
ANN BASED NETWORK
INTRUSION DETECTION SYSTEM

A DISSERTATION
Svendttod In portlol hufflrn.nt of tho

ngnirsminta for tho sward of tM dprre
of

MASTER OF TECHNOLOGY
In

ELECTRICAL ENGINEERING
(Nigh Spscialiation In System Engineering and Operations Research)

By

MAJOR SEBY THOMAS

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2005

ANN Based Network Intrusion Detection System

t 	~d INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
t r

ROORKEE

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in this dissertation
entitled "ANN BASED NETWORK INTRUSION DETECTION SYSTEM" in the

partial fulfillment of the requirements for the award of Master of Technology in the

System Engineering & Operation Research, submitted in the Department of

Electrical Engineering of the institute is an authentic record of my own work carried out

under the guidance of Prof J.D. Sharma and Prof M. K Vasantha, Department of
Electrical Engineering, IIT Roorkee, Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any
other degree.

Dated: 1j. 1u 200'(
	

'or Seby Thomas

This is to certify that the above statement made by the candidate is correct to the
best of my knowledge and belief.

~G~r l►'h 6Ia~~

Prof. . K. Vasantha
PS oup
 S.E.O.R group

ANN Based Network Intrusion Detection System

ACKNOWLEDGEMENT

At the outset I express my gratitude to Corps of Signals, Indian Army for having

offered me this excellent opportunity of furthering my academic ambitions. I am also

grateful to Military College of Telecommunications Engineering, Mhow for suggesting

me to work in this area and laying out an ambitious scope, ensuring that the subject- be

dealt in its depth.

I am grateful to Prof. J. D. Sharma for being the beacon that ensured that no effort

was aimless. With deep gratitude, I recall all the efforts that he took to achieve the project

goals. I recollect, that in the very first visit to his office, he had handed over four papers

on the subject using ANN tools and not to leave things open, asked me to discuss them a

day after. The continuous monitoring, his vision in setting the goals and deadlines

ensured that the work steered through smoothly. I am greatly influenced by his personal

quality in deriving more out of every possible moment that life offers.

As I pen this acknowledgement, I recollect with nostalgia the day a year back,

while in Prof. M. K. Vasantha office, I was expressing my fears over attempting this

work. As I left his office then, I was ballooning with self-pride, immense confidence and

charged with energy that made my fears look dwarf. Interactions and those short

inspirational talks over the year have recharged my energy levels at the hours of my need.

With him I have learned that pure motivation, optimism and personal warmth can drive a

person to stretch his limits. Working under the guidance of them has been a great learning

for now and life.

I also acknowledge Prof. Hari Om Gupta (H.O.D Electrical Department) efforts in

helping me visualize the optimization techniques during his course study on Operational

Research. The insight that Dr. N. P. Padhy provided in ANN techniques have made it

possible for me to try beyond. I also acknowledge Prof. Vinod Kumar efforts in taking

time to explain concepts beyond the dimensions of course study and Dr. Indra Gupta for

her course on Data Structures that made me opt for C language to implement the work. I

would cherish the memories of interactions with Dr. Rajendra Prasad and Dr. E.

II

ANN Based Network Intrusion Detection System

,.art extended by Prof A. K. Pant (Group Leader
t - 	 (0. C M Tech) in the course of this work. The

bv.th 	 d-nd its lab Technicians (Mr. Kalyan Singh and C. M.
c : 	 &er a praises.

•tw` 	=awed a new life poles apart from the military way; my
s 	i 	 tolars Mr. Vishal Kumar, Mr. Rahul Dubey, Mr

S 	 tave made those moments sweet and nostalgic. The
1rprovoking discussions with Mr. Vishal Kumar are

r 	 { ill my colleagues of S.E.O.R group (Mr. Naveen
idu and H S Rathod) for being excellent peers and

E ~ ~ 	 ,ork.
'_letion for the course requirements is immense, but

e ; F. '4 -ehind these wonderful two years of life in the

:historically reputed Institute. The pride of being a
Si ** t : ?tys be evident in me.

k. i 	'Thomas and my daughters, Simran and Nikita fir
T t̀l 	4 	 eal with optimism and smile. I am grateful to our

tant support and well wishes.

Kumar, without whose intervention this
:knowledgment would have just been the black ink on a white paper. I am grateful that I
ok his advice to spare few moments for all those who mattered.

(Seby Thomas)
Major

M. Tech. (S.E.O.

III

ANN Based Network Intrusion Detection System

ABSTRACT

The rapid proliferations of Internet and our dependence on networks in all

domains of life have made us more vulnerable to breaches of internet/network security.

It is difficult to prevent such attacks by security policies; firewalls or other mechanisms

alone as operating system and application software are known to contain weaknesses or

bugs. The attackers continually exploit these loopholes in network protocols and software

component. Intrusion detection systems are designed to detect such attacks that enviably

occur despite security precautions.

An attack on a network is considered an abnormal activity. It is this underlying

assumption that is critical in detecting an attack in an anomaly based detection technique,.

where as misuse detection identifies a pending attack based on its prior knowledge of

attack signatures. In this dissertation work, an amalgamation of both misuse and anomaly

based detection technique, employing their individual strength in detecting attacks, is

proposed using Hybrid Neural Network-in which the output of Kohonen's Self Organized

Map provides input to feed forward neural network. The data from MIT Lincoln

Laboratory created DARPA 1999 Intrusion Detection Evaluation data set (approximately

of size 10 GB) was applied for training and testing of probtype.

The system prototype designed, is a network based intrusion detection system that

scrutinizes tcpdump data on a source-by-source basis in a time window to develop

windowed traffic behavioral trends. It is assumed that the evidences of an attack lie

within the packets and can be identified either by individual analysis of packet in some
cases or by ascertaining the attackers intention by analyzing sequel of packets in a time

window frame. The core detection engine of our system is based on anomaly based

detection technique, which detects attack by sensing deviations from its learned normal

trait. The abnormality is self-learned by the system by way of Kohonen based Self-

organizing mapping techniques. The clustering mechanism maps the windowed traffic

trend of individual machines to clusters indicative of behavior pattern based on features

extracted from network activity. The features extracted are decisive in forming abnormal

clusters in its outliers. Data mining skills are applied to compute statistical trend and

IV

ANN Based Network Intrusion Detection System

features that are flagged by the presence of attack signatures. The features presented to

the clustering mechanism, reflect the behavioral trend of source machine in

communication with victim in terms of both statistical features as well as flags indicative

of attack signatures. The clusters so formed during training are learned as normal or

abnormal by the neural network. The supervised training of the neural network, is carried

but by means of the labeled tcpdump data using Levenberg-Marquardt algorithm for back
propagation.

The work involves design and development of a network based intrusion

detection system. The program is wholly written in GNU C and based on Linux platform.

The prototype developed can be executed both using graphic user interface and console

terminal using command line arguments. The graphic interface for the project has been

built using libglade.

u

ANN Based Network Intrusion Detection System

LIST OF FIGURES

Sr.

No.
Topic Page

No.
1.1 A Sample Network 2
1.2 System Hierarchy of Hierarchical architecture IDS 3
1.3 Components of Intrusion detection system 5
1.4 A Sample Training set for neural network 10
1.5 Change in Nature of Attacks 12
1.6 The Growth of Attack Sophistication over Time 13
2.1 Simulation Networks 1999 21
2.2 Day wise data layout for second week 22
2.3 Attack types in 1999 DARPA test data 24
4.1 Block diagram of system 35
4.2 System Flowchart 36
4.3 Screen shot depicting End of Architecture learning stage 38
4.4 MLFFBP neural network structure 38
5.1 Raw tcpdump data captured by sniffing program 42
6.1 Comparative study of effect of Weighted features on efficacy of 49

clusters
6.2 Screen shot of program depicting the clusters formed 52
7.1 Effect of number ofnodes in hidden layer for sample case of two 55

hidden layers
7.2 Comparative study of effect of number of hidden layers on error 56

reduction

7.3 Architecture of MLFFBP Neural Network 56
7.4 Comparison of various backpropogation methods used in neural 57 -

network training

VI

ANN Based Network Intrusion Detection System

7.4 	Labeling of clusters as attack based on labeled tcpdump detection 	59

list.

7.5 	Computation of Probability for each cluster 	 60
7.6 	Comparative study: Effects of datamining techniques on neural 	61

network convergence

7.7 	Screen shot of weights learned by neural network using 	62
Levenberg Marquardt algorithm

A3. 	Organization of Software 	 A- vii

VII

LIST OF TABLES

Sr. Topic Page

No. No.
5.1 Contribution of fields to detection in [14] 43

6.1 Input features presented by Data mining module for clustering 48

7.1 Samples of training and target patterns used by Neural Network 56

8.1 List of anomalous clusters learned by system 63

8.2 List of known and new attacks 64

8.3 Results obtained for detection of attacks in test data 64

VIII

ANN Based Network Intrusion Detection System,

ABBREVIATIONS AND ACRONYMS

Addr Address

ALAD Application Layer Analysis Detection
BSM Basic Security Module

BIOS Basic Input Output System

CGI Common Gateway Interface

DARPA Defence Advance Research Project Agency
DoS Denial of Service
Dst Destination

Dup Duplicate

FP False Positive

GIMP GNU Image Manipulation Program.

GNU Gnu Not Unix

GNOME GNU Network Object Modeling Environment

GLADE Glade is a free user interface builder for GTK+ and GNOME,

released under the GNU GPL License.

GrIDS Graphical based Intrusion Detection System

GTK+ GIMP Tool Kit

HTTP Hypertext Transfer Protocol (world wide web protocol)
HBIDS Host based Intrusion Detection System
ICMP Internet Control Message Protocol
ID Intrusion Detection
IDA Intrusion Detection Agents
IDS Intrusion Detection System
Invalid_port Feature used for clustering that keeps a count of number of invalid

ports accessed by the source machine on a victim machine
IP Internet Protocol

IT Information Technology

IX

ANN Based Network Intrusion Detection System

Key Feature used for clustering that takes a numeric value based on the

attack signature if present the activity of the source machine.

LAN Local Area Network

MLFFBPNN Multi Layer Feed Forward Back Propagation Neural Network

M.S.E Mean Square Error

NBIDS Network based Intrusion Detection System

NUM_FEATURES The number of features being extracted from the network traffic by

the data mining module.

PHAD Packet Header Analysis Detection

R2L Remote to Local

Same_addr Feature used in clustering mechanism which takes a value 1 if

both src and dst addr are same

SBIDS Signature based Intrusion Detection System

SOM Self Organized Mapping

Src Source

TCP Transport Control Protocol

TP True Positive

TTL Time to Live

U2R User to Root

UDP User Datagram Protocol

URG Urgent

FN

ANN Based Network Intrusion Detection System

CONTENTS

Sr. Topic Page
No. No.

CANDIDATES'S DECLARATION (I)
ACKNOWLEDGEMENT (II)
ABSTRACT (IV)
LIST OF FIGURES (VI)
LIST OF TABLES (VII)
ABBREVIATIONS AND ACRONYMS (IX)
INTRODUCTION TO INTRUSION DETECTION
SYSTEM
1.1 	Definition 1
1.2 	Classification of IDS based on source of audit 1
data
1:3 	Architecture: IDS 2
1.4 	Classification based on detection technique 4
1.5 	Components of IDS 4
1.6 	Methods of intrusion detection 6
1.7 	Shortfalls in current misuse IDS 11
1.8 	Hacking 12
1.9 	Related work 15
1.10 	Author's Contribution 16

2, DATASET DESCRIPTION
2.1 	General 18
2.2 	1999 DARPA intrusion detection _ evaluation plan 19
2.3 	Pitfalls in DARPA dataset

23
3, ATTACKS: HOW TO DETECT

3.1 	Introduction 25
3.2 	Denial of service attacks 25
3.3 	User to Root attacks 30
3.4 	Remote to user attacks 31
3.5 	Probes 32
3.6 	Data 33

ANN Based Network Intrusion Detection System

TOPIC PAGE No.
Sr.
No.
4. METHODOLOGY

4.1 	General Description 34
4.2 	Architectural Learning stage 36
4.3 	System. Learning stage 39
4.4 	Detection stage 40

5, DATAMINING MODULE
5.1 	General 41
5.2 	Datamining algorithm 43
5.3 	Normalization 	- 45

6. CLUSTERING MODULE BASED ON SOM
6.1 	General 48
6.2 	Metric 48
6.3 	Clustering algorithm 49
6.4 	Detection of new attacks 51
6.5 	Functionality 51

7, MLFF NEURAL NETWORK MODULE USING
LEVENBERG MARQUARDT ALGORITHM FOR
BACKPROPOGATION
7.1 	General 53
7.2 	Neural network architecture 53
7.3 	Marquardt algorithm 56
7.4 	Training neural network 57
7.5 	Detection mode: Neural network 61

8. RESULTS AND CONCLUSION
8.1 	Results 63
8.2 	Conclusions 65
8.3 	Future Research 66
REFERENCES 67
APPENDICES

A Implementation 73
Al. 	Project description
A2. Project development: Tools
A3. Organization of software

ANN Based Network Intrusion Detection System

B List of outside, inside hosts, Routers and hubs in 80
Simulated 1999 DARPA dataset

C Detections list: Training DARPA dataset 83
D Effect of increasing number of hidden layers in Neural .86

network training
E Effect of varying number of nodes in each hidden layer 87
F Comparison of various backpropogation techniques 88
G Effects of Data mining technique on Neural network 89

convergence
H Study on weighted features on clustering mechanism 90
J Valid port.txt 91
K Cluster.txt 92
L Labels2.txt 95
M Weights.txt 96
N Som cluster.txt 97

ANN Based Network Intrusion Detection System

Chapterl

INTRODUCTION TO INTRUSION DETECTION SYSTEM

1.1 DEFINITION

An Intrusion Detection System (IDS) can be defined as a hardware/software

system that monitors events in computer/network to identify unlawful attempts to

penetrate it. An intrusion is an unauthorized access or usage of the resources of a

computer system [1]. IDS are the software with the functions of detecting, identifying and

responding to the unauthorized or abnormal activities on a target system [4]. The goal of

the IDS is to provide a mechanism for the detection of security violations either in ieal-

time or batch-mode [2, 3]. Violations are initiated either by outsiders attempting to break

into a system, or by insiders attempting to misuse their privileges [6]. IDS collect

information from a variety of systems and network sources, and then analyze the

information for signs of intrusion and misuse [5].

1.2 CLASSIFICATION OF IDS BASED ON SOURCE OF AUDIT DATA

An attack can be detected by monitoring the behavior of the system either at the

user level or at network level. The behavior of a user can be ascertained by monitoring

the system logs that are generated by the various processes run by the user, while the

nature of traffic in the network governs the behavior of the network. The data from the

system logs or the network traffic forms the audit data. Based on the sources of audit

data, an intrusion detection system can be classified as HBIDS and NBIDS.

Host based intrusion detection system (HBIDS) normally use system call data

from an audit process that tracks all system calls made on behalf of each user on a

particular machine.

1

ANN Based Network Intrusion Detection System

Network based intrusion detection system (NBIDS) typically use network

traffic data from a network packet sniffer (eg tcpdmp). Many computer networks

including the widely accepted Ethernet (IEEE 802.3) networks use a shared medium for

communication. Therefore, the packet sniffer only needs to be on the same-shared subnet

as the monitored network.

1.3 ' IDS: ARCHITECTURE

There are three architecture of intrusion detection system i.e., Distributed,

Central and Hierarchical.[11] The hierarchical architecture consists of several tiers with

each tier containing several intrusion detection agents (IDAs). IDAs are IDS components

that monitor the activities of a host or a network. Different tiers correspond to different

network scopes that are protected by agents affiliated to them. While in a centralized

architecture a central console controls the other IDSs/IDAs. In a distributed architecture

the intrusion detection system collects audit data from several sensors. To understand it

better let us consider a sample network as shown in figure 1.1 [12].

Figure 1.1: A Sample Network

2

ANN Based Network Intrusion Detection System

For the sample network shown in figure 1.1, the hierarchical architecture IDS can

be divided in three tiers as shown in figure 1.2. Tier 1 agents monitor system activities of

the servers and bridges within a department and periodically generate reports for tier 2

agents. Tier 2 agents detect the network status of the departmental LAN based on

network traffic that they observe as well as reports from Tier 1 agents from the LAN. The

tier 3 agents at the security department collect data from the tier 2 and tierl agents. In

hierarchical based IDS the system hierarchy is followed.

Tier 3

Tier 2

Tier 1

Figure 1.2: System Hierarchy of Hierarchical architecture IDS

In Central architectural IDS, the ID monitors as shown in the sample network in

figure 1.1, act as intrusion detection agents for the respective departments, while any

alerts or alarms are centrally logged. The start/stop functionality of the departmental IDS

can be centrally controlled; also the departmental IDA's can be forewarned of new

attacks (updating of signatures), if known.

In the case of Distributed architectural IDS the ID monitors act as network

sniffers i.e., collect network data of respective departmental LAN, which forms the audit

data for the intrusion detection system at the security department in the above example.

3

ANN. Based Network Intrusion Detection System

1.4 CLASSIFICATION BASED ON DETECTION TECHNIQUE

Based on the detection technique employed, intrusion detection system falls into

one of the two categories i.e. Anomaly detection and misuse detection[10].

Anomaly detection is a statistical approach that gathers a variety of parameters

concerning network usage and weighs this against incoming network activity. If the

statistical deviation is significant then the IDS notifies an attack.

Misuse detection considers a pattern of attacks and then compares network

activities against these patterns. If a given activity. resembles a known pattern of attack,

the IDS notify that an attack may be imminent.

Both these approaches suffer from the problems that the sheer volume of network

traffic often renders it infeasible to conduct the necessary analysis. As well, it is often

difficult to set benchmarks as to what constitutes a significant statistical deviation (in the

case of anomaly detection) or a strong resemblance between patterns (in the case of

misuse detection). This can result in incorrectly labeling valid network activity as an

attack, or in failing to detect one. Both of these. seriously undermine the usefulness of the

IDS. Therefore different methods of detection are needed to address the inadequacies of

these approaches. They are discussed in later section of this report. But before we discuss

the methods of detection it is important to understand the attack techniques and the basic

components of an intrusion detection system. The attacks will be covered in adequate

detail in chapter 3.

1.5 COMPONENTS OF INTRUSION DETECTION SYSTEM

The core module of an intrusion detection system is the detection engine which

identifies normal and intrusive activities based on knowledge facilitated by detection

model; for instance a signature based detection model will contains patterns of attacks as

rules which are then matched by the detection engine with the current network activity to

detect malicious activity. The network traffic is monitored by a sniffer module which

forms the audit data for a network based intrusion detection system. The audit data is then

fed to a preprocessor module, which computes the network activity. In a audit data

rd

ANN Based Network Intrusion Detection System

preprocessor a given packet is broken down into number of fields such as protocol,

source IP, destination IP, ports used and -flag settings (in the case of TCP or UDP) or

message type (in the case of ICMP) and length. This network activity is one of the input

to the detection engine the other being attack patterns fed by the, detection model in case

of signature based detection system, where as in case of statistical based detection engine

the network activity is further assigned a anomaly score which is then compared to the

probabilistic scores of normal network activity provided by the statistical based detection

model. The detection engine raises an alarm if the pattern is matched (signature based

detection model) or if the anomaly score of a packet is above the threshold (statistical

based detection model).

The alarm generated by the detection engine is fed to the decision engine, whbh

based on its decision table (more applicable incase of statistical model since scores are
probabilistic in nature) it takes action (like reconfiguring firewall) and reports the action

to system administrator as illustrated in Figure 1.3

Audit data

Network activities
are observable

preprocessor
data

Network
Activity
data

Detection
Model

Detection
Engine

Normal and
intrusive
activities have
distinct evidence

Alarms

Decision
Table

L1+

Figure 1.3 Components of Intrusion detection system

5

ANN Based Network Intrusion Detection System

1.6 METHODS OF INTRUSION DETECTION

Intrusion detection system monitors computer network traffic and attempts to

identify, alert and present all anomalous activities to. the user/system administrator. The

key to an intrusion detection system is to maximize accurate alerts (true positive) while at

the same time minimizing the occurrence of non-justified alerts (false positive). There are

various methods of intrusion detection; the most popular of them are enumerated. All

these methods fall under one of the two categories mentioned in earlier section,

(a) Statistical based detection..

(b) Signature based (rule-based) detection

(c) Neural network based detection.

(d) Graphical based detection.

(e) Artificial immune system based detection.

1.6.1 Statistical based detection technique

In any network an intrusion is considered not a normal activity and it is this very

fact that is used to detect intrusion, by detecting any deviation from the normal network

activity. There are various methodologies employed to identify the deviation. A simple

Statistical based intrusion detection systems (SBIDS) relies on statistical models, to

identify anomalous packets on the network. To identify an anomaly, the system uses data

compiled from previous network behavior. Since warnings are based on actual usage

patterns, statistical systems can adapt to behaviors and therefore create their own rule

usage-patterns. Anomalous activity is measured by a number of variables sampled over

time and stored in a profile. The reporting process will alert the user if the packet's

anomaly score is greater than or equal to the threshold level set by the user. The SBIDS

identifies and tracks patterns and usage of the network data and then assigns an anomaly

score to each packet. Based on the data used to compile previous network activity a

SBIDS can be host based or network based IDS. For example a host based IDS will

compile data from users behavioral pattern or servers service pattern using the system log

on

ANN Based Network Intrusion Detection System

of the host machine, while a network based IDS .compiles data from, previous network- .

behavior.

Each packet coming into the anomaly detector is assigned a anomaly score A(x).

This score is calculated from the negative log of the probability of the event, P(x). i.e.

A(x) = -log(P(x)). The calculation of P(x) is based on observed network traffic, there are

four methods of calculating P(x): P(destination IP, destination port), P(source IP,

destination IP, destination port), P(source IP, source port, destination IP, destination port)

and a Bayes network approximation of P(source IP, source port, destination IP,

destination port). From observations, a packet to port 80 on a web server will be more

probable than say, port 37337 to the same server. The higher P(x) is, the lower A(x) will

be. If A(x) exceeds the provided - threshold, detection engine will generate an alert.
Optimally, a report will be generated on all significant anomalous activity. What

constitutes "significant" can vary from user to user. Therefore, it is ultimately up to the

user to decide how many alerts are generated for a specific environment.

