. 

The neural network was trained to learn the behavior of a source machine 
(emulated by cluster centers) as indicative of an attack and to classify the type of attack. 

The actual supervised training of neural network is done in the second phase in which 

using the probability computed of each cluster, the first output attribute of the neural 

network is trained as shown in figure 7.5. Note that all the clusters which were 
maliciously labeled, their probabilities computed overcome the shortcoming as discussed. 

Also the probability of cluster 18 being an attack is 1. The name of attack launched on 
the victim 
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;cluster No. 	:16 name of attack:portsweep 

End of phase I ' 
Probability computed at the end of phase I for clusters 
Prob of attack for cluster 1 is : 0.000000 0.000000 
Prob of attack for cluster 2 is : 0.003374 0.800000 
Prob of attack for cluster 3 is : 0.000000 0.000000 
Prob of attack for cluster 4 is 	0.003344 1.000000 
Prob of attack for cluster S is : 0.001263 1.000000 
Prob of attack for cluster 6 is : 0.003352 1.000000 
Prob of attack for cluster 7 is : 0.003049 1.000000 
Prob of attack for cluster 8 is : 0.034483 1.000000 
Prob of attack for cluster 9 is : 0.000000 0.000000 

, Prob of attack for cluster 10 is : 0.003607 0.800000 
`Prob of attack for cluster 11 is : 0.006981 1.000000 
=Prob of attack for cluster 12 is : 0.001133 1.000000  
Prob of attack for cluster 13 is : 0.000000 0.000000 
Prob of attack for cluster 14 is : 0.018868 1.000000 
Prob of attack for cluster 15 is : 0.000000 0.000000 
Prob of attack for cluster 16 is : 0.250000 0.800000 ; 
Prob of attack for cluster 17 is : 0.000000 0.000000 
Prob of attack for cluster 18 is : 1.000000 1.000000 
Prob of attack for cluster 19 is : 0.000000 0.000000 
Prob of attack for cluster 20 is 	0.000000 0.000000 
Prob of attack for cluster 21 is : 0.000000 0.000000 
Prob of attack for cluster 22 is : 0.000000 0.000000 
Prob of attack for cluster 23 is : 0.142857 0.800000  
Prob of attack for cluster 24 is 	0.000000 0.000000  

Figure 7.5 Computation of Probability of attack for each cluster 
machine is available in the labeled data which is mapped into a numeric value between 

0.4 -1.0 to classify the type of attack (refer column 2 of fig 7.5). The choice of the above 
range is taken since for a cluster center of non-attack kind the second output attribute (i.e. 

type of attack) would be zero. Since in the first-phase each time a cluster is labeled as an 

attack it's type is also learned but for those clusters which were wrongly labeled for 
reasons discussed above though the probability computed rules out the cluster being an 
attack but the type of attack (numeric value in range 0.4-1.0) learned leads to 
convergence problem for the .network learning. Since for a feed forward network having 
two outputs as in our case and specially incase of data instance pertaining to falsely 
labeled cluster i.e. having a very low probability of attack_ example 0.00004 and trained 
as a back attack (numeric value mapped is say 0.5) will lead to convergence problem 

since the weights till the last hidden layer is mostly common for both the output layer 
attributes and it's the weights between the last hidden layer and output layers that has to 

adapt weights to learn this diversified range of output attributes (0.00004 and 0.5). 
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Once again data mining skills came to our rescue, by applying a rule based 

condition at the end of first phase those clusters having a very low probability of being an 

attack, its type of attack is classified as non-attack (numeric value mapped is zero). By 

doing so the convergence problem earlier noticed was by far resolved. Figure 7.6 
illustrates the effect of applying datamining skills on our example case for better 
appreciation. 

10 
0.1 —.--post   

W 0.001 	 „ 	 datamining N 1E-05 
2  1 E-07 	 - pre datamining 

1 E-09 
1E-11 

0 	50 	100 	150 
No. of Epochs 

Figure 7.6 Comparative study: Effects of datamining techniques on neural network 
convergence 

At the close of training phase the weights learned of the neural network are stored 
in file weights.txt (refer Appendix `M') as shown in figure 7.7 and the system is geared 
up to fall in detection mode. 

7.5 DETECTION MODE: NEURAL NETWORK 

In this stage the system prepares itself for detection by loading the clusters centers 

and MLFFBP weights learned during training phase from cluster.txt and weights.txt files. 

The data mining module extracts the features from the test tcpdump data or live traffic 

over the time window and presents it to the clustering module, which in turn based on the 

proximity to cluster centers learned selects the cluster center weight to this data instance 
and forwards it to the neural network module for rendering decision on pending attack. 

The neural network module equipped with the weights learned during training phase 
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Ii 
`Prob of attack for cluster 32 is : 1.000000 
Prob of attack for cluster 33 is : 0.500000 
Sidestepping NN phase II trg of weights and loading weights trained earlier 
Note : Column I gives out layer No. ant the following columns the weights 
1: 12.124458 1.336097 4.189026 6.794621 -10.694255 -14.406758 3.915025 -14.322686 
2: 4.094130 -2.701712 3.770890 1.586957 -5.579520 12831892 3.727951 7.102176 
3: 5.986238 5.154681 -3.738653 -3.059633 0.793220 5.544315 2.526078 8.003633 
4: 7.266730 -0.707502 -3.184903 -1.816282 4.052572 -3.813072 i1-.603840 1.590209 
5: 5.346167 3.254396 5.188834 -0.289592 0.275908 1.443059 1.664576 0.662656 
6: -0.402044 -0.813780 -0.888795 -1.548982 -1.191605 0.080371 0.660984 0.097620 
7: -28.985300 -32.817535 -21.243147 -41.157097 -33.861923 -3.830380 25.419094 -13.387460 
8: -17.197578 26.661211 -26.331026 2.002557 1.340583 9.265058 -10.933915 -16.537451 
9: 2.123473 0.736094 -0.835305 6.112051 7.614748 3.765511 -16.330341 -1.774928 

1: -1.588189 0.880498 -6.735077 2.338000 -3.991837 -0.231353 1.615264 6.985277  
-2: -1.100372 2.710463 3.063509 -4.355818 1.348661 9.724065 0.266114 22.523344 
`3: -0.815352 2.760505 -0.043067 -0.399806 3.293720 0.899433 -2.046620 0.198607 
4: 3.494991 2.047174 -3.858157 -0.965705 1.780292 -0.849249 3.441759 0.361174  
5: -0.157083 -4.922811 7.265902 -3.733304 9.365573 1.230118 0.500251 -8.766551 
•6: -3.378566 1.299354 5.746967 5.581333 3.194082 -3.507980 -3.540452 1.309580" 
7: 2.884412 4.150403 8.315664 -0.023191 -3.722160 2.400542 -1.561797 4.834430 
8: -2.459903 3.753446 -11.513946 -1.307424 4.232545 -9.212719 0.151397'-1.627768 

1: 2.517360 -5.947798 
2: -3.875303 -3.074685 
3: 21.020370 8.742780  -  
4: 3.898470 0.653328  
5: -5.921271 -4.453188 

Figure 7.7 Weights learned by the neural network using Levenberg-Marquardt 
algorithm 

indicates the probability of the cluster center (behavior of the source machine in 
the time window) being that of an attacker and if so classifies the type of attack. 

For exercising control over the number of false positives being generated by the 

system the system can be set to one of the three states, i.e. Normal, alert or Paranoid. 

These states in turn set the threshold for the attack probability, above that the system 

generates an alarm. These thresholds are user defined and 0.75, 0.5 and 0.3 have been 

used in this work. The probability of being an attack computed for each cluster center is 

explained in the earlier section, this is done as in the training tcpdump data sufficient 

instances of those attacks were available. However, in case of new attacks where the 

- clustering module will select the dummy cluster and load the features presented by the 

data-mining module as it's cluster center, this then is fed to the neural network module 

but the outputs in such a case cannot be predicted and will depend on the weights learned. 

The performance of the system can be furthered by including new attack data instances 

during training of neural network and training it with the probability of an attack equal to 

the paranoid threshold while the classification of an attack can be trained as `new attack' 
(mapped to numeric value 0.2). 
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Chapter 8 

RESULTS AND CONCLUSION 

8.1 RESULTS 
The report discusses our system design in detail and to substantiate the claims the 

prototype is developed to prove the efficacy of the design. The system prototype 

developed as part of this work focuses on detection of few attacks not or poorly detected 

by [17]. The adaptation required to bring other attacks under the system is merely in the 
datamining module where depending on the attack signature; algorithms to pull out 

corresponding features are worked out. 
The system was trained on second week of training data, (attack week), where as 

the architectural learning stage was carried out on the .first day of third week tcpdump 

data (non-attack). The vigilance parameter set for clustering was 2 where as the 

amplification factor = 40 were set for according more importance to features viz. 

payload, same address, the difference of whose distances mattered in the Euclidean 

metric. The number of clusters fixed during training was 33, of which four clusters 

(cluster No. 18, 30, 32 and 33) were declared abnormal i.e. indicative of attacks as listed 

in table 8.1, where as the rest of the clusters were considered normal activity. As seen 

cluster No. 18 and 30 reflected attack attributable to Land attack (attack identifier = 1), 

cluster No. 32 was computed having high, probability of being a portsweep attack (attack 

identifier = 0.8). 

Cluster No ;'Probability of attack; Attack identifier Remarks 
18 1.0 1.0 Land attack 
30 1.0 1.0 Land attack 
32 1.0 0.8 Portsweep attack 
33 0.5 0.2 New attack 
Table.8.1. List of anomalous clusters learned by system 

Cluster No. 33 is the dummy cluster which holds the weights of any machine 

activity that does not confirm to the normal behavior as learned during training. The 
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cluster aids in detecting `new attacks' , these are those attacks whose patterns were not 

available in the training data, Table 8.2 lists few of these attacks. 
,fir* 

Known attacks 
,~,  New attacks 

ntinfoscan dosnuke 
Crashiis Sshprocesstable 
Httptunnel Smurf 
Ps Guessftp  
Eject Xsnoop  
Secret S lattack 
Mailbomb Guest 
Ft write Arppoison 
Portsweep Sendmail 
Perl 
Neptune 
Phf 
Satan 
Land 

Table 8.2. List of Known and new attacks 

Type of 	Correct • 	False 	Correct 	Positives 
attack 	prediction 	Negatives 	prediction of 	 €~ 

of normalo P « 	attack trend 
trend 

Portswccp 	100 	0 -_;100 	, 0 
Crashiis, .'4 	100 	 0 	 100 , 	 0 

Back ; ... 	100.:. 	0._"u. 	100,.< 	 0; 

Land 	100:- : 	0 	;': 	100.... 	 0 
Mailbomb . 	92 	w8-_......-.. 	88°..=. 	 12 

New attacks 
Smurf 	100 	 0 	 100 	 0 

Union of all - 	76 	 24 , 	 66, 	 44 
attacks 

Table -8:3 	Results obtained for detection of attacks in test chta 

The results obtained for the attacks as shown in table 8.3 are against three server 

machines Pascal.eyrie.af.mil, Hume. eyrie.af.mil and Marx. eyrie. af.mil (refer Appendix 

`B') monitored by the system for traces of attacks and these are near perfect but so may 

not be the case with all other attacks. The results are direct consequence of the data 

mining skills employed at data mining module. As brought out in earlier a large amount 

of attacks can be detected by fairly good results however, with each featire appended the 

neural network training will get more demanding. 
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8.2 CONCLUSION 
With the advent of technology in all spheres, information and its dissipation have 

become a core activity. The networks are augmenting the purpose of optimizing the work 

environment by information and resource sharing. As its progress gallops towards higher 
bounds the dark horses (network miscreants) are not far behind in finding novel ways in 
threatening its very freedom and spirit. The network security administrator tries b 

prevent hackers from misusing the network resources by using security tools like 
firewalls and other mechanisms. These tools can be used to prevent attacks if the system 

administrator knows the attacker identity; an IDS aids a system administrator in 

identifying both known and unknown attacks. Though several methods for detection 
exists as discussed in chapter 1 of this report however, none in itself can be used as a 

silver bullet. Instead an ideal security tool for a system should consists of two- three tiers 
of defense with the firewalls forming the first layer and an IDS the second and third 
which employs the strength of both misuse and anomaly based detection system. 

The system designed as part of dissertation work is based on this very principle 
but attempts to blend the potency of both the techniques in one. It detects attacks based 

on deviation from the normal while the clustering mechanism is used for learning the 
normal/abnormal behavior. The strength of the system lies in its ability of also using 
signatures of attacks for clustering the machine behavior besides the statistical feature 

computation. The signatures of attacks (discussed in chapter 2) are extracted from the 
network data over a time window by employing datamining skills. The prototype 

developed uses keyword selection to enhance the detection capability with encouraging 

results. Back and crashiis attack are detected based on misuse detection technique. The 

computation of the source machines behavior over a time window gives an added 

advantage of analyzing anomalous activity based on machine behavior during the 

window unlike packet level analysis in traditional anomaly based detection system. 
The use of neural network based design reduces the computational and memory 

needs of system during real time detection stage, - the bulk of the systems overheads in 

terms of processing and memory needs are limited to the training phase where for faster 

convergence of neural network Levenberg Marquart algorithm was used. 
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The use of pcap libraries give an inherent advantage to the system of adapting to 
real time detection of network traffic since the traffic are handled as network packets 

rather than as text files. The graphic interface developed for the prototype project is done 

using libglade and the core programming is done on GNU C on Linux platform [Al]. 

8.3 FUTURE RESEARCH 

We have seen in this work how amalgamation of misuse and anomaly based 

detection system can be done exploiting the individual strength of each of these 

techniques. Use of neural network based system gave an added advantage of self learning 

the anomalous activity while reducing the computational and memory overheads during 

detection stage. The clustering mechanism learned the anomalous behavior while the 

datamining module unraveled the attack signatures within the packets over a time 

window. We remark that the improvements we suggest are meant to result in small 

improvements in performance but that we have not yet conducted implementation testing 
to verify this. Some areas for further research suggested here are: 

1. By devising better mathematical algorithm in the datamining module 

several known attacks can be detected by this system. To detect newer attacks the 

system (neural network module) can be trained on the segment of test data 

consisting of new attacks with a forced probability of attack equal to the threshold 

set for paranoid status (0.3 in this work), so that any activity not in line with 

normal activity and neither an attack activity can then be clubbed by the 

clustering module as a new cluster (referred to as dummy cluster in this 

document) and the system administrator alerted. The training of the prototype 

developed was limited to the training data (DARPA 1999 dataset) which did not 
contain any instance of new attacks however the system design has 

accommodated for such a contingency. 

2. The work in its present state is unable to detect stealthy attacks which take 

place over a larger period of time than the time window selected by the system 

since an attacker will mask his activity as a normal one in a fixed time frame. It is 

suggested that to detect such attacks the foot trace of a source machine in terms of 
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the clusters it belongs to over successive time windows can also be learned by the 

neural network to detect stealthy attacks. It is understood that an attacker 

launching a stealthy attack will follow a .typical trait. 