Unlike a signature based system, which has the benefit of being implemented and

immediately utilized, the statistical based system must initially adapt to the network at

hand to learn what is defined as `normal' traffic. The longer a SBIDS is placed on a

specific network, the more accurate . the results will be. If the normal network traffic is

malicious, the SBIDS will be rendered useless. Also the alerts generated will be relatively

difficult to assess compared to a signature-based' system. The alert will be packet

information, which' will require the expertise of trained security professional to decipher

the reason for alert.

1.6.2 Signature based intrusion detection technique

In the manner an antivirus program scans through the files looking for malicious

virus code_ (referred to as signature of virus being detected), a signature based intrusion

detection system scans through the data contents of packets flying in the network for

malicious code/script known to form part of a computer attack All attacks will form a

pattern, in terms of sequence of codes/scripts. Misuse detection is the ability to identify

intrusion based on known patterns for the malicious 'activity. These known patterns are

7

ANN Based Network Intrusion Detection System

referred to as signatures. These signatures are transformed as rule base. Rules are

developed as new vulnerabilities and scanning techniques are identified. A signature

based IDS (SIDS) is as strong as its rule set and if the attack is new, there will simply not

be any signatures developed to identify the probe. An SIDS is programmed to look into

the header of each incoming packet, whatever be the underlying protocol used on the

network. Each packet through the network is scanned by the IDS core `engine' against

hundreds or thousands of signatures stored within it for presence of any malicious

activity. Most of the popular SIDS are based on Expert System, where the pattern of

attack is transformed into a rule base, obviously only those attacks can be detected whose

patterns are known

1.6.3 Neural network based detection system

The properties of neural network are put to advantage for exploring new methods

for detecting intrusions based on statistical deviation. The neural network is trained on

the normal traffic for duration of n days and the statistical parameters computed stored in

tables, after the completion of training the network is tested and any anomaly from the

normal statistical parameters obtained from the tables mentioned above cause's alarms to

be raised. There are various approaches to using neural network for intrusion detection;

the most popular of those are explained in this section.

1.6.3.1 	Expert System Based Misuse Detection

There are two general implementation of neural network in misuse detection[7].

The first involves incorporating them in existing expert system based intrusion detection

system. This implementation is more preferred if an organization already has an expert

system based IDS in place. The expert system based intrusion detection is the most

common rule based approaches that encodes the knowledge of `human expert' on the

security related data. Expert system is a computer application, which then utilizes that

knowledge to identify activities that match the defined characteristics of attack or misuse.

The neural network here is first trained by thousands of individual sequences of attacks.

Once trained it filters the incoming packets for suspicious events, which may be

ANN Based Network Intrusion Detection System

indicative of misuse or attack and forward these to the expert system. This

implementation improves the false alarm rate of the expert system. The disadvantage of

this approach is as the neural network improves its ability in identifying new attacks, the

expert system also needs to be updated to recognize the attack lest it would ignore the

anomaly detected by the neural network.

1.6.3.2 	Stand Alone Misuse Detection

The second approach [8] involves neural network as stand alone misuse detection

system. In this configuration the neural network would receive data from the network

stream and analyze . the information for instances of misuse. There are a number of

architectures that can be used, however the multilayer feed forward network was found to

be more suitable due its flexibility and applicability in variety of problems. The MLP

utilized for in the model explained here consisted of four fully connected layers with nine

input nodes and two output nodes. Each of the hidden and output nodes applied a

sigmoidal transfer function to the various connection weights. The data from the network

stream used for training and testing is grabbed first by using packet sniffer software like

Tcpdump, Realsecure network monitor and then organized in the formatsuitable for the

input pattern of the neural network. A misuse detection technique heavily relies on the

data content of the packet since any attack can be detected, if its signature is known.

Therefore for accurate detection by the neural network based IDS the raw data contents

forms one of the key element besides the source, destination IP and port address, data

length, protocol ID. However since the input pattern to the neural network is required to

be numerical in nature. The data portion of the packet is converted to a numerical number

denoted as Data ID from a look up table which assigns specific numbers to identify attack

scripts. This lookup table forms the key factor for the accuracy of misuse detection and

the most difficult to devise too. A sample training set consisting of the input and output

pattern identifying normal and attack traffic by 0 and 1 respectively is shown in figure

1.4. The raw data length of the packet can identify a buffer overflow attack, while an

unreasonable port activity can be a cause for raising an alarm.

7

ANN Based Network Intrusion Detection System

Figure 1.4: A Sample Training set for neural network

1.6.4 Graphical technique in intrusion detection

Both Statistical and signature based Intrusion detection systems suffer from an

inability to detect an attack that is built from a sequence of valid network activity. Hence

the needs to develop a methodology that can detect a malicious action that may consist of

valid network activity. Graph based intrusion detection system (GrIDS) is one such

method developed by the University of California. The idea behind GrIDS is to detect

large scale automated attacks on networked systems. The approach in GrIDS is to build

activity graphs reflecting activity in a network, and then analyze these graphs to assess

whether an attack is occurring. The activity graphs are generated by graph engines, which

take basic activity reports and convert them into graphs. The nodes or vertices of the

activity graph represent hosts in a system, while edges of an activity graph represent

network activity between the hosts. Both the edges and vertices have the property that

they may have attributes associated with them, which provide additional information

regarding the nature of connection or host. If the traffic between two hosts contains the

transfer of password files then the attributes of the edges will reflect that. GrIDS fall in

the category of misuse detection technique.

1.6.5 Artificial -immune system based detection technique

The characteristics of the natural immune system are the inspiration for

developing an intrusion detection system based on immunity model. The universe of all

patterns of network traffic P is partitioned into two disjoint sets (Ps and Pn). The patterns

(PS) that frequently occur in network traffic in last n (user defined) days are classified as

self and the ambiguous patterns (Pa) as nonself. It is assumed that the traffic of n days

that formed the self-pattern did not contain any attack or intrusion attempt i.e., Ps. P„= . .

10

ANN Based Network Intrusion Detection System

The intrusion detection system based on natural immune system focuses on following

aspects.

(a) The method of using data mining technique to explore the adaptable set of

self (i.e. normal patterns of client and server activity) and sequential-patterns of
TCP services.

(b) The method of generating valid detectors based on genetic algorithm;

(c) The mechanism of memorizing previously seen intrusion patterns and of

learning sequential patterns of intrusions through vaccination.

(d) The mechanism of dynamic detectors with finite lifetime

1.7 SHORTFALLS IN CURRENT MISUSE IDS

While the ability to develop and use signatures to detect attacks is a useful and

viable approach there are shortfalls to only using this approach, which should be

addressed.

• Variants. As stated previously signatures are developed in response to new

vulnerabilities or exploits, which have been posted or released. Integral to the

success of a signature, it must be unique enough to only alert on malicious traffic

and rarely on valid network traffic. The difficulty here is that exploit code can

often be easily changed. It is not uncommon for an exploit tool to be released and

then have its defaults changed shortly thereafter by the hacker community.
• False positives. A common complaint is the amount of false positives an IDS will

generate. Developing unique signatures is a difficult task and often times the

vendors will err on the side of alerting too often rather than not enough. This is

analogous to the story of the boy who cried wolf. It is much more difficult to pick

out a valid intrusion attempt if a signature also alerts regularly on valid network

activity. A difficult problem that arises from this is how much can be filtered out

without potentially missing an attack.

- False negatives detecting attacks for which there are no known signatures. This

leads to the other concept of false negatives where an IDS does not generate an

alert when an intrusion is actually taking place. Simply put if a signature has not

11

ANN Based Network Intrusion Detection System

been written for a particular exploit there is an extremely good chance that the

IDS will not detect it.
• Data overload. Another aspect which does not relate directly to misuse detection

but is extremely important is how much data can an analyst effectively- an
efficiently analyze. That being said the amount of data he/she needs to look at
seems to be growing rapidly. Depending on the intrusion detection tools
employed by a company and its size there is the possibility for logs to reach
millions of records per day.

1.8 Hacking 	 -
1.8.1 General:

Hacking is an act by an intruder to unlawfully access a computer/system. For
detecting such an activity knowledge of hacking techniques is a prerequisit.. In this

section, the topic is introduced and references for further reading are listed[34-44].
Hackers have more tools and information at their disposal and enterprises have to

react very quickly to vulnerabilities to minimize security incidents. The nature of attacks
against enterprises began changing dramatically as the Internet started to have an impact
on IT architecture (figure 1.5)

Most Frequent
Point of Attack

>la~
INTERNET

60

40

INTERNAL
. 	SYSTEMS

2D

REMOTE
DLL-1x

1996 1997 1999 1999 2000 2001 2002

Figure 1.5: Change in Nature ofAttacks
(FBI/CSI Computer crime and Security Survey 2001)

12

ANN Based Network Intrusion Detection System

With the advent of easy availability of hacker tools, ever more sophisticated attacks are
being launched, by ever less sophisticated attackers (figure1.6).

Auto
High 	 0=dmi d Tools

cmex stle sctlpti
Intrusion Expertise

5tnith'fAdwnxd Sc nn l 	 9fendtdAttacks
7echnlqu~

❑enhl OFSerAce 	'̀' 	 Ì' .
Farketspmfin 	~, 	 Iorstnla,tedAttaxk1odt

~iffas 	 J 	WVJW Attocks
~L ter'` lAutwnaW P' 'SOrn

cul
hack oars

nhsbIl gAuck 	 NettttkflgfrttGMagrtaUa

Hq Ing
Attack5ophIsIcatlon_

Bur~artea
Ffdting KradnrlrtlrxrIlitlez

t
--Jr,. wi,rdCrackIng 	\

 f. phot
ssnudUUasrng

Low

Figure 1.6: The Growth of Attack Sophistication over Time
(CERT/Carnegie Mellon University 2001)

1.8.2 Types of Intruders
An intrusion is somebody (Hacker or Cracker) attempting to break into or misuse

your system. Intruders can be classified into two categories.
Outsiders - Intruders from outside the network, who may come from the Internet,
dial up lines, physical break-ins or from neighborhood networks.
Insiders — Intruders that legitimately use your internal network, these include
users who misuse privileges. A frequently quoted statistics is that insiders commit
80% of security breaches.

The primary ways an intruder can get into a system are:
Physical intrusion If an intruder has physical access to a machine i.e., they can
use the keyboard or physically take apart the system and remove the disk drive.
Even BIOS protection is easy to bypass, virtually all BIOSes have backdoor

passwords.
System intrusion This type of hacking assumes the intruder already has a low
privilege user account on the system and he is able to use a known exploit in
order to gain additional administrative privileges.

13

ANN Based Network Intrusion Detection System

Remote intrusion This type of hacking involves a intruder who attempts to

penetrate a system remotely across the network.

1.8.3 Typical Intrusion Scenario

A typical intrusion scenario might be
Step 1: outside reconnaissance The intruder will find out as much as possible without
actually giving themselves away. The intruder will do a 'whois' loot up to find as much
information as possible about your network as registered along with your domain name.
The intruder will walk through your DNS tables (using 'nslookup', 'dig' or other utilities)

to find names of your machines.

Step 2: inside reconnaissance The intruder uses invasive technique to scan for
information, but still doesn't do anything harmful. They might walk through all your web

pages and look for CGI scripts.- They might do a ping sweep in order to see which

machines are alive or a TCP/UDP scan/probe to see which services are available.

Step 3: exploit The intruder crosses the line and starts exploiting possible holes in target

machines. The intruder may attempt to compromise a CGI script by sending shell

commands in input fields. The intruder might attempt to exploit well known buffer
overrun holes by sending large amount of data or break passwords of user accounts by

brute force.
Step 4: foothold At this stage the hacker has gained access into the network and his main
goal is to hide evidence of the attacks (by doctoring audit trails and log files). They may
install 'toolkits' that give them access, replace existing services with their own Trojan
horses that have backdoor passwords or create their own user accounts. So even if the
machine may not in itself have any thing of interest to an intruder but he uses it as a

stepping-stone to attack other systems also in turn hiding his identity,

Step 5: capitalize The intruder takes advantage of their status to steal confidential data,

misuse system resources.

14

ANN Based Network Intrusion Detection System

1.9 RELATED WORK
Intrusion detection has traditionally focused on one of two approaches. Misuse

detection compares a user's activities with the known behaviors of attackers attempting to
penetrate a system. The second approach, anomaly debction seeks to identify activities
that vary from established patterns for users, or network. Anomaly detection is a widely
used method in the field of computer security, and there are approaches that utilize it for
detecting intrusions [3].

Various techniques for modeling anomalous and normal data have been
developed for intrusion detection. A survey of these techniques is given in [7]. A method
that is closely related to the work in this dissertation employs clustering mechanism to
classify abnormal activities and detects attack based on the assumptions that the
unlabeled dataset contains large amount of normal activity and relatively few anomalies
[8] and [9]. The first use of Kohonen self-organizing map in misuse detection is
described in [15]. There a hybrid neural network — in which the output of a Kohonen map
provided input to a conventional feed forward neural network, was prototyped to address

temporally dispersed, and possibly collaborative, attacks in a simulated data stream.

Temporally dispersed attacks are those conducted by a single attacker over an extended

period of time, while multiple attackers working in concert to achieve a single intrusion

conduct collaborative attacks.

The other more related technique involves use of neural networks for detecting
intrusions. An approach, which detects network based attacks as anomalies using
statistical preprocessing and neural network classification is discussed in [12]. The paper
tested five different types of neural network classifiers: perceptron, Backpropogation
(BP), Perceptron-backpropogation-hybrid (PBH), Fuzzy ARTMAP and Radial based
function.

A technique given in [13] discusses detecting intrusions using neural networks by

training on packet header fields extracted in the preprocessing stage for a customized
network. A comparative performance study of various type of NN perceptron, BP and

PBH is also included. In [14] it proposes a learning algorithm that constructs models of
normal behavior from attack free network traffic and the behavior that deviates from the

learned normal model signals a novel attacks. The model for normal behavior is prepared

15

ANN Based Network Intrusion Detection System

based on the packet header (PHAD) and application layer (ALAD) analysis. The first

component PHAD monitors 33 fields from the Ethernet, IP and transport layer (TCP,

UDP, or ICMP) packet headers, however, 15 fields were found to contribute towards

detection. The anomaly scores of each packet is calculated based on probability study

such that any new instance of field under consideration would raise the anomaly score of

the packet. The total anomaly score of individual packets are thus computed and if above

the set threshold it signals alarm for, detecting attacks. The second component of the

model ALAD, instead of assigning anomaly scores to each packd, assigns a score to an

incoming server TCP connection. TCP connections are reassembled from packets. The

performance of the intrusion detection is enhanced by using keyword selection in neural

networks as discussed in [5]. Many an attacks like DOS and its variants comprise of valid

field values at packet level, however the flooding of these packets on a victim machine

leads to the attack. Hence techniques attempting to detect attacks based on individual

packet headers will fail to detect such anomalous activities comprised of valid

commands/requests.

1.10 AUTHOR'S CONTRIBUTION

The author's contribution is towards designing a system that add focus to anomaly

based IDS by enhancing its potency against known attacks by including attack signatures

as additional statistical feature. The advantage of high rate of detecting known attacks by

misuse-based detection is complemented to this system whose core detection engine is

primarily based on anomaly based detection technique.

The system detects attacks based on source machine's activity over a dynamic

time window, which overcomes the handicap of other systems assessing on individual

packet analysis. Data mining skills are applied in computing statistical trends as well as

flagging features based on likelihood of attack signature in the source activity. The

features thus presented to the clustering mechanism reflect the behavioral trend of a

source machine in communication with the victim machine in terms of statistical features

and flags indicative of attack signatures. The evidence of attacks is self-learned by the

Kohonen based SOM technique and these clusters are classified by MLFFNN using

Levenberg Marquardt algorithm for backpropagation. Labeled tcpdump data are used for

IR

ANN Based Network Intrusion Detection System

supervised, training of neural network The complexity of training data and its size

(approximately 4.4 GB) demanded a faster convergence algorithm like Levenberg

Marquardt for backpropagation of neural network weights.

One of the main assumptions made was that data instances presented by the data-

mining module having similar characteristic would be close together under some metric

in the clustering mechanism. Therefore finding or constructing an appropriate metric is

essential for clustering. In detecting network intrusions, it is imperative that some

features of the data instances would be more important (have greater weight) than others

viz, flags indicative of attack signatures, and thus differences' in the values of those

features should have a greater 'contribution to the overall distance. Therefore, several-

weighted metrics were tried, with higher weights assigned to different subsets of features

in this work and it was decided to use a standard Euclidean metric, with weighted

features so that all data instances pertaining to an attack fallinto the same cluster.

The system prototype was tested on tcpdump data of the test week (4.5 h̀ week);

however the system is capable of adapting to real time detection of network traffic if the

statistical parameters of the tcpdump data used for training match that of the live network

traffic. This is feasible as the detection algorithm is largely independent of machine

specific details viz. source/destination IP address etc except for the normal traits of the

victim machine. The use of neural network based design reduces the computational and

memory needs . of system during real time detection stage, the bulk of the systems

overheads in terms of processing and. memory needs are limited to the training phase.

The use of pcap libraries give an inherent advantage to the system of

adapting to real time detection of network traffic since the traffic are handled as network

packets rather than as text files. The prototype developed is made user friendly by means

of GUI built using libglade.

17

ANN Based Network Intrusion Detection System

Chapter 2

DATASET DESCRIPTION

2.1 GENERAL
The development and design of a neural network based detection system will

necessitate a vast amount of labeled network data comprising of both with and without

attacks, for training of neural network. The problems envisaged in building such an
enormous data is limited to the researchers resources of originating variants of attacks

and capabilities of simulating a large. network. To promote more researchers to work in

the field of IDS and the need to compare difibrent IDS, Massachusetts Institute . of

Technology (MIT) Lincoln Lab created DARPA 1999 Intrusion Detection Evaluation
data set. This data set is publicly available [16] and is approximately of 10 GB size.

DARPA (Defense Advanced Research Projects Agency) is the independent

research branch of the U.S. Department of Defense (DoD) that funded a project that in

time was to lead to the creation of the Internet. Originally called ARPA (the "D" was

added to its name later), DARPA came into being in 1958 as a reaction to the success of

Sputnik, Russia's first manned satellite. In the late 1960s, ARPA provided funds and

oversight for a project aimed at interconnecting computers at four university research

sites. By 1972, this initial network, now called the ARPANET, had grown to 37

computers. Because ARPA's name was changed to Defense Advanced Research Projects
Agency (DARPA) in 1971, some people refer to ARPANET as DARPANET. (DARPA

was changed back to ARPA in 1993 and back to DARPA again in 1996). It manages and
directs selected basic and applied research and development projects for DoD, and

pursues research and technology that may provide dramatic advances for traditional

military roles and missions; funding research activities for Intrusion Detection System is
one of it's key thrust areas.

ANN Based Network Intrusion Detection System

2.2 1999 DARPA INTRUSION DETECTION EVALUATION PLAN
2.2.1 Introduction

The 1999 intrusion detection off-line evaluation data set is the second of an

ongoing series of yearly evaluations conducted by MIT Lincoln Laboratory ("Lincoln")

under DARPA ITO and Air Force Research Laboratory sponsorship. These evaluations
are contributing significantly to the intrusion detection research field by providing

direction for research efforts and calibration of current technical capabilities. They are of
interest to all researchers working on the general problem of workstation, or hostbased,

and network intrusion detection. The evaluation is designed to be simple, to focus on core

technology issues, and to encourage the widest possible participation by eliminating

security and privacy concerns and by providing data types that are used by the majority
of intrusion detection systems. DARPA 99 data set contains 5 weeks of network traffic

data Each week contains 5 days of network data collected at the packet level Of these 3

weeks of training data (weeks 1-3, 15t and 3 d̀ weeks do not contain- intrusions) and 2

weeks of testing data (weeks 4 and 5).

2.2.2 Technical Objective
The 1999 DARPA evaluation was designed to find the strength and weaknesses of

existing approaches and lead to large performance improvements and valid assessments

of intrusion detection systems. The concept was to generate a set of realistic attacks,

embed them in normal data, evaluate the false alarm and detection rates of systems with
these data, and then improve systems to correct the weaknesses found. The following
attack events were inserted during the simulation run:

1. Denial of Service (DoS) - Unauthorized attempt to disrupt the normal functioning
of a victim host or network.

2. Remote to Local (R2L) - Unauthorized obtaining of user privileges on a local host

by a remote user without such privileges.

3. User to Root (U2R) - Unauthorized access to local superuser or administrator

privileges by a local unprivileged user.

19

ANN Based Network Intrusion Detection System

4. Surveillance or Probe (probe) - Unauthorized probing of a machine or network to
look for vulnerabilities, explore configurations, or map the network's topology.

5. Data Compromise (data) - Unauthorized access or modification of data on local
host or remote host.

These attacks occur in the context of normal usage of computers and networks as one
might observe on a military base. The evaluation is designed to foster research progress,
with the following four goals:

1. Explore promising new ideas in intrusion detection.
2. Develop advanced technology incorporating these ideas.
3. Measure the performance of this technology.
4. Compare the performance of various newly developed and existing systems in a

systematic, careful way.

2.2.3 Physical Network

The simulation network is divided into two segments representing the networks

inside an Air Force base and the Internet outside the Air Force base as shown in figure

2.1. The outside includes two workstations, which simulate gateways to a virtual outside
internet. One workstation simulates many workstations using custom software

modifications of the Linux kernel provided by the Air Force group. One gateway leads to
roughly 100 workstations and the other leads to 1000's of web sites with actual content

that is updated daily. The inside includes victim machines of many types (e.g. Linux,
Solaris, and Sun OS) and a gateway to many others inside workstations. Data is collected
from the inside victim running Solaris and from an outside sniffer. The list of hosts of
simulated network 1999 is attached as Appendix `B'.