3. 	The usage of the system for real time detection of network traffic is 

overshadowed by the requirement of clustering mechanism training and neural 

network. This shortfall can be overcome by employing datamining skills to 

extract those portions of DARPA dataset that represent the network behavior 

similar to the network where it is to be used. The system has limited dependence 

of machine specific features like IP address etc. and detects attacks based on 

machine behavior; therefore those portions of dataset which possess similar 

statistical features as the live network can be used for training these components 

of our system. 
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Appendix `A' 

IMPLEMENTATION 

Al. PROJECT DESCRIPTION 

The prototype of the system discussed in this report is written in GNU C on Linux 
platform. The tools used for development are discussed in succeeding section. Some of 
the components of the project require to be trained before the system can be used. The 
incubation period of the project for training lasts for about 3 hours. The system was 
trained on complete second week (attack + non attack data) and first day of third week 
(non attack data) of inside.tcpdump files of DARPA 1999 dataset. These files were 
renamed as in[w] [d].tcpdump, where w stands for week and d stands for the day of the 
week i.e. inside.tcpdump file for first day of second week is renamed as in2l.tcpdump. 
The project takes all the parameters as command line arguments and can be executed 
through console terminal using following command: 

./nnconsolel —c -1 —e 4 —r 1.5 —a 1000 —w 10 —j  2 —m 40 —f "dst 172.16.11250" —F 
in31. * in2* 

Where options signify 

-c [number of packets to be captured live or file specified in —F (-1 indicates 
infinite/EOF)] 

-r [vigilance parameter for clustering mechanism] 

-e [No. of extra ports to be monitored by the system besides those specified by 
system administrator] 

-a [Architectural time in seconds over which the architectural structure is to 
decided] 

-w [Width of time window in seconds] 

-j [No. of hidden layers in the MLP NN] 

M 
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-m [Amplification factor by which some of the features are weighted in clustering 
mechanism] 

-f [Victim server machine] 

-F [Name of files to be used for training components of system] 

The graphic interface for the project is developed using libglade, which is 
inherently available with Linux operating system when loaded along with developmental 
tools. The front end graphic interface is activated by the following command: 

./nngraphic —F in31.* in2* 

The main application window is as shown below: 

The about button displays the credits to the authors, quit button returns control 

back to console terminal, where as the next button passes the control to the menu window 

displayed in the next page. The menu window offers to change the default values, specify 

the input parameters and execute the program. 
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S. 	 olx 
written by IT,anslat by 

Major Seby Thomas 
Corps of Signals  
Indian Army (as part oft tech dissertation) 

Guides Prof J D Shanna (PSE) 
Prof M. K. Vasantha~(S. E Q R)~ 

Irian Institute of Technology 
Raotkee 

-ax 
Input parametersjchar.ge dcfauta j xocutIon  

Specify the program arguments for executlon 

filename 	In2ltcpdump 	 v 

Monitor dst 172.16.112.54 Pods to be monitored toned 4 

-a 	 s p•-`` 	, : w 	r 	i t7 _ k. 	° 	v& 	Se w 	rXss ~,~: 	l ` 

Time window width 	10 	Program status 	® Training mode 0 Detection mode 
~ 	~ ~'"~a 	~~' ~.'. 	~ 	'~c g s 	° x ^; 	~"- „Y ~ 	~ 	xs' ~ a~° -x• 	~"~ ~ ~ ~ 	~ It 	~. 
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Once these parameters are entered using the graphical interface program the 
control is passed back to the core program which is console driven. 

Input pataCngFe 	►tge detains .t 
 Execution  

Carefully read the foflawing lnstnrctions before you proceed further 

Please ensure the following have been done before you proceed 
1. The detection list pabeled attack data) for neural network training Is stored as per the format mentioned In 
product documentalon In.labels2.txt file. '• '' 
2. While In detectionmode the files generated by the system In training mode In default directory should be 
available to the system for detection namely : 
set.txt, 

valid_port.txt, '= 

Cancel 	 F.xrecUte 

statics 
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Al. PROJECT DEVELOPMENT: TOOLS 

The project was developed using system and programming tools inherent with 

Linux Fedora core version 10.0, Red Hat Distribution. The choice of the operating system 
is justified in this section. 

A2.1 PCAP libraries 

The Packet Capture library provides a high level interface to packet capture 

systems. All packets on the network, even those destined for other hosts, are accesside 

through this mechanism. The functions provided with the library help in basic operations 

like opening tcpdump file or applying filters and to capture packet from live traffic. The 

pcap.h file needs to be included in the source code and linked while comliling. The man 

pages on pcap provide elaborate details on usage of these functions. 

A2.2 Libglade libraries 

Glade is a user interface builder for GTK+ and GNOME, released under the GNU 
GPL License. The user interfaces designed in Glade are saved as XML, and by using the 
libglade library these can be - loaded by applications dynamically as needed. By using 

libglade, Glade XML files can be used in numerous programming languages like C, C++ 

etc. GNOME is an acronym for GNU's Network Object Model Environment. GNOME's 
main objective is to provide a user friendly suite of applications and eas}.to-use desktop. 

GTK+ stands for Gimp toolkit. It is a library for creating graphical user interfaces. GTK+ 

provides some unique features over standard widget libraries. 

A3. ORGANISATION OF SOFTWARE 

The logical flow of the software is in synch with the system flowchart (figure 4.2) 
and can be better assimilated in its light. The software consists of two main programs, the 

first handles the graphical interface while the second is a console driven intrusion 
detection system. The second program is called from the first program using execve 
function (execve function is defined in the unistd libraries and is used for executing 
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programs; Linux Programmers Manual provides details on its usage). The second main 
program mainly consists of four main sub programs and several sub subprograms defined 
as functions within the source code; the key functions only are illustrated in figure A3.1 
for paucity of space. 

INTRUSION DETECTION SYSTEM 

Interface main 
program 

Console driven 
main pgm 
nnintrus.c 

archl_lo 	my_callback() 	som() 

handle_ethernetO 

neural() 

handle ICMP() 	handle_1P() 

handle tcp() 	handle_udp() 

Figure A3.1 Organization of Software 

load detectlistl() 

som_testo 

live_dete ct() 

The purpose of these functions or subprograms can be directly linked to the 

system flowchart. Their roles are described below: 

(a) my_callback arch: 	Architectural learning module 

(b) my_callback: 	 Datamining module 

(c) som 	 Clustering module under training 

(d) som test 	 Clustering module post training stage 

(e) Neural 	 Neural network module under training using 

Levenberg — Marquardt algorithm. 
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(f) live_detect 	 Neural network module under detectbn 
stage. 

(g) handle_ethernet(),handle_IP,handle TCP,handle_ICMP(),handle UDPO : 
Handle ethernet() handles the Ethernet frame and based on the protocol and 

application header respective sub subprograms handle the data. 

(h) load detectlistO: 	Subprogram loads the detection list from 
labeled DARPA dataset into the data structures for use by the neural network for 
supervised training. 

The organization of the software is highly modular in nature and facilitates test 
points at each stage for debugging. The system consists of following programs written in 
GNU C (approximately 3500 lines of code): 

(a)  nnconsole.c 	I 790 lines of code 
(b)  nngraphic.c 
(c)  initialize.c 	............... 447 lines of code 
(d)  functions.c .............. 980 lines of code 
(e)  neural.c 	.................. 504 lines of code 
(f)  NN_levmar.c ........... 611 lines of code 
(g)  gui.c 	..................... 126 lines of code 
(h)  nnintrusion.glade ...... used libglade tools 
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Appendix `B' 

LIST OF OUTSIDE, INSIDE HOSTS ,ROUTERS AND HUBS IN SIMULATED 1999 

DARPA DATASET 

Outside Hosts 

135.13.216.191 alpha.apple.edu Redhat 5.0 kernel 2.0.32 

135.8.60.182 beta.banana.edu Solaris 2.5.1 

194.27.251.21 gamma.grape.mil SunOS 4.1.4' 