20

ANN Based Network Intrusion Detection System

I 	Simulation Network 99

Cisco 2514

OUTSIDE 	182.16H..1 frz.16.0.1 	 INSIDE

	

aa17c 	Inc 	SImOS 	MacOS 192.768.1.2 1121e.1125 	SMOS 	Li.. 	Solacis 	SvmOS 	Laav[NT 	WinD8

aesop 	Calvin 	so onion 	mom or 	 locke 	hobbes 	pascal 	send 	Marx 	hums 	kant
f9e.106.1.e0 19L708.1.10 7.7m.79a 	1ada.laa 	 ne.1aNe.1a 1Te.10.11 eeG 510.1011000 ne.1II77e0n n01011400 ne.011L.10e lrede71e.77o

	

Web Server Gateway 	Snftr 	SNMP 	 5nhter 	a, ql, 	Victtu 	Victim 	Victim 	vittm 	Victim
Morinor

'

	

eaukerJ 	tturkv Utsdser vhm i o ssl1

	

Hosts 	 k~ 	attacker VLvuslbMide
Hosts

® Ft&imet Flub
Rotas

	

oEVA~ 	 MIT Lincoln Laboratory ~^
2EVO

	

Figure 2.1 	Simulation Networks 1999

Many software tools were required to make this approach work. These include many

types of traffic generators, tools to schedule and create traffic in real time, and tools to

analyze the sniffing and audit data to verify that the system ran correctly and label each

attack.

2.2.4 Data layout: day wise

Training data will consist of the following elements however this work will detect

attacks based on inside tcpdump data and the second week (attack data) is used for the

purpose of training. Figure 2.2 depicts the day wise data for the second week from the

dataset. The data available for each day include:

1. Outside tcpdump data for roughly one month of network traffic as collected by a

tcpdump packet sniffer. This data contains the contents of every packet

transmitted between computers inside and outside a simulated military base.

21

ANN Based Network Intrusion Detection System

ple 	gdR . Ylew 	F 	rRes 	Tools t GeIP 	r 	i 	 ~ 	 ~~ 	 a

Back 	3 ~ 	Search 	Favar tes 	Mew
f 	9y' 	7,.t,v+a, { 	.. -sty 	,.c 	 ~, 	pe 	._. MS.,~. s&r 	'~ . ~!~ a 	5q u;.,, s 	r~.sb ` 	 ,. ..~ 1•: . 	~>~'

~d. i]http:i/www.H.mit.eduASTDdevalldata/1999/traiNng/week2pndex.html 4 	Go 	;73nks
244 Wood Street A
Lexington, MA 02420-9108 '
Phone (781) 981-5500 	 Monday

intruston(casst.e. nt.edu 	
outside tcndump data 167,536 kb gzipped

inside tcpdump data 185,368 kb gzipped

Solaris BSM audit data 2,789 kb gzipped

NT audit data 10,482 kb tarred & gzipped

Selected directory dumps 3.269 kb tarred & gzipped r°

File system listing & inode record 	10.597 kb tarred & gzipped

Tuesday

outside tcpdump data 196,205 kb gzipped
inside tcndump data 206.995 kb gzipped
Solaris SSM audit data 3,086 kb gzipped
NT audit data 10.481 kb tarred & gzipped
Selected directory dumos 2,966 kb tarred & gzipped
File system listing & inode record 6,991 kb tarred & gzipped

Wednesday

S 	 s

Figure 2.2: Day wise data layout for second week

2. Inside tcpdump data collected by a sniffer located inside the simulated military
base.

3. Sun Basic Security Module (BSM) audit data from one UNIX Solaris host. This

data contains audit information describing system calls made to the Solaris kernel.
Raw BSM binary output files are provided along with BSM configuration files
and shell scripts used to initialize BSM auditing to record events from processes

that implement important TCP/IP services.
4. Windows NT audit event logs as contained in the three files NTAuditdata,

Selected directory dumps, File system listings.
2.2.5 Labeled data

The first three weeks of data are labeled and listed in [19]. The date, starting time,

and destination(s) of each attack are provided. In addition, the name of the attack is

provided as a source of identification. However the identification of the attacker is not
provided, as a result, the simulated network since being a mammoth one has many a

source machines accessing the server machine at the timestamp listed in the label as start

22

ANN Based Network Intrusion Detection System

time of attack. This discrepancy leads to normal activity also being labeled as attack and

thereby leading to false negatives. To add to this dilemma it was found that the timestamp

provided were inaccurate and a leeway of 60 secs was required, this furthered the tally of

false negatives. To overcome this shortfall in our the data is not trained purely on the

labeled timestamp but the probability of the source cluster being an attacker is calculated

based on number of times it has been labeled as an attack against total number of times

the cluster center is selected over the complete training period. This aspect will be better

grasped in the later chapters. The fourth and fifth week of data form the test data and the

intrusions detected by the system discussed in this thesis can be verified from [20], which

catalogs the detect list for test data in the following format:
ID: 41.084031

Date: 03/29/1999

Name: ps

Category: u2r

Start Time: 08:18:35

Duration: 00:46:05

Attacker: 209.154.098.104

Victim: 172.016.112.050

Username: haraldl

Ports:

At Attacker: 80{1}, 6000{2}

At_Victim: 23{3}

2.3 PITFALLS IN DARPA DATASET

On analysis of the DARPA evaluation data set [16] it was found that the 12

million packets in the DARPA training 'set contain only 8 distinct TTL (Time To Live)

values (2, 32, 60, 62-64, 127-128, 254-255). TTL is an 8-bit counter (0-255) that is

• decremented with each router hop until it reaches zero, in order to prevent infinite routing

loops. Most of the detections and all of the false alarms due to TTL result from the

anomalous values 126 or 253, which are absent in the training data. This is not realistic,

as in real life large variations in TTL values are observed. It is possible that an attacker

might manipulate the TTL field to thwart an IDS using methods described by [22], but

these techniques involve using small values in order to expire packets between the target

23

ANN Based Network Intrusion Detection System.

and the IDS. A more likely explanation is that the attacks were launched from a real
machine that was 2 hops away from the sniffer in the simulation, but all of the other

machines were at most one hop away. It is extremely difficult to simulate Internet traffic
correctly [21], so such artifacts are to be expected.

Another major drawback realized in the DARPA dataset that affects the•
application of neural network techniques for detection are that very few instances of an

attack is available and more so not all attack types are launched against a single machine

as a result a system that learns attacks against individual machines limits the
generalization of the neural network learning. Figure 2.3 illustrates the number of attack
instances and types. For example .there are 43 instances of 11 types of DOS attack

therefore at an average only 4 instances of individual attack in the complete dataset which
cannot be considered adequate as even missing a single attack will result in 25% failure

in result. Maintaining high detection rate, demands near perfect algorithm in detecting
attacks.

J1J 	38 Attack Types in 1999 Test Data
Solaris Server SunOS Linux Cisco

(audited) internal internal Router

DENIAL
•back
Neptune

•back
•Neptune •Neptuee snmppetattack

•Ping of death .Ping of death .Ping of death

)F SERVICE sne,1 •Smug •5•°f

(11 Types,
•Syslogd
•land d

•Teordrop
•tend -Apache2 Pac h e2 •Apacha2

33 Instance Mailbonb •1Aailbomb •Mailbonb
•Process Table •Process Table •Process Table
•UDP Stem 4JDP Storm •UDP Stonn

REMOTE .dictionary .dictionary .dictionary 	•httptunne
•ttp-write {tp-rrite 4tpwrtite 	-named

TO USER •guest .guest •guest 	:sendmail

(14 Types, •phi
.ftp-write

•phf
•httptunnel

imap 	*dock
•phf 	ncsnoo P

16 Instances) •httptunnel •dock
..)dock •xsn o o p
•Xsnoop

JSER TO ROO •elect •loadmodute •pert

(7 Types, •ltdbcoreneta 'Ps
.)term

38 Instances) •pa

iU RVEILLANC
.lPsveep apsveep 4psweep •ipsweep
mmap •nmap -nmap •nmap

!PROBE •partavcop •port sweep •port sweep •port sweep
water -eatan eaten •saten

(6 Tvnes. reiscan -msaan lnscan •mscan

17 Instances), 1~14 Attacks in 2 Weeks of Test Data u =test only
MIT Lincoln Laboratory` 14 	

4*
 21

a4ead urpwn,

Figure 2.3 	Attack types in 1999 DARPA test data

ANN Based Network Intrusion Detection System

Chapter 3

ATTACKS: HOW TO DETECT

3.1 INTRODUCTION

In this chapter we broadly classify and identify with the variants of attacks with

an eye to their attack signatures. It will help reader understand how attacks can be
detected by observing the traffic; knowledge of it is must for devising algorithms for
datamining module.

There are 4 types/categories of attacks in the DARPA 99 data set:
• Denial of Service (DOS) - An attack that can deny use of a resource or service
• Probe - When network services are used to collect information about host
• User-to-Root (U2R) - a user attacks a computer from inside network

• Remote-to-Local (R2L) - a user attacks a computer from outside network

• Data - someone (user or administrator) performing some action that they may be
not allowed as per security policy.

Each of these will be discussed in detail in the subsequent sections.

3.2 	Denial of Service Attacks
•A denial of service attack is an attack in which the attacker makes some

computing or memory resource too busy or too full to handle legitimate requests, or

denies legitimate users access to a machine. There are many varieties of denial of service
(or DoS) attacks. Some DoS attacks (like a mailbomb, neptune, or smurf attack) abuse a
perfectly legitimate feature. Others (teardrop, Ping of Death) create malformed packets

that confuse the TCP/IP stack of the machine that is trying to reconstruct the packet. Still

others (apache2, back, syslogd) take advantage of bugs in a particular network daemon..

The following sections describe in detail each of the Denial of Service attacks that were

included in the 1999 DARPA intrusion detection evaluation.

25

ANN Based Network Intrusion Detection System

3.2.1 Apache2 attack
3.2.1.1 Description: The Apache2 attack is a denial of service attack against an apache

web server where a client sends a request with many http headers. If the server receives

many of these requests it will slow down, and may eventually crash [23].

3.2.1.2 Attack Signature: Every http request submitted as part of this exploit contains

many http headers. Although the exact number and value of these headers could be varied
by an attacker, the particular version of the exploit which was used in the 1999 DARPA
evaluation sent http GET requests with the header 'User-Agent: sioux\r\n" repeated 10000

times in each request. The actual content of the header is not important for the exploit, the

exploit is only dependent on the fact that http request contains many headers. A typical
http request contains twenty or fewer headers, so the 10000 headers used by this exploi

are quite anomalous.

3.2.2 Back
3.2.2.1 Description: In this denial of service attack against the Apache web server, an

attacker submits requests with URL's containing many front slashes. As the server tries to

process these requests it will slow down and becomes unable to process other requests

[24].
3.2.2.2 Attack Signature: An intrusion detection system looking for the Back attack
•needs to know that requests for documents with more than some number of front slashes

in the URL should be considered an attack. Certainly, a request with 100 front slashes in
the URL would be highly irregular on most systems. This threshold could be varied to

find•the desired balance between detection rate and false alarm rate.

3.2.3 Crashiis
3.2.3.1 Description: CrashIlS is a Denial of Service attack against the NT IIS

webserver. The attacker sends a malformed GET request via telnet to port 80 on the NT
victim. The command "GET ..1.." crashes the web server and sometimes crashes the ftp

and 	gopher 	daemons 	as well, 	because , they 	are part of ITS.

3.2.3.1 Attack signature: Sniffing the network traffic will reveal the malformed GET

command. The victim's security audit log will show that Dr. Watson ran when the

M

ANN Based Network Intrusion Detection System

service(s) crashed. However, Dr. Watson will also run for other seasons. Therefore, using

this audit signature for detection will most likely result in false alarms.
3.2.4 dosnuke
3.2.4.1 Description: DoSNuke is a Denial of Service attack that sends Out Of Band
data (MSG_OOB) to port 139 (NetBIOS), crashing the NT victim (bluescreens the
machine).

	

3.2.4.2 Attack signature: 	The attack creates a NetBIOS connection. The packets are
flagged "urg" because of the MSG OOB flag. The attack can be detected by searching
the sniffed data for a NetBIOS handshake followed by NetBIOS packets with the "urg"
flag.

3.2.5 Land

3.2.5.1 Description: The Land attack is a denial of service attack that is effective

against some older TCP/IP implementations. The only vulnerable platform used in the
1999 DARPA evaluation was SunOS 4.1. The Land attack occurs when an attacker sends

a spoofed SYN packet in which the source address is the same as the destination address.

	

3.2.5.2 Attack Signature: 	The Land attack . is recognizable because IP packets with
identical source and destination addresses should never exist on a properly working
network.

3.2.6. Mailbomb

3.2.6.1 Description: A Mailbomb is an attack in which the attacker sends many
messages to a server, overflowing that server's mail queue and possible causing system
failure.

	

3.2.6.2 Attack Signature: 	An intrusion detection system that is looking for a
mailbomb attack can look for thousands of mail- messages coming from or sent to a

particular user within a short period of time. This identification is a somewhat subjective

process. Each site might have a different definition of how many e-mail messages can be

sent by one user or to one user before the messages are considered to be part of a
mailbomb.

3.2.7 SYN Flood (Neptune)
3.2.7.1 Description: A SYN Flood is a denial of service attack to which every TCP/IP

implementation is vulnerable (to some degree). Each half open TCP connection made to

27

ANN Based Network Intrusion Detection System

a machine causes the 'tcpd' server to add a record to the data structure that stores
information describing all pending connections. This data structure is of finite size, and it
can be made to overflow by intentionally creating too many partially open connections.

The half-open connections data structure on the victim server system will eventually fill

and the system will be unable to accept any new incoming connections until the table is
emptied out. Normally there is a timeout associated with a pending connection, so the

half-open connections will eventually expire and the victim server system will recover.
However, the attacking system can simply continue sending IP-spoofed packets

requesting new connections faster than the victim system can terminate the pending
connections. In some cases, the system may exhaust memory, crash, or be rendered

otherwise inoperative [25].

3.2.7.2 Attack Signature: 	A Neptune attack can be distinguished from normal

network traffic by looking for a number of simultaneous SYN packets destined for a

particular machine that are coming from an unreachable host

3.2.8 Ping Of Death
3'.2.8.1 Description: The Ping of Death is a denial of service attack that affects many

older operating systems. Although the adverse effects of a Ping of Death could not be
duplicated on any victim systems used in the 1999 DARPA evaluation, it has been widely

reported that some systems will react in an unpredictable fashion when receiving
oversized IP packets. Possible reactions include crashing, freezing, and rebooting.

3.2.8.2 Attack Signature: noting the size of all 1CMP packets and flagging those that are
longer than 64000 bytes can identify an attempted Ping of Death.

3.2.9 Process Table
3.2.9.1 Description_ The Process Table attack is a novel denial-of-service attack that

was specifically created for this evaluation. The Process Table attack can be waged

against numerous network services on a variety of different UNIX systems. The attack is

launched against network services that fork 0 or otherwise allocate a new process for

each incoming TCP/IP connection. Although the standard UNIX operating system places

limits on the number of processes that any one user. may launch, there are no limits on the

number of processes that the superuser can create, other than the hard limits imposed by

the operating system. Since servers that run as root usually handle incoming TCP/IP

ANN Based Network Intrusion Detection System

connections, it is possible to completely fill a target machine's process table with multiple

instantiations of network servers. Properly executed, this attack prevents • any other

command from being executed on the target machine. An example of a service that is

vulnerable to this attack is the finger service. On most computers, finger is launched by
inetd. The authors of inetd placed several checks into the program's source code that must

be bypassed in order to initiate a successful process attack. In a typical implementation

(specifics will vary depending on the actual UNIX version used), if inetd receives more

than 40 connections to a particular service within 1 minute, that service is disabled for 10

minutes. The purpose of these checks was not to protect the server against a process table
attack, but to protect- the server against buggy code that might-create many connections in
rapid-fire sequence.

3.2.9.2 Attack Signature: 	Because this attack consists of abuse of a perfectly legal

action, an intrusion detection system that is trying to detect a process table attack will

need to use somewhat subjective criteria for identifying the attack. The only clue that

such an attack is occurring is an unusually large number of connections active on a

particular port. Unfortunately 'unusual' is different for every host, but for most machines,

hundreds of connections to the finger port would certainly constitute unusual behavior.

3.2.10 Smurf

3.2.10.1 Description: In the "smurf" attack, attackers use ICMP echo request packets

directed to IP broadcast addresses from remote locations to create a denial-of-service

attack. There are three parties in these attacks: the attacker, the intermediary, and the

victim (note that the intermediary can also be a victim). The attacker sends ICMP echo
request' packets to the broadcast address (xxx.xxx.xxx.255) of many subnets with the

source address spoofed to be that of the intended victim. Any machines that are listening

on these subnets will respond by sending ICMP 'echo reply' packets to the victim. The

smurf attack is effective because the attacker is able to use broadcast addresses to amplify

what would otherwise be a rather innocuous ping flood. In the best case (from an

attacker's point of view), the attacker can flood a victim with a volume of packets 255

times as great in magnitude as the attacker would be able to achieve without such

amplification.

29

ANN Based Network Intrusion Detection System

3.2.10.2 Attack Signature: The Smurf attack can be identified by an intrusion
detection system that notices that there is a large number of bcho replies' being sent to a
particular victim machine from many different places, but no 'echo requests' originating
from the victim machine.

3.2.11 sshprocesstable
3.2.11.1 Description: SSH Processtable is similar to the processtable attack in that the
goal of the attacker is to cause sshd daemon on the victim to fork so many children that
the victim can spawn no more processes. This is due to a kernel limit on the number of
processes that the OS will allow.

3.2.11.2 Attack Signature: This attack will be evident due to the large number of rapid
ssh connections to the host, the inability of processes to spawn on the host, and the fact

that request for new network logins (requiring child processes) will be denied, for the

duration of the attack. There may be other obvious signs as well.

3.3 	User to Root Attacks
User to Root exploits are a class of exploit in which the' attacker starts out with

access to a normal user account on the system (perhaps gained by sniffing passwords, a
dictionary attack, or social engineering) -and is able to exploit some vulnerability to gain
root access to the system. There are several different types of User to Root attacks. The
most common is the buffer overflow attack. Buffer overflows occur when a program

copies too much data into a static buffer without checking to make sure that the data will
fit.: For example, if a program expects the user to input the user's first name, the

programmer must decide how many characters that first name buffer will require.
Assume the program allocates 20 characters for the first name buffer. Now, suppose the

user's first name has 35 characters. The last 15 characters will overflow the name buffer.
When this overflow occurs, the last 15 characters are placed on the stack, overwriting the

next set of instructions that was to be executed. By carefully manipulating the data that
overflows onto the stack, an attacker can cause arbitrary commands to be executed by the
operating system. The following sections describe each of the User to Root attacks that

was used in the 1999 DARPA intrusion detection evaluation in greater detail.

30

ANN Based Network Intrusion Detection System

3.3.1 anypw .
3.3.1.1 Description: NukePW is a Console User to Root attack that allows the attacker
to logon to the system without a password. A boot disk is used to modify the NT
authentication package so that a valid username can login with any password string.
Logins via telnet also work with any password.
3.3.1.2 Attack signature: 	The sniffed data will reveal remote logons with incorrect
password strings.

3.4 	Remote to User Attacks
A Remote to User attack occurs when an attacker who has the ability to send

packets to a machine over a network, but who does not have an account on that machine,
exploits some vulnerability to gain local access as a user of that machine. There are many

possible ways an attacker can gain unauthorized access to a local account on a machine.
Some of the attacks discussed within this section exploit buffer overflows in network
server software. The following sections provide details of each of these attacks.
3.4.1 HttpTunnel
3.4.1.1 Description: In an Http Tunnel attack, the attacker gains local access to the
machine to be attacked and then sets up and configures an http client to periodically
query a web server that the attacker has setup at some remote host. When the client
connects, the server is able to send cookies that could request information be sent by the
client, such as the password file on the victim machine. In effect, the attacker is able to
"tunnel" requests for information through the http protocol.

3.4.1.2 Attack Signature: 	The Http Tunnel attack can be recognized by watching for
the setup login session, transfer of the client to the victim, and perhaps setting up a job to

be run periodically, or starting a background process to run the client. The using of the
tunnel could be noticed by periodic connections to from the victim to the attacker on non-

well-known ports, or ports greater than 1024. (However- port 80 could be used as well).

3.4.2 Phf

31

ANN Based Network Intrusion Detection System

3.4:2.1 Description: The Phf attack abuses a badly written CGI script to execute

commands with the privilege level of the http server. Any CGI program which relies on
the CGI function escape_shell_cmdO to prevent exploitation of shell-based library calls
may be vulnerable to attack. In particular, the "phf' program that is distributed with the

example code for the Apache web server manifests this vulnerability.

3.4.2.2 Attack Signature: 	To find the Phf attack, an intrusion detection system can

monitor http requests watching for invocations of the phf command with arguments that•

specify commands to be run. Examples of -commands that an attacker might attempt to

execute by exploiting the phf exploit are: cat /etc/passwd, id, whoami, or xterm.

3.4.3 Sendmail
3.4.3.1 Description: The Sendmail attack exploits a buffer overflow in version 8.8.3 of

.sendmail and allows a remote attacker to execute commands with superuser privileges.
By sending a carefully crafted email message to a system running a vulnerable version of

sendmail, intruders can force sendmail to execute arbitrary commands with root

privilege.

3.4.3.2 Attack Signature: 	The Sendmail attack overflows ,a buffer in the MIME

decoding- routine of the sendmail program. In order for an intrusion detection system to

identify a- Sendmail attack it must monitor all incoming mail traffic and check for
messages that contain a MIME.header line that is inappropriately large.