194.7.248.153 delta.peach.mil Redhat 5.0 kernel 2.0.32 

195.115.218.108 epsilon.pear.com Solaris 2.5.1 

195.73.151.50 lambda.orange.com SunOS 4.1.4 

196.37.75.158 jupiter.cherry.org Redhat 5.0 kernel 2.0.32 

196.227.33.189 saturn.kiwi.org Solaris 2.5.1 

197.182.91.233 mars.avocado.net SunOS 4.1.4 

197.218.177.69 pluto.plum.net Redhat 5.0 kernel 2.0.32 

192.168.1.30 monitor.af.mil MacOS AF SNMP monitor 

192.168.1.10 calvin.world.net Outside gateway 

192.168.1.20 aesop.world.net V Outside Web Server 

192.168.1.90 solomon.world.net Not Part of Simulation 
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Routers & Hubs 

172.16.112.1 loud.world.net 

192.168.1.1 loud.world.net 

172.16.112.5 None. 

192.168.1.2 None. 

Cisco 2514 Router 

Cisco 2514 Router 

Hewlett-Packard EtherTwist Hub 

Hewlett-Packard EtherTwist Hub 

Inside Hosts 

172.16.12.10 plato.eyrie.af.mil Solaris 2.6 Not part of simulation 

172.16.112.10 locke.eyrie.af.mil Solaris 2.6 inside sniffer 

172.16.112.20 hobbes.eyrie.af.mil Redhat 5.0 Inside gateway, kernel 2.0.32 

172.16.112.50 pascal.eyrie.af.mil Solaris 2.5.1 

172.16.112.100 hume.eyrie.af.mil Windows NT 4.0 Build 1381, Service Pack 1 

172.16.112.149 eagle.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172.16.112.194 falcon.eyrie.af.mil Solaris 2.5.1 

172.16.112.207 robin.eyrie.af.mil. SunOS 4.1.4 

172.16.113.50 zeno.eyrie.af.mil SunOS 4.1.4 

172.16.113.84 duck.eyrie.af.mil SunOS 4.1.4 

: 
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172.16.113.105 swallow.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172:16.113.204 goose.eyrie.af.mil Solaris 2.5.1 

172.16.114.50 marx.eyrie.af.mil Redhat 4.2 kernel 2.0.27 

172.16.114.148 crow.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172.16.114.168 finch.eyrie.af.mil SunOS 4.1.4 

172.16.114.169 swan.eyrie.af.mil Solaris 2.5.1 

172.16.114.207 pigeon.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172.16.115.5 pcl.eyrie.af.mil Windows 95 

172.16.115.87 pc2.eyrie.af.mil Windows 95 

172.16.115.234 pcO.eyrie.af.mil Window NT 4.0 Build 1381, Service Pack 1 

172.16.116.44 pc5.eyrie.af.mil Windows 3.1 

172.16.116.194 pc3.eyrie.af.mil Windows 95 

172.16.116.201 pc4.eyrie.af.mil Windows 95 

172.16.117.52 pc7.eyrie.af.mil Windows 3.1 

172.16.117.103 pc9.eyrie.af.mil MacOS 

172.16.117.111 pc8.eyrie.af.mil MacOS 

172.16.117.132 pc6.eyrie.af.mil Windows 3.1 

172.16.118.10 linuxl.eyrie.af.mil Redhat 5.2 kernel 2.0.36 

172.16.118.20 linux2.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172.16.118.30 linux3.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172.16.118.40 linux4.eyrie.af.mil Redhat 5.0 kernel 2.0.32 

172.16.118.50 linux5.eyrie.af.mil Redhat 5.0 kernel 2.0.32 
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172.16.118.60 linux6.eyrie.af.mil Redhat 5.0 

172.16.118.70 1inux7.eyrie.af.mil Redhat 5.0 

172.16.118.80 linux8.eyrie.af.mil Redhat 5.0 

172.16.118.90 linux9.eyrie.af.mil Redhat 5.0 

172.16.118.100 linuxl0.eyrie.af.mil Redhat 5.0 

kernel 2.0.32 

kernel 2.0.32 

kernel 2.0.32 

kernel 2.0.32 

kernel 2.0.32 

m 
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Appendix `C' 

Detections List : Training DARPA dataset 
.... 	. _ 	-_ 	_.. 

IID#Date 	Start_Time Destanatson 	;Score 

1 ; 03/08/1999 	08.01:01 	hume.  eyrie .af.mil 	11 

1 2 1 03/08%1999 	108:50:15 	Izeno.eyrie.af.mil 	 1 
 ...._ 	.....__............ 	 ................ 	. 

103/08/1999 	09:39 16 	marx eyrie.af.mil 	 (1 

F i[5758Il999 	12:09:18 	pascal eyrie .af.mil 	Ii 
F5,ijl 03/08/1999 	.15:57:15 	pascal eyrie of mil 	1 

6 03/08/1999 	17:27 13 	rmarx eyrie .af.mil 	1 

[u 03/08/1999 119:09:17 	pascal .eyrie .af.mil 	1 

03/09/1999 	109:43:51 	pascal eyrie af.mil 
.... 

1 	elect 

10 03/09/1999 10:06 43 Farx eyrie af mu f i back 

(~17' 03/10/1999 	[12:02:13 

18 03/10/1999 	13:44:18 

.eyrie.af:mil 

af.mil 	1 

attack 

03/09/1999 08:44:17 marx.eyrie.af.mii 	1 	portsweep 

`19,103/10/1999 	115:25:18 	marx.eyrie.af.mil 	~1 	perl (Failed) 
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20 03/10/1999 	120:17:10 	1172.016.112.001-114.254 	1 	jipsweep 

j21 03/10/1999 	23:23 00 	pas a eyrie.af.mil 	1 	eject (console) 

[~22 03/10/1999 	23:56:14 	hume.eyrie.af.mil 	1: 	(c~rashiis 

[28; 03/11/1999 	14:25:17 	marx eyrie.af.mil 	 1 

 

~.... 	.. 	 ._ 	. _ ... 	. 	..:.......... 	.... 	... 	............. .. 	_ 	..•. 	......_... 	.._.......... 	..:.. 	... 

ii 
_..... 	_ 	. 	..3 

9103/11'1999 15:47:15 pascal eyrie.af.mil 1 land 

	

0 03/11/1999 	16:36.10 	172.016.112.001-254 	1 	j jipsweep 

	

13/11/1999 	19.16 18 	pascal eyrie af.mil 	I1 	ftp-write 

32:03/12/1999 08:07:17 Imarx.eyrie.af.mil 	ji 	phf 

	

33 03/12/1999 	08:10 40 (marx.eyne af.mil 	~1 	 perl (console) 
........ 	 ( 	 i ._ ...._.. 	 .._ 	I 	....... 	..., 

	

34; 03/12/1999 	08:16:46 	pascal. eyrie.af.mil 	1 	(ps (console) 

[35F2h159909 1815 	..  duck eyrie of mil 	 I 1 	pod ~~ 	... 	........._ 	. 	._ 	C 

	

r36 03/12/1999 	11:20:15 	marx eyrie .af.mu 	 1 	` neptune 
.... 	_....._ 	 ._.._.. 	 ...._ 	 t 

	

(~37 03/12/1999 	(12:40 12 	hume eyne af.mil 	1 	hiis 

38:03/12/1999 13:12:17 zeno.eyrie.af.mil 	 11 ~1loadmodule 

 

(3~9 03/12/1999 	14:06:17 marx eyrie.af.mi 	 perl (Failed) 

	

[40"'!.. F3/12/1999 	14:24:18 	pascal eyrie af.mii 	1 	,i ps 

	

1 03/12/1999 	15 24 16 	pascal .eyrie.af.mil 	1 	effect 

	

2/1999 	,117:13:10 	`I pascal.eyrie.af.mil 	`~1 
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999 	117:43:18 	pascal.eyne of mil 	 1 	ftp write 
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Appendix `D' 

Effect of increasing number of hidden lavers in neural network 

training 
(Figure 7.2) 