3.5 	Probes
In recent years,. a growing number of programs have been distributed that can

automatically . scan a network of computers to gather information or find known
vulnerabilities. These network probes are quite useful to an attacker who is staging a
future attack. An attacker with a map of which machines and services are available on a

network can use this information to look for weak points. Some of these scanning tools

(Satan, saint, mscan) enable even a very unskilled attacker to very quickly check
hundreds or thousands of machines on a network for known vulnerabilities. The

following sections describe in detail each of the probes that was used in the 1999

DARPA intrusion detection evaluation

32

ANN Based Network Intrusion Detection System

3.5.1 Ipsweep

3.5.1.1 Description: An Ipsweep attack is a surveillance sweep to determine which
hosts are listening on a network. This information is useful to an attacker in staging

attacks and searching for vulnerable machines.
3.5.1.2 Attack Signature: 	An intrusion detection system looking for the simple
Ipsweep used in the simulation can look for many Ping packets, destined for every
possible machine on a network, all coming from the same source.

3.6 	Data
Data Attacks involve someone (user or administrator) performing some action

that they may be able to do on• a given computer system, but that they are not allowed to

do according to site policy. Often, these attacks will involve transferring "secret" data

files to or from sources where they don't belong

3.6.1 Secret
3.6.1.1 Description: A "secret" attack is an attack where the attacker maliciously or

mistakenly transfers data which they have access to a place where it doesn't belong. For

example, transferring data from a classified computer/network to a nonclassified

computer/network would constitute a "secret" attack.
3.6.1.2 Attack Signature: 	To recognize these attacks, the detection system must
know which files are considered "secret", what the policies are regarding use of these

files, and then simply look for actions carried out involving them. Naturally, attacks such
as these can be hard to detect - a legitimate user could "cut-and-paste" information from

one desktop window to another.

33

ANN Based Network Intrusion Detection System

Chapter 4

METHODOLOGY

4.1 GENERAL DESCRIPTION

The system designed is a network based intrusion detection system that

scrutinizes tcpdump data in a time window to develop traffic trends and characteristic

evidences of an attack. It is assumed that the evidences of an attack lie within the packets

and can be identified either by individual analysis of packet in some cases or by

ascertaining the attackers intention by analyzing sequel of packets in a time window

frame for others. Since the system is primarily an anomaly based detection technique

which detects attack by detecting deviations from its learned normal trait, hence the

efficacy of the system to detect abnormality will depend on datamining skills in

extracting features from packet/packets such that they form a distinctive trait for each

attack. Akin to misuse detection technique the data-mining module also extracts attack

signatures of known attacks. The presence of attack signatures in the payload of the

packet is either flagged or mapped to a specific numeric value, which acts as an attack

identifier. The abnormality is self-learned by the system by way of Kohonen based Self

organizing mapping techniques. The clustering mechanism maps the activity of

individual machines within the window to clusters indicative of behavior pattern. Prior to

the system being used some of the components need time to be trained on the traffic

traits. The system is decidedly modular in nature; the system block diagram is illustrated

in figure 4.1 and detail system flowchart is depicted in Figure 4.2. There are three

distinctive stages in the system namely the architectural learning stage, System

learning stage and the detection stage.

34

ANN Based Network Intrusion Detection System

TCPDUMP TRAIN W O DATA
(attack. non attack week)

Network dora sampled Over Onto
Window

CLASSIFICATION 	Cluster STATISTICAL
DATA MINING ml OF CLUSTERS 	ii

center
weights COMPUTATION

(putts out lectures (rote (SOM) (Coomputes probability
network data) 	fOOtures

eeature d (salt sates 	tars based s o t attack for each
On rear r.s e1EraCleO) OWStet)

TCPOUMP TEST DATA
(4.5 week data) NEURAL

Prob of NETWORK

 attack 	- MODULE
(Renders decision In

Threshold hums of probabiptyof 	,
the machine behaNOr
be1nQ Nat of attacker) 	-,.ter.

(EARM Yesj

No

CONTINUE

Figure 4.1 	Block diagram of system

In the architectural learning period the architecture of the SOM and MLFFBP

neural network are decided, as well as the number of ports to be monitored and the
services offered by the server or the list of valid ports are also learned. Based on the

structure decided in this phase the features from the tcpdump data are .extracted and the
data preprocessed via datamining skills over a time window to reveal the behavior of the
machine, which then is fed to the system learning stage where both the number of clusters

are ascertained and based on the labeled tcpdump data [27] the normal/abnormal behavior

of the cluster learned by the MLFFBP neural network. Once these courses of action have

been taken the system evolves into detection mode. In the subsequent sections we will

dwell on these stages in detail.

35

ANN Based Network Intrusion Detection System

NEURAL
NETWORK
WEIGHTS

DETECTION
Tcpdump tr Ining d to CLUSTERS LIST
attack *non attack w ek

N

Computation of
ata Instances probability for

_ SOM each cluster& ML?
System 	 Feature CLUSTER M~ Trelnin

Initialized ? 	Yes 	ExVactrIon TRAINING learning 7

No YES

ATTACK 	No 	CONTINUE
System ML? TRAFFIC ? fj Initialization CLASSIFIER

Tcpdump Test ata
or YES

RAISE ALARM

VALID 	VALID IP
PORTS ADDR

Live traffic

SOM & NN
STRUCTURE
PROVIDER

Figure 4.2 System Flowcharts

The system is designed to detect intrusions against a few servers within the

monitored network at any instance all the same since the clusters learned and the neural

network trained are on behavior traits of source machine and are independent of machine

specific features viz. source IP, destination IP, the system can be easily carried forward to

other networks by adopting to specific machine attributes like valid list of pDrts in use.

4.2 ARCHITECTURAL LEARNING STAGE
This stage lays the outline for the core work to follow in successive stages, in this

stage the structure of the SOM and MLFFBP neural network is ascertained. The structure

of both the neural networks is direct fallout of the number of ports to be monitored and

the number of features being extracted in a time window. To monitor all the 65,536 ports

[28] of the victim machine (server) is unnecessary as only few ports would be active

depending on the services being offered by the server; also the administrator would prefer

to monitor some vulnerable ports. The number of ports to be monitored is arrived at as

the sum of list of known ports (say KP) defined by the system administrator to watch and

36

ANN Based Network Intrusion Detection System

the number of extra ports (EP) the algorithm chooses to add to the list. The algorithm
employed is based on selecting the highest EP number of ports that are accessed the most

in the observed network data. Since the system is primarily designed for detecting attacks
against server victim machines hence a criteria of port number being less than 1024 is

added. The final set of ports used isFINALSET = KP + EP.
In this stage the list of valid ports are computed as all the ports accessed in a non-

attack tcpdump data viz. 1S`, 3rd week of the victim machine. This is required for

detecting variants of probe attacks in which a server attempts to access inactive or invalid

ports on a server machine. In the preprocessing module the port activity over the time
window is computed based on the FINALSET number of ports on a source by source

basis, this form as one of the features for the clustering mechanism with the other features

extracted from the network data using data mining skills discussed in chapter 5. Each or

the combination of these other features extracted contribute towards detecting attacks.
Viz. number of invalid/inactive ports accessed within a time window will be instrumental

in detecting all probe attacks. As an attacker trying to hit upon the services offered by the

victim machine would tend to scan all its ports thereby escalating the score of invalid

ports accessed by this attacker machine on the victim machine. If NUM FEATURES is

the total number of features used for clustering then it is defined as

NUM FEATURES = FINALSET + OTHER _F
Where OTHER _F are the number of features extracted besides port activity, this

is based on the number of attacks that the system is designed to detect, for experimental
purpose and to limit the scope of discussion we would be considering six such features,

all the same the strength of the system in detecting other attacks by increasing these

features will be considered as future scope. Figure 4.3 depicts the screen shot at the end•

of architectural learning stage in the prototype system. Port No. 80 was specified by the
system administrator and 4 Extra ports were decided by the algorithm.

37

ANN Based Network Intrusion Detection System

Session Edit View ~ Bookmarks St ttJngs 	! c~. 	~~...~~ 	ate, 	P

~il,. 	v 1, 	. 	z -. 0MAII 	. 	~ 	:a 	,.~. 	'.;.'. z 	,$;-,-i£,..,;x.' 	- nr✓ 	,~ ' a.'` ' w,..a .̀: 	. ' 	+'x t 	,.....~ ~.~a 	' s»... 	n "` 	a".a 	: r.,?.id<

Transfer function : log Sigmoid
System under T R A I N I N G
Leeway for labelling : 60
Architectural function value 	. 	1000.000000
Window size for clustering : 	10.000000
Vigilence parameter 	2.000000
Amplfication factor : 	40.000000

Filter : dst 172.16.112.S0

file to be captured : in2l.tcpdump
destination port :80

Wish to continue with more ports (0 for No) ? : 0

End of architectural learning phase12141
Displaying the final set of ports selected......
dst -ports : 	80
dst ports : 	23
dst ports : 	22
dst ports : 	25
dst ports : 	123
learning of SOM (clustering) begins

1

Figure 4.3. 	Screen shot depicting end of Architectural learning stage

Once we have determined the NUM FEATURES the SOM structure is decided as
having NUM_FEATURES number of input neurons and the architecture of MLFFBP

neural network is as shown in figure 4.4. The discussion on number of hidden layers and

its nodes is carried forward for chapter 7.

F
ea

A

Fe

Figure 4.4 . MLFFBP neural network structure

ANN Based Network Intrusion Detection System

4.3 SYSTEM LEARNING STAGE
During this stage the learning of SOM and MLFFBP neural network take shape.

But before we progress further we will discuss why the sources are clustered for input to

the neural network. The NUM FEATURES computed on source-by-source basis over

the time window reflects the behavioral pattern of that source machine and could have

been directly fed to the neural network eluding the use of clustering technique. But at any

time there are a large number of sources in communication with the victim machine.

Therefore simply grouping the information by sources will firstly not create a uniform

representation of data for the neural network and more significantly since the labels in

tcpdump data are based on timestamps and as numerous sources are concurrently in

communication during that instant so all the sources or rather their behavior patterns will

be fallaciously classified as attacks thereby making, the training of neural network

problematic i.e. since the identical behavior pattern would be trained as an attack in one

time window and as a non attack in another thereby leading to a convergence problem.

To address this issue we send the preprocessed source information to a clustering module

which groups sources with similar trends together during the system learning phase. The

numbers of thus created clusters are constant and fixed in this phase. When a source is

assigned to a particular cluster, the clusters center is updated using this sources features;

more on the SOM technique is discussed in chapter 6.

The second part of the system learning stage involves supervised training of the

neural network to render a decision as to the likelihood of a pending attack. In this stage

the tcpdump data are first preprocessed in a source by source basis within a time window

and the features extracted fed to the clustering algorithm which selects the cluster closest

to the source machine behavior and then this cluster depending on the tcpdump data label

is classified as an attack/non attack for the supervised learning of the MLFFNN. The

timestamps give out the machine under attack and the time at which attack was effective

and as discussed earlier since numerous sources are concurrently in communication with

the victim machine and therefore all these would be erroneously classified as attacks if

labeled solely on the basis of timestamps. Besides the clustering algorithm or more

specifically the datamining technique may not always succeed in allotting a separate

39

ANN Based Network Intrusion Detection System

cluster for each anomalous behavior, as a consequence normal activity may also fall in

the same cluster thus leading to higher false alarms.

This impasse is resolved by conducting the supervised training in two stages. In

the first stage the probability of each cluster being an attack is calculated by computing

the number of times a cluster was labeled as an attack as against the number of times the

cluster center was selected. The neural network for supervised training then employs this

individual probability of each cluster; the subject is dealt in more detail in chapter 7.

4.4 DETECTION STAGE
In this stage the system can be put in detection mode for testing either on tcpdump

data file (4-5 week) or live network data for detection. In case of latter, the valid list of

ports of the machines to be monitored will require to be maintained in valid port.txt

(Appendix `J'), while for the former the system generates the same during training itself.

In this work we would limit our scope the former.

The tcpdump data of the test week is preprocessed within the time window and on

the basis of its proximity to the clusters learned by the system, the cluster center is

selected which is then fed to the neural network for decision in terms of the probability of

the activity of that machine in that span corresponding to an attack and classifying the

type of attack Based on the state of alertness viz, cautious, alert, paranoid the alarms are

raised and logged by the system.

40

ANN Based Network Intrusion Detection System

Chapter 5

DATAMINING MODULE

5.1 GENERAL
The datamining module preprocesses the network data both during training and

detection stage and presents those features to the system that empower it to detect

intrusions. It is also referred to as the preprocessing module in this document. The

datamining skills employed during this stage define the efficacy of the system. An effort
to identify how the data needs to be looked at in order to provide us with a better picture

is surely vital in providing accurate and effective results. This is done in four sub•phases;

(a) System Initialization

(b) Packet Capture: Sniffing program

(c) Feature Extraction : Data mining Algorithm

(d) Normalization

In the System Initialization phase the parameters of the system with respect b the

victim or Server machine being monitored is initialized as explained in Architectural

learning stage, i.e. the number of ports to be monitored, list of valid ports on the victim
machine ascertained by preparing the list of ports active on the server. These parameters

are ascertained by analyzing the packets from the non-attack week training data (week 3)

for a period defined by the architectural factor (archijactor). The packets captured in the

first 10,000 seconds were considered during architectural learning stage i.e.

archi_factor=10000. The parameters initialized in this stage will aid the datamining

algorithm in pulling out anomalies in machine activity.

The sniffing program captures the packets from the training or the test tcpdump

files and only IP packets are considered to limit the scope of this work. Based on the

protocols the packet header and application layer fields are extracted and this raw field

values processed by the datamining algorithm to extract features for clustering. Figure 5.1
illustrates the screen shot of raw tcpdump data captured by the sniffing program. In [14]

41

ANN Based Network Intrusion Detection System

33 fields were analyzed for detecting attacks and only 15 fields were found to contribute

towards detection. Table 5.1 lists the contribution of these fields.

Edit View Bookmarks Setmbgs Help wSession

Payload : 	PASS megansecrow.eyrie.af.mil
rnetl 	 -

(20) 8Th: 0:10:7b:98:46:33 O:cO:4f:a3:57:db (IF) 60
IF: 197.218.177.69 	172.16.114.148 5 4 40 16384 6

Ian TCP 	Packet Number U. TCP has just been sniffed
From src port 	:21
To 	Dst port :1025 ;4•
Payload .

(21) ETM: 0:10:7b38:46:33 O:cO:4f:a3:57:db (I2) 102
IP: 197.218.177.69 172.16.114.148 5 4 88 16384 6

Iam TCP 	Packet Number 12 TCP has just been sniffed
From src port 	:21
To 	Dst port :1025
Payload : 	230 Guest login ok, access restrictions apply.

Cisco Internetwork Operating System Software
I0S (tm) 2500 Software (C2500-I-L), Version 11.3(4)T. 	RELEASE SOFTWARE (fci)
Copyright (c) 1980-1998 by Cisco Systems, Inc.
Compiled Mon 15-Sun-08 23:52 by ccai

(22) tIN: O:cO:4f:a3:57:db 0:10:76:38:48:33 (IF) 60
IP: 172.16.114.148 	107.218.177.69 5 4 46 16384 6

lam TCP..... 	Packet Number 13 TCP has just been sniffed
From src port 	:1025 "e?.
To 	flat port :21
Payload : 	SYST

eat login ok, access restrictions apply.
Cisco Internetwork Operating System Software

.10S (tm) 2500 Software (C2500-I-1), Version 11.3(4)T, 	RELEASE SOFTWARE (fci)
Copyright (c) 1986-1998 by Cisco Systems, Inc.
Compiled Mon 15-Jun-98 23:52 by ccai

(23) EIN: 0:10:7b:38:46:33 0:cO:4f:a3:57:db (IF) 73 	 -
IP: 197.218.177.69 	172.16.114.148 5 4 59 16384 6

Iam TCP..... 	Packet Number 14 TCP has just been sniffed
From src port 	:21
To 	list port :1025
Payload : 	215 UNIX Type: L8

J igure 5.1 	Raw tcpdump data

The sniffing program displays only the Ethernet source and .destination address,
Ethernet Header size, IP src and dst, packet size, protocol field value, src and dst port
numbers and the data payload.
>Fiel`d„ f~ a TP Du R Detected attacks= , 	 `
Ethernet Size 1 2 1 Ipsweep
Ethernet Dst Hi 1 0 6 Mscan
IP TTL 33 8 20 Netcat_breakin,netbus,ntinfoscan,dosnuke,que

so,
casesen,satan,apache2,mscan,mailbomb,ipswee
P,

• ppmacro,Neptune,sechole,crashiis,named,smur
f,
portsweep,guesstelnet.

IP Packet length 2 2 1 •Teardro 	ortswee ,satan
IP dst address 2 1 7 Portsweep,sendmail
TCP Flags 7 3 2 Queso,portsweep,dosnuke
UAPRSF
TCP window size 0 1 2 Apache2

42

ANN Based Network Intrusion Detection System

TCP checksum 1 0 29 Insidesniffer
TCP URG Ptr 3 0 5 Dosnuke
TCP options 2 0 4 Apache2
UDP checksum 2 0 0 Udpstorm
ICMP checksum 2 0 0 Smurf
table 5.1 	. Contribution of fields to detection in [14].

It is evident from the table that the source or destination port did not contribute

towards detection of attacks. But by applying data mining skills and computing statistical
parameters using the ports, the system proposed in this work is able to detect variants of

probe attacks and flooding attacks. As will be seen later in this report it also detects new
attacks, which were not available in the training tcpdamp data.

In the Feature extraction stage, the algorithm for heightening the anomalous
nature in network traffic is worked out, and then the numbers of features predefined by

the algorithm are extracted over a dynamic time window, whose width depending .pon

the nature of network activity is decided by the system administrator such that a high

activity would lead to a shorter width. The network data features are then normalized to
portray a correct representation of network behavior. This then forms as input to the
clustering mechanism.

5.2 DATAMINING ALGORITHM

5.2.1 Introduction
According to R.L. Grossman in [28], he defines data mining as being "concerned

with uncovering patterns, associations, changes, anomalies, and statistically significant

structures and events in data." In simple terms it is the ability to take data and pull from it
patterns or deviations. which may not be seen easily to the naked eye. Another term

sometimes used is knowledge discovery. While they will not be discussed in detail in this

report, there exist many different types of data mining algorithms to include link analysis,

clustering, association, rule abduction, deviation analysis, and sequence analysis.
Data mining can help improve intrusion detection by adding a level of focus to

anomaly detection. By identifying bounds for valid network activity, data mining will aid

the system to distinguish attack activity from common everyday traffic on the network. A

43

ANN Based Network Intrusion Detection System

major obstacle was to tailor data mining algorithms and processes to fit intrusion

detection. The ensuing section will discuss these aspects with certain attacks in mind.

5.2.2 Feature extraction
To limit the scope of discussion in this section we will discuss feature extractions

leading to detection of at least one or more attacks with high detection rate and near zilch

false positive rate. The attacks chosen are those that were not or poorly detected by [17].

The network has large number of machines concurrently in communication with the

victim machine and the statistics is computed on a source by source basis in each time

interval by this module. The statistics computed are the features extracted from the group
of packets originating from a source machine to the victim machine in a time interval.

The subject is discussed in this section from the perspective of attack detection.

5.2.2.1 Port activity

This foremost feature is computed over the time window by calculating the traffic

intensity to all the ports being monitored. The selection of ports is dealt in detail in

section 4.2. The port activity reflects the behavior pattern of the source machine against

the victim machine in a particular time window. To corroborate the point lets consider

detection of mailbomb attack on a mail server. An enormous amount of mails being sent

to the victim machine (mail server) by an attacker thereby overflowing the servers mail

queue and possibly lead to system failure would get highlighted as an anomalous activity
by computing the port activity in this case a high traffic intensity at port 25. This feature

can detect variants of flooding attacks, provided that the destination port on which the
attack is launched by the attacker is under surveillance by the system.

5.2.2.2 Probe attack
The basic intention of an attacker launching a probe attack is to hit upon the

- active services running on the victim machine so that depending on his expertise in
exploiting the bugs in the services identified, an attack can be launched. The detection of

this attack lies in this activity itself; since the attacker is unaware of the services offered

by the victim machine and hence would probe all the ports in the band of his interest.

This attack is detected by our system by identifying if any source machine attempts to

access an inactive port on the server macline in a suspicious manner.

ANN Based Network Intrusion Detection System

During the architectural stage of the system, it learns from the non-attack

tcpdump file the active ports of servers and this list of valid ports is stored in a file

(validport.txt). The feature extracted to detect the probe attack viz. portsweep is

computed by calculating the number of invalid ports accessed by each source machine

during a time window. A large number of invalid ports accessed by a source machine
during a time frame would be indicative of a probe attack.

5.2.2.3 Land attack
Since no machine would need to use the network resources to access itself

therefore a packet on the, network with the same source and destination address is
anomalous in nature. This attack is fairly simple to detect in our system unlike in [17]

since the activity of all the source machines against a specific destination machine is
under purview in a time interval. This attack is detected by flagging the feature

'same—address ' as true when the destination and source addresses were similar.

5.2.2.4 Back and Crashiis attack
For detail description of attack refer section 3.2.2 and 3.2.3 respectively. These

attacks can be detected by scanning through the HTTP (port 80) packets for data contents

having more than 100 front slashes or malformed GET requests. In such case the feature

`key' is loaded a predefined value (0.9 for back and 0.5 for crashiis) in the above case

and otherwise a default value (0).

5.2.3 Conclusion
Once the features are extracted based on the attacks being detected by the system

it is required to be normalized. Since the feature port activity and number of invalid ports

accessed cannot be purely seen from a time window aspect as the traffic intensity varies

from day to day and more so on hourly basis. Highly anomalous port traffic intensity at
0600hrs may not be considered so at 1100 hrs as network activity is time dependent.
Normalizing these features will present a correct picture so that the system is able to

detect the deviations from the normal.

45

ANN Based Network Intrusion Detection System

5.3 NORMALIZATION
Since, the system was designed to be general, it must be able to create clusters

given a dataset from an arbitrary distribution. The data instances are assigned to clusters
if they are closer than a constant distance; which defines the neighborhood boundary. If

this neighborhood boundary or vigilance parameter is hard coded into the algorithm, then
'it will be used for data instances from other distributions as well. To highlight the

discrepancy caused thereby lets consider two sets of two 3-feature vectors, each set
coming from different distribution:

1. {(1,3,2),'(1,4,3)} ,.
2. {(900, 1000, 700), (1000, 1100, 800)}

Under a Euclidean metric, the squared distance between feature vectors in the first

set will be (1-1)2 + (3-4)2 + (2-3)2 = 2, while it will be 30,000 for the second set. If in our
clustering algorithm the cluster width is hard coded (e.g. say 1.5) then the two patterns in
the first set will fall in the same cluster while the patterns in the second set will be put in

different clusters. Since we cluster the input data instances in an adaptable time window,

the distribution will differ over the time windows itself, as the traffic pattern during early

hours will differ from peak hours.
One possible solution to this is to determine the width dynamically based on the

dataset (based on early /peak hours the distribution varies) and the width of the time

window. However, it would result in complexities in training of SOM and MLP neural
network. In this work we take a different approach [8] and make the viglance
parameter/cluster width hard coded constant (user defined) but convert the data instances
to a standard form based on training dataset's distribution and time window width.
Instead of presenting the traffic patterns within a time window directly we map it to a

standard space by computing their mean values and for every feature value we calculate

how many standard deviations it is away from the average and this result becomes the

new value for their feature.
Given a training dataset, the average and standard deviation featurevectors are

calculated:

ANN Based Network Intrusion Detection System

N

Avg_vector[j] = 1/N 	instance;[j]
i=1

N

Std vector.[j]=((1/(N-1) 	(instance,[j] —avg_vector[j])2)l"2

i=1

Where avg vector[jj is the average of the j h̀ feature of the vector and instance,[jJ

is the value of j h̀ feature of i`4 pattern in the dataset.

Then each feature vector in the dataset is converted as follows:

New—instance[j]=(instance;[j] - avg vector[j])/std vector[j]

In effect this is a transformation of an instance from its own space to a

standardized space, based on statistical information retrieved from the dataset over the

time window. These normalized features pulled out from network traffic in' a time

window are then presented to the clustering module.

47

ANN Based Network Intrusion Detection System

Chapter 6

CLUSTERING MODULE BASED ON SOM

6.1 GENERAL
The unsupervised learning using self-organizing mapping (SOM) techniques,

clusters the input patterns according to similarities discovered among the input features
[33]: The clustering process is governed by a threshold called vigilance parameter
(cluster width) and metric function. To create clusters from the input features, we use a
simple variant of single-linkage clustering — Kohonen self-organizing neural network. It
is an unsupervised neural network which maps multi- dimensional inputs to a two
dimensional outputs [29]. Kohonen proposed new neural network architecture based on

the idea, that brain uses spatial mapping to model complex data structure internally. This
architecture is popularly known as Kohonen Self-Organizing Map.

The input features presented by the data-mining module of the system prototype,
for clustering is depicted in Table 6.1. * Features are those that are flagged or mapped
into numeric value indicating presence of attack signatures or anomalous activity. Total
of five ports were monitored which included four Extra ports ascertained by the
algorithm as discussed in the data mining module (Chapter 5).

__Features presented for clustering
Port Activity 1"....m 	Same address *' ̀ `TTL I Invalid port* I Payload*
Table 6.1 Input Features presented by data mining module for clustering
6.2 METRIC

One of the main assumptions made was that data instances presented by the

datamining module having similar characteristic would be close together under some

metric. Therefore finding or constructing an appropriate metric is essential for clustering.
In detecting network intrusions, it is imperative that some features of the data instances
would be more important (have greater weights) than others viz. flagging of existence of
attack signatures, and thus differences in the values of those features should have a
greater contribution to the overall distance. Therefore, several-weighted metrics were

ANN Based Network Intrusion Detection System

tried, with higher weights assigned to different subsets of features. Figure 6.1 depicts a
comparative study, note combination 1 represents equal weighted features while rest are

weighted features as listed in Appendix `G'. Combination 2 and 3 accord higher weight
to features that are flagged i.e: invalid port (indicates inactive port on server machine

being accessed), same address (indicates anomalous JP src and dst address) and key
(indicates presence of attack signature in data payload), resulting in better detection rate
than the rest of the weight combinations.

120 o Port activity

	

,100 	 ■ Invalid port
Unit$0

60 ❑ TTL

	

40 	 ❑ Same address
20

	

p 	 ■ Key

1 	2 	3 	4 	5 	0 No. of Cluster
Combination of.

weighted■ or~etection Features
(Five combinations were tried)

Figure 6.1 Comparative study of effect of weighted features on efficacy of clusters

As a consequence it was decided to use a standard Euclidean metric, with
weighted features so that all data instances pertaining to an attack fall into the same
cluster i.e. not many clusters representing the same attack are formed. Further tuning the
metric will show some increase in performance, however tuning the metric parameters to

achieve maximum performance for a particular data distribution and feature set would
undermine the systems generality and contribute to over fitting; hence only critical
features (those flagging presence of attack signatures) were weighted by a factor referred

to as amplification factor in this report.

6.3 CLUSTERING ALGORITHM

Kohonen network consists of an input layer and a two dimensional Kohonen

layer, which maps a distribution of n-dimensional np inputs onto mp output nodes in a

ANN Based Network Intrusion Detection System

non-linear way. The algorithm employs competitive learning rule, first pattern is selected
as the centre of the first cluster. Then, the next pattern is compared to the first cluster
centre. If the distance is less than vigilance parameter, it is clustered with the first.
Otherwise, it is a centre of a new cluster. This process is repeated for all the patterns. The
algorithm for the clustering mechanism is summarized below.

Let N1 is the number of input features, P is the number of patterns in the training
set and N2 is the number of clusters. The upper bound of N2 is P. If m ports are being
monitored then (Ni- m) input features are besides the port activity.
Assume X/" (i= 1,2.....N1) to be the i ' feature of the input pattern (p=1,2,.....P) and bk to
be the centre of the cluster k then

bk(nk) = [bkl, b bk ,,IT

where nk indicates the number of patterns that belong to the cluster k and k =

,gotoStep6elsegotostep2.

50

1,2,.....,N2.
Step 1:
Step 2:

Step 3:

Step 4:

Set p=1, N2=O, n N2=0
Form the new cluster and set
N2=N2+1, nN=1
The cluster centre co-ordinates are calculated with the help of following
equation
bmi(n N2)= Z 	 for i= 1,...., Nl
Increment p by 1 and if p . P, determine the Euclidean distance EDk
between the pattern p and centre of the cluster k, bk for k=1, 2....., N2

N1

EDk =amp factor * sqrt. E(bkl - X;(p1}2.

.. i=1

for i=1 to (NI -m) the amp_ actor =1 i.e. equal weighted metric for port
activity
Find k such that
EDk = min {EDk)

Step 5: 	If EDk

ANN Based Network Intrusion Detection System

Step 6: 	Pattern p belongs to the cluster K, new co-ordinates of cluster centre are

calculated as

bkl(nk +1) _ (nkd(nk+l)) bkl(nk) + i/fnk+l)) xf~
)

and go to step 3.

6.4 DETECTION OF NEW ATTACKS

The clustering algorithm will form clusters based on the inherent relation between

the data instances (behavior of source machines over the time window). Based on the

training data and the efficacy of the datamining technique to pull out features indicative

of an attack the clustering algorithm will form clusters pinpointing to normal and

abnormal behavior of machine activity. If the number of clusters formed is fixed during

SOM training then subsequently a data instance in test data or live traffic corresponding

to a new attack will be clubbed to the closest learned cluster and thereby go undetected or
be falsely detected.

It is one of our main assumptions that the training data set used for learning of

SOM and MLP neural network is exhaustive in terms of normal behavior of machines

and therefore any data instance during detection stage not within the cluster width of all

learned clusters is in itself indicative of an attack and training of neural network follows

this thinking which empowers our system to detect new attacks. This is implemented by

forming a dummy cluster at the end of cluster learning which adaptively learns its cluster

centre from that data instance which does not fall into the neighborhood boundary of all

learned clusters.

6.5 FUNCTIONALITY

During training stage (refer system flowchart for period) the data instances are

mapped to various clusters using clustering algorithm mentioned in section 6.3 and the

total number of clusters formed include the dummy cluster created to accommodate for

new attacks. These clusters learned i.e. cluster centre weights are averaged weightof the

group of data instances it represents. These cluster centers are written to a file cluster.txt

(refer Appendix `K'). Samples of clusters formed are listed in table 6.2. The system was

trained on second week of tcpdump training data and a total of 33 clusters were formed

51

ANN Based Network Intrusion Detection System

including dummy cluster as depicted from the screen shot in Figure 6.2. The tuning

parameters applied for clustering are listed below:

Vigilence parameter = 2

Amplification factor = 40

No. -
Cluster

Port 80
;. 	...<
Port 23

Port Acti"vi
Port 22 	Port 25 Port 123 Payload ` TTLe 	,

Same
,.address

3 Invalid
 : port

1 0 -0.13012 -0.17197 -0.00735 1.355499 0 0 0 0
2 -0.00049 -0.29451 -0.18617 -0.06904 -0.4267 0 0 0 0
3 0 -0.16786 1.038775 -0.01494 -0.61176 0 0 0 0
4 0 -0.31647 -0.20605 1.820978 -0.41398 0 0 0 0
5 0 1.202854 -0.17113 -0.03989 -0.50339 0 0 0 0
6 0 -0.35717 -0.24381 -0.11111 -0.46136 0 0 0 1.5
7 0 -0.49228 -0.25609 -0.17432 -0.36959 0 0 0 2.474874
8 0 1.54969 -0.33087 -0.03981 -0.445 0 0 0 1.788854
9 0 -0.55884 2.277098 0 -0.38293 0 0 0 2.03266

10 -0.00039 -0.395 -0.23195 -0.12742 1.82802 0 0 0. -0.79611
Table 6.2. Samples of clusters formed

=

Session EIll View Bookmarks Settlngs He p 	 1 	f 	 Y
••. 	

* Y 	Kam'" 	'v 	8 ,
~` d fT 	y 	- 	 P t 	'$s'P' 	A~€' T 	~ 	

m....M""'?'_'"""""'

Wish to continuewith more ports (0 for No) ? : 0

End of architectural learning phase12141
Displaying the final set of ports selected......
dst ports : 	80
dst ports : 	23
dst ports : 	22
dst ports : 	25
dst ports : 	123
Learning of SON (clustering) begins..........

Learning on file :in2l.tcpdump
earning on file :in22.tcpdump
earning on file :in23.tcpdump

Learning an file :in24.tcpdump
earning on file :in25.tcpdump =(
Clustering done
Number of clusters formed are : 33 and total time windows are :10929
prob ptr is empty
Iniatiazed variables for NN

all well file opened

Detection list leaded from the labela2.txt file
Training of neural network component (phase II)

SCREENING FOR VICTIM MACHINE dst 172.16.112.50

Figure 6.2 Screen shot of program depicting the clusters formed

During neural network training and detection stage the clusters learned a& read

from this file and based on the proximity to the cluster; the cluster centre selected. The

weights of the cluster centre selected are then fed to the neural network module.

52

ANN Based Network Intrusion Detection System

Chapter 7

MLFF NEURAL NETWORK MODULE USING LEVENBERG
MARQUARDT ALGORITHM FOR BACK PROPOGATION

7.1 GENERAL
The center weights of clusters selected are the input to the neural network under

both training and detection stage: The neural network learns both normal cluster centers

as well as those that point towards a pending attack in two phases. It firsts computes the

probability of a cluster center being characteristic of an attacker using the labeled data.

Once that being done it is then used to train the neural network to learn the attribute of

each clusters selected. The attributes of clusters learned by the neural network include the

probability of a cluster being indicative of an attack and its classification.

7.2 NEURAL NETWORK ARCHITECTURE
The system employs multi layer feed forward back propagation (MLFFBP) neural

network. It contains an input layer, one or more hidden layers and an output layer. An

MLFFBP Neural network has strong generalization capabilities and has been successfully

applied to solve difficult and diverse problems. The neural networks are widely

considered as an efficient approach to adaptively classify patterns, but the high

computation intensity and the long training cycles in our case greatly hinder their

application. Hence a faster convergence algorithm viz. Levenberg Marquart algorithm

was used for backpropogation of weights. The algorithm is discussed in the section 7.3.

The neural network linearises the • nonlinear relationship between the input and

output vectors. More complex the relationship (complexity increases with number of non-

linear relations) more number of layers are required to map the relation, also the number

of hidden nodes vary depending upon the number of output and input vectors. The ideal

number of hidden nodes thatwere arrived for our system was based on the following

relation.

53

ANN Based Network Intrusion Detection System

No. of hidden nodes = 1 (input vectors + output vectors)

The point is brought out . well in figure 7.1. During this chapter all such
comparative study is conducted on a sample case i.e. training neural network on second

week of DARPA training data (approximately 2.4 GB of data) for server

pascal.eyrie.af.mil (172.16.112.50) using log sigmoid transfer function. Both output and
input data are normalized within a range of 0-1 and the activation - function was found to
give better results with log sigmoid transfer function. The figures are based on tables

attached as appendices in this report.

1
.0.1 -
0.01

0.001 6 nodes

0.0001
4 nodes

1 E-06 T 8 nodes

1 E-07 --x-- 3 nodes

1 E-08 _-10 nodes

1E-09•

1E—l0

1E-11

0 50 100 150

No. of epochs

Figure 7.1 	Effect of number of nodes in hidden layer for sample case of two hidden
layers

The numbers of layers in the hidden layers were decided based on the
characteristic of the training data. A comparative study on number of layers in hidden
layer performed for the aforesaid example case is given in figure 7.2.

54

Hidden layers

ANN Based Network Intrusion Detection System

10

0.1

0.001 	 1 layer

U) 1 E-05- 	 - 2 layer

1 E-07 ---+— 3 layers -

1 E-09

1E-11
CC 	(0 t- 	0) O N

T '-

No. of Epochs

Figure 7.2 Comparative study of effect of number of hidden layers on error reduction

The system prototype employed two hidden layers each consisting of 6 nodes, the
number of nodes in the input layers consisted of 9 features and the number of nodes in

the output layer consisted of two nodes giving the probability• of attack and the
identifying the attack type as shown in figure 7.3. The training data and the target
patterns for the neural network were stored in trgset.txt and target.txt. Samples of input
and output patterns are listed in table 7.1.

Input layer features (1....9)
1

Port
activity

(90,22,2
3,25,123

LV

additia,a
features

viz
invalid
p
same

address
TTLkey

6

Figure 7.3. 	Architecture of MLFFBP Neural Network

?r_

Type of attack

55

ANN Based Network Intrusion Detection System

atterns_ in put Patterns
s ~ Port Activity Other3F,eatures,

0.377401 0.308289 0.78512 0.370059 0.324814 0.377401 0.377401 0.377401 0.44089
0.377401 0.564314 0.350808 0.371202 0.299178 0.377401 0.377401 0.377401 0.377401
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401
0.377401 0.564314 0.350808 0.371202 0.299178 0.377401 0.377401 0.377401 0.377401
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401
0.377401 0.357181 0.350677 0.376259 0.588034 0.377401 0.377401 0.377401 0.377401
0.377401 0.357181 0.350677 0.376259 0.588034 0.377401 0.377401 0.377401 0.377401'
0.377401 0.564314 0.350808 0.371202 0.299178 0.377401 0.377401 0.377401 0.377401
0.377324 0.331637 0.348471 0.366672 0.311095 0.377401 0.377401 0.377401 0.377401

Table 7.1. Samples of training and target patterns used by Neural Network

Target Patterns .`
Probability
of attack

Attack
identifier=

0.003607 0
0.003607 0
0.006981 0
0.003049 0

1 1

0.003374 0

7.3 MARQUARDT ALGORITHM

Since the backpropogation learning algorithm [30] was first popularized, there has

been considerable research on methods to accelerate the convergence of the algorithm. In

multilayer perceptron networks, the most often encountered among these methods are

modifications of backpropogation as error backpropogation with adaptive learning rate

and momentum; conjugate gradient, quickprop, etc. All these algorithms can be

considered as variations of the steepest descent method, because they only use

information of the objective function and its gradient. The most popular approaches from

the second category have used conjugate gradient methods. Another area of numerical

optimization that has been applied to neural networks is nonlinear least squares. These

are considered to be more efficient but their storage and computational requirements go

up as the square of the size of the network. However, for networks with few hundred

weights that is the case with our system the algorithm is very efficient when compared

with conjugate gradient techniques. Levenberg Marquardt algorithm is an approximation

to Newton's method. Based on the value of a parameter . , in each epoch the algorithm

shifts i.e. when'. is large the algorithm becomes steepest descent while when. is small it

56

ANN Based Network Intrusion Detection System

becomes Gauss-Newton method. The Marquart algorithm is discussed in detail in [31]. A

comparison with other methods is drawn in figure 7.4 which highlights the suitability of

Levenberg Marquart backpropogation algorithm in the neural network module of our
system.

10
0.1 —.--steepest descent

W 	0.001 with momentum

N 1 E-05 - 	conjugate
1 E-07 gradient

~ 1 E-09 —~ quassi newton
1E—l1—

0 	50 	100 	150 -- Ievenberg
marquardt

No. of Epochs

Figure 7.4 	Comparison of various backpropogation methods used in neural network
training

7.4 TRAINING NEURAL NETWORK

The neural network trains on the data instances that are the centers of the cluster

selected by the clustering module. The training is supervised using the labeled tcpdump

training data; the labeled data gives out the timestamp of the attack and the IP addr of the

victim machine. A sample case is enumerated below in which the cluster 18 is correctly

labeled as land attack, but since the other packets are also within the leeway of 60

seconds they too are erroneously labeled as attack. Figure 7.4 shows the other clusters

(except cluster No. 18) being erroneously labeled as attack based purely on timestamp

provided by labeled data.
** timestamp cluster 03/08/1999 15:57:07 timestamp label 03/08/1999
15:57:15
Attacker :172.16.112.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :18 name of attack:land

20.000000
(80) : 0.000000
(23) : -0.466072
(22) : -0.408248
(25) : 0.000000
(123) a -0.408248

ANN Based Network Intrusion Detection System

key : 0.000000
TTL : 0.000000
same addr : 1.000000
invalid port : -0.461069
** timestamp cluster 03/08/1999 15:58:12 timestamp label 03/08/1999
15:57:15
Attacker :172.16.113.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :2 	name of attack:land

20.000000
(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000
learning on file :in22.tcpdump

The pitfalls in the labeled data and their fallout on our system are discussed in section
2.2.5 and 4.3 respectively. To outweigh these shortcomings supervised learning is

conducted in two phases. In the first phase the training is conducted in batch mode and

based on the labeled data the number of times a cluster has been labeled as an attack and

the type of attack is maintained. At the end of the first phase the probability of a cluster

being an attack is computed based on the number of times it was labeled as attack against

ANN Based Network Intrusion Detection System

Session Edt View B otcmar(CS Settings Help

Learning on file :in24.tcpdump
;Learning an file :in25.tcpdump

Clustering done
Number of clusters formed are : 33 and total time windows are :10929
prob ptr is empty
Iniatiazed variables for NN

all well file opened

Detection list loaded from the labels2.txt file
Training of neural network component (phase II) '

SCREENING FOR VICTIM MACHINE dst 172.16.112.50
Trg 	on file :in2l.tcpdump
cluster No. 	:11 name of attack:land

cluster No. 	:6 	name of attack:land

cluster No. 	:10 name of attack:land

cluster No. 	:11 name of attack:land

cluster No. 	.7 	name of attack:land

cluster No. :18 name of attack:land

No. 	:2 	name of attack:land
c
luster

Figure 7.4. 	Labeling of clusters as attack based on labeled tcpdump detection list

the number of times it was selected by the clustering module. By doing so firstly a

indiscriminate opinion of a cluster being indicative of an attack behavior is ascertained

i.e. since at any time several machines are concurrently in communication with the victim

machine and since the labeled data does not specify the attacker machine so our system

will label all these machines rather cluster centers having the same timestamp as attack,
the probability computation will rule out those clusters wrongly labeled by assigning very

low probability of being an attacker. Secondly the false positives due to leeway in
timestamp will also be nullified by this method.

The neural network was trained to learn the behavior of a source machine
(emulated by cluster centers) as indicative of an attack and to classify the type of attack.

The actual supervised training of neural network is done in the second phase in which

using the probability computed of each cluster, the first output attribute of the neural

network is trained as shown in figure 7.5. Note that all the clusters which were
maliciously labeled, their probabilities computed overcome the shortcoming as discussed.

Also the probability of cluster 18 being an attack is 1. The name of attack launched on
the victim

59

ANN Based Network Intrusion Detection System

Session Edit EView BookmarksSetUngs HeIP-

l VV ~ Sr°s;'z~~ ..,. £` ~. ~k~~s'a....~ . rae"Fa':` zv L ., ~il. r.. ~'S.., . ..•±Yem,+„{E , .~+~'w~r ~S~Zra. ,~i ,b,"~r,+~r.k~

;cluster No. 	:16 name of attack:portsweep

End of phase I '
Probability computed at the end of phase I for clusters
Prob of attack for cluster 1 is : 0.000000 0.000000
Prob of attack for cluster 2 is : 0.003374 0.800000
Prob of attack for cluster 3 is : 0.000000 0.000000
Prob of attack for cluster 4 is 	0.003344 1.000000
Prob of attack for cluster S is : 0.001263 1.000000
Prob of attack for cluster 6 is : 0.003352 1.000000
Prob of attack for cluster 7 is : 0.003049 1.000000
Prob of attack for cluster 8 is : 0.034483 1.000000
Prob of attack for cluster 9 is : 0.000000 0.000000

, Prob of attack for cluster 10 is : 0.003607 0.800000
`Prob of attack for cluster 11 is : 0.006981 1.000000
=Prob of attack for cluster 12 is : 0.001133 1.000000
Prob of attack for cluster 13 is : 0.000000 0.000000
Prob of attack for cluster 14 is : 0.018868 1.000000
Prob of attack for cluster 15 is : 0.000000 0.000000
Prob of attack for cluster 16 is : 0.250000 0.800000 ;
Prob of attack for cluster 17 is : 0.000000 0.000000
Prob of attack for cluster 18 is : 1.000000 1.000000
Prob of attack for cluster 19 is : 0.000000 0.000000
Prob of attack for cluster 20 is 	0.000000 0.000000
Prob of attack for cluster 21 is : 0.000000 0.000000
Prob of attack for cluster 22 is : 0.000000 0.000000
Prob of attack for cluster 23 is : 0.142857 0.800000
Prob of attack for cluster 24 is 	0.000000 0.000000

Figure 7.5 Computation of Probability of attack for each cluster
machine is available in the labeled data which is mapped into a numeric value between

0.4 -1.0 to classify the type of attack (refer column 2 of fig 7.5). The choice of the above
range is taken since for a cluster center of non-attack kind the second output attribute (i.e.

type of attack) would be zero. Since in the first-phase each time a cluster is labeled as an

attack it's type is also learned but for those clusters which were wrongly labeled for
reasons discussed above though the probability computed rules out the cluster being an
attack but the type of attack (numeric value in range 0.4-1.0) learned leads to
convergence problem for the .network learning. Since for a feed forward network having
two outputs as in our case and specially incase of data instance pertaining to falsely
labeled cluster i.e. having a very low probability of attack_ example 0.00004 and trained
as a back attack (numeric value mapped is say 0.5) will lead to convergence problem

since the weights till the last hidden layer is mostly common for both the output layer
attributes and it's the weights between the last hidden layer and output layers that has to

adapt weights to learn this diversified range of output attributes (0.00004 and 0.5).