Epochs 1 layer 2 layer 3 layers 
0 0.002401 0.049361 0.680279 
5 0.000165 0.000116 0.000231 
10 0.000121 7.18E-07 0.000231 
15 3.93E-05 5.49E-07 0.000231 
20 3.91 E-05 5.18E-07 0.000231 
25 3.90E-05 4.66E-07 0.00023 
30 3.90E-05 3.25E-07 0.00023 
35 3.89E-05 2.82E-07 0.00023 
40 3.89E-05 2.48E-07 0.00023 
45 3.88E-05 1.59E-07 0.00023 
50 3.87E-05 9.09E-08 0.00023 
55 .3.87E-05 5.86E-08 0.00023 
60 3.87E-05 4.93E-08 0.000229 
65 3.87E-05 3.71 E-08 0.000229 
70 3.87E-05 2.36E-08 0.000229 
75 3.87E-05 1.66 E-08 0.000229 
80 3.87E-05 1.37E-08 0.000229 
85 3.87E-05 6.43E-09 0.000229 
90 3.87E-05 3.51 E-09 0.000229 
95 3.87E-05 2.34E-09 0.000228 
100 3.87E-05 1.74E-09 0.000228 
105 3.87E-05 5.44E-10 .0.000228 
110 3.87E-05 2.82E-1 0 0.000226 
115 3.87E-05 1.87 E-1 0 0.000222 
120 3.87E-05 1.39_E-10 0.000206 
125 3.87E-05 6.81 E-11 0.000205 

Note : The effect of varying the number of hidden layers in MLFFBPNN is observed in 

the table above, Column 1 shows the number of epochs and 2,3,4 M.S.E rate when the 

number of layers varied as 1,2,3 respectively. 
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Appendix `E' 

Effect of varying number of nodes in each hidden laver 
(Figure 7.1) 

Epochs 6 nodes 4 nodes 8 nodes 3 nodes 10 nodes 
0 0.049361 0.0102666 0.47036 0.00033 0.772442 
5 0.000115821 0.00 0.00023 0.00014 0.0002008 
10 7.18E-07 7.81E-05. 0.00021 0.00011 0.0001817 
15 5.49E-07 2.60E-05 0.00021 8.88E-05 1.82E-04 
20 5.18E-07 1.97E-06 0.00021 2.64E-05 1.82E-04 
25 4.66E-07 2.36E-07 0.00021 2.54E-05 1.82E-04 
30 3.25E-07 1.84E-07 0.00021 2.52E-05 1.82E-04 
35 2.82E-07 1.54E-07 0.00021 2.50E-05 1.82E-04 
40 2.48E-07 9.80E-08 0.00018 2.50E-05 1.82E-04 
45 1.59E-07 5.90E-08 0.00014 2.50E-05 1.82E-04 
50 9.09E-08 3.84E-08 0.00014307 .2.50E-05 1.82E-04 
55 5.86E-08 1.48E-08 0.00014 2.50E-05 1.82E-04 
60 4.93E-08 4.42E-09 0.00014 2.50E-05 1.82E-04 
65 3.71 E-08 2.76E-09 0.00014 2.50E-05 1.82E-04 
70 2.36E-08 4.69E-10 0.00014 2.50E-05 1.82E-04 
75 1.66E-08 2.70E-10 0.00014 2.50E-05 1.82E-04 
80 1.37E-08 1.98E-10 0.00014 2.50E-05 1.82E-04 
85 6.43E-09 7.47E-1 1 0.00014 2.50E-05 1.82E-04 
90 3.51 E-09 7.47E-11 0.0001 2.49E-05 1.82E-04 
95 2.34E-09 7.47E-11 0.0001 2.49E-05 1.82E-04 
100 1.74E-09 7.47E-11 0.0001 2.49E-05 1.82E-04 
105 5.44E-10 7.47E-11 0.0001 2.49E-05 1.82E-04 
110 2.82E-10 7.4664E-11 0.0001 2.49E-05 1.82E-04 

115 1.87E-10 7.47E-11 0.0001 2.49E-05 1.82E-04 
120 1.39E-10 7.47E-11 0.0001 2.49E-05 1.82E-04 
125 6.81 E-11 7.47E-11 0.0001 2.49E-05 1.82E-04 

Note : Table shows the effect of varying the number of nodes in the two layers employed 
by the MLFFBPNN, column 1 indicates the number of epochs and column 2,3,4,5,6 their 
respective M.S.E rate. 
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Appendix `F' 

Comparison of various backpropogation techniques for neural 
network training 

(Figure 7.4) 

No. of 
E ochs 

steepest descent with 
momentum conjugate gradient Quassi Newton Levenberg 

Mar uart 
0 0.893889 0.680279 0.000337088 0.049361 
5 0.878886 0.000230781 0.000229374 0.000115821 
10 0.861514 0.000230742 0.000227556 7.18E-07 
15 0.84092 0.000230657 0.00022753 5.49E-07 
20 0.816229 0.000230533 0.000223532 5.1 8E-07 
25 0.786577 0.000230364 0.000177734 4.66E-07 
30 0.751248 0.000230144 0.000168121 3.25E-07 
35 0.709929 0.000229952 0.000164455 2.82E-07 
40 0.663089 0.000229836 0.00016444 2.48E-07 
45 0.612289 0.000229761 0.000160058 1.59E-07 
50 0.560131 0.000229629 0.000154173 9.09E-08 
55 0.509577 0.00022954 0.000153896 5.86E-08 
60 0.462915 ' 0.000229423 0.000153861 4.93E-08 
65 0.421049 0.000229304 0.000153791 3.71 E-08 
70 0.383604 0.000229178 0.000153775 2.36E-08 
75 0.349554 0.000229042 0.000153649 1.66E-08 
80 0.31783 0.000228892 0.000153365 1.37E-08 
85 0.287657 0.000228727 0.000153365 6.43E-09 
90 0.258631 0.00022854 0.000153365 3.51 E-09 
95 0.230686 0.000228295 0.000153365 2.34E-09 
100 0.204006 0.000228026 0.000153365 1.74E-09 
105 0.178918 0.000227741 0.000153365 5.44E-10 
110 0.155788 0.000226366 0.000153365 2.82E-10 
115 0.134926 0.000222266 0.000153365 1.87E-10 
120 0.116522 0.000205547 0.000153365 1.39E-10 
125 0.100614 0.000205309 0.000153365 6.81 E-1 1 

Note : Column 1 indicates the number of epochs and column 2,3,4,5 the 
corresponding M.S.E rate when various back propagation techniques were 
used by the neural network 
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Appendix `G' 

Effects of datamining skills on neural network convergence 
(Figure 7.6) 

Epochs 
post 
datamining 

pre 
datamining  

0 0.049361 0.065554, 
5 0.000116 0.011383 
10 7.18E-07 2.35E-03 
15 5.49E-07 1.85E-03 
20 5.18E-07 1.27E-03 
25 4.66E-07 8.91 E-04 
30 3.25E-07. 6.77E-04 
35 2.82E-07 5.15E-04 
40 2.48E-07 5.10E-04 
45 1.59E-07 4.99E-04 
50 9.09E-08 4.34E-04 
55 5.86E-08 3.26E-04 
60 4.93E-08 2.62E-04 
65 3.71 E-08 1.70E-04 
70 2.36E-08 1.49E-04 
75 1.66E-08 1.42E-04 
80 1.37E-08 1.40E-04 
85 6.43E-09 1.37E-04 
90 3.51 E-09 1.35E-04 
95 2.34E-09 1.31 E-04 
100 1.74E-09 1.22E-04 
105 5.44E-10 9.66E-05 
110 2.82E-10 9.24E-05 
115 1.87E-10 9.17E-05 
120 1.39E-I0 9.14E-05 
125 6.81E-11 9.14E-05 

Note : Column 1 indicates the number of epochs and column 2 reflects the 

corresponding error rate after datamining technique was applied where as 

column 3 indicates M.S.E rate without the datamining skills applied 
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Appendix `H' 

Study on effect of weighted features on clustering mechanism 

(Figure 6.1) 

Serial 
No. 

Weighted features for clustering No. of 
Clusters 
formed 

% 
detection Port 

Activity 
Invalid 
ports 

TTL Same 
address 

key 

1 1 1 1 1 1 53 10 
2 1 40 1 40 40 25 98 
3 1 10 1 10 10 43 60 
4 1 100 1 100 100 22 98.3 
5 20 40 20 40 40 49 16 

Note : Column 2 indicates all the ports being monitored have been given 

equal weights, where as column 3 indicates weight accorded to feature 

indicating number of inactive ports accessed by the source machine, TTL 

feature takes a value 1 if a packet within the time window of a source has an 

abnormal TTL field value, Key is a feature which takes a numeric value in 

the range [0-1] based on the presence of attack signature. 
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Appendix `J' 
VALID PORT.TXT 

(The file holds the valid or active ports on the victim machine against whom the intrusion 
is being monitored by preparing a list of active ports on the machine based on nonattack 
tcpdump file, a sample of some of those ports are listed below) 

23 	0.000000 
22 	0.000000 
25 	0.000000 
123 0.000000 
32787 0.000000 
32810 0.000000 
32838 0.000000 
32848 0.000000 
21 	0.000000 
32833 0.000000 
32825 0.000000 
32846 0.000000 
32780 0.000000 
32832 0.000000 
32842 0.000000 
32808 0.000000 
32809 0.000000 
32804 0.000000 
32805 0.000000 
32807 0.000000 
32844 0.000000 
32845 0.000000 
32795 0.000000 
32806 0.000000 
32775 0.000000 
32820 0.000000 
32824 0.000000 
0 	0.000000 
32803 0.000000 
32794 0.000000 
32776 0.000000 
32823 0.000000 
32828 0.000000 
32779 0.000000 
32792 0.000000 
32827 0.000000 
32829 0.000000 
32843 0.000000 
32777 0.000000 
32851 0.-000000 
32790 0.000000 
32778 0.000000 
20 	0.000000 
32821 0.000000 
32836 0.000000 
32837' 0.000000 
32783 0.000000 
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Appendix `K' 
CLUSTER.TXT 

(Note that the first five columns reflect the port activity where as the next four columns 
show the values of other features, column 11 indicate the number of times the cluster 
was labeled as an attack in the complete training period , column 12 indicates the number 
of time the cluster center was selected during the training period) 

1 0.000000 -0.130121 -0.171973 -0.007347 1.355499 
0.000000 0.000000 0.000000 0.000000 0.000000 
2730.000000 0.000000 

2 -0.000494 -0.294508 -0.186172 -0.069040 -0.426699 
0.000000 0.000000 0.000000 0.000000 8.000000 
2371.000000 16.000000 

3 0.000000 -0.167857 1.038775 -0.014935 -0.611762 
0.000000 0.000000 0.000000 0.000000 0.000000 
712.000000 0.000000 - 

4 0.000000 -0.316465 -0.206052 1.820978 -0.413980 
0.000000 0.000000 0.000000 0.000000 1.000000 
299.000000 20.000000 

5 0.000000 1.202854 -0.171130 -0.039892 -0.503391 
0.000000 0.000000 0.000000 0.000000 1.000000 
792.000000 20.000000 

6 0.000000 -0.357167 -0.243810 -0.111109 -0.461362 
0.000000 0.000000. 0.000000 1.500000 3.000000 
895.000000 20.000000 

7 0.000000 -0.492279 -0.256090 -0.1743.18 -0.369589 
0.000000 0.000000 0.000000 2.474874 1.000000 
328.000000 20.000000 

8 0.000000 1.549690 -0.330869 -0.039806 -0.444999 
0.000000 0.000000 0.000000 1.788854 1.000000 
29.000000 20.000000 

9 0.000000 -0.558844 2.277098_ 0.000000 -0.382929 
0.000000 0.000000 0.000000 2.032660 0.000000 
4.000000 0.000000 

10 -0.000387 -0.395002 -0.231951 -0.127416 1.828020 
0.000000 0.000000 0.000000 -0.796108 4.000000 
1109.000000 16.000000 

11 0.000000 -0.371564 1.984264 -0.120016 -0.422800 
0.000000 0.000000 0.000000 -0.796108 4.000000 
573.000000 20.000000 
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12 0.000000 1.719902 -0.224051 -0.115796 -0.414455 
0.000000 0.000000 0.000000 -0.796108 1.000000 
883.000000 20.000000 

13 0.000000 3.175427 -0.303693 0.000000 -0.288675 
0.000000 0.000000 0.000000 0.684167 0.000000 
2.000000 0.000000 

14 0.000000 -0.171106 -0.129329 -0.134884 -0.357966 
0.000000 0.0000.00 0.000000 -1.368335 1.000000 
53.000000 20.000000 

15 0.000000 1.667806 -0.292541 1.953339 -0.413501 
0.000000 0.000000 0.000000 -0.550482 0.000000 
16.000000 0.000000 

16 0.000000 -0.081650 -0.650339 -0.081650 -0..512590 
0.000000 0.700000 0.000000 1.500000 1.000000 
4.000000 16.000000 

17 0.000000 -0.183067 0.193357 -0.100504 -0.398646 
0.000000 0.700000 0.000000 -0.303457 0.000000 
2.000000. 0.000000 

18 0.000000 -0.466072 -0.408248 0.000000 -0.408248 
0.000000 0.000000 1.000000 -0.461069 1.000000 
1.000000 20.000000 

19 0.000000 -0.359000 1.950601 1.984485 -0.419940 
0.000000 0.000000 0.000000 -0.579239 0.000000 
6.000000 0.000000 

20 0.000000 -0.444754 2.623821 -0.047246 -0.338415 
0.000000 0.000000 0.000000 0.408576 0.00.0000 
34.000000 0.000000 

21 0.000000 3.474396 -0.375556 0.000000 -0.267261 
0.000000 0.000000 0.000000 -1.557695 0.000000 
1.000000 0.000000 

22 0.000000 -0.247164 -0.218603 -0.148018 3.496258 
0.000000 0.000000 0.000000 -1.557695 0.000000 
5.000000 0.000000 

23 -0.027217 1.645849 2.037323 -0.046462 -0.429477 
0.000000 0.000000 0.000000 -0.408248 2.000000 

.14.000000 16.000000 

24 0.000000 1.663361 -0.291403 2.091417 -0.402848 
0.000000 0.000000 0.000000 1.207778 0.000000 
3.000000 0.000000 

25 0.000000 -0.542964 2.761858 2.242673 -0.335310 
0.000000 0.000000 0.000000 0.672842 0.000000 
2.000000 0.000000 

W 
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26 0.000000 -0.452044 -0.190488 2.119653 -0.371446 
0.000000 0.000000 0.000000 1.788854 0.000000 
8.000000 0.000000 

27 0.000000 -0.480465 0.000000 -0.223607 -0.223607 
0.000000 0.000000 0.000000 4.006649 0.000000 
1.000000 0.000000 

28 0.000000 -0.491428 -0.239774 3.114036 -0.297775 
0.000000 0.000000 0.000000 0.049979 0.000000 
44.000000 0.000000 

29 0.000000 0.000000 -0.101778 -0.454854 2.708391 
0.000000 0.000000 0.000000 -2.428707 0.000000 
3.000000 0.000000 

30 0.000000 -0.397873 -0.333333 2.666667 -0.333333 
0.000000 0.000000 1.000000 -0.755929 1.000000 
1.000000 20.000000 

31 0.000000 0.000000 3.170790 -0.288675 -0.288675 
0.000000 0.000000 0.000000 -2.106059 0.000000 
3.000000 0.000000 