ANN Based Network Intrusion Detection System

Once again data mining skills came to our rescue, by applying a rule based

condition at the end of first phase those clusters having a very low probability of being an

attack, its type of attack is classified as non-attack (numeric value mapped is zero). By

doing so the convergence problem earlier noticed was by far resolved. Figure 7.6
illustrates the effect of applying datamining skills on our example case for better
appreciation.

10
0.1 —.--post

W 0.001 	 „ 	 datamining N 1E-05
2 1 E-07 	 - pre datamining

1 E-09
1E-11

0 	50 	100 	150
No. of Epochs

Figure 7.6 Comparative study: Effects of datamining techniques on neural network
convergence

At the close of training phase the weights learned of the neural network are stored
in file weights.txt (refer Appendix `M') as shown in figure 7.7 and the system is geared
up to fall in detection mode.

7.5 DETECTION MODE: NEURAL NETWORK

In this stage the system prepares itself for detection by loading the clusters centers

and MLFFBP weights learned during training phase from cluster.txt and weights.txt files.

The data mining module extracts the features from the test tcpdump data or live traffic

over the time window and presents it to the clustering module, which in turn based on the

proximity to cluster centers learned selects the cluster center weight to this data instance
and forwards it to the neural network module for rendering decision on pending attack.

The neural network module equipped with the weights learned during training phase

61

v'..~; .
Session Edit blew Bookmarks Settings Help

oo

Ii
`Prob of attack for cluster 32 is : 1.000000
Prob of attack for cluster 33 is : 0.500000
Sidestepping NN phase II trg of weights and loading weights trained earlier
Note : Column I gives out layer No. ant the following columns the weights
1: 12.124458 1.336097 4.189026 6.794621 -10.694255 -14.406758 3.915025 -14.322686
2: 4.094130 -2.701712 3.770890 1.586957 -5.579520 12831892 3.727951 7.102176
3: 5.986238 5.154681 -3.738653 -3.059633 0.793220 5.544315 2.526078 8.003633
4: 7.266730 -0.707502 -3.184903 -1.816282 4.052572 -3.813072 i1-.603840 1.590209
5: 5.346167 3.254396 5.188834 -0.289592 0.275908 1.443059 1.664576 0.662656
6: -0.402044 -0.813780 -0.888795 -1.548982 -1.191605 0.080371 0.660984 0.097620
7: -28.985300 -32.817535 -21.243147 -41.157097 -33.861923 -3.830380 25.419094 -13.387460
8: -17.197578 26.661211 -26.331026 2.002557 1.340583 9.265058 -10.933915 -16.537451
9: 2.123473 0.736094 -0.835305 6.112051 7.614748 3.765511 -16.330341 -1.774928

1: -1.588189 0.880498 -6.735077 2.338000 -3.991837 -0.231353 1.615264 6.985277
-2: -1.100372 2.710463 3.063509 -4.355818 1.348661 9.724065 0.266114 22.523344
`3: -0.815352 2.760505 -0.043067 -0.399806 3.293720 0.899433 -2.046620 0.198607
4: 3.494991 2.047174 -3.858157 -0.965705 1.780292 -0.849249 3.441759 0.361174
5: -0.157083 -4.922811 7.265902 -3.733304 9.365573 1.230118 0.500251 -8.766551
•6: -3.378566 1.299354 5.746967 5.581333 3.194082 -3.507980 -3.540452 1.309580"
7: 2.884412 4.150403 8.315664 -0.023191 -3.722160 2.400542 -1.561797 4.834430
8: -2.459903 3.753446 -11.513946 -1.307424 4.232545 -9.212719 0.151397'-1.627768

1: 2.517360 -5.947798
2: -3.875303 -3.074685
3: 21.020370 8.742780 -
4: 3.898470 0.653328
5: -5.921271 -4.453188

Figure 7.7 Weights learned by the neural network using Levenberg-Marquardt
algorithm

indicates the probability of the cluster center (behavior of the source machine in
the time window) being that of an attacker and if so classifies the type of attack.

For exercising control over the number of false positives being generated by the

system the system can be set to one of the three states, i.e. Normal, alert or Paranoid.

These states in turn set the threshold for the attack probability, above that the system

generates an alarm. These thresholds are user defined and 0.75, 0.5 and 0.3 have been

used in this work. The probability of being an attack computed for each cluster center is

explained in the earlier section, this is done as in the training tcpdump data sufficient

instances of those attacks were available. However, in case of new attacks where the

- clustering module will select the dummy cluster and load the features presented by the

data-mining module as it's cluster center, this then is fed to the neural network module

but the outputs in such a case cannot be predicted and will depend on the weights learned.

The performance of the system can be furthered by including new attack data instances

during training of neural network and training it with the probability of an attack equal to

the paranoid threshold while the classification of an attack can be trained as `new attack'
(mapped to numeric value 0.2).

62

ANN Based Network Intrusion Detection System

Chapter 8

RESULTS AND CONCLUSION

8.1 RESULTS
The report discusses our system design in detail and to substantiate the claims the

prototype is developed to prove the efficacy of the design. The system prototype

developed as part of this work focuses on detection of few attacks not or poorly detected

by [17]. The adaptation required to bring other attacks under the system is merely in the
datamining module where depending on the attack signature; algorithms to pull out

corresponding features are worked out.
The system was trained on second week of training data, (attack week), where as

the architectural learning stage was carried out on the .first day of third week tcpdump

data (non-attack). The vigilance parameter set for clustering was 2 where as the

amplification factor = 40 were set for according more importance to features viz.

payload, same address, the difference of whose distances mattered in the Euclidean

metric. The number of clusters fixed during training was 33, of which four clusters

(cluster No. 18, 30, 32 and 33) were declared abnormal i.e. indicative of attacks as listed

in table 8.1, where as the rest of the clusters were considered normal activity. As seen

cluster No. 18 and 30 reflected attack attributable to Land attack (attack identifier = 1),

cluster No. 32 was computed having high, probability of being a portsweep attack (attack

identifier = 0.8).

Cluster No ;'Probability of attack; Attack identifier Remarks
18 1.0 1.0 Land attack
30 1.0 1.0 Land attack
32 1.0 0.8 Portsweep attack
33 0.5 0.2 New attack
Table.8.1. List of anomalous clusters learned by system

Cluster No. 33 is the dummy cluster which holds the weights of any machine

activity that does not confirm to the normal behavior as learned during training. The

63

ANN Based Network Intrusion Detection System

cluster aids in detecting `new attacks' , these are those attacks whose patterns were not

available in the training data, Table 8.2 lists few of these attacks.
,fir*

Known attacks
,~, New attacks

ntinfoscan dosnuke
Crashiis Sshprocesstable
Httptunnel Smurf
Ps Guessftp
Eject Xsnoop
Secret S lattack
Mailbomb Guest
Ft write Arppoison
Portsweep Sendmail
Perl
Neptune
Phf
Satan
Land

Table 8.2. List of Known and new attacks

Type of 	Correct • 	False 	Correct 	Positives
attack 	prediction 	Negatives 	prediction of 	 €~

of normalo P « 	attack trend
trend

Portswccp 	100 	0 -_;100 	, 0
Crashiis, .'4 	100 	 0 	 100 , 	 0

Back ; ... 	100.:. 	0._"u. 	100,.< 	 0;

Land 	100:- : 	0 	;': 	100.... 	 0
Mailbomb . 	92 	w8-_......-.. 	88°..=. 	 12

New attacks
Smurf 	100 	 0 	 100 	 0

Union of all - 	76 	 24 , 	 66, 	 44
attacks

Table -8:3 	Results obtained for detection of attacks in test chta

The results obtained for the attacks as shown in table 8.3 are against three server

machines Pascal.eyrie.af.mil, Hume. eyrie.af.mil and Marx. eyrie. af.mil (refer Appendix

`B') monitored by the system for traces of attacks and these are near perfect but so may

not be the case with all other attacks. The results are direct consequence of the data

mining skills employed at data mining module. As brought out in earlier a large amount

of attacks can be detected by fairly good results however, with each featire appended the

neural network training will get more demanding.

ANN Based Network Intrusion Detection System

8.2 CONCLUSION
With the advent of technology in all spheres, information and its dissipation have

become a core activity. The networks are augmenting the purpose of optimizing the work

environment by information and resource sharing. As its progress gallops towards higher
bounds the dark horses (network miscreants) are not far behind in finding novel ways in
threatening its very freedom and spirit. The network security administrator tries b

prevent hackers from misusing the network resources by using security tools like
firewalls and other mechanisms. These tools can be used to prevent attacks if the system

administrator knows the attacker identity; an IDS aids a system administrator in

identifying both known and unknown attacks. Though several methods for detection
exists as discussed in chapter 1 of this report however, none in itself can be used as a

silver bullet. Instead an ideal security tool for a system should consists of two- three tiers
of defense with the firewalls forming the first layer and an IDS the second and third
which employs the strength of both misuse and anomaly based detection system.

The system designed as part of dissertation work is based on this very principle
but attempts to blend the potency of both the techniques in one. It detects attacks based

on deviation from the normal while the clustering mechanism is used for learning the
normal/abnormal behavior. The strength of the system lies in its ability of also using
signatures of attacks for clustering the machine behavior besides the statistical feature

computation. The signatures of attacks (discussed in chapter 2) are extracted from the
network data over a time window by employing datamining skills. The prototype

developed uses keyword selection to enhance the detection capability with encouraging

results. Back and crashiis attack are detected based on misuse detection technique. The

computation of the source machines behavior over a time window gives an added

advantage of analyzing anomalous activity based on machine behavior during the

window unlike packet level analysis in traditional anomaly based detection system.
The use of neural network based design reduces the computational and memory

needs of system during real time detection stage, - the bulk of the systems overheads in

terms of processing and memory needs are limited to the training phase where for faster

convergence of neural network Levenberg Marquart algorithm was used.

M

ANN Based Network Intrusion Detection System

The use of pcap libraries give an inherent advantage to the system of adapting to
real time detection of network traffic since the traffic are handled as network packets

rather than as text files. The graphic interface developed for the prototype project is done

using libglade and the core programming is done on GNU C on Linux platform [Al].

8.3 FUTURE RESEARCH

We have seen in this work how amalgamation of misuse and anomaly based

detection system can be done exploiting the individual strength of each of these

techniques. Use of neural network based system gave an added advantage of self learning

the anomalous activity while reducing the computational and memory overheads during

detection stage. The clustering mechanism learned the anomalous behavior while the

datamining module unraveled the attack signatures within the packets over a time

window. We remark that the improvements we suggest are meant to result in small

improvements in performance but that we have not yet conducted implementation testing
to verify this. Some areas for further research suggested here are:

1. By devising better mathematical algorithm in the datamining module

several known attacks can be detected by this system. To detect newer attacks the

system (neural network module) can be trained on the segment of test data

consisting of new attacks with a forced probability of attack equal to the threshold

set for paranoid status (0.3 in this work), so that any activity not in line with

normal activity and neither an attack activity can then be clubbed by the

clustering module as a new cluster (referred to as dummy cluster in this

document) and the system administrator alerted. The training of the prototype

developed was limited to the training data (DARPA 1999 dataset) which did not
contain any instance of new attacks however the system design has

accommodated for such a contingency.

2. The work in its present state is unable to detect stealthy attacks which take

place over a larger period of time than the time window selected by the system

since an attacker will mask his activity as a normal one in a fixed time frame. It is

suggested that to detect such attacks the foot trace of a source machine in terms of

ANN Based Network Intrusion Detection System

the clusters it belongs to over successive time windows can also be learned by the

neural network to detect stealthy attacks. It is understood that an attacker

launching a stealthy attack will follow a .typical trait.

3. 	The usage of the system for real time detection of network traffic is

overshadowed by the requirement of clustering mechanism training and neural

network. This shortfall can be overcome by employing datamining skills to

extract those portions of DARPA dataset that represent the network behavior

similar to the network where it is to be used. The system has limited dependence

of machine specific features like IP address etc. and detects attacks based on

machine behavior; therefore those portions of dataset which possess similar

statistical features as the live network can be used for training these components

of our system.

67

ANN Based Network Intrusion Detection System

References:

1. Esmaili, M., Safavi-Naini, R., Balachadran, B., & Pieprzyk, J. (1996). Case-based
reasoning for intrusion detection. 12th Annual Computer Security Application

Conference, 214-223.

2. Debar, H., Dacier, M., & Wespi, A. (1989). Towards a taxonomy of intrusion-
detection systems. Computer Networks, Proceedings of the IEEE, International Joint

Conference, 205-210.31, 805-822.

3. Debar, H., Becker, M., & Siboni, D. (1992). A neural network component for an

intrusion detection system. IEEE Computer Society Symposium Research in Security and

Privacy, 240-250.

4. Richards, K. (1999). Network based intrusion detection: a review of technologies.
Computer and Security, 18, 671-682.
5.. 	Lippmann, R. P., & Cunningham, R. K. (2000). Improving intrusion detection
performance using keyword selection and neural networks. Computer Networks, 34, 597-
603.

6. 	Weber, R. (1999). Information Systems Control and Audit Upper Saddle River,

NJ: Prentice Hall
7 	C. Warrender, S Forest, and B. Pearlmutter. Detecting intrusions using system
calls: Alternative data models, 1999.

8. Leonid Portnoy. Intrusion detection with unlabeled data using clustering. In

Proceedings ofACMCSS (DMSA-2001), Philadelphia, PA Nov 5-8.
9. E. Eskin. Anomaly detection over noisy data using learned probability

distributions. In In proceedings of the International Conferences on Machine Learning,

2000.

10. Denning, D. E. (1987). An intrusion detection model. IEEE Trans. S.E., SE-
13(2), 222-232.

ANN Based Network Intrusion Detection System

11. Zhao Junzhong, Huang Houkuan(2002). An evolving intrusion detection system

based on natural immune system. In Proceedings of IEEE TENCON'02.

12. Zheng Zhang, Jun Li et al (2001). HIDE: a Hierarchical network intrusion

detection system using statistical preprocessing and neural network classification In

Proceedings of the 2001 IEEE Workshop on Informational Assurance and Security

13. Walid A. Salmeh.(2004) Detection of intrusion using neural networks: A

customized study. Studies in Informatics and Control, Vol 13, No. 2, June 2004.

14. Mathew V. Mahoney and Philip K. Chan. Learning Nonstationary models of

normal network traffic for detecting novel attacks.SIGKDD '02. July 23-26 2002 ACM

15. James Canady and Jim Mahaffey. The application of artificial intelligence to

misuse detection . In Proceedings of First Recent Advances in Intrusion Detection

(RAID) Conference, 1998.

16. An Analysis of the 1999 DARPA/Lincoln Laboratories Evaluation Data for

Network Anomaly Detection by Matthew V. Mahoney and Philip K. Chan, TR CS-2003-

02. (See also Proc. RAID, 2003, pp. 220-237).

17. Learning Rules for Anomaly Detection of Hostile Network Traffic, Proc. ICDM

2003 (© 2003, IEEE) and the longer Technical Report TR CS-2003-18.

18. Learning Nonstationary Models of Normal Network Traffic for Detecting Novel

Attacks by Matthew V. Mahoney and Philip K. Chan, Proc. Eighth Intl. Conf.

Knowledge Discovery and Data Mining, p376-385, 2002. (C) 2002, ACM (PDF, 10

pages)

20. http://www.1l.mit.edu/IST/ideval/docs/1999/detection_1999.html

21. Floyd, S. and V. Paxson, "Difficulties in Simulating the Internet." IEEE/ACM

Transactions on Networking, 2001. http://www.aciri.org/vern/papers.html

22. Horizon, "Defeating Sniffers and Intrusion Detection Systems", Phrack 54(10),

1998,http://www.phrack.org

23. Bugtraq Archives (e-mail regarding Apache vulnerability). http://www.geek-

girl .com/bugtraq/1998_3/0442.html. August 7, 1998.

24. Rootshell Website.http://www.rootshell.com/archive- 457nxigi3gq59dv/199801/

beck.tar.gz.html. Jan 1, 1998.

ANN Based Network Intrusion Detection System

25. CERT Advisory CA-96.21 http://www.cert.org/ftp/cert_advisories/CA-
96.21 .tcp_syn_floOding. September 19, 1996.
26. Simson Garfinkel and Gene Spafford. Practical Unix & Internet Security. O'Reilly
& Associates, Inc., 101 Morris Street, Sebastopol CA, 95472, 2nd edition, April 1996.
http://www.1l.mit.edu/IST/ideval/docs/1999/master-listfile-condensed. txt
http://www.1l.mit.edu/IST/ideval/docs/1999/master_identifications.list
27. http://www.1l.mit.edu/IST/ideval/docs/1999/detections_1999.html
28. Stevens. R. 1994, "TCP/IP Illustrated Volume I: The Protocols", Addison-Wesley
Publishing Company, Reading. Massachusetts, vol. I pp 12.
28. 	Grossman, R.L. "Data Mining: Challenges and Opportunities for Data Mining
During the Next Decade." May 1997. URL: http://www.lac.uic.edu/grossman-v3.htm (10
Oct 00).
29. Teuvo Kohonen, "The Self-Organizing Map",Proceedings of the IEEE,Vol 78,No
9,September 1990.
30. D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning Representations by
backpropogating errors", Nature, Vol 323 pp 533-536, 1986
31. Martin T. Hagan, Mohammad B. Menhaj, `Training feed forward networks with
the marquardt algorithm", IEEE transaction on neural networks, vol 5 No. 6 November
1994.
32. http://www.1l.mit.edu/IST/ideval/data/1999/1999_datajndex.html
33. Niggermann. 0., Stein. B. and Tolle, J., 2001, "Visualization of traffic structures",
IEEE International Conference on Communications, ICC 2001, vol. 5, pp 1516.1521.
34. Heatley, S. K., & Otto, J. R. (1998). Data mining computer audit logs to detect
computer misuse. International Journal of Intelligent Systems in Accounting, Finance,
and Management, 7, 125-134.
35. Hecht-Nielsen, R. (1988). Applications of counterpropagation networks.
Neural Networks, 1, 131-139.
36. Helman, P., & Liepins, G. (1993). Statistical foundations of audit trail analysis
for the detection of computer misuse. IEEE Transactions on Software Engineering, 19,
866-901.

70

ANN Based Network Intrusion Detection System

37. Hill, T.,&Remus, W. (1994). Neural network models for intelligent support of
managerial decision making. Decision Support Systems, 11, 449-459.
38. Hong, T., & Han, I. (2002). Knowledge-based data mining of news
information on the Internet using cognitive maps and neural networks. Expert Systems

with Applications, 23, 1-8.
39. Hruschka, H., & Natter, M. (1999). Comparing performance of feedforward

•neural nets and K-means for cluster-based market segmentation. European. Journal of
Operational Research, 114, 346-353. building intrusion detection models. IEEE
Symposium on Security and Privacy.

40. Lunt, T. F. (1988). Automated audit trail analysis and intrusion detection: a
survey. Proceedings of the 11th National Computer Security Conference, 65-73.
Baltimore.

41. Maxion, R. A., & Townsend, T. N. (2002). Masquerade detection truncated
command lines. International Conference on Dependable Systems and Network,- 219-

228. Washington, DC.

42. Sasisekharan, R., & Shortland, R. J. (1996). Data mining and forecasting in
'large-scale telecommunication networks. IEEE Expert, 37-43.

43. Vaccaro, H. S., & Liepins, G. E. (1989). Detection of anomalous computer

session activity. Proceedings of the 1989 IEEE Symposium on Research in Security and

Privacy, 280-289.
44. Verwoerd, T., & Hunt, R. (2002). Intrusion detection techniques and
approaches. Computer Communication, 25, 1356-1365.

71

APPENDICES

ANN Based Network Intrusion Detection System

Appendix `A'

IMPLEMENTATION

Al. PROJECT DESCRIPTION

The prototype of the system discussed in this report is written in GNU C on Linux
platform. The tools used for development are discussed in succeeding section. Some of
the components of the project require to be trained before the system can be used. The
incubation period of the project for training lasts for about 3 hours. The system was
trained on complete second week (attack + non attack data) and first day of third week
(non attack data) of inside.tcpdump files of DARPA 1999 dataset. These files were
renamed as in[w] [d].tcpdump, where w stands for week and d stands for the day of the
week i.e. inside.tcpdump file for first day of second week is renamed as in2l.tcpdump.
The project takes all the parameters as command line arguments and can be executed
through console terminal using following command:

./nnconsolel —c -1 —e 4 —r 1.5 —a 1000 —w 10 —j 2 —m 40 —f "dst 172.16.11250" —F
in31. * in2*

Where options signify

-c [number of packets to be captured live or file specified in —F (-1 indicates
infinite/EOF)]

-r [vigilance parameter for clustering mechanism]

-e [No. of extra ports to be monitored by the system besides those specified by
system administrator]

-a [Architectural time in seconds over which the architectural structure is to
decided]

-w [Width of time window in seconds]

-j [No. of hidden layers in the MLP NN]

M

ANN Based Network Intrusion Detection System

-m [Amplification factor by which some of the features are weighted in clustering
mechanism]

-f [Victim server machine]

-F [Name of files to be used for training components of system]

The graphic interface for the project is developed using libglade, which is
inherently available with Linux operating system when loaded along with developmental
tools. The front end graphic interface is activated by the following command:

./nngraphic —F in31.* in2*

The main application window is as shown below:

The about button displays the credits to the authors, quit button returns control

back to console terminal, where as the next button passes the control to the menu window

displayed in the next page. The menu window offers to change the default values, specify

the input parameters and execute the program.