32 2.041241 -0.366296 -0.276158 2.041241 1.290994 
0..000000 0.700000 0.000000 2.040196 1.000000 
1.000000 16.000000 

33 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.000000 0._000000 0.000000 0.500000 
1.000000 0.000000 
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Appendix `L' 
LABELS2.TXT 

(Note : The detection list is converted by the program into labels2.txt file which is then 
loaded in program data structure using load_detectlist function, Column 2, 3 gives out the 
date and time on which the victim machine givenin column 4 is attacked , the type of 
attack is identified in column 6) 

00000003 03/08/1999 09:39:16 172.16.114.50 1 back 
00000005 03/08/1999 15:57:15 172.16.112.50 1 land 
00000008 03/09/1.999 08:44:17 172.16.114.50 1 portsweep 
00000010 03/09/1999 10:06:43 172.16.114.50 1 back 
00000022 03/10/1999 23:56:14 172.16.112.100 1 crashiis 
00000023 03/11/1999 08:04:17 172.16.112.100 1 crashiis 
00000025 03/11/1999 10:50:11 172.16.114.50 1 portsweep 
00000029 03/11/1999 15:47:15 172.16.112.50 1 land 
00000037 03/12/1999 12:40:12 172.16.112.100 1 crashiis 
00000042 03/12/1999 17:13:10 172.16.112.50 1 portsweep 
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Appendix `M' 
WEIGHTS.TXT 

(The weights learned by the neural network are stored in this file, the first column 
identifies the layer whose weight matrix is given in the respective column for eg. 1 
indicates input layer, 2 indicates first hidden layer, 11 indicates the biases for the 
activation function for the first layer and so on) 

12.124458 1336097 4.189026 6.794621 -10.694255 -14.406758 3.915025 -14.322686 
4.094130 -2.701712 3.770890 1.586957 -5.579520 12.831892 3.727951 7.102176 
5,986238 5.154681 -3.738653 -3.059633.0.793220 5.544315 2.526078 8.003633 
7.266730 -0.707502 -3.184903 -1.816282 4.052572 -3.813072 11.603840 1.590209 
5.346167 3.254396 5.188834 -0.289592 0.275908 1.443059 1.664576 0.662656 
-0.402044 -0.813780 -0.888795 -1.648982 -1.191605 0.080371 0.660984 0.097620 
-28.985300 -32.817535 -21.243147 -41.157098 -33.861924 -3.830380 25.419094 -13.387460 
-17.19757926.661211 -26.3310272.0025571.340583 9.265058 -10.933915 -16.537451 
2.123473 0.736094 -0.835305 6.112051 7.614748 3.765511 -16.330341 -1.774928 
-1.588189 0.880498 -6.735077 2.338000 -3.991837 -0.231353 1.615264 6.885277 
-1.100372 2.710463 3.063509 -4.355818 1.348661 9.724065 0.266114 22.523344 
-0.815352 2.760505 -0.043067 -0.399806 3.293720 0.899433 -2.046620 0.198607 
3.494991 2.047174 -3.858157 -0.965705 1.780292 -0.649249 3.441759 0.361174 
-0.157083 -4.922811 7.265902 -3.733304 9.365573 1.230118 0.500251 -8.766551 
-3.378566 4.299354 5.746967 5.581333 3.194082 -3.507980 -3.540452 1.309580 
2.884412 4.150403 8.315664 -0.023191 -3.722160 2.400542 -1.561797 4.834430 
-2.459903- 3.753446 -11.513946 -1.307424 4.232545 -9.212719 0.151397 -1.627768 
2.517360 -5.947798 
-3.875303 -3.074685 
21.020371 8.742780 
3.898470 0.653328 
-5.921271 -4.453188 
10.322303 24.829320 
0.920767 -6.245233 
-12.252769 2.196610 
2.000225 
-1.332123 
11.828607 
-0.251997 
16.501632 
-6.677321 
-8.822067 
13.463149 
8.598995 
-6.349320 
-1.708481 
0.630150 
1.317005 
-2.740570 
7.829945 
1.658313 
-3.207665 
-6.511979 

0  0. 
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Appendix 'N' 
SOM CLUSTER.TXT 

( This file displays the classification of the clusters learned during clustering by the 
statistical computation process) 

learning on file :in2l.tcpdump 
** timestamp cluster 03/08/1999 15:56:16 timestamp label 03/08/1999 
15:57:15 
Attacker :195.73.151.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :11 name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.371564 
(22)- 	1.984264 
(25) 	-0.120016 
(123) : -0.422800 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 
** timestamp cluster 03/08/1999 15:56:16 timestamp label 03/08/1999 
15:57:15 
Attacker :172.16.114.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :6 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.357167 
(22) : -0.243810 
(25) : -0.111109 
(123) : -0.461362 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 1.500000 
** timestamp cluster 03/08/1999 15:56:48 timestamp label 03/08/1999 
15:57:15 
Attacker :172.16.112.10 	Victim 

victim : 172.16.112.50 
cluster No. :10 name of attack:land 

20.000000 
(80) : -0.000387 
(23) : -0.395002 
(22) : -0.231951 
(25) : -0.127416 
(123) : 1.828020 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 

in label: 172.16.112.50 
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timestamp label 03/08/1999 ** timestamp cluster 03/08/1999 15:56:52 
15:57: 15 
Attacker :195.73.151.50 	Victim 

victim : 172.16.112.50 
cluster No. :11 	name of attack:land 

20.000000 
(80) : 0.000,000 
(23) : -0.371564 
(22) : 1.984264 
(25) : -0.120016 
(123) : -0.422800 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 
** timestamp cluster 03/08/1999 15:56:52 
15:57:15 
Attacker :172.16.114.50 	Victim 

victim 	172.16.112.50 
cluster No. :7 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.492279 
(22) : -0.256090 
(25) : -0.174318 
(123) : -0.369589 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 2.474874 
** timestamp cluster 03/08/1999 15:57:07 
15:57:15 

timestamp label 03/08/1999 

timestamp label 03/08/1999 

in label: 172.16.112.50 

in label: 172.16.112.50 

Attacker :172.16.112.50 	Victim 
victim : 172.16.112-.50 

cluster No. :18 name of attack:land 
20.000000 

(80) : 0.000000 
(23) : -0.466072 
(22) : -0.408248 
(25) : 0.000000 
(123) : -0.408248 
key : 0.000000 
TTL : 0.000000 
same addr : 1.000000 
invalid port : -0.461069 

in label: 172.16.112.50 

** timestamp cluster 03/08/1999 15:58:12 timestamp label 03/08/1999 
15:57:15 
Attacker :172.16.113.50 	Victim 

victim : 172.16.112.50 
cluster No. :2 	name of attack:land 

20.000000 
(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 

in label: 172.16.112.50 
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TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 
learning on file :in22.tcpdump 
learning on file :in23.tcpdump 
learning on file :in24.tcpdump 
** timestamp cluster 03/11/1999 15:46:26 
15:47:15 
Attacker :195.73.151.50 	Victim 

victim :172.16.112.50 
cluster No. :5 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : 1.202854 
(22) : -0.171130 
(25) : -0.039892 
(123) : -0.503391 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 

** timestamp cluster 03/11/1999 15:46:53 
15:47:15 
Attacker :172.16.114.50 	Victim 

victim : 172.16.112.50 
cluster No. :8 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : 1.549690 
(22) : -0.330869 
(25) : -0.039806 
(123) : -0.444999 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 1.788854 
** timestamp cluster 03/11/1999 15:46:53 
15:47:15 

timestamp label 03/11/1999 

timestamp label 03/11/1999 

timestamp label 03/11/1999 

in label: 172.16.112.50 

in label: 172.16.112.50 

Attacker :197.218.177.69 	Victim 
victim : 172.16.112.50 

cluster No. :11 name of attack:land 
20.000000 

(80) : 0.000000 
(23) : -0.371564 
(22) : 1.984264 
(25) : -0.120016 
(123) : -0.422800 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port 	-0.796108 

in label: 172.16.112.50 

** timestamp cluster 03/11/1999 15:46:24 timestamp label 03/11/1999 
15:47:15 
Attacker :172.16.112.10 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :10 	name of attack:land 

20.000000 
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(80) : -0.000387 
(23) : -0.395002 
(22) : -0.23195.1 
(25) : -0.127416 
(123) : 1.828020 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 
** timestamp cluster 03/11/1999 15:46:41 
15:47:15 
.Attacker :196.227.33.189 	Victim 

victim : 172.16.112.50 
cluster No. :4 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.316465 
(22) : -0.206052 
(25) : 1.820978 
(123) : -0.413980 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 

timestamp label 03/11/1999 

in label: 172.16.112.50 

** timestamp cluster 03/11/1999 15:46:41 timestamp label 03/11/1999 
15:47:15 
Attacker :172.16.112.20 	Victim 

victim : 172.16.112.50 
cluster No. :2 	name of attack:land 

20.000000 
(80) : -0.000494 
(23) : -0.294508 
(22) :-0.186172 
(25) :.-0.069040 
(123) : -0.426699 
key 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 

in label: 172.16.112.50 

** timestamp cluster 03/11/1999 15:47:02 timestamp label 03/11/1999 
15:47:15 
Attacker :195.73.151.50 	Victim 

victim : 172.16.112.50 
cluster No. :14 name of attack:land 

90.000000 
(80) : 0.000000 
(23) : -0.171106 
(22) : -0.129329 
(25) : -0.134884 
(123) : -0.357966 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -1.368335 

in label: 172.16.112.50 

** timestamp cluster 03/11/1999 15:47:03 timestamp label 03/11/1999 
15:47:15 
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Attacker :197.218.177.69 	Victim in label: 172.16.112.50 
victim a 172.16.112.50 

cluster No.-:11 name of attack:land 
20.000000 

(80) : 0.000000 
(23) : -0.371564 
(22) : 1.984264 
(25) : -0.120016 
(123),: -0.422800 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 
** timestamp cluster 03/11/1999 15:47:03 timestamp label 03/11/1999 
15:47:15 
Attacker :,172.16.114.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :6 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.357167 
(22) : -0.243810 
(25) : -0.111109 
(123) : -0.461362 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 1.500000 
** timestamp cluster 03/11/1999 15:47:03 timestamp label 03/11/1999 
15:47:15 
Attacker :172.16.113.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :2 	name of attack:land 

20.000000 
(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 
** timestamp cluster 03/11/1999 15:47:07 timestamp label 03/11/1999 
15:47:15 
Attacker :172.16.112.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :30 name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.397873 
(22) : -0.333333 
(25) : 2.666667 
(123) : -0.333333 
key : 0.000000 
TTL : 0.000000 
same' addr 	1.000000 
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invalid port : -0.755929 
** timestamp cluster 03/11/1999 15:47:28 timestamp label 03/1-1/1999 
15:47:15 
Attacker :172.16.112.10 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :10 	name of attack:land 

20.000000 
(80) : -0.000387 
(23) : -0.395002 
(22) : -0.231951 
(25) : -0.127416 
(123) : 1.828020 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 
** timestamp cluster 03/11/1999 15:47:41 timestamp label 03/11/1999 
15:47:15 
Attacker :172.16.11.4.168 	Victim in label: 172.16.112.50 

victim : 172.16.112.5.0 
cluster No. :12 	name of attack:land 

20.000000 
• (80) : 0.000000 
(23) : 1.719902 
(22) : -0.224051 
(25) : -0.115796 
(123) : -0.414455 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 

** timestamp cluster 03/11/1999 15:47:41 timestamp label 03/11/1999 
15:47:15 
Attacker :172.16.112.20 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :6 	name of attack:land 

20.000000 
(80) : 0.000000 
(23) : -0.357167 
(22) : 0.243810 
(25) : -0.111109 
(123) : -0.461362 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 1.500000 
learning on file :in25.tcpdump 
** timestamp cluster 03/12/1999 17:12:12 timestamp label 03/12/1999 
17:13:10 
Attacker :195.73.151.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :23 name of attack:portsweep 

16.000000 
(80) : -0.027217 
(23) : 1.645849 
(22) : 2.037323 
(25) : -0.046462 
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(123) : -0.429477 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.408248 
** timestamp cluster 03/12/1999 17:12:13 
17:13:10 

timestamp label 03/12/1999 

Attacker :172.16.113.50 	Victim in label: 172.16.112.50 
victim : 172.16.112.50 

cluster No. :2 	name of attack:portsweep 
16.000000 

(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 
** timestamp cluster 03/12/1999 17:12:20 timestamp label 03/12/1999 
17:13:10 
Attacker :172.16.114.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :2 	name of attack:portsweep 

16.000000 
(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 
** timestamp cluster 03/12/1999 17:12:29 timestamp label 03/12/1999 
17:13:10 
Attacker :195.73.151.50 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :23 name of attack:portsweep 

16.000000 
(80) : -0.027217 
(23) : 1.645849 
(22) : 2.037323 
(25) : -0.046462 
(123) : -0.429477 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.408248 
** timestamp cluster 03/12/1999 17:12:42 timestamp label 03/12/1999 
17:13:10 
Attacker :172.16.114.50- 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :2 	name of attack:portsweep 

16..000000 
(80) : -0.000494 
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(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 

** timestamp cluster 03/12/1999 17:13:02 timestamp label 03/12/1999 
17:13:10 
Attacker :209.167.99.71 

	
Victim in label: 172.16.112.50 

victim : 172.16.112.50 
cluster No. :32 name of attack:portsweep 

16.000000 
(80) : 2.041241 
(23) : -0.366296 
(22) : -0.276158 
(25) : 2.041241 
(123) : 1.290994 
key : 0.000000 
TTL : 0.700000 
same addr : 0.000000 
invalid port : 2.040196 
** timestamp cluster 03/12/1999 
17:13:10 
Attacker :172.16.112.20 

victim : 172.16.112.50 
cluster No. :2 	name of attack:portsweep 

16.000000 
(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 
** timestamp cluster 03/12/1999 17:13:13 
17:13:10 

timestamp label 03/12/1999 

17:13:05 timestamp label 03/12/1999 

Victim in label: 172.16.112.50 

Attacker :172.16.112.10 	Victim in label: 172.16.112.50 
victim : 172.16.112.50 

cluster No. :10 name of attack:portsweep 
16.000000 

(80) : -0.000387 
(23) : -0.395002 
(22) : -0.231951 
(25) : -0.127416 
(123) : 1.828020 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : -0.796108 
** timestamp cluster 03/12/1999 17:13:21 timestamp label 03/12/1999 
17:13:10 
Attacker :196.37.75.158 	Victim in label: 172.16.112.50 

victim : 172.16.112.50 
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cluster No. :2 	name of attack:portsweep 
16.000000 

(80) : -0.000494 
(23) : -0.294508 
(22) : -0.186172 
(25) : -0.069040 
(123) : -0.426699 
key : 0.000000 
TTL : 0.000000 
same addr : 0.000000 
invalid port : 0.000000 

** timestamp cluster 03/12/1999 17:14:06 
17:13:10 

timestamp label 03/12/1999 

Attacker :209.167.99.71 	Victim in label: 172.16.112.50 
victim : 172.16.112.50 

cluster No. :16 name of attack:portsweep 
16.000000 

(80) : 0.000000 
(23) : -0.081650 
(22) : -0.650339 
(25) : -0.081650 
(123) : -0.512590 
key : 0.000000 
TTL : 0.700000 
same addr : 0.000000 
invalid port : 1.500000 
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