75

ANN Based Network Intrusion Detection System

S. 	 olx
written by IT,anslat by

Major Seby Thomas
Corps of Signals
Indian Army (as part oft tech dissertation)

Guides Prof J D Shanna (PSE)
Prof M. K. Vasantha~(S. E Q R)~

Irian Institute of Technology
Raotkee

-ax
Input parametersjchar.ge dcfauta j xocutIon

Specify the program arguments for executlon

filename 	In2ltcpdump 	 v

Monitor dst 172.16.112.54 Pods to be monitored toned 4

-a 	 s p•-`` 	, : w 	r 	i t7 _ k. 	° 	v& 	Se w 	rXss ~,~: 	l `

Time window width 	10 	Program status 	® Training mode 0 Detection mode
~ 	~ ~'"~a 	~~' ~.'. 	~ 	'~c g s 	° x ^; 	~"- „Y ~ 	~ 	xs' ~ a~° -x• 	~"~ ~ ~ ~ 	~ It 	~.

76

ANN Based Network Intrusion Detection System

Once these parameters are entered using the graphical interface program the
control is passed back to the core program which is console driven.

Input pataCngFe 	►tge detains .t
 Execution

Carefully read the foflawing lnstnrctions before you proceed further

Please ensure the following have been done before you proceed
1. The detection list pabeled attack data) for neural network training Is stored as per the format mentioned In
product documentalon In.labels2.txt file. '• ''
2. While In detectionmode the files generated by the system In training mode In default directory should be
available to the system for detection namely :
set.txt,

valid_port.txt, '=

Cancel 	 F.xrecUte

statics

77

ANN Based Network Intrusion Detection System

Al. PROJECT DEVELOPMENT: TOOLS

The project was developed using system and programming tools inherent with

Linux Fedora core version 10.0, Red Hat Distribution. The choice of the operating system
is justified in this section.

A2.1 PCAP libraries

The Packet Capture library provides a high level interface to packet capture

systems. All packets on the network, even those destined for other hosts, are accesside

through this mechanism. The functions provided with the library help in basic operations

like opening tcpdump file or applying filters and to capture packet from live traffic. The

pcap.h file needs to be included in the source code and linked while comliling. The man

pages on pcap provide elaborate details on usage of these functions.

A2.2 Libglade libraries

Glade is a user interface builder for GTK+ and GNOME, released under the GNU
GPL License. The user interfaces designed in Glade are saved as XML, and by using the
libglade library these can be - loaded by applications dynamically as needed. By using

libglade, Glade XML files can be used in numerous programming languages like C, C++

etc. GNOME is an acronym for GNU's Network Object Model Environment. GNOME's
main objective is to provide a user friendly suite of applications and eas}.to-use desktop.

GTK+ stands for Gimp toolkit. It is a library for creating graphical user interfaces. GTK+

provides some unique features over standard widget libraries.

A3. ORGANISATION OF SOFTWARE

The logical flow of the software is in synch with the system flowchart (figure 4.2)
and can be better assimilated in its light. The software consists of two main programs, the

first handles the graphical interface while the second is a console driven intrusion
detection system. The second program is called from the first program using execve
function (execve function is defined in the unistd libraries and is used for executing

ANN Based Network Intrusion Detection System

programs; Linux Programmers Manual provides details on its usage). The second main
program mainly consists of four main sub programs and several sub subprograms defined
as functions within the source code; the key functions only are illustrated in figure A3.1
for paucity of space.

INTRUSION DETECTION SYSTEM

Interface main
program

Console driven
main pgm
nnintrus.c

archl_lo 	my_callback() 	som()

handle_ethernetO

neural()

handle ICMP() 	handle_1P()

handle tcp() 	handle_udp()

Figure A3.1 Organization of Software

load detectlistl()

som_testo

live_dete ct()

The purpose of these functions or subprograms can be directly linked to the

system flowchart. Their roles are described below:

(a) my_callback arch: 	Architectural learning module

(b) my_callback: 	 Datamining module

(c) som 	 Clustering module under training

(d) som test 	 Clustering module post training stage

(e) Neural 	 Neural network module under training using

Levenberg — Marquardt algorithm.

79

ANN Based Network Intrusion Detection System

(f) live_detect 	 Neural network module under detectbn
stage.

(g) handle_ethernet(),handle_IP,handle TCP,handle_ICMP(),handle UDPO :
Handle ethernet() handles the Ethernet frame and based on the protocol and

application header respective sub subprograms handle the data.

(h) load detectlistO: 	Subprogram loads the detection list from
labeled DARPA dataset into the data structures for use by the neural network for
supervised training.

The organization of the software is highly modular in nature and facilitates test
points at each stage for debugging. The system consists of following programs written in
GNU C (approximately 3500 lines of code):

(a) nnconsole.c 	I 790 lines of code
(b) nngraphic.c
(c) initialize.c 447 lines of code
(d) functions.c 980 lines of code
(e) neural.c 504 lines of code
(f) NN_levmar.c 611 lines of code
(g) gui.c 126 lines of code
(h) nnintrusion.glade used libglade tools

ANN Based Network Intrusion Detection System

Appendix `B'

LIST OF OUTSIDE, INSIDE HOSTS ,ROUTERS AND HUBS IN SIMULATED 1999

DARPA DATASET

Outside Hosts

135.13.216.191 alpha.apple.edu Redhat 5.0 kernel 2.0.32

135.8.60.182 beta.banana.edu Solaris 2.5.1

194.27.251.21 gamma.grape.mil SunOS 4.1.4'

194.7.248.153 delta.peach.mil Redhat 5.0 kernel 2.0.32

195.115.218.108 epsilon.pear.com Solaris 2.5.1

195.73.151.50 lambda.orange.com SunOS 4.1.4

196.37.75.158 jupiter.cherry.org Redhat 5.0 kernel 2.0.32

196.227.33.189 saturn.kiwi.org Solaris 2.5.1

197.182.91.233 mars.avocado.net SunOS 4.1.4

197.218.177.69 pluto.plum.net Redhat 5.0 kernel 2.0.32

192.168.1.30 monitor.af.mil MacOS AF SNMP monitor

192.168.1.10 calvin.world.net Outside gateway

192.168.1.20 aesop.world.net V Outside Web Server

192.168.1.90 solomon.world.net Not Part of Simulation

ANN Based Network Intrusion Detection System

Routers & Hubs

172.16.112.1 loud.world.net

192.168.1.1 loud.world.net

172.16.112.5 None.

192.168.1.2 None.

Cisco 2514 Router

Cisco 2514 Router

Hewlett-Packard EtherTwist Hub

Hewlett-Packard EtherTwist Hub

Inside Hosts

172.16.12.10 plato.eyrie.af.mil Solaris 2.6 Not part of simulation

172.16.112.10 locke.eyrie.af.mil Solaris 2.6 inside sniffer

172.16.112.20 hobbes.eyrie.af.mil Redhat 5.0 Inside gateway, kernel 2.0.32

172.16.112.50 pascal.eyrie.af.mil Solaris 2.5.1

172.16.112.100 hume.eyrie.af.mil Windows NT 4.0 Build 1381, Service Pack 1

172.16.112.149 eagle.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172.16.112.194 falcon.eyrie.af.mil Solaris 2.5.1

172.16.112.207 robin.eyrie.af.mil. SunOS 4.1.4

172.16.113.50 zeno.eyrie.af.mil SunOS 4.1.4

172.16.113.84 duck.eyrie.af.mil SunOS 4.1.4

:

ANN Based Network Intrusion Detection System

172.16.113.105 swallow.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172:16.113.204 goose.eyrie.af.mil Solaris 2.5.1

172.16.114.50 marx.eyrie.af.mil Redhat 4.2 kernel 2.0.27

172.16.114.148 crow.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172.16.114.168 finch.eyrie.af.mil SunOS 4.1.4

172.16.114.169 swan.eyrie.af.mil Solaris 2.5.1

172.16.114.207 pigeon.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172.16.115.5 pcl.eyrie.af.mil Windows 95

172.16.115.87 pc2.eyrie.af.mil Windows 95

172.16.115.234 pcO.eyrie.af.mil Window NT 4.0 Build 1381, Service Pack 1

172.16.116.44 pc5.eyrie.af.mil Windows 3.1

172.16.116.194 pc3.eyrie.af.mil Windows 95

172.16.116.201 pc4.eyrie.af.mil Windows 95

172.16.117.52 pc7.eyrie.af.mil Windows 3.1

172.16.117.103 pc9.eyrie.af.mil MacOS

172.16.117.111 pc8.eyrie.af.mil MacOS

172.16.117.132 pc6.eyrie.af.mil Windows 3.1

172.16.118.10 linuxl.eyrie.af.mil Redhat 5.2 kernel 2.0.36

172.16.118.20 linux2.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172.16.118.30 linux3.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172.16.118.40 linux4.eyrie.af.mil Redhat 5.0 kernel 2.0.32

172.16.118.50 linux5.eyrie.af.mil Redhat 5.0 kernel 2.0.32

I

ANN Based Network Intrusion Detection System

172.16.118.60 linux6.eyrie.af.mil Redhat 5.0

172.16.118.70 1inux7.eyrie.af.mil Redhat 5.0

172.16.118.80 linux8.eyrie.af.mil Redhat 5.0

172.16.118.90 linux9.eyrie.af.mil Redhat 5.0

172.16.118.100 linuxl0.eyrie.af.mil Redhat 5.0

kernel 2.0.32

kernel 2.0.32

kernel 2.0.32

kernel 2.0.32

kernel 2.0.32

m

ANN Based Network Intrusion Detection System

Appendix `C'

Detections List : Training DARPA dataset
.... 	. _ 	-_ 	_..

IID#Date 	Start_Time Destanatson 	;Score

1 ; 03/08/1999 	08.01:01 	hume. eyrie .af.mil 	11

1 2 1 03/08%1999 	108:50:15 	Izeno.eyrie.af.mil 	 1
_ __............ 	

103/08/1999 	09:39 16 	marx eyrie.af.mil 	 (1

F i[5758Il999 	12:09:18 	pascal eyrie .af.mil 	Ii
F5,ijl 03/08/1999 	.15:57:15 	pascal eyrie of mil 	1

6 03/08/1999 	17:27 13 	rmarx eyrie .af.mil 	1

[u 03/08/1999 119:09:17 	pascal .eyrie .af.mil 	1

03/09/1999 	109:43:51 	pascal eyrie af.mil
....

1 	elect

10 03/09/1999 10:06 43 Farx eyrie af mu f i back

(~17' 03/10/1999 	[12:02:13

18 03/10/1999 	13:44:18

.eyrie.af:mil

af.mil 	1

attack

03/09/1999 08:44:17 marx.eyrie.af.mii 	1 	portsweep

`19,103/10/1999 	115:25:18 	marx.eyrie.af.mil 	~1 	perl (Failed)

ANN Based Network Intrusion Detection System

20 03/10/1999 	120:17:10 	1172.016.112.001-114.254 	1 	jipsweep

j21 03/10/1999 	23:23 00 	pas a eyrie.af.mil 	1 	eject (console)

[~22 03/10/1999 	23:56:14 	hume.eyrie.af.mil 	1: 	(c~rashiis

[28; 03/11/1999 	14:25:17 	marx eyrie.af.mil 	 1

~.... 	.. 	 ._ 	. _:.......... 	_ 	..•. _... 	.._.......... 	..:.. 	...

ii
_..... 	_ 	. 	..3

9103/11'1999 15:47:15 pascal eyrie.af.mil 1 land

	

0 03/11/1999 	16:36.10 	172.016.112.001-254 	1 	j jipsweep

	

13/11/1999 	19.16 18 	pascal eyrie af.mil 	I1 	ftp-write

32:03/12/1999 08:07:17 Imarx.eyrie.af.mil 	ji 	phf

	

33 03/12/1999 	08:10 40 (marx.eyne af.mil 	~1 	 perl (console)
........ 	 (i .__.. 	 .._ 	I ,

	

34; 03/12/1999 	08:16:46 	pascal. eyrie.af.mil 	1 	(ps (console)

[35F2h159909 1815 	.. duck eyrie of mil 	 I 1 	pod ~~ _ 	. 	._ 	C

	

r36 03/12/1999 	11:20:15 	marx eyrie .af.mu 	 1 	` neptune
.... 	_....._ 	 ._.._.. 	_ 	 t

	

(~37 03/12/1999 	(12:40 12 	hume eyne af.mil 	1 	hiis

38:03/12/1999 13:12:17 zeno.eyrie.af.mil 	 11 ~1loadmodule

(3~9 03/12/1999 	14:06:17 marx eyrie.af.mi 	 perl (Failed)

	

[40"'!.. F3/12/1999 	14:24:18 	pascal eyrie af.mii 	1 	,i ps

	

1 03/12/1999 	15 24 16 	pascal .eyrie.af.mil 	1 	effect

	

2/1999 	,117:13:10 	`I pascal.eyrie.af.mil 	`~1

ANN Based Network Intrusion Detection System

999 	117:43:18 	pascal.eyne of mil 	 1 	ftp write

ANN Based Network Intrusion Detection System

Appendix `D'

Effect of increasing number of hidden lavers in neural network

training
(Figure 7.2)

Epochs 1 layer 2 layer 3 layers
0 0.002401 0.049361 0.680279
5 0.000165 0.000116 0.000231
10 0.000121 7.18E-07 0.000231
15 3.93E-05 5.49E-07 0.000231
20 3.91 E-05 5.18E-07 0.000231
25 3.90E-05 4.66E-07 0.00023
30 3.90E-05 3.25E-07 0.00023
35 3.89E-05 2.82E-07 0.00023
40 3.89E-05 2.48E-07 0.00023
45 3.88E-05 1.59E-07 0.00023
50 3.87E-05 9.09E-08 0.00023
55 .3.87E-05 5.86E-08 0.00023
60 3.87E-05 4.93E-08 0.000229
65 3.87E-05 3.71 E-08 0.000229
70 3.87E-05 2.36E-08 0.000229
75 3.87E-05 1.66 E-08 0.000229
80 3.87E-05 1.37E-08 0.000229
85 3.87E-05 6.43E-09 0.000229
90 3.87E-05 3.51 E-09 0.000229
95 3.87E-05 2.34E-09 0.000228
100 3.87E-05 1.74E-09 0.000228
105 3.87E-05 5.44E-10 .0.000228
110 3.87E-05 2.82E-1 0 0.000226
115 3.87E-05 1.87 E-1 0 0.000222
120 3.87E-05 1.39_E-10 0.000206
125 3.87E-05 6.81 E-11 0.000205

Note : The effect of varying the number of hidden layers in MLFFBPNN is observed in

the table above, Column 1 shows the number of epochs and 2,3,4 M.S.E rate when the

number of layers varied as 1,2,3 respectively.

ANN Based Network Intrusion Detection System

Appendix `E'

Effect of varying number of nodes in each hidden laver
(Figure 7.1)

Epochs 6 nodes 4 nodes 8 nodes 3 nodes 10 nodes
0 0.049361 0.0102666 0.47036 0.00033 0.772442
5 0.000115821 0.00 0.00023 0.00014 0.0002008
10 7.18E-07 7.81E-05. 0.00021 0.00011 0.0001817
15 5.49E-07 2.60E-05 0.00021 8.88E-05 1.82E-04
20 5.18E-07 1.97E-06 0.00021 2.64E-05 1.82E-04
25 4.66E-07 2.36E-07 0.00021 2.54E-05 1.82E-04
30 3.25E-07 1.84E-07 0.00021 2.52E-05 1.82E-04
35 2.82E-07 1.54E-07 0.00021 2.50E-05 1.82E-04
40 2.48E-07 9.80E-08 0.00018 2.50E-05 1.82E-04
45 1.59E-07 5.90E-08 0.00014 2.50E-05 1.82E-04
50 9.09E-08 3.84E-08 0.00014307 .2.50E-05 1.82E-04
55 5.86E-08 1.48E-08 0.00014 2.50E-05 1.82E-04
60 4.93E-08 4.42E-09 0.00014 2.50E-05 1.82E-04
65 3.71 E-08 2.76E-09 0.00014 2.50E-05 1.82E-04
70 2.36E-08 4.69E-10 0.00014 2.50E-05 1.82E-04
75 1.66E-08 2.70E-10 0.00014 2.50E-05 1.82E-04
80 1.37E-08 1.98E-10 0.00014 2.50E-05 1.82E-04
85 6.43E-09 7.47E-1 1 0.00014 2.50E-05 1.82E-04
90 3.51 E-09 7.47E-11 0.0001 2.49E-05 1.82E-04
95 2.34E-09 7.47E-11 0.0001 2.49E-05 1.82E-04
100 1.74E-09 7.47E-11 0.0001 2.49E-05 1.82E-04
105 5.44E-10 7.47E-11 0.0001 2.49E-05 1.82E-04
110 2.82E-10 7.4664E-11 0.0001 2.49E-05 1.82E-04

115 1.87E-10 7.47E-11 0.0001 2.49E-05 1.82E-04
120 1.39E-10 7.47E-11 0.0001 2.49E-05 1.82E-04
125 6.81 E-11 7.47E-11 0.0001 2.49E-05 1.82E-04

Note : Table shows the effect of varying the number of nodes in the two layers employed
by the MLFFBPNN, column 1 indicates the number of epochs and column 2,3,4,5,6 their
respective M.S.E rate.

ANN Based Network Intrusion Detection System

Appendix `F'

Comparison of various backpropogation techniques for neural
network training

(Figure 7.4)

No. of
E ochs

steepest descent with
momentum conjugate gradient Quassi Newton Levenberg

Mar uart
0 0.893889 0.680279 0.000337088 0.049361
5 0.878886 0.000230781 0.000229374 0.000115821
10 0.861514 0.000230742 0.000227556 7.18E-07
15 0.84092 0.000230657 0.00022753 5.49E-07
20 0.816229 0.000230533 0.000223532 5.1 8E-07
25 0.786577 0.000230364 0.000177734 4.66E-07
30 0.751248 0.000230144 0.000168121 3.25E-07
35 0.709929 0.000229952 0.000164455 2.82E-07
40 0.663089 0.000229836 0.00016444 2.48E-07
45 0.612289 0.000229761 0.000160058 1.59E-07
50 0.560131 0.000229629 0.000154173 9.09E-08
55 0.509577 0.00022954 0.000153896 5.86E-08
60 0.462915 ' 0.000229423 0.000153861 4.93E-08
65 0.421049 0.000229304 0.000153791 3.71 E-08
70 0.383604 0.000229178 0.000153775 2.36E-08
75 0.349554 0.000229042 0.000153649 1.66E-08
80 0.31783 0.000228892 0.000153365 1.37E-08
85 0.287657 0.000228727 0.000153365 6.43E-09
90 0.258631 0.00022854 0.000153365 3.51 E-09
95 0.230686 0.000228295 0.000153365 2.34E-09
100 0.204006 0.000228026 0.000153365 1.74E-09
105 0.178918 0.000227741 0.000153365 5.44E-10
110 0.155788 0.000226366 0.000153365 2.82E-10
115 0.134926 0.000222266 0.000153365 1.87E-10
120 0.116522 0.000205547 0.000153365 1.39E-10
125 0.100614 0.000205309 0.000153365 6.81 E-1 1

Note : Column 1 indicates the number of epochs and column 2,3,4,5 the
corresponding M.S.E rate when various back propagation techniques were
used by the neural network

ANN Based Network Intrusion Detection System

Appendix `G'

Effects of datamining skills on neural network convergence
(Figure 7.6)

Epochs
post
datamining

pre
datamining

0 0.049361 0.065554,
5 0.000116 0.011383
10 7.18E-07 2.35E-03
15 5.49E-07 1.85E-03
20 5.18E-07 1.27E-03
25 4.66E-07 8.91 E-04
30 3.25E-07. 6.77E-04
35 2.82E-07 5.15E-04
40 2.48E-07 5.10E-04
45 1.59E-07 4.99E-04
50 9.09E-08 4.34E-04
55 5.86E-08 3.26E-04
60 4.93E-08 2.62E-04
65 3.71 E-08 1.70E-04
70 2.36E-08 1.49E-04
75 1.66E-08 1.42E-04
80 1.37E-08 1.40E-04
85 6.43E-09 1.37E-04
90 3.51 E-09 1.35E-04
95 2.34E-09 1.31 E-04
100 1.74E-09 1.22E-04
105 5.44E-10 9.66E-05
110 2.82E-10 9.24E-05
115 1.87E-10 9.17E-05
120 1.39E-I0 9.14E-05
125 6.81E-11 9.14E-05

Note : Column 1 indicates the number of epochs and column 2 reflects the

corresponding error rate after datamining technique was applied where as

column 3 indicates M.S.E rate without the datamining skills applied

ANN Based Network Intrusion Detection System

Appendix `H'

Study on effect of weighted features on clustering mechanism

(Figure 6.1)

Serial
No.

Weighted features for clustering No. of
Clusters
formed

%
detection Port

Activity
Invalid
ports

TTL Same
address

key

1 1 1 1 1 1 53 10
2 1 40 1 40 40 25 98
3 1 10 1 10 10 43 60
4 1 100 1 100 100 22 98.3
5 20 40 20 40 40 49 16

Note : Column 2 indicates all the ports being monitored have been given

equal weights, where as column 3 indicates weight accorded to feature

indicating number of inactive ports accessed by the source machine, TTL

feature takes a value 1 if a packet within the time window of a source has an

abnormal TTL field value, Key is a feature which takes a numeric value in

the range [0-1] based on the presence of attack signature.

ANN Based Network Intrusion Detection System

Appendix `J'
VALID PORT.TXT

(The file holds the valid or active ports on the victim machine against whom the intrusion
is being monitored by preparing a list of active ports on the machine based on nonattack
tcpdump file, a sample of some of those ports are listed below)

23 	0.000000
22 	0.000000
25 	0.000000
123 0.000000
32787 0.000000
32810 0.000000
32838 0.000000
32848 0.000000
21 	0.000000
32833 0.000000
32825 0.000000
32846 0.000000
32780 0.000000
32832 0.000000
32842 0.000000
32808 0.000000
32809 0.000000
32804 0.000000
32805 0.000000
32807 0.000000
32844 0.000000
32845 0.000000
32795 0.000000
32806 0.000000
32775 0.000000
32820 0.000000
32824 0.000000
0 	0.000000
32803 0.000000
32794 0.000000
32776 0.000000
32823 0.000000
32828 0.000000
32779 0.000000
32792 0.000000
32827 0.000000
32829 0.000000
32843 0.000000
32777 0.000000
32851 0.-000000
32790 0.000000
32778 0.000000
20 	0.000000
32821 0.000000
32836 0.000000
32837' 0.000000
32783 0.000000

91

ANN Based Network Intrusion Detection System

Appendix `K'
CLUSTER.TXT

(Note that the first five columns reflect the port activity where as the next four columns
show the values of other features, column 11 indicate the number of times the cluster
was labeled as an attack in the complete training period , column 12 indicates the number
of time the cluster center was selected during the training period)

1 0.000000 -0.130121 -0.171973 -0.007347 1.355499
0.000000 0.000000 0.000000 0.000000 0.000000
2730.000000 0.000000

2 -0.000494 -0.294508 -0.186172 -0.069040 -0.426699
0.000000 0.000000 0.000000 0.000000 8.000000
2371.000000 16.000000

3 0.000000 -0.167857 1.038775 -0.014935 -0.611762
0.000000 0.000000 0.000000 0.000000 0.000000
712.000000 0.000000 -

4 0.000000 -0.316465 -0.206052 1.820978 -0.413980
0.000000 0.000000 0.000000 0.000000 1.000000
299.000000 20.000000

5 0.000000 1.202854 -0.171130 -0.039892 -0.503391
0.000000 0.000000 0.000000 0.000000 1.000000
792.000000 20.000000

6 0.000000 -0.357167 -0.243810 -0.111109 -0.461362
0.000000 0.000000. 0.000000 1.500000 3.000000
895.000000 20.000000

7 0.000000 -0.492279 -0.256090 -0.1743.18 -0.369589
0.000000 0.000000 0.000000 2.474874 1.000000
328.000000 20.000000

8 0.000000 1.549690 -0.330869 -0.039806 -0.444999
0.000000 0.000000 0.000000 1.788854 1.000000
29.000000 20.000000

9 0.000000 -0.558844 2.277098_ 0.000000 -0.382929
0.000000 0.000000 0.000000 2.032660 0.000000
4.000000 0.000000

10 -0.000387 -0.395002 -0.231951 -0.127416 1.828020
0.000000 0.000000 0.000000 -0.796108 4.000000
1109.000000 16.000000

11 0.000000 -0.371564 1.984264 -0.120016 -0.422800
0.000000 0.000000 0.000000 -0.796108 4.000000
573.000000 20.000000

92

ANN Based Network Intrusion Detection System

12 0.000000 1.719902 -0.224051 -0.115796 -0.414455
0.000000 0.000000 0.000000 -0.796108 1.000000
883.000000 20.000000

13 0.000000 3.175427 -0.303693 0.000000 -0.288675
0.000000 0.000000 0.000000 0.684167 0.000000
2.000000 0.000000

14 0.000000 -0.171106 -0.129329 -0.134884 -0.357966
0.000000 0.0000.00 0.000000 -1.368335 1.000000
53.000000 20.000000

15 0.000000 1.667806 -0.292541 1.953339 -0.413501
0.000000 0.000000 0.000000 -0.550482 0.000000
16.000000 0.000000

16 0.000000 -0.081650 -0.650339 -0.081650 -0..512590
0.000000 0.700000 0.000000 1.500000 1.000000
4.000000 16.000000

17 0.000000 -0.183067 0.193357 -0.100504 -0.398646
0.000000 0.700000 0.000000 -0.303457 0.000000
2.000000. 0.000000

18 0.000000 -0.466072 -0.408248 0.000000 -0.408248
0.000000 0.000000 1.000000 -0.461069 1.000000
1.000000 20.000000

19 0.000000 -0.359000 1.950601 1.984485 -0.419940
0.000000 0.000000 0.000000 -0.579239 0.000000
6.000000 0.000000

20 0.000000 -0.444754 2.623821 -0.047246 -0.338415
0.000000 0.000000 0.000000 0.408576 0.00.0000
34.000000 0.000000

21 0.000000 3.474396 -0.375556 0.000000 -0.267261
0.000000 0.000000 0.000000 -1.557695 0.000000
1.000000 0.000000

22 0.000000 -0.247164 -0.218603 -0.148018 3.496258
0.000000 0.000000 0.000000 -1.557695 0.000000
5.000000 0.000000

23 -0.027217 1.645849 2.037323 -0.046462 -0.429477
0.000000 0.000000 0.000000 -0.408248 2.000000

.14.000000 16.000000

24 0.000000 1.663361 -0.291403 2.091417 -0.402848
0.000000 0.000000 0.000000 1.207778 0.000000
3.000000 0.000000

25 0.000000 -0.542964 2.761858 2.242673 -0.335310
0.000000 0.000000 0.000000 0.672842 0.000000
2.000000 0.000000

W

ANN Based Network Intrusion Detection System

26 0.000000 -0.452044 -0.190488 2.119653 -0.371446
0.000000 0.000000 0.000000 1.788854 0.000000
8.000000 0.000000

27 0.000000 -0.480465 0.000000 -0.223607 -0.223607
0.000000 0.000000 0.000000 4.006649 0.000000
1.000000 0.000000

28 0.000000 -0.491428 -0.239774 3.114036 -0.297775
0.000000 0.000000 0.000000 0.049979 0.000000
44.000000 0.000000

29 0.000000 0.000000 -0.101778 -0.454854 2.708391
0.000000 0.000000 0.000000 -2.428707 0.000000
3.000000 0.000000

30 0.000000 -0.397873 -0.333333 2.666667 -0.333333
0.000000 0.000000 1.000000 -0.755929 1.000000
1.000000 20.000000

31 0.000000 0.000000 3.170790 -0.288675 -0.288675
0.000000 0.000000 0.000000 -2.106059 0.000000
3.000000 0.000000

32 2.041241 -0.366296 -0.276158 2.041241 1.290994
0..000000 0.700000 0.000000 2.040196 1.000000
1.000000 16.000000

33 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0._000000 0.000000 0.500000
1.000000 0.000000

ANN Based Network Intrusion Detection System

Appendix `L'
LABELS2.TXT

(Note : The detection list is converted by the program into labels2.txt file which is then
loaded in program data structure using load_detectlist function, Column 2, 3 gives out the
date and time on which the victim machine givenin column 4 is attacked , the type of
attack is identified in column 6)

00000003 03/08/1999 09:39:16 172.16.114.50 1 back
00000005 03/08/1999 15:57:15 172.16.112.50 1 land
00000008 03/09/1.999 08:44:17 172.16.114.50 1 portsweep
00000010 03/09/1999 10:06:43 172.16.114.50 1 back
00000022 03/10/1999 23:56:14 172.16.112.100 1 crashiis
00000023 03/11/1999 08:04:17 172.16.112.100 1 crashiis
00000025 03/11/1999 10:50:11 172.16.114.50 1 portsweep
00000029 03/11/1999 15:47:15 172.16.112.50 1 land
00000037 03/12/1999 12:40:12 172.16.112.100 1 crashiis
00000042 03/12/1999 17:13:10 172.16.112.50 1 portsweep

95

1

1
1

1
1
1

12
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
11
11
11
11
11
11
11
11
22
22
22
22
22
22
22
22
33
33

ANN Based Network Intrusion Detection System

Appendix `M'
WEIGHTS.TXT

(The weights learned by the neural network are stored in this file, the first column
identifies the layer whose weight matrix is given in the respective column for eg. 1
indicates input layer, 2 indicates first hidden layer, 11 indicates the biases for the
activation function for the first layer and so on)

12.124458 1336097 4.189026 6.794621 -10.694255 -14.406758 3.915025 -14.322686
4.094130 -2.701712 3.770890 1.586957 -5.579520 12.831892 3.727951 7.102176
5,986238 5.154681 -3.738653 -3.059633.0.793220 5.544315 2.526078 8.003633
7.266730 -0.707502 -3.184903 -1.816282 4.052572 -3.813072 11.603840 1.590209
5.346167 3.254396 5.188834 -0.289592 0.275908 1.443059 1.664576 0.662656
-0.402044 -0.813780 -0.888795 -1.648982 -1.191605 0.080371 0.660984 0.097620
-28.985300 -32.817535 -21.243147 -41.157098 -33.861924 -3.830380 25.419094 -13.387460
-17.19757926.661211 -26.3310272.0025571.340583 9.265058 -10.933915 -16.537451
2.123473 0.736094 -0.835305 6.112051 7.614748 3.765511 -16.330341 -1.774928
-1.588189 0.880498 -6.735077 2.338000 -3.991837 -0.231353 1.615264 6.885277
-1.100372 2.710463 3.063509 -4.355818 1.348661 9.724065 0.266114 22.523344
-0.815352 2.760505 -0.043067 -0.399806 3.293720 0.899433 -2.046620 0.198607
3.494991 2.047174 -3.858157 -0.965705 1.780292 -0.649249 3.441759 0.361174
-0.157083 -4.922811 7.265902 -3.733304 9.365573 1.230118 0.500251 -8.766551
-3.378566 4.299354 5.746967 5.581333 3.194082 -3.507980 -3.540452 1.309580
2.884412 4.150403 8.315664 -0.023191 -3.722160 2.400542 -1.561797 4.834430
-2.459903- 3.753446 -11.513946 -1.307424 4.232545 -9.212719 0.151397 -1.627768
2.517360 -5.947798
-3.875303 -3.074685
21.020371 8.742780
3.898470 0.653328
-5.921271 -4.453188
10.322303 24.829320
0.920767 -6.245233
-12.252769 2.196610
2.000225
-1.332123
11.828607
-0.251997
16.501632
-6.677321
-8.822067
13.463149
8.598995
-6.349320
-1.708481
0.630150
1.317005
-2.740570
7.829945
1.658313
-3.207665
-6.511979

0 0.

ANN Based Network Intrusion Detection System

Appendix 'N'
SOM CLUSTER.TXT

(This file displays the classification of the clusters learned during clustering by the
statistical computation process)

learning on file :in2l.tcpdump
** timestamp cluster 03/08/1999 15:56:16 timestamp label 03/08/1999
15:57:15
Attacker :195.73.151.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :11 name of attack:land

20.000000
(80) : 0.000000
(23) : -0.371564
(22)- 	1.984264
(25) 	-0.120016
(123) : -0.422800
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108
** timestamp cluster 03/08/1999 15:56:16 timestamp label 03/08/1999
15:57:15
Attacker :172.16.114.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :6 	name of attack:land

20.000000
(80) : 0.000000
(23) : -0.357167
(22) : -0.243810
(25) : -0.111109
(123) : -0.461362
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 1.500000
** timestamp cluster 03/08/1999 15:56:48 timestamp label 03/08/1999
15:57:15
Attacker :172.16.112.10 	Victim

victim : 172.16.112.50
cluster No. :10 name of attack:land

20.000000
(80) : -0.000387
(23) : -0.395002
(22) : -0.231951
(25) : -0.127416
(123) : 1.828020
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108

in label: 172.16.112.50

97

ANN Based Network Intrusion Detection System

timestamp label 03/08/1999 ** timestamp cluster 03/08/1999 15:56:52
15:57: 15
Attacker :195.73.151.50 	Victim

victim : 172.16.112.50
cluster No. :11 	name of attack:land

20.000000
(80) : 0.000,000
(23) : -0.371564
(22) : 1.984264
(25) : -0.120016
(123) : -0.422800
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108
** timestamp cluster 03/08/1999 15:56:52
15:57:15
Attacker :172.16.114.50 	Victim

victim 	172.16.112.50
cluster No. :7 	name of attack:land

20.000000
(80) : 0.000000
(23) : -0.492279
(22) : -0.256090
(25) : -0.174318
(123) : -0.369589
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 2.474874
** timestamp cluster 03/08/1999 15:57:07
15:57:15

timestamp label 03/08/1999

timestamp label 03/08/1999

in label: 172.16.112.50

in label: 172.16.112.50

Attacker :172.16.112.50 	Victim
victim : 172.16.112-.50

cluster No. :18 name of attack:land
20.000000

(80) : 0.000000
(23) : -0.466072
(22) : -0.408248
(25) : 0.000000
(123) : -0.408248
key : 0.000000
TTL : 0.000000
same addr : 1.000000
invalid port : -0.461069

in label: 172.16.112.50

** timestamp cluster 03/08/1999 15:58:12 timestamp label 03/08/1999
15:57:15
Attacker :172.16.113.50 	Victim

victim : 172.16.112.50
cluster No. :2 	name of attack:land

20.000000
(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000

in label: 172.16.112.50

ANN Based Network Intrusion Detection System

TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000
learning on file :in22.tcpdump
learning on file :in23.tcpdump
learning on file :in24.tcpdump
** timestamp cluster 03/11/1999 15:46:26
15:47:15
Attacker :195.73.151.50 	Victim

victim :172.16.112.50
cluster No. :5 	name of attack:land

20.000000
(80) : 0.000000
(23) : 1.202854
(22) : -0.171130
(25) : -0.039892
(123) : -0.503391
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000

** timestamp cluster 03/11/1999 15:46:53
15:47:15
Attacker :172.16.114.50 	Victim

victim : 172.16.112.50
cluster No. :8 	name of attack:land

20.000000
(80) : 0.000000
(23) : 1.549690
(22) : -0.330869
(25) : -0.039806
(123) : -0.444999
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 1.788854
** timestamp cluster 03/11/1999 15:46:53
15:47:15

timestamp label 03/11/1999

timestamp label 03/11/1999

timestamp label 03/11/1999

in label: 172.16.112.50

in label: 172.16.112.50

Attacker :197.218.177.69 	Victim
victim : 172.16.112.50

cluster No. :11 name of attack:land
20.000000

(80) : 0.000000
(23) : -0.371564
(22) : 1.984264
(25) : -0.120016
(123) : -0.422800
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port 	-0.796108

in label: 172.16.112.50

** timestamp cluster 03/11/1999 15:46:24 timestamp label 03/11/1999
15:47:15
Attacker :172.16.112.10 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :10 	name of attack:land

20.000000

ANN Based Network Intrusion Detection System

(80) : -0.000387
(23) : -0.395002
(22) : -0.23195.1
(25) : -0.127416
(123) : 1.828020
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108
** timestamp cluster 03/11/1999 15:46:41
15:47:15
.Attacker :196.227.33.189 	Victim

victim : 172.16.112.50
cluster No. :4 	name of attack:land

20.000000
(80) : 0.000000
(23) : -0.316465
(22) : -0.206052
(25) : 1.820978
(123) : -0.413980
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000

timestamp label 03/11/1999

in label: 172.16.112.50

** timestamp cluster 03/11/1999 15:46:41 timestamp label 03/11/1999
15:47:15
Attacker :172.16.112.20 	Victim

victim : 172.16.112.50
cluster No. :2 	name of attack:land

20.000000
(80) : -0.000494
(23) : -0.294508
(22) :-0.186172
(25) :.-0.069040
(123) : -0.426699
key 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000

in label: 172.16.112.50

** timestamp cluster 03/11/1999 15:47:02 timestamp label 03/11/1999
15:47:15
Attacker :195.73.151.50 	Victim

victim : 172.16.112.50
cluster No. :14 name of attack:land

90.000000
(80) : 0.000000
(23) : -0.171106
(22) : -0.129329
(25) : -0.134884
(123) : -0.357966
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -1.368335

in label: 172.16.112.50

** timestamp cluster 03/11/1999 15:47:03 timestamp label 03/11/1999
15:47:15

100

ANN Based Network Intrusion Detection System

Attacker :197.218.177.69 	Victim in label: 172.16.112.50
victim a 172.16.112.50

cluster No.-:11 name of attack:land
20.000000

(80) : 0.000000
(23) : -0.371564
(22) : 1.984264
(25) : -0.120016
(123),: -0.422800
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108
** timestamp cluster 03/11/1999 15:47:03 timestamp label 03/11/1999
15:47:15
Attacker :,172.16.114.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :6 	name of attack:land

20.000000
(80) : 0.000000
(23) : -0.357167
(22) : -0.243810
(25) : -0.111109
(123) : -0.461362
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 1.500000
** timestamp cluster 03/11/1999 15:47:03 timestamp label 03/11/1999
15:47:15
Attacker :172.16.113.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :2 	name of attack:land

20.000000
(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000
** timestamp cluster 03/11/1999 15:47:07 timestamp label 03/11/1999
15:47:15
Attacker :172.16.112.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :30 name of attack:land

20.000000
(80) : 0.000000
(23) : -0.397873
(22) : -0.333333
(25) : 2.666667
(123) : -0.333333
key : 0.000000
TTL : 0.000000
same' addr 	1.000000

101

ANN Based Network Intrusion Detection System

invalid port : -0.755929
** timestamp cluster 03/11/1999 15:47:28 timestamp label 03/1-1/1999
15:47:15
Attacker :172.16.112.10 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :10 	name of attack:land

20.000000
(80) : -0.000387
(23) : -0.395002
(22) : -0.231951
(25) : -0.127416
(123) : 1.828020
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108
** timestamp cluster 03/11/1999 15:47:41 timestamp label 03/11/1999
15:47:15
Attacker :172.16.11.4.168 	Victim in label: 172.16.112.50

victim : 172.16.112.5.0
cluster No. :12 	name of attack:land

20.000000
• (80) : 0.000000
(23) : 1.719902
(22) : -0.224051
(25) : -0.115796
(123) : -0.414455
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108

** timestamp cluster 03/11/1999 15:47:41 timestamp label 03/11/1999
15:47:15
Attacker :172.16.112.20 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :6 	name of attack:land

20.000000
(80) : 0.000000
(23) : -0.357167
(22) : 0.243810
(25) : -0.111109
(123) : -0.461362
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 1.500000
learning on file :in25.tcpdump
** timestamp cluster 03/12/1999 17:12:12 timestamp label 03/12/1999
17:13:10
Attacker :195.73.151.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :23 name of attack:portsweep

16.000000
(80) : -0.027217
(23) : 1.645849
(22) : 2.037323
(25) : -0.046462

102

ANN Based Network Intrusion Detection System

(123) : -0.429477
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.408248
** timestamp cluster 03/12/1999 17:12:13
17:13:10

timestamp label 03/12/1999

Attacker :172.16.113.50 	Victim in label: 172.16.112.50
victim : 172.16.112.50

cluster No. :2 	name of attack:portsweep
16.000000

(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000
** timestamp cluster 03/12/1999 17:12:20 timestamp label 03/12/1999
17:13:10
Attacker :172.16.114.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :2 	name of attack:portsweep

16.000000
(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000
** timestamp cluster 03/12/1999 17:12:29 timestamp label 03/12/1999
17:13:10
Attacker :195.73.151.50 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :23 name of attack:portsweep

16.000000
(80) : -0.027217
(23) : 1.645849
(22) : 2.037323
(25) : -0.046462
(123) : -0.429477
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.408248
** timestamp cluster 03/12/1999 17:12:42 timestamp label 03/12/1999
17:13:10
Attacker :172.16.114.50- 	Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :2 	name of attack:portsweep

16..000000
(80) : -0.000494

103

ANN Based Network Intrusion Detection System

(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000

** timestamp cluster 03/12/1999 17:13:02 timestamp label 03/12/1999
17:13:10
Attacker :209.167.99.71

	
Victim in label: 172.16.112.50

victim : 172.16.112.50
cluster No. :32 name of attack:portsweep

16.000000
(80) : 2.041241
(23) : -0.366296
(22) : -0.276158
(25) : 2.041241
(123) : 1.290994
key : 0.000000
TTL : 0.700000
same addr : 0.000000
invalid port : 2.040196
** timestamp cluster 03/12/1999
17:13:10
Attacker :172.16.112.20

victim : 172.16.112.50
cluster No. :2 	name of attack:portsweep

16.000000
(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000
** timestamp cluster 03/12/1999 17:13:13
17:13:10

timestamp label 03/12/1999

17:13:05 timestamp label 03/12/1999

Victim in label: 172.16.112.50

Attacker :172.16.112.10 	Victim in label: 172.16.112.50
victim : 172.16.112.50

cluster No. :10 name of attack:portsweep
16.000000

(80) : -0.000387
(23) : -0.395002
(22) : -0.231951
(25) : -0.127416
(123) : 1.828020
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : -0.796108
** timestamp cluster 03/12/1999 17:13:21 timestamp label 03/12/1999
17:13:10
Attacker :196.37.75.158 	Victim in label: 172.16.112.50

victim : 172.16.112.50

104

ANN Based Network Intrusion Detection System

cluster No. :2 	name of attack:portsweep
16.000000

(80) : -0.000494
(23) : -0.294508
(22) : -0.186172
(25) : -0.069040
(123) : -0.426699
key : 0.000000
TTL : 0.000000
same addr : 0.000000
invalid port : 0.000000

** timestamp cluster 03/12/1999 17:14:06
17:13:10

timestamp label 03/12/1999

Attacker :209.167.99.71 	Victim in label: 172.16.112.50
victim : 172.16.112.50

cluster No. :16 name of attack:portsweep
16.000000

(80) : 0.000000
(23) : -0.081650
(22) : -0.650339
(25) : -0.081650
(123) : -0.512590
key : 0.000000
TTL : 0.700000
same addr : 0.000000
invalid port : 1.500000

105

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendix

